
= Fermi National Accelerator Laboratory

FERMILAB-Conf-125-T
May, 1989

Machines for Lattice Gauge Theory*

Paul B. Mackenzie
Theoretical Physics Group

Fermi National Accelerator Laboratory
Batavia, IL 60510 USA

Abstract
The most promising approach to the solution of the theory of strong

interactions is large scale numerical simulation using the techniques of
lattice gauge theory. At the present time, computing requirements for
convincing calculations of the properties of hadrons exceed the capa-
bilities of even the most powerful commercial supercomputers. This
has led to the development of massively parallel computers dedicated
to lattice gauge theory. This talk will discuss the computing require-
ments behind these machines, and general features of the components
and architectures of the half dozen major projects now in existence.

1 Introduction

There is overwhelming qualitative evidence that quantum chromodynamics
(QCD) is the correct theory of the strong interactions, but quantitative success
with the theory has so far been meager. Perturbation theory haa had some
success in describing some very high energy phenomena, but no completely
solid results have been obtained for low energy strong interactions. Other
theories may also require nonperturbative treatment. For example, if no light
Higgs boson is found, the odds are good that the dynamics which gives mass
to the W and Z bosons is strongly interacting.

Wilson has formulated gauge theories on a discrete grid: lattice gauge
theory. This has made available new calculational approaches to QCD. At
present, the approach with the most promise seems to be large scale numerical
simulation of the equations. The theory is solved on a four dimensional space-
time grid with finite volume and finite lattice spacing, and then one attempts

l lU given at the conference “Computing in High Energy Physica”, Oxford, England,
April 10-14, 1989.

4b 0 orated by Unlversltiea Research Association Inc. under contract with the United Slates Department of Energy

to find the large volume, smalI lattice spacing limit. This approach is similar
in many respects to the use of finite element methods for computer calculation
of air flow around an airplane wing or the calculation of stresses in structural
analysis. Simulations of two dimensional problems can be done very accurately,
sometimes even on medium sized work stations. Existing supercomputers can
perform three dimensional simulations well in some but not in all cases. It is
not surprising that simulation calculations for four dimensional quantum field
theories have to a large extent been too tsxing for even the largest existing
computers.

This has led to an intense search by particle theorists for ways of obtaining
the maximum possible computing power, both in floating point operations per
second and in algorithms.

The technological background. Coupled with these large computing de-
mands, there is a window of technological opportunity. Lattice calculations
require very large numbers of floating point operations and very large amounts
of memory. Fast floating point chips which can deliver 20 Mflops now cost a
few hundred dollars, and 1 Mbit memory chips cost $12 to $15. This shows
that with an architecture based on a large number of the chips operating in
parallel the key components of a 10 Gflop, 1 Gbyte computer cost as little &s
$300 thousand. It turns out that it is possible to build such a computer for a
total of about 3-10 times this figure, depending on how many bells and whis-
tles are desired. (Disks, tape drives, and compilers are considered bells and
whistles by the designers of these computers.) This results in roughly a two
order of magnitude difference in cost effectiveness compared with a $10 million
1 Gflop Cray XMP. This factor is clearly very significant, even allowing for the
fact that commercial products improve a bit while an experimental computer
is designed and debugged.

The history of QCD machines. The building of experimental computers
to perform specific scientific calculations is not a new phenomenon. The mod-
ern era of computing was ushered in during World War II by the ENIAC and
EDVAC projects whose original purpose was to use state of the art electronic
technology (vacuum tubes) to calculate ballistic trajectories for constructing
firing and bombing tables. The van Neuman architecture which arose out
of those early projects has become the standard since then: the computer
executes a single thread of instructions from a stored program. The availabil-
ity of large quantities of cheap components has meant that this architecture,
on which conventional commercial computers are based, is no longer optimal
for many of the problems in which physicists are interested, including lattice
problems.

More recently, many particle theorists became interested in large scale com-
puting when Monte Carlo methods were first applied to lattice gauge theory,

2

around 1980. The first recent machines to be constructed to solve a specific
problem in theoretical physics were the machines built at Santa Barbara[l]
and Delft.[Z] These were aimed specifically at the Ising model. At about the
same time, groups at Tsukuba and Caltech were constructing more general
purpose parallel machines. They were not aimed primarily at providing pro-
duction computers for a specific purpose like the more recent lattice gauge
theory projects, but instead were aimed at exploring the possibilities of par-
allel computers. They very effectively demonstrated that a wide variety of
interesting scientific problems can be performed on parallel architectures. The
first QCD calculations on a parallel machine were done by the Edinburgh
group on the commercial machine, the DAP, built by the UK company, ICL.
[3] The effective use of this machine to perform important calculations further
demonstrated the potential of parallel architectures.

The first machine designed primarily with QCD in mind wss the sixteen
node machine built at Columbia University, which began producing physics
results in 1985. It was the first parallel machine to incorporate fast float-
ing point chips to achieve high cost effectiveness. There are now at least six
projects to build machines with large CPU power, large memory, and fast com-
munications. They are at the University of Tsukuba (QCDPAX) [4], Caltech
(Mark III) [S], Columbia University [6], IBM (GF 11) [7], Italy (APE) [8], and
Fermilab (ACPMAPS) [9]. All of these machines except Caltech’s are aimed
specifically at QCD. Like the first experimental computers designed during
World War II, although they are mostly aimed at specific scientific goals, they
are fairly general purpose and suitable for a wide variety of scientific problems.

In 1988, the largest QCD calculations were performed on the 1 Gflop (peak
speed) machines of Columbia and the APE collaboration. Machines are now
under construction (at Tsukuba, Columbia, IBM, and Fe&lab) which have
peak speeds ranging from 5 to 15 gigatlops, and memories ranging from .5 to
2 gigabytes. For a nice review of the status of the individual projects, see [lo].

2 What kind of computer do we need for lat-
tice &CD?

This section will focus on rough estimates of computing requirements for some
of the simplest QCD calculations: the masses of the light hadrons. (These, of
course, are only a smalI part of the many calculations that we ultimately want
to do with lattice methods.)

How much memory? The physical volume required for a reasonable sim-
ulation can be estimated on physical grounds. From scattering data, we know
that the diameters of light hadrons are of the order 1.3 fermi (pion) to 1.6
fermi (proton). This suggests that volumes of L = 2-3 fermi across may be

3

appropriate for hadron mass calculations. Liischer[ll] has calculated exactly
the asymptotic finite volume errors in a periodic box. These are dominated
by fake pion loops which go out one side of the box and come back in the
other side via the periodic boundary conditions. He finds that these are very
small as long as the box is larger than around 3 fermi. Parisi(l2] has pointed
out that it is reasonable to expect finite volume errors comparable to nuclear
binding energies (- 14 MeV) when the nucleon density in the periodic volume
is comparable to nuclear densities (L - 1.8 fermi). A more pessimistic line of
handwaving may be produced by considering momentum scales of the quarks
inside hadrons. From scattering experiments, we know that quarks have typ-
ical transverse momenta of a few hundred MeV. In a finite volume of L =
four fermi across, the momentum is quantized in units of pmin = 2a/L - 300
MeV. This suggests that volumes of (4-6 fermi)3 may be necessary to correctly
reproduce the dynamics of the quarks inside hadrons. A final piece of informa-
tion may be obtained from an existing lattice calculation. The temperature
of the deconfining transition in pure SU(3) gauge theory was calculated on
large lattices in 1985-6, by two groups: a California group[l3] using conven-
tional supercomputers, and the Columbia group[l4] using a dedicated lattice
gauge engine. This was probably the first calculation of a “physical” quantity
done with simulation methods for four dimensional nonabelian gauge theory
which achieved a solid control of errors, including finite volume and finite lat-
tice spacing errors. Although the calculation applies to a world with no light
quarks, and is thus only qualitatively applicable to our world, it still provides
a sort of bound on the lattice sizes required for real QCD, since the addition of
quarks to the theory can hardly do anything but make the various systematic
errors worse. These groups found that finite volume errors were not much
worse than their statistics (under 10%) on lattices around 2 fermi. Combining
all these arguments, it’s quite likely that lattices somewhere between 2 and 6
fermi across are what is needed.

The equally important question of what lattice spacing is required to make
errors small is much harder to answer on physical grounds. The !I’. calculation
referred to above revealed no discernable finite lattice spacing errors when the
lattice spacing was less than 0.1 fermi. Including the effects of quarks can only
make the errors worse. This suggests lattice spacings of .05 - .l fermi or less for
full QCD. It is possible in principle to increase the allowable lattice spacing by
using Wilson’s renormalization group methods to reduce finite lattice spacing
errors (much as using the slightly more complicated Simpson’s rule reduces
the discretization errors in a numerical integral compared with the trapezoidal
rule). These methods are complicated and little practical progress has been
made with them in QCD calculations. At present, it looks as if the estimates
for the lattice sizes (and therefore for the memory) required are unlikely to be
reduced by improved methods.

We are thus led to guess that lattices with 20' - 128' sites are likely to

4

be required for QCD calculations, with 20’ being an optimistic minimum, and
32’ - 64’ being more probable guesses. What are the data memory require-
ments for lattices of this size? The gluons are vector fields (four for each site)
of 3x3 complex SU(3) matrices. The quarks have four spins times three colors
of complex numbers stored for each site. The more efficient algorithms may
use several copies of each type of field. One kilobyte of data memory required
per site is a good estimate. The lattice sizes given above thus require 0.16 -
270 gigabytes of data memory, with 1-16 gigabytes being the best guess.

How much CPU power? This uncertainty of perhaps three orders of mag-
nitude in the number of lattice sites required contributes a like factor to the
uncertainty in the CPU time required. On top of this there is an additional
uncertainty in the CPU time required per site.

The properties of hadrons are calculated in lattice gauge theory by calcu-
lating the propagation of quarks through a set of configurations of the gluon
fields. On the lattice, gluons are represented by SU(3) matrices defined on the
links which connect neighboring sites of the lattice. The probability of choos-
ing a configuration is proportional to exp(-S), where the action is a function
of the gluon fields. If the effects of sea quarks are neglected (“pure gauge
theory”), this is a local function of the gluon fields which is usually taken to
be proportional to the sum of trace of the products of the SU(3) matrices on
the small squares of the lattice (the plaquettes).[lS] To produce a new sta-
tistically independent configuration, a long series of small changes is made to
an existing configuration. The changes to each link are guided by the six sets
of three neighboring links in the plaquettes which include it. An operation
which is repeated over and over is performing the two matrix multiplications
to join the links of each of the six triplets. This operation accounts for 50%
to 80% of the CPU time in pure gauge updating algorithms. Twelve complex
3x3 matrix multiplications require 2304 floating point operations. There are
four links per site, so this operation takes of order IO’ operations per site. To
produce 100 gauge configurations separated by 1000 sweeps thus requires of
order 10s floating point operations per site.

When the effects of sea quarks are included (“dynamical fermions”), CPU
requirements are much worse. Instead of a local function guiding gauge dy-
namics, the gauge fields are affected by quarks travelling on arbitrarily long
paths around the lattice.

To calculate the effects of these quark paths on the gauge fields, it is nec-
essary to make many sweeps through the lattice with the Dirac operator for
each change to the gauge fields. A four component Dirac quark is represented
by four complex three vectors at each site. In calculating the Dirac operator
at a site, the three vectors at each of the eight neighboring sites are multiplied
by the SU(3) matrices linking them to the central site. This requires 2112
operations per site. The number of operations for a calculation is then the

5

product of 2112 (plus small change), the number of configurations, the num-
ber of gauge sweeps separating each configuration, and the number of Dirac
sweeps required for each gauge sweep. Results on small lattices suggest esti-
mates of 100, 1000, and 1000 for the last three numbers, yielding a very rough
estimate of 10” operations per site for a single calculation.

These numbers are only order of magnitude estimates of the requirements.
Furthermore, the number of gauge and Dirac sweeps required is expected to
grow with the lattice size in a way which is incompletely understood, but
could be large (the problem of “critical slowing down”). On the other hand,
algorithms which reduce the CPU time required for QCD with dynamical
quarks have made amazing progress over the last eight years. On a 32’ lattice,
the hybrid Monte Carlo algorithm [16] is perhaps 10,000 times faster than the
algorithm of Weingarten and Petcher from which it descends. There are many
promising ideas which have not yet been fuily exploited which may further
improve the speed of our algorithms by further large factors. These include
Fourier acceleration of the simulation and quark propagator programs, ILU
preconditioning of the quark propagator programs, and multi-grid methods.
These methods have the potential for cutting the amount of CPU time required
by another one to two orders of magnitude, but it is by no means guaranteed
that they will achieve their potential.

The range of possible CPU requirements is therefore very broad. We could
imagine getting away with as little as 0.1 gigaflop-years of CPU time if 20’
lattices are adequate and there is more algorithmic progress. (A gigaflop year
is 3~10~s floating point operations.) Many teraflop-years may be required if
algorithmic progress stops dead in its tracks (unlikely in my view) and much
larger lattices are required.

How much programmability? The power of the multigigaflop machines
now being constructed is about four orders of magnitude greater than that
of the Vaxes on which the first QCD calculations were performed ten years
ago. Of this factor, about two orders of magnitude are due to the experimental
architecture, one order of magnitude to component improvements over the last
ten years, and one order of magnitude to more money being spent.

It is impressive that, large as this factor is, a like factor has been achieved
in the improvements to algorithms over the same period of time. This strongly
suggests that the programmability necessary for rapid investigation and refute-
ment of algorithms is as important as CPU power for QCD machines. This
aspect of the machine is, however, impossible to quantify.

3 The design of a computer for QCD

This section will discuss the decisions to be made in designing a massively
parallel supercomputer. All the machines designed for QCD since the 16 node

6

Columbia machine have been similar in many respects. They consist of a large
number of cheap nodes. Each node does floating point calculations for the sites
in its own part of the lattice using one or several fast floating point chips which
multiply and accumulate at peak speeds of 16-64 Mflops per node. Each node
is associated with many megabytes of memory for the fields on the sites in its
part of the lattice. The machines have used different approaches in controlling
the nodes, in communications, and in programming.

Parullelization strategy. From the first, all computers have made use of
some types of parallelism, for example the parallel transfer of the bits making
up a single number. More recently, high energy experimentalists have made
effective use of trivial or “event parallelism”[l7]: if a large computing problem
consists of a large number of small independent problems, it can be run on an
array of small, independent CPUs. This type of parallelism is not appropriate
for lattice problems, which require a huge amount of memory in each lattice.

The appropriate way to run a lattice problem on a parallel computer could
be called “site parallelism.” The sites in a large lattice are apportioned among
a large number of nodes. Each node keeps track of the data and does calcu-
lations for the sites under its control. It must communicate with other nodes
when it needs data from a site not in its local memory.

Arithmetic chips. Most SU(3) lattice calculations are dominated by the
calculation of dot products of complex three vectors, or in terms of real num-
bers, by the operation c = albl + azbo + asba + a,b, + abbs + asbe. This suggests
that the arithmetic chips on each node be capable of floating point multiply
and accumulate as a fundamental operation.

The Caltech and Fermilab projects, which have most emphasized pro-
grammability, have used the Weitek XL chip set. It consists of three chips:
the Weitek 3132 multiply and add chip, an integer processor, and and instruc-
tion sequencer. The chip set as a whole is programmable in Fortran and C.
Time critical subroutines are hand coded for maximum efficiency. The Caltech
chips are run at 16 Mflops peak speed (6 megahertz), the Fermilab chips at 20
Mflops.

The Columbia machine uses the 64 bit version of the above floating point
chip, the Weitek 3364, without the integer processor and sequencer. It is run
at a faster clock speed, and has two chips per board instead of one. This gives
a peak speed per board of 64 Mflops, but makes it harder to program since all
floating point operations must be microcoded. A similar approach is used by
the IBM machine, which also employs the strategy of two add and accumulate
units per board, with older Weitek chips. Tsukuba is the only group not using
Weitek floating point chips in its current machine. It is using a single LSI
L64132 per node, which has a peak speed of 32 Mflops and a single stage
pipeline.

7

A strategy which is only slightly different is employed on the APE machine.
On each node, the outputs of four multiply chips are piped into four add
chips, arranged so as to optimize complex multiply and accumulate. They are
planning on using the more standard real multiply and accumulate in their
next machine.

These approaches are all very similar, with some trade-off being visible
between speed and programmability. A question which is not well understood
is the extent to which 32 bit precision can affect efficiency and results.

Memory chips. The relative amounts of money invested in CPU power,
memory size, and bandwidth to memory are important optimizations in the de-
sign. The amount of CPU power required per site, and therefore per megabyte
of data, is hard to estimate even to the nearest order of magnitude. Even if we
knew the right ratio of CPU power to memory size for one problem, it would
be different for other problems. Therefore, spending comparable amounts on
CPU power and memory is the sensible thing to do: even if we work on a
problem for which the needed ratio is different by a factor of a thousand one
way or the other, we could only have save 50% by designing a machine with
exactly the right ratio for that particular problem.

Memories are arranged in hierarchies. The floating points units are fed
by a small number of very fast registers. These are in turn fed by somewhat
slower main memory. The number of registers ranges from 32 to 128. The XL
chips contain 32 registers on the floating point chips themselves. This in not
enough to contain two input and one output SU(3) matrices at the same time,
so some temporary storage in main memory is required during an SU(3) matrix
multiply. The GFll uses 128 registers and thereby reduces some overhead due
to memory transfers.

The chips used for data memory may be high-speed static RAM, which
has access times of around one word every 20-50 nsec., dynamic RAM, which
is cheaper, four times as dense and has access times of 80-200 nsec., or a
hierarchical combination of both.

Control: SIMD and MIMD. The standard architecture of conventional
computers is sometimes called SISD (for Single Instruction stream, Single Data
stream). There are two basic strategies for the control of a parallel system
working on a single problem. In Single Instruction Multiple Data (SIMD)
computers, ail of the individual processors execute precisely the same instruc-
tion on each cycle. In Multiple Instruction Multiple Data (MIMD) computers,
the processors act as independent computers.

SIMD machines have the advantage that space for code memory and a
local controller for the floating point chips need not be set aside on each
board. This reduces the cost and simplifies the design and debugging of SIMD
boards. They also have the advantage that since communications are done in

8

lock step, bottlenecks cannot occur in which many processors want to access
the same memory or data path at the same time.

MIMD machines are more flexible. They can handle algorithms such as
the heat bath algorithm which are awkward with SIMD machines. They can
handle random lattices and the irregular lattices of finite element problems.
Possible lattice sizes are not constrained by machine hardware. MIMD ma-
chines can be more programmable. Commercial compilers can be used for the
basis of the software on each node. The node structure of the hardware can
be made invisible to the user.

Both approaches have been used for lattice machines, and at the present
time both approaches have their proponents. So far it seems that the commu-
nications bottlenecks of MIMD machines are not very severe, and that SIMD
machines are adequately fault tolerant and are flexible enough to handle at
least the algorithms which have at this point been proven to be effective for
QCD. Proponents of SIMD tend to believe that SIMD will deliver more flops
per dollar. Proponents of MIMD tend to believe that MIMD wilI deliver more
physics per dollar by being more flexible and programmable.

Figure 1 shows block diagrams of the machines being discussed. The IBM
and APE machines are completely SIMD. Microcode instructions for the float-
ing point units are broadcast to the nodes from an external controller: a 3081
EmuIator for APE, and a PC RT for IBM. The other four machines have local
instruction memory and controllers. The Columbia and Tsukuba machines
operate synchronously, all nodes timed by a single clock. The floating point
units on each node are controlled by microprocessors: a Motorola 68020 for
Tsukuba and an Intel 80286 for Columbia. Programs may be run in MIMD
fashion until off-node data needs to be accessed, when they are resynchronized.
The Fermilab and and Caltech machines are completely MIMD; computation
and communication are completely asynchronous, with the XL chip set on
each node acting as an independent computer.

Communications. For many QCD lattice problems, roughly one eighth to
one quarter of accesses to memory are for data which is not stored on the node
doing the processing. For example, suppose a 16 node computer is working on
a 16’ lattice and one timeslice (data for all the sites having the same time co-
ordinate) is stored on each node. When collecting the nearest neighbor fields,
data for the sites in the six neighboring directions having the same time coor-
dinate is already on node, but data for the sites in the k time directions must
be obtained from another node’s memory. Fourier acceleration is an example
of a possible algorithmic improvement which is even more communications
intensive. Its memory accesses are almost entirely off-node.

This means that the the requirements for bandwidth to off-node memory
approach those for bandwidth to on-node memory.

The nodes of the Columbia and Tsukuba machines are arranged in a two

9

+ n..r..,-m.,**r CO...oL/~ i

I” arr.1

70 rr<m..,T rrm <AC-“,
h1,011..

Front End

(b)

(4

[“,,?,, ,p-& v ,, pig !9’1””

M ucs&Bu

Figure 1: Architectures for lattice machines. a) QCDPAX (University of Tsukuba);
b) Mark III (Caltech); c) the Columbia U diversity machine; d) APE; e) GFll (IBM);
f) ACPMAPS (Fermilab).

dimensional grid. The memory of each node is shared with its neighbors. This
allows nearest neighbor data to be accessed at the same speed as local data.
Fourier transforms would have to be performed by a somewhat more awkward
bucket brigade.

IBM’s GFll possesses a powerful, programmable three stage switch which
allows any node to access any other node’s memory at the same rate of speed
at which it accesses its own. The 16 memory boards of APE are arranged
in a linear array, One or two timeslices are usually assigned per board. A
barrel shifter allows the CPUs to communicate synchronously with their local
memories, or with memories a fixed distance in time away. This in principle
allows rapid access to arbitrarily nonlocal memory, but in a less flexible way
than GFll. This design is difficult to scale to a very large number of nodes,
and for their next machine, the APE collaboration is planning to use a three
dimensional regular, local grid.

Communication in the Fermilab and Caltech machines is asynchronous.
On the Fermilab machine, communication is handled by sixteen port crossbar
switchcrates which allow 20 megabyte per second communication per port.
Clusters of 8-12 nodes are connected in a single switchcrate; the clusters are
connected, for example, in a hypercube. The nodes in the Caltech machine are
connected in a 2” hypercube. Each node can send messages to its neighbors
at a rate of 2 Mbytes/set., with a relatively large latency of 150 /~sec. for each
transfer. Caltech is developing a powerful “hyperswitch” which is to be much
faster and which will transparently handle nonlocal routing of messages.

Programming strategies. The various projects probably differ most no-
ticeably in their ways of writing user programs. Approaches range from hand
generated microcode for the floating point part of each user program, to the
construction of limited machine specific compilers, to the use of ordinary For-
tran and C for the basis of the software.

The floating point parts of all programs for the Columbia machine must be
written in microcode by someone who is an expert on the machine architecture.
The APE and IBM projects have invested a lot of effort in software to generate
microcode. IBM’s microcode is generated by calls from C to a limited but
powerful set of subroutines. Preliminary indications are that the microcode
produced by this software will be very efficient. The microcode for APE is
generated from a new compiled language (called APEse) which resembles a
limited form of Fortran or C. There is also an extensive software environment
including a profiler and a symbolic debugger. APE’s published work in the past
year has included work on several different topics, all of which has employed
new methods and techniques, which is an impressive demonstration of the
usability of the software.

The Caltech and Fermilab machines have based their software on the com-
mercial Fortran and C compilers available with the Weitek XL chip set. With

11

the Caltech machine, subroutines are provided for message passing and syn-
chronization. The Fermilab software defines new data types in C (lattices,
sites, fields, etc.) which are fundamental to grid based scientific problems.
User programs are written in C augmented by these new data types and sub-
routines operating on them. System subroutines handling these data types (to
access field data, for example) automatically handle the multinode structure
of the machine in a way invisible to the user.

4 The future

Commercial parallel machines. In 1985, the Columbia group using their
own dedicated machine was barely able to keep up with the California group
who used conventional supercomputers, but by the 1988 lattice conference,
large scale QCD calculations were dominated by results from the dedicated
machines built at Columbia and at Rome. Dedicated machines are now un-
der construction which are ten times more powerful still, which will deliver
computing power which can be matched only by hundreds of millions of dol-
lars worth of Cray or Cyber time. The growth path of Gray and Cyber style
supercomputers is well established and it seems unlikely that this style of archi-
tecture will catch up in cost effectiveness with the massively parallel approach.
It is an interesting question whether commercial companies be able to take ad-
vantage of the experience gained by the lattice gauge computer builders and
create commercially viable machines of this type. This type of architecture is
in principle effective not only for theoretical physics problems but for a wide
variety of practical grid-based problems of enormous economic importance.
The architectures used in lattice machines can easily be commercialized. The
obstacles are primarily in software, and perhaps in sociology. A software in-
terface convenient enough to attract a sufficiently large group of commercial
users is necessary.

There arc at least two commercial parallel computers which have been
used for lattice calculations and it will be interesting to see how they fare
commercially. The Meiko computing surface is composed of a large array
of TBOO Transputers, which were developed by the Inmos corporation and
partially underwritten by the Common Market supported Esprit project[lB].
Transputers contain a microprocessor and a floating point unit capable of
several megaflops. The nodes operate in MIMD fashion and are arranged in
a two dimensional array. It was originally designed to programmed in the
parallel language OCCAM, but Fortran and C compilers have been developed
for it.

The Connection Machine II of Thinking Machines resembles the lattice
machines described above in having floating point power based on a large
number of Weitek chips[l9]. Its architecture is quite a bit different from those
of the previous machines; its speed is limited almost entirely by bandwidth to

12

memory. It is programmed in versions of Fortran, C, and LISP with parallel
extensions. A machine costing around $5 million was able to run a QCD
problem at a sustained (not peak) speed of 2 gigaflops. Although still not as
cost effective as the experimental machines, this would make it more than an
order of magnitude more cost effective than conventional supercomputers.

The next generation of lattice machines. The next few years will see
large increases in the power of these machines arising from improved compo-
nents, architectural fine tuning, and larger pricetags. The continuing improve-
ment in the performance of chips, which has been responsible for most of the
dramatic increases in the power and cost-effectiveness of general purpose com-
puters over the last two or three decades, will make possible more powerful
massively parallel computers. The highly programmable Weitek XL chip sets
used in the Fermilab and Caltech machines could be replaced by high perfor-
mance RISC microprocessors. An example is the Intel 1860 chip which, we are
told, will ultimately have a peak speed of 100 megatlop, or five times the power
of the XL chip set, at a similar price (around $1000 or less). Similarly, the fast
floating point chips used in other machines ought to double in speed and halve
in price in the next few years. Today’s one-megabit memory chips will be re-
placed with four-megabit chips. A factor of around four in cost effectiveness is
thus to be expected from evolution of the components over the next few years.
Architectural fine tuning may produce improvements in cost effectiveness by
factors of perhaps two to four. For example, if raw CPU power rather than
memory size or bandwidth to memory is thought to be the limiting factor,
the number of floating point chips on most of the existing machines could be
increased by a factor of two or more, while increasing the cost per board by
a much smaller factor. Finally, the budgets of at least some of the projects
are likely to be scaled up by an order of magnitude. The bottom line is that
the next generation of machines is likely to have peak speeds in the 0.1 to 1.0
teraflop range, at pricetags of $5-20 million.

The plans for one such project have already been announced. APElOO, the
successor to APE, will consist of a large array of boards connected in a three
dimensional array.[20] Each board will contain 8 nodes with peak speeds of
32 megaflops each, based on a semicustom floating point chip from LSI. The
planned peak speed of the machine is 100 gigaflops.

The generation of machines now under construction will have the memory
to explore lattice sizes in the range 20’ - 32 ‘. The next generation discussed
above wiIl be able to explore the range 40’ - 64’. Since the cost effectiveness
of chips improves at the rate of at least an’order of magnitude per decade,
it is reasonable to expect lattices with sizes up to 128’ to be investigated
during the 1990’s, if necessary. Whether these machines will be effectively
limited to smaller lattice sizes by CPU requirements depends on the progress
of algorithms. I believe that it is realistic to expect algorithmic progress to

13

continue to keep pace with hardware progress.

After the breakeven point. The foregoing discussion has focussed on com-
puting requirements to perform the simplest QCD calculations: the calculation
of the masses of the light hadrons to, let’s say, 30 MeV. What will happen to the
demand for computing for theoretical physics when this goal is accomplished?
It takes no imagination to predict that some people will immediately begin to
try to calculate the spectrum to 10 MeV, which will require one to two orders of
magnitude more computing power if done by brute force. Since experimenters
already know the masses of the light hadrons very well, these calculations serve
more to test lattice gauge methods than to learn about physics. Much more
important will be the application of lattice gauge theory to obtain new physics
information, for example, the hadronic matrix elements necessary to extract
the Kobayashi-Maskawa angles from hadronic data. When lattice methods
are reliable and well established, the range of useful applications will be for
all practical purposes unlimited. At the present time, the theoretical physics
community is expending a great deal of time and money on lattice gauge the-
ory with only a modest return. The calculation of the hadron spectrum with
good error bars, whether it comes later this year or later this decade, will
greatly increase the demand for theoretical computing rather than end it.

Acknowlegment s

I would like thank the members in the projects described here for conversations
and correspondence.

References

[l] R. B. Pearson, J. L. Richardson, and D. Toussaint, J. Comp. Phys. 51
(1983) 241.

[2] A. Hoogland et al., J. Comp. Phys. 51 (1983) 250.

[3] D. J. Wallace, Phys. Repts. 103 (1985) 191.

[4] Y. Iwasaki et al., Comp. Phys. Comm. 49 (1988) 449.

[5] E. Brooks et al., Phys. Rev. L&t. 52 (1984) 2324. J. C. Peterson et al.,
in the proceedings of The f 985 Conference on Supereomputing (IEEE).

(61 N. H. Christ and A. E. Terrano, IEEE Trans. Comput. 33 (1984) 344;
F. Butler, in Lattice 88, Proceedings of the 1988 Conference on Lattice
Field Theory, edited by A. S. Kronfeld and P. B. Mackenzie, to be pub-
lished in Nut. Phys. B (Proc. Suppl.)

14

[7] J. Beteem, M. Denneau, and D. Weingarten, in The 12”’ Annual Inter-
national Symposium on Computer Architecture, (IEEE Computer Society
Press, Silver Spring, MD, 1985); J. Sexton, in Lattice 88, op cit.

[8] P. Bacilieri et al., in Computing in High Energy Physics, edited by
L. 0. Hertzberger and W. Hoogland, (North Holland, Amsterdam, 1986).

[9] P. B. Mackenzie et al., in Field Theory on the Lattice, edited by A. Billoire
et al., Nut. Phys. B (Proc. Suppl.) 4 (1988); M. Fischler and G. Hackney
et al., in Lattice 88, op cit.

[lo] N. H. Christ, in Lattice 88, op cit.

[ll] M. Liischer, Commun. Math. Phys. 104 177 (1986).

[12] G. Parisi, Phys. Reports 103 (1984) 203.

[13] S. A. Gottlieb et ai., Phys. Rev. Lett. 55 1958 (1985).

[14] N. H. Christ and A. E. Terrano, Phys. Rev. Lett. 56 111 (1985).

[15] See the talk by Tony Kennedy in these proceedings.

[16] S. Duane, A. D. Kennedy, B. J. Pendieton and D. Row&h, Phys. Lett.
195B, 2 (1987).

[17] See, for example, the talk by Tom Nash in these proceedings.

[18] See the talk by David Wallace in these proceedings.

[19] L. W. Tucker and G. G. Robertson, Computer (August 1988) 26.

[20] E. Remiddi, in Lattice 88, op cit.

15

