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Electron-capture and β-decay rates in stellar environments are evaluated by shell-model calculations
with new shell-model Hamiltonians which can describe Gamow-Teller (GT) transitions in nuclei
quite well. The weak rates in sd-shell nuclei are used to study nuclear Urca processes in ONeMg
cores of 8-10M⊙ stars. The GT transitions and weak rates of nuclear pairs with A=31 in sd-p f shell
and A=61 in p f -shell relevant to Urca processes in neutron star crusts are evaluated and discussed.
The weak rates in p f -shell are applied to study nucleosynthesis of iron-group elements in Type Ia
supernova explosions.
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1. Introduction

Weak transition rates in stellar environments relevant to astrophysical processes in stars are eval-
uated with new shell-model Hamiltonians in sd-shell, p f -shell and sd-p f shell, which can describe
spin responses in nuclei quite well. Electron-capture and β-decay rates thus obtained are applied to
study nuclear Urca processes in stars and nucleosynthesis in supernova (SN) explosions. As the dom-
inant contributions to the weak rates come from GT transitions, new shell-model calculations lead to
remarkable improvemements in the weak rates. In Sect. 2, we discuss the weak rates in A=23 and 25
nuclear pairs and Urca processes in ONeMg cores in 8-10M⊙ stars, as well as the rates in A=31 and
61 nuclear pairs relevant to Urca processes in neutron star crusts. In Sect. 3, sythesis of neutron-rich
iron group nuclides in Type Ia supernovae is discussed with the weak rates updated in p f shell.

2. Electron-capture and β-decay rates and nuclear Urca processes

Electron-capture and β-decay rates in sd shell obtained by USDB Hamiltonian [1] in stellar envi-
ronments, that is, at high temperatres (T = 108 -1010 K) and high densities (ρYe = 108 -1010 g cm−3

with Ye the electron fraction) are applied to nuclear Urca processes. The e-capture rates increase
while the β-decay rates decrease as the density increases due to the increase of electron chemical
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potential at high densities. Both the weak rates coincide at a certain density, called a Urca density,
almost independent of temperatures. Both ν and ν̄ are emitted at the Urca density thus taking away
the energy from the star, which results in a drastic cooling of the core of the star. This mechanism,
called the nuclear Urca process, occurs quite efficiently for the nuclear pairs with A = 23 and 25,
where the transitions between the ground states are GT ones [2, 3]. Urca densities for the nuclear
pairs, 25Mg -25Na and 23Na -23Ne, are log10 (ρYe) = 8.78 and 8.92, respectively. The weak rates for
the nuclear pair, 25Mg -25Na , and the cooling of ONeMg core of a star with 8.8 M⊙ are shown in Fig.
1 [2,4]. When Coulomb corrections from electron background, that is, the screening (SCR) effects are
included, ion-electron potential and chemical potential of ions are modified [5,6]. The latter changes
the threshold energy of a reaction, which results in a reduction of e-capture rate and an enhancement
of β-decay rate. The SCR shifts the Urca density to a higher density region by ∆ log10(ρYe) = 0.03
[2, 3].

Fig. 1. (Left) Weak rates for the A=25 Urca nuclear pair, 25Mg-25Na, as functions of density log10ρYe at
temperatures in the range of log10T =8 to 9.2 in steps of 0.2. Electron-capture and β-decay rates are denoted by
solid and dashed lines, respectively. Taken from [3]. (Right) The evolution of the central temperature Tc of an
ONeMg core of the 8.8M⊙ star as a function of time in units of years. The temperature drop up to t=1 year and
the temperature drop during t= 2-2.5 year are caused by the Urca processes by the A=23 and A=25 nuclear
pairs, respectively. Changes of the mass fraction Xc of 25Mg and 23Na are also shwon. The case with the use of
Oda et al.’s table [7] using sparce grid is also shown, where there is no effect of the Urca process. Taken from
[2].

The star with 8.8 M⊙ collapses triggered by subsequent e-capture processes on 24Mg and 20Ne,
and ends with an e-capture (EC) SN explosion. Stars with M > 9 M⊙ are likely to end with core-
collapse (CC) SN explosions. Border of CC-SN or EC-SN is at M∼ 9 M⊙, and the fate of the stars
with 8-10 M⊙ is sensitive to nuclear weak rates as well as their masses.

Next, we discuss a nuclear Urca process for a nuclear pair in the island of inversion [8]. Several
nuclear pairs have been pointed out to be important for the cooling of neutron star crusts [9]. Here,
the pair with A =31 in the island of inversion, 31Mg↔ 31Al, is considered as it is one of the potential
candidates that contribute to the cooling [9, 10].

Neutron-rich nuclei in the island of inversion (sd-p f shell) are studied by shell-model calcula-
tions with the EEdf1 interaction [12] obtained by the extended Kuo-Krenciglowa (EKK) method [11]
starting from chiral EFT N3LO and Fujita-Miyazawa 3N interaction [13]. Neutron ESP’s between sd-
shell and p f -shell orbits become nuch closer in the n-rich region, Z =10-12, for the EEdf1 compared
with conventional sd-p f shell Hamiltonians such as sdpf-m [15]. This results in larger admixtures of
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p f -shell components for the EEdf1: the contributions from 4p-4h excitations are found to be larger
than those from 2p-2h excitations in 32Mg.

Energy levels of 31Mg can be well explained by the EEdf1 [13]. Configurations including up to
6p-6h excitations are taken. The ground state (g.s.) of 31Mg is calculated to be 1/2+ consistent with
the experimental observation [16], while it is predicted to be 7/2− by the sdpf-m. The first excited
state is predicted to be 3/2+, very close to the ground state 1/2+. As the g.s. of 31Al is 5/2+, GT
transition between 3/2+ state in 31Mg and 5/2+g.s. in

31Al gives the main contribution to the e-capture
and β-decay rates for the A=31 pair.

The weak rates in stellar environments obtained with the EEdf1 are shown in Fig. 2. The GT
transitions between 31Mg (3/2+, 1/2+) and 31Al (5/2+, 1.2+, 3/2+) are taken into account. Calculated
log f t values are 5.43 and 7.40 for 31Mg (3/2+) → 31Al (5/2+) and (3/2+), respectively. Those for
31Mg (1/2+)→ 31Al (3/2+) and (1/2+) are 5.98 and 5.78, respectively, while the experimental values
are 5.59 and 6.025, respectively. Deviations of the calculated GT strengths from the experimental
ones are rather moderate, by a factor of 0.4-1.8.

Fig. 2. Electron-capture and β-decay rates for the nuclear pair, 31Al-31Mg, as functions of density log10(ρYe)
for various temperatures. (Left) The rates are evaluated with the EEdf1 interaction obtained by the EKK method
[13]. (Right) The rates are obtained with the sdpf-m Hamiltonian [15].

There exists a Urca density as shown in Fig. 2 (left panel) since the excitation energy of the 3/2+

state in 31Mg is as small as 0.05 MeV. If the g.s. of 31Mg is taken to be 7/2−, there does not exist
a Urca Density as shown in Fig. 2 (right panel) because of non-existence of GT transitions between
low-lying states.

We finally discuss A=61 nuclear pair, 61Cr↔ 61V. A QRPA calculation predicts a rather strong
GT transition strength for the β-decay 61V → 61Cr. If the g.s. to g.s. transition is asuumed to be a
GT one, the A=61 Urca pair is expected to give a large contribution to the cooling of the neutron star
scrusts. However, a recent β-decay experiment shows that the log f t value for the transition 61Vg.s
→ 61Crg.s. is log f t = 5.5±0.2. This suggest a weaker transition strength compared with a value log
f t =4.35 predicted by the QRPA. The GT strength for 61V (3/2−, g.s.) → 61Cr obtained by shell-
model calculation with a p f -shell Hamiltonian GXPF1J [17] is shown in Fig. 3. A quenching factor
of 0.74 is taken for ge f f

A /gA. Calculated log f t value for the transition to the g.s. of 61Cr (5/2−) is
log f t = 5.68, consistent with the experimental value. Though spins of the g.s.’s were not assigned
definitely by the experiment, the present shell-model calculation sugests Jπ = 3/2− and 5/2− for the
g.s. of 61V and 61Cr, respectively. The e-capture and β-decay rates for the transitions between the g.s.
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Fig. 3. (Left) GT strength for 61V→ 61Cr obtained with GXPF1J. (Right) Electron-capture and β-decay rates
for the nuclear pair, 61Cr-61V, as functions of density log10(ρYe) for various temperatures.

states obtained with the GXPF1J are shown in Fig. 3. There exists a Urca density around log10(ρYe)
=10.23. A moderate contribution to the cooling from the A=61 nuclear pair is expected. Studies with
extended shell-model configuration spaces with g9/2d5/2 shell are left to future.

3. Electron-capture rates in pf shell and synthesis of iron-group elements

GT strengths in Ni and Fe isotopes are described quite well with a new shell-model Hamiltonian.
GXPF1J [17], in p f shell with a universal quenching factor f = ge f f

A /gA =0.74. In particular, the GT
strength in 56Ni obtained by (p, n) reaction has two-peak structure [18], and it can be reproduced well
by the GXPF1J [19]. Calculated GT strength with the GXPF1J as well as those with KB3G [20] and
KBF [21] and the experimental values are shown in Fig. 4. Both KB3G [20] and KBF [21] fail to
reproduce the two-peak structure. The GXPF1J is shown to reproduce experimental e-capture rates
in various p f -shell nuclei better than KB3G and RPA calculations [22].

The GT strength spreads more for GXPF1J compared with KB3G, which leads to smaller e-
capture rates for GXPF1J. As the KBF, conventionally used for stellar calculations, take into account
experimental data of energies and GT strength available, the e-capture rates of KBF come close to
those of GXPF1J.

Now, we discuss synthesis of iron-group elements in Type Ia SN. Here, single-degenerate ’Chan-
dra’ model is treated. Accretion of matter from non-degenerate companion to a white dwarf (WD)
occurs, and a SN explosion takes place when WD mass approaches the Chandrasekhar limit. A lot of
56Ni is produced during the explosion, and successive e-capture reactions produce neutron-rich (n-
rich) nuclides and Ye decreases. Decrease of e-capture rates leads to less production of n-rich nuclides
and larger Ye.

There was an over-production problem of n-rich iron-group elements compared with the solar
abundances when e-capture rates of FFN [24] were used. N-rich nuclei such as 54Cr and 58Ni are
produced several times more than the solar abundances when an explosion model W7 with fast de-
flagration with subsonic frame front was used [25]. Another explosion model WDD2 [25] with slow
deflagration and delayed detonation with supersonic shock wave is used also here. The production
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Fig. 4. (Left) The B(GT ) strengths obtained by shell-model calculations with GXPF1J (solid), KBF (dashed)
and KB3G (dash-dotted) Hamiltonians. Experimntal data [18] are also shown. (Right) Abundances ratio rel-
ative to Fe relative to the solar abundance ratio for nuclei produced in Type Ia SN explosions for the WDD2
delayed-detonation model. The weak rates of GXPF1J are used. Solid (dashed) lines show the results with
(without) the SCR effects for the weak rates. Taken from [26]

yields of elements are obtained with the e-capture rates of GXPF1J (21≤ Z ≤ 32) and KBF (other
Z) for both the W7 and WDD2 explosion models. The over-production problem is now found to be
suppressed within a factor of about twice as shown in Fig. 4 for the production yields for the WDD2
model [23, 26].
The present work was supported in part by JSPS KAKENHI grant No. JP19K03855.
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