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Abstract 
The most promising approach to the solution of the theory of strong 

interactions is large scale numerical simulation using the techniques of 
lattice gauge theory. At the present time, computing requirements for 
convincing calculations of the properties of hadrons exceed the capa- 
bilities of even the most powerful commercial supercomputers. This 
has led to the development of massively parallel computers dedicated 
to lattice gauge theory. This talk will discuss the computing require- 
ments behind these machines, and general features of the components 
and architectures of the half dozen major projects now in existence. 

1 Introduction 

There is overwhelming qualitative evidence that quantum chromodynamics 
(QCD) is the correct theory of the strong interactions, but quantitative success 
with the theory has so far been meager. Perturbation theory haa had some 
success in describing some very high energy phenomena, but no completely 
solid results have been obtained for low energy strong interactions. Other 
theories may also require nonperturbative treatment. For example, if no light 
Higgs boson is found, the odds are good that the dynamics which gives mass 
to the W and Z bosons is strongly interacting. 

Wilson has formulated gauge theories on a discrete grid: lattice gauge 
theory. This has made available new calculational approaches to QCD. At 
present, the approach with the most promise seems to be large scale numerical 
simulation of the equations. The theory is solved on a four dimensional space- 
time grid with finite volume and finite lattice spacing, and then one attempts 
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to find the large volume, smalI lattice spacing limit. This approach is similar 
in many respects to the use of finite element methods for computer calculation 
of air flow around an airplane wing or the calculation of stresses in structural 
analysis. Simulations of two dimensional problems can be done very accurately, 
sometimes even on medium sized work stations. Existing supercomputers can 
perform three dimensional simulations well in some but not in all cases. It is 
not surprising that simulation calculations for four dimensional quantum field 
theories have to a large extent been too tsxing for even the largest existing 
computers. 

This has led to an intense search by particle theorists for ways of obtaining 
the maximum possible computing power, both in floating point operations per 
second and in algorithms. 

The technological background. Coupled with these large computing de- 
mands, there is a window of technological opportunity. Lattice calculations 
require very large numbers of floating point operations and very large amounts 
of memory. Fast floating point chips which can deliver 20 Mflops now cost a 
few hundred dollars, and 1 Mbit memory chips cost $12 to $15. This shows 
that with an architecture based on a large number of the chips operating in 
parallel the key components of a 10 Gflop, 1 Gbyte computer cost as little &s 
$300 thousand. It turns out that it is possible to build such a computer for a 
total of about 3-10 times this figure, depending on how many bells and whis- 
tles are desired. (Disks, tape drives, and compilers are considered bells and 
whistles by the designers of these computers.) This results in roughly a two 
order of magnitude difference in cost effectiveness compared with a $10 million 
1 Gflop Cray XMP. This factor is clearly very significant, even allowing for the 
fact that commercial products improve a bit while an experimental computer 
is designed and debugged. 

The history of QCD machines. The building of experimental computers 
to perform specific scientific calculations is not a new phenomenon. The mod- 
ern era of computing was ushered in during World War II by the ENIAC and 
EDVAC projects whose original purpose was to use state of the art electronic 
technology (vacuum tubes) to calculate ballistic trajectories for constructing 
firing and bombing tables. The van Neuman architecture which arose out 
of those early projects has become the standard since then: the computer 
executes a single thread of instructions from a stored program. The availabil- 
ity of large quantities of cheap components has meant that this architecture, 
on which conventional commercial computers are based, is no longer optimal 
for many of the problems in which physicists are interested, including lattice 
problems. 

More recently, many particle theorists became interested in large scale com- 
puting when Monte Carlo methods were first applied to lattice gauge theory, 
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around 1980. The first recent machines to be constructed to solve a specific 
problem in theoretical physics were the machines built at Santa Barbara[l] 
and Delft.[Z] These were aimed specifically at the Ising model. At about the 
same time, groups at Tsukuba and Caltech were constructing more general 
purpose parallel machines. They were not aimed primarily at providing pro- 
duction computers for a specific purpose like the more recent lattice gauge 
theory projects, but instead were aimed at exploring the possibilities of par- 
allel computers. They very effectively demonstrated that a wide variety of 
interesting scientific problems can be performed on parallel architectures. The 
first QCD calculations on a parallel machine were done by the Edinburgh 
group on the commercial machine, the DAP, built by the UK company, ICL. 
[3] The effective use of this machine to perform important calculations further 
demonstrated the potential of parallel architectures. 

The first machine designed primarily with QCD in mind wss the sixteen 
node machine built at Columbia University, which began producing physics 
results in 1985. It was the first parallel machine to incorporate fast float- 
ing point chips to achieve high cost effectiveness. There are now at least six 
projects to build machines with large CPU power, large memory, and fast com- 
munications. They are at the University of Tsukuba (QCDPAX) [4], Caltech 
(Mark III) [S], Columbia University [6], IBM (GF 11) [7], Italy (APE) [8], and 
Fermilab (ACPMAPS) [9]. All of these machines except Caltech’s are aimed 
specifically at QCD. Like the first experimental computers designed during 
World War II, although they are mostly aimed at specific scientific goals, they 
are fairly general purpose and suitable for a wide variety of scientific problems. 

In 1988, the largest QCD calculations were performed on the 1 Gflop (peak 
speed) machines of Columbia and the APE collaboration. Machines are now 
under construction (at Tsukuba, Columbia, IBM, and Fe&lab) which have 
peak speeds ranging from 5 to 15 gigatlops, and memories ranging from .5 to 
2 gigabytes. For a nice review of the status of the individual projects, see [lo]. 

2 What kind of computer do we need for lat- 
tice &CD? 

This section will focus on rough estimates of computing requirements for some 
of the simplest QCD calculations: the masses of the light hadrons. (These, of 
course, are only a smalI part of the many calculations that we ultimately want 
to do with lattice methods.) 

How much memory? The physical volume required for a reasonable sim- 
ulation can be estimated on physical grounds. From scattering data, we know 
that the diameters of light hadrons are of the order 1.3 fermi (pion) to 1.6 
fermi (proton). This suggests that volumes of L = 2-3 fermi across may be 
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appropriate for hadron mass calculations. Liischer[ll] has calculated exactly 
the asymptotic finite volume errors in a periodic box. These are dominated 
by fake pion loops which go out one side of the box and come back in the 
other side via the periodic boundary conditions. He finds that these are very 
small as long as the box is larger than around 3 fermi. Parisi(l2] has pointed 
out that it is reasonable to expect finite volume errors comparable to nuclear 
binding energies (- 14 MeV) when the nucleon density in the periodic volume 
is comparable to nuclear densities (L - 1.8 fermi). A more pessimistic line of 
handwaving may be produced by considering momentum scales of the quarks 
inside hadrons. From scattering experiments, we know that quarks have typ- 
ical transverse momenta of a few hundred MeV. In a finite volume of L = 
four fermi across, the momentum is quantized in units of pmin = 2a/L - 300 
MeV. This suggests that volumes of (4-6 fermi)3 may be necessary to correctly 
reproduce the dynamics of the quarks inside hadrons. A final piece of informa- 
tion may be obtained from an existing lattice calculation. The temperature 
of the deconfining transition in pure SU(3) gauge theory was calculated on 
large lattices in 1985-6, by two groups: a California group[l3] using conven- 
tional supercomputers, and the Columbia group[l4] using a dedicated lattice 
gauge engine. This was probably the first calculation of a “physical” quantity 
done with simulation methods for four dimensional nonabelian gauge theory 
which achieved a solid control of errors, including finite volume and finite lat- 
tice spacing errors. Although the calculation applies to a world with no light 
quarks, and is thus only qualitatively applicable to our world, it still provides 
a sort of bound on the lattice sizes required for real QCD, since the addition of 
quarks to the theory can hardly do anything but make the various systematic 
errors worse. These groups found that finite volume errors were not much 
worse than their statistics (under 10%) on lattices around 2 fermi. Combining 
all these arguments, it’s quite likely that lattices somewhere between 2 and 6 
fermi across are what is needed. 

The equally important question of what lattice spacing is required to make 
errors small is much harder to answer on physical grounds. The !I’. calculation 
referred to above revealed no discernable finite lattice spacing errors when the 
lattice spacing was less than 0.1 fermi. Including the effects of quarks can only 
make the errors worse. This suggests lattice spacings of .05 - .l fermi or less for 
full QCD. It is possible in principle to increase the allowable lattice spacing by 
using Wilson’s renormalization group methods to reduce finite lattice spacing 
errors (much as using the slightly more complicated Simpson’s rule reduces 
the discretization errors in a numerical integral compared with the trapezoidal 
rule). These methods are complicated and little practical progress has been 
made with them in QCD calculations. At present, it looks as if the estimates 
for the lattice sizes (and therefore for the memory) required are unlikely to be 
reduced by improved methods. 

We are thus led to guess that lattices with 20' - 128' sites are likely to 
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be required for QCD calculations, with 20’ being an optimistic minimum, and 
32’ - 64’ being more probable guesses. What are the data memory require- 
ments for lattices of this size? The gluons are vector fields (four for each site) 
of 3x3 complex SU(3) matrices. The quarks have four spins times three colors 
of complex numbers stored for each site. The more efficient algorithms may 
use several copies of each type of field. One kilobyte of data memory required 
per site is a good estimate. The lattice sizes given above thus require 0.16 - 
270 gigabytes of data memory, with 1-16 gigabytes being the best guess. 

How much CPU power? This uncertainty of perhaps three orders of mag- 
nitude in the number of lattice sites required contributes a like factor to the 
uncertainty in the CPU time required. On top of this there is an additional 
uncertainty in the CPU time required per site. 

The properties of hadrons are calculated in lattice gauge theory by calcu- 
lating the propagation of quarks through a set of configurations of the gluon 
fields. On the lattice, gluons are represented by SU(3) matrices defined on the 
links which connect neighboring sites of the lattice. The probability of choos- 
ing a configuration is proportional to exp(-S), where the action is a function 
of the gluon fields. If the effects of sea quarks are neglected (“pure gauge 
theory”), this is a local function of the gluon fields which is usually taken to 
be proportional to the sum of trace of the products of the SU(3) matrices on 
the small squares of the lattice (the plaquettes).[lS] To produce a new sta- 
tistically independent configuration, a long series of small changes is made to 
an existing configuration. The changes to each link are guided by the six sets 
of three neighboring links in the plaquettes which include it. An operation 
which is repeated over and over is performing the two matrix multiplications 
to join the links of each of the six triplets. This operation accounts for 50% 
to 80% of the CPU time in pure gauge updating algorithms. Twelve complex 
3x3 matrix multiplications require 2304 floating point operations. There are 
four links per site, so this operation takes of order IO’ operations per site. To 
produce 100 gauge configurations separated by 1000 sweeps thus requires of 
order 10s floating point operations per site. 

When the effects of sea quarks are included (“dynamical fermions”), CPU 
requirements are much worse. Instead of a local function guiding gauge dy- 
namics, the gauge fields are affected by quarks travelling on arbitrarily long 
paths around the lattice. 

To calculate the effects of these quark paths on the gauge fields, it is nec- 
essary to make many sweeps through the lattice with the Dirac operator for 
each change to the gauge fields. A four component Dirac quark is represented 
by four complex three vectors at each site. In calculating the Dirac operator 
at a site, the three vectors at each of the eight neighboring sites are multiplied 
by the SU(3) matrices linking them to the central site. This requires 2112 
operations per site. The number of operations for a calculation is then the 
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product of 2112 (plus small change), the number of configurations, the num- 
ber of gauge sweeps separating each configuration, and the number of Dirac 
sweeps required for each gauge sweep. Results on small lattices suggest esti- 
mates of 100, 1000, and 1000 for the last three numbers, yielding a very rough 
estimate of 10” operations per site for a single calculation. 

These numbers are only order of magnitude estimates of the requirements. 
Furthermore, the number of gauge and Dirac sweeps required is expected to 
grow with the lattice size in a way which is incompletely understood, but 
could be large (the problem of “critical slowing down”). On the other hand, 
algorithms which reduce the CPU time required for QCD with dynamical 
quarks have made amazing progress over the last eight years. On a 32’ lattice, 
the hybrid Monte Carlo algorithm [16] is perhaps 10,000 times faster than the 
algorithm of Weingarten and Petcher from which it descends. There are many 
promising ideas which have not yet been fuily exploited which may further 
improve the speed of our algorithms by further large factors. These include 
Fourier acceleration of the simulation and quark propagator programs, ILU 
preconditioning of the quark propagator programs, and multi-grid methods. 
These methods have the potential for cutting the amount of CPU time required 
by another one to two orders of magnitude, but it is by no means guaranteed 
that they will achieve their potential. 

The range of possible CPU requirements is therefore very broad. We could 
imagine getting away with as little as 0.1 gigaflop-years of CPU time if 20’ 
lattices are adequate and there is more algorithmic progress. (A gigaflop year 
is 3~10~s floating point operations.) Many teraflop-years may be required if 
algorithmic progress stops dead in its tracks (unlikely in my view) and much 
larger lattices are required. 

How much programmability? The power of the multigigaflop machines 
now being constructed is about four orders of magnitude greater than that 
of the Vaxes on which the first QCD calculations were performed ten years 
ago. Of this factor, about two orders of magnitude are due to the experimental 
architecture, one order of magnitude to component improvements over the last 
ten years, and one order of magnitude to more money being spent. 

It is impressive that, large as this factor is, a like factor has been achieved 
in the improvements to algorithms over the same period of time. This strongly 
suggests that the programmability necessary for rapid investigation and refute- 
ment of algorithms is as important as CPU power for QCD machines. This 
aspect of the machine is, however, impossible to quantify. 

3 The design of a computer for QCD 

This section will discuss the decisions to be made in designing a massively 
parallel supercomputer. All the machines designed for QCD since the 16 node 
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Columbia machine have been similar in many respects. They consist of a large 
number of cheap nodes. Each node does floating point calculations for the sites 
in its own part of the lattice using one or several fast floating point chips which 
multiply and accumulate at peak speeds of 16-64 Mflops per node. Each node 
is associated with many megabytes of memory for the fields on the sites in its 
part of the lattice. The machines have used different approaches in controlling 
the nodes, in communications, and in programming. 

Parullelization strategy. From the first, all computers have made use of 
some types of parallelism, for example the parallel transfer of the bits making 
up a single number. More recently, high energy experimentalists have made 
effective use of trivial or “event parallelism”[l7]: if a large computing problem 
consists of a large number of small independent problems, it can be run on an 
array of small, independent CPUs. This type of parallelism is not appropriate 
for lattice problems, which require a huge amount of memory in each lattice. 

The appropriate way to run a lattice problem on a parallel computer could 
be called “site parallelism.” The sites in a large lattice are apportioned among 
a large number of nodes. Each node keeps track of the data and does calcu- 
lations for the sites under its control. It must communicate with other nodes 
when it needs data from a site not in its local memory. 

Arithmetic chips. Most SU(3) lattice calculations are dominated by the 
calculation of dot products of complex three vectors, or in terms of real num- 
bers, by the operation c = albl + azbo + asba + a,b, + abbs + asbe. This suggests 
that the arithmetic chips on each node be capable of floating point multiply 
and accumulate as a fundamental operation. 

The Caltech and Fermilab projects, which have most emphasized pro- 
grammability, have used the Weitek XL chip set. It consists of three chips: 
the Weitek 3132 multiply and add chip, an integer processor, and and instruc- 
tion sequencer. The chip set as a whole is programmable in Fortran and C. 
Time critical subroutines are hand coded for maximum efficiency. The Caltech 
chips are run at 16 Mflops peak speed (6 megahertz), the Fermilab chips at 20 
Mflops. 

The Columbia machine uses the 64 bit version of the above floating point 
chip, the Weitek 3364, without the integer processor and sequencer. It is run 
at a faster clock speed, and has two chips per board instead of one. This gives 
a peak speed per board of 64 Mflops, but makes it harder to program since all 
floating point operations must be microcoded. A similar approach is used by 
the IBM machine, which also employs the strategy of two add and accumulate 
units per board, with older Weitek chips. Tsukuba is the only group not using 
Weitek floating point chips in its current machine. It is using a single LSI 
L64132 per node, which has a peak speed of 32 Mflops and a single stage 
pipeline. 
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A strategy which is only slightly different is employed on the APE machine. 
On each node, the outputs of four multiply chips are piped into four add 
chips, arranged so as to optimize complex multiply and accumulate. They are 
planning on using the more standard real multiply and accumulate in their 
next machine. 

These approaches are all very similar, with some trade-off being visible 
between speed and programmability. A question which is not well understood 
is the extent to which 32 bit precision can affect efficiency and results. 

Memory chips. The relative amounts of money invested in CPU power, 
memory size, and bandwidth to memory are important optimizations in the de- 
sign. The amount of CPU power required per site, and therefore per megabyte 
of data, is hard to estimate even to the nearest order of magnitude. Even if we 
knew the right ratio of CPU power to memory size for one problem, it would 
be different for other problems. Therefore, spending comparable amounts on 
CPU power and memory is the sensible thing to do: even if we work on a 
problem for which the needed ratio is different by a factor of a thousand one 
way or the other, we could only have save 50% by designing a machine with 
exactly the right ratio for that particular problem. 

Memories are arranged in hierarchies. The floating points units are fed 
by a small number of very fast registers. These are in turn fed by somewhat 
slower main memory. The number of registers ranges from 32 to 128. The XL 
chips contain 32 registers on the floating point chips themselves. This in not 
enough to contain two input and one output SU(3) matrices at the same time, 
so some temporary storage in main memory is required during an SU(3) matrix 
multiply. The GFll uses 128 registers and thereby reduces some overhead due 
to memory transfers. 

The chips used for data memory may be high-speed static RAM, which 
has access times of around one word every 20-50 nsec., dynamic RAM, which 
is cheaper, four times as dense and has access times of 80-200 nsec., or a 
hierarchical combination of both. 

Control: SIMD and MIMD. The standard architecture of conventional 
computers is sometimes called SISD (for Single Instruction stream, Single Data 
stream). There are two basic strategies for the control of a parallel system 
working on a single problem. In Single Instruction Multiple Data (SIMD) 
computers, ail of the individual processors execute precisely the same instruc- 
tion on each cycle. In Multiple Instruction Multiple Data (MIMD) computers, 
the processors act as independent computers. 

SIMD machines have the advantage that space for code memory and a 
local controller for the floating point chips need not be set aside on each 
board. This reduces the cost and simplifies the design and debugging of SIMD 
boards. They also have the advantage that since communications are done in 
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lock step, bottlenecks cannot occur in which many processors want to access 
the same memory or data path at the same time. 

MIMD machines are more flexible. They can handle algorithms such as 
the heat bath algorithm which are awkward with SIMD machines. They can 
handle random lattices and the irregular lattices of finite element problems. 
Possible lattice sizes are not constrained by machine hardware. MIMD ma- 
chines can be more programmable. Commercial compilers can be used for the 
basis of the software on each node. The node structure of the hardware can 
be made invisible to the user. 

Both approaches have been used for lattice machines, and at the present 
time both approaches have their proponents. So far it seems that the commu- 
nications bottlenecks of MIMD machines are not very severe, and that SIMD 
machines are adequately fault tolerant and are flexible enough to handle at 
least the algorithms which have at this point been proven to be effective for 
QCD. Proponents of SIMD tend to believe that SIMD will deliver more flops 
per dollar. Proponents of MIMD tend to believe that MIMD wilI deliver more 
physics per dollar by being more flexible and programmable. 

Figure 1 shows block diagrams of the machines being discussed. The IBM 
and APE machines are completely SIMD. Microcode instructions for the float- 
ing point units are broadcast to the nodes from an external controller: a 3081 
EmuIator for APE, and a PC RT for IBM. The other four machines have local 
instruction memory and controllers. The Columbia and Tsukuba machines 
operate synchronously, all nodes timed by a single clock. The floating point 
units on each node are controlled by microprocessors: a Motorola 68020 for 
Tsukuba and an Intel 80286 for Columbia. Programs may be run in MIMD 
fashion until off-node data needs to be accessed, when they are resynchronized. 
The Fermilab and and Caltech machines are completely MIMD; computation 
and communication are completely asynchronous, with the XL chip set on 
each node acting as an independent computer. 

Communications. For many QCD lattice problems, roughly one eighth to 
one quarter of accesses to memory are for data which is not stored on the node 
doing the processing. For example, suppose a 16 node computer is working on 
a 16’ lattice and one timeslice (data for all the sites having the same time co- 
ordinate) is stored on each node. When collecting the nearest neighbor fields, 
data for the sites in the six neighboring directions having the same time coor- 
dinate is already on node, but data for the sites in the k time directions must 
be obtained from another node’s memory. Fourier acceleration is an example 
of a possible algorithmic improvement which is even more communications 
intensive. Its memory accesses are almost entirely off-node. 

This means that the the requirements for bandwidth to off-node memory 
approach those for bandwidth to on-node memory. 

The nodes of the Columbia and Tsukuba machines are arranged in a two 
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Figure 1: Architectures for lattice machines. a) QCDPAX (University of Tsukuba); 
b) Mark III (Caltech); c) the Columbia U diversity machine; d) APE; e) GFll (IBM); 
f) ACPMAPS (Fermilab). 



dimensional grid. The memory of each node is shared with its neighbors. This 
allows nearest neighbor data to be accessed at the same speed as local data. 
Fourier transforms would have to be performed by a somewhat more awkward 
bucket brigade. 

IBM’s GFll possesses a powerful, programmable three stage switch which 
allows any node to access any other node’s memory at the same rate of speed 
at which it accesses its own. The 16 memory boards of APE are arranged 
in a linear array, One or two timeslices are usually assigned per board. A 
barrel shifter allows the CPUs to communicate synchronously with their local 
memories, or with memories a fixed distance in time away. This in principle 
allows rapid access to arbitrarily nonlocal memory, but in a less flexible way 
than GFll. This design is difficult to scale to a very large number of nodes, 
and for their next machine, the APE collaboration is planning to use a three 
dimensional regular, local grid. 

Communication in the Fermilab and Caltech machines is asynchronous. 
On the Fermilab machine, communication is handled by sixteen port crossbar 
switchcrates which allow 20 megabyte per second communication per port. 
Clusters of 8-12 nodes are connected in a single switchcrate; the clusters are 
connected, for example, in a hypercube. The nodes in the Caltech machine are 
connected in a 2” hypercube. Each node can send messages to its neighbors 
at a rate of 2 Mbytes/set., with a relatively large latency of 150 /~sec. for each 
transfer. Caltech is developing a powerful “hyperswitch” which is to be much 
faster and which will transparently handle nonlocal routing of messages. 

Programming strategies. The various projects probably differ most no- 
ticeably in their ways of writing user programs. Approaches range from hand 
generated microcode for the floating point part of each user program, to the 
construction of limited machine specific compilers, to the use of ordinary For- 
tran and C for the basis of the software. 

The floating point parts of all programs for the Columbia machine must be 
written in microcode by someone who is an expert on the machine architecture. 
The APE and IBM projects have invested a lot of effort in software to generate 
microcode. IBM’s microcode is generated by calls from C to a limited but 
powerful set of subroutines. Preliminary indications are that the microcode 
produced by this software will be very efficient. The microcode for APE is 
generated from a new compiled language (called APEse) which resembles a 
limited form of Fortran or C. There is also an extensive software environment 
including a profiler and a symbolic debugger. APE’s published work in the past 
year has included work on several different topics, all of which has employed 
new methods and techniques, which is an impressive demonstration of the 
usability of the software. 

The Caltech and Fermilab machines have based their software on the com- 
mercial Fortran and C compilers available with the Weitek XL chip set. With 

11 



the Caltech machine, subroutines are provided for message passing and syn- 
chronization. The Fermilab software defines new data types in C (lattices, 
sites, fields, etc.) which are fundamental to grid based scientific problems. 
User programs are written in C augmented by these new data types and sub- 
routines operating on them. System subroutines handling these data types (to 
access field data, for example) automatically handle the multinode structure 
of the machine in a way invisible to the user. 

4 The future 

Commercial parallel machines. In 1985, the Columbia group using their 
own dedicated machine was barely able to keep up with the California group 
who used conventional supercomputers, but by the 1988 lattice conference, 
large scale QCD calculations were dominated by results from the dedicated 
machines built at Columbia and at Rome. Dedicated machines are now un- 
der construction which are ten times more powerful still, which will deliver 
computing power which can be matched only by hundreds of millions of dol- 
lars worth of Cray or Cyber time. The growth path of Gray and Cyber style 
supercomputers is well established and it seems unlikely that this style of archi- 
tecture will catch up in cost effectiveness with the massively parallel approach. 
It is an interesting question whether commercial companies be able to take ad- 
vantage of the experience gained by the lattice gauge computer builders and 
create commercially viable machines of this type. This type of architecture is 
in principle effective not only for theoretical physics problems but for a wide 
variety of practical grid-based problems of enormous economic importance. 
The architectures used in lattice machines can easily be commercialized. The 
obstacles are primarily in software, and perhaps in sociology. A software in- 
terface convenient enough to attract a sufficiently large group of commercial 
users is necessary. 

There arc at least two commercial parallel computers which have been 
used for lattice calculations and it will be interesting to see how they fare 
commercially. The Meiko computing surface is composed of a large array 
of TBOO Transputers, which were developed by the Inmos corporation and 
partially underwritten by the Common Market supported Esprit project[lB]. 
Transputers contain a microprocessor and a floating point unit capable of 
several megaflops. The nodes operate in MIMD fashion and are arranged in 
a two dimensional array. It was originally designed to programmed in the 
parallel language OCCAM, but Fortran and C compilers have been developed 
for it. 

The Connection Machine II of Thinking Machines resembles the lattice 
machines described above in having floating point power based on a large 
number of Weitek chips[l9]. Its architecture is quite a bit different from those 
of the previous machines; its speed is limited almost entirely by bandwidth to 
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memory. It is programmed in versions of Fortran, C, and LISP with parallel 
extensions. A machine costing around $5 million was able to run a QCD 
problem at a sustained (not peak) speed of 2 gigaflops. Although still not as 
cost effective as the experimental machines, this would make it more than an 
order of magnitude more cost effective than conventional supercomputers. 

The next generation of lattice machines. The next few years will see 
large increases in the power of these machines arising from improved compo- 
nents, architectural fine tuning, and larger pricetags. The continuing improve- 
ment in the performance of chips, which has been responsible for most of the 
dramatic increases in the power and cost-effectiveness of general purpose com- 
puters over the last two or three decades, will make possible more powerful 
massively parallel computers. The highly programmable Weitek XL chip sets 
used in the Fermilab and Caltech machines could be replaced by high perfor- 
mance RISC microprocessors. An example is the Intel 1860 chip which, we are 
told, will ultimately have a peak speed of 100 megatlop, or five times the power 
of the XL chip set, at a similar price (around $1000 or less). Similarly, the fast 
floating point chips used in other machines ought to double in speed and halve 
in price in the next few years. Today’s one-megabit memory chips will be re- 
placed with four-megabit chips. A factor of around four in cost effectiveness is 
thus to be expected from evolution of the components over the next few years. 
Architectural fine tuning may produce improvements in cost effectiveness by 
factors of perhaps two to four. For example, if raw CPU power rather than 
memory size or bandwidth to memory is thought to be the limiting factor, 
the number of floating point chips on most of the existing machines could be 
increased by a factor of two or more, while increasing the cost per board by 
a much smaller factor. Finally, the budgets of at least some of the projects 
are likely to be scaled up by an order of magnitude. The bottom line is that 
the next generation of machines is likely to have peak speeds in the 0.1 to 1.0 
teraflop range, at pricetags of $5-20 million. 

The plans for one such project have already been announced. APElOO, the 
successor to APE, will consist of a large array of boards connected in a three 
dimensional array.[20] Each board will contain 8 nodes with peak speeds of 
32 megaflops each, based on a semicustom floating point chip from LSI. The 
planned peak speed of the machine is 100 gigaflops. 

The generation of machines now under construction will have the memory 
to explore lattice sizes in the range 20’ - 32 ‘. The next generation discussed 
above wiIl be able to explore the range 40’ - 64’. Since the cost effectiveness 
of chips improves at the rate of at least an’order of magnitude per decade, 
it is reasonable to expect lattices with sizes up to 128’ to be investigated 
during the 1990’s, if necessary. Whether these machines will be effectively 
limited to smaller lattice sizes by CPU requirements depends on the progress 
of algorithms. I believe that it is realistic to expect algorithmic progress to 
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continue to keep pace with hardware progress. 

After the breakeven point. The foregoing discussion has focussed on com- 
puting requirements to perform the simplest QCD calculations: the calculation 
of the masses of the light hadrons to, let’s say, 30 MeV. What will happen to the 
demand for computing for theoretical physics when this goal is accomplished? 
It takes no imagination to predict that some people will immediately begin to 
try to calculate the spectrum to 10 MeV, which will require one to two orders of 
magnitude more computing power if done by brute force. Since experimenters 
already know the masses of the light hadrons very well, these calculations serve 
more to test lattice gauge methods than to learn about physics. Much more 
important will be the application of lattice gauge theory to obtain new physics 
information, for example, the hadronic matrix elements necessary to extract 
the Kobayashi-Maskawa angles from hadronic data. When lattice methods 
are reliable and well established, the range of useful applications will be for 
all practical purposes unlimited. At the present time, the theoretical physics 
community is expending a great deal of time and money on lattice gauge the- 
ory with only a modest return. The calculation of the hadron spectrum with 
good error bars, whether it comes later this year or later this decade, will 
greatly increase the demand for theoretical computing rather than end it. 
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