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Abstract
Arecanut X‐ray images accurately represent their internal structure. A comparative
analysis of transfer learning‐based classification, employing both a traditional convolu-
tional neural network (CNN) and an advanced quantum convolutional neural network
(QCNN) approach is conducted. The investigation explores various transfer learning
models with different sizes to identify the most suitable one for achieving enhanced
accuracy. The Shufflenet model with a scale factor of 2.0 attains the highest classification
accuracy of 97.72% using the QCNN approach, with a model size of 28.40 MB. Out of
the 12 transfer learning models tested, 9 exhibit improved classification accuracy when
using QCNN models compared to the traditional CNN‐based transfer learning approach.
Consequently, the exploration of CNN and QCNN‐based classification reveals that
QCNN outperforms traditional CNN models in accuracy within the transfer learning
framework. Further experiments with qubits suggest that utilising 4 qubits is optimal for
classification operations in this context.
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1 | INTRODUCTION

Arecanut is one of the commercial crops grown in many parts
of India. Arecanut is embraced with a set of unique method-
ologies and cultural significance when it comes to its cultiva-
tion and usage [1]. It is used in many forms, such as tea, supari,
ice cream, paints etc. Grading or classification of Arecanuts are
performed based on externally appearing characters. Some
authors used raw Arecanuts for classification purpose. How-
ever, Arecanut industry uses dried Arecanuts, since they can be
preserved for longer duration. Dried Arecanuts are categorised
into two major forms based on the processing post harvesting,
namely the red‐boiled type arecanut and the sun‐dried type
arecanut. In this study, we consider sun‐dried type of arecanut
and its X‐ray images for grading/classification. Figure 1 shows
Arecanuts in various forms representing feasibility of using
non‐destructive approach for grading them. Hence X‐ray im-
aging is a potential imaging tool for examining the quality of an
Arecanut using non‐destructive approach.

Many works were performed for the classification of
Arecanuts using image processing and machine learning tech-
niques [2–7]. However, these approaches cannot determine the
true quality of arecanut, since classification is performed based
on external appearance. We need a method to determine the
grade of an Arecanut by examining internal structure. Srimany
et al. examined the internal structure of Arecanut using mag-
netic resonance imaging (MRI) imaging technique [8]. How-
ever, the use of MRI is not suitable for classification of
Arecanut due to high cost involved in imaging and only one
sample can be examined at a time. Naik and Rudra proposed a
non‐destructive approach of grading and localisation of Are-
canut using X‐ray imaging. The authors proposed a light‐
weight deep learning model using adaptive genetic algorithm‐
based approach for the detection of three Arecanut grades [9].

Researchers widely use neural networks and transfer
learning methods due to their effectiveness and computational
power [10–15]. These models eliminate the need for manually
extracting features, making deep learning techniques adept at
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automating binary or multi‐class classification tasks. The in-
crease in image data and harder computing tasks are pushing us
to make image processing better. Using quantum computing
for image processing could be a key strategy to address the
increasing volume of data and accelerate the classification
process. Quantum information processing harnesses special
traits of quantum mechanics, such as superposition, entangle-
ment, and parallelism, to speed up classical tasks. It aids with
things, such as factoring large numbers, searching databases,
and more. These unique quantum features can also fasten the
signal processing and data processing.

Various researchers applied quantum‐based classification
on their datasets. Subbiah et al. used ‘ant and bee’ and ‘potato
leaf disease’ datasets for the classification using transfer
learning approach [16]. Huang et al. [17] proposed hybrid
quantum‐classical neural network for the classification of
handwritten images in MNIST dataset [18]. Alsharabi et al.
performed classification of disorders in brain MRI images
using alexnet‐based quantum variational circuit [19]. Mir et al.
performed detection of diabetic retinopathy using classical‐
quantum transfer learning‐based approach [20]. The appro-
priateness of these models and pre‐trained models employed in
transfer learning can differ based on individual datasets and
their sizes. We conduct an investigation to identify the best‐
performing transfer learning model for our specific dataset
of Arecanut classification.

In our study, we employ transfer learning techniques in
quantum processing by utilising various pre‐trained models for
our dataset. Our goal is to investigate their effectiveness in
classifying Arecanut X‐ray images, aiming for superior per-
formance within this specific domain. By harnessing transfer
learning, we capitalise on the knowledge and features acquired
by these pre‐trained models from extensive datasets. We apply
these models to Arecanut X‐ray images to explore their po-
tential for achieving high‐performance classification tasks in
this specialised field. This exploration into their adaptability
and accuracy within this context offers valuable insights into
the potential of transfer learning‐based quantum image

processing techniques for efficiently and accurately classifying
Arecanut X‐ray images.

2 | MATERIALS AND METHODS

2.1 | Dataset and pre‐processing

This study employed a dataset comprising Arecanut X‐ray
images with three distinct classes. The dataset includes a to-
tal of 900 images, evenly distributed with 300 images repre-
senting each class. These images are divided into two sections
designated for training and validation. Within each section,
there are three classes—Grade 1, Grade 2, and Grade 3—each
containing images specific to their respective classes. Final
version of dataset is distributed in the ratio of 4:1 for training
and validation respectively.

The images in the dataset differs in resolution, thus we
resized them to 256 � 256 pixels to ensure that all images in
the dataset have a consistent size. Further the centre cropping
of 224 � 224 is applied to resize the images to a larger size and
then cropping the central region to a smaller, standardised size.
This can help the model generalise better during training by
providing it with variations of the input data. Finally, to load
the images in the range [0, 1] the images are normalised ac-
cording to mean [0.572291, 0.572291, 0.572291] and standard
deviation [0.20683911, 0.20683911, 0.20683911] as per our
dataset images.

2.2 | Using hybrid quantum transfer
learning model

Transfer learning involves transferring knowledge gained from
a source task to a target task. Initially, the algorithm is trained
to master and execute a specific source task, after which this
acquired knowledge is applied or transferred to a different
target task. The necessity for employing transfer learning arose

F I GURE 1 Various representation of an Arecanut. (a) A Husk covered Arecanut. (b) An X‐ray image of husk covered Arecanut. (c) An Arecanut kernel.
(d) An X‐ray image of Arecanut kernel.
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from encountering real‐world scenarios where adequate
training datasets are not available for specific tasks. This
approach allows leveraging existing knowledge from one
domain to improve learning and performance in another
domain, thereby addressing the limitations posed by insuffi-
cient data availability in various practical applications. We uti-
lised various standard transfer learning models for our study
with its alternates, such as Shufflenet‐V2 [21], ResNet [22],
RegNet [23], WideResnet [24], Googlenet [25] as indicated in
first part of the Figure 2 which were trained on the ImageNet
dataset that is a widely used large‐scale dataset in the field of
computer vision.

Quantum transfer learning, utilising variational circuits,
offers a promising approach to enhance the analysis of
image datasets. Variational circuits serve as the foundation
for quantum machine learning models. The transfer learning
process initiates with pre‐training the variational circuit on a
related quantum task, enabling the model to capture generic
features common to quantum image classification. The
variational quantum circuit comprises three layers: embed-
ding, variational, and measurement layers. The embedding
layer initialises all qubits in a superposition of up and down
states, followed by rotations based on input parameters.
Variational layers apply a combination of trainable rotation
and constant entangling layers. The measurement layer cal-
culates the local expectation value of the ZZ operator for
each qubit, yielding a classical output vector for further
processing. Subsequently, a dressed quantum circuit is
created, incorporating classical pre‐processing, a classical
activation function, constant scaling, the earlier defined
quantum circuit, and classical post‐processing layers. Transfer
learning is employed by downloading a classical pre‐trained
network and replacing the final fully connected layer with
our trainable dressed quantum circuit. While quantum ma-
chine learning is a dynamic field, these principles provide a
conceptual framework for leveraging quantum transfer
learning in the realm of image analysis. Thus, we have uti-
lised transfer learning technique on our dataset for

classification using quantum convolutional neural network
(QCNN) approach as mentioned in the lower part of the
Figure 2.

In our performance evaluation, we employ well‐established
standard transfer learning models with its alternates, such as
Shufflenet‐V2, ResNet, RegNet, WideResnet, Googlenet. Our
approach involves constructing these models by incorporating
pre‐trained weights derived from the ImageNet dataset. We
optimise the imported models by integrating additional layers,
such as global average pooling, batch normalisation, and dense
output layers. The primary objective behind integrating the
global average pooling layer is to obviate the necessity of fine‐
tuning hyperparameters in the classical transfer learning
models. During the model training phase, we initiate the pro-
cess by freezing all base layers and solely training the output
layer using a relatively high learning rate. Subsequently, to
enhance model accuracy, we strategically reduce the learning
rate after an initial set of epochs. Thus, it offers the advantage
of maintaining the base layer weights without significant al-
terations during the early epochs when the final layers are yet
to stabilise. The implementation details for Arecanut grade
classification is illustrated in Figure 2.

3 | RESULTS

In our study, the Quantum Computing devices utilised include
the Penny‐lane default device and IBM Qiskit Basicaer simu-
lator device. The simulator was chosen for the noiseless
characteristics to mitigate any potential errors during compu-
tations. The experiments are performed on 11th Gen Intel(R)
Core(TM) i7‐11700 @ 2.50 GHz device. The images are
resized to 256 � 256 and normalised during run time. All the
experiments are trained for 40 epochs using transfer learning.

In our investigation, we conducted analysis for various
models of transfer learning for both classical and quantum‐
based approaches. Prior to training, hyperparameters are
defined as specified in Table 1, with Adam as the optimiser.

F I GURE 2 Block diagram illustrating the
implementation of quantum transfer learning for
classification using Arecanut X‐ray images.
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3.1 | Classification performance of hybrid
quantum transfer learning model

To gauge the effect of classification, we consider various
transfer models that exhibits various model sizes as illustrated
in Figure 3. Additionally, we are considering various model
sizes that illustrates the change in classification accuracy for the
dataset that is considered. Figure 3 represents the lowest model
used for classification is Shufflenet‐V2 with network scale
factor of 0.5 of size 5.28 MB, whereas the largest model used is
Resnet‐101 with model size of 172 MB.

Transfer learning‐based classification of Arecanut X‐ray
images are performed using classical Convolutional Neural
Network (CNN) models and on QCNN models. The result of
classification is represented in Figure 4. Among the models,
shufflenet with scaling of 0.5 model has shown least accuracy
of 72.38% for traditional CNN model and 73.29% accuracy for
QCNN model. This indicates the smaller model size with few
layers contributes to the poor classification performance.
However, its worth noting that the largest model, Resnet‐101,
of model size 171 MB does not guarantee the best classifica-
tion accuracy for CNN as well as QCNN transfer learning
approach. Thus, there is a necessity of exploring an optimal
model which is smaller in size and yet provides better classi-
fication accuracy. In this search, we got a best accuracy of
97.72% for the model shufflenet whose scaling is 2.0, and also
note that its model size is only 28.40 MB using QCNN transfer
learning technique.

Our study shows that, among the 12 transfer learning
models used for classification of Arecanut X‐ray images, 9
models have performed better using QCNN‐based approach,
as compared to that of traditional CNN models. The models
Resnet‐34 and Googlenet has shown superior classification
accuracy in CNN model as compared to QCNN models.
However, the difference in classification accuracy using CNN

versus QCNN‐based transfer learning is small. It is worth
noting that, the classification accuracy for our dataset has
outperformed using transfer learning‐based QCNN approach.
Figure 5 compares the classification accuracy obtained using
transfer learning‐based approach on best performing model
(Shufflenet‐V2 of scale 2) for classical CNN versus Quantum‐
based approach. It is to be observed that using Quantum‐
based transfer learning, we have achieved an accuracy of
97.72%, while classical CNN‐based approach has shown ac-
curacy of 85.58% only. Similarly, Figure 6 represents the loss
curve obtained during the training of best performing model
(Shufflenet‐V2 of scale 2) with classical CNN versus
Quantum‐based approach. Therefore, we have determined that
the Shufflenet‐V2 model with a scale of 2 is the most optimal
choice for our dataset when employing transfer learning
techniques with Quantum for image analysis.

We further performed investigation on the possibility of
improving the accuracy for the best performed QCNN model
for various qubit sizes of 2, 4, 8, 12 and 16. Through this
investigation, we sought to explore any correlations between
the number of qubits and the efficacy of classification tasks. It
is worth noting that while 4 qubits emerged as the optimal
choice in our experimentation, variations in qubit numbers
have not contributed for better accuracy. It is observed that
higher numbers of qubits may offer increased computational
capacity and the ability to represent more complex data
structures and the practical implementation of models with
higher qubit counts may present challenges in terms of
resource requirements and computationally are very expensive.
Conversely, using a lower number of qubits could lead to
simplified model architectures and reduced computational
overhead. However, this may come at the expense of dimin-
ished representational capacity and may lower classification
accuracy, particularly for datasets with intricate patterns or
features. The classification accuracy for various qubits is

TABLE 1 Hyperparameters used for
quantum convolutional neural network.

Hyperparameters Qubits Quantum depth Cost function Batch size Learning rate Epochs

Values 4 6 Cross‐entropy 40 0.0004 40

F I GURE 3 Comparison of transfer learning
models and their respective sizes.
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F I GURE 4 Comparing accuracies achieved through transfer learning: CNN versus QCNN approach. CNN, convolutional neural network; QCNN,
quantum convolutional neural network.

F I GURE 5 Comparing accuracy curves for
transfer learning with Shufflenet‐V2 at scale 2: CNN
versus QCNN. CNN, convolutional neural network;
QCNN, quantum convolutional neural network.

F I GURE 6 Comparing loss curves for transfer
learning with Shufflenet‐V2 at scale 2: CNN versus
QCNN. CNN, convolutional neural network;
QCNN, quantum convolutional neural network.
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represented experimented on our dataset is represented in
Figure 7. However, there is no improvement in classification
accuracy found as compared to the initial experiment per-
formed for qubit 4, for qubit of 12 size near best accuracy of
97.42% was found with the expense of delay in computation.

4 | CONCLUSION

In our investigation, we conducted a thorough study of various
transfer learning model‐based approach for classifying Arecanut
X‐ray images using both CNN and QCNN. We employed 12
transfer learning models in our experiments. We observed that
the QCNN consistently outperformed the CNN‐based
approach among the nine models. Notably, the Shufflenet
model with a scale factor of 2 emerged as the top performer,
achieving an impressive accuracy of 97.72% with a compact
model size of 28.40 MB through the QCNN approach. We
explored identifying suitable qubit values for the classification of
Arecanut. However, after testing various qubit sizes, we found
that the best accuracy was obtained with a qubit value of 4, and
further exploration did not lead to improvements in classifica-
tion accuracy. It is crucial to note that the computational cost of
quantum processing, particularly through simulation, led to
longer training times compared to traditional CNN approaches.
Nevertheless, the implementation of these models on actual
quantum‐based hardware is anticipated to significantly expedite
processing, showcasing the potential for faster and more effi-
cient computations in a quantum computing environment.
Techniques for feature engineering and representation learning‐
based image analysis using Quantum approach is necessary. This
could involve designing quantum algorithms for extracting and
representing salient features from Arecanut X‐ray images. This
study underscores the promising prospects of quantum‐
enhanced transfer learning for image classification, offering
enhanced accuracy and the potential for acceleration in real‐
world quantum processing scenarios.
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