
\ 

• 

) 

CDF/PUB/CDF/PUBLIC/1Bo4 
FERMl LAB- PUB- 92/215- E 

THE USE OF NEURAL NETWORKS 
IN HIGH ENERGY PHYSICS' 

BRUCE DENBY 
Fenni NationaL Accelerator Laboratory 

M .S. 318 
Batavia, Illinois 60510 U.SA. 

denby@/nai.bilnet 

ABSTRACf 

In the past fe w years a wide variety of appiicalions of neural nc!woru to pattern recognition 
in experimental high energy physil:s has appeared . The neural network solutiolU are in 
general of high quality, and. in a number of cases, arc superior to those obtained using 
'traditional' methods. But neural networks are of particular interest in high energy physics 
for another reason as well: much of the pattern recognition must be perfonned online. i.e., 
in IS few mitroseconds or less. The inherent parallelism of neural network algorithms. and 
the ability to implemenl them as very fas t hardware devices, may make them an ideal 
technology fo r this applic ation. 

1. Introduction 

High energy physics (HEP) is the field which studies the basic constituen ts of matter and 
the fundamental forces through which they interact. Recently, high energy physicists 
have become interested in neural networks as HEP data analysis tools. It has been only a 
few years since the firs t investigations of neural networks for HEP were undertaken 
[Denby 1988, Peterson 1989], and much of today's work is still exploratOry; however, 
the gro' ... ·h in applications to HEP is quite striking. At the Second International AIHEP 
Work :o ; ~ iJ P [AIHEP 1992] at La Londe-les-Maures, France, in January , 1992,25 
applications of neural networks in high energy physics were presented. For comparison, 
at the first workshop in this series, in Lyon, France in March, 1990, there were only two 
such presentations. 

In applications to date, neural networks have proven themselves to be more efficient 
classifiers than the simple cuts nonnally used in HEP, have allowed certain measurements 
to be made with smaller uncertainties due to their superior abili ty at functio n 
approximation, and have pennitted analyses to be made even from heavily overlapping 
disnibutions due to their good approximation to Bayes probabilities. There have been 
some extremely interesting results using hardware neural networks: it appears possible to 
make rather sophisticated pattern analyses directly in the readout hardware of HEP 
experiment rather than in the standard, time consuming offline analysis. 

1.1 HEP Accelerators 

HEP data is produced in experiments at the large accelerator centers worldwide as detailed 
in table I. Each site features a 'ring' in which opposing beams of panicles are made to 

.. Invited review for Neural Compulalion 



collide at one or more ' interaction regions' (figure t),l In )ilisions. d:lU ghter 
particles of many kinds are proouced. and these are detected in ar. ,) of panic ' :!Ctors 
surrounding the interaction region (see figure 2). The data from these delee ' j titute 
the HEP data sets from which physics results must be extracted. 

Acce l. Lab Location Beams Energy Period Startup perimenls 

Tevalron Fermilab Batavia,IL p.p .9 x .9 TeV 4~s 1986 ,0 

LEP CERN Geneva, Swit. 8+,e- 50 x 50 GaV 26 ~s 1988 Delphi, AJeph,Opal ,L3 

Hera DESV Hamburg, Ger. eo, p 27 x 820 GeV 96 ns 1992 HI, Zeus 

SLC SLAC Stanford, CA 9+ ,9- 50 x 50 GeV 7ms 1988 SLr 

Tristan K EK Tsukuba. Jap. 9+ ,e- 30 x 30 GeV 5 ~s 1986 • ;, venus . 
SSC SSC Ellis C1y .. TX p.p 20 x 20 TeV 16 ns 1999 1 .... c:M 

LHC CERN Geneva. Swit. P.P tOxl0TeV 16 ns 1999 I under discussion 

Table I. Names and locations of the major world accelerator centers with the type and energy of beam 
used. time between collisions of particle bunches. (jrst date of operation. and the name~ of the major 
experiments at the site. e- stands for electron. e+ for positron. p for proton. and-pf 1 , 

These particles arc discussed in more detail in the following section. The unit of I'r:.' 
tera- electron volt (GeV or TeV), and time is measured in microseconds (~s) or r1." 
LHC and SSC are tWO large new machines scheduled to tum on before the end of the decade, 

~E:r-~~ particle bunch 

interaction region 

.. .. . ---
dIameter 

1 to 7 miles 

Figure I. An accelerator with 6 interaction regions. Particles in bunches ci: .. in opposite 
directions, being brought together for collisions within the interaction regions. N... v ~ e 
or two particles within the bunches will actually collide during the crossing of two 
Fermilab Tevatron has a diameter of about I mile. The SSC to be built in Texas will bo: 
larger. 

As more powerful panicle acce leratOrs are built, the accompanying experime:h 
tremendously, both in physical size and in the demands they place upon their data reao.uUl 
systems. Figure 2, detailing 1he CDF (Collider De1ectar at Fennilab [CDF 1988]) 
experiment at Fermilab, gives an idea of the scale and complexity of the detectors used in 
a current experiment. Detectors at LHC and SSC win be larger again by a factor of twO 

1 There are also experiments in which the extracted beam is directed OntO a fixed target: for simplicity we 
shall not discuss these here, 
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or so. The volume of data produced in these detectors and the Tate at which it must be 
analyzed are daunting. A typical experiment may record hundreds of thousands of 
individual detecror channels, corresponding to about I million bi ts of information, fo r 
each collision, or 'event', as they are usually called, and it is not uncommon ro record 
many miHions of events during a data taking run. The panicles within a beam are stored 
in 'bunches ', The rate of collisions varies considerably from machine to machine, and is 
determined by the spacing between the bunches stored in the machine, since typically 
only one or twO particles will actually collide in each bunch crossing. In all cases, the 
rates are rather challenging from the standpoint of realtime processing: at the Tevatron, 
bunch crossings currently occur every 4 microseconds; at the SSC and LHC. they will 
occur about every 16 nanoseconds. The growth in data set size and complexity. and the 
unprecedented data rates at coday's and future coUiders have been the major motivating 
factors in the search for more powerful data analysis tools for HEP. 
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Figure 2. Elevation view uf the CDF c:xpcrimcIU l ithe Fermilab TcnLron. Only h~lf uf the .pparalus is shown: 
il is symmetric about the poim marked 'interaction point', In the lU I, applications of neural networks 10 [tack 

reconslrUClion in • centraluacking chambo."f; lIenex rtnding in I YCTLe.l. chamber; e1ecl.ron rmding in an endplug 
calorimeter. and muon identirication in a muon chamber art prtscru.cd. 
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In the discussion of HEP neural network application which will follow, it will be 
necessary to have some familiarity with the terminology associated with high energy 
panicle collisions and the detectors that record them. Sections 1.2 and 1.3 provide an 
introduction. 

1.2 Areas oj HEP Research - the Standard Model 

Much of current research in HEP is involved with the completion and verification of the 
so·called 'S tandard Model' of panicle physics. In this model, the basic constituents of 
matte r are quarks and ieplOns as described in Table II . The cons ti tuents interact wi th 
each otber by 'ex:changing'2 particles called 'bosans ', as described in Table III. Panicle 
interactions are described in more detail in the Appendix. Bmh quarks and leptons can 

interact via the elecrroweak force, carried by the W, Z and y bosons. This force 
combines the elecoic force, responsible fo r such phenomena as electricity and magnetism, 
with the weak force which is responsible for radioactivity. Quarks can also interact 
through the strong force, which is carried by bosons called gluons, usually represented 
as g. Individual quarks and gluons are not observable. The naturally occurring particles 
are either single leptons , or a 'composite' of two or more quarks as in table IV. A 
proton, fo r example, is composed of two 'u' quarks and a 'd' quark which are bound 
together by exchanging gluons. Composites containi ng quarks are also referred to as 
'hadrons'. Leptons and hadrons interact differently in matter, as described in section 1.3. 

w -c 
'" ~ a-

w 
c 
0 
li 
~ 

type symbol name charge mass comments 

lig h l u,cr up +2/3,-2/3 -100 MeY ordinary matter composed of 

d,c down -1/3 .+113 - 100 MeV up and down quarks 
quarks 

5,5 strange -1/3,+113 -500 MeY strange matter exists in stars 

c,l:' charm +2/3 ,-2/3 - 1.5 GeY discovered in 1973 
heavy 

b,b bottom -1 /3,+1 /3 -5GeY current area of study 
quarks 

I ,T lOP +213,-2/3 -130 GeV. not yet seen; much sought 

charge 
e"; e poSitron, electron + 1,- 1 511 keY causes chemical bonds 

~~ muon + 1,-1 106 MeV ex ist naturally in cosmic rays 
leplons 

1+ .1- tau + 1,- 1 1.8 GeV lirst heavy lepton discovered 

neutra ve v 
' e 

electron neutrino 0 O? not visible in detectors. 

vwvJ.l mu neutrino 0 O? except as 'missing' energy. 
leptons 

Vir'!. tau neutrino 0 O? masses thought to be zero 

Table n. Quarks and leptons and their propemes, Includmg mass and eleCl11C charge. The eqUIValence 
of matter and energy allows us to write masses in energy units of eV. 

2The word, 'exchanging' is used figuratively. The true interaction is a quantum process which defies classical 
explanation. The exchange of a particle is represented by a line in a Feynman diagram as discussed in the 
Appendix . 
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force symbol name charge mass comments 

weak wrw VI+- w- + 1,-1 81 GeV discovered at CERN in 1983 

weak Z Z 0 91 GeV carriers 01 weak force 

elect. Y photon 0 0 light is composed of photons 
strong 9 gluon 0 0 binds quarks in composites 

Table m. The rorce c:l.rrYlng bosons and their properties. The first column tells the type of 
interaction the boson mediates: weak, electromagnetic, or strong . 

A collision between particles is, in the Standard Model theory, an interaction between two 
of the elementary constituents which they contain. For example. in a collision between a 
proton and an antiproton, the 'true' collision may be between a quark and an antiquark, 
between a quark or antiquark and a gluon, or between two gluons. When physicists 
examine the debris of such a collision, they are seeking infonnation on the constituents 
and force carriers which are produced in the collision. 

Quarks and gluons emerging from a collision are not direc tly observable in the detector; 
they are said [0 'fragment' into 'jets' containing many panicles as they emerge from a 
collision. This process is discussed in more detail in the Appendix. Jets from quarks and 
from gluons are sligh!ly different in their propenies, as will be discussed in section 4.2. 

type symbol quark content charge mass comments 
~ proton 939 MeV ~ p uud +1 atomic nuclei made 01 
.~ 

8. neutron n udd 0 940 MeV protons and neulrons 

E 
pion 0 • 0 

ud, uu + dd +1.-1 ,0 -1 35 MeV most commonly produced 

kaon K us, ds +1,-1,0 -500 MeV 
composites 

Table IV. The composites most commonly encountered In HEP detecto r systems. 

The mOSt 'fashionable' areas of research in HE? today are: the study of the production 
and decay properties of [he 'heavy' (i.e., massive) quarks, c and b; the search for the 
heaviest quark , called 'lOp', or simply, 't', which is postulated but as yet undiscovered; 
studies of the vector bosons Wand Z; the search for the Higgs panicle (Table V), an 
essential but as yet unobserved element of the Standard Model believed to be the origin of 
the masses of all panicles; and the srudy of the characteristics of jets. 

~ symbol name 
C> 

charge mass comments 

.0> HO Higgs 0 ? essential to theory. not yet 
J: seen. gives mass to particles. 

Table V. The Higgs particle. 

1.3 HEP Measurement Tools 

Although there are quite a number of different types of measurement tools used in high 
energy physics , most can be classified as one of two main types, rracking chambers and 
calorimeters. Figure 3 shows a generic HE? detector system with a cenrral tracking 
chamber and a venex cracking chamber, calorimeter with sections called 'eleccromagnetic' 
and 'hadronic', muon shield ing iron, followed by another set of cracking chambers called 
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muon chambers. The figure illustrates the behaviour of the detectors for the four most 
commonly encounte red types of particles and for ajet. 

neutrino \ 

muon 

shielding 

and electromagn i 
calorimeters 

central tracking 

vertex tracking chamber 

beam pipe 

muon 

electron 

Figure 3. Behaviour of a muon, electron. pion. neutrino. and jet in a HEP dettctor system. The beam 
pipe is perpendicular to the plane of the page. The muon passes completely through !he calorimeters, 
depositing only a small amount of energy in each section, and through !he shielding iron, to be 
finally detected in the muon tracking chambers. The electIon depositJi all of ils energy in a localized 
region of the electromagnetic calorimeter. The: pion deposiu its energy over a region of both 
electromagnetic and hadronic calorimeters. The jet is composed of many particles of different types. 
mostly pions. and deposits energy both in electromagnetic and hadronic sections of the calorimeter 
over a broad region. The neutrino docs not interact at all and passes undetected' through the apparatus. 

Tracking chambers are used to detect the trajectories of electrically charged particles 
emerging from a collision. Usually the tracking chamber volume is within a magnetic 
field. This causes the path of the charged panicle to curve, enabling a measuremem of the 
momentum3 of the particle. A knowledge of the momenta of all charged particles allows 
a complete study of the underlying dynamics of the colli sion to be made. When a charged 
particle passes through the chamber, gas molecules along ils trajectory are ionized (there 
are also tracking chambers which do not use gas as an active medium, but we shall not 
discuss them here). High voltage wires spaced regularl y throughout the tracking volume 
collect this ionization in the fonn of elecoical pulses, which can then be passed on to the 
data acquisition system for analysis and reconstruction of the tracks. Position resolution 
finer than the wire spacing is obtained by using an electronic device to measure the time it 

)The momentum P of a particle is defined as P = Ev/e2 where E is its energy, v is its velocity, and c is the 

speed of light. For nonrelativistic panicles E == mc2, where m is the mass, giving p == my. 
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takes for the ionization to drift to the wire. This is referred to as the 'drift time', In figure 
3 only wires closest to the trajectories, called 'hit' wires, are shown. 

There are many different types of calorimeters but all have the same basic principle of 
operation. Calorimeters are normally built from many layers of metal interleaved with 
layers of a plastic or gas active medium. Quite the opposite of the tracking chambers, 
th rough which the particles pass uninterrupted. a calorimeter is designed to cause most 
panicles incident upon it to interact and deposit all of their energy within its volume. The 
energy may be in the form of ionization or of light, bu t will ultimately be convened into 
an electrical impul se with a size proportional to the energy of the panicle. Most 
calorimeters have two sections, called 'electromagnetic' and 'hadronic' of different 
composition. The electromagnetic section is designed to absorb almost all of the energy 
of the electromagnetically interacting panicles, i.e., eieccrons and phOtons, while hadrons 
will deposit the largest fraction of their energy in the hadronic section. Calorimeters are 
usually highly segmented in order to give information on the spatial extent of the energy 
deposit from the panicle, as shown in figure 3, where the energy in each cell is 
represented by the height of the tower drawn at each cell. Note that the segmentation in 
the eleccromagneric secrion is twice as fine as in the hadronic section. 

Calorimeters are particularly useful for identification of electrons. An electron will 
deposit almost all of its energy in a highly localized region of the electromagnetic 
calorimeter. By looking for a charged track which points at this localized region, and 
matching the calorimeter energy to the track momentum, an electron can be reliably 
identified. 

Muons are charged panicles which are capable of penecrating through great thicknesses of 
material with only minimal energy loss. For this reason, special muon cracking chambers 
are placed outside the calorimeter and a th ickness of uninstrumented shielding iron in 
order to detect possible tracks from muons produced in a collision. The energy of Other 
types of particles wi ll be completely absorbed in the calorimeters and the shielding iron. 
The muon can be identified by measuring its curvature in the central cracking chamber and 
seeing if its projection through the calorimeter and iron matches well with a track 'stub' 
found in the muon chambers. 

The detectors' to pions, neutrinos, and jets is described in the caption of figure 3. 

1.4 Paltern Recognition in HEP - Standard Methods 
1.4.1 Introduction 

The only particles which are directly observable are those which have a natural lifetime 
long enough to allow them to be detected in the apparatus, i.e., photons, muons, 
eleccrons, and some of the low mass composites such as pions. Neuoinos normally leave 
no trace in the apparatus and are detectable only by their 'missing' energy. Most of the 
constituents produced in a collision quickly decay into these observable particles, or, in 
the case of quarks and gluons, fragment into jets containing many particles. The 
properties of the constituents mUSt therefore be inferred from patterns in the 'visib le' 
particles into which they decay or fragment. 

Reconstructing an event involves two types of pattern recognition. The first, which we 
shall call/ow level pattern recognition consists of such things as finding tracks in the 
tracking chambers or identifying a candidate electron in the calorimeter (figure 3). The 
second type, which we shall call physics process determinarion, uses more sophisticated 
features, for example the angular distribution of the jets in the event. 10 try to identify the 
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underlying physics of the interaction which took place. Note that this nomenclature is not 
the same as typically found in classical pattern recognition, since classification, normally 
considered 'high-level', can occur both in our low-level and high-level pattern 
recognition"". In HE?, the distinction between high-level and low-level pattern 
recognition is based upon the complexity of the features used to perform the 
classification . Examples of the two types will be given in the sections to follow. We 
shall see thut neural networks have found application 10 both. 

In HEP it is also necessary to distinguish whether the pattern recognition is to be 
performed 'on-line', i.e., in real time, or 'off-line', On-line pattern recognition is 
performed on the data before it is logged, in a pan of the experiment referred to as the 
'trigger'. Off-line pattern recognition is done with conventional computers operating on 
the data after it has been logged to pennanent storage media. These two areas will be 
discussed in more detail below. 

1.4.2 Triggering 

New HEP experimems study increasingly rare physical processes. The implications of 
this for data acquisition systems are best illustrated by an example. One of the main 
motivations for the construction of LHC and SSC is the search for the Higgs particle. 
The probability of producing a Higgs panicle when two protons cross paths is so small 
that this would have to occur 1034 times per secondS in order to produce a reasonable 
sample of detectable Higgs particles, say 1000. during a one-year run. The probability 
for other processes however. not involving the Higgs. is higher by a factor of about 
1013. This implies that, during this one-year run, events containing background 
processes will be continuously produced at a rate of about I billion per second. It is 
neither desirable. nor feasible. to log all of these events to pennanent storage media such 
as magnetic tape. On-line pattern recognition, called 'triggering', is required to reject 
background evems and retain the rare interesting events. Although LHC and SSC 
represent an exrreme case in high-rate HEP data acquisition, the problems are common to 
all HEP experiments. 

4 Segmentation of the data into evems is performed trivially using timing information which correlates a 
block of data wiLh the time of a particular bunch crossing. 
SThe 1034 per second is technically the accelerator 'luminosity' required to produce the 1000 Higgs panicles. 
Luminosity is defined as the the square of the number of particles per bunch, times the number of bunches per 
beam, times the revolution frequency of the bunches wi thin the ring, divided by the cross sectional area of the 
beams. 
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Figure 4. Generic HEP multilevell1igger system. 

Figure 4 shows a typical multilevel HEP trigger system. The data from the detectors 
passes into the oigger as a srream of events, each containing all the detector data produced 
in a single collision. Each level of trigger rejects most of the events it receives and passes 
the remainder on to the higher level triggers. Levels I and 2 are typically implemented as 
fast specialized analog or digital hardware. while level-3 is a 'fann ' of conventional 
processors. The processing times and event rates shown at each level are generic, but 
typical of those encountered at current proton-antiproton collider experiments such as me 
CDF experiment at Fermilab [CDF 1988]; rates will be one to two orders of magnitude 
higher at LHC and SSe. 

In level-I. simple tests on global event information are performed. for example: 0) 

comparing to a threshold the summed transverse energy. Et = li Ei sinSi. where Ei is the 

energy in calorimeter cell i and Si is the angle with respect to the beam axis of a line from 
the collision point to the calorimeter cell; (2) looking for the presence of a charged crack 
with transverse momentum, Pt = P sinS. where P is the track momentum, above a 
threshold; (3) looking for the presence of one or more track segments in the muon 
chambers. The first and second cuts eliminate 'soft' interactions. Most interesting 
physics processes involve 'hard' scatters of two constituents in the beam panicles, which 
produce particles at large angles to the beam direction and thus deposit in the calorimeter 
substantial energy transverse to the beam direction. 'Soft', glancing collisions of beam 
particles are much more copiously produced than hard scatters, and most mUSt be 
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rejected. The third cut is useful since high Pt muons are produced in many of the 
inte resting processes currently under study, but are produced only with low probability in 
background processes. Level-l triggers have a typical processing time of about 1 
microsecond and reduce the rate due to backgrounds by about two orders of magnirude. 

In the level-2 trigger, somewhat more sophisticated tests can be done, for example: (1) 
looking for a match between a high-Pt track and an energy cluster in the electromagnetic 
calorimeter, indicating the presence of a candidate electron, or between a high-Pt track 
and a track segment in the muon counters, indicating a candidate muon; (2) looking for 
the presence of localized clusters of energy in the calorimeter , which will correspond to 
jets, with Et above some threshold. Validating the presence of leptons and jets as in (1) 
and (2) above ensures that the event is more likely to have come from an imeres ting 
physics process . Ten to twenty microseconds are available for level-2 decisions. 

Level-3 triggers are executed using algorithms written in standard high level computer 
codes running on a 'farm ' of conventional processors which operate in parallel on 
separate events . As each event comes into level-3, it is immediatel y sent to an available 
processor. The processing done by level-3 can be quite sophisticated, in some cases 
being identical to the code used in offline analyses . Some of the typical analyses 
perfonned in level 3 are: I) reconstruction of charged tracks; 2) accurate calcu lation of 
the position of the collision poim in order to reject events tOO far from the detector center, 
to allow more accurate calculation of Et of calorimeter ce lls, and to detect mUltiple 
vertices; 3) high quality electron and muon identification using accurate Pt measurements 
of the tracks: 4) imposition of isolation cuts, i.e., requiring that an electron or muon have 
very little energy su rrounding it in the calorimeter; 5) formation of composite triggers, 
e.g. electron plus missing transverse energy plus one or more jets would be a good 
trigger for [Op quark production. Such calcu lations as these are tOO complicated to be 
perfonned in level-2. The rime to process a single event in level-3 may be of the order of 
a second, however as there are many processors operating in parallel, the effective 
processing time is a few milliseconds per event. 

1.4.3 Offline Reconstruction 

Offline reconstruction is the final event reconstructio n in which all available information is 
processed using whatever data analysis techniques may be available. Normally all the 
data from a run will be processed in a single reconstruction pass in which data setS of 
specia l interest are created, e.g., one for the physics of b and c quarks; one for the search 
for the top quark; one for Wand Z physics, etc. These are often analyzed man y times 
over with ever more refined sets of selection cuts. Analysis usually proceeds with the 
definition of several feature variables upon which one dimensional cuts are placed. The 
use of likelihood techniques is also common. 

The am ine analysis does not have the same real time constraint as online reconstruction; 
however, the codes used to process high energy physics data are normally tens of 
thousands of lines long and requi re substantial computing resources in order to complete 
the processing in a reasonable amount of time. It is not uncommon for a complete offline 
reconsrruction of a particular physics process to take one or twO years. 

2. The Need fo r Neu ral Netwo rks 

In high energy physics, neural networks have been used both in real-time and offline 
applications. Most applications to date have used MLP's trained with backpropagation, 
although a few instances of the use of learning vector quantization and feature maps have 
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also appeared. Recurrent networks have been applied to the problem of charged track 
reconstruc tion as discussed in section 5.1. 

For the offline applications, the advantage to HE? is the same as that fo r other fields: 
near optimal classification with a minimum of computational overhead. In the real-time 
applications. neural networks present an advantage because of their parallel architecture 
which allows for faster processing. We now discuss these two areas in more detail. 

2.1 Neural Networks jor Triggering 

It is interesting to note that some of the functions performed by standard level- l and 2 
triggers as discussed above, i.e., thresholding performed upon a linear combination of 
inputs. already resemble those performed by an anificial neuron. High energy physicists 
building fast oigger electronics have fo r decades been making use of electronic devices 
called 'di scriminators' for performing this function. The idea of applying true neural 
network technology in HEP trigge ring . however, is quite new [Denby 1988. Denby 
19901, and it is far from being accepted as a standard tool. 

Neural networks are a natural choice for incorporation into triggering systems due to their 
speed of execution, made possible by their parallel architecture and the ability to 
implement this architecture in silicon. This processing speed can be extremely valuable in 
very high rate data acquisition systems. At present most projects to use neural networks 
in triggering foresee an application at level·2, since the processing times of existing neural 
network chips are of the order of a few microseconds and are thus tOO slow for level·!. 
As faster hardware becomes available, level- I applications can also be envisioned. 

Although trigger systems using conventional electronics can probably be made to handle 
the rates to be found at sse and LHC, neural networks can make the triggers far more 
efficient and less costly by moving to level-2 the complex pattern recognition normally 
done in level·3 . In sec tion 3 we shall show some specific examples of this: accurate 
muon Pt measurement in a few microseconds; application of an isolation cut at level-2; a 
possible sc heme for determining the position of the collision point online. etc. This will 
reduce the requirements placed on the level -3 processor farm and significantly reduce the 
amount of data which must be recorded on tape for later analysis. 

Another attrac tive featu re of neural nets for triggering is their pr0grammability. In the 
past. many level-2 triggers have been built as hard-wired spec ial purpose electronic 
devices. To change the algorithm in such a device implies rebuilding it or re·wiring it. In 
a neural network, the algorithm can be changed simply by downloading a different set of 
weights, which will make neural network triggers much more flexible than their 
predecessors. 

2.2 Offline Applications 

Historically , high energy physicists have eschewed 'complicated' data analyses in favor 
of simple one dimensional cu ts. In HEP, such problems as incomplete understanding of 
detector response. and heavy dependence upon Monte Carlo models render the extraction 
of a fi nal physics re sul t from the experimental data an extremely difficult and time 
consuming task. sometimes requiring hundreds of man years of effon. There was a 
strong tendency to try to keep the analyses as simple as poss ible. However, over the 
years in HEP. considerable experience in detector construction techniques and in software 
generation has been gained. and detector simulation packages which model instrumental 
effects have become extremely sophisticated. Too, with the growth of collaboration si ze . 
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particular groups of researchers within an experiment have been able to devote themselves 
exclusively to data analysis problems. 

The key to the value of neural networks in offline HEP analyses is in creating efficient 
cuts to retain events from rare physics processes while rejecting as many as possible of 
the background events. A further advantage is that neural networks may make possible 
certain analyses which previously were considered hopeless precisely because simple onc 
dimensional cuts were known [0 be ineffective discriminators. An example of this is the 
classification of quark and gluon jets, which we shall discuss in section 4. 

It has been argued that although a series of onc dimensional cuts is less efficient than a 
multidimensional cut, this can be compensated for by taking more data. As the interesting 
physics processes to study become more rare, however, this reliance on increased 
statistics becomes impossible: it becomes necessary to extract as much information as 
possible from the data at hand. 

2.3 The Problem oj Training Data 

One of the major goals of HEP is to identify and characterise the propenies of as ye t 
unseen constituents in the standard model. This however presents a problem for 
classification schemes involving supervised learning since there is no ex.isting labelled 
real data containing these particles. Ie follows that Monte Carlo data must be generated 
according to some model. In some cases, there are a number of rather different models to 
choose from. Any classification based upon these models will therefore be biased 
towards the model chosen. This is of course a problem for any type of classifier, 
however a number of high energy physicists are concerned that it will be more difficult to 
understand model dependence using neural networks than using a simpler type of 
classifier. This is used as an argument against using neural networks in HE? analyses. 
Although it is true that model dependence in a nonlinear classifier is somewhat more 
difficult to characterize than in a linear classifier, the superior performance of nonlinear 
classifiers has led some researchers to expend the additional effon necessary to 
characterise the model dependence. This wi ll be seen in some of the applications 
described in section 4. 

This effect is panicularly imponant in triggering. Events rejected by a trigger will nO[ be 
recorded, and so can never be used to check what the trigger was doing. For this reason, 
there has been a tendency in the past to keep trigger cuts as simple as possible to facilitate 
understanding of the trigger efficiency. This this 'validation' problem is not imponant for 
trigge rs based upon low level pattern recognition such as track segment finding or 
elecrron identification since modem detector simulations can quite reliably simulate such 
simple entities as tracks and electrons. However, because of possible biases from model 
dependence, there is still work to be done in HEP to show convincingly that unbiased 
information can be extracted from data taken with oiggers which select specific physics 
process, whether they use neu ral networks or more conventional technology. 

3. Applications to Low Level Pattern Recognition 

These applications, as well as those in later sections, are summarized in Table VI. 
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-
Problem Training Set Test Set Network :.i ItS and Comments 

• 
muon trigger 

Monte Carlo MLP 
F; , efold improvement in 

test beam Real online 15-64-64 position resolut ion over con-
experiment tracks data ETANN venlional lrigger. To be applied 

Fermilab to DO expt. muon upgrade 
isolation and Real and Real and 50-1 I Simulation results show big 

.§' b trigger lor Monte Carlo Monte Carlo 
50-4-1 (isol.) improvements in trigger 

" CDF calorim. 50-10 -1 (b) rejection cower. Will take C> data data .~ Fermilab MLP+ETANN data SOO il. 
t-. 

level-2" trig. Proposed. Simulations c: ""w 
" Monte Carlo Monte Carlo 19-??-1 a 10 fold backgroul"l'" fo r H1 expt. on > data data " MLP+silicon and 10 micros!?"· .ulian -' al HERA 

~ time, suitable ' .. 
-' electron Ld . 192-96-1 MLP Slrnulat io f"l J W good Monte Carlo Monle Carlo . 

for LHC al data data 92-92-1 silicon rejectio! : :ype chip had 

CERN propagdtlon time of 15 ns, 
suitable lor LHC or SSC 

Find primary Real collider Real collider 18-128-62 Overlapping 18 wire sections 

" vertex at data data MLP summed, 3 times bener reso· •• 8 E735 expt. lution than roF. Finds multi· 
Fermilab pie vertices naturally . . 

" ink finding Monle Carlo Monte Carlo 5-5-1 I Both parameter and residual > (par. ) " or charged data data 5-10-1 neural (1P! r "" ft1ods exceed -' 

~ article track 14-7-1 perton' ... .. 'd chi 
0 

14-14·1 (res .) square . rn~ter -' 
42-6-1 method IS 4:: li 

Z decay Monte Carlo Real data 19-25-3 MLP Z decay probabilities In ... "'" 
probabilities data Irom one output and (uds) measured more 

~ 
into b ,c, an( node for each accurately than with standard ~ 0 Delphi expt , g '~ (uds) of b ,c, (uds) method . 

" 0 a. .- Quarklgluon Monte Carlo Real data 8-6-1 MLP Heavy overlap of quarKIgluon ~ E 
.~ ~ discr. at CD data fromCDF (feature map d istrib . First evidence for quark 
~ " Fermilab experiment in new analys,) fract ion increase with EI. ~o 
a. 

~ lagging Monte Carlo Monte Carlo MLP Numerous references on 
data and real data MLP + LVQ b lagging. 1llOS1ly al LEP. 

- --c Track recons fully connected Neu( " ,een hits. 'in real data from ~ 0 with Denby· hand wired recurrent Hop· Links ,. "' ;; 8 Aleph expt. 
o " Peterson Ne field network settles. ·ot. 

" Eo< -
" u Deformable Inspired by DenCi " rn Monte Carlo dynamical " " templatesl net and elastic net n .t' "- none 0; u " data system 
" 0 elastic arms not really a neural netwO(K , a: rn 

Table vt. Summary or the main HEP neurallletwork applications covered in this paper. 



3.1 Trigger Applications 

We will treat in this section only those trigger applications which have already been 
realized or have been seriously proposed. Some of the Other low level pattern recognition 
applications which follow are also intended for triggering but are still just studies. 

3.1.1 First Real-time Application: Muon Trigger 

The first real-time application of a neural network in HE? was accomplished recently at 
Fermilab [Lindsey 1992J. 

3.1.1.1 Conventional Method 

Identification of a muon with a transverse momentum Pt above a threshold is a useful 
rrigger for detecting decays of W's, Z's, and b quarks since each will decay about 10 
percent of the time [0 a muon. The cut on Pt is necessary since background processes 
produce many low Pt muons. A measurement of the Pt of a muon in the trigger requires a 
knowledge of the angle of the muon track at the muon chamber. Although, offline, the 
wire drift times can be used to calculate the track angle quite accurately, in the nigger. 
only the infonnation on which wires were hit is available. resulting in an inaccurate 
measurement of Pt in the trigger. It is therefore necessary to set the Pt trigger threshold 
quite low in order to avoid discarding high Pt events which have been poorly measured. 
This introduces a large amount of background. 

3.1.1.2 Test Beam Results 

In a simple test beam experiment at the Fennilab Tevatron, slopes and intercepts of muon 
tracks traversing a small prototype drift chamber were calculated accurately, in real-time, 
using a commercia l VLSI neural network chip incorporated into the standard drift 
chamber data acquisition system. This was a test experiment camed out in an auxiliary 
particle beam; in a full scale coUider experiment, the drift chamber would be duplicated 
many times over to cover an area of many square meters surrounding the other measuring 
devices, as in figure 3. The drift chamber sense wires signals appeared on Time to 
Voltage Converters (TVC's) which convert the drift time of the ionization to the wire into 
a voltage. The setup is shown in figure 5. The beam dump in the figure simulates the 
shielding iron of figure 3. The small circles in the drift chamber volume represent the 
wires and the small honzontallines above and below represent the TVC values interpreted 
as a drift distance. Note that there is an ambigu ity as to on which side of the wire the 
particle passed. The neural net must resolve this ambiguity. 

The wires in figure 5 are paired vertically. For each of the three pairs, twO signals are 
produced: a drift time and a latch indicating whether the lower or upper member of the 
pair was hit. The drift time signals had to be duplicated 4 times in order to achieve 
sufficient fanou t for the analog neural net chip. These 12 signals were coupled with the 
three latch signals to fonn the 15 inputs to the neural network chip. configured as a rvrLP. 
Sixty four hidden units in a single layer were used. The output layer consisted of sixty 
four units divided in a group of 32 to encode slope and a group of 32 for intercept (this 
type of readout has been used in several previous studies of tracking with neural 
networks [Denby2 1990, Lindsey 1991, Lindsey2 1991]). Each output unit covers .625 
centimeters in intercept or .05 radians in slope. The network was trained on 1()(X)() tracks 
generated with a simple Monte Carlo. using gradient backpropagation. Target patterns 
consisted of gaussian histograms with means equal to the target slope and intercept and 
r.m.s. width of one bin. Architectures with fewer hidden un its were also tried, but these 
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resulted in degraded performance. (In an analog hardware network such as this, exrra 
hidden units may be needed simply to increase fanout.) The weights obtained were 
downloaded into an Intel Elecrronically Trainable Analog Neural Newark chip (ETANN) 
after performing emulation and chip-in-the-Ioop training usi ng the Intel ETANN 
Development System lintel 1991 I. 

The intercept position resolution available using the conventional oigger technique, which 
does not make use of the drift times, is 5 centimeters. The neural network trigger was 
found to have a position resolution of 1.2 centimeters. This resolution is only about a 
factor of two worse than the best obtainable offline using the complete recons truction 
algorithm, but is available in about 8 microseconds. The neural network result, as shown 
in figure 5. can be passed back to the readout motherboard for readout with the rest of the 
event information, without introducing dead time in the data acquisition system. 

trigge r coun ters 
o 

. -j I 'j [ muon ~ ~ ~ ~ 0 .. 
-I~ ~ Beam Dump 

track 0 '0:----L ______ -' Seam 

/ _ "~D' ; ft chambe, 

trigger 

electr. 

readout c:... 
ompulerr-

r ' sense wire 

readout 
motherboard 

TVC's, AOC's 

TVC signals 

ET ANN output 

" for digiti sation 

ETANN 
board 

Figure 5. Setup ro r the drirt chamber neural net trigger lest. 

3.1.1.3 Future Plans 

The drift chamber used in the above tests was a prototype of chambers which are 
currently installed in the DO experiment at Fermilab [DO 1983). A group on the DO 
experiment is currently ins talling an ETANN chip on one of their chambers to take test 
data duri ng the 1992 run [Haggerty 1992}. They also plan to incorporate the ETANN 
readout into the trigger of the upgraded DO detector in the 1994 run of that experiment 
[Fortner 1992}. This will allow a more accurate determination of the muon Pt, which 
wi ll allow the threshold to be lowered and significantly reduce the amount of background 
data recorded. 

3. 1.2 Test Case: the CDF Experiment 

Neural network trigger hardware is being installed for the 1992 run of the CDF 
experiment. We describe be low the conventional CDF calorimeter crigger and the neural 
network improvements to it. 

3.1.2.1 Con ventional Techniques 
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The nigger for the COF experiment at Fermilab has been in operation since the first 
experimental run in 1987 [COF 1988] . In {his trigger, integrated signals from the 
calorimeter cells appear as analog levels (i .e., voltages) at the ends of special 200 foot 
cables, where they are received by the trigger receiver boards. From this point on, the 
trigger can be thought of as operating on an array of voltages of size 24 (azimuthal angle) 
by 42 (pseudorapidity, related to polar angle) by 2 (elec tromagnetic/hadronic 
companmem), which represent the energies in the calorimeter. Analog processing is used 
in level-! and level-2 for the cluste r analysis, in which the [Olai ET of the cluster, the 
number of towers in the cluster and the cluster width are computed. Once the cluster 
analysis is finished, additional digital processing is perfonned, operating upon the cluster 
quantities using the level-2 processors and special function modules; e.g., the ratio of the 
cluster's energies in the elecrromagnetic and hadronic calorimeters. 

3.1.2.2 CDF Neural Network Triggers 

The existing CDF calorimeter trigger is very powerful, but is based upon the philosophy 
that clusters can be adequately described by their position, their width. the number of 
cowers they contain, and the ratio of hadronic to elecrromagnetic energy they contain. 
Indeed, this information is adequate for a great many niggers. However. there are 
instances when a more sophisticated cluster analysis would be fruitful. A neural network 
trigger is currently being installed at the CDF experiment [Wu 1990]. For every cluster 
found by the cluster finder, the new trigger selects 5 by 5 trigger tower region of interest 
(in hadronic and in elecrromagnetic compartments) centered on the cluster and passes the 
50 analog signals to analog neural network chips [Intel 19911. The chips are 
programmed to execute three different cluster algorithms: (1) determine if the cluster 
could be an isolated photon in the centtal calorimeter; (2) detennine if the cluster could be 

an isolated elecrron in the endplug6 calorimeter; (3) determine if the cluster could have 
come from the semileptonic decay of a b quark7. None of these analyses would be 
possible using the existing calorimeter nigger without extensive hardware modifications. 

We choose the isolated endplug elecrron trigger [Denby 1991) as simple illusttative 
example. There is a very high rate of clusters in the endplug which pass the conventional 
electron trigger but are in fact due not to electrons but to background processes. In the 
past. a high energy threshold was used in the endplug in order to reduce the rate from 
these false electrons. This, however. is undesirable since it rejects a significant number 
of real electrons along with the background. Electrons from ·the decay of a Ware 
normally isolated in the calorimeter; i.e., have very little energy surrounding them. In 
1992, an isolation requirement, implemented by a neural network. will be Died in the 
level 2 trigger to allow the same trigger rate but with a lower energy threshold. Normally 
such a cut would have been made in the level-3 trigger. The conventionallevel-2 trigger 
cannot implement this cut since it no longer has access to the individual tower energies 
after cluster finding. 

&me endplug is a name given to calorimeters or other detectors which fil into the end openings of the 
cylindrical central detectors (figure 2). 
7 A sem ileptonic decay is one in which a quark decays to a lepton plus other particles. In a purely leptonic 
decay, the quark decays to a charged lepton and a neulrino. 
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Figure 6. Isolation templates for plug electron nigger. 

The neural net endplug isolation trigger operates upon 5 by 5 tower regions of the 
electromagnetic and hadronic calorimeters as shown in figure 6 (only the electromagnetic 
part is shown in the figure). The dark central region is meant to contain the electron, 
which normally produces a narrow cluster in one or twO towers. Four templates are 
necessary since some of the electron 's energy may spill over into 2 to 4 towers and since 
the center of the tower as found by the cluster finder may not perfectly center it in the 5 by 
5 array in all cases. Each template will be represented as a hidden unit in the neural 
network. and each tower has a weight connecting it to one of these hidden units. Cells in 
the central region have a weight of F, and cells in the outer region have a weight of-1. 
Thus, the quantity presented to the hidden uni ts, which are used as comparators, is 

F * Einner - Eomer 

If this quantity is negative, the hidden unit will not 'fire ': the energy outside the cenrral 
region was greater than some fixed fraction of the cenrral region energy and the cluster is 
thus not isolated. If the quantity is positive, the neuron fires, indicating an isolated 
cluster. If any of the templates fires, the cluster is isolated; i.e., the output unit simply 
sums up the outputs of the hidden units. 

The value F = . 16 was found to be optimum in the present application. (S ince the 
network is very simple, and essentially 'hand wi red', it was not necessary to rrain the 
network using, e.g., backgpropagation.) Using this value, in a simulation of the trigger 
operating on real data from a previous CDF run, it was possible to lower the energy 
threshold for endplug elecrrons from 23 GeV to 15 GeV, while reducing background by a 
factor of 4 and retaining 95% of electrons from the decay of W bosons. This will allow 
access to electrons of energies lower than were previously obtainable, which will be 
valuable for studying cenain decay propenies of W bosons. 

The isolated central photon trigger operates in an analagous way, except that it operates in 
the central region of the calorimeter rather than the endplug, and in thi s case has only one 
template with a single tower in the central region of the 5 by 5 grid. This nigger will 
provide access to a class of physics events containing so called 'direct' photons, which 
tend to be isolated in the calorimeter. Without the isolation cut, the high rate of 
background limits the amount of good data which may be taken. 

In the case of the sem ileptonic b-trigger {Wu 1990], a Monte Carlo program was used to 

generate events containing the semileptonic b jets and background events not containing b 
jets. The semileptonic b jets will contain an electron as well as other panicles, while the 
background jets will not contain elecrrons. A full detector simulation was used in order to 
model as closely as possible any instrumental effects. A training set was made from 5 by 
5 regions centered on the b jets extracted from the signal and background events. This 
was used to train a feed forward neural network with 50 inputs, one hidden layer of 10 
uni ts and a single output unit [0 discriminate between b jets and non-b jets. This is the 
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only one of the three CDF neural network triggers which uses a network trained with 
backpropagation. The other twO are 'hand wired' nets. A simulation of the trigger 
showed a reduction of background of a factor of about 100 while retaining 30 percent 
efficiency for b's. The we ights found in the simulation will be loaded into the neural 
network chip in order to allow online identifica tion of the b-jets. It would be impossible 
to carry OUt a discrimination such as this using conventional computer hardware within 
the time limits of the level-2 trigger, i.e., about 20 microseconds. 

The hardware for these triggers is being installed and should begin taking data soon. All 
three of the triggers will be implemented with identical hardware. It is remarkable that 
such different algorithms can be implemented with the same hardware simply by 
downloading different weights. Future modifications to any of the algorithms will also 
be easy because of the programmability of the neural net. 

3.1.3 
3.1.3.1 

Other Trigger Applications 
The H J Experiment 

The Hera accelerator, which collides electrons upon protons, is just coming on line at the 
time of writing. The experimems HI and Zeus there will study the momentum 
distribution of constitutems within the proton and measure the coupling strength of the 
gluon to the different quarks. At Hera, the rate of produced events due to background 
processes such as interaction of a beam particle with a residual gas molecule in the 
vacuum system is some 105 larger than the rate due to physics processes of interest. In 
the HI experiment, a 4 level trigger system is envisioned in order to reduce this high rate 
to a manageable level of about 100 Hz. Level I is a digital pipeline which reduces the rate 
by about a factor of 100. An additional reduction of a factor of 10 is required in level 2 in 
order to provide an acceptable rate into levels 3 and 4, which are implemented in software 
on conventional computers. The level 2 trigger must complete its processing within 20 
microseconds. A hardware neural network has been proposed as a solution to this 
problem [Rib.rics 1991, Rib.rics 1992. Ribarics2 1992J. We describe the approach 
below. 

(n level I, 16 simple trigger quantities. such as total summed energy, total summed 
transverse energy, total energy in the central region of the calorimeter, etc., are compared 
to thresholds. Levell however ignores correlations among the input variables. More 
sophisticated cuts will be made in level 2 by augmenting the level 1 quantities with 
additional information which becomes available after the level 1 decision rime and feeding 
the resulting list of variables to a feed forward neural network. At present 19 input 
variables . including energy sums in subsets of the calorimeter, information on the venex 
position, number of charged tracks, etc. are used. The neural network will use these 19 
variables [0 determine whether the energy patterns in the event have come from an 
electron proton collision or from a beam-gas collision or other background. 

The detai led architecture of the neural network is still under development, however typical 
results using Monte Carlo data with a MLP show retention of 98 percent of events from 
interesting physics processes and rejection of 90 percent of background events; i.e., the 
reduction factor of 10 is achieved while maintaining excellent efficiency. The algorithm is 
planned to be executed by a Siemens MAl6 neural network chip [S iemens 1992], which 
should be able to tinish processing in 10 microseconds, well within the allocated time. 
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3,1.3.2 Trigger R&D at CERN 

Some of the research and development projects at CERN are investigating neural 
networks for triggering app lications for the LHC accelerator. In one project. a type of 
detector called a 'transition rad iati on detector', TRO, was designed to tell electrons from 
pions in an online trigger fHansen 1992]. The TRD will have 192 input wires , embedded 
in a spec ial substrate. which sense the passage of the electron. The analog values from 
these wires will be fed into a MLP with 96 hidden units, and one output unit which 
signals whether or not an eieco-on was present. In a simulation, the TRD rejected 92% of 
pions, and accepted 90% of e lectrons. These results were better than the 89% rejection, 
90% percent acceptance obtained with a more tradi tional analysis. Ultimately the neural 
network will be implemented in silicon with fixed weights. A prototype chip has already 
been built which has 32 input units and 32 hidden units. The propagation time through 
the chip is 15 nanoseconds; thus, the processing is sufficiently fast for incorporation into 
a first level trigger for LHC or SSe. 

A group at the Dutch lab NIKHEF is investigating a calorimetry based neural network 
trigger for the LHC accelerator as pan of a re search collaboration at CERN [Venneulen 
1992]. The approach is similar to the CDF trigger in that it will perfonn simple pattern 
matChing upon energy patterns in local regions of the calorimeter. This is a two year pilot 
project which will compare the neural net solulion to other techniques. The exact 
hardware implementation is still under development but will probably use a fas~ digital 
signal processor to implement the neural network algorithm. 

3.2 Other Low Level Pallern Recognition Applications 
3.2. 1 Track Segment and Vertex Finding 

This discuss ion is from [Lindsey 19911 in which data from a proton antiproton collider 
experiment were fed to a MLP trained to find the primary venex of the event, based upon 
drift times in the z-chamber, a drift chamber with three layers of wires placed near the 
beam pipe. The primary vertex8 is the point from which the tracks in the event emanate, 
and marks the location of the collision. Figure 7 shows the hits in the chamber for a 
typical event; here . only the hit wires are shown, not the drift times. The hits appear to 
emerge from a point on or near the beam line. 

The venex position in collider experiments is nonnally not available online. This would, 
however, be very usefu l since it could be used to improve nigger calculations which 
assume a nominal vertex position at the center of the apparatus, and to flag or reject 
events which contain multiple interactions (i.e ., more than one primary venex). Venex 
calculations are nonnally not perfonned unti l the offline analysis. A cross check of the 
offline analysis is provided by the time-of-flight (TO F) system, which crudely measures 
the venex position using timing infonnarion. 

STh is ve rtex is relatcd to but not technically the same as lhe vcrt iccs discussed in the Appendix in connection 
wilh Fcynman diJgrams. The discussion here is of vertices which arc physically discernible in the apparatus. 
The vertices in a Fcynman diugram are mathemutical entities. 
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Figure 7. A typical proLon antiproLOn collision viewed in die z-chamber of the E715 experiment • 
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Figure 8. The z·chamber sits near the beam pipe 10 detect outgoing charged particles whose 
ltajeclorics can be used LO tletermine !.he vertex position. It is divided into 18 wire subsettions each 
with its own MLP, whose outputs are summed 10 giYe a distribution whose peale indicates lhe most 
probable vertex position. 
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Figure 9. a) difference between Zvertu as measured by the neural net and by the slandatd offline 
program. in centimeters. b) difference between Zvertu as measured by TOF counters and standard 
offline program. The neural net resolution is much bener. 

The 288 sense wires of the chamber were broken up into 18 wire subsections (3 layers of 
6 wires each) for processing by the network. The se ts of 18 drift times became inputs to 
identical MLP's each with a single hidden layer of 128 units. Each output layer had 62 
units. 60 representing 1.0 centimeter bins from ·30 em to 30 em. and 2 'overflow' units . 
The 18 input subnetworks were trained to represen t the venex position by a Gaussian 
histogram in the outpu t units, which gives good venex: position resolution with reladvely 
few output units. Training was done usi ng real data recorded in a previous run of the 
E735 experiment at Fermilab (E735 1991]. Targets were obtained using the Z position of 
the venex calculated using the standard offline algorithm. The 18 wire subsections were 
chosen so as to overlap in orde r not to miss tracks which may span subsections. The 
ompurs of the subnets are then simply added. This is illustrated in figure 8. 

Figure 9 compares the distribution of Zoftline-ZNN to that of Zoffline-ZTOF, where Z is 
the position along the direction of the beam particles. The neural network Z resolution is 
about 3 times better tha n TOF, and its pe rformance can probably be even fun her 
improved by usi ng additional wire layers in the chamber. TOF is currently analyzed 
offline. It might be possible to implement it online, bu t its resolution can probably not be 
improved because it is a technology which has already been pushed to its limits. Also. 
the TOF technique cannot handle cases of multiple venices. The neural net rreats these in 
a natural way: eJch venex appears as a bump in the summed net ourput. 

3.2.2 Kink Recogn itio n 

A high energy pion or kaon will sometimes decay in a rracking chamber volume into a 
muon and a neutrino. The neutrino is neuITal and is not seen in the tracking chamber. 
The muon is chare:ed and is seen, howeve r has a diffe rent momentum from the original 
particle. The result is a crack which appears to have a 'kink' in it (figure 10). 



In this work [Srimpfl 1991. Slimpfl 1992J ,simulated pion tracks of 3, 5, and 10 GeV 
momentum were generated and transported through a chamber modelled upon that of the 
Aleph experiment at CERN. A detailed detector simulation was used [0 model noise hits 
and o ther instrumental effects. Two ap proaches were tried. In the first, helical track 
segments are fit (0 the hit positions in an inner region, 1, and an outer region, 2 (figure 
10), The 5 helix parameters9 in the two regions are then used as input to a MLP which 
teUs whether or not this track is due 10 a decay. In the second approach. a single fit is 
done to the track ac ross both regions, and the residuals of the fit are used as input to the 
neural network. There will be 42 residuals, one for each measurement along the 
trajectory. As a variant to this second approach, groups of three residuals were averaged 
to give 14 residuals as input to the network. 

k ink 

pion 

muon , 
Region 1 Region 2 

Figure 10. A pion decays to a muon and a neutrino to produce what appears as a track with a ·kink·. 
The kink is rccognizcd by comparing found track parameters in region I and region 2 

The results, are summarized in table VII, which also shows the network architectures 
tried. Also given in the table is the result obtained with the standard method for kink 
identification, called the analytical X2 method, in which again the crack is fit in twO 

regions and a X2 is calculated from the helix parameters in the two regions to detennine 
the probability of the non-kink hypothesis. Both of the neural net methods are found to 
have higher efficiency than the standard chi-squared method. The neural network 
residual method is about 20 times faster to calculate than the analytical X2 method, 
assuming that the residuals are already available from the standard crack fit. 

9 The heli:r; paramelers :.Ire the z posilion of lhe VCrLe:r;, !.he polar and azimuthal angles of the a:r;is of lhe heli", 
lhe radius, and the pilCh. 
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Method lJky ~ 10GeV 

5 - 5 - I (par) 78.9 67.0 53.5 
5 - 10 - I (par) 79. 1 67.2 53.6 

14-7 - I (re s) 79 .9 65.5 51.5 
14-14-I (res ) 80.5 65.7 53.9 
42 - 6 - I (re s) 80 .3 67 .7 54.5 

analytical X2 76.0 62.0 40.2 

Table VII. Effi cienc ies (in percent ) for correc tly identifying kinks (defined in text) in pion tracks of 
3.5, and 10 GeY momenLUm. Two MLP architectures were tried for the case of track parameters as net 
inputs. and three for the case of fit residuals as ne t inputs. The results for the slandl1d method, 
analytical X2, are also gi ven. 

3.2.3 Olher Applications 

A variety of other appl ications of neural networks to low level pattern recognition in high 
energy physics have appeared, which we mention only briefly. The interested reader may 
consult the references. In an application to a Cherenkov 10 detector, MLP's were used to 
find a set of dots fanning a ring pauem in a noisy image [Ahherr 1992, deG root 1992]. 
In another hardware application [Haggerty 1992]. a discrete component hardware MLP 
was used to measure, in real time. the position of a muon track in a traCking chamber 
using charges induced on electrodes placed below the sense wire. MLP's have been used 
to perfonn electron/pion discrimination in a calorimeter [Garialti Costa 1992. Teykal 
1992J and identification of heavy quarks using the presence of multiple vertices in a 
vertex tracking chamber [Gupta 1991 . Denby 1992]. Applications to charged track 
reconstruction will be di scussed in section 5. 

4. Physics Process Determination 
4.1 B Tagging 

Numerous groups have used neural networks for identifying reactions containing b 
quarks. This is usually referred to as 'b tagging'. Typically this has been done at the four 
experiments at the LEP electron positron colliders [Proriol 1991. Proriol 1992. Bartolotta 
1991. deGroot2 1991. Gottschalk 1991. Bellanton i 1991. Seidel 1992. Branchini 1992, 
Brandl 1992J. although some work with simulated jets at proton an ti proton colliders has 
also been reponed (Denby 1990J . B lagging is of considerable interest since the 
properties of many particles containing b quarks have to date not been well studied. In 
the LEP work. the approach is typically to choose an ensemble of fearure variables which 
describe the spati al di stri bution of energ y within each jet and of the event as a whole. 
Additional infonnation such as that from vertex tracking chambers may also be included. 
We choose as an example of this type of study the analysis performed by members of the 
Delphi experiment which extends the analysis to charm quarks and undifferentiated light 

lOA Cherenkov detec tor meas ures the mass of ce rtain types of partic les using the li ght the panicle produces in 
passing through 3. lr3nsparen t medium. 
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quarks in order to extract the decay probabilities into these quarks of the Z boson. This 
analysis is descri bed in the next section. 

4.2 Decay Probabilities oj the Z 

The neutral boson Z can decay into any constituent plus its anti-constituent, e.g., eleccron 

plus positron , u q uark plus u quark, etc. The standard model dictates the types of 
interactions wh ich the constituents can undergo, but the relative strengths of the various 
interactions must be verified experimentally. A group from the DELPHI collaboration 
(one of '1e 4 major experiments at the LEP accelerator at CERN) has recently used a feed 

forv. ~ , network to classify decays of the Z into three classes: cc pairs; bb pairs; 
or Ii;:,' '., .... __ u,d, or s) -antiquark pairs [Cosmo 1992, De Angelis 1992, Eerola 1992, 
see ab ·} .;h)i";oiono 1991]. This classification has penniued a measurement of the 
probabilities of the Z [0 decay into these particles to be made with higher precision than 
was previously possible. 

The probability of the Z to decay into the leptons electron, muon, and tau has been well 
established. That measurement is 'easy' to make since these panicles are relatively easy 
to identify in the apparatus. The case of the decay of the Z into quarks is considerabley 
more difficult since the final state quarks fragment immediately into je ts . The problem 
then becomes deducing the type of quark involved in the decay from the propenies of the 
jets themselves and from their disoibution within the appararus. 

The standard technique for distinguishing heavy quarks from light quarks is through 
their so-called semileptonic decays, in which a particle containing a heavy quark decays to 
a lepton plus other panicles. This technique has two disadvantages: 1) semileptonic 
decays account for on ly 20 percent of heavy quark decays; therefore with this technique 
it will be more difficult to obtain a sample large enough to assure small statistical errors; 
2) in a semileptonic decay a neutrino is also emitted; these escape detection, making it 
impossib le to completely reconstruct the event, leading to uncenainty in quark species in 
some cases. A technique which allows the use of all types of heavy quark decays is thus 
desirable. 

In the DELPHI work, 19 jet and event-shape variables were created as inputs to an MLP. 
The vw'" ' '' .:i describe the spatial distribution of energy in the jets and in the event as a 
whole .'. "iUS kinematical combinations of the momenta of the panicles in the jets, as 
well as In formation about the presence of leptons in the event. An exact description of the 
19 variables is not very illuminating to the non-specialist; the interested reader is referred 
to the original works. The network architecture chosen had 25 hidden units and 3 output 
uni ts to encode the three classes. 

The training data for the network was generated with a standard physics Monte Carlo 
program and a program which simulates the response of the DELPHI apparatus to particle 
coHisions. A total of 6000 training events were used. An independent set of 200,000 
events was used for testing the network. 

The trained network was then used to determine the relative fractions of b, c, and light 
quark decays in a sample of 123 ,475 real events from the DELPHI experiment. To do 
this. a 2-dimensional representation of the network output was devised as follows. The 
values of the 3 output nodes were normalized to sum to I. Each event can then be 
represented as a point within an equilateral triangle where the perpendicular distances of 
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the point to the sides of the triangle represent the values of the 0\ _r' il l node 
representation is referred to as a Dalitz plot. Figure t 1 shows tr. .;: Ui stri r 
plane of Monte Carlo events for b, c, and light quark decays, as well a 
The fractions were obtained by fitting the real data distribution to a li n 
the Monte Carlo disoibutions for the three classes: 

R(u,v) = (I - Fe - Fb) al(u,v) + Fea2(u,v) + Fba3(u" , 

- ... ~ of 
lis 

.. I data. 
.• larion of 

where U,v are the variables defining the plane. R is the distribution of the real Ii'''''' . Fe 
and Fb are the fract ions of decays containing c and b quarks, respective!" 2. 
and a3 are the disoibutions of the Monte Carlo data. The results of the fi ~ 

Fe = .158 +- .007 Sla, +- .030par•m +- .OO8mod. 

Fb = .212 +- .004Sl" +- .00Sp.ram +- .O llmodei 

where the first error is due to statistics. the second to an incomplete knowledrr '" ~ '~""''':n 
parameters in the Monte Carlos. and the third to the dependence of the resui 
Monte Carlo model is used. Note that explicit reference is made to a moe' 
of the resu lt. a problem peculiar to high energy physics as discussed in ~ I 
comparison, the best result to date for Fb [Abreu 1992) using semilep ~_ .. ~ ",;::cays is 

Fb = .215 +- .017 stat+systematic 

where the systematic error contains effec ts due to parameter and model dependence. For 
the chann quarks, the best result to date [Abreu 19901 is obtained by identifying a 
characteristic low energy pion from the decay of a particle containing -, -
result is 

Fe = .162 +- .030sta, +- .0SOsyst. 

The result using the neural network has a smaller uncenainty in both cases. 
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uds 

b 

b b 

Figure 11 Dalit7. plots used \0 measure the rela tive fractions of b. c, and light (uds) quarks in the decays 

,,( the Zoo The activation of the m:twork output node corresponding to each class is represented as the 
perpendicular diSI:lZlCC from the side of the Iriangle opposite the comer labelled with thaI class. The 
outpUIS of the three nodes always sum 10 1. a), b). and c) show the dislIibuliorl of network output.! for 
,l;lonlc Cu\o rudsl . c, and b quarks respectively . d) shows l1'Ie distribution for real dau from Delphi. To 
C.'lnCI the frar;lions of b,c. ~nd (uds ), the dislIibution in d) is iii as a linear combination of the 
distributions of a l. b). and c), where the coefficients in the linear combination are the desi red fractions. 

4.3 Quark/Gillon Separatio n 

The ability to distinguish quark jets from gluon jets is clearly very desirable. The W and 
Z decay 80 percent of the time to twO quarks. but normally these decays are unusable 
since it is not possible to distinguish these jets from the more copiously produced gluon 
jets. Funhermore. the most probable decay mode of the much sought top quark is into 
three quark jets. but this channel has long been considered unusable due to high 
backgrounds from multi-gluon final states. The ability 10 verify three quark jets would 
dramatically reduce the baCkground. Distinguishing quark jets from gluon jets has been 
thought by many high energy physicists to be impossible due to the high degree of 
similarilY belween the two types of jets. 

Separation of quark and gluon je ts using neural networks has been treated in a number of 
refe rences [Lonnblact 1990. Lonnblact 1991. Bha! 1990. Csabai 1991. Baer 199 1, 
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Barbagli 19921. These resuhs have been almost exclusively based upon data generated 
by Monte Carlo. Recently a ne w re sult from the Fennilab Teva[I'on cotlider has appeared 
[Bianchin 1992, Bianch in2 19921 which fo r the first time appears [0 give evidence of 
quark and gluon components in real jets produced in prmon antiproton collisions. In the 
Fermilab result. jets identified in the apparatus are represented by a set of 8 feature 
variables which describe the spatia l distribution of energy within the jets, e.g., the 
amount of energy contained within each of three concentric cones centered on the centroid 
of the jet, the r.m.S. width of the jet. etc. A back propagation neural network with these 8 
variables as inputs was trained to separate quark jets from gluon jets based upon 
examples generated by Monte Carlo. It is necessary to use Monte Carlo since pure 
samples of quarks and gluons do not exist. The real data will always contain a mixture 
of quark and gluon jets, and in fact the relative ratio of quarks and gluons in various 
kinematical regions is one of the sought after results. For this reason, thi s problem too 
will suffer from the fact that the results will depend upon which model of quark and 
gluon fragmentation has been used. 

There is considerable overlap of the two classes in all of the feature variables, and none is 
adequate to provide a useful classification of the jets. Figures 12 a) and b) shows the 
output of the trained neural network on independent test samples of Monte Carlo quarks 
and gluons. The quark and gluon distributions overlap substantially: quark and gluon 
jets are indeed very similar! However the separation achieved is useful because quark or 
gluon enriched samples can now be produced by placing cuts on the output of the neural 
network. 
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Figure 12. O utput of 8·6· i MLP for a) MoniC Carlo (the Pythia MoniC Carlo was used in these srudies) 
quarks: b) Mo nle C arlo gluons: c) Real data from the CDF experiment (labelled 'let 40'). All the jelS 
arc required 10 have EI gre:l.Ler Lhan 60 GeV . The real dala appean to be predominantly gluon like with 
a small admixture of qu:uks, as clIpected rrorn theory. 

A study was made of the efficiency of the network, defined as the fraction of quark jets 
with ne twork output above 0.5, :is a function of the number of nodes in the hidden layer. 
Perfonnance did nO[ improve beyond the results with two hidden un its, and in fac t a 
simple perceptron (no hidden units) was only a few percentage points worse using th is 
measure. Howeve r, the network output distributions for the zero and two hidden un it 
cases was much more gaussian in shape and did nO[ include any regions in which the 
quark to gluon rat io was high. Such regions may prove valuable for placing cutS which 
enrich quark to gluon rat io at the price of reduced quark efficiency. For this reason, the 
results from the 6 hidden unit network were retained for the final analysis. The maximum 
efficiency achieved on the Monte Carlo data was 70 percent. 
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Figure 12c) shows the result of applying the trained net to a sample of real data from the 
CDF experiment. The real data distribution appears to be predominantly gluon-like with a 
non-zero admixture of quarks, which is consistent with the result expected on theoretical 
grounds for events in the kinematical regime in which the data was taken. A fit to the real 
data as a linear combination of the Monte Carlo quark and gluon distributions gives a 

good X2, but because of model dependence and some subt leties in the Monte Carlo 
programs, it has not yet been possible 10 extract the exact quark fraction from this 
distribution in an unambiguous way. However, the results are encouraging and work is 
continuing. 

More recently, another analysis was performed [Bianchin2 1992) in which a feature map 
was trained o n a sample of mixed Monte Carlo quarks and gluons and then used to 
identify quarks and gluons in an independent sample. A somewhat higher efficiency, 
about 72 percent was obtained. The feature map rrained on Monte Carlo is also being 
applied to the real data, and, conversely. a feature map rrained on real data is being 
applied to labelled Monte Carlo data. Training using onJy real data is very atrractive since 
it avoids the problem of model dependence, althoug h it may be necessary to use the 
Monte Carl o data to label the nodes in the topological map. These analyses are sti ll in 
progress. 

4.4 Additional Physics Process Applications 

The use of learning vector quantization (LVQ) and topological maps is relatively new in 
HEP. An inte resting application of topological maps ap pears in [Lonnblad3 199 1 J in 
which a map is used to discove r the b,c, and light quark classes in a sample of mixed 
Monte Carlo data. A similar application is being attempted for data at the Tevatron 
[Bianchin21992J. LVQ has been used for b tagging [Proriol 1991 , Proriol 1992J and 

discrimination of tt events from background [Odori co 199 1). Other MLP offline 

applications include: resonance searches ll [Alexopoulos 199 1]; calcu lation of the total 
mass of the panicles in an event {Lonnblad2 199 1] ; determination of the charge of the 
initial quark which produced a jet {Varela 1991 ]; and identification of jet cascades with 
muons [Los 1992J. 

5. Neural Nets and Charged Track Reconstruction 
5.1 Tracking with Recurrent Nets 

Recurrent networks have been used in HE? for track reconsrruction. using an algorit hm 
developed by Denby and independenlly by Peterson [Denby 1988, Peterson 1989, 
Stimpfll990, Denby3 1990, Barbagli 1992J. In this application a neuron is defined to be 
a di rected link between two hits in a tracking detector. The approach resemble s 
qualitatively the enCOding used by Hopfield {Hopfield 1986] fo r solving the Trave ling 
Salesman Problem wit h a recurrent net. The we ight connecting two neurons i and j is 

determined by the angle 9ij between them, (figure 13): 

where Ii and Ij are the lengths of the neurons (i.e., distance between hits), if i and j do not 
both point into or out of the same point. and Wij = -8 if i and j are head to head or tail to 

II A resonance is a bound StatC of twO or morc particlcs and appears as a peak in a mass distribUlion. 
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tail. An energy function is defined, E = -1/2 L Wij OJ OJ. where OJ is the ampUl of 
neuron i. The energy function will be smallest when the angles between close together 
neurons sharing points are small. This favors neurons lying along smooth trajectories 
such as those of panicles moving in a magnetic field. The constraint term -8 ensures a 
unique direction [Q the tracks to avoid a degeneracy which prevents settling of the 
network. The evolution of the system is obtained by iteratively solving the update 
equations: 

t dUi/dt = Lj Wij OJ - Uj ; OJ = sigmoid(uj). 

On each iteration. dt is kept much smaller than t, the time constant of the system. 

e . 
, J 

Figure 13. Neuron links in the Denby-Peterson Net 

This method has been used on real data al the ALEPH experiment at LEP [Stimpfl1990]. 
Figure 14 shows r-phi (i.e., looking down Ihe beam line) and r-z (side) views of an 
event in which a Z boson decays to hadrons, with all links defined before network 
evolution (left side of figure), and the event after settling of the network, with tracks 
found (right side). The efficiency is as good as the conventional track reconstruction 
program but the neural net algorithm is somewhat faster. In this work, a study was 
made of execution time for the neural net and conventional algorithms as a function of 
track multiplicity (number of charged tracks in the event). The advantage of the neural 
algorithm is shown to increase with multiplicity. Although this type of algorithm has not 
yet been accepted as a standard track recognition algorithm, it may prove to be important 
in the future when track multiplicities will be larger. 
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Figure \4 . Charged track reconmuclion on Tcal data in the Aleph CCnlullracicing chamber, using a 
recurrent neural network algonthm. In the lOp figures Lhe beam pipe is perpendicular \0 the plane of 
the page. In the bU\Lom ligures. hom,cnlal. The left hand frames show the neuron links before 
":Yo\ulion: ;u fight ~c the found tucks at the end of evolution. 

There is not J. straightforward way to implement this algorithm in the fast hardware that 
would be needed to make it applicable at [he trigger leve l. since the number of neurons 
and weights is high, and the weights must be recalculated for each evem. In addition, the 
algorithm does not take :ldvantage of all the availa ble infonnation. such as that tracks in a 
uniform magnetic tield are known to be nearly pe rfect helices. Th is makes the algorithm 
more susceptible to noise since it will be less able to reject noise hits which happen to lie 
near the tracks . 

- , 
). - Elastic Tracking 

Improvement to the neural track ing are the so-called elastic tracking [Gyulassy 1991} or 
defonnable templates [Oh lsson 1991] app roaches . In these approaches, a track is a 
heJ ica..i object which seHies into a shape which best fits the hits. The helix can be thought 
of as elecoica lly ch~rged and attracted to the hits which have opposite charge. Although 
these algorithms map the traCking problem OntO dynamical systems, and are at least in 
princ iple paralldizable. they h:lVe lost some of the 'neural' flavor of the original Denby­
Pe terson net. :\onelheiess. the efficiency and robustness to noise of the elastic methods 
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are excellent. One interesting study lGyulassy 1991J compared the robusmess to noise 
of the s tandard method. the Denby-Pete rson net. and the elastic tracking method. The 
standard method of track reconstruction is called the ' roadfinder' si nce it StartS with two 
nearby hits and then searches for additional hits on a 'road' in the direction of the segment 
joining them. Figure 15 from this study shows the efficacy of each method as a function 
of number of [T:leks. All data have 20 percent noise and 3 percent error on position 
measurement. The roadfinder breaks down between 5- to tracks. the Denby-Peterson net 
at 10-\5 tracks, but the elastic rracking always tinds the correct answer in this study. 
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Figure IS. CumpJrison of trlck rcconstruction pcrformance fo r the standard method (roadfinder), 
Denby .Petersnn nct. and d :!.st ic tr3cking. 
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6. Conclusion 

Five years ago there was no explicit mention of neural network techniques in HE? 
literature. A curren! bibliography of applications in HE? includes almost a hundred 
papers and reports. Much of the work is still exploratory and uses only the simplest 
techniques such as the MLP trained with backpropagation, although some interesting 
results using learning vector quantization and feature maps have also appeared. 

fn HE? historically, data analysis has been done using simple one dimensional cuts; 
consequently the HE? community at large has yet to fully accept neural network 
techniques as standard tools. Nevenheless the neural network methods are beginning [0 

show their worth. The decay probabilities of the Z boson into b,c and light quarks has 
been measured with higher preciSion than ever before using a technique based upon a 
MLP. A neural network technique has given higher kink finding efficiency and faster 
execution speed than the standard method. Results consistent with identification of quark 
and gluon components in jets produced at a proton antiproton collider have appeared for 
the first time using a feed forward neural network. Recurrent networks have provided a 
faster way of performing charged track reconsrruction. 

One of the most exciting promises of neural network technology is in the realm of 
triggering for HE? One test has already been completed: a VLSI neural network used in 
the data acquistion system of a drift chamber has provided, in only a few microseconds, 
track intercept resolution 5 times more accurate than that previously obtainable online. 
Neural network triggers for three large collider experiments are either currently being 
installed or have been proposed for future installation. The neural network triggers will 
penn it experiments to reject more background events earlier in the data stream, resulting 
in more efficient and COSt effective data acquisition systems and enonnously reducing data 
storage requirements. 

It is intellectually quite stimulating to witness a marriage between such seemingly 
disparate domains as high energy physics and neural networks. Given the growth of 
applications and their success 10 date, HE? may tum out to be one Of the driving forces in 
the integration of neural networks into science as data analysis tools. 
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7. Appen d ix: Par t icle Interact ions 

The constituents are arranged into doublets consisting of a lepton and its neutrino or of a 
quark and its conjugate quark (quark-conjugate pairs have a unit net charge) as in table 
VIlI. 

particle s ant ipart icles Interact ions 

(:~) (Y;) (:~) (:~) (;) ( :~) w, Z 

lepto ns y (exceplY I 

quarks ( ~ )( : )( : ) (:) (~) (:) W, Z,,¥, g 

. . 
Table VUI. Lepton and quark doublets and the mleracllons In which they paruclpate. 

Interactions of the members of the doublets are represented by three legged 'vertices', 
Different symbols are used for the legs depending on the type of particle represented by 
the leg. Only certain venices are allowed. In allowed vertices the legs must be: 

1) a quark or lepton and its antipanicle plus a neutral boson, 

2) the two members of a quark or lepton doublet plus a charged boson,or 

3) three gluons 

as shown in figure 16. Additional legal vel1ices may be generated by changing a leg from 
incoming to outgoing and replacing the panicle the leg represents by its antipanicle. 
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Figure 16. Allowed interaction vertices 
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The elementary vertices can be 'hooked together' [0 represent various physical processes 
such as collisions of constituents and decays. Some examples are given in figure 17. 
These so-called Feynman diagrams are drawn with strict rules, which we shall nO{ 
discuss here, which allow the direct transcription of fonnulae which can be used to 
calculate the probability of the process represented in the diagram. The left hand side of 
such a diagram is called the 'jnita! state' and the right hand side the 'final state' since time 
progress from left to right. 

A) 

B) 
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E) 
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Figure 17. Processes shown are: A) quark production of weak. bosom decaying La leptons; B) quark: 
and gluon production of tI via a gluon; C) quark quark scauering; D) gluon gluon scattering; E) quark 
gluon scatlering: F) weak boson production of Higgs decaying to weak bosons. 

The diagrams shown are processes which occur at the level of the constituents. The ftnal 
state may be considerably modified before any of the particles reach the detectors. This is 
because quarks and gluons are not visible as free panicles. Rather, many additional 
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venices will anach themselves to the final state panicles with high probability. These 
outgoing quarks and gluons will bind imo composites. resulting in a multiparticle je t of 
outgoing particles. This is illustrated in figure 18. 

i<I 

q 

9 9 

gWon ~""": i<I '~ 

Figure 18 . Example of how the final stale quarks or gluons can evolve inlo mullipilticte jets by the 
spontaneous aLlachmenl of additional vertices. 
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