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ABSTRACT

In the past few years a wide variety of applications of neural networks to pattern recognition
in experimental high energy physics has appeared. The neural network solutions are in
general of high quality, and, in a number of cases, are superior to those obtained using
‘traditional’ methods. But neural networks are of particular interest in high energy physics
for another reason as well: much of the pattern recognition must be performed online, i.e.,
in a few microseconds or less. The inherent parallelism of neural network algorithms, and
the ability to implement them as very fast hardware devices, may make them an ideal
technology for this application.

1. Introduction

High energy physics (HEP) is the field which studies the basic constituents of matter and
the fundamental forces through which they interact. Recently, high energy physicists
have become interested in neural networks as HEP data analysis tools. It has been only a
few years since the first investigations of neural networks for HEP were undertaken
[Denby 1988, Peterson 1989], and much of today's work is still exploratory; however,
the growch in applications to HEP is quite striking. At the Second International AIHEP
Work.op [AIHEP 1992] at La Londe-les-Maures, France, in January, 1992, 25
applications of neural networks in high energy physics were presented. For comparison,
at the first workshop in this series, in Lyon, France in March, 1990, there were only two
such presentations.

In applications to date, neural networks have proven themselves to be more efficient
classifiers than the simple cuts normally used in HEP, have allowed certain measurements
to be made with smaller uncertainties due to their superior ability at function
approximation, and have permitted analyses to be made even from heavily overlapping
distributions due to their good approximation to Bayes probabilities. There have been
some extremely interesting results using hardware neural networks: it appears possible to
make rather sophisticated pattern analyses directly in the readout hardware of HEP
experiment rather than in the standard, time consuming offline analysis.

1.1 HEP Accelerators

HEP data is produced in experiments at the large accelerator centers worldwide as detailed
in table I. Each site features a 'ring' in which opposing beams of particles are made to
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collide at one or more 'interaction regions' (figure 1).! In »ilisions, daughter
particles of many kinds are produced, and these are detected in w5 of partic’ 2Ctors
surrounding the interaction region (see figure 2). The data from these detec: stitute
the HEP data sets from which physics results must be extracted.

Accel. | Lab Location |Beams| Energy  Period|Startupl periments
Tevatron| Fermilab| Batavia, IL p.p |9x9TevV | 4ps | 1986 20

(G ]

LEP CERN |Geneva, Swit. | a4 e- |50 x 50 GeV |26 us| 1988 | Delphi, Aleph,Opal,L3

Hera DESY |Hamburg, Ger.| e-, p [27 x 820 GeV|96 ns| 1992 | H1, Zeus

SLC SLAC | Stanford, CA | e+,e- |50x50GeV | 7ms| 1988 | SL™
Tristan | KEK  |Tsukuba, Jap.|e+,e- | 30x30GeV | 5 us| 1986 Jenus

SSC SSC EllisCty., TX | p,p | 20x 20 TeV | 16 ns| 1999 =M

LHC CERN |Geneva, Swit.| p,p [10x10TeV | 16 ns| 1999 | under discussion

Table I. Names and locations of the major world accelerator centers with the type and energy of beam
used, time between collisions of particle bunches, first date of operation, and the names of the major

experiments at the site. e- stands for electron, e+ for positron, p for proton, and pf 1.
These particles are discussed in more detail in the following section. The unit of =

tera- electron volt (GeV or TeV), and time is measured in microseconds (Ws) or =

LHC and SSC are two large new machines scheduled to turn on before the end of the decade.

\/ particle bunch

interaction region

accelerator ring

diameter

1 to 7 miles

Figure 1. An accelerator with 6 interaction regions. Particles in bunches cir . in opposite
directions, being brought together for collisions within the interaction regions. N. ne
or two particles within the bunches will actually collide during the crossing of two

Fermilab Tevatron has a diameter of about | mile. The SSC to be built in Texas will be

larger.

As more powerful particle accelerators are built, the accompanying experimeii.

tremendously, both in physical size and in the demands they place upon their data reaucut
systems. Figure 2, detailing the CDF (Collider Detector at Fermilab [CDF 1988])
experiment at Fermilab, gives an idea of the scale and complexity of the detectors used in
a current experiment. Detectors at LHC and SSC will be larger again by a factor of two

I There are also experiments in which the extracted beam is directed onto a fixed target; for simplicity we
shall not discuss these here.



or so. The volume of data produced in these detectors and the rate at which it must be
analyzed are daunting. A typical experiment may record hundreds of thousands of
individual detector channels, corresponding to about 1 million bits of information, for
each collision, or 'event’, as they are usually called, and it is not uncommon to record
many millions of events during a data taking run. The particles within a beam are stored
in 'bunches'. The rate of collisions varies considerably from machine to machine, and is
determined by the spacing between the bunches stored in the machine, since typically
only one or two particles will actually collide in each bunch crossing. In all cases, the
rates are rather challenging from the standpoint of realtime processing: at the Tevatron,
bunch crossings currently occur every 4 microseconds; at the SSC and LHC, they will
occur about every 16 nanoseconds. The growth in data set size and complexity, and the
unprecedented data rates at today's and future colliders have been the major motivating
factors in the search for more powerful data analysis tools for HEP.
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Figure 2. Elevation view of the CDF experiment at the Fermilub Tevatron. Only half of the apparalus is shown;
it is symmeltric about the point marked ‘interaction point'’. In the text, applications of neural networks to track
reconstruction in a central tracking chamber; vertex finding in a vertex chamber; electron finding in an endplug

calorimeter; and muon identification in a muon chamber are presented.



In the discussion of HEP neural network application which will follow, it will be
necessary to have some familiarity with the terminology associated with high energy
particle collisions and the detectors that record them. Sections 1.2 and 1.3 provide an
introduction.

1.2 Areas of HEP Research - the Standard Model

Much of current research in HEP is involved with the completion and verification of the
so-called 'Standard Model' of particle physics. In this model, the basic constituents of
matter are quarks and leptons as described in Table II. The constituents interact with

each other by 'exchanging'? particles called 'bosons', as described in Table III. Particle
interactions are described in more detail in the Appendix. Both quarks and leptons can

interact via the electroweak force, carried by the W, Z and y bosons. This force
combines the electric force, responsible for such phenomena as electricity and magnetism,
with the weak force which is responsible for radioactivity. Quarks can also interact
through the strong force, which is carried by bosons called gluons, usually represented
as g. Individual quarks and gluons are not observable. The naturally occurring particles
are either single leptons, or a ‘composite’ of two or more quarks as in table IV. A
proton, for example, is composed of two 'u' quarks and a 'd' quark which are bound
together by exchanging gluons. Composites containing quarks are also referred to as
'hadrons'. Leptons and hadrons interact differently in matter, as described in section 1.3.

type |symbol name charge | mass comments
light Ju.@ JupP +2/3,-2/3] ~100 MeVordinary matter composed of
dd down -1/3,+1/3] ~100 MeV up and down quarks
« |quarks
E s,§ | strange -1/3,+1/3] ~500 MeV [strange matter exists in stars
& heavy C{ charm +2/3,-2/3] ~1.5 GeV discovered in 1973
b,b | bottom -1/3,+1/3) ~5 GeV current area of study
usks t,T | top +2/3,-2/3|~130 GeVq not yet seen; much sought
chargs ¢" ¢~ | positron, electron| +1,-1 | 511 keV |causes chemical bonds
3] ;ﬂ;u— muon +1,-1 | 106 MeV | exist naturally in cosmic rays
S Gpiens . 7| tau +1,-1 | 1.8 GeV [first heavy lepton discovered
g neutral VeYe| electron neutrino 0 0? not visible in detectors.
\«'qu mu neutrino 0 0? except as 'missing' energy.
leptons U 3 Erem— o 07 masses thought to be zero

Table [I. Quarks and leptons and their properties, including mass and electric charge. The equivalence
of matter and energy allows us to write masses in energy units of eV,

2The word, ‘exchanging' is used figuratively. The true interaction is a quantum process which defies classical
explanation. The exchange of a particle is represented by a line in a Feynman diagram as discussed in the
Appendix.



force |symbol name charge mass comments

ol weak | WTWT  wH+w - +1,-1 81 GeV |discovered at CERN in 1983

% weak Z vA 0 91 GeV carriers of weak force

S elect. |y photon 0 0 light is composed of photons
strong o] gluon ' 0 0 binds quarks in composites

Table III. The force carrying bosons and their properties. The first column tells the type of
interaction the boson mediates: weak, electromagnetic, or strong,

A collision between particles is, in the Standard Model theory, an interaction between two
of the elementary constituents which they contain. For example, in a collision between a
proton and an antiproton, the 'true’ collision may be between a quark and an antiquark,
between a quark or antiquark and a gluon, or between two gluons. When physicists
examine the debris of such a collision, they are seeking information on the constituents
and force carriers which are produced in the collision.

Quarks and gluons emerging from a collision are not directly observable in the detector;
they are said to 'fragment’ into 'jets' containing many particles as they emerge from a
collision. This process is discussed in more detail in the Appendix. Jets from quarks and
from gluons are slightly different in their properties, as will be discussed in section 4.2.

type |symbol| quark content charge | mass comments

§ protony p uud +1 939 MeV |  atomic nuclei made of

§ neutron| n udd 0 940 Mev | Protons and neutrons

g pion| = ud, uu + dd +1,-1,0 |~135 MeV| most commonly produced
kaon | K us, ds +1-10 [~500 Mev| CcomPosites

Table IV. The composites most commonly encountered in HEP detector systems.

The most 'fashionable' areas of research in HEP today are: the study of the production
and decay properties of the 'heavy' (i.e., massive) quarks, ¢ and b; the search for the
heaviest quark, called 'top’, or simply, 't', which is postulated but as yet undiscovered;
studies of the vector bosons W and Z; the search for the Higgs particle (Table V), an
essential but as yet unobserved element of the Standard Model believed to be the origin of
the masses of all particles; and the study of the characteristics of jets.

«» |Symbol name charge mass comments

(=]

2 ; essential to theory. not yet
(o] 0 2 )

=] H Higgs ' seen. gives mass to particles.

Table V. The Higgs particle.

1.3 HEP Measurement Tools

Although there are quite a number of different types of measurement tools used in high
energy physics, most can be classified as one of two main types, tracking chambers and
calorimeters. Figure 3 shows a generic HEP detector system with a central tracking
chamber and a vertex tracking chamber, calorimeter with sections called 'electromagnetic’
and 'hadronic’, muon shielding iron, tollowed by another set of tracking chambers called



muon chambers. The figure illustrates the behaviour of the detectors for the four most
commonly encountered types of particles and for a jet.

muon

muon chambe

and electromagnetic
calorimeters

beam pipe

Figure 3. Behaviour of a muon, electron, pion, neutrino, and jet in a HEP detector system. The beam
pipe is perpendicular to the plane of the page. The muon passes completely through the calorimeters,
depositing only a small amount of energy in each section, and through the shielding iron, to be
finally detected in the muon tracking chambers. The electron deposits all of its energy in a localized
region of the electromagnetic calorimeter. The pion deposits its energy over a region of both
electromagnetic and hadronic calorimeters. The jet is composed of many particles of different types,
mostly pions, and deposits energy both in electromagnetic and hadronic sections of the calorimeter
over a broad region. The neutrino does not interact at all and passes undetected through the apparatus.

Tracking chambers are used to detect the trajectories of electrically charged particles
emerging from a collision. Usually the tracking chamber volume is within a magnetic
field. This causes the path of the charged particle to curve, enabling a measurement of the

momentum?3 of the particle. A knowledge of the momenta of all charged particles allows
a complete study of the underlying dynamics of the collision to be made. When a charged
particle passes through the chamber, gas molecules along its trajectory are ionized (there
are also tracking chambers which do not use gas as an active medium, but we shall not
discuss them here). High voltage wires spaced regularly throughout the tracking volume
collect this ionization in the form of electrical pulses, which can then be passed on to the
data acquisition system for analysis and reconstruction of the tracks. Position resolution
finer than the wire spacing is obtained by using an electronic device to measure the time it

3The momentum P of a particle is defined as P = Ev/c2 where E is its energy, v is its velocity, and ¢ is the
speed of light. For nonrelativistic particles E = mc2, where m is the mass, giving p = mv.



takes for the ionization to drift to the wire. This is referred to as the 'drift ime'. In figure
3 only wires closest to the trajectories, called 'hit' wires, are shown.

There are many different types of calorimeters but all have the same basic principle of
operation. Calorimeters are normally built from many layers of metal interleaved with
layers of a plastic or gas active medium. Quite the opposite of the tracking chambers,
through which the particles pass uninterrupted, a calorimeter is designed to cause most
particles incident upon it to interact and deposit all of their energy within its volume. The
energy may be in the form of ionization or of light, but will ultimately be converted into
an electrical impulse with a size proportional to the energy of the particle. Most
calorimeters have two sections, called 'electromagnetic' and 'hadronic' of different
composition. The electromagnetic section is designed to absorb almost all of the energy
of the electromagnetically interacting particles, i.e., electrons and photons, while hadrons
will deposit the largest fraction of their energy in the hadronic section. Calorimeters are
usually highly segmented in order to give information on the spatial extent of the energy
deposit from the particle, as shown in figure 3, where the energy in each cell is
represented by the height of the tower drawn at each cell. Note that the segmentation in
the electromagnetic section is twice as fine as in the hadronic section.

Calorimeters are particularly useful for identification of electrons. An electron will
deposit almost all of its energy in a highly localized region of the electromagnetic
calorimeter. By looking for a charged track which points at this localized region, and
matching the calorimeter energy to the track momentum, an electron can be reliably
identified.

Muons are charged particles which are capable of penetrating through great thicknesses of
material with only minimal energy loss. For this reason, special muon tracking chambers
are placed outside the calorimeter and a thickness of uninstrumented shielding iron in
order to detect possible tracks from muons produced in a collision. The energy of other
types of particles will be completely absorbed in the calorimeters and the shielding iron.
The muon can be identified by measuring its curvature in the central tracking chamber and
seeing if its projection through the calorimeter and iron matches well with a track 'stub'
found in the muon chambers.

The detectors' to pions, neutrinos, and jets is described in the caption of figure 3.

1.4 Pattern Recognition in HEP - Standard Methods
1.4.1 Introduction

The only particles which are directly observable are those which have a natural lifetime
long enough to allow them to be detected in the apparatus, i.e., photons, muons,
electrons, and some of the low mass composites such as pions. Neutrinos normally leave
no trace in the apparatus and are detectable only by their 'missing' energy. Most of the
constituents produced in a collision quickly decay into these observable particles, or, in
the case of quarks and gluons, fragment into jets containing many particles. The
properties of the constituents must therefore be inferred from patterns in the 'visible'
particles into which they decay or fragment.

Reconstructing an event involves two types of pattern recognition. The first, which we
shall call low level pattern recognition consists of such things as finding tracks in the
tracking chambers or identifying a candidate electron in the calorimeter (figure 3). The
second type, which we shall call physics process determination, uses more sophisticated
features, for example the angular distribution of the jets in the event, to try to identify the



underlying physics of the interaction which took place. Note that this nomenclature is not
the same as typically found in classical pattern recognition, since classification, normally
considered 'high-level', can occur both in our low-level and high-level pattern

recognition® . In HEP, the distinction between high-level and low-level pattern
recognition is based upon the complexity of the features used to perform the
classification. Examples of the two types will be given in the sections to follow. We
shall see that neural networks have found application to both.

In HEP it is also necessary to distinguish whether the pattern recognition is to be
performed 'on-line', i.e., in real time, or 'off-line’. On-line pattern recognition is
performed on the data before it is logged, in a part of the experiment referred to as the
'trigger’. Off-line pattern recognition is done with conventional computers operating on
the data after it has been logged to permanent storage media. These two areas will be
discussed in more detail below.

1.4.2 Triggering

New HEP experiments study increasingly rare physical processes. The implications of
this for data acquisition systems are best illustrated by an example. One of the main
motivations for the construction of LHC and SSC is the search for the Higgs particle.
The probability of producing a Higgs particle when two protons cross paths is so small

that this would have to occur 1034 times per second’ in order to produce a reasonable
sample of detectable Higgs particles, say 1000, during a one-year run. The probability
for other processes however, not involving the Higgs, is higher by a factor of about
1013, This implies that, during this one-year run, events containing background
processes will be continuously produced at a rate of about 1 billion per second. It is
neither desirable, nor feasible, to log all of these events to permanent storage media such
as magnetic tape. On-line pattern recognition, called 'triggering', is required to reject
background events and retain the rare interesting events. Although LHC and SSC
represent an extreme case in high-rate HEP data acquisition, the problems are common to
all HEP experiments.

4 Segmentation of the data into events is performed trivially using timing information which correlates a
block of data with the time of a particular bunch crossing.

3The 1034 per second is technically the accelerator ‘luminosity' required to produce the 1000 Higgs particles.
Luminosity is defined as the the square of the number of particles per bunch, times the number of bunches per
beam, times the revolution [requency of the bunches within the ring, divided by the cross sectional area of the
beams.
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Figure 4. Generic HEP multilevel trigger system.

Figure 4 shows a typical multilevel HEP trigger system. The data from the detectors
passes into the trigger as a stream of events, each containing all the detector data produced
in a single collision. Each level of trigger rejects most of the events it receives and passes
the remainder on to the higher level triggers. Levels 1 and 2 are typically implemented as
fast specialized analog or digital hardware, while level-3 is a 'farm" of conventional
processors. The processing times and event rates shown at each level are generic, but
typical of those encountered at current proton-antiproton collider experiments such as the
CDF experiment at Fermilab [CDF 1988]; rates will be one to two orders of magnitude
higher at LHC and SSC.

In level-1, simple tests on global event information are performed, for example: (1)
comparing to a threshold the summed transverse energy, Et = Zj Ej sin6j, where E;j is the

energy in calorimeter cell i and 6 is the angle with respect to the beam axis of a line from
the collision point to the calorimeter cell; (2) looking for the presence of a charged track

with transverse momentum, P; = P sinB, where P is the track momentum, above a
threshold; (3) looking for the presence of one or more track segments in the muon
chambers. The first and second cuts eliminate 'soft’ interactions. Most interesting
physics processes involve 'hard' scatters of two constituents in the beam particles, which
produce particles at large angles to the beam direction and thus deposit in the calorimeter
substantial energy transverse to the beam direction. 'Soft', glancing collisions of beam
particles are much more copiously produced than hard scatters, and most must be



rejected. The third cut is useful since high Pt muons are produced in many of the
interesting processes currently under study, but are produced only with low probability in
background processes. Level-1 triggers have a typical processing time of about 1
microsecond and reduce the rate due to backgrounds by about two orders of magnitude.

In the level-2 trigger, somewhat more sophisticated tests can be done, for example: (1)
looking for a match between a high-Py track and an energy cluster in the electromagnetic
calorimeter, indicating the presence of a candidate electron, or between a high-Py track
and a track segment in the muon counters, indicating a candidate muon; (2) looking for
the presence of localized clusters of energy in the calorimeter, which will correspond to
jets, with E¢ above some threshold. Validating the presence of leptons and jets as in (1)
and (2) above ensures that the event is more likely to have come from an interesting
physics process. Ten to twenty microseconds are available for level-2 decisions.

Level-3 triggers are executed using algorithms written in standard high level computer
codes running on a 'farm’' of conventional processors which operate in parallel on
separate events. As each event comes into level-3, it is immediately sent to an available
processor. The processing done by level-3 can be quite sophisticated, in some cases
being identical to the code used in offline analyses. Some of the typical analyses
performed in level 3 are: 1) reconstruction of charged tracks; 2) accurate calculation of
the position of the collision point in order to reject events too far from the detector center,
to allow more accurate calculation of E; of calorimeter cells, and to detect multiple
vertices; 3) high quality electron and muon identification using accurate Py measurements
of the tracks; 4) imposition of isolation cuts, i.e., requiring that an electron or muon have
very little energy surrounding it in the calorimeter; 5) formation of composite triggers,
e.g. electron plus missing transverse energy plus one or more jets would be a good
trigger for top quark production. Such calculations as these are too complicated to be
performed in level-2. The time to process a single event in level-3 may be of the order of
a second, however as there are many processors operating in parallel, the effective
processing time is a few milliseconds per event.

1.4.3 Offline Reconstruction

Offline reconstruction is the final event reconstruction in which all available information is
processed using whatever data analysis techniques may be available. Normally all the
data from a run will be processed in a single reconstruction pass in which data sets of
special interest are created, e.g., one for the physics of b and ¢ quarks; one for the search
for the top quark; one for W and Z physics, etc. These are often analyzed many times
over with ever more refined sets of selection cuts. Analysis usually proceeds with the
definition of several feature variables upon which one dimensional cuts are placed. The
use of likelihood techniques is also common.

The offline analysis does not have the same real time constraint as online reconstruction;
however, the codes used to process high energy physics data are normally tens of
thousands of lines long and require substantial computing resources in order to complete
the processing in a reasonable amount of time. It is not uncommon for a complete offline
reconstruction of a particular physics process to take one or two years.

2. The Need for Neural Networks

In high energy physics, neural networks have been used both in real-time and offline
applications. Most applications to date have used MLP's trained with backpropagation,
although a few instances of the use of learning vector quantization and feature maps have

11



also appeared. Recurrent networks have been applied to the problem of charged track
reconstruction as discussed in section 3.1.

For the offline applications, the advantage to HEP is the same as that for other fields:
near optimal classification with a minimum of computational overhead. In the real-time
applications, neural networks present an advantage because of their parallel architecture
which allows for faster processing. We now discuss these two areas in more detail.

2.1 Neural Networks for Triggering

[t is interesting to note that some of the functions performed by standard level-1 and 2
triggers as discussed above, i.e., thresholding performed upon a linear combination of
inputs, already resemble those performed by an artificial neuron. High energy physicists
building fast trigger electronics have for decades been making use of electronic devices
called 'discriminators' for performing this function. The idea of applying true neural
network technology in HEP triggering, however, is quite new [Denby 1988, Denby
1990], and it is far from being accepted as a standard tool.

Neural networks are a natural choice for incorporation into triggering systems due to their
speed of execution, made possible by their parallel architecture and the ability to
implement this architecture in silicon. This processing speed can be extremely valuable in
very high rate data acquisition systems. At present most projects to use neural networks
in triggering foresee an application at level-2, since the processing times of existing neural
network chips are of the order of a few microseconds and are thus too slow for level-1.
As faster hardware becomes available, level-1 applications can also be envisioned.

Although trigger systems using conventional electronics can probably be made to handle
the rates to be found at SSC and LHC, neural networks can make the triggers far more
efficient and less costly by moving to level-2 the complex pattern recognition normally
done in level-3. In section 3 we shall show some specific examples of this: accurate
muon Py measurement in a few microseconds; application of an isolation cut at level-2; a
possible scheme for determining the position of the collision point online, etc. This will
reduce the requirements placed on the level-3 processor farm and significantly reduce the
amount of data which must be recorded on tape for later analysis.

Another attractive feature of neural nets for triggering is their programmability. In the
past, many level-2 triggers have been built as hard-wired special purpose electronic
devices. To change the algorithm in such a device implies rebuilding it or re-wiring it. In
a neural network, the algorithm can be changed simply by downloading a different set of
weights, which will make neural network triggers much more flexible than their
predecessors.

2.2 Offline Applications

Historically, high energy physicists have eschewed 'complicated' data analyses in favor
of simple one dimensional cuts. In HEP, such problems as incomplete understanding of
detector response, and heavy dependence upon Monte Carlo models render the extraction
of a final physics result from the experimental data an extremely difficult and time
consuming task, sometimes requiring hundreds of man years of effort. There was a
strong tendency to try to keep the analyses as simple as possible. However, over the
years in HEP, considerable experience in detector construction techniques and in software
generation has been gained, and detector simulation packages which model instrumental
effects have become extremely sophisticated. Too, with the growth of collaboration size,

1.2



particular groups of researchers within an experiment have been able to devote themselves
exclusively to data analysis problems.

The key to the value of neural networks in offline HEP analyses is in creating efficient
cuts to retain events from rare physics processes while rejecting as many as possible of
the background events. A further advantage is that neural networks may make possible
certain analyses which previously were considered hopeless precisely because simple one
dimensional cuts were known to be ineffective discriminators. An example of this is the
classification of quark and gluon jets, which we shall discuss in section 4.

It has been argued that although a series of one dimensional cuts is less efficient than a
multidimensional cut, this can be compensated for by taking more data. As the interesting
physics processes to study become more rare, however, this reliance on increased
statistics becomes impossible: it becomes necessary to extract as much information as
possible from the data at hand.

2.3 The Problem of Training Data

One of the major goals of HEP is to identify and characterise the properties of as yet
unseen constituents in the standard model. This however presents a problem for
classification schemes involving supervised learning since there is no existing labelled
real data containing these particles. It follows that Monte Carlo data must be generated
according to some model. In some cases, there are a number of rather different models to
choose from. Any classification based upon these models will therefore be biased
towards the model chosen. This is of course a problem for any type of classifier,
however a number of high energy physicists are concerned that it will be more difficult to
understand model dependence using neural networks than using a simpler type of
classifier. This is used as an argument against using neural networks in HEP analyses.
Although it is true that model dependence in a nonlinear classifier is somewhat more
difficult to characterize than in a linear classifier, the superior performance of nonlinear
classifiers has led some researchers to expend the additional effort necessary to
characterise the model dependence. This will be seen in some of the applications
described in section 4.

This effect is particularly important in triggering. Events rejected by a trigger will not be
recorded, and so can never be used to check what the trigger was doing. For this reason,
there has been a tendency in the past to keep trigger cuts as simple as possible to facilitate
understanding of the trigger efficiency. This this 'validation' problem is not important for
triggers based upon low level pattern recognition such as track segment finding or
electron identification since modern detector simulations can quite reliably simulate such
simple entities as tracks and electrons. However, because of possible biases from model
dependence, there is still work to be done in HEP to show convincingly that unbiased
information can be extracted from data taken with triggers which select specific physics
process, whether they use neural networks or more conventional technology.

3. Applications to Low Level Pattern Recognition

These applications, as well as those in later sections, are summarized in Table VI.



Problem Training Set Test Set | Network _Its and Comments
muon trigger ‘ - vefold improvement in
testbeam | Monte Carlo| - Real online| 15-64-64 MLP| o qition resolution over con-
experiment | tracks data ETANN | ventional trigger. To be applied
Fermilab to DO expt. muon upgrade
2 isolation and| Req) ang Real and 50-1 (isol,) | Simulation results show big
£ b trigger for | \1onte Carlo | Monte Carlo | 50-4-1 " | improvements in trigger
& | CDF calorim.| 4.0 data 50-10-1 (b) | rejectior: cower. Will take
-g Fermilab MLP+ETANN [ data sooi.
' | level-2 trig. Proposed. Simulations show
T 9- | Monte Carlo | Monte Carlo | 19.77-1 a 10 fold backgroun an
g |l ept] gar data MLP+silicon | and 10 microse- - :
- | atHERA an microse .ution
2 time, suitable
o s '\" i
= | electron id. Monte Carlo | Monte Carlo | 192-96-1 MLP | Simulatic ow good
for LHC at data data 92-92-1 silicon rejectio ..ype chip had
CERN propagation time of 15 ns,
suitable for LHC or SSC
Find primary | Real collider | Real collider | 18-128-62 Overlapping 18 wire sections
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3.1 Trigger Applications

We will treat in this section only those trigger applications which have already been
realized or have been seriously proposed. Some of the other low level pattern recognition
applications which follow are also intended for triggering but are still just studies.

3.1.1 First Real-time Application: Muon Trigger

The first real-time application of a neural network in HEP was accomplished recently at
Fermilab [Lindsey 1992].

3.1.1.1 Conventional Method

Identification of a muon with a transverse momentum Pt above a threshold is a useful
trigger for detecting decays of W's, Z's, and b quarks since each will decay about 10
percent of the time to a muon. The cut on Py is necessary since background processes
produce many low Py muons. A measurement of the Pt of a muon in the trigger requires a
knowledge of the angle of the muon track at the muon chamber. Although, offline, the
wire drift times can be used to calculate the track angle quite accurately, in the trigger,
only the information on which wires were hit is available, resulting in an inaccurate
measurement of Py in the trigger. It is therefore necessary to set the Pt trigger threshold
quite low in order to avoid discarding high Py events which have been poorly measured.
This introduces a large amount of background.

3.1.1.2 Test Beam Results

[n a simple test beam experiment at the Fermilab Tevatron, slopes and intercepts of muon
tracks traversing a small prototype drift chamber were calculated accurately, in real-time,
using a commercial VLSI neural network chip incorporated into the standard drift
chamber data acquisition system. This was a test experiment carried out in an auxiliary
particle beam; in a full scale collider experiment, the drift chamber would be duplicated
many times over to cover an area of many square meters surrounding the other measuring
devices, as in figure 3. The drift chamber sense wires signals appeared on Time to
Voltage Converters (TVC's) which convert the drift time of the ionization to the wire into
a voltage. The setup is shown in figure 5. The beam dump in the figure simulates the
shielding iron of figure 3. The small circles in the drift chamber volume represent the
wires and the small horizontal lines above and below represent the TVC values interpreted
as a drift distance. Note that there is an ambiguity as to on which side of the wire the
particle passed. The neural net must resolve this ambiguity.

The wires in figure 5 are paired vertically. For each of the three pairs, two signals are
produced: a drift time and a latch indicating whether the lower or upper member of the
pair was hit. The drift time signals had to be duplicated 4 times in order to achieve
sufficient fanout for the analog neural net chip. These 12 signals were coupled with the
three latch signals to form the 15 inputs to the neural network chip, configured as a MLP.
Sixty four hidden units in a single layer were used. The output layer consisted of sixty
four units divided in a group of 32 to encode slope and a group of 32 for intercept (this
type of readout has been used in several previous studies of tracking with neural
networks [Denby2 1990, Lindsey 1991, Lindsey2 1991]). Each output unit covers .625
centimeters in intercept or .05 radians in slope. The network was trained on 10000 tracks
generated with a simple Monte Carlo, using gradient backpropagation. Target patterns
consisted of gaussian histograms with means equal to the target slope and intercept and
r.m.s. width of one bin. Architectures with fewer hidden units were also tried, but these
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resulted in degraded performance. (In an analog hardware network such as this, extra
hidden units may be needed simply to increase fanout.) The weights obtained were
downloaded into an Intel Electronically Trainable Analog Neural Nework chip (ETANN)
after performing emulation and chip-in-the-loop training using the Intel ETANN
Development System [Intel 1991].

The intercept position resolution available using the conventional trigger technique, which
does not make use of the drift times, is 5 centimeters. The neural network trigger was
found to have a position resolution of 1.2 centimeters. This resolution is only about a
factor of two worse than the best obtainable offline using the complete reconstruction
algorithm, but is available in about 8 microseconds. The neural network result, as shown
in figure 5, can be passed back to the readout motherboard for readout with the rest of the
event information, without introducing dead time in the data acquisition system.

trigger counters
(o]
o A | °
s ! i Beam Dump 4
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= sense wire
trigger
electr. L TVC signals
™™ readout —»  ETANN
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compu{gr‘_ Ll ‘fcr digitisation

Figure 5. Setup for the drift chamber neural net trigger test.

3.1.1.3 Future Plans

The drift chamber used in the above tests was a prototype of chambers which are
currently installed in the DO experiment at Fermilab [DO 1983]. A group on the DO
experiment is currently installing an ETANN chip on one of their chambers to take test
data during the 1992 run [Haggerty 1992]. They also plan to incorporate the ETANN
readout into the trigger of the upgraded DO detector in the 1994 run of that experiment
[Fortner 1992]. This will allow a more accuraté determination of the muon Pt , which
will allow the threshold to be lowered and significantly reduce the amount of background
data recorded.

3.1.2 Test Case: the CDF Experiment
Neural network trigger hardware is being installed for the 1992 run of the CDF
experiment. We describe below the conventional CDF calorimeter trigger and the neural

network improvements to it.

3.1.2.1 Conventional Techniques
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The trigger for the CDF experiment at Fermilab has been in operation since the first
experimental run in 1987 [CDF 1988]. In this trigger, integrated signals from the
calorimeter cells appear as analog levels (i.e., voltages) at the ends of special 200 foot
cables, where they are received by the trigger receiver boards. From this point on, the
trigger can be thought of as operating on an array of voltages of size 24 (azimuthal angle)
by 42 (pseudorapidity, related to polar angle) by 2 (electromagnetic/hadronic
compartment), which represent the energies in the calorimeter. Analog processing is used
in level-1 and level-2 for the cluster analysis, in which the total ET of the cluster, the
number of towers in the cluster and the cluster width are computed. Once the cluster
analysis is finished, additional digital processing is performed, operating upon the cluster
quantities using the level-2 processors and special function modules; e.g., the ratio of the
cluster's energies in the electromagnetic and hadronic calorimeters.

3.1.2.2 CDF Neural Network Triggers

The existing CDF calorimeter trigger is very powerful, but is based upon the philosophy
that clusters can be adequately described by their position, their width, the number of
towers they contain, and the ratio of hadronic to electromagnetic energy they contain.
Indeed, this information is adequate for a great many triggers. However, there are
instances when a more sophisticated cluster analysis would be fruitful. A neural network
trigger is currently being installed at the CDF experiment [Wu 1990]. For every cluster
found by the cluster finder, the new trigger selects 5 by 5 trigger tower region of interest
(in hadronic and in electromagnetic compartments) centered on the cluster and passes the
50 analog signals to analog neural network chips [Intel 1991]. The chips are
programmed to execute three different cluster algorithms: (1) determine if the cluster
could be an isolated photon in the central calorimeter; (2) determine if the cluster could be

an isolated electron in the endplug® calorimeter; (3) determine if the cluster could have

come from the semileptonic decay of a b quark’. None of these analyses would be
possible using the existing calorimeter trigger without extensive hardware modifications.

We choose the isolated endplug electron trigger [Denby 1991] as simple illustrative
example. There is a very high rate of clusters in the endplug which pass the conventional
electron trigger but are in fact due not to electrons but to background processes. In the
past, a high energy threshold was used in the endplug in order to reduce the rate from
these false electrons. This, however, is undesirable since it rejects a significant number
of real electrons along with the background. Electrons from 'the decay of a W are
normally isolated in the calorimeter; i.e., have very little energy surrounding them. In
1992, an isolation requirement, implemented by a neural network, will be tried in the
level 2 trigger to allow the same trigger rate but with a lower energy threshold. Normally
such a cut would have been made in the level-3 trigger. The conventional level-2 trigger
cannot implement this cut since it no longer has access to the individual tower energies
after cluster finding.

6The endplug is a name given to calorimeters or other detectors which fit into the end openings of the
cylindrical central detectors (ligure 2).

A semileptonic decay is one in which a quark decays to a lepton plus other particles. In a purely leptonic
decay, the quark decays 1o a charged lepton and a neutrino,
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Figure 6. Isolation templates for plug electron trigger.

The neural net endplug isolation trigger operates upon 5 by 5 tower regions of the
electromagnetic and hadronic calorimeters as shown in figure 6 (only the electromagnetic
part is shown in the figure). The dark central region is meant to contain the electron,
which normally produces a narrow cluster in one or two towers. Four templates are
necessary since some of the electron’s energy may spill over into 2 to 4 towers and since
the center of the tower as found by the cluster finder may not perfectly center it in the 5 by
5 array in all cases. Each template will be represented as a hidden unit in the neural
network, and each tower has a weight connecting it to one of these hidden units. Cells in
the central region have a weight of F, and cells in the outer region have a weight of -1.
Thus, the quantity presented to the hidden units, which are used as comparators, is

F * Einner - Eouter

If this quantity is negative, the hidden unit will not 'fire": the energy outside the central
region was greater than some fixed fraction of the central region energy and the cluster is
thus not isolated. If the quantity is positive, the neuron fires, indicating an isolated
cluster. If any of the templates fires, the cluster is isolated; i.e., the output unit simply
sums up the outputs of the hidden units.

The value F = .16 was found to be optimum in the present application. (Since the
network is very simple, and essentially 'hand wired', it was not necessary to train the
network using, e.g., backgpropagation.) Using this value, in a simulation of the trigger
operating on real data from a previous CDF run, it was possible to lower the energy
threshold for endplug electrons from 23 GeV to 15 GeV, while reducing background by a
factor of 4 and retaining 95% of electrons from the decay of W bosons. This will allow
access to electrons of energies lower than were previously obtainable, which will be
valuable for studying certain decay properties of W bosons.

The isolated central photon trigger operates in an analagous way, except that it operates in
the central region of the calorimeter rather than the endplug, and in this case has only one
template with a single tower in the central region of the 5 by 5 grid.  This trigger will
provide access to a class of physics events containing so called 'direct' photons, which
tend to be isolated in the calorimeter. Without the isolation cut, the high rate of
background limits the amount of good data which may be taken.

In the case of the semileptonic b-trigger [Wu 1990], a Monte Carlo program was used to
generate events containing the semileptonic b jets and background events not containing b
jets. The semileptonic b jets will contain an electron as well as other particles, while the
background jets will not contain electrons. A full detector simulation was used in order to
model as closely as possible any instrumental effects. A training set was made from 5 by
5 regions centered on the b jets extracted from the signal and background events. This
was used to train a feed forward neural network with 50 inputs, one hidden layer of 10
units and a single output unit to discriminate between b jets and non-b jets. This is the
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only one of the three CDF neural network triggers which uses a network trained with
backpropagation. The other two are 'hand wired' nets. A simulation of the trigger
showed a reduction of background of a factor of about 100 while retaining 30 percent
efficiency tor b's. The weights found in the simulation will be loaded into the neural
network chip in order to allow online identification of the b-jets. It would be impossible
to carry out a discrimination such as this using conventional computer hardware within
the time limits of the level-2 trigger, i.e., about 20 microseconds.

The hardware for these triggers is being installed and should begin taking data soon. All
three of the triggers will be implemented with identical hardware. It is remarkable that
such different algorithms can be implemented with the same hardware simply by
downloading different weights. Future modifications to any of the algorithms will also
be easy because of the programmability of the neural net.

3.1.3 Other Trigger Applications
3.1.3.1 The HI Experiment

The Hera accelerator , which collides electrons upon protons, is just coming on line at the
time of writing. The experiments H1 and Zeus there will study the momentum
distribution of constitutents within the proton and measure the coupling strength of the
gluon to the different quarks. At Hera, the rate of produced events due to background
processes such as interaction of a beam particle with a residual gas molecule in the
vacuum system is some 102 larger than the rate due to physics processes of interest. In
the H1 experiment, a 4 level trigger system is envisioned in order to reduce this high rate
to a manageable level of about 100 Hz. Level 1 is a digital pipeline which reduces the rate
by about a factor of 100. An additional reduction of a factor of 10 is required in level 2 in
order to provide an acceptable rate into levels 3 and 4, which are implemented in software
on conventional computers. The level 2 trigger must complete its processing within 20
microseconds. A hardware neural network has been proposed as a solution to this
problem [Ribarics 1991, Ribarics 1992, Ribarics2 1992]. We describe the approach
below.

In level 1, 16 simple trigger quantities, such as total summed energy, total summed
transverse energy, total energy in the central region of the calorimeter, etc., are compared
to thresholds. Level 1 however ignores correlations among the input variables. More
sophisticated cuts will be made in level 2 by augmenting the level 1 quantities with
additional information which becomes available after the level 1 decision time and feeding
the resulting list of variables to a feed forward neural network. At present 19 input
variables, including energy sums in subsets of the calorimeter, information on the vertex
position, number of charged tracks, etc. are used. The neural network will use these 19
variables to determine whether the energy patterns in the event have come from an
electron proton collision or from a beam-gas collision or other background.

The detailed architecture of the neural network is still under development, however typical
results using Monte Carlo data with a MLP show retention of 98 percent of events from
interesting physics processes and rejection of 90 percent of background events; i.e., the
reduction factor of 10 is achieved while maintaining excellent efficiency. The algorithm is
planned to be executed by a Siemens MA16 neural network chip [Siemens 1992], which
should be able to finish processing in 10 microseconds, well within the allocated time.
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3.1.3.2 Trigger R&D at CERN

Some of the research and development projects at CERN are investigating neural
networks for triggering applications for the LHC accelerator. In one project, a type of
detector called a 'transition radiation detector’, TRD, was designed to tell electrons from
pions in an online trigger [Hansen 1992]. The TRD will have 192 input wires, embedded
in a special substrate, which sense the passage of the electron. The analog values from
these wires will be fed into a MLP with 96 hidden units, and one output unit which
signals whether or not an electron was present. In a simulation, the TRD rejected 92% of
pions, and accepted 90% of electrons. These results were better than the 89% rejection,
90% percent acceptance obtained with a more traditional analysis. Uldmately the neural
network will be implemented in silicon with fixed weights. A prototype chip has already
been built which has 32 input units and 32 hidden units. The propagation time through
the chip is 15 nanoseconds; thus, the processing is sufficiently fast for incorporation into
a first level trigger for LHC or SSC.

A group at the Dutch lab NIKHEF is investigating a calorimetry based neural network
trigger for the LHC accelerator as part of a research collaboration at CERN [Vermeulen
1992]. The approach is similar to the CDF trigger in that it will perform simple pattern
matching upon energy patterns in local regions of the calorimeter. This is a two year pilot
project which will compare the neural net solution to other techniques. The exact
hardware implementation is still under development but will probably use a fast digital
signal processor to implement the neural network algorithm.

3.2 Other Low Level Pattern Recognition Applications
3.2.1 Track Segment and Vertex Finding

This discussion is from [Lindsey 1991] in which data from a proton antiproton collider
experiment were fed to a MLP trained to find the primary vertex of the event, based upon
drift times in the z-chamber, a drift chamber with three layers of wires placed near the

beam pipe. The primary vertex3 is the point from which the tracks in the event emanate,
and marks the location of the collision. Figure 7 shows the hits in the chamber for a
typical event; here, only the hit wires are shown, not the drift times. The hits appear to
emerge from a point on or near the beam line.

The vertex position in collider experiments is normally not available online. This would,
however, be very useful since it could be used to improve trigger calculations which
assume a nominal vertex position at the center of the apparatus, and to flag or reject
events which contain multiple interactions (i.e., more than one primary vertex). Vertex
calculations are normally not performed until the offline analysis. A cross check of the
offline analysis is provided by the time-of-flight (TOF) system, which crudely measures
the vertex position using timing information.

8This vertex is related to but not technically the same as the vertices discussed in the Appendix in connection
with Feynman diagrams. The discussion here is ol vertices which are physically discernible in the apparatus.
The vertices in a Feynman diagram are mathematical entities.
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Figure 7. A typical proton antiproton collision viewed in the z<chamber of the E735 experiment.
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Figure 8.
trajectories can be used to determine the vertex position. It is divided into 18 wire subsections each
with its own MLP, whose outputs are summed to give a distribution whose peak indicates the most

probable vertex position.
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Figure 9. a) difference between Zvertex as measured by the neural net and by the standard offline
program, in centimeters. b) difference between Zvertex as measured by TOF counters and standard
offline program. The neural net resolution is much better.

The 288 sense wires of the chamber were broken up into 18 wire subsections (3 layers of
6 wires each) for processing by the network. The sets of 18 drift times became inputs to
identical MLP's each with a single hidden layer of 128 units. Each output layer had 62
units, 60 representing 1.0 centimeter bins from -30 c¢cm to 30 cm. and 2 'overflow' units.
The 18 input subnetworks were trained to represent the vertex position by a Gaussian
histogram in the output units, which gives good vertex position resolution with relatively
few output units. Training was done using real data recorded in a previous run of the
E735 experiment at Fermilab [E735 1991]. Targets were obtained using the Z position of
the vertex calculated using the standard offline algorithm. The 18 wire subsections were
chosen so as to overlap in order not to miss tracks which may span subsections. The
outputs of the subnets are then simply added. This is illustrated in figure 8.

Figure 9 compares the distribution of Zoffline-ZNN to that of Zoffline-ZTOF, where Z is
the position along the direction of the beam particles. The neural network Z resolution is
about 3 times better than TOF, and its performance can probably be even further
improved by using additional wire layers in the chamber. TOF is currently analyzed
offline. It might be possible to implement it online, but its resolution can probably not be
improved because it is a technology which has already been pushed to its limits. Also,
the TOF technique cannot handle cases of multiple vertices. The neural net treats these in
a natural way: each vertex appears as a bump in the summed net output.

3.2.2 Kink Recognition

A high energy pion or kaon will sometimes decay in a tracking chamber volume into a
muon and a neutrino. The neutrino is neutral and is not seen in the tracking chamber.
The muon is charged and is seen, however has a different momentum from the original
partcle. The result is a rack which appears to have a 'kink' in it (figure 10).
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In this work [Stimpfl 1991, Stimpfl 1992] , simulated pion tracks of 3, 5, and 10 GeV
momentum were generated and transported through a chamber modelled upon that of the
Aleph experiment at CERN. A detailed detector simulation was used to model noise hits
and other instrumental effects. Two approaches were tried. In the first, helical track
segments are fit to the hit positions in an inner region, 1, and an outer region, 2 (figure

10). The 5 helix parameters? in the two regions are then used as input to a MLP which
tells whether or not this track is due to a decay. In the second approach, a single fit is
done to the track across both regions, and the residuals of the fit are used as input to the
neural network. There will be 42 residuals, one for each measurement along the
trajectory. As a variant to this second approach, groups of three residuals were averaged
to give 14 residuals as input to the network.

kink
neutrino =
\ R

muon

pion

Region 1 Region 2

Figure 10. A pion decays to a muon and a neutrino to produce what appears as a track with a 'kink'.
The kink is recognized by comparing found track parameters in region 1 and region 2

The results, are summarized in table VII, which also shows the network architectures
tried. Also given in the table is the result obtained with the standard method for kink

identification, called the analytical 2 method, in which again the track is fit in two

regions and a %2 is calculated from the helix parameters in the two regions to determine
the probability of the non-kink hypothesis. Both of the neural net methods are found to
have higher efficiency than the standard chi-squared method. The neural network

residual method is about 20 times faster to calculate than the analytical xz method,
assuming that the residuals are already available from the standard track fit.

9 The helix parameters are the z position of the vertex, the polar and azimuthal angles of the axis of the helix,
the radius, and the pitch.



Method 3 Gev 5 GeV 10 GeV
5 -5-1(par) 78.9 67.0 53.5
5-10-1 (par) 79.1 67.2 53.6
14-7-1 (res) 79.9 65.5 51.5
14 -14 - 1 (res) 80.5 65.7 53.9
42-6- 1 (res) 80.3 67.7 54.5
analytical X?. 76.0 62.0 40.2

Table VII. Efficiencies (in percent) for correctly identifying kinks (defined in text) in pion tracks of
3, 5, and 10 GeV momentum. Two MLP architectures were tried for the case of track parameters as net
inputs, and three for the case of fit residuals as net inputs. The results for the standard method,
analytical 7{_2' are also given.

3.2.3 Other Applications

A variety of other applications of neural networks to low level pattern recognition in high
energy physics have appeared, which we mention only briefly. The interested reader may

consult the references. In an application to a Cherenkov!0 detector, MLP's were used to
find a set of dots forming a ring pattern in a noisy image [Altherr 1992, deGroot 1992].
In another hardware application [Haggerty 1992], a discrete component hardware MLP
was used to measure, in real time, the position of a muon track in a tracking chamber
using charges induced on electrodes placed below the sense wire. MLP's have been used
to perform electron/pion discrimination in a calorimeter [Garlatti Costa 1992, Teykal
1992] and identification of heavy quarks using the presence of multiple vertices in a
vertex tracking chamber [Gupta 1991, Denby 1992]. Applications to charged track
reconstruction will be discussed in section 5.

4. Physics Process Determination
4.1 B Tagging

Numerous groups have used neural networks for identifying reactions containing b
quarks. This is usually referred to as 'b tagging'. Typically this has been done at the four
experiments at the LEP electron positron colliders [Proriol 1991, Proriol 1992, Bortolotto
1991, deGroot2 1991, Gottschalk 1991, Bellantoni 1991, Seidel 1992, Branchini 1992,
Brandl 1992], although some work with simulated jets at proton antiproton colliders has
also been reported [Denby 1990]. B tagging is of considerable interest since the
properties of many particles containing b quarks have to date not been well studied. In
the LEP work, the approach is typically to choose an ensemble of feature variables which
describe the spatial distribution of energy within each jet and of the event as a whole.
Additional information such as that from vertex tracking chambers may also be included.
We choose as an example of this type of study the analysis performed by members of the
Delphi experiment which extends the analysis to charm quarks and undifferentiated light

10A Cherenkov detector measures the mass of certain types of particles using the light the particle produces in
passing through a transparent medium.



quarks in order to extract the decay probabilities into these quarks of the Z boson. This
analysis 1s described in the next section.

4.2 Decay Probabilities of the Z

The neutral boson Z can decay into any constituent plus its anti-constituent, e.g., electron

plus positron, u quark plus u quark, etc. The standard model dictates the types of
interactions which the constituents can undergo, but the relative strengths of the various
interactions must be verified experimentally. A group from the DELPHI collaboration
(one of *he 4 major experiments at the LEP accelerator at CERN) has recently used a feed

forw. network to classify decays of the Z into three classes: cc pairs; bb pairs;
orlics . .. ud,ors) -antiquark pairs [Cosmo 1992, De Angelis 1992, Eerola 1992,
see aiso Boiwlotto 1991]. This classification has permitted a measurement of the
probabilities of the Z to decay into these particles to be made with higher precision than
was previously possible.

The probability of the Z to decay into the leptons electron, muon, and tau has been well
established. That measurement is 'easy’ to make since these particles are relatively easy
to identify in the apparatus. The case of the decay of the Z into quarks is considerabley
more difficult since the final state quarks fragment immediately into jets. The problem
then becomes deducing the type of quark involved in the decay from the properties of the
jets themselves and from their distribution within the apparatus.

The standard technique for distinguishing heavy quarks from light quarks is through
their so-called semileptonic decays, in which a particle containing a heavy quark decays to
a lepton plus other particles. This technique has two disadvantages: 1) semileptonic
decays account for only 20 percent of heavy quark decays; therefore with this technique
it will be more difficult to obtain a sample large enough to assure small statistical errors;
2) in a semileptonic decay a neutrino is also emitted; these escape detection, making it
impossible to completely reconstruct the event, leading to uncertainty in quark species in
some cases. A technique which allows the use of all types of heavy quark decays is thus
desirable.

In the DELPHI work, 19 jet and event-shape variables were created as inputs to an MLP.
The var: w5 describe the spatial distribution of energy in the jets and in the event as a
whole. © sus kinematical combinations of the momenta of the particles in the jets, as
well as intormation about the presence of leptons in the event. An exact description of the
19 variables is not very illuminating to the non-specialist; the interested reader is referred
to the original works. The network architecture chosen had 25 hidden units and 3 output
units to encode the three classes.

The training data for the network was generated with a standard physics Monte Carlo
program and a program which simulates the response of the DELPHI apparatus to particle
collisions. A total of 6000 training events were used. An independent set of 200,000
events was used for testing the network.

The trained network was then used to determine the relative fractions of b, ¢, and light
quark decays in a sample of 123,475 real events from the DELPHI experiment. To do
this, a 2-dimensional representation of the network output was devised as follows. The
values of the 3 output nodes were normalized to sum to 1. Each event can then be
represented as a point within an equilateral triangle where the perpendicular distances of



the point to the sides of the triangle represent the values of the o1 _utnode ™ *~~eof

representation is referred to as a Dalitz plot. Figure 11 shows the distrit 1is
plane of Monte Carlo events for b, ¢, and light quark decays, as well a il data.
The fractions were obtained by fitting the real data distribution to a lir .aation of

the Monte Carlo distributions for the three classes:
R(u,v) = (1 - F¢ - Fp) a1(u,v) + Fca2(u,v) + Fpa3(u,.,

where u,v are the variables defining the plane, R is the distribution of the real d~t. Fg
and Fp are the fractions of decays containing ¢ and b quarks, respectivel® 2,
and a3 are the distributions of the Monte Carlo data. The results of the fir

Fc= .158 +- .00?5[3[ +- 030pa_ram +- 0081110(}
Fb = 212 +- .004gtat R .OOSParam G g -Ollmodcl

where the first error is due to statistics, the second to an incomplete knowleds= £ ~=rtnin
parameters in the Monte Carlos, and the third to the dependence of the resu’

Monte Carlo model is used. Note that explicit reference is made to a moc

of the result, a problem peculiar to high energy physics as discussed in - ot
comparison, the best result to date for Fp [Abreu 1992] using semilep: .. . .ccaysis

Fp =.215 +- .017stat+systematic
where the systematic error contains effects due to parameter and model dependence. For
the charm quarks, the best result to date [Abreu 1990] is obtained by 1dent1fv1n2 a

characteristic low energy pion from the decay of a particle containing : e
result is

FC =.,162 +- .0303ta[ +- 'OSOSYSI'

The result using the neural network has a smaller uncertainty in both cases.
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Figure 11 Daliwz plots used 1o measure the relative fractions of b, c, and light (uds) quarks in the decays

of the Z°. The activation of the network output node corresponding to each class is represented as the
perpendicular distance from the side of the triangle opposite the corner labelled with that class. The
outputs ol the three nodes always sum to 1. a), b), and ¢) show the distributiod of network outputs for
Monte Carlo (uds), ¢, and b quarks respectively. d) shows the distribution for real data from Delphi. To
extract the fractions of b,c, and (uds), the distribution in d) is fit as a linear combination of the
distnbutions of a), b), and ¢), where the coefficients in the linear combination are the desired fractions.

4.3 Quark/Gluon Separation

The ability to distinguish quark jets from gluon jets is clearly very desirable. The W and
Z decay 80 percent of the time to two quarks, but normally these decays are unusable
since it is not possible to distinguish these jets from the more copiously produced gluon
jets. Furthermore, the most probable decay mode of the much sought top quark is into
three quark jets, but this channel has long been considered unusable due to high
backgrounds from multi-gluon final states. The ability to verify three quark jets would
dramaticall y reduce the background Distinguishing quark jets from gluon jets has been
thought by many high energy physicists to be impossible due to the high degree of
similarity between the two types of jets.

Separation of quark and gluon jets using neural networks has been treated in a number of
reterences [Lonnblad 1990, Lonnblad 1991, Bhat 1990, Csabai 1991, Baer 1991,



Barbagli 1992]. These results have been almost exclusively based upon data generated
by Monte Carlo. Recently a new result from the Fermilab Tevatron collider has appeared
[Bianchin 1992, Bianchin2 1992] which for the first time appears to give evidence of
quark and gluon components in real jets produced in proton antiproton collisions. In the
Fermilab result, jets identified in the apparatus are represented by a set of 8 feature
variables which describe the spatial distribution of energy within the jets, e.g., the
amount of energy contained within each of three concentric cones centered on the centroid
of the jet, the r.m.s. width of the jet, etc. A backpropagation neural network with these 8
variables as inputs was trained to separate quark jets from gluon jets based upon
examples generated by Monte Carlo. It is necessary to use Monte Carlo since pure
samples of quarks and gluons do not exist. The real data will always contain a mixture
of quark and gluon jets, and in fact the relative ratio of quarks and gluons in various
kinematical regions is one of the sought after results. For this reason, this problem too
will suffer from the fact that the results will depend upon which model of quark and
gluon fragmentation has been used.

There is considerable overlap of the two classes in all of the feature variables, and none is
adequate to provide a useful classification of the jets. Figures 12 a) and b) shows the
output of the trained neural network on independent test samples of Monte Carlo quarks
and gluons. The quark and gluon distributions overlap substantially: quark and gluon
jets are indeed very similar! However the separation achieved is useful because quark or
gluon enriched samples can now be produced by placing cuts on the output of the neural
network.
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Figure 12. Qutput of 8-6-1 MLP for a) Monte Carlo (the Pythia Monte Carlo was used in these studies)
quarks; b) Monte Carlo gluons; ¢) Real data from the CDF experiment (labelled ‘Jet 40'). All the jets
are required (o have Et greater than 60 GeV. The real data appears to be predominantly gluon like with
a small admixture of quarks, as expected from theory.

A study was made of the efficiency of the network, defined as the fraction of quark jets
with network output above 0.5, as a function of the number of nodes in the hidden layer.
Performance did not improve beyond the results with two hidden units, and in fact a
simple perceptron (no hidden units) was only a few percentage points worse using this
measure. However, the network output distributions for the zero and two hidden unit
cases was much more gaussian in shape and did not include any regions in which the
quark to gluon ratio was high. Such regions may prove valuable for placing cuts which
enrich quark to gluon ratio at the price of reduced quark efficiency. For this reason, the
results from the 6 hidden unit network were retained for the final analysis. The maximum
efficiency achieved on the Monte Carlo data was 70 percent.



Figure 12¢) shows the result of applying the trained net to a sample of real data from the
CDF experiment. The real data distribution appears to be predominantly gluon-like with a
non-zero admixture of quarks, which is consistent with the result expected on theoretical
grounds for events in the kinematical regime in which the data was taken. A fit to the real
data as a linear combination of the Monte Carlo quark and gluon distributions gives a

good x2, but because of model dependence and some subtleties in the Monte Carlo
programs, it has not yet been possible to extract the exact quark fraction from this
distribution in an unambiguous way. However, the results are encouraging and work is
continuing.

More recently, another analysis was performed [Bianchin2 1992] in which a feature map
was trained on a sample of mixed Monte Carlo quarks and gluons and then used to
identify quarks and gluons in an independent sample. A somewhat higher efficiency,
about 72 percent was obtained. The feature map trained on Monte Carlo is also being
applied to the real data, and, conversely, a feature map trained on real data is being
applied to labelled Monte Carlo data. Training using only real data is very attractive since
it avoids the problem of model dependence, although it may be necessary to use the
Monte Carlo data to label the nodes in the topological map. These analyses are still in
progress.

4.4 Additional Physics Process Applications

The use of learning vector quantization (LVQ) and topological maps is relatively new in
HEP. An interesting application of topological maps appears in [Lonnblad3 1991] in
which a map is used to discover the b,c, and light quark classes in a sample of mixed
Monte Carlo data. A similar application is being attempted for data at the Tevatron
[Bianchin2 1992]. LVQ has been used for b tagging [Proriol 1991, Proriol 1992] and

discrimination of tt events from background [Odorico 1991]. Other MLP offline

applications include: resonance searches!! [Alexopoulos 1991]; calculation of the total
mass of the particles in an event [Lonnblad2 1991]; determination of the charge of the
initial quark which produced a jet [Varela 1991]; and identification of jet cascades with
muons [Los 1992].

5. Neural Nets and Charged Track Reconstruction
5.1 Tracking with Recurrent Nets

Recurrent networks have been used in HEP for track reconstruction, using an algorithm
developed by Denby and independently by Peterson [Denby 1988, Peterson 1989,
Stimpfl 1990, Denby3 1990, Barbagli 1992]. In this application a neuron is defined to be
a directed link between two hits in a tracking detector. The approach resembles
qualitatively the encoding used by Hopfield [Hopfield 1986] for solving the Traveling
Salesman Problem with a recurrent net. The weight connecting two neurons i and j is

determined by the angle Bij between them, (figure 13):
wij = A cos"Bij/lil;

where lj and lj are the lengths of the neurons (i.e., distance between hits), if i and j do not
both point into or out of the same point, and wij = -B if i and j are head to head or tail to

1A resonance is a bound state of two or more particles and appears as a peak in a mass distribution.
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tail. An energy function is defined, E= -12 X wij 0j 0j, where oj is the output of
neuron i. The energy function will be smallest when the angles between close together
neurons sharing points are small. This favors neurons lying along smooth trajectories
such as those of particles moving in a magnetic field. The constraint term -B ensures a
unique direction to the tracks to avoid a degeneracy which prevents settling of the
network. The evolution of the system is obtained by iteratively solving the update
equations:

tduj/dt = Zj wijoj - uj ; oj = sigmoid(uj).

On each iteration, dt is kept much smaller than 1, the time constant of the system.

__—b.
Figure 13. Neuron links in the Denby-Peterson Net

This method has been used on real data at the ALEPH experiment at LEP [Stimpfl 1990].
Figure 14 shows r-phi (i.e., looking down the beam line) and r-z (side) views of an
event in which a Z boson decays to hadrons, with all links defined before network
evolution (left side of figure), and the event after settling of the network, with tracks
found (right side). The efficiency is as good as the conventional track reconstruction
program but the neural net algorithm is somewhat faster. In this work, a study was
made of execution time for the neural net and conventional algorithms as a function of
track multiplicity (number of charged tracks in the event). The advantage of the neural
algorithm is shown to increase with multiplicity. Although this type of algorithm has not
yet been accepted as a standard track recognition algorithm, it may prove to be important
in the future when track multiplicities will be larger.
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Figure 14. Charged track reconstruction on real data in the Aleph central tracking chamber, using a
recurrent neural network algorithm. In the top figures the beam pipe is perpendicular to the plane of
the page, in the bouom ligures, horizontal. The left hand frames show the neuron links before
evolution: at right are the found tracks at the end of evolution,

There 1s not a straightforward way to implement this algorithm in the fast hardware that
would be needed to make it applicable at the trigger level, since the number of neurons
and weights is high, and the weights must be recalculated for each event. [n addition, the
algorithm does not take advantage of all the available information, such as that tracks in a
uniform magnetic field are known to be nearly pertect helices. This makes the algorithm

more susceptible to noise since it will be less able to reject noise hits which happen to lie
near the tracks.

5.2 Elastic Tracking

Improvement to the neural tracking are the so-called elastic racking [Gyulassy 1991] or
deformable templates (Ohlsson 1991] approaches. In these approaches, a track is a
helical object which sertles into a shape which best fits the hits. The helix can be thought
of as electrically charged and atracted to the hits which have opposite charge. Although
these algorithms map the tracking problem onto dynamical systems, and are at least in
principle parallelizable. they have lost some of the ‘neural’ flavor of the original Denby-
Peterson net. Nonetheless, the etficiency and robustness to noise of the elastic methods



are excellent. One interesting study [Gyulassy 1991] compared the robustness to noise
of the standard method, the Denby-Peterson net, and the elastic tracking method. The
standard method of track reconstruction is called the 'roadfinder’ since it starts with two
nearby hits and then searches for additional hits on a 'road' in the direction of the segment
joining them. Figure 15 from this study shows the efficacy of each method as a function
of number of tracks. All data have 20 percent noise and 3 percent error on position
measurement. The roadfinder breaks down between 5-10 tracks, the Denby-Peterson net
at 10-15 tracks, but the elastic tracking always tinds the correct answer in this study.

N =3 N =25 N =10 N=15

Initial Distribution

Roadfinder

Denby-Peterson net

Elastic Tracking

Figure 15. Compurison of track reconstruction performance for the standard method (roadfinder),
Denby-Peterson net. und eldstic tracking.
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6. Conclusion

Five years ago there was no explicit mention of neural network techniques in HEP
literature. A current bibliography of applications in HEP includes almost a hundred
papers and reports. Much of the work is still exploratory and uses only the simplest
techniques such as the MLP trained with backpropagation, although some interesting
results using learning vector quantization and feature maps have also appeared.

In HEP, historically, data analysis has been done using simple one dimensional cuts;
consequently the HEP community at large has yet to fully accept neural network
techniques as standard tools. Nevertheless the neural network methods are beginning to
show their worth. The decay probabilities of the Z boson into b,c and light quarks has
been measured with higher precision than ever before using a technique based upon a
MLP. A neural network technique has given higher kink finding efficiency and faster
execution speed than the standard method. Results consistent with identification of quark
and gluon components in jets produced at a proton antiproton collider have appeared for
the first time using a feed forward neural network. Recurrent networks have provided a
faster way of performing charged track reconstruction.

One of the most exciting promises of neural network technology is in the realm of
triggering for HEP. One test has already been completed: a VLSI neural network used in
the data acquistion system of a drift chamber has provided, in only a few microseconds,
track intercept resolution 5 times more accurate than that previously obtainable online.
Neural network triggers for three large collider experiments are either currently being
installed or have been proposed for future installation. The neural network triggers will
permit experiments to reject more background events earlier in the data stream, resulting
in more efficient and cost effective data acquisition systems and enormously reducing data
storage requirements.

It is intellectually quite stimulating to witness a marriage between such seemingly
disparate domains as high energy physics and neural networks. Given the growth of
applications and their success to date, HEP may turn out to be one o1 the driving forces in
the integration of neural networks into science as data analysis tools.
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7. Appendix: Particle Interactions

The constituents are arranged into doublets consisting of a lepton and its neutrino or of a
quark and its conjugate quark (quark-conjugate pairs have a unit net charge) as in table
VIIL

particles antiparticles interactions
s - — W, 2
Y \Y \% vV v v '
leptons e H f e+ l‘_’;_ i —_—
e”/ \ ) \ - e i \Th ’
u c t u c t
quarks | | — - oz W, 2Y,9
d S b d s b

Table VIII. Lepton and quark doublets and the interactions in which they participate.
Interactions of the members of the doublets are represented by three legged 'vertices'.
Different symbols are used for the legs depending on the type of particle represented by
the leg. Only certain vertices are allowed. In allowed vertices the legs must be:

1) a quark or lepton and its antiparticle plus a neutral boson,
2) the two members of a quark or lepton doublet plus a charged boson,or

3) three gluons

as shown in figure 16. Additional legal vertices may be generated by changing a leg from
incoming to outgoing and replacing the particle the leg represents by its antiparticle.

ST

DO o w
02
al
)
11}
u
11}
W
1 1]
&
L} L1}

mmlpem  quark
A/, photon (Y)

%=- charged lepton

-
-

time

Figure 16. Allowed interaction vertices
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The elementary vertices can be 'hooked together' to represent various physical processes
such as collisions of constituents and decays. Some examples are given in figure 17.
These so-called Feynman diagrams are drawn with strict rules, which we shall not
discuss here, which allow the direct transcription of formulae which can be used to
calculate the probability of the process represented in the diagram. The left hand side of
such a diagram is called the 'inital state’ and the right hand side the 'final state' since time
progress from left to right. :

u e+ u 9+
A) ik B

—> w*<_ _> % <

d Ve u e

9
B)
— g - g =
u t g t
q qQ' q q'
C)
AT — =
q q'
g ) 9 9
D) M
g 9 g
g 9
ANy g q q q
g g
g g
+
w' w 7% v 7
'.ﬂi o"f u ‘n
F) :—+—: ,‘*‘F
_u' H f: — .’L H .‘Z
W - W z

Figure 17. Processes shown are: A) quark production of weak bosons decaying to leptons; B) quark
and gluon production of ttvia a gluon; C) quark quark scattering; D) gluon gluon scattering; E) quark
gluon scattering; F) weak boson production of Higgs decaying to weak bosons.

The diagrams shown are processes which occur at the level of the constituents. The final
state may be considerably modified before any of the particles reach the detectors. This is
because quarks and gluons are not visible as free particles. Rather, many additional



vertices will attach themselves to the final state particles with high probability. These
outgoing quarks and gluons will bind into composites, resulting in a multiparticle jet of
outgoing particles. This is illustrated in figure 18.

Figure 18. Example of how the final state quarks or gluons can evolve into multiparticle jets by the
spontaneous attachment of additional vertices.
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