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Abstract: In this work, we utilize the dynamic invariant method to obtain a solution for the time-
dependent Schrodinger equation, aiming to explore the quantum theory of a p-form gauge field
propagating in D-dimensional de Sitter spacetimes. Thus, we present a generalization, through
the use of p-form gauge fields, of the quantization procedure for the scalar, electromagnetic, and
Kalb-Ramond fields, all of which have been previously studied in the literature. We present an exact
solution for the p-form gauge field when D = 2(p + 1), and we highlight the connection of the p = 4
case with the chiral N = 2, D = 10 superstring model. We could observe particle production for
D # 2(p + 1) because the solutions are time-dependent. Additionally, observers in an accelerated
co-moving reference frame will also experience a thermal bath. This could have significance in the
realm of extra-dimensional physics, and presents the intriguing prospect that precise observations of
the Cosmic Microwave Background might confirm the presence of additional dimensions.

Keywords: Quantum Fields; particle production; Tensor Fields

1. Introduction

The Quantum Field Theory in flat (Minkowski) spacetimes is one of the most suc-
cessful theories in physics. It serves as the foundation upon which the Standard Model of
particles is constructed, and provides a quantum description of the strong, weak, and elec-
tromagnetic forces. On the other hand, gravity is described by Einstein’s General Theory
of Relativity, a classical theory that has also proven to be very successful [1]. However,
it is well understood that General Relativity remains an incomplete theory. Attempts to
incorporate gravity into the Standard Model have proven to be non-renormalizable, as it
requires an infinite number of parameters to do so.

Quantization of gravity is one of the most difficult and arduous challenges in modern
physics and mathematics. Various approaches to quantizing gravity have been developed,
with the most well-known being String Theory, which achieves quantization along with
unification with the three other forces. However, experimental validation of the theory
poses a significant obstacle due to the extremely weak quantum effects of gravity. This fact
allows for creativity in the search for observable characteristics of the theory [2].

Despite the success of quantum field theory in flat spaces, and some theoretical
achievements of string theory, there are still several problems related to the behavior of
fields in curved spaces in a quantum theory at cosmological scales. For example, interesting
results have been achieved in a background of time-dependent fields such as, for example,
black Hawking radiation [3], which predicts the evaporation of black holes. Closely
related is the Unruh effect [4], which suggests that an accelerated particle would perceive a
thermal bath, and the dynamical Casimir effect [5], which predicts particle creation by an
accelerated mirror. Another notable outcome is particle creation by the vacuum, which has
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been extensively researched [6—12], with the confirmation of the Schwinger effect expected
soon [13].

On the other hand, the investigation of de Sitter spacetime gains significance when
contemplating a ACDM model of the cosmos. In the current epoch, the universe can be
roughly characterized by de Sitter spacetime, wherein matter decays with volume while the
cosmological constant remains constant. For t > H ~1 the universe tends to be effectively
described by the de Sitter model. In this connection, the study of quantum effects of a
massive scalar field in de Sitter spacetime was examined in ref. [14], where the authors
utilized exact linear invariants and the Lewis and Riesenfeld method [15] to derive the
corresponding Schrodinger states based on solutions of a second-order ordinary differential
equation. Additionally, they formulated Gaussian wave packet states, and computed the
quantum dispersion and correlations for each mode of the quantized scalar field.

The quantization of certain types of fields has been explored in the literature. For the
scalar field [16], it has been shown that the conformability of the system is tied to the choice
of the curvature parameter. Similarly, the electromagnetic field [17] proves to be conformal
in D = 4, as expected. Additionally, it has been observed that the Kalb-Ramond field is
conformal in D = 6 [18]. In [19], the author develops the quantization of anti-symmetric
(p-form) gauge fields on D-dimensional spheres using a Lorentz gauge, and shows that the
partition function of the edge modes is related to the (p — 1)-form on the boundary.

On the other hand, various branches of theoretical physics have provided indications
of the possible existence of extra dimensions. Examples include string theory, higher-
dimensional black holes, or braneworld models. It is worth mentioning that higher-
dimensional FRW scenarios (including the de Sitter scenario) and their particle creation
have also garnered attention in recent years [20,21].

Typically, in electromagnetism, the reason for characterizing the gauge potential of
0-dimensional charged particles using a differential 1-form, A, is that the trajectory of a
charged particle is a 1-dimensional curve in spacetime, known as its worldline. However,
if one aims to generalize this representation to the displacement of a (p — 1)-dimensional
manifold, where such displacement traces a path of dimensionality p, the gauge poten-
tial is represented by a differential p-form, Ay,...,,, [22]. In this context, as indicated by
reference [23], the p-form gauge fields play a significant role in theories involving extra di-
mensions. For example, within string theories in 26 dimensions, a low-energy normal mode
of the string is represented by a two-form gauge field A;,,. However, in four-dimensional
spacetimes, the p-forms do not introduce new possibilities. Thus, in this work, we aim to
generalize the behavior of p-dimensional gauge fields within the quantum framework by
solving the time-dependent Schrodinger equation.

In this study, we will employ the method developed by Lewis and Riesenfeld [15] to find
a solution for the equations of motion governing a p-form gauge field in a D-dimensional
de Sitter spacetime. Subsequently, we will proceed with its quantization by determining a
solution to the ‘auxiliary’ equation [24,25]. Additionally, we will discuss the potential physical
implications of our analysis for various extra-dimensional scenarios of interest in physics.

2. Equations of Motion and Its Decomposition

We will employ the Friedmann-Lemaitre-Robertson-Walker (FLRW, for short) metric
in D dimensions (1 + (D — 1)), which has the line element

ds*> = —dt* + a?(t)dx - dx. 1)

The action is given by

1
5= 5oy | 4V S @

where the field strength is Fyy,....,, = 9 ,and Ay, ..., is the p-form gauge field.

[F‘Aﬂl'“ﬂn]
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Although there are various paths to perform the decomposition of the field in its
normal modes, as seen in [16] for example, there are no drawbacks to performing it directly
from the equations of motion.

av(\/?ggwgmvl e 'gyprFWﬁ"'llp) =0. (©)

To simplify this equation, we can fix the gauge. A free p-form field has

—2)I
N P!(I(DD— p212)! @
degrees of freedom. Therefore, we can fix
I Ajy..i, =0 (5)
and
Agiy-..i, = 0. (6)

From now on, Latin indices (iy, iy, ..., ip) will be used for purely spatial coordinates,
while Greek indices (u, v, p, ...) will be for spacetime coordinates. Putting these two condi-
tions into (3) will lead us to the following equation:

V2 A;

iy

iy iy

+(D—2p—1)gA- !

hody — 22 0. %)
Now, we take the standard approach by tackling this equation with the usual normal
modes decomposition,

dP—1k

All lp Z/ (27) D— 1le iy (relr(t)eik.x‘|‘7’§(t)e_ikx)/ (8)

with f€ . representing the various polarizations obeying the gauge condition k' f¢ . = 0.
1 lp 51 lp
Substituting (8) into (7), we finally arrive at our desired equation for the modes:

k2
i+ (D — 2p—1) P+ =0 )

Here, we have omitted all indices attached to , as Equation (9) remains the same for
all of them.

3. Quantization of the p-Form Gauge Field in the de Sitter Spacetime

In this section, we discuss the quantization of the p-form gauge field in a D-dimensional
de Sitter background, in light of the Lewis and Riesenfeld (LR) method described in
ref. [15]. This technique is very useful for obtaining solutions to the Schrédinger equation
for different time-dependent Hamiltonian systems and, for example, is not limited to the
time-dependent perturbation theory.

We can observe that the equations of motion (9) have the same form as those of a
quantum time-dependent harmonic oscillator, Equation (A2). Given this similarity, we can
consider our system as being a time-dependent harmonic oscillator with mass given by

m = aP~2P~1 and frequency w = -. Therefore, quantizing our p-form field can be attained

by quantizing the harmonic oscillator with time-dependent mass.
LR assumed that there is a hermitian Invariant operator, (), which satisfies the equation
al 9l 1

=35+ h[[ H] =0. (10)
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Its eigenstates |n,t) are assumed to constitute a complete orthonormal set with
time-independent discrete eigenvalues analogous to those of a harmonic oscillator, as in
Equation (A4). Thus, the invariant satisfies the following eigenvalue equation:

Iln, t) = Ayln, t), (11)

Lewis and Riesenfeld showed that the solution |¢;,) for the Schrodinger Equation (A3)
are related to |n,t) by
[n) = e Win, 1), (12)

where the phase 6, (t) needs to satisfy the following equation [15]:

hdg”(t) = <n,t (ihaat - H(t))

dt
The choice of I is not unique. However, it is more suitable to choose an invariant that
keeps the same symmetry as the Hamiltonian, i.e., if the Hamiltonian is quadratic in 4 and
P, we try to find a quadratic invariant in g and p as well. With this, it was shown in ref. [26]
that I(t) can be written in the form

R
I= 2[(;1) +(pp—mpv/)2], (14)

n, t>. (13)

where ¢(t) satisfies Equation (A2), and where p = p(t) satisfies the generalized Milne—
Ermakov-Pinney (MP) [24-26] equation

L N 2 1
p—i—Ep—l—wp—mz—pB. (15)

We point out the important fact that the classical equation of motion (A2) is identical
to the MP equation if we add a source given by m~2¢~3 and replace g — p. This recipe will
be useful when we treat the p-form field.

Let us proceed and find the eigenstates of I. Equation (12) shows that the solution of
the respective Schrodinger Equation (A3) reduces to two steps: finding the eigenstates of I
and solving Equation (15) to find the auxiliary function p. Since Equation (14) is similar to
that of the harmonic oscillator, we proceed as follows to obtain the eigenfunctions of I(t).

Consider the time-dependent creation b' and annihilation b(t) operators defined as

1 .
b=\ % [(Z —i(op — mpq))]/ (16)

1 .
b= %[(Zﬂ(pp—mpq))} (17)

constructed so that [b, b'] = 1, with the usual properties (A7) and (A6).

Furthermore, we assume the eigenvalues of I to be discrete. This enables us to
represent the eigenvalue equation for Equation (14) along with Equations (11) and (A4).

These assumptions follow the same path we make to quantize the Hamiltonian, so
it is safe to assume that the eigenstates for the invariant I() are indeed related to the
Hamiltonians by means of (12).

Now, following the steps outlined in reference [27], the normalized solution for the
time-dependent harmonic oscillator is then written as

. 1 1/2 im[p i q
L (e R R g L P A
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where H, are the Hermite polynomials of order 7, and the phase 0, () from (13) now reads

0, (t) = —(n+;> /t:m(tl/)pZdt,' (19)

Hence, quantizing the time-dependent harmonic oscillator hinges on identifying a solu-
tion to the corresponding MP Equation (15), which will be incorporated into Equation (18).
It is worth mentioning that a solution to this nonlinear equation consists of a nonlinear
combination of solutions to the linear case [28]. Notice that the linear form of the MP equa-
tion mirrors our classical equation of motion (A2). Hence, discovering solutions to (A2)
enables us to uncover the sought-after solution to the problem.

Let us now apply the process of quantizing the p-form gauge field, with m = P21

and w(t) = pt As said before, the auxiliary Milne-Ermakov-Pinney can be obtained form

2

the classical equation of motion (9) by adding a source m~2r~2 and replacing r — p. We

obtain
k2 1

. a,

As mentioned earlier, in order to obtain the solution for Equation (20), we will initially
seek solutions to the classical Equation (9). Now, by means of a change to the conformal
time 7 by setting dt = ady and r = )7, from (9), we obtain

7+ (2{18 —a+(D—-2p— 1)a> 7+ <k2 + aZ% +(D—2p— 1)(1{18)7 =0, (21

where prime (') and dot (.) represent differentiation with respect to the conformal time %

and t, respectively. If we make the choice Q = a~(P~27~1)/2 e obtain
s - QN OB NO B9l g
2 4 '

We would like to emphasize that when D = 2p + 1, certain terms cancel out, leading
to a simplified equation contingent upon the choice of parameter a. Let us consider the de
Sitter spacetime, where a = eft. The expressions for a, 4 and i are reduced to

1 1 H
a=—-——, 4=——, li=——, (23)
Hy U U
and we finally obtain
d’r 1 dr ( v? )
+ +|1- == )7=0, (24)
d(kn)? (k) d(kn) (ki)

D-2p—1

where v = . This equation is Bessel’s equation, which has two linearly inde-

pendent solutions, given by ], (k|y|) and Yy (k|y|), which are the Bessel functions of the
first and second kind, respectively. Now, employing our earlier redefinition of r = ()7,
with Q = a~(P=2P=1)/2 we obtain that two linearly independent solutions for r are:

a—(D=2p=1)/2] (k|y|)
r= { a~D=2=1)/2y (k|| :

Following references [29,30], a particular solution of Equation (20) is:

5 1/2 1/2
p=—(Hny)P=2=D/2| A2 4 BY2 4 Z(AB —~ ”) m] , (26)

4H?
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It is important to mention that the choice of constants A and B is crucial from a
physical standpoint, as the determination of these constants is intricately tied to our
vacuum selection. This arises from the non-uniqueness in constructing particle states and
selecting the vacuum in curved spaces like the one employed in this scenario. This holds
significance because the generation of particles can only be deduced once we have selected
a vacuum for comparison with our physical solution. In this way, solution (26), being
related to the solution of Schrodinger’s Equation (18), suggests that an eigenstate of the
latter may be associated with particle generation under the choice of a specific vacuum.

In our scenario, a suitable choice corresponds to the Bunch-Davies vacuum, which
aligns with the adiabatic vacuum for very early times (f — —o0) or the adiabatic vacuum
for wavelengths much smaller than the de Sitter horizon H~!. With these assumptions,
the values of the constants are A = B = 71/2H [29], and p is given by

o 1/2
o= (Hly) P22 [T (2 +v2) @7)

Thus, an eigenstate of Schrodinger’s Equation (18), related to solution (27), may be
associated with particle generation in a Bunch-Davies vacuum which, as mentioned earlier,
corresponds to the adiabatic vacuum in the physical scenarios described in the preceding
paragraph.

Now that we have finally found the general solution to the Milne-Ermakov-Pinney
Equation (20) in a de Sitter scenario, we can substitute it into the expression for the solution
of the harmonic oscillator with mass and frequency dependent on time (18). This concludes
the quantization of the p-form gauge field in a D-dimensional de Sitter background.

4. Concluding Remarks

In this work, we have presented a generalization of the quantization procedure, through
the use of p-form gauge fields, for the scalar, electromagnetic, and Kalb—-Ramond fields, all
of which have been previously studied and referenced [16-18]. In this connection, we have
obtained a solution to the Schrodinger equation using the method developed by Lewis and
Reisenfeld [15], applied to the quantization of the p-form field in a D-dimensional de Sitter
spacetime. A general solution for Equation (21) is found to depend on the scale factor present
in the FLRW spacetime, and was obtained in the particular case of de Sitter spacetime, which
is significant because our Universe today can be approximated as such, and in the far future,
it would fully become one.

We can check that Equation (27) is constant for D = 2(p + 1). This is in agreement
with the previous works for D = 4 and p = 1[17,30]. Thus, for D = 2(p+ 1), for a
(massless) photon, the initial adiabatic vacuum persists indefinitely, resulting in zero
photon production within de Sitter spacetime, while its energy undergoes the redshift
characteristic of radiation.

An interesting case where D = 2(p + 1) arises for p = 4 in a 10-dimensional spacetime,
where Ay, ..., corresponds to a 4-form gauge field, while the field strength corresponds
to a 5-form. In this scenario, there will be no production of particles, and a co-moving
accelerated observer will not experience a thermal bath. This specific dimension value
indicates that the 4-form exhibits conformal invariance, allowing for the straightforward
solution of the time-dependent harmonic oscillator (18) in a de Sitter spacetime. Since our
field strength is going to be a 5-form, it will be dual to itself Fy,...,; = *Fy;...us- The case
where D = 10 has garnered attention as it represents the critical dimension in superstring
theory, and the 5-form field strength naturally appears as a first-order approximation for
the gravitational coupling constant of chiral N = 2 D = 10 supergravity [31].

For D # 2(p + 1), it becomes evident that we can no longer have a constant solution
for (27), regardless of our chosen cosmological model. In a future work, a more general
solution could be computed for the case of de Sitter spacetime, which undoubtedly has more
interesting consequences. Specifically, we can observe particle production for D # 2(p 4+ 1)
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because the solutions are time-dependent. Additionally, observers in an accelerated co-
moving reference frame will also experience a thermal bath.

As mentioned in the introduction, gauge p-form fields in certain extra-dimensional
scenarios exhibit physical properties that are not visible in four dimensions. Thus, an in-
triguing implication arises in the realm of extra-dimensional physics, which has garnered
significant attention in certain scenarios involving de Sitter spacetimes. For instance,
in higher-dimensional FRW scenarios and their associated particle creation [20,21], or in
de Sitter braneworld models [32,33]. Braneworld models where FRW branes possess a
temperature have been investigated in reference [34]. In braneworld models, our universe is
conceptualized as a brane existing within a five-dimensional space. Consequently, in such
a setup, a de Sitter spacetime would lead to particle production and the presence of a
thermal bath for observers moving within this expanded space. Consequently, this could
potentially contribute to an effective temperature within the membrane, suggesting the
intriguing possibility that precise measurements of the Cosmic Microwave Background
could reveal the presence of extra dimensions.
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Appendix A. The Quantum Time-Dependent Harmonic Oscillator
The time-dependent harmonic oscillator Hamiltonian is given by

H(t) —_ ﬁz m(t)w(t)z 2. (Al)

where p and g represent the coordinate and momentum in a quantum framework.
The equations of motion are trivially obtained, and are given by

i+ %q—l—wzq —0, (A2)

Furthermore, it is important to mention that the Hamiltonian Equation (A1) satisfies
the following eigenvalue equation:

ihor(q,t) = H(E)$(q, t). (A3)

where the eigenvalues of the Hamiltonian operator, related to the system’s energy in a
time-independent background, are given by:

An = (n4 3)0 (A4)

where n corresponds to the eigenvalues of the number operator, which satisfies
(n|n"y = 6 (A5)

On the other hand, it is important to mention the existence of the raising and lowering
operators, whose effect on the eigenstates of the number operator is:

bln,t) = v/nln—1,t), (A6)
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bHnt) =vVn+1jn+1,t), (A7)
where the number operator is given by
ln,t) = b'bln, t) = nin,t), (A8)
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