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Abstract. We discuss a model for charged particles and their fields where mass is field
energy only, charge appears as a topological quantum number, photons are Goldstone bosons
of spontaneous symmetry breaking, spin and chirality are described as topological charge of
solitons interacting by Coulomb and Lorentz forces. The model is U(1) gauge invariant. We
discuss open problems and add some speculations. The model is as simple as possible, with
three degrees of freedom only describing the rotations of Dreibeins (triads) in space-time and
dynamics defined by a Lorentz covariant Lagrangian.

1. Introduction
We can ask some naive questions:

• What is the origin of mass?

• Why do all electrons (protons) have the same mass?

• Why is charge quantised?

• What is spin?

• What is the origin of the Pauli principle?

• Where does gauge invariance emerge from?

We will discuss that there are models indicating answers to these questions.
There are several interesting relativistically covariant models with solutions which contain

particle-like excitations. Five of them I would like to mention shortly since they are related
to the model presented in this paper. The first one was formulated by Dirac, when he aimed
to symmetrize electro-dynamics by introducing magnetic currents into the Maxwell equations
[1, 2]. Dirac’s magnetic monopoles are defined in 3+1D, in three space and one time dimension.
They have two types of singularities, line-like singularities, Dirac strings, from the center of the
monopole to an antimonopole or to infinity which are gauge dependent and therefore unphysical
and point-like singularities in the center, well-known also from classical electron models. Wu
and Yang [3, 4, 5] succeeded to formulate magnetic monopoles without the line-like singularities
of the Dirac strings by using either a fibre-bundle construction with two different gauge fields,
one for the northern and one for the southern hemisphere of the monopole, or by a normalised
three-dimensional vector field ~n(x) in 3+1D. These Wu-Yang monopoles still suffer from the
point-like singularities in the center. There are monopole solutions without any singularity in
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the Georgi-Glashow model [6], the ’tHooft-Polyakov monopoles [7, 8]. The Georgi-Glashow
model, formulated in 3+1D, has 15 degrees of freedom, an adjoint Higgs field with three degrees
of freedom and an SU(2) gauge field with 4 · 3 = 12 field components. Only one degree of
freedom is needed for the Sine-Gordon model [9], a model in 1+1D. It addition to waves it has
kink and anti-kink solutions which interact with each other. The kink-antikink configuration
is attracting and the kink-kink configuration is repelling. The simplicity of the Sine-Gordon
model inspired Skyrme [10, 11, 12] to a model in 3+1D with a scalar SU(2)-valued field, i.e.
three degrees of freedom, with stable topological solitons with the properties of particles with
a short range interaction, the Skyrmions. The model presented in this paper, also inspired
by the simplicity and physical content of the Sine-Gordon model, the model of topological
fermions, was first formulated in [13]. It has the same degrees of freedom as the Skyrme model
but uses a different Lagrangian. Its relations to electrodynamics and symmetry breaking were
discussed in [14, 15, 16, 17]. A python package for numerical calculations was written by
Roman Bertle and actual calculations were performed in several diploma works at the Vienna
University of Technology by Joachim Wabnig, Maria Hörndl, Julia Fornleitner, Xaver König,
Roman Höllwieser and Josef Resch.

2. Formulation of the model
As basic field we use a scalar SO(3)-valued field in three space and one time dimension with
coordinates xµ = (ct,x) , defining a rotation of a Dreibein in three-dimensional space. Below,
we call it the soliton field. Objects not connected to the surrounding return after 2π-rotations
to the original situation. One can easily show in a nice experiment performed at this conference
that objects connected by wires to the surrounding behave differently [18]. Rotating such an
object by 2π or 4π, the wires are completely entangled, but after 4π-rotations the wires can be
disentangled without moving the object itself. In mathematics this is well known. SU(2) is the
double (universal) covering group of SO(3), each pair of elements of SU(2) differing by a rotation
by 2π can be mapped to an element of SO(3), and 4π-rotations are smoothly connected to no
rotation. For the actual formulation of our basic SO(3)-field it is algebraically simpler to use an
SU(2)-field Q(x), keeping in mind that for differentiable fields every SO(3) field configuration
corresponds to two SU(2)-field configuration differing by a multiplication with the non-trivial
center element z = −12 of SU(2). Active rotations Q by an angle ω = 2α around the axis ~n can
be represented by the quaternionic units i, j,k with the famous relation i2 = j2 = k2 = ijk = −1
or by Pauli matrices σK with the correspondence i = −iσ1, j = −iσ2, k = −iσ3,

Q = q0 − i~σ~q =
(
q0 − iq3 −q2 − iq1
q2iq1 q0 + iq3

)
with ~σ~q = σKqK , q0 = cosα, ~q = ~n sinα (1)

The SU(2)-manifold is isomorphic to S3, to a three-dimensional sphere in four dimensions,
see Fig. 1. We define an affine connection, a vector field ~Γµ and a curvature tensor ~Rµν

∂µQQ
† = −i~Γµ~σ, ~Rµν = ~Γµ × ~Γν . (2)

with simple geometrical interpretations on S3. From the condition for the function Q(x) to
be single-valued, the Schwarz integrability condition ∂µ∂νQ(x) = ∂ν∂µQ(x), follows [13] the
Maurer-Cartan equation ∂µ~Γν − ∂ν~Γµ = 2~Γµ × ~Γν , allowing to represent the curvature tensor
~Rµν = ~Γµ×~Γν as ~Rµν = 1

2(∂µ~Γν−∂ν~Γµ) and in a form well-known from gravity and non-abelian
gauge theories

~Rµν = ∂µ~Γν − ∂ν~Γµ − ~Γµ × ~Γν . (3)

The dynamics of our model is given by a Lagrangian density L which in generalisation of
the Sine-Gordon model to 3+1D contains a curvature term ~Rµν ~R

µν and a potential term Λ(q0)
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Figure 1. Q(x), ~Γµdxµ and ~Rµνdxµdxν represent points, line and area elements on S3.

which is a function of q0 only, with a minimum at q0 = 0 and maxima at |q0| = 1,

L = −αf~c4π

(1
4
~Rµν ~R

µν + Λ(q0)
)

with Λ(q0) = q2m
0
r4

0
, m = 1, 2, 3, · · · . (4)

The potential term has no derivatives and the curvature term four derivatives, this forces us
to introduce a parameter r0 for the length scale in Eq. (4). Since we want to compare the
solitons emerging from this Lagrangian with electric charges, we have introduced Sommerfeld’s
fine-structure constant αf . A relation to physics we get by the identification of the dual field-
strength tensor with the curvature tensor ∗~Fµν = − e0

4πε0c
~Rµν .

3. Solitonic solutions
The Lagrangian (4) has solitonic solutions with the properties of electric charges. The static
ansatz for a soliton, see left diagram in Fig. 2,

~n(x) = r
r
, α(x) = α(r), with r = (x1, x2, x3) (5)

and ρ = r
r0

leads [13] to the energy functional

H = αf~c
r0

∫ ∞
0

dρ
[

sin4 α

2ρ2 + (∂ρ cosα)2 + ρ2 cos2m α

]
, (6)

and by the variation of this functional to the non-linear second order differential equation

∂2
ρ cosα+ (1− cos2 α) cosα

ρ2 −mρ2 cos2m−1 α = 0. (7)

Solutions of this equation read for m = 3

α(r) = arctan ρ, sinα(r) = ρ√
1 + ρ2 , cosα(r) = 1√

1 + ρ2 , (8)

with a minimum value of the energy functional H = αf~c
r0

π
4 . Comparing this result with the

mass of an electron, mec
2 = 0.511 MeV, we get r0 = 2.21 fm, a value very close to the classical

electron radius αf~c
mec2 = αf

~
mec

= 2.82 fm. For m = 2 we get the solution q0(ρ) = 1
1+ρ2 of Eq. (7)

by scaling the potential, Λ(q0) = 7
2( q0
r0

)4, with the soliton energy E1 = αf~c
r0

7π
16 . Implementing

the factor 7
2 in r0 and again comparing the soliton energy with mec

2 leads to 4
√

2/7r0 = 2.83 fm.
The three contributions (6) to the radial energy density are shown in the right diagram of Fig. 2.
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Figure 2. Left: The hedge-hog configuration according to Eq. (5) is depicted by arrows
indicating the size of the imaginary part ~q(x) of the soliton field Q(x). The lines connect ~q-
vectors with the same direction. Right: contributions to the radial energy density in Eq. (6) for
m = 3 and q0(ρ) = cosα(ρ) = 1

1+ρ2 . For large distances the radial energy density is proportional
to 1/ρ2.

4. Soliton mechanics
The variation of the soliton-field Q(x) has to respect the unitarity of Q and can be done by
Q → Q′ = ei~σ~ζQ with a three-component vector ~ζ which can be considered as a generalised
coordinate. The generalised momentum density follows to be πµ = ∂L

∂∂µ~ζ
= −αf~c

4π
~Γν × ~Rµν and

can also be expressed by πµ = ∂L
∂~Γµ

. From the variation of ~ζ follows the equation of motion

∂µ[~Γν × ~Rµν ] + ~q
dΛ
dq0

= 0. (9)

It corresponds to Newton’s second law of motion, where the derivative of the momentum is given
by the variation of the potential.

From the Lagrangian (4) we get the canonical energy-momentum tensor by

Θµ
ν(x) = ∂L(x)

∂(∂µαk)
∂ναk − L(x) δµν = ∂L(x)

∂~Γµ
~Γν − L(x) δµν . (10)

In Maxwell’s electrodynamics the canonical energy-momentum tensor is asymmetric and has to
be symmetrised by adding an appropriate total divergence [19]. The tensor (10) turns out to be
symmetric from the very beginning

Θµ
ν = −αf~c4π

{(
~Γν × ~Γσ

) (
~Γµ × ~Γσ

)}
− L(x) δµν . (11)

For the trace of the energy-momentum tensor (11) we get

Θµ
µ = 4Hp. (12)

It contributes in the presence of charges only.
The derivative of the energy-momentum tensor defines the force density. It vanishes [13] due

to the equation of motion (9)
fν = ∂µΘµ

ν = 0. (13)
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This is an obvious consequence of the unified description of charges and fields. Therefore, energy
and momentum

Pµ = 1
c

∫
Θ0µd3x (14)

are conserved quantities.
As expected the mass me of a single soliton increases with its velocity v

P 0 = γ mec, P = β γ mec, β = v/c, γ = 1/
√

1− β2. (15)

5. Electrodynamics, Coulomb and Lorentz forces

bald → cowlick(hair whorl)

Figure 3. Left: Schematic picture for a regular soliton field Q(x) with no singularity in the
center. Right: Singular soliton field of a Wu-Yang monopole Q(x) = −i~σ~n.

In order to derive Coulomb and Lorentz forces we have to artificially separate particles and
their fields. In the limit

r0 → 0 ⇐⇒ q0 = cosα = 0 ⇐⇒ α = π

2 , (16)

see Fig. 3 for a descriptive picture, solitons transform to dual Dirac-monopoles in the Wu-Yang
description [5]. Their remain only two degrees of freedom, a normalised three-dimensional vector
field ~n(x) with

Q(x) = −i~σ~n(x), ~Γµ(x) = ~n(x)× ∂µ~n(x), ~Rµν(x) = ∂µ~n(x)× ∂ν~n(x). (17)

Since ~Rµν(x) points in ~n-direction there is only one essential component left, ~Rµν~n. The field-
strength tensor and the Lagrangian reduce to

∗Fµν(x) = − e0
4πε0c

~Rµν~n = − e0
4πε0c

~n(x)[∂µ~n(x)×∂ν~n(x)], LED = − 1
4µ0

∗Fµν(x)∗Fµν(x). (18)

Since solitons can not move faster than light, the singularities can be enclosed in two-dimensional
surfaces, e.g. parametrised by u and v, leading to the definition of electric charge

Qel(S) = − e0
4π

∮
S(u,v)

dudv ~n[∂u~n× ∂v~n]. (19)

In Minkowski-space the singularities form closed world-lines, the electric charge is conserved,

jµ = −e0c
N∑
i=1

∫
dτi

dXµ(τi)
dτi

δ4(x−X(τi)) = (cρ, j). (20)
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After this artificial splitting of the soliton field in electric currents and electro-magnetic fields,
we can also split the total force density (13) in two parts

fν = ∂µΘµ
ν = fµcharges + ∂νTµν = 0, (21)

Coulomb and Lorentz forces appear

f0
charges = 1

c
jE, fcharges = ρE + j×B. (22)

It is well known from QCD that the tensor (3) is gauge-invariant. In the case of the soliton
model this means invariant against rotations of the local coordinate systems on S3. Since q0
is also invariant, the Lagrangian (4) is invariant against SU(2)-gauge transformations. In the
electrodynamic limit the soliton-field is restricted from the Q-field to the ~n-field, from S3 to
S2. The tangential spaces of S2 are two-dimensional, the gauge-invariance reduces to a U(1)-
invariance, well known from Maxwell’s electrodynamics.

6. Topological charge
In addition to electric charge which turned out to be a topological quantum number explaining
the quantisation of charge there is a further quantum number, the topological charge which
counts the number of coverings of S3

Q = 1
V (S3)

∫ ∞
0

dr
∫ π

0
dϑ
∫ 2π

0
dϕ~Γr(~Γϑ × ~Γϕ), V (S3) =

∫
S2

d2n

∫ π

0
dα sin2 α = 2π2. (23)

The hedge-hog configuration (5) covers half of S3, therefore it is characterised by |Q| = 1
2 . It

turns out that Q is a conserved quantity [13], dQ(t)
dt = 0.

Transf. 1 z Πn zΠn

~n ~r/r −~r/r -~r/r ~r/r
q0 ≥ 0 ≤ 0 ≥ 0 ≤ 0

Qel/e0 −1 1 1 −1
Q = χ× s 1/2 1/2 −1/2 −1/2

diagram

Table 1. Schematic pictures of the topologically different single-soliton configurations and their
quantum numbers. Length and direction of arrows depict the value of the imaginary part ~q(x)
of the soliton field Q(x). The sign of q0 is indicated by the line type of the arrow, full lines for
q0 > 0 and dashed lines for q0 < 0.

Investigating the possible types of solitons, the physical meaning of the topological charge
gets obvious. There are two transformations changing the homotopy type of the configuration
characterised by the electric charge Qel and the topological charge Q. These are the
transformation of the soliton field Q(x) with the non-trivial center element z = −12 and a
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reversal Πn of the ~n-direction. Applying these transformations, as shown in Table 1, we get
four single-soliton configurations. It can be seen that arrows pointing outward (inward) define
negative (positive) charges. Traversing the soliton, the arrows indicate a rotation by 2π. The
topological charge reflects the chirality χ of this rotation, whether it is right or left-handed.
Lines of constant ~n-field, e.g. shown in the left part Fig. 2, connect solitons to the surroundings.
Therefore, as argued in the beginning of section 2, solitons return only after a 4π-rotation to the
original state. This is characteristic of particles with spin quantum number s = 1/2, of fermions.
Since solitons are characterised by |Q| = 1

2 it is quite natural to interpret Q as the product of
χ and s

Q = χ× s. (24)

This relation may answer a question, posed by T.D.Lee around 30 years ago, when he gave a
talk at the University of Vienna: “Why does the mass violate chiral symmetry?”

7. Interacting solitons

z z

Coulomb interaction
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r
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Figure 4. Soliton-antisoliton configurations, two opposite charges, left: Q = S = 0, middle:
Q = S = 1, observe the dashed vectors in the lower half. Right: Total energy of an “electron-
positron”-system in the S = 0-state for m = 3 in units of keV (crosses) as a function of distance
r in lattice units a = 3r0 for r0 = 2.21 fm in comparison to the expectation for point-like charges
(full line), from [20].

Solitons interact with electromagnetic forces. Therefore, static two-soliton configurations are
in general not solutions of the equations of motion. Nevertheless, in a static approximation one
can fix the soliton centers and determine the energy of the field configuration. In the left and
middle diagram of Fig. 4 we show the two topological different soliton-antisoliton configurations,
the left one corresponds to the two-particle spin quantum number S = 0, the middle diagram
to S = 1. Both diagrams are rotationally symmetric around the z-axis. It should be noted that
the antisolitons in the lower half of the diagrams are rotated by π around the symmetry-axis. In
the left diagram there is no resistance when the two solitons approach each other, they attract
each other and annihilate. In the middle diagram there is also attraction until the two “balds”
in the center approach closely but can not annihilate since they belong to different half-spheres
of S3, indicated by the dashed arrows in the lower half. The right diagram in Fig. 4 is from
the diploma work of Joachim Wabnig at the Vienna University of Technology [20] where he
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compared the energy of an “electron-positron” system for m = 3 and S = 0 in units of keV as
a function of distance r in lattice units a with r0 = 3a = 2.21 fm with the energy of point-like
charges. It can be seen that the energy of the soliton-pair agrees with the Coulomb law for
distances large compared to r0 until the soliton cores of the two particles get close enough and
increase the attraction. The energy density in a plane through the soliton centers is shown in
Fig. 5. It is remarkable that the energy density is everywhere finite.

In scattering processes these solitons react almost like point-like particles do, they have no
sub-structure which could be revealed. However, the strength of the interaction starts to change
at distances of the order r0. This behaviour is reminiscent of the running coupling in quantum
field theory.
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Figure 5. The energy density for a particle anti-particle solution

8. Conclusions and speculations
We can summarise our results:

• Mass is field energy
• Particles are topological solitons
• Charge and spin are topological quantum numbers
• Only integer multiples of elementary charge are possible
• Distinction between charges and their field is artificial
• There are two types of massless excitations, ~n-waves
• Pauli principle has topological origin
• U(1) gauge invariance = invariance against rotations of a Zweibein (dyad) around ~n
• Cosmological constant Λ → Cosmological Function Λ(t, ~r)

The above soliton model describes charged particles as topological solitons. The mass of these
particles is field energy only. There is no Higgs particle necessary to give mass to particles. Due
to their topological nature all free particles with the same topology have the same mass.

Charge is quantised in units of an elementary charge, it is a topological quantum number.
There are only integer multiples of the elementary charge.

The spin quantum number is the absolute value of topological charge and can take only
multiples of 1/2. The angular momentum properties of spin appear only when particles move
around each other. Let’s take the important example of a light negative charge rotating around
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a much heavier positive charge. By their common soliton field, see left and middle diagram
of Fig. 4, the two charges are connected like two cogwheels of equal size. For a static heavy
particle the light particle is forced to rotate twice around itself in a full orbit, as it should be
for a gyromagnetic spin factor gs = 2.

Charges and their fields are not distinguishable, they are build from the same field. The
artificial separation between charges and fields as formulated in Maxwell’s electrodynamics is a
clever way to get a linear theory from an originally combined non-linear system.

The ~n-field describing massless excitations has two degrees of freedom corresponding to the
two polarisation directions of electromagnetic waves. Photons are realised as Goldstone bosons
of the symmetry breaking of the vacuum described by a fixed direction of the ~n-field.

A rudimentary form of the Pauli principle may be that two solitons in a S = 1 state can not
be at the same position.

The local coordinate systems in the tangential space of S3 are arbitrary. The area covered on
S3 by the Q-field is independent of the choice of this coordinate system. There is consequently
an SU(2) gauge invariance of the field strength tensor. In the electrodynamic limit the elements
Q ∈ SU(2) reduce to the normalised three dimensional vector field ~n ∈ S2. There is only an
invariance of the local coordinate system on S2 left. This is a U(1) gauge-invariance also well
known from QED.

The potential term Λ(x) in the Lagrangian has some similarity to the cosmological constant
Λ in the gravitation theory. In the presence of charged matter Λ(x) is non-zero inside of solitons.
It contributes with 25% to the soliton energy, see [13].

The model has also several properties which at first look differ from our present understanding
of nature. The equations of motion allow for magnetic currents. These currents are non-
topological [14] and act as sources of electric and magnetic fields. Magnetic currents are unknown
in Maxwell theory. Further, there exist excitations in the α-degree of freedom. For m = 1
these excitations are realised as vibrational states of the solitons [17]. But for the electron such
vibrational excitation are not known. For higher values ofm there are no vibrational excitations,
but α-waves with non-zero mass propagate in the vacuum. Such waves are also unknown. Since
the potential term Λ(x) in the Lagrangian has a dimension-full coupling constant the model
is perturbatively non-renormalisable. Quantum theory can be included via a path integral
formulation. Due to the smallness of the fine-structure constant αf the quantum system should
be in the strong coupling regime, at zero temperature it should be disordered. But there may
exist a finite temperature phase transition from this disordered to an ordered phase. There is
no definite answer to this question yet.

We can add some speculations about possible solutions of the above problems. To solve the
problem on non-topological magnetic currents and α-waves we can claim that all particles which
we measure in our detectors are topological solitons. Non-topological currents and waves escape
our detectors. We measure them as electric and magnetic fields only. These non-topological
fields could contribute to dark-matter. The potential term Λ(x) in analogy to the cosmological
constant Λ could be called a cosmological function and possibly contribute to dark energy. There
are strong indications that in the early universe there was a period called inflation with a huge
energy transfer and consequently fast expansion of the universe. One can speculate that the early
universe was characterised by a vacuum with Q(x) = 1, α = 0 and maximal potential energies,
then a transition happened to a minimum of Λ(x) with α = π/2. Since this minimum is a
two-dimensional manifold the vacuum is degenerate, spontaneous symmetry breaking happened
and photons as Goldstone bosons appeared.

Finally, some words on the main topics of this conference, i.e., on the emergence of quantum
mechanics. This model seems to favor a scenario where dark matter disturbs the motion of
solitonic electrons when they orbit around nuclei. These statistical fluctuations are influenced
by the density of dark matter and not by temperature, they induce zero-point motion and lead
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to probability distributions for the electrons.
These are some ideas which could be worked out and compared with experiment. The

presented model is rather uncomplicated, it has three degrees of freedom only and gives a nice
insight in many electro-dynamical phenomena and phenomena which are described by quantum
field theory, like mass generation, particle-antiparticle annhihilation and the running of the
coupling.

This model is a geometric model, the algebra is used as a tool only to describe geometry. It
has a strong similarity with gravitation which can be formulated as translations of Vierbeins
(tetrads). This model is based on local rotations of Dreibeins (triads). John A. Wheeler has
formulated “Space-time tells matter how to move, matter tells space-time how to curve”. We can
add “· · · and charge tells space how to rotate”. This means the phenomenology of gravitation
and electro-dynamics can possibly be understood by the properties of space and time only. For
the description of strong and weak forces the model should probably be extended to include
further dimensions, i.e. further degrees of freedom.

I think that physics is geometry and not algebra. We should use the algebra only to describe
the geometry.
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