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octagon form factors. We demonstrate that these functions satisfy a system of nonlinear
integro-differential equations which are powerful enough to fully determine their depen-
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equations yields a known series representation of the octagon in terms of ladder integrals.
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We examine the strong coupling expansion of the correlation function in various kinemat-
ical regions and observe a perfect agreement both with the expected asymptotic behavior
dictated by the OPE and with results of numerical evaluation. We find that, surpris-
ingly enough, the strong coupling expansion is Borel summable. Applying the Borel-Padé
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1 Introduction

In this work, we continue the study of four-point correlation functions of heavy single-
trace half-BPS operators in maximally supersymmetric N' = 4 super Yang-Mills theory
initiated in ref. [1]. It has recently been realized in refs. [2, 3] that, under a judicial choice
of polarizations of half-BPS operators, these correlation functions can be constructed at
finite 't Hooft coupling A = g%,MNC in terms of a fundamental building block — the octagon
0. Taking advantage of integrability of the effective two-dimensional worldsheet in the
AdS/CFT correspondence, the octagon can be expressed in terms of the hexagon form
factors [4-7] describing dynamics of magnons propagating on the string worldsheet.

At present, explicit expressions for the octagon are known in planar A" = 4 SYM both
at weak [2, 3] and strong coupling [8, 9]. At finite coupling, a concise representation for the
octagon as a determinant of a semi-infinite matrix was worked out in refs. [10, 11]. This
result laid out the foundation for our analysis in ref. [1], where the octagon was further
recast as a Fredholm determinant of an integral operator defined on a semi-infinite line. The
kernel of the operator in question turned out to be closely related to the Bessel kernel that
previously appeared in the study of the Laguerre ensemble in random matrix theory [12, 13].

At weak coupling, the octagon is given by a multilinear combination of the so-called
ladder integrals [3]. The corresponding expansion coefficients can be determined to any
loop order by requiring the octagon to have an appropriate asymptotic behavior in different
kinematical limits. At strong coupling, for g> = \/(47)? > 1, the octagon possesses a
semiclassical asymptotic behavior O ~ e_9A0+O(90), where Ag is the minimal area of a
string that ends on four geodesics in AdS [8, 9].

In this paper, we determine the octagon at finite 't Hooft coupling. To achieve this
goal, we exploit its representation as a Fredholm determinant of a (modified) Bessel kernel.
In this formulation, the problem is akin to that encountered in study of two-point functions
in integrable low-dimensional theories [14]. Following a general strategy after Its-Izergin-
Korepin-Slavnov [15], we derive a system of exact equations obeyed by the octagon and
demonstrate that its solution interpolates between weak and strong coupling expansions.
Our consideration adds to a scarce list of examples where correlations functions in an
interacting field theory can be determined for arbitrary coupling.

The starting point of our analysis is a four-point correlation function of single-trace
half-BPS operators, dubbed the simplest in ref. [2],

G(z, %)

G4 = (01(21)O2(22)O3(x3)O1(14)) = )
4= (O1(@1)O(w2)Os(w3) O (w4)) (1yriyw5,23,) K72

(1.1)

where the four operators are built out of two complex scalars Z and X and their complex
conjugate partners, O = tr(Z%/2X%/2) 4 permutations, Oy = tr(X*) and 03 = tr(ZX).
Here G(z, 2) is a function of the cross ratios
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and the coupling constant g% = g2, N./(47)2.



The correlation function (1.1) is dual to a scattering amplitude of four closed string
states. In the limit when the operators become infinitely heavy, for K — oo, it factorizes
into a double copy of an open-string partition function, the octagon [2]

G(z,2) "2 [0(z,2)]2. (1.3)

Our goal is to find O at finite coupling constant and for generic values of the cross ratios.
As a first step in this direction, we can consider the null limit x%Q, :):%3, x§4, x§4 — 0, or

equivalently z — 0_ and Z — oo, when the four operators in (1.1) are light-like separated

in a sequential manner. Introducing convenient kinematical variables £ = —% log(z2) and

Y= —% log(z/Z), one finds that in the null limit y > ¢ the octagon takes on a remarkably

simple form at weak coupling [3, 11]

LQ) > Clg)

Y =2 g% (1.4)

log O = —
8 27?2 8

where the ellipses denote subleading terms which vanish for y — oo with fixed g and &.

The dependence on the coupling constant enters (1.4) through the two functions I'(g)
and C(g). In our previous study [1], we used the aforementioned determinant representation
of the octagon to find their exact expressions

(1.5)

I(g) = log(cosh(2ng)), Clg) = —log (nh(‘”g)) |

4g

Taking the relation (1.4) at face value and going to the strong coupling limit results in some
puzzling consequences. As alluded to above, log O is expected to have a linear growth in
g at most. It is easy to see that the first two terms in the right-hand side of (1.4) do have
such a scaling whereas the third term grows as ¢2.

The strong coupling limit of the octagon was studied in ref. [9] using a clustering tech-
nique previously developed in ref. [16] in application to three-point correlation functions.
In the limit g > y > &, the octagon takes the form

log O = —%yQ —gm+ % [52(logy + 1+~ —log(2m)) + 0(54)] + O(go) , (1.6)

where 7y is the Euler-Mascheroni constant. Comparing this relation with (1.4) and (1.5), we
observe that the leading O(y?) terms coincide at strong coupling. For the second term in
eq. (1.4), however, the strong coupling limit of C'(g)/8 yields a result which is twice smaller
than that in (1.6). Finally, the £—dependent terms in (1.4) and (1.6) exhibit different
dependence on g and y. These observations are troublesome, but a priori not completely
unexpected since the two results (1.4) and (1.6) were obtained in two different regions of
the parameter space, for ¢ < y and g > y, respectively. This suggests that the difference
between (1.4) and (1.6) at strong coupling is due to an order of limits [9]. We show below
that this is indeed the case.

To address this question, we develop a systematically expansion of O in powers of
1/g for general values of the cross-ratios (1.2). Doing so, one may attempt to apply the
clustering technique [16]. The method is very efficient for extracting the leading large ¢



asymptotics but it generalization to subleading terms suppressed by powers of 1/g proves
to be difficult.! Presently, we demonstrate that these difficulties can be avoided by solving
the abovementioned system of exact equations for the octagon at large g. We work out its
strong coupling expansion in different kinematical limits and compare it with numerical
results. We observe that the strong coupling expansion is given by a Borel summable series
in 1/g. Applying the Borel-Padé summation method, we show that the resulting expression
for the octagon agrees with its numerical value over a wide range of the coupling constant.

The paper is organized as follows. In section 2, we review the representation of the oc-
tagon as a determinant of a semi-infinite matrix obtained in refs. [10, 11]. We demonstrate
that this matrix can significantly be simplified by an appropriate similarity transforma-
tion allowing us to express the octagon as a Fredholm determinant of the Bessel kernel
modified by some function of the coupling constant and cross ratios. Applying the method
of differential equations [15] to this determinant, we derive a system of nonlinear integro-
differential equations for the octagon. Its solution at weak coupling is presented in section 3.
In section 4, we discuss the properties of the octagon at strong coupling and calculate the
leading term of its expansion at large g. In section 5, we develop a systematic series of
the octagon in the inverse coupling and present analytical expressions for accompanying
expansion coefficients. We use these results in section 6 to study properties of the octagon
in different kinematical regimes. In section 7, we compare the obtained expressions with
the numerical results. Section 8 contains concluding remarks. Technical details of our
analysis are summarized in four appendices.

2 Octagon as a Fredholm determinant

In this section, we discuss the determinant representation of the octagon and use it to
derive a system of exact equations that it obeys.

2.1 Kinematical limits

We will study the octagon in Euclidean and Lorentzian kinematical regimes. Depending
on the choice of the region of interest, it is convenient to introduce auxiliary kinematical

variables
z=e T = ety Z=e T = _e7tty, (2.1)

where ¢ = m 4 1y. The variables ¢ and ¢ are real in the Euclidean regime, so that z* = Z.

The corresponding expressions for the cross ratios (1.2) are

2 .2
L1oL34 o2
2 .2
L1324
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2 .2
B0 _ 9cosh — cos ¢) e = 2(coshé + coshy) e € | (22)
L1374

For future reference, we describe different OPE limits that we examine below in detail.

IThe reason being, since the magnon rapidity scaling at strong coupling is not homogeneous, it requires
sewing plane-wave and giant magnon regimes through the exact treatment of the near flat space domain.
This is doable for a single bound state, but impenetrable for more by brute force.



Euclidean short-distance limit x; — x;41. In this limit, two operators in the corre-
lation function (1.1) collide and the asymptotics of O is controlled by the operators with
the lowest scaling dimensions propagating in the corresponding OPE channel. We can
distinguish two different OPE limits

(=00, ¢=0), (=0, ¢—0) (2.3)

corresponding to x; — xo and x; — x4, respectively.

In the first case, the leading contribution to the octagon comes from single-trace op-
erators with the scaling dimension A = K + ~(g) and it takes the form Q ~ e~¢(A=K)/2 —
e=$7(9)/2 " At strong coupling, the anomalous dimension v(g) increases with g and the
octagon is expected to vanish OQ — 0.

In the second case, the OPE is dominated by double-trace operators with the scaling
dimension A = 2K. Their contribution to the octagon scales as ~ /2K — 40 and the
octagon approaches a finite value QO — 1.

In what follows we refer to the two limits in (2.3) as single- and double-trace OPE
limits, respectively.

Lorentzian null limit :c%z, ac%:,,, x§4, x§4 — 0. In this limit, the operators in (1.1) are
located at the vertices of a null rectangle and we have

Yy — 00, ¢ = fixed. (2.4)

The leading contribution in each OPE channel x?z 41 — 0 comes from single-trace operators
with the leading twist K and large Lorentz spin. As in the previous case, their anomalous
dimension grows indefinitely at strong coupling leading to exponentially small octagon
O — 0, see egs. (1.4) and (1.6).

Symmetric point y = £ = 0. In this case, we have z = z* and z — —1 in the Euclidean
regime. This kinematical configuration does not correspond to a particular OPE limit.
The reason why we consider it is that the octagon simplifies and reveals some interesting
properties.

2.2 Determinant representation of the octagon

As was mentioned in the Introduction, the octagon at finite coupling admits a representa-
tion in terms of a determinant of a semi-infinite matrix [10, 11]

det (1 — A\CK), (2.5)
where A = —2(coshy + cosh§) is a scalar factor depending on kinematical variables and
the matrices C' and K are

Cnm = 5n+1,m - 5n,m+1 (26)

s - iy

Ko = —g-/oo dt <Z Q) _ <z Q) T (2012 — €2) T (29V/12 — €2)
¢

2i coshy + cosht




where m,n > 0 and J,, is a Bessel function. In the hexagonalization approach [4-6],
the relation (2.5) comes about as a result of resummation over an arbitrary number of
elementary excitations and their bound states propagating on the worldsheet of an open
string describing the octagon.

At weak coupling, the representation (2.5) can be used efficiently to expand O in powers
of g%. Since the matrix elements (2.6) scale as K, = O(¢g""™"!), to any given order in
g* we can replace the K —matrix in (2.5) by its finite-dimensional minor and expand O in
powers of CK. As was shown in ref. [11], this leads to the weak-coupling expansion of the
octagon in terms of known ladder integrals as was previously bootstrapped in refs. [2, 3].

At finite coupling, the calculation of (2.5) may seem to be problematic due to a rather
complicated form of the K —matrix. This matrix depends in a nontrivial way on the
coupling constant g and the kinematical variables y and £ encoding the cross ratios (2.2).
As we demonstrated in ref. [1], the octagon simplifies significantly for £ = 0. In this case,
the matrix (2.6) reads

(T > Im(292)Jn(297)
Ko)mn = — —(m — d , 2.
(Ko) g (2 (m n)) /0 : coshy + cosh z 27)

where we inserted the subscript to indicate that this relation holds for & = 0. Notice
that in distinction to (2.6), the matrix elements (Ky)m, vanish for even m — n and, as a
consequence, the matrix AC' Ky has a block structure. Taking advantage of this property,
we were able to recast the octagon (2.5) at £ = 0 into the form of a Fredholm determinant
of a (modified) Bessel kernel [12, 13]. We will see momentarily that the octagon admits a
similar representation for arbitrary &.

2.3 Similarity transformation

Denoting H = ACK, we observe that the octagon O = y/det (1 — H) is invariant under
a similarity transformation H — Q' H . Choosing 2 appropriately we can simplify the
form of the semi-infinite matrix H.2

As a hint, we examine a trace of this matrix, tr H = AMtr(CK) = 2> <o Kmnm+1-
Replacing Ky, ;1 with its expression (2.6) we get -

00 d
tr H = 4)\g? /0 °F (J3(2g2) + J?(292)) , (2.8)

coshy + cosh(y/22 + £2)

where we applied a summation formula for the Bessel functions and changed the integration
variable to z = \/t? — £2. Notice that, aside from the factor A\ = —2(coshy + cosh £), the
¢—dependence of (2.8) only resides in the denominator of the integrand. In particular, the
dependence of the integrand in (2.8) on & can be restored from its value at £ = 0 by simply
replacing z — /22 + £2 in the denominator of (2.8).

Applying the same recipe to eq. (2.7), we define the matrix

Im(292)In(2g2)

coshy + cosh(y/22 + €2)

*The existence of such transformation was hinted in ref. [11].

(KQ)mn = —gsin <g(m - n)) /000 dz (2.9)




By construction, it satisfies the relation tr(CK) = tr(CKgq). It is a straightforward but
tedious exercise to verify that analogous relations holds for powers of the two matrices,
tr[(CK)"] = tr[(CKq)"] with n = 2,3,.... This suggests that the two matrices H = A\CK
and Ho = A\CK( are related to each other by a similarity transformation

Hq=Q1'HQ =K. (2.10)

We verified that det(1 — H) = det(1 — Hg) at weak coupling® and checked this relation
numerically by truncating the semi-infinite matrices to a finite size and evaluating the
determinants for various values of the coupling and kinematical parameters. Although we
do not need the matrix €2 for our purposes, it would be interesting to construct it explicitly.

It is remarkable that the {—dependence of (2.9) is much simpler as compared to that
of (2.6). At the same time, the matrix (2.9) has many properties in common with the
matrix (2.7) evaluated at £ = 0. In particular, the matrix elements (Hq)y, vanish if
indices m and n have different parity. The nonzero entries of this matrix with even and
odd indices respectively define two irreducible blocks. They are related to each other by a
similarity transformation and, as a consequence, the octagon for £ # 0 possesses the same
block-diagonal form as for £ = 0 case (see ref. [1])

0 = /det (1 — Hg) = det(1 — k_). (2.11)

Here k_ is a semi-infinite matrix which is given by (2.10) with odd indices, (k_)mn, =
(Hq)2m+1,2n+1- It follows from (2.10) and (2.9) that it admits two equivalent representa-
tions

(- dom = (<1720 +1) [ a1 (202) i (202)7(2)
= e+ ) [T s (Va a (o), (22

where the notation was introduced for

~ N coshy + cosh & L \/5>
(2) = coshy + cosh(y/22 1 &) x(z) =X ( 2 ) (2.13)

The function X(z) approaches 1 at the origin and decreases exponentially fast at large z.

It suppresses the contribution from large z to (2.12) and serves as an ultraviolet cut-off.

The representation (2.11) and (2.12) is advantageous as compared to (2.5) and (2.6)
because the dependence of the octagon on the coupling constant and the kinematical param-
eters is confined to the cut-off function (2.13). We exploit this property below to formulate
a system of equations for the octagon. Moreover, the relation (2.11) can be efficiently used
to compute the octagon numerically for arbitrary coupling (see section 7 below).

% Analogous calculation was also performed by Valentina Petkova, we are grateful to her for sharing with
us her notes.



2.4 Modified Bessel kernel

Following ref. [1], we can rewrite the octagon (2.11) as a Fredholm determinant of an
integral operator. This can be achieved by expanding eq. (2.11) in terms of the traces of
powers of the matrix k_
1 1 oo [e.9]
logO=— Z Etr (kl‘) =— Z n/o dxy x(x1)-- -/0 dxy, x(zn) K(x1,22) ... K(xp,21),

n>1 n>1
(2.14)

where we replaced the matrix k_ by its expression (2.12) and introduced a notation for*

0

\/:% Z (2m + 1) Jomt1(vV71) Jam+1(V/72)
m=0

_ VEN(VED) Jo(VE2) = Vi (VER) Jo (V) (2.15)

2(3}1 — 1‘2)

K(CL‘l, 1‘2) =

This function has previously appeared in the study of level spacing distributions in random
matrices and it is known as an integrable Bessel kernel [13].

The relation (2.14) suggests to define an integral operator whose kernel is given by the
Bessel kernel (2.15) modified by the cut-off function (2.13)

oo
K f@) = [ da' Koo () f (o) (2.16)
0
where f(x) is a test function. In this way, we obtain from (2.14) an equivalent representa-
tion of the octagon
0 =det(1 - K,). (2.17)

It is remarkably similar to the analogous relation for the octagon at £ = 0 derived in ref. [1].

The relation (2.17) holds for arbitrary values of the coupling g and generic kinematical
variables y and £. The dependence of @ on these parameters resides in the cut-off function
x(z). This function plays a central role in our subsequent analysis. To elucidate its
meaning, we examine (2.13) for large y and x. In this limit, we find that x(z) takes the
form of the Dirac-Fermi distribution

1

x(x) ~ W7

(2.18)

where the temperature 7', chemical potential ;1 and the energy ¢ are related to the 't Hooft
coupling and kinematical variables as

T=2g, w=2gy, e =+ (296)*. (2.19)

Replacing z = (2¢¢)?sinh?  we note that ¢ = 2g€ coshf coincides with the energy of a
relativistic particle with mass m = 2¢¢ and rapidity 6.

1t
41t also admits a compact integral representation K(z1,22) = 5/ dtt Jo(tv/z1)Jo(t\/2).
0



Substitution of (2.18) into (2.17) and (2.16) yields an expression for O that resembles
a Fredholm determinant representation of two-point correlation functions in integrable
models at finite temperature [14]. Together with (2.19) this suggests that the asymptotic
behavior of the octagon at weak and strong coupling should be similar to that of two-
point correlation functions at low and high temperature, respectively. Indeed, a two-point
function of currents in one-dimensional Bose gas model is known to decay exponentially at
high temperature in the so-called pre-asymptotic region, Ga(x) ~ exp(—Tx?/2) [17]. The
linear temperature dependence in the exponent translates into the linear dependence of
log O on the coupling, see eq. (1.6).

2.5 Method of differential equations

A powerful technique for studying Fredholm determinants has been developed in ref. [15]
in application to two-point correlation functions in integrable models. In our previous
paper [1] we extended this technique to the octagon (2.17) at £ = 0. Due to a particular
form of the kernel in (2.16), generalization to arbitrary ¢ is straightforward.

To start with, we introduce the so-called potential u, in the terminology of [15],

) = [ ded (a6l (220)

where G(z,2’) is a kernel of the operator 1/(1 — K, ) and ¢(z) = (z|¢) = Jo(v/z) is the
Bessel function. Following [1] we can show that it is related to the logarithmic derivative

u = (¢|x

of the octagon
u = —2g0ylog 0. (2.21)

Being a function of g, y and &, it satisfies differential equations

ot = /Oo dx Q2($)aaX($) ) a = {ga Y, 5} ) (222)
0

where the cut-off function y(z) is given by eq. (2.13) and an auxiliary function Q(x) is
defined as

1 oo
Q) = (el 10) = | d' Glanaola). (223
X 0
The latter, in turn, obeys a differential equation
(90y + 220,)?Q(x) + (z +u — gdyu)Q(x) =0, (2.24)

which involves the potential u and its derivative with respect to the coupling constant.
This equation should be supplemented with boundary conditions at weak coupling

Q(z) = Jo(vVa) +0(g%), u=0(g%). (2.25)
They follow from the expansion of (2.20) and (2.23) in powers of K.
The relations (2.22) and (2.24) define a system of nonlinear equations for the potential.
Having solved them, we can determine u for arbitrary g, y and £ and, then, apply the
relation (2.21) to compute the octagon as

1 [9dd
log® = —+ / Y g y6). (2.26)
2Jo 9



This equation can be efficiently used at weak coupling whereas at strong coupling it requires
knowing the potential at finite coupling. Another relation for log @ was found in ref. [1]

0n log O = % /OO dz Do X () Q? ()0 (90y + 220,) log Q(z) (2.27)
0

where o = {g,y,£}. It can be used to determine the octagon from the solution to (2.24).
We can simplify the relations (2.22) by taking into account the property of the cut-off
function (2.13)

B 9 sinh & B
(220, + g0q)x(x) = <8§ — 8g°€0, — coshy T coshé coshf)X($) =0. (2.28)

We then deduce from (2.22)

Oyu = /000 dx QQ(a:)ayx(x) ,

gOqu = —2 /000 dx Qz(x)x(?xx(x) ,

sinh &

- 2
coshy +coshe J, Q@) (2.29)

Ocu = 85% | doQP(a)ox(a) +

Being combined together with (2.21) and (2.24), these equations allow us to determine
the dependence of the octagon on the kinematical variables y and & for any value of the
coupling constant g.
2.6 Moments
To analyze the relations (2.29), it is convenient to introduce the moments
oo
Q= -(20)™ | doat Qa)oun(a), (2:30)
0

where the g—dependent normalization factor was introduced for convenience. It follows
from the second relation in (2.29) that for £ = 1 the moment is related to the derivative of
the potential

1
= — . 2.31
Q1 = g0 (231)

Moreover, it is possible to show using (2.24) that the moments satisfy a differential equation
(see ref. [1])

[(994)® + 4(u — ggu)(90,) — 29°02u] Qp = —169°0y(g Qr11) - (2.32)

It relates the moments with sequential indices.
In particular, for £ = 0 the relations (2.32) and (2.31) lead to the following equation
for the moment Qg

[(909) + 4(u — gdyu)(g0y) — 2g20§u} (Qo—1)=0. (2.33)

,10,



Obviously, Qo = 1 is a special solution to (2.33). At weak coupling, substituting u = O(g?)
in (2.33) and expanding Qo — 1 in powers of g2, it is possible to show that corrections to Qg
vanish to all orders in ¢g2. This suggests that for arbitrary values of ¢, £ and y the solution
to (2.33) is

Qo= /0 e Q@) 0px(n) = 1. (2.34)

We demonstrated in ref. [1] that for £ = 0 this condition leads to the expected result for the
octagon (1.4). We argue below the same is true for £ # 0. We will use the relation (2.34)
to develop a systematic expansion of the octagon at weak and strong coupling.

3 Octagon at weak coupling

To illustrate the power of the method of differential equations described in the previous
section, we develop in this section the perturbative expansion of the octagon.

For small coupling, the octagon can be easily found from the recurrence relation for
the moments (2.32). It is convenient to rewrite (2.32) as

(999)°Qe = ~169°0,(g Qe1) — [4(u — gdyu)(gdy) — 29°F5u] Qs . (3.1)

Then taking into account that u = O(g?) as g — 0, we observe that the expression in the
right-hand side of (3.1) is suppressed by a power of g?. This suggests us to solve (3.1) by
iterations. Namely, replacing @y and u in (3.1) by their perturbative expansions

Q=0Q" +7Q" +4'0" +....
u=g*uM + g*u® 4., (3.2)

we compare the coefficients in front of powers of g? on both sides of (3.1) and obtain
recurrence relations between the coeflicients Qék).

Solving them, we can express (Jy in terms of QEO) and the expansion coefficients of the
potential u(*)

1 3 3 3 3
Qv =q+9" | suMae = 2q001 ) +9* | { 5™+ Zu® ) g — TuM s + Saeg2 | +0(6°)
2 32 8 4 2
(3.3)
where a notation was introduced for the moments at zero coupling ¢, = ng)
oo [o.¢]
Q@ = —;% (29)%/0 dr 2 Jo (V)0 x () = —/O dz 220.%(2) . (3.4)

Here in the first relation, we used the definition (2.30) and replaced Q(x) with its expres-
sion (2.25) at weak coupling. In the second relation, we changed the integration variable
to z = v/x/(2g), applied (2.13) and replaced the Bessel function by its leading asymptotics
at small g. Replacing X(z) in (3.4) with its explicit expression (2.13), we get

qg——/oodzzzgﬁ [ coshy + cosh &
- z
0

coshy + cosh(y/22 + £2)

(3.5)
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It is easy to see that gy = 1. For £ > 1, we can show making use of the integration by parts
that gy is a positive definite function of £ and y. The same is true in the Euclidean regime,
for y = i(m — ¢) and ¢ being real.

According to eq. (2.31), the moment @); is related to the derivative of the potential
with respect to the coupling. Substituting ¢ = 1 in (3.3) and matching the result to a
weak coupling expansion of dyu/(8g), we can compute the coefficients u®) .5 The resulting
expression for the potential (3.2) is

u=4¢°q + g* (447 — 4q2) + ¢° (4¢7 — 6gaq1 + 203)
+4° <4qf‘ — 8q2q7 + ?Q?)(h + gqg - 5g4> +0(g"7). (3.6)
Here the coefficients in front of the powers of g2 are given by multi-linear combinations of
functions (3.5).

Note that all terms in (3.6) except the first one would vanish if the functions g, had
the form gy = z§, or equivalently the function X(z) in (3.4) was given by the step function
X(z) = 0(z9 — z) with some zy. Recalling (2.18), we observe that the cut-off function
takes such a form in the limit of zero temperature provided that 22 = y* — ¢2. In this
case, vanishing of the coefficients in (3.6) is in agreement with the known property of the
Fredholm determinant of the Bessel kernel at zero temperature [12, 13, 18].

Substituting (3.6) into (2.26), we can compute the octagon at weak coupling

4 6 2
944
0O=1—¢2 99 946 g _ 492 , 9193 7

gnt 6 9\ T8 36 T (3.7)

10 (%23 €9 7 12 G, @u | Tags 76 12
- - B 0(g'2) .
t9 (144 96 1440) T ( 720 T 2880 * 3600 T 14200 ) O

This relation should be compared with the analogous expression for the perturbative oc-
tagon derived in refs. [2, 3]. We find that the two expressions coincide after we take into
account that the moments (3.5) can be expressed in terms of ladder integrals

o
a = (1_;)—(12_2) Z(—l)mm log™ (2z)(Liz¢—m(2) — Lize-m(2)),  (3.8)
m=0

where z, z are related to y, { through (2.1).
In the rest of the section, we examine (3.7) in the kinematical limits described in
section 2.1.

Symmetric point y = & = 0. We find from (3.5) that ¢ = 1 and ¢ = 8log2. For
¢ > 2, the function (3.5) looks as

qe = 4(20)1(1 — 2272)¢(20 — 1) = 4(20)! p(20 — 1), (3.9)

where ( is the Euler-Riemann zeta function and 7 is the Dirichlet eta function.

5The same result can be obtained by requiring weak coupling corrections to vanish to Qo to all orders
in g2, see eq. (2.34).
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The octagon (3.7) admits the form

0 =1 — 8¢%log(2) + 369 (3) — 4504°¢(5)

+g (11025g( ) 4+ 600¢(5) log(2) — 108((3)2)
0 (562;75«9) + 13230¢(7) log(2) — 1350@(3)@*(5)) +0(g'?). (3.10)

It is convenient to assign to log 2 and ((k) the weight 1 and k, respectively. Then, the first
few terms of the expansion have a homogenous weight but starting from order O(g®), the
coefficients have an admixture of lower-weight contributions.

Single-trace OPE channel £ —+ oo and ¢ = 0. In this case, we substitute y = i
in (3.5) and simplify the integrand at large & to get

00 20+1
a- | j% £ VE _ \f o€ €I, 1 (€) (20)1, (3.11)

where K, 1 (&) is the modified Bessel function. A close examination exhibits that g is a
2
polynomial in £ of degree ¢ with integer positive coefficients.
The corresponding expression for the octagon then reads

O =1-2¢%&+1) +4g"* (€2 + 3¢ +3) — 8¢5 (€% + 662 + 15¢ + 15)

3
— 8910 (3¢° + 43¢* + 288¢% + 1104€2 + 2385¢ + 2295) + O(g'?). (3.12)

114
+ 4¢° <§ + 3683 4+ 159€2 + 364 + 357)

Note that the expansion goes in powers of g2¢ and 1/¢.

Double-trace OPE channel £ = 0 and ¢ — 0. Replacing y = i(m — ¢) in (3.5) and
going through the calculation of the integral at small ¢, we get ¢op = 1 and

¢ = 2¢°(1 —log ¢) + O(¢"),
= (20)1¢(20 — 1)$* + O(¢Y),  for £>2. (3.13)

In this case, the octagon is given by

0 =1+ ¢*[2¢%(log ¢ — 1) + 12¢%((3) — 120¢°¢(5) + O(g®)] + O(¢"). (3.14)

The expansion coefficients of O depend on log ¢. Such terms come from ¢; in (3.13). Since
the expression on the right-hand side of (3.7) is linear in ¢;, the expansion coefficients are
linear in log ¢ to any order in g? [3].

Notice that the weak-coupling corrections to @ vanish as ¢ — 0. In this limit, the
leading contribution to the octagon comes from double-trace half-BPS operators with the
scaling dimension K propagating in the OPE channel z?, — 0. It is protected from
quantum effects and leads to O — 1 as ¢ — 0.
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Null limit £ = fixed and y — oco. At large y, the dominant contribution to (3.5) arises
from z = O(y). Replacing the integration variable z — yz, we get from (3.5) in the large-y

limit

w=r [ as0)—

0 14+ eVy?z2+E-y
-1 : .
(-1 1y (—2im)2k+2
210 2\0—1—k
— (- 203 (— Bopio =+ 2 )220 1
€+ (B (54 50) St G

where By, 2(z) is a Bernoulli polynomial. The function gy is a polynomial in y? of degree /.
In this case, it is advantageous to consider the logarithm of the octagon (3.7)

2 o2r2y?  8rt 32 51276
loc O = —2 [ 2 — 2 — 4 ST\ 624 4 2 3.16
8 g G’ Srg) iy T ) O\ BT T s (3.16)

2727042 102478 1587278y2 131072710
L8 ™Y i T\ _ 10 Y 4 m +0( 12)‘
315 4725 14175 467775

This relation is in agreement with (1.4) and (1.5). In particular, the expansion coefficients
of log @ are linear in y? and the ¢ —dependence cancels to all orders except the lowest one.

The last property can be understood using the last relation in (2.29). The first term
in its right-hand side is proportional to the moment Q)y. Taking into account (2.34), we get

sinh &

coshy 1 cosh € Jg dz Q*(x)x(x). (3.17)

deu = —8g%¢ +
We can show that the second term in this equation is exponentially small at large y. Indeed,
at small g, or equivalently at low temperature, the function y(z) effectively reduces the
integration region in (3.17) to x < (2gy)%. Replacing Q(x) = Jo(v/z) + O(g?) we find that
the integral in (3.17) scales as 4¢%y* + O(g*). Tt is accompanied, however, by the factor of
sinh ¢/(coshy + cosh§) ~ e™¥ and, therefore, provides a vanishing contribution to (3.17) at
large y. Thus, O¢u = —8¢2¢ at weak coupling leading to O¢log O = 2¢2¢ in virtue of (2.26).
As was mentioned in section 2.1, the relation (3.16) describes the asymptotic behavior
of the null octagon. It arises as a result of infinite resummation of contributions of leading
twist operators in different OPE channels. Exponentially small corrections, generated by
the second term in the right-hand side of (3.17) at weak coupling, are induced by high twist
operators. We show below that at strong coupling the situation is completely different.
Anomalous dimensions of the operators grow with the coupling and their classification with
respect to twist (= bare dimension minus spin) becomes redundant. We demonstrate in
section 6 that the second term in (3.17) scales at strong coupling as 8¢g2¢ + O(g), so that
u = O(g) in agreement with the expected behavior of the octagon (1.6).

4 Octagon at strong coupling

In this section, we study the octagon in the limit when ¢ — oo with the kinematical
variables y and £ held fixed.
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In this limit, the octagon is expected to have the following form

log(O):—ng—F;A%logg#—B—Ff;-i-11;1;24-212;3—#..., (4.1)
where the coefficient functions depend on the kinematical variables y and & and relative
rational prefactors are introduced for convenience. The sum contains terms of the form
Arg =/ (2h(k — 1)).

The first term in (4.1) was computed in ref. [9] using the clustering procedure developed
in ref. [16] (see eq. (4.10) below). It was argued there that Ay should be related to the
minimal area of a string that ends on four geodesics in AdS and rotates on the sphere. The
remaining terms in (4.1) remain unknown.

The subleading term A2 logg/2 + B in (4.1) describes quadratic fluctuations around
the minimal area. It is enhanced by log ¢ and produces an overall g—dependent factor of
the form®

0 = g1i/2 e=940+B+0(1/g) (4.2)

Here O(1/g) terms in the exponent take into account yet higher order quantum fluctuations.
We are going to determine the coefficient functions in (4.1) from the system of equa-
tions (2.21), (2.29) and (2.24). Combining together (4.1) and (2.21) we expect the potential

to have the following form at strong coupling
Ay A

A
u=—290,0 =2gAg — A3+ =2+ =2 4

29  3¢%  4g? (4.3)

Comparing this relation with (4.1) we notice that B does not contribute to w. This means
that having determined the potential u, we will be able to determine the octagon (4.1) up
to the function B(y,&).

4.1 Leading order

To find the leading term Ag, we use the relation (2.14) and examine the properties of its
iterated integral representation in the limit g — oo.

It follows from the explicit form of the cut-off function (2.13) that the dominant con-
tribution to (2.14) comes from integration over z; = O(g). This allows us to replace the
K —kernel in (2.14) by its leading asymptotic behavior at large x;

1 [sn(/E-yEm) sy +ym)
K($1,$2) = 27r(x1x2)1/4 \/371— \/E \/1'>1+ \/E 4+ ... (4.4)

Here the ellipses denote subleading terms suppressed by powers of 1/x;. We notice that

for ; = O(g), the second term inside the square brackets is a rapidly oscillating function
of z;. At large g it scales as O(1/g"/?). At the same time, the first term is peaked around
x1 = w9 and scales as O(g") for 71 — 29 = O(1/g). This suggests that for g — oo, the
integral in (2.14) is localized at 1 = x9 = - -+ = x,.

SDefining log g term in (4.1), we anticipated the power of g to be positive in this relation.
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To show this, we use the identity

- ~ (e )
/0 deK(x1;x2)X(x2)f($2):/0 d$227r(x1x2)1/41(\/;1_2\/372)X($2)f($2)+--- (4.5)

= [T s = xen )+

where f(x) is a smooth test function. Here in the second relation, we changed the integra-
tion variable to z = /22 — /21 and expanded the integral at large x1 and fixed z.
Subsequently applying (4.5), we get from (2.14)

logO = — Z % /000 dzy [x(x1)]" K(x1,21) = /000 dzi log(1 — x(z1))K(z1,21). (4.6)

n>1

As before, we can replace K(z1,21) with its leading asymptotic behavior at large x;.
Applying (4.4) for xg — x1, we get K (z1,21) ~ 1/(2m\/x1). Then, changing the integration
variable to x1 = (2¢2)?, we finally obtain in the leading large ¢ limit

logO = 2?9 /000 dzlog(1 — X(2)) + O(4°). (4.7)

According to its definition (2.13), the function x(z) is independent of the coupling constant
but carries dependence on the kinematical variables y and &.
Comparing (4.7) with (4.1), we deduce that

2 (™ PO B cosh(y/22 + €2) + coshy
Ay = _W/o dzlog(l — X(2)) = W/ dzlog (Cosh(\/m) - Cosh§> - (48)

As follows from this relation, Ag is a positive definite function of real y and £. The same

— 00

is true in the Euclidean regime for y = i(m — ¢) with ¢ real.

As was mentioned at the beginning of this section, the function Ay was also computed
in ref. [9] using a different technique. To compare the two results, we change the integration
variable in (4.8) to z = £ sinh # and introduce a new function

cosh (3(£ 4 y)) cosh (3(€ — )

Y(0) = —X(2) = — : 4.9
©) x() cosh (3(£ cosh @ + y)) cosh (5(£ cosh 6 — y)) (4.9)
Then, the relation (4.8) takes the form
< do
Ay = —/ — & cosh 6 log(1+Y(0)) (4.10)
e T

and it coincides with the analogous expression obtained in ref. [9].

4.2 Beyond leading order

To derive the strong coupling expansion (4.1), we use the system of integro-differential
equations (2.21), (2.24) and (2.29). Namely, we will construct the function Q(z) at strong
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coupling for arbitrary u and, then, apply the second relation in (2.29) to determine the
expansion coefficients of the potential in (4.3).
The function Q(x) depends on the coupling constant and obeys eq. (2.24). It is con-

venient to replace x = (2¢z)? and introduce the function
4(2) = Qag?2) (4.11)
It follows from (2.24) that it satisfies the following differential equation
[(99)° + 4% + w(g)] a(2) = 0, (4.12)

where a notation was introduced for

A A A
w(g):u—gagu:—A%+?2+?§+?§+... (4.13)

and the potential u was replaced with its general expression at strong coupling (4.3). Note
that the leading O(g) term in (4.3) proportional to Ay does not contribute to w(g).

Substituting (4.11) into (2.29), we get the system of equations relating the potential
and solutions to (4.12)

Oyu = 892/ dz 2 *(2)0,X(2)
0

Ou=-89 [ P0R().
0

8g? sinh & &

_ d 2(2)% 4.14
coshy + cosh§ J, 2207 (2)x(2), ( )

Ocu=89° | dz(2)0.10) +
0

with X(z) defined earlier in eq. (2.13). In a similar manner, it follows from (2.34) that

Qo= /0 T () (-0.R(2) = 1. (4.15)

Solution to (4.12) yields the function ¢(z) that depends on u(g) in a nontrivial way. Its sub-
stitution into (4.14) and (4.15) yields a complicated system of equations for the potential.
Luckily, these equations can be solved at strong coupling.

5 Strong coupling expansion

In this section, we use the relations (4.12)—(4.15) to systematically calculate the coefficients
Ay, Ag, As, ... of the strong coupling expansion of the octagon (4.1).

5.1 Next-to-leading order

To begin with, we neglect the O(1/g) correction to (4.13) and examine the differential
equation (4.12). In this case, for w = — A2, a general solution to (4.12) reads

q(z) = c(2)Ja,(292) + ¢ (2)Ya, (292) + O(1/g), (5.1)
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where J, and Y, (with & = A;) are Bessel functions of the first and second kind, respec-
tively, and ¢(z), ¢/(z) are arbitrary functions of z. The last term in the right-hand side
of (5.1) denotes corrections due to O(1/g) terms in (4.13). For arbitrary «, the function
Y, has singularity at the origin and is multivalued. This suggests to put ¢/(z) = 0.

To find the function ¢(z), we examine the second relation in (4.14)

Ogu = —8g/ dz 22 ¢*(2)0,X(2) = 240 + O(1/¢%), (5.2)
0

where in the last relation we replaced u with its expression (4.3). Evaluating the integral
in (5.2), we can replace the function ¢(z) with its leading asymptotic behavior at large g,

1+ sin (4gz — 7rA1) N

P(2) = A(2)Ja, (202 = E0) — (53)
Finally, substituting this expression in the previous relation, we deduce
Ogu = - dz 20.X(2)c*(2) + ... . (5.4)
0

Here we took into account that the dominant contribution to the integral comes from
z = O(g°) and, as a consequence, a rapidly oscillating sinus function does not contribute.
Matching the last relation to the right-hand side of (5.2) and replacing Ay with (4.8), we
conclude that ¢(z) = 1/(1 — X(z)). Thus, the solution (5.1) looks as

1
= ————[Ja,(292) + O(1 . 5.5
Here the second term in the numerator denotes corrections due to O(1/g) terms in (4.13).
Substituting (5.5) into (4.14) and repeating the same analysis, it is straightforward to verify
that the two remaining relations in (4.14) are automatically satisfied.
Having constructed the function ¢(z), we can examine now the normalization condi-
tion (2.34)
= (=0:X(2))
Q():/ dz [Ja, (292)] 2 =1. 5.6
[ e, o T2 (56)
In distinction to (5.4), the leading contribution to this integral comes from z = O(1/g). In
this region, we can replace the cut-off function (2.13) by its leading behavior around the
origin 0, log(1 — X(z)) = 2/z 4+ .... We can thus continue the previous relation to get

Q=2 [ FlnCe) =4 =1 (5.7)

We conclude that
A =1. (5.8)

Thus, the subleading O(log g) correction to the octagon (4.1) is universal, i.e., it does not
depend on the kinematical variables y and &.
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Figure 1. The function f(z) defined in (5.9). Blue curve was obtained from (4.11) and (C.4) at
g =10, y =1 and £ = 1/10 by truncating an infinite sum in (C.4) to the first Nyax = 100 terms.
Dashed red line depicts the leading term .J;(2¢z).

Combining together (5.5) and (5.8), we find that the solution to the differential equa-
tion (4.14) looks as

1
q(z) = Wf(z)a f(z) = J1(292) + O(1/g) . (5.9)

We can check this relation by computing the function ¢(z) numerically at some reference
value of the coupling and the kinematical parameters as described in appendix C. Its
comparison with the leading term in (5.9) is shown in figure 1.

It is important to stress that at strong coupling the integrals in (5.2) and (5.6) receive
the leading contributions from two different regions, z = O(g") and z = O(1/g), respec-
tively. This suggests that, in order to compute the corresponding expressions for d,u and
Qo, we have to construct the function (5.9) in these two regions. For z = O(g°) this is
done in the next subsection and for z = O(1/g) in appendix B.

5.2 Solution at finite z

At large g and z = O(g"), it is convenient to switch from g to 2 = gz and expand the
function (5.9) in powers of 1/x. Since the function f differs from ¢(z) by a g—independent
factor, it satisfies the very same differential equation (4.12)

9 9 z 22 23
|:(:Cax) + 4z —1+A2+A32+A43+...:|f20, (5.10)
x x x
where we used (4.13) and replaced g = z/z.

To leading order in 1/x, the solution is given by (5.9). Using the properties of Bessel
functions, we find from (5.9) that f is an oscillating function

1 3 15
= 1+ —+4+ —5+... |sin(2
/ N [ < + 16x + 51212 * ) sin(2z)
3 15
+ <—1+16$—51212—|—...>COS(21‘):| —|—O(z/x) (5.11)
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Going beyond leading order, we look for a general solution to (5.10) in the form

1
f= Nors [a(x, z) sin(2z) + b(z, z) cos(2x)] , (5.12)
where a and b are given by infinite series in 1/x
2. an(2) — bn(2)
a(z, 2) go el (z,2) g@ g7 (5.13)

Substituting (5.12) into (5.10) and matching the coefficients in front of powers of 1/x, we
can determine the functions a(z, z) and b(x, z) to any order in 1/x

alz, z) = 1+%+ (—A§Z+51152>;2+ (—112A3z2— 51“;'2 —5;1(;2);3 (5.14)
# (ot e~ T+ T i) e 00/,

b(z,z) =—1+ % + <_A822 - 51152> % + (—112A322 + 5112282 - 8110952) % (5.15)
+ (—116/14@3 + %814322 + 3‘2122 + 1(31‘(5)31;2 + 5211328) % +0(1/2°).

As a check, we verify that for z = 0 the functions a(x,0) and b(z,0) coincide with the
coefficients accompanying trigonometric functions inside the brackets in eq. (5.11).

Let us now examine (5.2) and replace the function ¢(z) with its expression (5.9)
and (5.12)

4 oo

Ogu = — / dz [a(2gz, z) sin(2g2) 4 b(297, z) cos(2g2)]? 20, log(1 — X(2)) . (5.16)
T Jo

We recall that the cut-off function (2.13) does not depend on the coupling constant and

the dependence on g resides in the first factor in the right-hand side of (5.16). At strong

coupling this factor contains rapidly oscillating trigonometric functions. Expanding the

integral at large g, we can safely replace them by their averaged values. This leads to

Ogu = 2 /000 dz 20, log(1 — X(2)) [a® (292, 2) + b* (292, 2)] . (5.17)

s

It is important to stress that this relation was derived under the assumption that the
dominant contribution to the integral comes from z = O(g°).
Using (5.14) and (5.15), we find

DO | =

3 A 45 Az 1

2 2 2 :

9 b2 (2 =1 - - 822 ) gt !
[CL ( gZ,Z) + ( gZ,Z)] + 322292 82293 <204824 t 822) 94 (5 8)

N 154, Ay R I 3A3 +31A3_£ 1oo(L
25624 822 ) ¢° 6553626 12824 25624 822 ) ¢6 g )
Notice that the expansion coefficients contain only even powers of 1/z. We would like to
emphasize that the expansion (5.18) is well-defined for g > 1 and 2z = O(¢°).
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Substituting (5.18) into (5.17), we can expand dyu in powers of 1/g

31 Aol 45 1 15A A 1
dgu = 4Ig + ——5 — 25 <I2+ A311> + <212— 411)

82 245  \512 64 2 )
1575 342 3145 As
I3 + 21 Iy — 221 1 1
(16384 32 2t 6 1>g +0(1/g7). (5.19)

with a notation I, introduced for the integral

L6 =+ [ G 20.log(1 - X(2)

™

dz cosh(y/22 + €2) — cosh ¢
= = | . .
@ /o 22 20 0 1o (cosh(\/z:2 +&2)+ coshy) (5.20)

As we will see in a moment, the dependence of the octagon on the kinematical variables y

and & enters through I,,(y, ). This is the reason why we will refer to I,,(y, &) as a profile
function. Strictly speaking, the integral in (5.20) diverges at the lower limit for n > 1 and
requires a regularization. We address this issue in section 5.2.2.

5.2.1 Quantization conditions

The leading term in the expansion (5.19) looks as
dgu =4Iy + O(1/g%) = 240 + O(1/g?), (5.21)

where we integrated by parts and matched the result to eq. (4.8). We verify that this
relation is in agreement with (4.3).

Then, we replace u on the left-hand side of (5.19) with its general expression (4.3) and
compare the coefficients in front of powers of 1/g. This gives recurrence relations between
the coefficients Ay

3 3 15
Ay = 21 Ay = —=1T Ag = —Ay] A — 1 Asl .22
0 05 2 s 3= ;4201 4= 1282+3 31, (5.22)

These relations allow us to express all the coefficients Ay in terms of the functions 7, (y, &)
defined in (5.19). The explicit expressions for the first few of them are

A[) = 2[[),
A =1,
3I
A2 ===,
91
Ay = ——1
3 16’
I3 151
Ay = _371 151 ’
8 128
151¢ 751115
A = ——— ;
64 256
9I5  225I,12 9451
AG _ 7 + 241 3

64 512 8192’
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2117 | 525L,17  6615[30, 178513

A1 =556 T 1024 16384 16384
Ay — — 317 | 525DI}  6615[317 1785131, | TO87514
64 1024 8192 4096 262144
_ 271 945017 19845[31F 160651317 6378751411 | 2920051313 (5.23)
7 71024 T 2048 16384 16384 524288 524288 1

where we also included for completeness the values of the lowest coefficients Ay and A;.

It is straightforward to extend these relations to arbitrary order in 1/g expansion.
We present the explicit expressions for the coefficients Ay (with 0 < k < 40) in the
supplementary material with our paper. Relations (5.23) combined with (4.1) yield a
strong coupling expansion of the octagon.

We notice that A3z = —A%. Similar relations hold for all coefficients with odd indices.
Namely, the coefficients Agy11 can be expressed in terms of the even coefficients Ag, (with
m < k), e.g.,

A3 = *Ag’
2045 104544
A5 - - ’
9 3
11245 1 14A6As  119A2
dy— 2+568A4A%_ 6A2 94’
5 45 3 15
248 49 432 2 206A4A
4y - 68(;?;)5 5 49576A4Ag+%A6A§+$AZA§ ~6AgA, — 204ads s o)

The origin of these relations is elucidated in appendix B.

5.2.2 Profile function

A close examination shows that the integral in (5.20) is not well-defined for positive integer
n and requires a regularization. Indeed, it is easy to see that log(1—Y(z)) ~ logz for z — 0
and, therefore, the integral in (5.20) diverges at the lower limit as [ dz/z%".

To understand the origin of this divergence, we turn back to eq. (5.17). The integral
in (5.17) is convergent at small z and the divergences appear in (5.19) after we exchanged
the integration and series expansion of the integrand at large g. As mentioned above, the
series expansion is well-defined for z = O(g%) and, therefore, performing the integration
we should have imposed a lower cut-off on the possible values of z.

The simplest way to do it is by introducing the so-called analytical regularization (see
appendix A). Namely, we modify the definition (5.20) by inserting an addition factor z¢
that suppresses the contribution of small z

1 [ dzzf

I,(e) = /0 o 20, log(1 — X(2)) . (5.25)

For any given n we choose € sufficiently large so that the integral is convergent. Then,
integrating by parts, we can reduce the strength of singularity at small z

1 Cdzz¢ 1
I = — X — log(1l—% . .2
) = Gy | e 0-20-loa(1 = X(2) (5.26)
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Subsequently integrating by parts n times we arrive at the integral that is well-defined for
e — 0. Taking the limit I, = lim._,( I,,(¢) we arrive at

! /000 dz (2710,)"20. 1log(1 — X(2))

Er—r
T S 15 \n cosh(y/22 + €2) — cosh &
C (2n-Dlix /0 @z (:770.)" 20: log (cosh(\/m) + coshy) ' (5:27)

It is easy to verify using 20, log(1 — X(z)) ~ 1 + O(z?) that it is well-defined for z — 0.
The explicit expressions for the profile function I,,(y, ) in different kinematical limits are

I, =

given in the next section.

6 Properties of strong coupling expansion

At strong coupling, the octagon is given by (4.1) with the expansion coefficients defined
in (5.23). In this section, we examine properties of the obtained expressions.
6.1 Improved expansion

According to (5.23), the expansion coefficients A,, (with n > 2) are given by multi-linear
combinations of the profile functions I},

Ap=cd]V Y > o p T (6.1)
(22 1o p>0

where the nonnegative integers p; satisfy the equation
pr+3p2+--+20-1)pp=n—1. (6.2)

The rational coefficients ¢, and ¢, ... p, exhibit a remarkable regularity. To make this
manifest, we rewrite the octagon (4.1) in the following form

1
logO = —2¢1y + 3 log g+ B +1og Qg , (6.3)
where log Q4 is given by
3 Ay Az Ay

logQ, = - 1 —+—+—+... 6.4
080 = glogg+ 1+ o ato st (6.4)

Replacing the coefficients A,, with their expressions (5.23), we find

3 3, 3IF 5, I3\ 1 1501, 314\ 1
logO = > logg— oL — 21 S ) B i 6.5
080 = 51089 ™ 16, TG4 T\ 1024 64/ T\ 2048 512/ 4 (6:5)

N 3R +1512112_ 633 \1 ( I} +2512113_3151311_ 8515 \ 1
1280 2048 32768 ) g° 1024~ 4096 65536 65536 ) g6

Notice that the coefficients involve terms of the form I{, I;I{, I3I{,.... Such terms can be
resummed to all orders in ¢

51 6313
1024(g — 1,/2)3  32768(g — I1/2)5

3
log©q:§log(g—ll/2)+ +..., (6.6)

where the dots denote further terms of the infinite series.
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The relation (6.6) suggests to change the expansion parameter to ¢’ = g — I;/2. Ex-
panding log O at large ¢/, we get a remarkably simple expression

3log(g") 5, 6313 8513 1012514 324451513 0 (1/4")
8 1024¢’3  32768¢’5 6553696 4194304¢'7 = 8388608¢'8 '
6.7)
)

where the expansion coefficients do not depend on I;. The expressions for the octagon (6.3

log Qg =

and (6.7) up to order O(1/¢g®®) can be found in the supplementary material.

The situation here is similar to that of the strong coupling expansion of the cusp
anomalous dimension. In the latter case, all corrections proportional to log?2 could be
absorbed into the redefinition of the coupling constant [19]. In the present case, the shifted
coupling constant, ¢ = g — I; /2, depends on the kinematical variables y and &.

6.2 Kinematical limits

In this subsection, we evaluate the profile function (5.27) and study the properties of the
octagon at strong coupling in different kinematical regimes.

Symmetric point y = £ = 0. In this kinematical point, the profile function (5.27) is
given by Iy = /2 and I) = —2log2/m. For n > 2, we have

2¢(2n—1) 221n(2n —1)

Iy = (=1)" (1 - 2272”) q2n—1 (=1) m2n—1 (6.8)

This relation should be compared with its counterpart at weak coupling (3.9).
Substituting (6.8) into (5.23), we obtain for the octagon (4.1)

3log(2)  3log*(2) N (15g(3) . log3(2)> 1 (6.9)

1
log O = —71g + =1 B -
©8 Tgt g ed B e T T T2 T\ 204808 T s

93
45¢(3)log(2)  3log*(2)\ 1 945¢(5)  45¢(3)1og?(2)  3log®(2)\ 1
a ( 204871 | 32q1 )4 * (2621447r5 LTI e R T >g5
(765g(3)2 N 75¢(3) log3(2) N 4725¢(5) log(2) N log®(2
26214476 102476 26214476 1676

>);6 Lo(/g).

As explained earlier, all terms in this expression involving log(2) can be absorbed into the
redefinition of the coupling ¢’ = g + log2/m. Assigning a weight 1 to 7 and log(2) and
weight k to ((k), we observe that the first two terms in (6.9) possess weight 1, whereas all
terms suppressed by powers of 1/¢g have a uniform weight 0.

A close examination of (6.9) shows that, starting from the O(1/g) term, the expansion
coefficients have alternating signs and grow factorially at higher orders.” This suggests
that the strong coupling expansion (6.9) is Borel summable.

As was mentioned above, B in (6.9) arises as an integration constant in (2.21) and,
therefore, it does not depend on the coupling constant. For y = £ = 0, we can fix its value
by comparing (6.9) with the numerical result for the octagon at some reference value of
the coupling 1 < g < 10. In this manner, we deduce that B = 0.960877 .

"To check this, we computed the coefficients up to order O(1/¢%®), see (7.1) below.
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Single-trace OPE channel ¢ = 0, £ > 1. In this limit, for y = iw and large &, the
cut-off function (2.13) simplifies to X (z) = exp(—22/(2¢)). Changing the integration vari-
able in (5.27) to x = 2/\/&, we get for £ > 1

guz—n (_pmtl /3 s, C(n—3)  m
I, — e ( N C<2 —n) =22 Msm (Z(Qn— 1)) . (6.10)

This relation holds up to corrections suppressed by powers of 1/€.

The strong coupling expansion of the octagon, egs. (4.1) and (5.23), takes the form

_ <<%) iz, logg 3¢(3) 1 3¢(3)" 1
log O = ——=~(27¢) 5 + B — 16 (27r§)1/29_ 61 9neg? (6.11)

(G <)y 1 () 1))

2048 64 ) (2me)3/%g3 512 4096 (21€)2g*
L3, 1¢E) @) 63CE)) 1

1280 4096 131072 ) (276)%/2g5

¢(3)" 25¢(3)°¢(3)  85¢(3)° 315¢(35)¢(3)) 1 .

a ( 10224 a 82192 o 2621314 - 2622144 ) (27€)3 40 +0(1/g")

The expansion coefficients in this relation involve (—functions evaluated at half-integer
positive values. Applying (6.7), we can eliminate ¢ (%) = —1.46035 from (6.11) by redefining
the coupling constant ¢’ =g — ¢ (%)/(8%6)1/2.

The series (6.11) is very similar to (6.9) as far as the properties of the expansion coef-
ficients are concerned. Namely, starting from the O(1/g) term, the coefficients have a uni-
form weight 0. In addition, they are sign-alternating and grow factorially at higher orders.

We observe that in all terms in eq. (6.11), except the second one, the coupling con-
stant is accompanied by (27 )1/ 2. so that the expansion parameter is effectively (277{)1/ 2g.
Assuming that the O(g") term in (6.11) has the same property, we can predict the

£—dependence of the constant term B
1
B = 1 log(27¢) + ¢. (6.12)

We verified that this relation agrees with the numerical values of the octagon at large &
and extracted the constant ¢ = 0.343754.

It is interesting to note that the weak coupling expansion of the octagon (3.12) also
runs in (even) powers of (27¢)/2g. This suggests to introduce § = (27¢)'/2g and compare
the dependence of the octagon on ¢ at weak and strong coupling. Neglecting corrections
suppressed by powers of 1/£, we observe (see figure 2) that the two curves defined by (3.12)
and (6.11) merge at intermediate values of g.

Double-trace OPE channel £ = 0 and ¢ — 0. As was already emphasized in sec-
tion 2.1, the leading contribution to the correlation function in this limit comes from
double-trace operators. We expect that for ¢ — 0 with g kept fixed, the octagon should
take a finite value O — 1.
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Figure 2. Dependence of logQ on § = (21€)'/%g at weak (red curve) and strong (blue curve)
coupling for £ — co. Black dots are numerical values of log @ at £ = 10 and different g. They lie
slightly below the curves, the difference is due to O(1/&) correction.

To approach this limit, we replace y = i(m — ¢) and £ = 0 in the profile function (5.27)
and take ¢ — 0. The leading contribution to the integral in (5.27) comes from z =
O(¢) whereas integration over z > 1 in (5.27) yields a subleading contribution as ¢ — 0.
Replacing the integration variable to x = z/¢ with 0 < x < 1/¢, we can expand the
integrand in (5.27) in powers of ¢? using the relation

cosh(z¢) — 1 2 4 22 .
cosh(z¢) — cos gb) —¢ =+ 0(¢7).  (6.13)

1422 120
This leads to the following result for the profile function I,, for n > 1

20, 1log (1 — X(2)) = 0, log <

¢172n o0 1 n 2 n 1—2n
I = e tyin /0 dr (1719,)" =3 + 0(6) = (-1 " +0(¢),  (614)

where the last term accounts for the contribution from z = O(¢"). For n = 0 we have
Iy = ¢ — ¢*/(2m).

Substituting (6.14) into (4.1) and (5.23), we obtain the strong coupling expansion of
the octagon

1 3 3 21
logO = —2g¢ + B + -1 -
©8 9o+ B 5189+ 15 0~ Gag2a? T 10245548

oo 1899 21
2048¢%¢% ' 163840¢°¢5  2048¢6¢6 '

(6.15)

where the dots stand for higher-order terms in 1/g as well as terms vanishing as ¢ — 0.
Notice that the expansion in (6.15) runs in powers of 1/(g¢) and, in order to take the

limit ¢ — 0, the series needs to be resummed. It is convenient to switch to o = 8¢g¢ and ex-

amine the limit ¢ — 0 with « held fixed and small. Then, the relation (6.15) takes the form

e log(g) 3 3 21 54 1899 3456 7
logO=——+B+—+ —— 4+ ———+—5——+0(1 . (6.16
& 4+ + 2 +2a a2+2a3 oz4+ 5ab ab +0(1/af) . (616)

Assuming that log@ depends on ¢ and g through «, we can determine the asymptotic
behavior of B at small ¢

B= %mg(m) | (6.17)
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In general, we can add an arbitrary constant to the right-hand side of this relation. As we
show in a moment, the condition for @ to vanish for ¢ — 0 leaves however no room for it.

To get a closed expression for the series (6.16), we examine the expansion coefficients of
Onlog O. Tt turns out that they form a sequence that had already appeared in the literature,
see refs. [20, 21], leading to

_ (=)™ /OO ds s"2
Onlog O = Z ar o Ki(s/4) + w213 (s/4)
ds

n>0
_/0 s*(K7(s/4) + 7213 (s/4)) (s + )

where K7 and I are modified Bessel functions. The integrand decreases exponentially fast

(6.18)

at large s and behaves as o/(16(a+ s)) at small s. Integrating by parts, we get for small «

Jalog O = 1% (loga — Kk + O(a)) , (6.19)
where
/ood d [ 16 lo 3log2 (6.20)
KR = — S — S = — . .
o ds [P/ + /)] T T
Imposing the condition that log @ has to vanish for « — 0, we finally arrive at
1, 1426 5

logO = 35 log o o1 © +O0(a”). (6.21)

We recall that this relation was obtained for ¢ — 0 and o = 8¢g¢ fixed. The comparison
of (6.21) with the numerical value of log O at g = 10 is shown in figure 3. Integrating (6.18)
with the boundary condition (6.21), we can obtain log O for arbitrary «. Its expansion at
large o takes the form (6.16) with B given by (6.17).

Notice that the resummed expression (6.21) vanishes for e — 0 faster than the leading
contribution at strong coupling. The latter is described by the first term on the right-hand
side of (6.16). It is also interesting to note that the leading asymptotic behavior of the
octagon at strong coupling logQ ~ 2¢2¢?log(g¢) is remarkably similar to that at weak
coupling log O ~ 2¢%¢?log ¢ (see eq. (3.14)) even though the two expressions are valid in
different regions of the parameter space.

Null limit y > 1, & < 1. In this limit, the profile function (5.27) can be expanded in
powers of &2
I, =IO + 1V + 1P + 0(¢°), (6.22)
where the coefficient functions Iy(f) (y) are computed in appendix D.
Using (6.22), we derive the strong coupling expansion of the octagon (4.1) and (5.23)

log® = fO(y) + 2D (y) + 4D (y) + O(°) . (6.23)
The leading term is
2 2 3
o_ _ (Y logg 0 3L 3L (L 5C(3) \ 1
f g ( - +7r> e B e T et \6an® T 109607 ) B (6.24)

B < 3L N 15Lg(3)> 1 _< 3L° 15L2¢(3) N 63¢(5) > 1 L0 < 1> 7

51274 1 819274 ) g4 \ 128075 ' 81927° | 52428875 ) ¢°

96
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Figure 3. Dependence of the octagon on o = 8g¢ for ¢ = 10 and £ = 0. Blue line shows (6.21),
red dashed line describes the leading strong coupling result (the first term in (6.16)). Black dots
are numerical values of log @ computed using (2.11) with the size of the matrix k_ truncated to
Niax = 100.

with the notation introduced for L = logy+~—log(27). The subleading terms are given by
0((3) | OL((3) | (OLX(3) | 75((5) \ 1
1) _ BM -
/ 9t + 12873g + 25674 g2 * 51275 i 3276875

9L3¢(3) 225LC(5) . 45¢(3)%\ 1 1
— 10 = 6.25
* ( 102470 6553670 © 65536n0 ) g1~ \g5) " (6:25)

2
fo__5B) | pey 10(G)  (105LCG) | 27C(3)°) 1
1673 204875 g 409676 409676
105L2¢(5)  27LC(3)2 1575¢(T) \ 1 1
— — — . 2
( 819277 * 409677 +5242887T7 +0 g* (6.26)

Here B are the expansion coefficients of B in powers of £2. Numerical analysis shows that
B = (0.035 y? 4+ 0.313 L + 1.208) + €4(—0.171 L +0.127) + O(&Y). (6.27)

As before, the expansion coefficients in front of powers of 1/g in the expressions for f (@)
have a uniform weight 0.

The expressions for f() contain terms enhanced by powers of L = logy +~ — log(2m).
Such terms can be resummed to all orders using the property of the octagon exhibited in
egs. (6.3) and (6.7), leading to

515 6313
1024¢'3 327684’

logO = —2gly + = logg + = log(g’) + B+ 0(1/¢'"9), (6.28)

where ¢ = g — I1/2 and the profile functions Iy, I1, ... are given by

=T Erhe . X o).

ok o,

- D o

13:;“6(7535 ?152227)5 121555759)5“0(56). (6.29)
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The first term in (6.28) agrees with (1.6), as anticipated. The expansion (6.28) is well-
defined for large ¢’ = g — I1/2, or equivalently for g > L/(27).

Comparing (6.23) with (1.4), we notice that the dependence of the null octagon on &
changes as we go from weak to strong coupling. In the former case, it is one-loop exact
log O ~ ¢g?¢2 whereas in the latter case, log O scales as O(g) and its small £ —expansion
does not truncate.

The transition between the two regimes can be understood using the last relation
in (4.14). We demonstrated in section 3, that at weak coupling the second term in the
right-hand side of this relation is exponentially small at large y. At strong coupling, we
replace the function ¢(z) in (4.14) with its leading asymptotic behavior (5.9) and take into
account (4.15) to get

dz z [J1(292)]?

cosh (W) — cosh(&)

where the ellipses denote corrections suppressed by 1/g. At large g, the leading contribution

deu = —8g*¢ + 8¢° sinhg/ +..., (6.30)
0

to the integral comes from z = O(1/g). Changing the integration variable to = 2gz and
expanding the integrand at large g, we find that the second term on the right-hand side
of (6.30) behaves at small £ as
 dx
s [2 [ 2 5Ra) + 01a)| = saP 1+ 001/9)] (6:31)
Substituting this relation into (6.30), we verify that the leading O(g?) term cancels yielding
deu = O(g€) or equivalently log @ = O(g€?) in agreement with (6.23).

7 Numerical checks

In this section, we compare numerical values of the octagon in different kinematical limits
with the corresponding analytical expressions obtained in the previous section. The numer-
ical results presented in this section were obtained in collaboration with Riccardo Guida.

To compute @ numerically for finite 't Hooft coupling, we apply the relations (2.11)
and (2.12) and truncate the size of the matrix k_ to Npax = 100. In addition, we also
compute a logarithmic derivative of the octagon with respect to the coupling constant,
Jglog O. According to (2.21), it is related to the potential, u = —2¢09, log O, which can be
found from (C.6) by replacing the matrix k_ with its finite-dimensional minor.

7.1 Borel-Padé improvement

At strong coupling, the octagon is given by the series expansion in 1/g, see egs. (6.3)—(6.5).
To study its asymptotic properties, it is advantageous to consider the logarithmic derivative
0410og O. It does not contain the constant term B and its expansion involves only inverse
powers of the coupling.

To begin with, we consider the octagon at the symmetric point y = £ = 0. According
to (6.9), it is given by a sign-alternating series in 1/¢g with factorially growing coefficients.
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Figure 4. Dependence of d4log@ on the coupling constant for y = £ = 0. Solid line shows the
strong coupling expansion (7.1) improved using the Borel-Padé method, red dashed line describes
the leading strong coupling result. Black dots denote numerical values.

Replacing (—values by their numerical values, we obtain

0.5 0.08274 0.01826  0.00488 0.00164  0.00067

0glog O = —3.14159 + — — (7.1)
J g 92 g3 g* 9° 4"
0.00033  0.000194 0.000131  0.000099  0.000084  0.000078
q7 o g® q° - g10 gl B g2
0.000079  0.000086  0.00010 0.00013 0.00017  0.00024
g3 B gl + glo B gl6 g7 B g'8
0.00036  0.00057 0.00095 0.00165 0.00301 0.00572 0.01132
919 B g20 g21 B g22 + g23 B 924 + g25
0.02334  0.04995 0.11091 0.25514  0.60729  1.49399  3.79458
B 26 g2 B g8 29 B 30 g1 B g2
9.9407 B 26.8349 n 74.5819 B 213.233 n 626.651 B 1891.58  5860.64
¢33 g3t g3° 36 g37 38 g9

Following the standard procedure [22], we can improve the strong coupling expansion (7.1)
by applying the Borel transformation

6glog©—/ dtB(t/g)e ", (7.2)
0

and replacing a partial sum B(t) by its Padé approximant [n/m]| = P, (t)/Qm(t).

For n = 2 and m = 3, the resulting expression for d,logO is shown in figure 4. It
agrees with the numerical values of the octagon up to g = 0.1.

We encounter similar situation in the single-trace regime, for ¢ = 0 and £ > 1. Strong
coupling expansion of the octagon (6.11) is Borel summable and it can be improved using
the Borel-Padé method. We verified that for & = 4 the resulting strong coupling expansion
agrees with numerical values of 9,1log @ up to g = 0.1.

7.2 Order of limits phenomenon

As mentioned in the Introduction, in the null limit, for y > 1, the octagon has different
asymptotic behavior depending on the hierarchy between y and g. At weak coupling, for
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Figure 5. Dependence of the octagon on the coupling constant at y = 10 for £ = 0 (left panel)
and £ = 1/10 (right panel). Black dots denote numerical values. Red and black lines depict (1.4)
and (6.28), respectively. At large g, the two lines on the left panel are separated by a finite distance
m/2 due a mismatch of terms proportional to 7g in (1.4) and (1.6).

y > g, the octagon scales as (1.4). At strong coupling, for g > y > 1, its leading behavior
is given by (1.6) and subleading corrections are defined in egs. (6.23) and (6.28).

We recall that at strong coupling the relations (1.4) and (1.6) differ by the terms pro-
portional to gm and they exhibit different dependence on . We will verify them in two
steps. First, we put £ = 0 and examine the dependence of d,log O(0) on the coupling con-
stant at y = 10. Second, in order to check the £ —dependence, we consider the logarithmic
derivative of the ratio of octagons d,log(0(0)/O(§)) and examine its g—dependence for
& = 1/10. We observe (see figure 5) that the relations (1.4) and (6.28) are in agreement
with numerical values at lower and higher values of g, respectively. The transition between
the two regimes occurs for small ¢/ = g — L/(27), or equivalently for g ~ logy/(2m).

8 Conclusions

In this paper, we demonstrated that the correlation function of four infinitely heavy half-
BPS operators defined in (1.1) satisfies a system of nonlinear integro-differential equations
in planar A/ = 4 SYM. These equations are powerful enough to determine the correlation
function for arbitrary values of the 't Hooft coupling and for generic values of the cross
ratios.

The starting point of our consideration was a representation of the correlation func-
tion as a determinant of a semi-infinite matrix previously derived in refs. [10, 11] using
integrability-based hexagonalization framework [4-6]. The matrix in question describes
magnons propagating on a worldsheet of the octagon in the dual string theory and it has
interesting properties. We found that it can be brought by an appropriate similarity trans-
formation to a block-diagonal form. This allowed us to express the correlation function
as a Fredholm determinant of an integral operator on a half-line with a well-known Bessel
kernel modified by a cut-off Dirac-Fermi-like function. The resulting Fredholm determinant
representation of the four-point correlation function has a striking similarity to two-point
functions in integrable low-dimensional integrable models. Taking advantage of this fact,
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we applied the method of differential equations developed in ref. [15] and derived a system
of nonlinear equations for the octagon.

At weak coupling, a solution to these equations yields the known expansion of the
octagon over ladder integrals. At strong coupling, we developed a systematic expansion of
the octagon in the inverse powers of the coupling constant and derived a representation of
the corresponding coefficients as integrals of the cutoff function. We examined the resulting
strong coupling expansion of the correlation function in various kinematical regions and
observed a perfect agreement both with its expected asymptotic behavior dictated by
the OPE as well as outcomes of numerical evaluation of the octagon. We found that,
surprisingly enough, the strong coupling expansion is Borel summable. Applying the Borel-
Padé method, we demonstrated that the improved strong coupling expansion correctly
describes the correlation function over a wide region of the coupling constant.

There are several avenues for further studies.

Analyzing the strong coupling expansion of the octagon, we focused on perturbative
corrections in 1/¢g and systematically discarded exponentially small nonperturbative correc-
tions suppressed by powers of e”™. The latter are ubiquitous to strong coupling analyses
in AdS/CFT and it would be interesting to elucidate their origin. Recall that in the well-
studied case of the cusp anomalous dimension, nonperturbative effects manifest themselves
through Borel singularities of the strong coupling expansion in 1/g. They are associated
with a formation of a mass gap in the nonlinear O(6) sigma model describing massless
excitation of the string worldsheet [23, 24]. Particularly, it would be important to reconcile
exponentially small corrections to the octagon with the apparent fact of Borel summability
of the corresponding perturbative series in 1/g.

According to AdS/CFT, the leading term Ay in the strong coupling expansion of the
octagon (4.1) should be given by a minimal area of a string worldsheet residing on four AdS
geodesics. It would be very interesting to compute Ag directly from string theory. Quantum
fluctuations of the string generate corrections to (4.1) suppressed by powers of 1/g. It would
be even more exciting to reproduce the relations (5.23) and, in particular, unravel the ori-
gin of universality of log g enhanced term in (4.1) coming from quadratic fluctuations. The
method of differential equations allowed us to compute all the coefficients in (4.1) except the
constant, g—independent term B which appears as an integration constant in (2.21). One
can use the relation (2.27) to find its dependence on the kinematical variables but the cal-
culation turns out to be surprisingly complicated. The main reason is that the integration
in (2.27) does not commute with strong coupling expansion of the function Q(z). Namely,
all terms in 1/g expansion of this function contribute to B and the strong coupling series
needs to be resummed to all orders in 1/g. This question deserves a thorough investigation.

Intriguingly, the anomalous dimension I'(g) describing the leading asymptotic be-
haviour of the null octagon (1.4) also controls a double-logarithmic behavior of the six-
gluon MHV amplitude in a kinematical limit when three adjacent pairs of gluon momenta
become collinear simultaneously [25]. We also observed in ref. [1] that this anomalous di-
mension admits a complimentary description in terms of a flux-tube-like equation, whose
origin remains obscure to us. These two facts hint towards the existence of a nontrivial
connection between tessellation of amplitudes in terms of pentagons, on the one side, and
hexagonalization of correlators, on the other.
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It would be interesting to extend the formalism developed in this paper to more com-
plicated correlation functions. The most immediate example are the octagons with nonzero
internal bridges [2]. They admit a Fredholm determinant representation similar to the one
studied above [10, 11] and determine the so-called asymptotic correlation functions [2, 26].
We plan to address these questions in the future.
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A Analytical regularization

In this appendix, we discuss the strong coupling expansion of the following integral

[e.e]
le) = [ dz20.10g(1 = X)) T 29, (A1)
where the cut-off function X(z) is given by (2.13). It arises as the leading term in the
expansion of the moment Q, = — [;° dz2*"q(2)d.X(z) after we replace the function ¢(z)
with its expression (5.9) to the leading order in 1/g.

We perform the calculation of (A.1) using two different methods. The first one is
based on the well-known Mellin-Barnes representation of the Bessel functions. The second
one employs an analytical regularization described in section 5.2.2. We show that the two
methods give the same result.

To start with, recall the Mellin-Barnes transform of the product of Bessel functions
in (A.1)

. 1_J J
Ji(292) = /;;(292)_j90(j)7 e(j) = 2\;%0 %)JS 1{%(; 1>j) , (A.2)
& 2 32

where the integration contour runs parallel to the imaginary axis and —2 < Rej < 1.
Taking into account this relation, we get from (A.1)

o) = [ 52=20) el [z, 0g(1 - 3(2)). (A3)

At large g, we can deform the integration contour to the right towards large positive j and
pick up residues at poles encountered along the way. The poles emerge from the function
©(j) as well as from the z—integral. Similar integrals had already occurred in eq. (5.25). We
recall that 0, log(1—%X(2)) = 2/240(z) for z — 0 and, therefore, the integration over small
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z produces poles at 2n — j = 0, —2, —4, ..., or equivalently j = 2n,2(n+1),2(n +2),....8

Notice however that ¢(j) vanishes for j = 2,4, ... and, therefore, the integral (A.3) has

zero residues at all poles mentioned above except j = 0. Such pole only appears for n = 0.
In this case, we have

fo(g) = —¢(0) resj—g /000 dz 2770, log(1 — x(2))

_ N [T dz -~
_ 2(29) 2kt vesj—op 1 0(J) [/ —55 20 log(1 — X(2)) . (A4)
k’Zl 0 Z reg
Here in the second line, the sum runs over the poles of the function ¢(j) and [...]weg

denotes the regular part of the integral. Similarly to (5.25) and (5.27), it can be found by
integrating by parts k times. In this manner, we obtain

1Nk T vl (k+3)
hl) =1 O G R R (§ BT e

where [, is the profile function defined in (5.27).
For n > 1, the integral in (A.3) is given by the sum over residues of the function ¢(j)

Fulg) = — 3" (20) 2 resy o1 0()) [ | i 01081 - 3621

= reg
_ (=D)* Vil (k+ 1)
- kzzl 29 T (E—K)T (3 _Qk) T(g) & (A.6)

where Ij,_,, is defined in (5.27).

Let us now reproduce the same relations using an analytical regulation. Assuming that
the dominant contribution to (A.1) comes from z = O(g%), we replace the Bessel function
in (A.1) with its asymptotic behavior at large g

J1(292) = \/2;? lao(gz) sin(2gz) + bo(gz) cos(2gz)] . (A.7)

The explicit expressions for ag and by can be read from (5.11). Replacing rapidly oscillating
functions in the expression for J#(2g2) with their mean values, we get from (A.1)

1
Fulg) = 27rg/ dz 22719, log(1 — X(z)) x 5 [a%(gz) +b3(gz)] ) (A.8)
where
1 3 45 1575
3 Lad(92) +b5(92)] =1+ 329222 2048¢°2% | 655364040 0(1/(92)%)- (A-9)

Expanding (A.8) in powers of 1/g, we encounter the same integral as in (5.20). We use the
analytical regularization to define it according to (5.27). This leads to

1 3 45 1575

fn(g) =— |[1-n+

S S A Ty A.10
29 32¢2 2 204847 " T 6553646 1 T (4.10)

8Here we took into account that ¥ (z) is an even function of z.
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It is straightforward to verify that this relation coincides with (A.6) for n > 1. However, for
n = 0 the relation (A.10) does not capture the leading, O(g°) term in the right-hand side
of (A.5). The missing contribution comes from the integration over the region z = O(1/g).
Indeed, restricting the integration in (A.1) to 0 < z < ¢/g, we get

C (&
fo= / /9 dz 9, log(1 — X(2))J?(292) + - = 2/ d%]f(l’v) +--=1+..., (A1l
0 0
where the dots denote contributions from z = O(g®). Here in the second relation, we
changed the integration variable to x = gz, took the limit ¢ — oo together with ¢ > 1.
The above analysis demonstrates that the analytical regularization captures the con-
tribution to (A.1) coming from integration over z = O(g") and, therefore, suppressed by
powers of 1/g. The remaining O(g%) contribution comes from z = O(1/g) and it is con-

trolled by the behavior of the function ¢(z) at small z.

B Quantization condition from zeroth moment

We demonstrated in section 5 that the relation (5.2), combined with the strong coupling
expansion of the function (5.9) for 2 = O(g"), can be used to compute the octagon (4.1)
at strong coupling.

In this appendix, we present another approach to computing the octagon. It relies on
the relation (4.15) and makes use of the strong coupling expansion of the function (5.9)
for z = O(1/g). As we demonstrate below, it yields the same result for the expansion
coefficients (5.23) and allows us to establish the relations (5.24) between the coefficients
with odd and even indices.

We introduce x = 2¢gz and look for the solution to (4.12) in the form (5.9) with

fzfo(:c>+;fl(x>+;2f2<w>+..., (B.1)

where * = O(g") and g > 1. Substituting this ansatz into (4.12) and matching the
coefficients in front of powers of 1/g we obtain the system of differential equations

22 f (x) + 2 fo(x) + (2® = 1) fo(z) = 0,
2 f{ (@) —afi(@) +a? fi(x) + A2 fo(z) = 0,
2? f3 (x) — 3 fy(x) + (2% + 3) fa(@) + Az fo(z) + A2 fr(x) = 0. (B.2)
We verify that, in accord with (5.9), the solution to the first equation is
fol) = Ti(a) (B.3)
Solving (B.2) we assume that the expansion (B.1) is uniform at small z, i.e. fi1, f2,... do

not modify the leading small x behavior and scale as f,, ~ x for z — 0.

At small x, we substitute fy(x) ~ x/2 into the second relation in (B.2) to find that
fi(xz) ~ Ag x/2. In a similar manner, replacing fa(z) ~ cz in the last relation of (B.2), we
notice that the terms proportional to ¢ drop out resulting to

Asfo(z) + Asfi(z) = O(2?). (B.4)
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Equating to zero the coefficient in front of o on the left-hand side we arrive at A3+ A2 = 0,
in agreement with (5.24).

The same mechanism is at work for high-order functions in (B.1). Replacing f/(x) =
> psq foer® in (B.1) we can obtain from (4.12) the system of linear equations for the
coefficients for. For £ =4,6,... this system turn out to be overdetermined. For the solu-
tion to exist the coefficients with odd indices Asx+1 have to satisfy consistency conditions.
They take the form (5.24) and allow us to express Asi11 in terms of the coefficients with
even indices. To determine even coefficients Ao, Ay, ..., we use the relation for zeroth
moment (4.15).

Substituting (5.9) and (B.1) into (4.15), we obtain the relation

Qo,0 + ;QO,I + 912@0,2 =0(1/¢%, (B.5)
where the notation was introduced for
Quo= [ dz0.10(1 - () (02) - 1.
0
Qo =2 /0 dz 9. log(1 — R(2))fo(92)f1(92).
Qo2 = /0 dz 9. log(1 — R(2)) (£2(92) + 2fo(92) fo(g2) (B.6)

We show below that these functions are given by series in 1/g with the coefficients depend-
ing on the expansion coefficients Ay of the octagon (4.1). Equating to zero the coefficients
in front of powers of 1/g on the left-hand side of (B.5), we can determine Ay.

The leading function Qoo can be computed using the relations (A.1) and (A.10)

1
Qoo =fo—1= i +0(1/¢%), (B.7)
where I; is given by (5.27). According to (B.5), the O(1/g) contribution to Qg should
cancel against O(g") contribution from Qg1 on the left-hand side of (B.5).
To compute Qo1 we need an expression for the functions fi(x). Solving the second
equation in (B.2) we get

A == en) [ EnEne) +i@ [ SGaene|. @9

2

where J; and Y7 are Bessel functions. Here the integration contours are chosen in such a
way that the two integrals are convergent. In general, f is defined up to a solution to the
homogenous equation, f1 — f1 + cizJi(x) + jzYi(x). The value of ¢} = 0 is fixed from
the requirement that f; = O(x) at small x. To fix ¢;, we require that the contribution
of Ji(z) to fi(x) should not modify asymptotic behavior of the leading function (B.3) at
large x. This leads to ¢; = 0.

The leading, O(g°) contribution to Qo1 comes from the integration over small z =
O(1/g) in (B.6). Replacing 9,log(l — x(2)) = 2/z + O(z) in (B.6) and changing the
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integration variable to z = x/(2¢g) we evaluate the leading contribution to Qo as
* dz
Qua=1 [ T h@h) +001/s)
0
= —27rA2/ dx Jl(J:)Yl(x)/ da’ J2(z') (2 + 2) +0(1/¢%)
0 0 x/ x
Ay +0(1/g%). (B.9)

~— Wl o

Substituting (B.7) and (B.9) into (B.5) we find that the coefficient in front of 1/¢g vanishes
provided that As = —3I;/4, in agreement with (5.23).
Moving on to the next order, the solution to (B.2) for f; is

hlo) = -5 @) [ SR E i) + Ao (B.10)
— Yl(a;) /oo ;l,:L;Jl((L'/)[A?)f()(‘T/) + Agfl(x’)] + coJq (1‘) + C/2Y1(QJ) .

Again, we have two integration constants co and ¢, accompanying the solutions to the
homogenous equation. Taking into account that fo(z') ~ 2'/2 and fi(2') ~ Asa’/2 for
small 2/, it is easy to check that the integral on the second line of the last relation modifies
the asymptotic behavior of fao(z) at small z, e.g. fao(z) ~ (A3 + A3) zlogx/4. Requiring
such terms do not appear, we find that A3 = — A%, independently of the values of ¢y and c}.

The coefficients ¢z and ¢, can be determined from relation (B.5). Notice that in virtue
of (B.7) and (B.9), the first two terms in the left-hand side of (B.5) do not produce O(1/g?)
corrections and, therefore, the relation (B.5) leads to Qg2 = 0+0O(1/g). Substituting (B.10)
into (B.6) and going through a rather elaborate calculation, we find that ¢,Y7i(x) term
in (B.10) produces the contribution to Q2 that scales as O(g). To avoid it we require that
b, = 0. Then, the vanishing of O(g°) correction to Qo2 leads to cy = 16A3/9.

The above analysis can be extended to high orders in 1/g. It leads to the same
result (5.23), but calculations become more involved and tedious as compared to those
presented in section 5.

C Matrix representation

In this appendix, we present a solution to the differential equation (2.24) in terms of a
semi-infinite matrix (2.12).
According to (2.23), the function Q(x) admits a representation
K
Qx) = 6(x) + (x| 10) = o(a) + 3 (el (K)'16). (©1)
X

>1

where ¢ = Jyo(y/x) and the operator K, is defined in (2.16). To evaluate the second term

in (C.1), we first determine the kernel of the integral operator (K, )*

(z|(Ky) 2"y = /000 dry ... de, 1 K(x,21)x(21) ... K(zp-1,2")x(2)). (C.2)
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Replacing the K —kernel with its explicit expression (see the first relation in (2.15)), we get

Bl = 3 (am ) 2D ey, Bty (g

where the matrix k_ is given by (2.12). Substitution of this relation into (C.1) yields the
following representation for the solution to (2.24)

n,m=0

Q@) =a(ve) + 3 (L) emi . (c)

n,m=0
Here the notation was introduced for
o0 d.ﬁU/
0o Vo
o0
= 491" [ deanis (202)90(292)802) (C.5)
0

(@) Jom1 (V') Jo(Va!)

Xm = (—=1)"

where 2’ = 2¢z and the function X(z) is defined in (2.13).
For the potential we find in a similar manner from (2.20)

K
u = (019) + (S 19)

Z/Oodﬂsx(a:)Jg(ﬁ)Jr i xn(1_1k>nm(2m+1)><m. (C.6)

0 n,m=0

It follows from the second relation in (C.5) that y,, = O(g?™*?) at weak coupling. As a
consequence, the weak coupling expansion of (C.4) and (C.6) contains a finite number of
terms at any order in the coupling.

At finite coupling, we can approximate the exact expressions for Q(z) and wu by
retaining a sufficiently large number of terms in (C.4) and (C.6). To this end, we re-
place the semi-infinite matrix (k_)n., in (C.4) and (C.6) by its finite-dimensional minor,
n,m < Npmax ~ 102. This procedure proves to be efficient in numerical analysis of the
differential equation (2.24).

D Profile function in the null limit

Expanding the cut-off function (2.13) at small £ and large y, we get

z 2z 1 z+1

— v — 2 —
OB = e T e Y v ey 2O re) -y
2z 3z—1 22— z—1
+ - - +0(EH) +0(e7Y).
(ez _1)3 (ez _1)2 (ez _1) z (5 ) ( )

Substituting this relation into (5.27), we obtain for the profile function

I, = IV + &1V + 1P + 0(¢%) . (D.2)
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For the leading function, the calculation gives

1 = - (P +3?).

2w
1 = %(logy +7 — log(27)) ,
17(LO) — (_1)n+1m for n Z 2’ (D3)

(27.‘-)2n—1 ’

where v is the Euler-Mascheroni constant. Here the first relation is exact whereas the
remaining ones hold up to corrections suppressed by powers of 1/y2. Note that the functions
1 and ¥ igh
1 n~ possess weight 0.
For the O(£2) and O(&%) corrections to the profile function, we find in the same fashion

V= —%(logy +1+ 7 —log(2m)),
2k + 3
1M = (DM 2k 1) (2K + 3)W :
1 C(2k +3)
12 = E(—l)k“(% —1)(2k + 1)(2k + 3)(2k + 5) ((270%3 , (D.4)

where k > 0. Higher order corrections to the profile function (D.2) are given by

kip_12C(2k + 2p — 1) (2k + 4p — 3)!!
(2m) 221 (2K — 3)l1(2p)! ’

7 = (—1) fork>0andp>2.  (D.5)

The above relations are valid up to corrections vanishing as y — oo.
According to (D.2), the profile function I,, depends on y only for n = 0 and n = 1.
Moreover, this dependence is confined to the first two terms in the £2—expansion.
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