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Abstract. The busbars for the HL-LHC magnets are made of Nb-Ti/Cu conductor, the insulation 

system, and the auxiliary equipment to align the busbars with respect to the magnet coldmasses. This 

paper presents design options concerning the integration of the busbars inside the coldmass with a 

fixed point, and a reinforced insulation system for the flexible busbar part using thin PEEK tubes. 

Prototype splices for interconnecting Nb3Sn and Nb-Ti Rutherford cables, and round and flat 18 kA 

Nb-Ti cable have been produced and first test results are presented. 

1. Introduction 
For the high luminosity upgrade of the LHC (HL-LHC) [1], the presently installed quadrupole magnets at 

the beam interaction regions (IR) (inner triplet magnets) made of Nb-Ti conductor will be replaced by more 

powerful magnets using Nb3Sn superconducting cables [2]. 
The electrical circuits for the HL-LHC triplet magnets contain three distinct sub-circuits of 18 kA, 13 kA 

and 2 kA. A schematic representation of the 18 kA main, and 18 kA trims circuits are shown in Figure 1. 
One internal busbar made of flat Rutherford cable is routed through the Q1, Q2 and Q3 cold masses. The 
more flexible round 18 kA cable with about 14 mm diameter is used for the trims in the N1 line [3]. A flat 
cable is used for the passage through the lambda plate. The busbar specifications can be found in 
reference [3]. 

 

 
Figure 1: Conceptual design of the inner triplet 18 kA circuits [3]. 

 
Here we present the ongoing work at CERN for the development of the MQXFB magnet 18 kA busbars, 

including development of a busbar fixed point, reinforced insulation of flexible busbar parts, and splices. 
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2. Busbar design and manufacturing 
For the 18 kA busbar circuits three types of conductor will be used, notably 18 kA Nb-Ti flat Rutherford 

cable for magnet leads and the internal busbars, 18 kA Nb-Ti round cable, used in the N1 line, and 18 kA 

Cu conductor to connect the cold protection diodes. 

2.1 18 kA internal busbars 

As compared to the LHC main dipole and quadrupole circuits, the current decay constants of the IR 

quadrupole circuits are relatively short. Therefore, the cross section of the Cu stabiliser added to the 

Rutherford cable can be comparatively small. For protection it is sufficient to solder a second identical Nb-

Ti cable. The two 18.15 mm wide Nb-Ti Rutherford cables are soldered together and stabilized with the tin-

silver eutectic alloy, Sn96Ag4. This alloy has been chosen for its melting point of 221 °C, which is 

sufficiently low not to degrade the properties of the superconducting cable [4] during the soldering process, 

and sufficiently high not to be affected by the polymerization heat treatment of the insulation with a peak 

temperature of 190 °C. The solder material also presents favourable electrical characteristics at low 

temperature [5]. An internal busbar was successfully manufactured and tested at Fermilab in a MQXF short 

model. The experimental results have confirmed simulation results that indicate that the busbar is well 

protected for a quench detection threshold of 100 mV [6]. The measured and calculated hot spot 

temperatures are compatible with the specified values for HL-LHC as presented in [3]. 

2.2 Internal busbars in the MQXFB coldmass 

Contrary to the design solution adopted for the LHC main dipoles and the 11 T dipole, where the busbar is 

routed in an external groove at the outer surface of the yokes, in the MQXF quadrupole magnets the busbars 

are inserted inside the body of the coldmass, as shown in Figure 2. 

 

Figure 2: Cross section of the MQXFB quadrupole coldmass (�=614 mm) with main components and 
indication of the busbar position. 

 
In order to compensate for thermal contraction differences between the busbars and cold masses, busbars 

need to have a flexible part, like the lyres of the LHC main busbars [7], or expansion loops. The IR busbars 

will have expansion loops similar in design to those currently installed in the LHC MQXB IR magnets [8]. 

2.3 18 kA Nb-Ti busbar insulation requirements 

The goal of the busbar insulation system is to prevent electrical contact between the busbars and the 

grounded cold mass, in order to withstand the voltage levels specified in [9]. 
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The mechanical properties of materials are chosen to withstand stresses caused by Lorentz forces as well 

as thermal expansion mismatch of components [10], and have sufficient fracture toughness and ability of 

crack arrest to avoid crack propagation. 

In order to avoid high mechanical stresses during cooling due to thermal expansion mismatch between 

busbar constituents and cold mass, it is advantageous to have the thermal expansion behavior of the bus 

insulation and housing be as similar to that of the busbar and stainless steel as possible. 

As all materials of the busbar insulation system are inside the MQXF magnet cold masse they have to 

be non-magnetic and compatible with superfluid helium at 1.9 K. In addition they must provide sufficient 

radiation hardness in order to withstand the total absorbed dose over the entire HL- LHC lifetime. The peak 

integrated dose in the IT quadrupole magnet coil is 30 MGy [11]. The dose absorbed in the busbar insulation 

will be significantly lower. 

The insulation material must be compatible with the chemicals that are used in the LHC for instance for 

screw locking or insulation purposes, in particular with Araldite 2011® two-component epoxy adhesive, 

Araldite 2012® fast curing, two-component epoxy adhesive, and ORAPI Freinage Moyen 303® (1,2,3,4-

Tetrahydroquinoline) that is used for locking of stainless steel screws. 

2.3.1 Rigid busbar insulation and fixed point. An insulating material commonly used for rigid 

applications in the cryogenic environment of the LHC is glass fibre reinforced epoxy EPGC 203 (EPGC 203 

is equivalent to grade G11). This material was used to fabricate a busbar housing and the fixed point (six 

degrees of freedom) insulation (Figure 4). The main and return busbars, each consisting of two 18 kA 

Rutherford cables that are soldered together, are each insulated with polyimide film [12], held in place and 

electrically insulated from the grounded cold mass by glass fiber reinforced epoxy EPGC 203 housings. In 

order to provide a redundant insulation between the busbars an EPGC 203 spacer is added. 
By rigidly mounting the busbar on one point of the coldmass it can be assured that the thermal 

longitudinal displacement of the busbar occurs solely on the busbar expansion loop. A cross section through 

a newly designed fixed point is shown in Figure 3 (a). The busbar cable is soldered to the copper profiles 

(Figure 3 (b)), which are maintained in glass fibre reinforced epoxy EPGC 203 (tradename ISOVAL®11) 

[13] housing. A 3D model and a photograph of the manufactured prototype busbar with fixed point are 

shown in Figure 4. 

 
Figure 3: (a) Drawing of the fix point cross section. (b) Photograph of the fix components. 

 
Figure 4: (a) 3D model of internal double 18 kA busbars with EPGC 203 housing and fixed point. (b) 
Photograph of busbar and fixed point prototype. 
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2.3.2 Flexible busbar insulation. Flexible expansion loops or lyres are needed to accommodate thermal 

expansion mismatch during cooling. The LHC main busbars and the 11 T dipole busbars have lyres [7] for 

this purpose, while the presently installed IR magnet busbars have expansion loops.  
The LHC lyres are electrically insulated with two layers of polyimide tape wound in opposite direction 

with overlapping of 50 %. The external pre-impregnated layer is replaced by rings of polymerized fiberglass 

tape to hold the two polyimide layers. In addition each lyre is embedded in a glass–cloth sleeve [14] in order 

to provide further mechanical and electrical stability. 

Alternative insulation solutions have been investigated, and in particular tubes made of PEEK are 

considered either as a replacement, or in addition to the glass fibre socket presently used in the LHC. This 

provides a redundant insulation system for flexible busbars. For the first time this solution is applied in the 

busbars of the 11 T dipole series magnets (Figure 5). 

 
Figure 5: Flexible insulation on 11 T dipole busbar consisting of polyimide wrap, isopreg, PEEK lay flat® 
tube and glassfiber socket. 

PEEK tubes are commercially available, also as corrugated tubes (Figure 6), which may be preferable 

for round cable insulation. The thin walled PEEK tubes resist sharp bends without failure. Materials 

compatibility with e.g. Araldite 2011® and 2012, which are commonly used in the LHC have been 

successfully verified. 

 
Figure 6: Flexible insulation on 11 T dipole busbar consisting of polyimide wrap, isopreg, PEEK lay flat® 
tube and glass fibre socket. 

Radiation hardness of the HL-LHC busbar insulation is essential, and PEEK exhibits favourable 

radiation resistance as compared to other commonly used insulation materials [15]. 

3. Busbar splice production and testing  

3.1 MQXF Nb-Ti Rutherford lead cable splice 
Interconnecting Rutherford cables is conveniently done by soft soldering with either resistive or inductive 

heating, in a similar way as it is done for the LHC 13 kA busbar splices [16]. A commonly used solder is 

Sn96Ag4, which has good mechanical properties and very low electrical resistivity at cryogenic 

temperatures [17],[5]. 

In situ testing of Rutherford cable splice resistance in the LHC is performed at cold at high currents [18]. 

From ambient temperature tests it is not possible to predict the splice resistance at cold. Therefore, the splice 
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manufacturing and tooling validation are done using witness samples. Very high test currents of several 

thousand Amperes are needed to measure the very low resistances of superconductor Rutherford cable 

splices by the four-wire method. An alternative method is the measurement of the current decay constant in 

test loops with known inductance [19]. Such loops are routinely produced at CERN as Nb-Ti Rutherford 

cable splice witness samples, in order to validate the splice production processes and tooling. 

The decay constant of the MQXF Nb-Ti lead cable loops with 120 mm splice overlap is �=888±102 s 

(average value obtained for three loops). Assuming a loop inductance of 300 nH [20], a MQXF lead cable 

splice resistance of 0.34 n� is derived. 

3.2 MQXF Nb-Ti Rutherford lead cable to Nb3Sn coil splice 
Unlike for the ductile Nb-Ti cables, it is not possible to produce entire loops out of brittle Nb3Sn cables. In 

order to measure the resistance of the MQXF coil to lead cable splice, we have produced loops made of 

Nb-Ti lead cable, which was interconnected with a 120 mm long reacted MQXF Nb3Sn cable. In order to 

protect the brittle Nb3Sn cable from mechanical damage, Cu sheets are soldered on top and bottom of the 

splice. A schematic view of the splice produced to validate the MQXF coil to magnet lead splices is 

presented in Figure 7. During manufacturing of Nb3Sn cable splices special care needs to be taken not to 

exceed critical transverse mechanical pressures that could degrade the brittle Nb3Sn filaments [21]. 
 

 
Figure 7: (a) Test loop for current decay constant measurements with two 60 mm-overlap MQXF Nb3Sn 
coil to Nb-Ti lead cable splices. (b) Schematic view of the Nb3Sn to Nb-Ti Rutherford cable splice 
assembly. 

From the current decay constant of �=180 s measured for the loop with two 60 mm overlap splices in 

series, and the loop inductance of approximately 300 nH, a resistance value of 0.8 n� per 60 mm overlap 

splices is calculated. 

Resistance measurements of flat Rutherford type cable splices with different intercable contact lengths 

at 4.3 K in self-field have confirmed that the splice resistance is inversely proportional to the splice overlap 

length, regardless if the splice overlap length exceeds the cable transposition pitch [20]. Since the overlap 

length of a MQXF Nb3Sn/Nb-Ti splice is 120 mm, a resistance of 0.4 n� can be predicted for the MQXF 

coil to lead splices. 

3.3 MQXF Nb-Ti Rutherford lead cable to round 18 kA trim cable splice 
Prototype splices were produced with two different round 18 kA cables. The splice design takes into account 

splice performance, ease of production, as well as the possibility for non-destructive testing of the solder 

connections.  



14th European Conference on Applied Superconductivity (EUCAS 2019)

Journal of Physics: Conference Series 1559 (2020) 012075

IOP Publishing

doi:10.1088/1742-6596/1559/1/012075

6

The round cable is first soldered to the Cu housing using Sn96Ag4 solder with a melting temperature 

range between 221 °C - 225 °C. Afterwards the assembly is soldered onto the flat Rutherford cable busbar 

using Sn60Pb40 solder. The Sn60Pb40 solder is chosen for its lower melting temperature range between 

183 °C – 188 °C, in order to prevent de-soldering of the previously soldered round cable (Figure 8). 

 
Figure 8: (a) Photograph of 18 kA trim cable to Rutherford cable internal busbar splice. (b) Prototype 
insulation box 3D printed from ULTEM9085 for the 18 kA splice. 

In the final assembly the splice will be electrically insulated by an insulation box made of EP GC 203. 

For the tests a prototype insulation box produced from ULTEM9085 by fused deposition modelling, is used. 

The round cable to Cu housing solder connection and the round cable stabilisation have been verified by 

micro-tomography [22]. The cable stabilisation and cable to Cu profile joint can be seen in great detail in 

the tomographic slices shown in Figure 9. 

 
Figure 9: Micro-tomography cross section of 18 kA trim cable to splice Cu profile solder connection at (a) 
the extremity and (b) in 4 cm distance from the extremity (micro-tomography courtesy M. Jedrychowski). 

The splice quality has also been verified by four-point resistance measurements using a digital micro-

ohmmeter, with a test current of 10 A at ambient temperature [23]. The configuration of the measurement 

probes with two spring loaded pins each for current injection and voltage tap measurement are shown in 

Figure 10 (a). The resistance results presented in Figure 10 (b) are consistent with the micro-tomography 

observations. It can be seen that a low resistance of 2 μ� is measured along 12 cm in the splice center that 

is well stabilised. At the splice ends the resistance increases due to lower solder filling of the cable that is 

revealed by the micro-tomography. 
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Figure 10: (a) Photograph of 18 kA trim cable to Rutherford cable internal busbar splice cross section with 
the spring loaded current injector pins and voltage tap (P) pins used for the electrical resistance maps with 
the micro-Ohm tester. (b) Cable with resistance measurement positions and corresponding resistance results.  

4. Discussion and Conclusion 
A concept for the fixation of the HL-LHC busbars in the MQXFB quadrupole coldmasses has been designed 

and prototype busbars with fixed point and insulation were produced. 

The robustness of the electrical insulation of the busbars is crucial for the reliable operation of the 

HL-LHC magnets, which will be exposed to comparatively high radiation doses. An alternative insulation 

system for flexible busbar parts using thin PEEK tubes as a redundant insulation is proposed. The 

mechanical behaviour of different commercially available PEEK tubes has been tested. PEEK Lay-Flat 

tubes have been installed in addition to the polyimide films on the 11 T dipole busbars. Corrugated PEEK 

tubes are tested as an alternative busbar insulation, in particular for round cables. 

18 kA round cable to Rutherford prototype cable splices were produced. The splice design enables non-

destructive tests of the solder quality along the splice at ambient temperature. In a next step the splice 

performance will be measured at cryogenic temperature up to 18 kA. 
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