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“What does the Questing Beast look like?”

“Ah, we call it the Beast Glatisant, you know,” replied the monarch,

assuming a learned air and beginning to speak quite volubly. “Now the

Beast Glatisant, or, as we say in English, the Questing Beast—you may call

it either,” he added graciously—“this Beast has the head of a serpent, ah,

and the body of a libbard, the haunches of a lion, and he is footed like a

hart. Wherever this beast goes he makes a noise in his belly as it had been

the noise of thirty couple of hounds questing.

“Except when he is drinking, of course,” added the King.

—T.H. White, The Once and Future King
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Abstract

In this thesis we explore two novel directions in the quest for 3-charge “black hole

microstate geometries”, which are smooth, horizon-free supergravity solutions in 5 or

more dimensions that correspond to the microstates of black holes.

First we find two infinite families of smooth non-BPS microstates using the “floating

brane ansatz” method in 5 dimensions, based on a class of Kähler metrics studied by

LeBrun. The first set of solutions is based on the LeBrun-Burns subclass, which turn

out to have a trivial flux, leading to trivial bubble equations. The second set of solutions

is based on the more general LeBrun metrics, which have non-trivial flux, and we find

non-trivial bubble equations. In both cases, solutions are asymptotic to warped, rotating

AdS2 × S3.

Second, we realize two important steps toward the construction of superstrata,

which are 3-charge, 2-dipole-charge smooth supergravity solutions that fluctuate as an

arbitrary function of two variables. In one case, we find solutions that depend on func-

tions of two variables; however they lack the necessary KKM charge to make them

smooth. In the second case, we construct smooth solutions with KKM charge turned on,

but in a restricted class that allows them only to depend on arbitrary functions of one

variable. Nevertheless, we show that this one variable can be oriented in an arbitrary

way inside a 2-torus, and many sources with different orientations inside the T 2 can be

combined via superposition.

xv



Chapter 1

Introduction

Black holes have been an object of wonder and mystery ever since Schwarzschild’s1

original 1916 solution [1] to the vacuum Einstein equations, for a point source of mass

M :

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (1.1)

here written in “natural units” where c ≡ GN ≡ ~ ≡ kB ≡ 1. It took a long time to

understand the key features of this solution that are taught to undergraduates today: that

the singularity at r = 2M is merely a coordinate singularity, and actually represents

the location of the event horizon; that the event horizon is totally smooth, but is still

a “surface of no return” because lightcones there “tip over” too far2; and that the true

curvature singularity lies at r = 0, which is in the future of all observers sitting inside

r < 2M (the coordinate r being timelike in this region).

For some time it was thought that black holes were mere mathematical curiosities,

unlikely to occur in reality. The analytical black hole solutions known for most of the

20th century had a high degree of symmetry (the Schwarzschild one, for example, has

1The notion of a dark star with gravity too great for even light to escape was known as early as the 18th
century [2], but this was before it was understood that the velocity of light is a) absolute, and therefore
cannot be slowed by the gravitational pull of any object, and b) a limit velocity that cannot be reached or
exceeded by any massive observer. It is with these two additional facts that the mystery of such a “dark
star” becomes so profound.

2Or in the Penrose-diagram understanding where a conformal map keeps the lightcones upright, the
event horizon, being a null surface, is locally “moving outward at the speed of light”, and thus cannot be
locally outrun.
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exact spherical symmetry). It was thought that the singularity was simply an artifact of

this symmetry, and would be absent if the symmetry were spoiled [3]. However, the

famous Hawking and Penrose singularity theorems ([4, 5], see also [6, 7]) reveal oth-

erwise: that the development of singularities is actually a generic feature of the theory;

that black holes are the most typical objects to exist, given enough time for matter to

accumulate in one place; and that any asymmetries will be washed out in the process,

radiated away as gravitational waves.

This last point seems to imply that all physical black holes, regardless of their orig-

inal structure, tend toward the same final state as asymmetrical lumps are compressed

and their gravitational signatures radiated away. It turns out that this can be made into

a mathematical theorem, given certain general assumptions about the matter content:

the black hole uniqueness, or “no hair” theorem (see [8] for a review). This theorem

states that all stationary collapsed configurations (i.e. in equilibrium) in 4-dimensional

asymptotically-flat spacetime are subsumed under the usual four black hole solutions:

Schwarzschild (electrically neutral, non-spinning), Kerr (spinning), Reissner-Nordström

(electrically charged), and Kerr-Newman (electrically charged and spinning). Stated

another way, this means that a black hole in 4 dimensions is completely described by

its mass M , charge Q, and angular momentum J , and that a unique solution to GR (or

technically, GR and the Maxwell equations) results once those quantities are specified.

Black hole thermodynamics

However, this is not the full story. Several famous results of Bekenstein [9], Hawking

[10], Bardeen, and Carter [11] indicate that black holes have additional properties. First

Bekenstein showed in [9] that one can derive from Einstein’s equations a “first law of

thermodynamics”:

dM =
κ

8π
dAH + Ω dJ + Φ dQ, (1.2)
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where the surface gravity κ and the horizon area AH play the roles of temperature and

entropy, respectively (in the work terms, Ω is angular velocity, J is angular momentum,

Φ is electric potential, and Q is electric charge). Then in [11] it was shown in fact

that these black hole quantities obey laws completely analogous to the usual four laws

of thermodynamics, in particular showing that the horizon area AH (representing the

entropy) can never decrease. Then Hawking showed in [10] that using a semiclassical

approach that the spacetime surrounding a black hole is filled with thermal radiation of

a temperature (measured at infinity)

THawk =
κ

2π
=

1

8πM
, (1.3)

and hence according to Bekenstein’s first law of black hole thermodynamics, one can

identify the entropy

SBek =
AH
4
. (1.4)

But now this is rather mysterious, because the “no hair” theorems tell us that black holes

are unique! Yet here the entropy of a black hole clearly exists and is non-zero (in fact it

is astronomically large, AH being measured in square Planck-lengths `2
P ).

Another consequence of the Hawking temperature is that a black hole in otherwise-

empty spacetime must, over time, evaporate3. This means that everything that falls into

a black hole must somehow be radiated out again. This of course contradicts the notion

of an event horizon, and we will see that black hole radiation, and eventual evaporation,

bring very deep issues to light.

Classically the laws of thermodynamics can be thought of as arising from a sta-

tistical ensemble over a more fundamental theory (such as classical mechanics). In

3For astrophysical black holes in a spacetime filled with ambient matter and radiation such as our uni-
verse, the Hawking temperature is so tiny that a black hole is a net absorber and hence will not evaporate.
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statistical mechanics, the entropy S arises out of a degeneracy W = eS of microstates

whose coarse-grained properties (such as temperature, pressure, volume) correspond to

the same macroscopic state of the system. For example, a balloon full of air can be

described by all the microscopic data such as the positions and momenta of every indi-

vidual molecule; or these data can be averaged over and we can describe the system in

terms of its temperature, pressure, and volume. In the microcanonical ensemble, we can

express the entropy as a function of the energy, volume, and charges, and compute other

properties of the macrostate in terms of its derivatives.

By analogy, we expect to be able to define a microcanonical ensemble for black

holes. The Bekenstein entropy should correspond to some degeneracy of microstates

W = eSBek , SBek = SBek(M,Q, J), (1.5)

where the entropy can be expressed as a state function of the extensive variables

M,Q, J . But now we have a problem, because black hole uniqueness tells us that for

a given M,Q, J , there is only one solution to GR, and hence the entropy must be zero.

Moreover, the Hawking radiation that could in principle allow information to escape the

black hole has a purely thermal spectrum, so in fact contains no information. This is

known as the information paradox for black holes4.

Another way to see the paradox is through the quantum-mechanical principle of

unitarity. Unitary evolution is rather fundamental to quantum theory, as it guarantees

the “conservation of probability”. For example, in a two-state system evolving over

time, unitarity guarantees that at any moment in time, probabilities of the system being

in state A or state B add up to 1. This is reasonable, because there are no other states

4There is of course no paradox in the idea that information is simply hidden in an inaccessible place;
however, since the black hole must eventually evaporate via Hawking radiation, the absence of informa-
tion within this radiation is a serious problem.
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available; if somehow the sum of these probabilities became less than 1, the system

would have some finite probability of suddenly ceasing to exist. Unitary evolution can

also be thought of as conserving information. But unitary evolution is at odds with the

classical notion of black hole horizons. Once information crosses the horizon, it can

never escape again. If one throws our two-state system into a black hole, it is forever

erased from the universe. The black hole gets slightly larger, but all we know about it

are its M,Q, J ; the Hawking radiation it emits is purely thermal and no information can

be extracted from it. So if the classical GR picture of black holes is correct, then black

holes violate unitarity, and dramatically so.

However, it seems more likely that black holes really do have entropy, and that in a

successful theory of quantum gravity their time evolution will be unitary. We expect a

quantum theory of gravity to give us a resolution to this apparent paradox. We expect

to be able to see the microstates whose counting gives the appropriate entropy. And the

same theory should also answer further mysteries such as how the Hawking radiation is

generated, how the information stored in the black hole escapes, and how the classical

picture of the black hole arises in the first place, if it is so far from the truth. One

candidate theory of quantum gravity is string theory, which has had many successes in

tackling aspects of this problem, and this is where we will focus our efforts.

The Fuzzball Proposal

We should stress that the problem starts at the black hole horizon, and is not just an effect

of the central singularity. Even though the horizon is just a smooth bit of spacetime, and

can be made arbitrarily flat for large enoughM , it is the horizon which traps information

and effectively erases it by preventing access from the external universe. Furthermore,

it is the horizon area which gives the entropy, and it is due to horizon effects that the

thermal radiation can be derived.
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Hence if string theory is going to resolve the information paradox, then it will not

be enough to make Planck-scale modifications near the singularity, since such mod-

ifications are behind the horizon and not classically observable. In fact, Mathur has

shown [12] that to extract information out of the black hole requires O(1) corrections

at the horizon (a series of papers on “firewalls” arrive at a similar conclusion [13, 14],

although the O(1) corrections they propose are radically different). This is a rather dra-

matic departure from the classical picture, because classically speaking, the event hori-

zon is a smooth piece of spacetime with arbitrarily-small curvature (for large enough M),

and not locally observable. However, string theory is a theory of extended objects rather

than point particles, so perhaps it is sensitive to geometrical features that are nonlocal

from a point-particle perspective.

This line of thinking essentially leads to the “fuzzball proposal” of Mathur [15].

To resolve the paradox we must conclude that the event horizon and the entire region

within it (i.e. r ≤ 2M in the Schwarzschild solution) is a classical fiction. New physics

should take over at the horizon scale, and instead of a black hole interior there should

be a stringy “fuzzball” of astronomical size, extending throughout the classical interior

region as in Figure 1.1. Infalling matter then interacts with this “fuzzball” in a compli-

cated, but unitary, way. Information can be trapped within the fuzzball for arbitrarily

long times; this gives the appearance to distant observers that information has been

lost. Thus the classical horizon comes about as an emergent property of the ensemble

of fuzzball states.

Microstate geometries

While a generic fuzzball state is in principle any sort of string theory state, it is natural

to ask if we can see these states in the low-energy supergravity limits of IIA and IIB

string theory. In essence, can we find classical supergravity solutions that correspond to

6



1(a) 1(b)

Figure 1.1: (a) Classical picture of a black hole. (b) Stringy, “fuzzball” picture—
macroscopically-extended strings reach all the way out to the classical horizon. Image
from [15].

fuzzball-type microstates? And if so, can we find enough of them to account for all of

the entropy?

This question might sound absurd, because as we have already mentioned, the hori-

zon is the feature we see at the classical level, and it is exactly the thing we were trying to

get rid of. However, the uniqueness theorem that applies to black holes in 4 dimensions

does not apply in higher dimensions. IIA and IIB string theory are 10-dimensional, and

M theory (the strong-coupling limit of IIA) is 11-dimensional, and they contain addi-

tional massless fields (importantly, with Chern-Simons terms [16]). It turns out that in

as few as 5 dimensions one can find not only many, but infinitely many supergravity

solutions that correspond to the same M,Q, J measured at infinity. So to keep things as

simple as possible, we can compactify the higher-dimensional supergravities down to 5

or 6 dimensions (and let the remaining n dimensions be wrapped up on an n-torus).

We are then interested in finding what we call “black hole microstate geometries”.

These are solutions of supergravity which are:

• Smooth everywhere (i.e. have no singularities),

• Have no horizons, and
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• Have the same asymptotic charges as a black hole.

Such supergravity solutions do not present any information paradox individually,

because they have no horizons for information to fall behind. It is then thought that

taking a statistical ensemble of all such solutions having the same asymptotic charges

will give something resembling a classical black hole with those charges5.

One example of such a microstate geometry is that of the supertube [17, 18]. A

supertube, as originally conceived, is a cylindrical D2-brane smeared with D0-brane and

F1-string charges; hence it has two electric charges D0-F1, and one magnetic dipole D2

charge. This configuration is supersymmetric (specifically 1
4
-BPS), and hence is a stable

bound state. The D2 cylinder can have an arbitrary cross-sectional shape while retaining

supersymmetry, which means that the supertube is characterized generically by an arbi-

trary 1-dimensional closed curve. One can find supergravity solutions corresponding to

arbitrary supertubes [19, 20, 18], and they are completely smooth and horizon-free in

6 dimensions (where they are recast, via T-duality, as D1-D5-kkm6 bound states in the

IIB theory). It furthermore turns out that supertubes are sufficient to account for (a sig-

nificant, finite fraction7 of) the entropy of the 2-charge black hole [15, 21, 22, 23, 24],

which is an exciting success for the program. Unfortunately, the 2-charge black hole

in 5 or 6 dimensions is, classically, a naked singularity with no horizon; it has entropy

solely due to higher-order string theory corrections that give it a Planck-scale horizon.

5Of course, in the full quantum theory of gravity, one must also include quantum fluctuations of the
constituent strings. The question we are concerned with is how far, exactly, the classical microstate
geometry picture can be pushed.

6Here lowercase letters indicate dipole charges. Although “KKM” means “Kaluza-Klein monopole”,
it is in this case a dipole of KKM charge because it is sourced along a closed, contractible loop, and
opposite ends of the loop source oppositely-oriented KKM charges.

7By this, we mean it grows with the appropriate power of the charges.
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Since we are interested in sorting out problems with classically-large horizons, we must

look to more complicated solutions in 5 or 6 dimensions with 3 charges8.

The object of this work

In the 3-charge case necessary for classically-sized horizons in 5 or 6 dimensions, there

has been a decent amount of success finding supersymmetric black hole microstate

geometries (see review in [25]). However, the program is still lacking in two impor-

tant ways:

First, one would like to know about non-BPS, non-extremal black holes. A BPS,

extremal black hole has electric charge Q equal to its mass M , which is very unrealistic

for any astrophysical black hole. A charged object tends to attract other oppositely-

charged objects, and so a positively-charged black hole sitting in a universe filled with

negatively-charged stuff will tend to attract that stuff preferentially, thereby decreasing

its charge until it reaches zero. Therefore to understand realistic black holes, we will

need to know something about non-BPS, non-extremal microstates.

Non-extremal microstates are unfortunately difficult to find [26, 27, 28, 29, 30].

However, we will show that one can find infinite families of non-BPS extremal

microstate geometries. That is, microstates whose electric charge is still equal to their

mass, but they do not have any supersymmetries. Such microstates are still not astro-

physically realistic, but going beyond supersymmetry is an important first step. It turns

out that in 5 dimensions, one can use a method called the “floating brane ansatz” [31] to

find non-BPS extremal solutions by solving a system of linear PDEs.

Second, we would like to find enough microstates to count the entropy of the 3-

charge black hole. In this case, we will stick to BPS microstates, which are easier to

8The number of charges required to yield a classically-macroscopic horizon varies with the dimension
of the spacetime. In 4 dimensions, for example, one requires 4 charges.
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analyze. It is conjectured that a 3-charge, 2-dipole-charge, 1
8
-BPS object exists, dubbed

the “superstratum”, which can take an arbitrary 2-dimensional shape while retaining

its supersymmetry [32]. This object is a supersymmetric bound state which should be

a smooth geometry in the IIB frame reduced to 6 dimensions, where it has D1-D5-

P electric charges and d1-d5-kkm dipole charges. Due to their arbitrary 2-dimensional

shape, these objects are expected to give the correct microstate counting for the 3-charge

black hole, analogously to supertubes in the 2-charge black hole. However, it is much

harder to find the supergravity solution for the superstratum due to certain technicalities.

During my PhD I have written published papers with collaborators Nick Warner,

Nikolay Bobev, and Orestis Vasilakis on both of these topics of research. In this thesis

I will present our results, both on non-BPS microstate geometries and on the ongoing

quest for the superstratum. These results are the following:

1. An infinite family of 5d non-BPS microstates based on the “floating brane ansatz”

method using the LeBrun-Burns metrics;

2. A lift of these non-BPS solutions to 6d, where they are actually BPS, thus realiz-

ing explicitly a mechanism by which supersymmetry can be lost on dimensional

reduction;

3. A more general family of 5d non-BPS microstates based on the more general

LeBrun metrics;

4. A family of 6d BPS solutions called “supersheets” which are objects of arbitrary

2-dimensional shape, but lack the KKM dipole charge needed to make them into

smooth superstrata; and

5. A family of 6d BPS solutions with KKM dipole charge, with hints on how to

obtain superstrata.
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This thesis is organized as follows: In Chapter 2, I will review the literature on

some key topics needed in order to understand the context of this work, such as branes,

BPS-ness, etc. In Chapter 3, I will discuss the specific mathematical background on

which this work is based, and set up the supergravity problems to be solved. Then in

Chapters 4–7 I will present my own work:

Chapter 4 will discuss the 5d non-BPS solutions of [33, 34], including the lift to 6

dimensions, and various detailed properties of these solutions. Then Chapter 5 will dis-

cuss the more general 5d non-BPS solutions of [35] and their analysis, including detailed

discussion of the new base spaces on which the solutions are constructed. Then Chap-

ter 6 will present the “superthreads” and “supersheets” of [36] which are 2-variable-

arbitrary but lack KKM charge and are singular. Chapter 7 will then discuss the solu-

tions of [37] which have KKM charge and are smooth, but only 1-variable-arbitrary

(although with hints on how to obtain 2-variable arbitrary solutions).

Finally in Chapter 8 I will give an overall discussion of the results and open prob-

lems.
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Chapter 2

Literature Review

All of the supergravity solutions discussed in this thesis will be sourced by the various

charged objects of string theory or M theory (namely F1-strings, NS5-branes, D-branes,

and M-branes), and the solutions will be extremal, which means they have an electric

charge equal to their mass. Some solutions will be supersymmetric, or BPS, while other

solutions will not. In this chapter, we will give a brief exposition of what these various

terms mean.

2.1 Charged black holes

The prototypical example of an electrically-charged black hole in classical 4d GR is the

Reissner-Nordström solution [38, 39] given by the metric

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 +r2
(
dθ2 +sin2 θ dφ2

)
, (2.1)

and the electromagnetic field

A = −Q
r

dt, F ≡ dA = −Q
r2

dt ∧ dr. (2.2)

HereM is the mass of the black hole, andQ is its electric charge. This black hole solves

the Einstein-Maxwell equations

Rµν =
1

2

(
FµρFν

ρ − 1

4
gµνFρσF

ρσ
)
, (2.3)
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where Rµν is the Ricci tensor and Fµν are the components of F given by

F ≡ 1

2
Fµν dxµ ∧ dxν . (2.4)

The metric in (2.1) has two horizons where gtt vanishes, at the locations given by

r± = M ±
√
M2 −Q2. (2.5)

One can show that these are mere coordinate singularities, and that spacetime is smooth

at the horizons. However, there is a true curvature singularity at r = 0.

If M2 < Q2, then the r± are not real, and there are no horizons at all. Then the

singularity at r = 0 is naked, which is probably an unphysical situation. This suggests

a bound

M ≥ |Q|, (2.6)

relating the mass and the charge of a physically-reasonable solution. We will see that

this becomes a recurring theme.

The outer horizon at r+ is the event horizon, and the various quantities of black hole

thermodynamics are defined there. The Hawking temperature is given by

THawk =
r+ − r−

4πr2
+

=

√
M2 −Q2

2π
(
M +

√
M2 −Q2

)2 , (2.7)

and the entropy is

SBek = πr2
+ = π

(
M +

√
M2 −Q2

)2
. (2.8)
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2.1.1 Extremal charged black holes

In the case that the bound (2.6) is saturated, i.e. M = |Q|, then the metric (2.1) describes

an extremal black hole. In this case one finds that the temperature vanishes, and the

entropy scales as some power of the charge:

THawk = 0, SBek = πQ2. (2.9)

One can then write the metric as

ds2 = −
(

1− Q

r

)2

dt2 +

(
1− Q

r

)−2

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (2.10)

which looks a bit simpler than (2.1). However, a coordinate change to ρ = r −Q gives

an even simpler expression:

ds2 = −
(

1 +
Q

ρ

)−2

dt2 +

(
1 +

Q

ρ

)2(
dρ2 + ρ2 dθ2 + ρ2 sin2 θ dφ2

)
, (2.11)

where now in the second term the warp factor multiplies the entire flat metric of R3

(note also that the powers of +2,−2 have switched places). In these coordinates, the

horizon sits at ρ = 0, and the coordinate patch covers only the area outside the horizon.

The electromagnetic vector potential under this coordinate change becomes

A = −
(

1 +
Q

ρ

)−1

dt. (2.12)
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2.1.2 The near-horizon limit

If one looks near the horizon in (2.11), that is taking ρ to be small, one finds the solution

approaches the metric

ds2 = − ρ
2

Q2
dt2 +

Q2

ρ2
dρ2 +Q2

(
dθ2 + sin2 θ dφ2

)
, (2.13)

where now the spherical part has constant radius Q. Making another coordinate change

ρ = Q2/z gives the metric

ds2 = Q2

(
−dt2 + dz2

z2

)
+Q2

(
dθ2 + sin2 θ dφ2

)
, (2.14)

which is the metric for the product space AdS2 × S2, also known as the Robinson-

Bertotti solution [40, 41], where the AdS2 factor and the S2 factor each have the same

radius Q.

It turns out that in higher-dimensional supergravity theories, this same basic feature

continues to hold: The near-horizon regions of extremal black holes are often AdS×S-

like 1.

2.1.3 Multiple charged black holes

The coordinates of (2.11) are called “isotropic”, because of the appearance of the flat

metric on R3 multiplying the warp factor in the second term (here in spherical polar

coordinates). We notice that the function 1 + Q/ρ is the electric potential of a point

1Although with some complications that depend on the dimension of spacetime and the degree of the
p-form flux under which the black hole is charged. See also [42].
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charge Q in flat R3 as well2. It turns out this is not accidental. If one writes the metric

and electromagnetic vector potential as

ds2 = −H−2 dt2 +H2 (dx2 + dy2 + dz2), (2.15)

A = −H−1 dt, (2.16)

then one can show that the Einstein-Maxwell equations (2.3) reduce to precisely

Laplace’s equation,

∇2H = ∂2
xH + ∂2

yH + ∂2
zH = 0. (2.17)

So the metric (2.11) is nothing more than what results from taking H to be the potential

of a single point charge. But there is nothing stopping us from writing down an H that

is the potential of several point charges,

H = 1 +
N∑
i=1

Qi

|~x− ~ai|
, (2.18)

each with an arbitrary charge Qi > 0 and located at an arbitirary point ~ai ∈ R3. This

gives the Majumdar-Papapetrou solution [43, 44], which corresponds to a collection

of any number of extremally-charged black holes sitting in any arrangement. They

remain in equilibrium because their electrostatic repulsion balances their gravitational

attraction.

It is worth pointing out that although the general equations of GR, including the

Einstein-Maxwell equations (2.3), are rather famously nonlinear, the equation satisfied

for the “potential” of an extremal charged spacetime (2.17) is a linear equation. This

is because the “force balancing” between the charged points allows them to be treated

2Although with boundary conditions that it asymptote to a nonzero constant.

16



independently and therefore one can simply superpose their solutions to obtain a com-

bined solution. This “extremal black hole superposition principle” will turn out to be

very important in constructing black hole microstate solutions of higher-dimensional

supergravity theories.

2.2 BPS bounds

The term “BPS” stands for Bogomol’nyi, Prasad, and Sommerfield, who first derived

an energy bound that is saturated by classical solitonic solutions of Yang-Mills theory

[45, 46]. It was later shown that this bound can be seen as coming from a supersymme-

try algebra, and therefore it holds at the quantum level as well [47]. Einstein-Maxwell

theory can be seen as the bosonic content of minimal N = 2 supergravity in 4 dimen-

sions, and it is interesting to see how the supersymmetry algebra relates to the extremal

Reissner-Nordström solution.

The N -extended supersymmetry algebra in 4 dimensions includes fermionic gener-

ators whose anticommutation relations are (in a Weyl basis in the rest frame):

{
QI
α, Q̄β̇J

}
= 2Mδαβ̇δ

I
J ,

{
QI
α, Q

J
β

}
= 2ZIJεαβ, (2.19)

where I, J ∈ 1, . . . ,N are R-symmetry indices and α, β are spinor indices. M is the

mass of the system and ZIJ is a matrix of central charges, which must be antisymmetric

(hence the presence of ZIJ requires at least N =2 supersymmetry).

Specializing to N =2, we can write ZIJ ≡ ZεIJ . One can then show, using certain

linear combinations of the QI
α, that

M − |Z|, M + |Z|, (2.20)
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are the eigenvalues of a positive semidefinite matrix. Hence it must be true that

M ≥ |Z|. (2.21)

This is the BPS bound, derived as a consequence of the supersymmetry algebra. So then

this bound must be obeyed even at the quantum level. States that saturate the BPS bound

are called BPS states. BPS states are always stable, since there are no lower-mass states

available to decay to3.

The central charge Z is related to conserved charges of the theory, such as electric

charge. In fact, in N =2 supergravity in 4 dimensions, one can show that

Z = Q+ iP, (2.22)

where Q is the total electric charge of a spacetime, and P is its total magnetic charge

([49], see also [50]). Hence for the Reissner-Nordström solution, we can see that the

BPS bound (2.21) is really the same thing as the extremality bound (2.6).

A black hole with both electric and magnetic charges is called dyonic, which we will

discuss in Section 2.3.

2.2.1 Residual supersymmetry

There is another consequence of saturating the BPS bound, which is that the state is

annihilated by half the supersymmetries; specifically, the linear combination of them

that gives the M − |Z| eigenvalue in (2.20). The other half of the SUSY generators

act in the usual way on the Clifford vacuum, yielding a “short multiplet” with half as

many states as one would normally have, if the BPS bound were not saturated. Since the

3Modulo certain caveats about wall-crossings [48].
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states of this short multiplet are invariant under half the supersymmetries, we call them

1
2
-BPS, or more generally “supersymmetric”.

For N > 2, it is possible that ZIJ has more than one distinct eigenvalue. The

maximal N allowed in supergravity is N = 8, and hence ZIJ can have up to 4 distinct

eigenvalues (they come in conjugate pairs, and only |Zi| appears in the BPS bound).

The number of leftover supersymmetry generators depends on how many of the |Zi|

are saturated, but since M is bounded by the highest |Zi|, this in turn depends on how

many of the |Zi| are the same. The highest amount of residual supersymmetry is half

(or 1
2
-BPS), and this is when all the |Zi| are saturated:

M = |Z1| = |Z2| = |Z3| = |Z4|. (2.23)

For each |Zi| that drops below M , one loses half the supersymmetry again; hence 1
4
-

BPS, 1
8
-BPS, down to 1

16
-BPS [51].

In supergravity, the global supersymmetries generated by the QI
α are promoted to

local supersymmetries, and to maintain super-gauge-invariance one must introduce N

spin-3
2

fields or gravitini ψIµα. Each of these is gravitini is the state that results by low-

ering the spin-2 graviton state via one of the QI
α (and hence belongs to the supergravity

multiplet). In classical supergravity solutions (such as the ones we are interested in), the

fermions must always be zero, and hence in particular the gravitino variation must be

zero,

δψµ = ∇µε+ (. . .), (2.24)

where ε is a spinor parameter, and we omit the N index I and the spinor index α.

The extra terms (. . .) represent various other fields in the theory, such as p-form gauge

fields, etc. (which we will discuss in Section 2.3.1). Equation (2.24) is called a “SUSY
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variation” and one will have SUSY variations for every fermion in the theory, which

must always be zero on classical solutions.

A BPS solution occurs precisely when the SUSY variations (2.24) admit a solution

with nonzero ε. Then the residual supersymmetries, due to saturating the BPS bound,

manifest as spacetime supersymmetries. The prototypical example of a spacetime super-

symmetry is a “Killing spinor”, defined as a spinor ε that solves

∇µε = 0, where ∇µε ≡
(
∂µ +

1

4
ωµabγ

ab
)
ε, (2.25)

so a Killing spinor is also called “covariantly constant”. Acting with another ∇ν and

antisymmetrizing gives

[
∇µ, ∇ν

]
ε =

1

4
Rµνabγ

abε = 0, (2.26)

which means that the existence of a Killing spinor puts constraints on the allowed holon-

omy group of a spacetime solution. This can often have deep implications.

In higher-dimensional supergravity theories, these same concepts hold in more or

less the same way [52]. BPS states saturate a mass-minus-charge bound which makes

them extremal solutions. In addition, the residual supersymmetries imply that these

solutions have Killing spinors.

We should note that, although we have shown that the extremal Reissner-Nordström

solution is supersymmetric in 4d N =2 supergravity, it is possible in other supergravity

theories to have solutions which are extremal, yet not supersymmetric4.

4One might wonder, in light of the previous discussion, how exactly a solution can saturate the M ≥
|Z| bound and yet not be BPS, and frankly the explanation is not clear. Nevertheless, there exist many
examples of supergravity solutions (many of which we discuss in this thesis) which saturate the bound
and yet have no Killing spinors.
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2.3 Black holes in string theory

The familiar Maxwell’s equations in 4 dimensions can be written

dF = ?
4
JM , d ?

4
F = ?

4
JE, (2.27)

where F is the electromagnetic field strength 2-form, JE is the electric current 1-form,

which measures the flow of charge along worldlines, and JM is the magnetic current

1-form, if we wish to consider the existence of magnetic monopoles. To measure the

amount of charge within a given region of spacetime, we integrate over some Gaussian

surface Σ (which is topologically a 2-sphere) that “links” the worldlines of the charges

we want to measure5. Then the electric charge Q and magnetic charge P linked by Σ

are given by

Q =
1

4π

∮
Σ

?
4
F, P =

1

4π

∮
Σ

F. (2.28)

It turns out that in 4 dimensions, the source term on the right-hand side of the

Einstein-Maxwell equations (2.3) is invariant under the “duality rotations” that exchange

F with ?4 F and hence exchange electric charge with magnetic (monopole) charge.

Using this fact, one can get a “dyonic” black hole for free, with electric charge Q and

magnetic charge P :

ds2 = −
(

1− 2M

r
+
P 2 +Q2

r2

)
dt2 +

(
1− 2M

r
+
P 2 +Q2

r2

)−1

dr2

+ r2
(
dθ2 + sin2 θ dφ2

)
,

(2.29)

5In a 3-dimensional spatial slice, this is the same as the usual “enclosed charge”, where the integrals
are over ~E ·d~a and ~B ·d~a respectively. However, the “linking” picture is more universal, and is analogous
to Ampère’s law for electric currents.
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with electromagnetic field given by

A = −Q
r

dt− P cos θ dφ, F ≡ dA = −Q
r2

dt ∧ dr + P sin θ dθ ∧ dφ. (2.30)

In this case, all of the discussion in Section 2.1 carries over analogously if we replace

Q2 → Q2 +P 2. In particular, the extremality bound is again the same as the BPS bound:

M ≥
√
Q2 + P 2, or M ≥ |Z|, where Z = Q+ iP. (2.31)

2.3.1 Branes, charges, and fluxes

The four-dimensional case is special, because in 4 dimensions, F and ?4 F are each

2-forms. Therefore their sources JE and JM each describe point particles, or 0-

dimensional objects. This allows the same type of object to carry both electric and

magnetic charges.

In higher dimensions, this is no longer true. A p-dimensional object (called a p-

brane by analogy with “membrane” for a 2-dimensional object) will correspond to a

(p + 1)-form electric current density JEp+1, which describes the flow of p-brane charge

density along its (p + 1)-dimensional worldvolume. This electric current density JEp+1

will then act as a source for a (p+ 2)-form field strength Fp+2 via

d ?
n
Fp+2 = ?

n
JEp+1, (2.32)

where we are now in n-dimensional spacetime. The magnetic dual object should come

in as a source on the right-hand side of

dFp+2 = ?
n
JMq , for some q. (2.33)
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In n-dimensional spacetime, the Hodge dual of a q-form is an (n − q)-form. On the

left-hand side is a (p+ 3)-form, so then the right-hand side must be the Hodge dual of a

(n− p− 3)-form, and hence

dFp+2 = ?
n
JMn−p−3. (2.34)

Therefore we see that the magnetic dual of a p-brane is an (n − p − 4)-brane, which

is (usually) a completely different object. The (p + 2)-form field strength Fp+2 is often

called a “flux”, because it can be used to compute the charged “linked” by the appropri-

ate (n− p− 2)- or (p+ 2)-dimensional surface Σ in flux integrals analogous to (2.28).

Strings, D-branes, and M-branes

This is all very general, but in string theory we have specific objects to deal with. First,

the IIA and IIB superstring theories naturally live in 10 dimensions, and M theory (the

strong-coupling limit of IIA) lives in 11 dimensions. So we will take n to be 10 or 11.

In string theory, the most obvious object is of course the fundamental string, F1. As

expected, the F1-string acts as a source for a 3-form field strength, but we will see there

are additional objects as well.

The worldsheet theory of the closed superstring contains several massless bosonic

excitations (see [53, 54, 42]). From the NS-NS (Neveu-Schwarz) sector come the dilaton

φ, the spacetime metric tensor gµν , the Kalb-Ramond field or 2-form potential Bµν , and

from the R-R (Ramond-Ramond) sector come various p-form field strengths F (p)
µ1...µp ,

where the IIA theory has p even, and the IIB theory has p odd. The B2 field couples

electrically to fundamental strings F1, by which we mean that its 3-form field strength

H3 ≡ dB2 has Maxwell-like equations

dH3 = 0, d ?
10
H3 = ?

10
JF1, (2.35)
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One can conclude from nonperturbative effects that there is also an object to couple

magnetically to H3, the NS5-brane. So one really has

dH3 = ?
10
JNS5, d ?

10
H3 = ?

10
JF1, (2.36)

where the 6-form JNS5 gives the flow of NS5-brane charge.

Similarly, there are nonperturbative objects that couple electrically and magnetically

to the Ramond-Ramond field strengths F (p)
µ1...µp . They are called D-branes, or “Dirichlet

branes”, because open strings may end on them, resulting in Dirichlet boundary con-

ditions for the transverse coordinates of the open-string endpoints. In the presence of

D-branes, we have

dF (p+2) = ?
10
JD(6−p), d ?

10
F (p+2) = ?

10
JDp, (2.37)

showing that a Dp-brane is a source of F (p+2), and the magnetic dual of a Dp-brane is a

D(6 − p)-brane. In the IIA theory one has even p, and hence D0-, D2-, D4-, D6-, and

D8-branes; while in the IIB theory one has odd p, giving D1-, D3-, D5-, and D7-branes

(and one can also consider D(−1)-branes, or D-instantons).

In M theory, the fundamental objects are M2-branes, which couple electrically to a

4-form field strength F4.

d ?
11
F4 = ?

11
JM2, dF4 = ?

11
JM5. (2.38)

Their magnetic duals are M5-branes.

The low-energy limits of the IIA and IIB string theories and M theory are super-

gravity theories which are dominated by the effects of these p-brane objects. From M

theory one gets 11-dimensional supergravity, which is unique; from the IIA and IIB
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string theories one gets the two 10-dimensional N = 2 supergravities, also called IIA

and IIB6. Each of these theories resembles Einstein-Maxwell theory in that its bosonic

content comprises various kinds of p-form field strengths whose sources are (p − 2)-

dimensional objects7.

Building black holes

In effect, then, F1-strings, NS5-branes, and Dp-branes (and M-branes) are the simplest

objects in string theory (and M theory), and as such make good tools for building models

over which we have some calculational control. They are especially useful in approach-

ing the information problem. One can model a black hole by laying out various collec-

tions of strings and branes. At low string coupling, this is just a pile of objects in 10d (or

11d) Minkowski space (possibly with some directions periodically identified). At high

coupling, the gravitational field turns on, and the (massive) objects become a black hole

with various properties such as NS-NS or R-R charges, different horizon topologies, etc.

If the configuration of strings/branes preserves supersymmetry, then one expects certain

data (such as ground state degeneracy) to be protected as the coupling is increased; thus

one can make certain calculations in the “stack of branes” régime that are expected to

apply in the supergravity régime.

Then the task is to find what configurations of branes give rise to nice models of

black holes. Individual p-branes are BPS objects; they have a mass equal to their

charge, much like the extremal Reissner-Nordström black hole (or more precisely, their

mass-per-unit-volume and charge-per-unit-volume are the same) [52]. When p-branes

are overlapped or given funny shapes, their supersymmetries are decreased, although

6M theory, IIA strings, and IIB strings are also interrelated by various dualities such as T-duality.

7However, they also have ingredients not found in Einstein-Maxwell theory, such as Chern-Simons
terms and a dilaton.
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we will see that some special combinations retain more supersymmetry than naïvely

expected. This will turn out to be very useful in constructing black holes.

2.3.2 2-charge black holes

A 2-charge black hole is a black hole that has two conserved charges at infinity. These

can be charges sourced by p-brane objects, or they can be momentum around a compact

circle (since winding number is dual to momentum).

Here we will consider a particular black hole construction in IIB theory, made of D1

and D5 branes. We are interested in a 5-dimensional black hole, since 5 is the smallest

number of dimensions in which black hole uniqueness is violated (hence, we ought to

be able to find microstate geometries for this black hole). To get to 5 dimensions, we

compactify IIB on S1 × T 4. The D5-branes are extended along this internal S1 × T 4,

and the D1-branes are extended along the S1 (thus lying on top of the D5-branes). In

the remaining 5 dimensions, both types of branes appear as point particles.

In the supergravity régime, this configuration can be described by the metric

ds2
5 = −(Z1Z2)−2/3 dt2 + (Z1Z2)1/3

(
dρ2 + ρ2 dΩ2

3

)
, (2.39)

Z1 = 1 +
Q1

ρ2
, Z2 = 1 +

Q5

ρ2
, (2.40)

where dΩ2
3 is the metric on a unit 3-sphere. There are two Maxwell fields given by

A1 = −Z−1
1 dt, A2 = −Z−1

2 dt, F I ≡ dAI . (2.41)

This solution is very reminiscent of the 4-dimensional Reissner-Nordström solution in

isotropic coordinates (2.11) and (2.12). The charges Q1, Q5 are proportional to (but not
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equal to) the numbers n1, n5 of microscopic D1 and D5 branes used to construct the

solution.

The horizon of (2.39) sits at ρ = 0. The induced metric on a sphere at t, ρ = const

for small ρ is given by

ds2
5

∣∣∣∣
t,ρ=const

∼
(
Q1Q5

)1/3
ρ2/3 dΩ2

3, (2.42)

so in particular, in the ρ → 0 limit we see that this black hole has zero horizon area!

There is something pathological about 2-charge black holes in 5 dimensions—in the

supergravity limit, they are (almost) naked singularities8.

However, this black hole does have a finite entropy, which can be seen in the micro-

scopic régime, by looking at the system as a stack of D1 and D5 branes. Considering

the CFT of the D1-D5 system along the S1 where they overlap, one can count left- and

right-moving degrees of freedom on the open strings stretching between the D1 and D5

in the large-Q limit [24, 58, 15, 19, 59]. The entropy given by the Cardy formula [60]

in this case is

S = 2π
√

2
√
n1n5, (2.43)

where n1, n5 are the numbers of D1 and D5 branes.

Here we have an apparent inconsistency. However, since the horizon of (2.39) is

essentially on top of the singularity, it is in a region of very high curvature, and hence the

supergravity approximation is no good. One can get away from the supergravity limit by

putting in α′ corrections from string theory. The resulting action has higher-derivative

8We have said that black holes in 4 dimensions require 4 charges to avoid this exact same pathology.
However, the Reissner-Nordström black hole in (2.1) appears to have only one charge. In the string theory
context, however, a 4d Reissner-Nordström black hole in fact has 4 charges, all of which happen to be
equal [55, 56, 57].
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terms coming from RµνρσR
µνρσ, etc., and the spacetime solutions are different. In par-

ticular, the 2-charge black hole acquires a “microscopic” horizon leading to the correct

entropy scaling

S ∼
√
n1n5, (2.44)

although one cannot obtain the precise constant of 2π
√

2 [61, 62].

2.3.3 Supertubes

It turns out that one can give a somewhat better semiclassical account of the entropy

(2.43) in terms of microstate geometries [63, 19, 61, 15, 23, 24, 22]. These microstate

geometries correspond to supertubes, which are particular BPS bound states of D-brane

charges [17].

As originally discovered, the supertube is a configuration in IIA theory consisting of

F1 and D0 electric charges smeared out over a D2-brane that has been wrapped into a

cylinder [17]. The cylinder can have an arbitrary cross-sectional profile given by some

closed curve ~F (σ) as in Figure 2.1, and the entire configuration is 1
4
-BPS for any profile

~F (σ).

Because the curve ~F (σ) is contractible (i.e., it’s just a closed curve sitting in ordinary

space; it does not wrap around any piece of topology), the D2 charge of the configuration

is a dipole charge. This is analagous to a current loop in ordinary electromagnetism: an

Ampèrian loop that links the current loop will measure a current I , but an Ampèrian loop

at infinity, which does not link the current loop, will measure zero net current, because

the local currents on each “side” of the current loop move in opposite directions. In a

similar fashion, a Gaussian surface that links the D2 cylinder will measure a local D2

charge; but a Gaussian surface at infinity does not link the D2 cylinder and measures

zero net charge.
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Figure 2.1: Supertube. A D2-brane cylinder has an arbitrary cross-sectional profile along the
closed curve ~F (σ). F1 charge runs vertically along the cylinder, and is smeared along ~F (σ).
D0 charge is smeared over the whole surface.

Under T-duality, the specific charges that compose a supertube get shuffled around,

however the basic construction remains: a supertube is a 1
4
-BPS bound state of 2 electric

charges and 1 magnetic dipole charge. A particular sequence of T-dualities can map

the D0-F1-d2 charges9 into D1-D5-kkm charges10. Therefore we can use supertubes to

analyze the D1-D5 black hole.

It turns out that the singularity of (2.39) can be resolved if: 1) We lift into 6 dimen-

sions, including the S1 in our solution along which the D1-branes are wrapped; 2) We

we smear the location ρ = 0 of the charges into an arbitrary closed curve ~F (σ) in

R4; and 3) We add KKM dipole charge along ~F (σ) (which, being a dipole charge, is

not measurable at infinity). This gives us the supergravity solution corresponding to a

supertube, which one can show is totally smooth and horizon-free (see Section 3.3.3).

Therefore one has as many microstate geometries as there are arbitrary functions of one

variable, ~F (σ).

9Here we use lowercase letters to indicate dipole charges

10“KKM” means “Kaluza-Klein monopole”; however it is in this case a dipole of KKM charge because
it is sourced along a closed, contractible loop.
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In principle, this is now an infinite-dimensional space of smooth microstate solu-

tions; however, one needs to quantize this space. In turns out that this process reproduces

not quite the entropy (2.43), but instead a finite fraction of it [23]:

S = 2π

√
c

6
Q1Q5, c = 4, (2.45)

where one would need the central charge c = 12 to get (2.43) exactly. However, the

6-dimensional picture does not capture all of the fluctuation modes of the supertube.

When they are all counted, the entropy (2.43) is obtained [22, 24, 15].

2.3.4 3-charge black holes

While supertubes are successful at describing a finite portion of the entropy of the 2-

charge black hole, we recall that the 2-charge black hole has a classical horizon of zero

area, as in (2.42). We are interested in describing the microstates of black holes with

classical horizons, and in 5 dimensions, this requires three charges.

We will use the same IIB brane configuration: A D5-brane wrapped on a compact

S1 × T 4, and a D1-brane wrapped along the S1. To obtain a third charge, we will add

momentum along this S1, giving the D1-D5-P system. The supergravity solution is

again simple:

ds2
5 = −(Z1Z2Z3)−2/3 dt2 + (Z1Z2Z3)1/3

(
dρ2 + ρ2 dΩ2

3

)
, (2.46)

Z1 = 1 +
Q1

ρ2
, Z2 = 1 +

Q5

ρ2
, Z3 = 1 +

Qp

ρ2
. (2.47)

There are now three Maxwell fields given by

AI = −Z−1
I dt, F I ≡ dAI , I ∈ {1, 2, 3}. (2.48)
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This time, the induced metric on a sphere at t, ρ = const for small ρ is given by

ds2
5

∣∣∣∣
t,ρ=const

∼
(
Q1Q5Qp

)1/3
dΩ2

3. (2.49)

We see that the factors of ρ cancel out and we get a horizon area of

A = 2π2
√
Q1Q5Qp. (2.50)

After relating the QI to the microscopic charges nI (see [64, 15]), we obtain the entropy

S = 2π
√
n1n5np. (2.51)

As we did with the 2-charge black hole, we can also approach this calculation from

the microscopic perspective, using the D1-D5-P CFT along the S1 where the branes

overlap. This is the famous Strominger-Vafa state counting [65, 64], and it gives exactly

the result expected:

S = 2π
√
n1n5np. (2.52)

We stress that the D1-D5-P CFT calculation is done at zero string coupling gs = 0, and

thus effectively with gravity “turned off”. The fact that it matches the calculation from

the horizon area (2.50), where gravity is certainly “on”, gives an important check of the

theory.

2.3.5 Superstrata

The Strominger-Vafa entropy calculation counts states at zero string coupling, and it is

a natural question to ask what are the microstates that give rise to the entropy (2.52) at

finite string coupling, and can they be seen from supergravity? In fact one can find many
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microstate geometries for the 3-charge black hole [25]; however, one still does not have

enough of them to reproduce even a finite fraction of the entropy (2.52)11.

What one needs is something like supertubes, but with three electric charges. Super-

symmetry arguments show that such an object should exist, called the superstratum

[32]. A superstratum is an object carrying 3 electric charges and 2 independent magnetic

dipole charges, and is able to take an arbitrary 2-dimensional shape while remaining 1
8
-

BPS and smooth. For example, in the IIB frame we have been discussing, a superstratum

would carry D1-D5-P electric charges, and two dipole charges which are a combination

of d1-d5-kkm12.

It is argued in [32] that smooth superstratum solutions should exist in IIB reduced

to 6 dimensions; however, due to some difficulties solving the equations, such solutions

have yet to be found. We will discuss this further in Section 3.3 and Chapters 6 and 7.

11However, semi-classical calculations [66, 67] indicate that quantum fluctuations on top of known
solutions should come closer.

12All three dipole charges will be present, but a constraint reduces this to two independent charges.
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Chapter 3

Background

3.1 BPS solutions in 5d

The background in this section is mostly taken from the review in [25]. Although our

goal is to construct non-BPS solutions in 5 dimensions, it is helpful to expand on the

BPS case in detail. Many features of the non-BPS solutions are analogous to those in

the BPS case.

To discuss BPS bubbling geometries in 5 dimensions it is easiest to start from the M-

theory picture. We consider M-theory onM4,1×T 6 where the compact directions form

a flat torus (with coordinates yi) and the leftover bitM4,1 will become our 5-dimensional

geometry. The 11-dimensional metric and 3-form potential are given by

ds2
11 = −Z−2 (dt+ k)2 + Z ds2

4(B)

+X1 (dy2
1 + dy2

2) +X2 (dy2
3 + dy2

4) +X3 (dy2
5 + dy2

6),
(3.1)

C(3) = A1 ∧ dy1 ∧ dy2 + A2 ∧ dy3 ∧ dy4 + A3 ∧ dy5 ∧ dy6. (3.2)

The first line of (3.1) is the metric ofM4,1, which we take to be stationary, and hence can

be written as a time fiber over some 4-dimensional base B (the powers of the function

Z are chosen for convenience, as will be apparent later). The XI , I ∈ {1, 2, 3} control

the sizes of three T 2’s inside the T 6, and the AI are three 1-forms having legs inM4,1.

All fields are assumed independent of t and yi.
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M4,1 T 6

Brane 0 1 2 3 4 5 6 7 8 9 10
M2 l ∼ l l ` ` ` `
M2 l ∼ ` ` l l ` `
M2 l ∼ ` ` ` ` l l
M5 l ~x(λ) ` ` l l l l
M5 l ~x(λ) l l ` ` l l
M5 l ~x(λ) l l l l ` `

Table 3.1: M-theory brane configuration. A brane is extended along “l”, and smeared
along “`”. ~x(λ) is a closed curve in the 4d base space ofM4,1. “∼” means a brane is
smeared along the profile ~x(λ) (and not extended transverse to this profile).

We have the M-theory brane configuration as in Table 3.1. The pairs {5,6}, {7,8},

and {9,10} are compactified, each on a square torus (but of different relative sizes). The

M2-branes give electric charges, while the M5-branes give magnetic dipole charges.

Hence taking a pair of M2-branes wrapping some T 2 × T 2, together with the M5-brane

that wraps the same T 2× T 2, gives a supertube along the profile ~x(λ) in the base space.

Reducing this configuration on the T 6 leads to N = 2 ungauged supergravity in 5

dimensions coupled to two vector multiplets. The bosonic content of this theory is:

the gravity multiplet consisting of the graviton gµν and graviphoton A3
µ; and two vector

multiplets consisting of two vector fields A1
µ, A

2
µ (hence three total vectors) and two

scalars ϕ1, ϕ2, which we will find convenient to represent via three scalars X1, X2, X3

and a constraint

X1X2X3 = 1. (3.3)

Each of the XI is the volume of one of the T 2 ⊂ T 6, and hence the constraint (3.3)

states that the volume of the T 6 is fixed.
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The bosonic part of the 5-dimensional action is

S =
1

2κ5

∫ (
?
5
R−QIJ dXI ∧ ?

5
dXJ

−QIJ F
I ∧ ?

5
F J − 1

6
CIJK F

I ∧ F J ∧ AK
)
, (3.4)

where R is the 5d Ricci scalar, XI , I ∈ {1, 2, 3} are scalar fields, F I ≡ dAI are three

Maxwell fields, the constants CIJK = |εIJK |, and the kinetic terms are coupled via the

matrix

QIJ ≡
1

2
diag

(
(X1)−2, (X2)−2, (X3)−2

)
. (3.5)

We parametrize the constraint (3.3) in terms of a new set of scalars ZI :

X1 =

(
Z2 Z3

Z2
1

)1/3

, X2 =

(
Z1 Z3

Z2
2

)1/3

, X3 =

(
Z1 Z2

Z2
3

)1/3

. (3.6)

The requirement of supersymmetry further constrains the ansatz. First, the metric

and the vector potentials must be related:

ds2
5 = −Z−2 (dt+ k)2 + Z ds2

4, Z ≡ (Z1Z2Z3)1/3, (3.7)

AI ≡ −Z−1
I (dt+ k) +BI . (3.8)

This results in a zero-force condition common to all extremal black holes. Second, there

must exist a Killing spinor. In Table 3.1 there are three “flavors” of branes, and each

cuts the supersymmetry in half. The surviving supersymmetry ε must be annihilated by

each of the three projectors [25]

1

2
(1− Γ056)ε =

1

2
(1− Γ078)ε =

1

2
(1− Γ09(10))ε = 0, (3.9)
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and since in the (10, 1)-dimensional Clifford algebra we have Γ0123...(10) ≡ 1, the above

conditions imply1

1

2
(1− Γ1234)ε = 0. (3.10)

In order for a Killing spinor satisfying this projection to exist, the curvature of the base

B must be self-dual, or equivalently its holonomy must be in SU(2); hence the base B

must be hyper-Kähler.

It is convenient to introduce the “magnetic” 2-forms given by

Θ(I) ≡ dBI . (3.11)

One then finds that setting the SUSY variations to zero leads to a linear system of equa-

tions, called the “BPS equations” [25]:

ΘI − ?
4

ΘI = 0,

d ?
4

dZI =
1

2
CIJK ΘJ ∧ΘK ,

dk + ?
4

dk = ZI ΘI ,

(3.12)

(3.13)

(3.14)

where ?4 is taken with respect to the metric on B. The solutions to these equations then

determine ds2
5 and the three F I ≡ dAI .

3.1.1 Gibbons-Hawking metrics

Supersymmetry requires that the base space B be hyper-Kähler. To obtain solutions that

look like a black hole in R4, we need the base space to look like R4 at infinity. There

1This can be seen by taking the product of the three projectors in (3.9) and acting from the left with
Γ1234.

36



is a theorem that the only hyper-Kähler manifold asymptotic to R4 is R4 itself [68]; we

will find a way around this theorem, however.

For now, we will choose a fairly simple family of hyper-Kähler metrics: the

Gibbons-Hawking or Taub-NUT metrics2. These are the most general hyper-Kähler

metrics with a tri-holomorphic U(1) isometry (that is, a U(1) isometry under which all

three complex structures are invariant). They take the form [69],

ds2
4 =

1

V
(dψ + A)2 + V (dx2 + dy2 + dz2), (3.15)

where the function V and 1-form A depend on x, y, z only, and

d ?
3

dV = 0, dA = ?
3

dV. (3.16)

The three Kähler forms of (3.15) are anti-self-dual and given by

Ω
(1)
− = (dψ + A) ∧ dx− V dy ∧ dz, (3.17)

Ω
(2)
− = (dψ + A) ∧ dy − V dz ∧ dx, (3.18)

Ω
(3)
− = (dψ + A) ∧ dz − V dx ∧ dy. (3.19)

These are each closed, by virtue of (3.16). The Ricci tensor of (3.15) vanishes.

The function V solves the Laplace equation in R3, and can be thought of as the

electric potential for a number of point charges3 located at some points ~ai. Then A is the

2Taub-NUT metrics go to R3 × S1 at infinity, and are useful for relating the 5-dimensional solutions
here to the 4-dimensional black holes of our universe.

3One could also consider more general sources for the harmonic function V , such as dipoles, line
charges, etc., but one can always obtain these solutions by combining many point charges. It turns out
that only solutions corresponding to isolated point charges yield nonsingular metrics.
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corresponding vector potential to give magnetic monopoles at the same points. Hence

we can write

V = ε0 +
N∑
i=1

qi
|~x− ~ai|

, A =
N∑
i=1

qi cos θi dφi, (3.20)

where ~x ≡ (x, y, z), and (θi, φi) are spherical polar coordinates centered around ~ai. In

order to prevent the signature of the metric from flipping (++++) to (−−−−), all the

qi must be positive (however, this assumption can be relaxed in the full 5-dimensional

context due to the warp factor Z).

Near the points ~ai, we have V ∼ qi/ri, which means that the ψ circle is shrinking to

zero size. The metric can be locally written (dropping the i index)

ds2
4 =

r

q
(dψ + q cos θ dφ)2 +

q

r
(dx2 + dy2 + dz2), (3.21)

and making the coordinate change r = 1
4
ρ2 one obtains the standard flat metric

ds2
4 ∼ dρ2 + ρ2 dΩ2

3, (3.22)

where dΩ2
3 is the round metric on S3/Z|q|. Hence if each qi = ±1, then the fiber pinches

off smoothly at each ~ai, giving a metric that is free of singularities. For generic integers

qi, the metric locally approaches R4/Z|qi|, and since such orbifolds are benign in string

theory, we can also count such points as regular, as backgrounds for string theory.

The ψ fiber therefore pinches off smoothly at each ~ai, creating a network of homol-

ogy 2-spheres, or “bubbles”, as in Figure 3.1. On these homology 2-cycles we can

construct dual cohomological fluxes of the form

Θ = −∂a
(
H

V

)
Ω

(a)
+ , Ω

(a)
+ ≡ (dψ + A) ∧ dxa + V ?

3
dxa, (3.23)
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Figure 3.1: Homological 2-cycles in the Gibbons-Hawking metric. The ψ fiber pinches
off at the points ~ai. Sweeping the fiber along a path between any two points forms a
homological 2-sphere. Two intersecting 2-cycles are shown.

where xa ∈ {x, y, z} for a ∈ {1, 2, 3}. The 2-form Θ is manifestly self-dual, and it is

harmonic when H solves the Laplace equation in R3. Writing

H = h0 +
N∑
i=1

hi

|~x−~bi|
, (3.24)

we see that choosing the~bi to coincide with the~ai results in Θ being everywhere smooth.

With the given fall-off behavior at infinity, such a Θ is also square-integrable, so it is

a member of the 2nd cohomology group H2(B,R). Such fluxes are “threaded” on the

bubbles swept out by the ψ fiber; they have no singular sources, and yet have nonzero

integrals over a Gaussian surface that links a given bubble.

At infinity, the function V in (3.15) approaches

V ∼ ε0 +
1

r

N∑
i=1

qi +O
(

1

r2

)
. (3.25)

Defining q0 ≡
∑

i qi, then if ε0 = 0, the geometry approaches R4/Z|q0|. If |q0| 6= 1,

this space is called “asymptotically locally Euclidean” or ALE. As indicated by the

previously-mentioned theorem [68], one can only get global R4 at infinity if one has

strictly R4 throughout, and hence we must in fact have only one q1 = 1, since any other

combination of points will result in an orbifold of R4 at infinity. We will show how to

get around this restriction in the following section.
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Alternatively, if ε0 6= 0, then the metric is called Taub-NUT. At infinity, V goes to

a constant and the metric approaches R3 × S1. Taking the time fiber into account, the

whole 5d geometry approaches R3,1×S1, so the Taub-NUT metric is useful for relating

5d physics to 4d black holes.

3.1.2 Solutions on a Gibbons-Hawking base

To write the solutions to equations (3.12)–(3.14), we make the ansätze

Θ(I) = −∂a
(
KI

V

)
Ω

(a)
+ , (3.26)

ZI =
1

2
CIJK

KJKK

V
+ LI , (3.27)

k = µ (dψ + A) + ω, (3.28)

µ =
1

6
CIJK

KIKJKK

V 2
+

1

2V

∑
I

KILI +M, (3.29)

where now the solution is expressed in terms of eight functions KI , LI , V,M and one

1-form ω on the R3 base. The BPS equations then imply that each of the functions

KI , LI , V,M is harmonic:

KI = kI0 +
N∑
i=1

kIi
|~x− ~ai|

, LI = `0
I +

N∑
i=1

`iI
|~x− ~ai|

, (3.30)

V = ε0 +
N∑
i=1

qi
|~x− ~ai|

, M = m0 +
N∑
i=1

mi

|~x− ~ai|
, (3.31)

and ω satisfies

~∇× ~ω = V ~∇M −M~∇V +
1

2
(KI ~∇LI − LI ~∇KI). (3.32)
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Resolved SolutionNaive Solution

OO ring ba

Figure 3.2: Geometric transition of black ring: The naïve singular black ring is replaced
by the resolved geometry. Two GH centers a and b are “pair created” and replace the
ring with a bubble containing an equivalent amount of flux. Image from [25].

We have hinted that it is possible to circumvent the theorem that R4 is the unique

hyper-Kähler manifold asymptotic to R4. To see this, we look at the full 5-dimensional

metric,

ds2
5 = −(Z1Z2Z3)−2/3 (dt+ k)2

+ (Z1Z2Z3)1/3

[
1

V
(dψ + A)2 + V (dx2 + dy2 + dz2)

]
. (3.33)

In this context we see that what is really important is that the 5d metric keep the signature

(−+ + + +) consistently. Therefore the function V is allowed to change sign, so long as

each of the Z1, Z2, Z3 change sign at the same place. Hence the hyper-Kähler base B is

allowed to be “ambipolar”, meaning its signature can change from regions of (+ + + +)

to regions of (−−−−). This in turn allows us to choose qi both positive and negative,

allowing for an infinite variety of metrics even subject to the constraint
∑

i qi = 1. One

can show that the 5d metric is smooth across the V = 0 critical surfaces [25].

By choosing different combinations of parameters in (3.30) and (3.31), we can create

a variety of supersymmetric solutions. Generically, solutions will be singular at the

~ai, which correspond to the locations of 3-charge black rings. However, for certain

combinations of parameters, the singularity will be resolved into a bubble, or homology

2-sphere, as in Figure 3.2. The fluxes Θ(I) threaded on this 2-sphere can be integrated

over a Gaussian surface to reveal charges, although there is no singular charged object
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sourcing them. The amount of charge trapped on the bubble can be obtained by finding

the periods of the Θ(I) on the cycles ∆ij:

Π
(I)
ij ≡

1

4π

∫
∆ij

Θ(I) =

(
kIj
qj
− kIi
qi

)
. (3.34)

These are magnetic dipole charges, and the Gaussian surfaces are 2-spheres that, in the

naïve black ring solution, would link the ring. The electric charges of the solution are

found by integrating over the 3-sphere at infinity, which cannot measure the magnetic

flux trapped on the bubbles. However, due to the Chern-Simons terms in the action (3.4),

the electric potentials ZI have a quadratic source 1
2
CIJKΘ(J) ∧ Θ(K) in (3.13). Hence

the dipole charges trapped on the bubbles can source electric charges indirectly. Thus

the original charges of the naïve black ring geometry have become “dissolved in fluxes”.

One is interested in smooth resolutions of the black ring geometry, and to create

smooth bubbles, one must choose the parameters such that the functions ZI , µ remain

finite at each of the GH centers ~ai. This condition amounts to setting

`iI = −1

2
CIJK

kJi k
K
i

qi
, mi =

1

12
CIJK

kIi k
J
i k

K
i

q2
i

, (3.35)

at each GH center.

Supertube boundary conditions

Alternatively, one can create a supertube by following the usual prescription of two

electric charges and one magnetic dipole charge. This requires, e.g. Z1 and Z2 to be

singular with 1/r behavior, while Z3 and V remain finite (so the ψ fiber does not pinch

off). This can be accomplished by turning on `i1, `
i
2 and k3

i at some point (where qi = 0).

The supertube follows a circular profile wrapping around the ψ fiber. This configuration

42



will be singular in 5 dimensions; however, it can be lifted to 6d and made smooth, as we

will see in Section 3.3.3.

3.1.3 The Bubble Equations

In order to make physical sense, the 5d solutions we have obtained must be free of causal

pathologies; i.e. closed timelike curves (CTCs). Looking at a t = const slice, we can

re-arrange the metric as follows:

ds2
5

∣∣∣∣
t=const

=
Q

V 2Z2

(
dψ + A− V 2µ

Q
ω

)2

+ ZV

(
r2 sin2 θ dφ2 − ω2

Q

)
+ ZV (dr2 + r2 dθ2), (3.36)

where

Q ≡ Z1Z2Z3V − V 2µ2, Z ≡ (Z1Z2Z3)1/3, (3.37)

k ≡ µ (dψ + A) + ω. (3.38)

To avoid CTCs, this slice metric must be everywhere positive definite. This requires

Q ≥ 0, ZV ≥ 0, r2 sin2 θ dφ2 ≥ ω2

Q
, (3.39)

everywhere4.In general, it is hard to guarantee this simply by choosing the local param-

eters in the solution (3.30), (3.31). One must numerically explore the solution and check

these conditions. Near the GH centers, however, one can write down a condition that

4One might also argue that a solution should be stably causal rather than merely being free of CTC’s.
Stably causal means that there is a finite lower bound on the size of a perturbation needed to produce
CTC’s, and this is equivalent to having a global time function [7]. In the above parameters, this becomes
Q− ω2 > 0, which is a stronger condition than (3.39). See also [25].
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must be locally satisfied. Assuming a regular bubbling solution according to (3.35), one

finds that the sufficient local condition is that the function µ → 0 at every ~ai. This

results in the “bubble equations”, which can be written (near each ~ai)

N∑
j=1
j 6=i

Π
(1)
ij Π

(2)
ij Π

(3)
ij

qiqj
rij

= −2
(
m0 qi +

1

2

3∑
I=1

kIi

)
, (3.40)

where Π
(I)
ij are the fluxes as in (3.34), and rij ≡ |~ai − ~aj| is the distance (in the R3 base)

between ~ai and ~aj . This formula contains the most interesting part of the physics of

bubbling solutions: the fluxes Π
(I)
ij on each bubble determine the size of that bubble by

the constraint on rij . Essentially the fluxes threaded on a bubble hold that bubble open

against gravitational collapse. We also see from the product of three Π
(I)
ij that all three

types of flux are necessary for this physical effect; if one type of flux is missing, then

the left-hand side is zero and the system becomes degenerate.

Taking the sum of all the bubble equations, the left-hand side vanishes identically,

and the resulting condition is simply that µ → 0 at infinity. So there are really N − 1

independent bubble equations, which are exactly enough to determine the N − 1 inde-

pendent bubble diameters.

3.2 Non-BPS solutions in 5d from Floating Branes

The material in this section is taken mostly from [31]. We will keep the discussion brief

and only point out the essential differences from the BPS case in Section 3.1.

To get away from BPS, we start again from the action (3.4) but relax the requirement

of supersymmetry. This means tackling the full Einstein equations rather than the SUSY
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variations, which can be quite tedious. Thankfully, the hard work has been done in [31],

starting again from the ansätze

ds2
5 = −Z−2 (dt+ k)2 + Z ds2

4(B), Z ≡ (Z1Z2Z3)1/3,

AI ≡ −Z−1
I (dt+ k) +BI .

(3.41)

(3.42)

As before, the warp factors ZI appear in both the metric and the Maxwell potentials, so

we are assuming a zero-force condition where the branes “float”; hence this is called the

“floating brane” ansatz. However, we do not impose the condition that the base space B

must have a covariantly constant spinor.

To continue, one defines the frames

e0 ≡ −Z−1 (dt+ k), ea ≡ Z1/2 êa, (3.43)

where êa, a ∈ {1, 2, 3, 4} are frames on ds2
4. Then one can define

Θ(I) ≡ dB(I) =
1

2
Θ

(I)
ab ê

a ∧ êb, K ≡ dk =
1

2
Kab ê

a ∧ êb, (3.44)

where the indices a, b refer to the components in the hatted frames êa. It will also help

to define 2-forms ω(I)
− using the anti-self-dual parts of the Θ(I) via

1

2

(
Θ(I) − ?

4
Θ(I)

)
= CIJK ZJ ω

(K)
− . (3.45)

The (00) components of the Einstein equations are then written

∑
I

Z−1
I ∇̂

2ZI = −1

4
Z−3

∑
I

ZI Θ
(I)
ab

(
ZI Θ

(I)
ab − 2Kab

)
, (3.46)
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where ∇̂2 is the Laplacian on ds2
4. The off-diagonal (0a) components of the Einstein

equations give

d ?
4
K =

∑
I

dZI ∧ ?
4

Θ(I). (3.47)

To write the remaining equations it is helpful to define some 2-forms on B:

R(I)
± ≡

1

2
ZI
(
Θ(I) ± ?

4
Θ(I)

)
, P± ≡

1

2

(
K ± ?

4
K
)
− 1

2

3∑
J=1

R(J)
± , (3.48)

(no sum on I). Then define a bilinear form Tab(X, Y ) of two 2-forms X, Y :

Tab(X, Y ) ≡ 1

2

(
XacYbc +XbcYac

)
− 1

4
δabXcdYcd. (3.49)

This definition is motivated by the fact that Tab(X,X) is just the stress-energy tensor for

the electromagnetic field strength X:

Tab(X,X) = XacXbc −
1

4
δabXcdXcd. (3.50)

Using Tab(X, Y ), the Einstein equations on the 4d base B can be written

R̂ab −
1

2
R̂ δab = 2Z−3 Tab(P+,P−)−

3∑
I=1

Tab
(

1

2

(
Θ(I) + ?

4
Θ(I)

)
, ω

(I)
−

)
, (3.51)

where we note that in fact the 4d Ricci scalar R̂ = 0 because the right-hand side is

traceless.

Next we have the equation of motion for the scalars ZI :

Z−1
1 ∇̂2Z1 − Z−1

3 ∇̂2Z3 =
1

2
Z−3

[
Z1 Θ

(1)
ab

(
Z1 Θ

(1)
ab − 2Kab

)
− Z3 Θ

(3)
ab

(
Z3 Θ

(3)
ab − 2Kab

)]
, (3.52)
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and similarly for cyclic permutations of {1, 2, 3}. Finally, the Maxwell equations,

d ?
5

(
QIJ F

J
)

=
1

4
CIJK F

J ∧ FK , (3.53)

reduce to the two equations

d ?
4

dZI =
1

2
CIJK Θ(J) ∧Θ(K)

+ Z−3ZI K ∧
(
K + ?

4
K + 2R(I)

− −
3∑

J=1

ZJΘ(J)
)
, (3.54)

and

d

(
Z−3ZI

(
K + ?

4
K + 2R(I)

− −
3∑

J=1

ZJΘ(J)
))

= 0, (3.55)

where there is no sum on I and ?4 d ?4 dZI ≡ ∇̂2ZI . Combining (3.46), (3.52)

and (3.54), one obtains three algebraic constraints

P+ ∧ P+ + P+ ∧R(1)
+

+
1

4

(
R(1)
− −R

(2)
− +R(3)

−
)
∧
(
R(1)
− +R(2)

− −R
(3)
−
)

= 0, (3.56)

along with cyclic permutations of {1, 2, 3}.

3.2.1 The floating brane equations

To reach a tractable system of equations, the next step in [31] is to make the simplifica-

tions

P+ = 0, ω
(1)
− = ω

(2)
− = 0, ω

(3)
− 6= 0. (3.57)
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Then the above equations can be reduced to the following: First, the base space B is

required to be a Euclidean-signature Einstein-Maxwell solution,

R̂µν =
1

2

(
FµρFνρ −

1

4
gµνFρσFρσ

)
, (3.58)

where F is a Maxwell 2-form determined by the base geometry, and unrelated to the

F I . We decompose F as

F ≡ Θ(3) − ω(3)
− , (3.59)

where Θ(3) is self-dual, and ω
(3)
− is anti-self-dual. The Maxwell equations dF =

d ?4F = 0 imply that Θ(3) and ω(3)
− are harmonic. As the notation implies, this defines

the magnetic 2-form field strength Θ(3). Once the base geometry is determined, the

remaining equations reduce to a linear system which we call the “floating brane equa-

tions”:

d ?
4

dZ1 = Θ(2) ∧Θ(3), Θ(2) − ?
4

Θ(2) = 2Z1 ω
(3)
− ,

d ?
4

dZ2 = Θ(1) ∧Θ(3), Θ(1) − ?
4

Θ(1) = 2Z2 ω
(3)
− ,

d ?
4

dZ3 = Θ(1) ∧Θ(2) − ω(3)
− ∧ (dk − ?

4
dk),

dk + ?
4

dk =
1

2

∑
I

ZI (Θ(I) + ?
4

Θ(I)).

(3.60)

(3.61)

(3.62)

(3.63)

This system is somewhat reminiscent of the BPS equations (3.12)–(3.14), but with an

extra complication due to the anti-self-dual parts of Θ(1),Θ(2).

Therefore the equations of motion of the 5d N = 2 theory on the floating brane

ansatz can be solved by the following steps: First, find a Euclidean-Einstein-Maxwell

base. The Maxwell 2-form defines the 2-forms Θ(3) and ω(3)
− via (3.59). We then solve

the first layer of coupled linear equations (3.60) and (3.61) for Z1, Z2,Θ
(1), and Θ(2).

These enter as sources in the second layer of coupled linear equations (3.62) and (3.63),

which we solve finally for Z3 and k.
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3.3 BPS solutions in 6d

The material in this section comes largely from three papers, [70, 71, 72].

In 6 dimensions we considerN =1 supergravity coupled to one anti-self-dual tensor

multiplet. The minimal 6d N = 1 supergravity contains a graviton gµν , a left-handed

gravitino ψAµ , and a 2-form potential B+
µν with self-dual 3-form field strength G(3)

+ . Due

do the self-duality condition on G(3)
+ , this theory does not have a covariant Lagrangian

formulation. To this theory we add an anti-self-dual tensor multiplet consisting of a

2-form potential B−µν with anti-self-dual field strength, a right-handed fermion χA, and

a scalar φ. The combined 3-form field strength G(3) now is general with both self-

dual and anti-self-dual parts. Hence this new theory does have a covariant Lagrangian

formulation; however, we will not need to write it down.

The purpose of adding the extra tensor multiplet is to give a theory that yields, upon

dimensional reduction on a circle, the previously-discussed 5d N = 2 theory with two

vector multiplets. That is, the 6d N = 1 theory with one anti-self-dual tensor is the

simplest place to look for 3-charge microstate geometries in 6 dimensions.

Since we are again looking for BPS solutions, we can take advantage of supersym-

metry. Thus rather than solving the full Einstein equations, we can look at the SUSY

variation δψAµ = 0. This gives the equation

∇µε−
1

4
Gµρλ γ

ρλ ε = 0, (3.64)

which indicates the existence of a “twisted” Killing spinor ε. One can then choose a

frame in which G(3) “cancels” the spin connection in this equation such that ε satisfies

the simpler

∂µε = 0. (3.65)
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Out of ε one can form various spinor bilinears, and from those conclude the general

structure of supersymmetric solutions. This ultimately leads to the metric ansatz [70]

ds2
6 = −2H−1 (dv + β)

(
du+ ω +

1

2
F(dv + β)

)
+H ds2

4(B), (3.66)

where the functions H,F and the 1-forms β, ω are assumed independent of u such that

∂/∂u is a null Killing vector. The coordinate v is periodically identified. The metric on

the 4d base B is given by

ds2
4(B) = hij dxi dxj, (3.67)

where the hij may also be functions of v, so that ds2
4 is really a 1-parameter family of

4-metrics. The 1-forms β, ω have legs only along the 4d base B. We can write the metric

(3.66) using a null-orthonormal frame

ds2
6 = −2e+ e− + δij e

i ej, (3.68)

by defining

e+ ≡ H−1
(
dv + β

)
, e− ≡ du+ ω +

1

2
FH e+, ei = H1/2 ẽi, (3.69)

where ẽi, i ∈ 1, 2, 3, 4 are an orthonormal frame on B. In contrast to the conventions of

[70], we will work using the more standard definition of the Hodge dual,

?
n

(ei1 ∧ . . . ∧ eip) =
1

(n− p)!
εi1...ipj1...jn−p (ej1 ∧ . . . ∧ ejn−p). (3.70)
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We will find it helpful to define a “restricted” exterior derivative d̃ on B that acts

only on the xi and treats v as a constant:

d̃(ϕI dxI) =

(
∂ϕI
∂xi

)
v

dxi ∧ dxI , (3.71)

where I is a multi-index and ϕI dxI is a generic p-form. Using this, we define a “covari-

ant” exterior derivative D via

Dϕ ≡ d̃ϕ− β ∧ ∂vϕ, (3.72)

such that the total exterior derivative d (on u-independent fields) can be written

dϕ = (dv + β) ∧ ϕ̇+Dϕ, (3.73)

where we have used a dot to denote the v-derivative φ̇ ≡ ∂vφ.

Next, supersymmetry implies the existence of 3 almost complex structures (i.e. lin-

ear operators) Ĵ (A) on B that satisfy the quaternion algebra

Ĵ (A)Ĵ (B) = −δAB + εABC Ĵ (C). (3.74)

A note regarding notation: With hats, Ĵ (A) : TB → TB are linear operators on the

tangent space of a point in B that satisfy the properties of an almost complex structure.

Without hats, J (A) : TB × TB → R are the 2-forms (i.e. Kähler 2-forms) associated to

these almost complex structures. They are related via

Ĵ (A)(X) = δabJ (A)(ẽa, X) ẽb, (3.75)
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where X ∈ TB is any vector, and ẽa ∈ TB are an orthonormal frame of B. Supersym-

metry further implies that the 2-forms J (A) and the 1-form β must satisfy

d̃J (A) = ∂v(β ∧ J (A)),

Dβ = ?
4
Dβ.

(3.76)

(3.77)

These equations together define the structure of the 4d “base space” B (really a 1-

parameter family of base spaces parametrized by the coordinate v).

We should point out here that the main source of difficulty with 6-dimensional solu-

tions is the β equation (3.77). From the definition of D (3.72) we see that this is a

non-linear equation. We should not be surprised that non-linear equations turn up in

supergravity; however, this is in contrast to both of the 5-dimensional systems previ-

ously discussed, where it was possible to reduce things to linear systems. Expanding β

in Fourier modes around the v circle,

β ≡
∞∑

m=−∞

eimv β(m), (3.78)

where the 1-forms β(m) are independent of v, one can re-write (3.77) for each mode as

(
1− ?

4

)(
d̃β(`) +

i

2

∑
m,n

(m− n) δ`,m+n β(m) ∧ β(n)

)
= 0, (3.79)

which are the self-dual Yang-Mills equations based on the Witt algebra (or classical

Virasoro algebra, without central extension):

[Lm, Ln] = (m− n)Lm+n, m, n ∈ Z. (3.80)
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The Witt algebra generates the (identity component of) the diffeomorphism group of

the circle. Then (3.77) resembles the equation for a Diff(S1)-instanton on the family of

base spaces B. However, π3(S1) = 0, so there are no topological solutions in the usual

sense of instantons.

3.3.1 The equations of motion

In order to write the rest of the equations of motion, we first define the anti-self-dual

2-forms ψ and ψ̂

ψ ≡ Hψ̂ ≡ 1

8
H εABC 〈J (A), ∂vJ

(B)〉B J (C), (3.81)

where 〈·, ·〉B is the contraction on the base space B, defined on p-forms via

〈a, b〉B =
1

p!
ai1..ipb

i1..ip . (3.82)

where indices are raised with the metric on B. Then one can make the following ansatz

for the 3-form field strength G:

e
√

2φG = −1
2
?
4

(DH +Hβ̇ −
√

2H Dφ)

− 1
2
e+ ∧ e− ∧ (H−1DH + β̇ +

√
2Dφ)

− e+ ∧ (−Hψ + 1
2
(Dω)− −K) + 1

2
H−1e− ∧ Dβ,

(3.83)

where K is a self-dual 2-form (yet to be determined) on B, and

(Dω)± ≡ 1
2
(Dω ± ?

4
Dω). (3.84)

The equations of motion to be satisfied by G are

dG = 0, d(e2
√

2φ ?
6
G) = 0, (3.85)

53



which under the above ansatz become (using (3.77))

D
(
e
√

2φH−1(K −HG −Hψ)
)
− 1

2
∂v ?

4

(
D(e

√
2φH) + e

√
2φHβ̇

)
− e
√

2φH−1β̇ ∧
(
K −HG −Hψ

)
= 0,

(3.86)

D
(
e−
√

2φH−1(K +HG +Hψ)
)

+ 1
2
∂v ?

4

(
D(e−

√
2φH) + e−

√
2φHβ̇

)
− e−

√
2φH−1β̇ ∧

(
K +HG +Hψ

)
= 0,

(3.87)

and

D ?
4

(
D(e

√
2φH) + e

√
2φHβ̇

)
= −2e

√
2φ(K −HG) ∧ Dβ, (3.88)

D ?
4

(
D(e−

√
2φH) + e−

√
2φHβ̇

)
= 2e−

√
2φ(K +HG) ∧ Dβ, (3.89)

where the 2-form G is defined as

G ≡ 1

2H

[
(Dω)+ + 1

2
F Dβ

]
. (3.90)

There is also a portion of the Einstein equations that is not automatically solved under

the SUSY conditions (3.74), (3.76) and (3.77). This gives one final equation of motion.

In order to write it down, first define the 1-form

L ≡ ω̇ + 1
2
F β̇ − 1

2
DF . (3.91)

Then the final equation is written

?
4
D ?

4
L − 2〈β̇,L〉B = −1

2
Hhij∂2

v(Hhij)− 1
4
∂v(Hh

ij)∂v(Hhij)

− 2H2φ̇2 + 1
2
H−2‖Dω + 1

2
F Dβ‖2

B

− 2H−2‖K −Hψ + 1
2
(Dω)−‖2

B,

(3.92)
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where on p-forms,

‖a‖2
B = 〈a, a〉B =

1

p!
ai1..ipa

i1..ip . (3.93)

3.3.2 A linear system

The above equations look rather daunting. However, it was found in [72] that there is yet

another linear system of equations hiding within them. First one defines the following

suggestively-named quantities,

Θ(1) ≡ e−
√

2φH−1(K +HG +Hψ), Θ(2) ≡ e
√

2φH−1(−K +HG +Hψ),

(3.94)

Z1 ≡ e
√

2φH, Z2 ≡ e−
√

2φH. (3.95)

These relations can be easily inverted, which we write down here for completeness:

H2 = Z1Z2, e2
√

2φ = Z1Z
−1
2 , (3.96)

2K = 1
2
Z1(Θ(1) + ?

4
Θ(1))− 1

2
Z2(Θ(2) + ?

4
Θ(2)), (3.97)

2HG = 1
2
Z1(Θ(1) + ?

4
Θ(1)) + 1

2
Z2(Θ(2) + ?

4
Θ(2)), (3.98)

1
2
(Θ(1) − ?

4
Θ(1)) = e−

√
2φψ = Z2ψ̂, (3.99)

1
2
(Θ(2) − ?

4
Θ(2)) = e

√
2φψ = Z1ψ̂. (3.100)

Using the functions Z1, Z2 and the 2-forms Θ(1),Θ(2), it was shown in [72] that the

equations of the previous section can be rearranged into the following system:

1
2
(Θ(1) − ?

4
Θ(1)) = Z2ψ̂,

1
2
(Θ(2) − ?

4
Θ(2)) = Z1ψ̂ (3.101)
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and

DΘ(2) − β̇ ∧Θ(2) = −1
2
∂v
(
?
4

(DZ1 + Z1β̇)
)
,

DΘ(1) − β̇ ∧Θ(1) = −1
2
∂v
(
?
4

(DZ2 + Z2β̇)
)
,

D ?
4

(
DZ1 + Z1β̇

)
= 2Θ(2) ∧ Dβ,

D ?
4

(
DZ2 + Z2β̇

)
= 2Θ(1) ∧ Dβ,

(3.102)

(3.103)

(3.104)

(3.105)

and

?
4
D ?

4
L − 2〈β̇,L〉B = −1

2

√
Z1Z2 h

ij∂2
v

(√
Z1Z2 hij

)
− 1

4
∂v
(√

Z1Z2 h
ij
)
∂v
(√

Z1Z2 hij
)

− 2Z1Z2

(
∂vφ
)2

+ 2 ?
4

(
Θ(1) ∧Θ(2) − ψ̂ ∧ Dω

)
,

(3.106)

and finally

Dω + ?
4
Dω = 2Z1Θ(1) + 2Z2Θ(2) −F Dβ − 4Z1Z2ψ̂, (3.107)

where

L ≡ ω̇ + 1
2
F β̇ − 1

2
DF . (3.108)

We can see that this new system is linear, and vaguely reminiscent of the “floating brane”

system (3.60)–(3.63), but with new complications due to v-dependence. We will see in

Chapter 4 that this resemblance is not accidental.

So then the process of finding 6d BPS solutions is as follows: First determine a v-

family of base spaces B with almost-complex structures J (A) that satisfy the relations

(3.76), (3.77):

d̃J (A) = ∂v(β ∧ J (A)), (3.109)
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Dβ = ?
4
Dβ. (3.110)

The J (A) then determine the anti-self-dual 2-form ψ̂ via

ψ̂ ≡ 1

8
εABC 〈J (A), ∂vJ

(B)〉B J (C). (3.111)

Next using the definitions (3.101), solve the coupled linear equations (3.102)–(3.105)

for Z1, Z2,Θ
(1),Θ(2). Finally, solve the equations (3.106) and (3.107) to obtain ω and

F .

3.3.3 The v-independent case: Supertubes

If we turn off the v dependence in equations (3.76), (3.77) and (3.101)–(3.107), they

simplify immensely. First we see from (3.76) that the base B must be hyper-Kähler with

anti-self-dual Kähler forms J (A). The nonlinear β equation (3.77) simplifies to

d̃β = ?
4

d̃β, (3.112)

and setting Θ(3) ≡ 2 d̃β defines a 2-form Θ(3) that is self-dual and harmonic. Next we

see that ψ̂ = 0, and hence (3.101)–(3.103) tell us that Θ(1),Θ(2) are also self-dual and

harmonic. The rest of the equations simplify to

Θ(I) = ?
4

Θ(I), dΘ(I) = 0, (3.113)

d ?
4

dZ1 = Θ(2) ∧Θ(3), (3.114)

d ?
4

dZ2 = Θ(1) ∧Θ(3), (3.115)

−d ?
4

dF = 4 Θ(1) ∧Θ(2), (3.116)

dω + ?
4

dω = 2Z1Θ(1) + 2Z2Θ(2) − 1

2
FΘ(3). (3.117)
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We see that if we identify Z3 ≡ −1
4
F and k ≡ 1

2
ω, then these are exactly the 5d BPS

equations (3.12)–(3.14).

Regularity of supertubes in 6d

We hinted earlier that supertubes can be made smooth in 6 dimensions. For a long,

straight supertube, take a simple R4 base and choose cylindrical coordinates on R4,

ds2
4 = dz2 + dr2 + r2 (dθ2 + sin2 θ dφ2), (3.118)

such that the coordinate z runs along the length of the supertube. Then applying the

supertube boundary conditions in Section 3.1.2, we find that Z1, Z2 ∼ 1/r near the

supertube, while Z3 remains finite. For concreteness and simplicity, we will take

Z1 = Z2 =
1

r
, F = −1. (3.119)

then we find β and ω are given by

β = −1

r
dz − cos θ dφ, ω = −1

r
dz. (3.120)

Putting these into the metric (3.66) results in

ds2
6 = −2r(dv + β)(du+ ω) + r(dv + β)2 +

1

r
dz2 +

1

r

(
dr2 + r2 dΩ2

2

)
. (3.121)

One can then complete the square, giving

ds2
6 = −r(du+ ω)2 + r

(
dv − du+ β − ω

)2
+

1

r
dz2 +

1

r

(
dr2 + r2 dΩ2

2

)
. (3.122)
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Defining a new coordinate ψ ≡ v−u and inserting β, ω gives, after some rearrangement

ds2
6 = −r du

(
du− 2

r
dz
)

+ r(dψ + cos θ dφ)2 +
1

r

(
dr2 + r2 dΩ2

2

)
. (3.123)

We recognize the last two terms as a 1-center Gibbons-Hawking metric, which is simply

another way to write the flat metric on R4. Therefore at small r we have

ds2
6 ∼ −r du2 − 2 du dz + ds2

4(R4). (3.124)

As promised, the supertube solution is smooth. The coordinate z is spacelike every-

where except at the location of the supertube itself, where it becomes null. We see that

an essential aspect of this smooth limit is the 1-form β which provides the KK monopole

part cos θ dφ. This causes the v circle to fiber nontrivially over the S2 Gaussian surface

around the supertube to create an S3, which smoothly pinches off at the location of the

supertube, just as the S3 of the angular coordinates in R4 shrinks to zero size at the

origin.
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Chapter 4

Non-BPS Microstates in 5d on a

LeBrun base

The material in this chapter is taken from two papers, [33, 34] which I authored with

collaborators Nikolay Bobev and Nick Warner.

4.1 Motivation

Now that we have set up the mathematical background, we will move on to seek non-

BPS solutions of the 5-dimensional N = 2 supergravity theory with two vector multi-

plets.

The BPS story outlined in Section 3.1 is quite remarkable. As shown in [73], starting

from a simple brane configuration in M-theory, the problem can be reduced to a system

of equations (3.12)–(3.14) with an “upper triangular” structure. At each level the equa-

tions are linear, and the solutions from one level feed into the next level quadratically

as sources. While the full equations of 5d supergravity are very complicated, the BPS

equations are simple enough that they can be solved in complete generality, in terms

of eight arbitrary harmonic functions on R3 as in (3.30) and (3.31). The resulting met-

ric (3.33) has, generically, only two isometries (generated by ∂/∂t and ∂/∂ψ) and so is

“cohomogeneity three”. The full solution is a soliton made of pure topological bubbles

and fluxes [74, 75, 25, 16]
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These BPS solutions can be used to construct smooth BPS microstate geometries that

share some key features. First, they are constructed with a time fiber over a hyper-Kähler

Gibbons-Hawking (GH) base [69], which contains topologically non-trivial 2-cycles, or

“bubbles”. These cycles are threaded with self-dual cohomological fluxes (3.34), which

can be integrated over a Gaussian surface to reveal “charges dissolved in fluxes”. The

bubbles pinch off smoothly at either end with no singularities (3.35). The fluxes and

topological cycles are further related by the “bubble equations” (3.40)

N∑
j=1
j 6=i

Π
(1)
ij Π

(2)
ij Π

(3)
ij

qiqj
rij

= −2
(
m0 qi +

1

2

3∑
I=1

kIi

)
, (4.1)

which state that the size rij of each bubble, roughly speaking, scales in proportion to

the product of the three types of flux Π
(I)
ij trapped on it. Hence while gravity alone

would tend to compress the bubbles, the fluxes tend to expand them, and they reach an

equilibrium between these effects.

Toward non-BPS

This structure gives a hint at what the generic microstates of 5d BPS black holes might

look like in the supergravity régime. An important question to answer is what happens

when we get away from BPS. Realistic black holes are not supersymmetric, and a sat-

isfactory solution to the information problem requires understanding the microstates of

non-BPS black holes (as well as non-extremal and Schwarzschild black holes).

Unfortunately, the non-BPS case is substantially more difficult. Without the tools of

supersymmetry, one must confront the full, nonlinear Einstein equations, and reducing

them to anything with the simplicity of (3.12)–(3.14) would be rather miraculous. A few

isolated examples exist [26, 27, 28, 29] of truly non-BPS, non-extremal smooth geome-

tries, but no infinite familes are yet known (which are necessary for entropy counting).
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However, in the non-BPS extremal case, there are linear systems which can be solved

to obtain infinite families of solutions. One such family are the so-called “almost BPS”

solutions [76, 77, 78], where supersymmetry is broken by inverting the orientation of

the Gibbons-Hawking base relative to the fluxes. These solutions have been shown to

exhibit a rich variety of phenomena not seen in the BPS case [79, 80, 81].

A further avenue of attack was revealed with the “floating brane” ansatz in 5 dimen-

sions [31], which dispenses with supersymmetry, but keeps extremality, imposing a bal-

ance between gravitational and electromagnetic forces. It was found that this leads to

yet another linear system of equations (3.60)–(3.63), this time on a Euclidean-signature

Einstein-Maxwell base. The authors of [31] explore solutions based on the Israel-

Wilson-Perjés metric [82, 83], which interpolates between the BPS and almost-BPS

systems, showing that the almost-BPS solutions are subsumed under the floating brane

ansatz. Beyond this, a few solutions are known based on various other Euclidean-

Einstein-Maxwell metrics analytically continued from classical GR ones [84], but these

are again isolated examples, and do not resemble the BPS story very closely.

What we would like to do is find an infinite family of solutions resembling the BPS

ones: smooth metrics with an arbitrary number of bubbles held open by flux. The

sequence of papers [33, 34, 35] tell the story of how this is accomplished. Instead of

a Ricci-flat, hyperkähler Gibbons-Hawking base, we use a family of Kähler metrics

studied by LeBrun [85], who showed that these metrics, in addition to being Kähler,

are Euclidean-Einstein-Maxwell solutions [86]. The LeBrun metrics are based not on

the Laplace equation in R3, but on the SU(∞) Toda equation and its linearization. The

Toda equation is a notorious nonlinear PDE which is known to be integrable, but thus

far has resisted attempts at a general solution. The same equation has turned up in

many contexts in string theory and supergravity, and it seems to have deep geometrical

significance [87, 88].
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Solutions on a LeBrun-Burns base

By choosing an especially simple solution to the Toda equation, one obtains the LeBrun-

Burns class of metrics, which is based on the Laplace equation in hyperbolic space H3.

Here is where we focus our first efforts at non-BPS microstates [33]. We find that the

floating brane equations (3.60)–(3.63) are solvable in this context and we present an infi-

nite family of solutions. These solutions share many features with the BPS geometries.

The LeBrun-Burns metrics have the structure of a U(1) fiber overH3. In much the same

way as Gibbons-Hawking metrics, this U(1) fiber pinches off at points controlled by a

harmonic function on H3, which allows one to construct solutions with several “bub-

bles” threaded with cohomological fluxes. We also show that with appropriate choices

of parameters, the solutions can be made regular and free of CTCs.

However, these solutions also have a few deficiencies. First, the Maxwell field of

the LeBrun-Burns metrics is topologically trivial. This means that, while one can use

the U(1) fiber to form 2-cycles, only the fluxes of Θ(1),Θ(2) can be trapped on those

2-cycles; Θ(3) does not participate. In the BPS story, the bubble equations (4.1) require

the product of all three trapped fluxes to hold the bubbles open. What we find in the

non-BPS case on LeBrun-Burns is that the “bubble equations” are degenerate and do

not constrain the sizes of the bubbles in any way. Second, because of this degeneracy,

regular solutions effectively have only two types of dipole charges, so the regularity con-

ditions analogous to (3.35) actually demand that most of the parameters be set to zero.

And finally, we show that LeBrun-Burns-based solutions cannot be asymptotically flat,

which limits their interpretation as microstates of black holes in flat spacetime. What

can be achieved asymptotically, however, is the near horizon geometry of a BMPV-like

spinning black hole [89], which hints that there might be solutions of the 5d theory

(perhaps violating the simplifying assumptions (3.57) of the floating brane ansatz) that

restore the asymptotically-flat region.
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5d-6d connection

In [34], we find a curious connection between these 5d non-BPS solutions and the 6d

BPS system discussed in Section 3.3. It turns out that after re-organizing the BPS equa-

tions in the 6-dimensional IIB frame [70, 71, 72], they can be made to look identical to

the 5d non-BPS floating brane equations on the LeBrun base. Therefore the exact same

family of solutions plays two roles, both supersymmetric and non-supersymmetric. The

apparent discrepancy is explained in the dimensional reduction from 6 to 5 dimensions:

the Killing spinor in 6 dimensions can be charged under the U(1) on which the reduction

occurs, which causes it to vanish in 5 dimensions. This is reminiscent of the Scherk-

Schwarz mechanism [90, 91], or also “supersymmetry without supersymmetry” [92].

Generalizing to axisymmetric LeBrun

To repair the deficiencies of the LeBrun-Burns solutions [33], we look back to the gen-

eral LeBrun metrics governed by the Toda equation. In [35], we tackle this problem

by imposing an additional axial symmetry. Subject to this extra U(1) symmetry, the

Toda equation can be mapped onto the cylindrically-symmetric Laplace equation in R3

[87, 88]. This allows us to write generic axisymmetric solutions to the Toda equation

and thus explore a much wider variety of LeBrun metrics. In particular, we can find infi-

nite families of Euclidean-Einstein-Maxwell metrics whose self-dual 2-form Θ(3) has

flux trapped on the topological bubbles. Therefore on these backgrounds one has a hope

of finding non-BPS 5d supergravity solutions with non-trivial bubble equations (and

hence flux v.s gravity interactions) reminiscent of (4.1), and with regularity conditions

resembling (3.35).

We find that again we are able to solve the entire floating brane system (3.60)–(3.63)

on these axisymmetric LeBrun bases. As we had hoped, we find that non-trivial bubble

equations do result, and they resemble (4.1), but with new physical effects not present in

64



the BPS case, such as interactions between non-adjacent bubbles. We also find regularity

conditions that look nearly the same as (3.35), which means that unlike in the LeBrun-

Burns case, the parameters of the solution are not constrained to zero, and can be chosen

with a great deal of freedom. This is exciting and teaches us a lot about the physics of

non-BPS extremal microstate geometries.

However, one still does not have asymptotically-flat solutions. It turns out that this

is a generic feature of floating-brane solutions based on the LeBrun metrics, and is

ultimately due to these metrics being Kähler. Instead one obtains solutions asymptotic

to warped, rotating AdS2 × S3, which can be thought of as near-horizon limits of black

holes, and so these solutions still might tell us something about black hole microstates.

One open question is whether the solutions can be found that restore the

asymptotically-flat region by relaxing the Kähler condition on the base B (which could

make the equations significantly more difficult to solve).

Plan for discussion of these results

In this chapter we will present the results of [33, 34]. First in Section 4.2 we will discuss

LeBrun metrics in general, how they fit within the floating brane ansatz, and how the

asymptotics of resulting 5d solutions are affected. Next in Section 4.3 we specialize

to the LeBrun-Burns subclass, which can be written as a U(1) fiber over H3. We will

present the solutions and the key aspects of physics obtained in [33]. In Section 4.4

we will discuss the lift to 6 dimensions found in [34], and then in Section 4.5 we will

discuss the implications of these solutions and open problems.

The third paper in this sequence, which finds solutions based on the Toda equation of

the more general LeBrun metrics with axial symmetry [35], we will present in Chapter 5.
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4.2 LeBrun metrics as a base for floating branes

Our objective is to find non-BPS solutions of the 5dN =2 ungauged supergravity theory

described in Section 3.1 based on the bosonic action (3.4):

S =
1

2κ5

∫ (
?
5
R−QIJ dXI ∧ ?

5
dXJ

−QIJ F
I ∧ ?

5
F J − 1

6
CIJK F

I ∧ F J ∧ AK
)
, (4.2)

where again,R is the 5d Ricci scalar, XI , I ∈ {1, 2, 3} are scalar fields, F I ≡ dAI are

three Maxwell fields, the constants CIJK = |εIJK |, and the kinetic terms are coupled

via the matrix

QIJ ≡
1

2
diag

(
(X1)−2, (X2)−2, (X3)−2

)
. (4.3)

To obtain non-BPS solutions, we will employ the “floating brane” ansatz described in

Section 3.2, where the 5d metric and 1-form potentials take the form (3.41) and (3.42):

ds2
5 = −Z−2 (dt+ k)2 + Z ds2

4(B), Z ≡ (Z1Z2Z3)1/3, (4.4)

AI ≡ −Z−1
I (dt+ k) +BI , F I ≡ dAI , (4.5)

The “floating” effect is achieved by matching the warp factors of the metric to the elec-

tric potentials in the AI . This will result in extremal solutions where the gravitational

attraction between sources is balanced by their electrostatic repulsion. After defining

“magnetic field strengths” via

Θ(I) ≡ dBI , (4.6)

one can show [31] that, after tedious manipulation and some simplifying assumptions

(3.57), the equations of motion reduce to a linear system of equations (3.60)–(3.63) to be

solved on a background 4-metric ds2
4(B) which solves the Euclidean-Einstein-Maxwell
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equations (3.58). One candidate for such a background metric is given by the LeBrun

family of metrics [85, 86].

The LeBrun metrics [85] are given by

g ≡ 1

w
(dτ + A)2 + weu (dx2 + dy2) + w dz2, (4.7)

which is the expression for the most general Kähler metric in 4 dimensions with a single

U(1) isometry. The isometry is along the coordinate τ , which is periodic with period

4π. The functions u and w are independent of τ and solve the SU(∞) Toda equation1

and its linearization, respectively (here subscripts are partial derivatives):

uxx + uyy + (eu)zz = 0, (4.8)

wxx + wyy + (euw)zz = 0, (4.9)

and the 1-form A satisfies

dA = wx dy ∧ dz + wy dz ∧ dx+ (euw)z dx ∧ dy. (4.10)

The form of the dy ∧ dz and dz ∧ dx components of dA guarantee that the almost

complex structure,

I : dx 7→ dy, dz 7→ 1

w
(dτ + A), (4.11)

is integrable. The dx ∧ dy component of dA further implies that the Kähler 2-form,

J ≡ (dτ + A) ∧ dz − euw dx ∧ dy, (4.12)

1Also known as the Boyer-Finley equation [93].
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associated to this complex structure is closed, i.e. dJ = 0. The w equation (4.9) is then

just the integrability condition for the existence of an A satisfying (4.10). Additionally,

whenever u satisfies the Toda equation (4.8), then the Ricci scalar of the metric (4.7)

vanishes [85]. In particular, the Ricci scalar must vanish in an Einstein-Maxwell solu-

tion in 4 dimensions because the electromagnetic stress-energy tensor in 4d is traceless;

therefore equation (4.8) is required.

We choose to introduce the frames,

e1 = w−1/2 (dτ + A), e2 = eu/2w1/2 dx,

e3 = eu/2w1/2 dy, e4 = w1/2 dz,
(4.13)

with orientation,

vol4 ≡ e1 ∧ e2 ∧ e3 ∧ e4 = euw dτ ∧ dx ∧ dy ∧ dz, (4.14)

such that J is anti-self-dual. It will also be helpful to define the (anti)-self-dual 2-forms

Ω
(1)
± = e−u/2

(
e1 ∧ e2 ± e3 ∧ e4

)
= (dτ + A) ∧ dx± w dy ∧ dz, (4.15)

Ω
(2)
± = e−u/2

(
e1 ∧ e3 ± e4 ∧ e1

)
= (dτ + A) ∧ dy ± w dz ∧ dx, (4.16)

Ω
(3)
± = e1 ∧ e4 ± e2 ∧ e3 = (dτ + A) ∧ dz ± weu dx ∧ dy, (4.17)

hence we can write J = Ω
(3)
− .

It is worth noting that taking the function u to be a constant is a trivial solution to

(4.8). Then (4.9) becomes the Laplace equation on R3 and the metric (4.7) reduces to

the familiar class of Gibbons-Hawking metrics. Similary, if one takes w = c uz for any

constant c, then it also satisfies (4.9), as can be seen by differentiating (4.8) with respect

to z. This yields the general class of hyper-Kähler metrics with a non-triholomorphic
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U(1) isometry [93, 94, 95, 96], which are based upon the affine Toda equation. In these

hyper-Kähler limits, however, the resulting system of equations for non-BPS solutions

in five dimensions does not reduce to the bubbling BPS equations of Section 3.1, but

instead one has the more complicated system of equations (3.60)–(3.63). As we will

see in Section 4.2.4, this is because the flux background is a mixture of self-dual and

anti-self-dual fluxes and these break supersymmetry. In particular, the anti-self-dual

flux is non-normalizable since it is proportional to the complex structure. Thus even the

simple Gibbons-Hawking and Toda limits of the LeBrun backgrounds extend the class

of solutions considered thus far.

The LeBrun metrics are four-dimensional Euclidean Einstein-Maxwell solutions and

it is natural to ask whether some of them preserve supersymmetry. Supersymmet-

ric solutions of four-dimensional Euclidean Einstein-Maxwell theory were classified in

[97]. The maximally supersymmetric solutions are R4 orH2×S2. There are two classes

of solutions which preserve half of the supersymmetries—the well-known Gibbons-

Hawking solutions and the Euclidean Israel-Wilson-Perjés metrics discussed in [98].

Therefore the classification of [97] also demonstrates that the general LeBrun solutions,

although they are Kähler, are non-supersymmetric solutions of Einstein-Maxwell theory.

4.2.1 Topological structure

The LeBrun metrics (4.7) are analogous to Gibbons-Hawking metrics, in that they have

the structure of a U(1) fiber over a 3-dimensional base. The 3d base, rather than being

flat, is given by the metric

h = eu(dx2 + dy2) + dz2, (4.18)
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Figure 4.1: Homological 2-cycles in the LeBrun metric. The τ fiber pinches off at the points
~ai. Sweeping the fiber along a path between any two points forms a homological 2-sphere. Two
intersecting 2-cycles are shown.

which in turn can be thought of as a Riemann surface fibered over a line. If eu is every-

where finite and non-singular, then the (x, y, z) coordinates can be extended to a topo-

logical R3. In this case, the topology of the 4-manifold can be analyzed in terms of the

U(1) fiber parametrized by τ , much like the topology of Gibbons-Hawking manifolds

[69].

The function w solves a second-order Laplace-like equation, whose solutions are

characterized by a number of points we will call “Gibbons-Hawking points” or “geo-

metric charges”, where locally (provided that eu is smooth),

w ∼ 1

r
, (4.19)

for some local radial distance r. At these points the τ fiber pinches off to zero size.

Hence, if one takes any curve in the 3-dimensional base h that joins two geometric

charges, the surface described by the τ fiber over this curve is a homological 2-sphere,

as in Figure 4.1.

If eu is not smooth, it is still possible that g in (4.7) is smooth. One possibility is that

z is a radial coordinate, and eu(dx2 + dy2) describes a sphere (or perhaps a quotient of

a sphere). Another possibility is that eu(dx2 + dy2) is a higher-genus Riemann surface,

in which case one can have topological cycles that do not involve the τ fiber. Some of

these additional topological features will appear in Chapter 5.
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4.2.2 As Euclidean-Einstein-Maxwell solutions

Just as in the BPS story of Section 3.1, we will be interested in self-dual harmonic 2-

forms. Analogously to (3.23), one can show [33, 34] that self-dual, harmonic 2-forms

on LeBrun spaces can be written

Θ ≡
3∑

a=1

∂a

(
H

w

)
Ω

(a)
+ = (dτ + A) ∧ d

H

w
+ w ?

3
d
H

w
, (4.20)

where H solves (4.9),

Hxx +Hyy + (euH)zz = 0, (4.21)

and ?3 is taken with respect to the 3-metric

h = eu(dx2 + dy2) + dz2. (4.22)

By differentiating (4.8) with respect to z, one can show that H ≡ −(1/2α)uz solves

(4.21) for any constant α. So define the Maxwell 2-form

F ≡ Θ + αJ, with H = − uz
2α
, (4.23)

where Θ is as in (4.20), J is the Kähler form, and α is a constant. Hence Θ is the self-

dual part of F and αJ is the anti-self-dual part. Because Θ and J are each harmonic,

this F satisfies the Maxwell equations

dF = d ?
4
F = 0. (4.24)

One can then show [86] that the the Ricci tensor of the LeBrun metric g is given by

Rµν(g) =
1

2

(
FµρFνρ −

1

4
gµνFρσFρσ

)
, (4.25)
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so that (g,F) are a solution of the Euclidean-Einstein-Maxwell equations (3.58). There-

fore the LeBrun metrics give an appropriate base geometry on which to solve the floating

brane system (3.60)–(3.63) with the identification (3.59):

F ≡ Θ(3) − ω(3)
− . (4.26)

For simplicity in matching with this decomposition, we choose α = −1, and hence

Θ(3) =
1

2
(dτ + A) ∧ d

uz
w

+
1

2
w ?

3
d
uz
w
, ω

(3)
− = J. (4.27)

4.2.3 Floating branes on a LeBrun base

The next task is to solve the floating brane system (3.60)–(3.63) on the LeBrun base,

which we now write with ω(3)
− ≡ J :

d ?
4

dZ1 = Θ(2) ∧Θ(3), Θ(2) − ?
4

Θ(2) = 2Z1 J, (4.28)

d ?
4

dZ2 = Θ(1) ∧Θ(3), Θ(1) − ?
4

Θ(1) = 2Z2 J, (4.29)

and

d ?
4

dZ3 = Θ(1) ∧Θ(2) − J ∧ (dk − ?
4

dk), (4.30)

dk + ?
4

dk =
1

2

∑
I

ZI (Θ(I) + ?
4

Θ(I)). (4.31)

We will find it convenient to define

K3 ≡ 1

2
uz, such that Θ(3) = (dτ + A) ∧ d

K3

w
+ w ?

3
d
K3

w
. (4.32)
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The system (4.28)–(4.31) consists of two “layers” of coupled systems. The first layer

(4.28) and (4.29) must be solved for Z1, Z2,Θ
(1),Θ(2). Once these are obtained, they

enter as sources in the second layer (4.30) and (4.31), which we then solve for Z3 and

k. To solve the first layer, one makes the ansätze

Z1 =
K2K3

w
+ L1, Z2 =

K1K3

w
+ L2, (4.33)

Θ(1) = (dτ + A) ∧ d
K1

w
+ w ?

3
d
K1

w
+ Z2 (Ω

(3)
− − Ω

(3)
+ ), (4.34)

Θ(2) = (dτ + A) ∧ d
K2

w
+ w ?

3
d
K2

w
+ Z1 (Ω

(3)
− − Ω

(3)
+ ). (4.35)

One can then reduce the first layer (4.28) and (4.29) to the following equations for the

functions K1, K2, L1, L2:

∂2
xL1 + ∂2

yL1 + ∂2
z (e

uL1) = 0,

∂2
xL2 + ∂2

yL2 + ∂2
z (e

uL2) = 0,

∂2
xK

1 + ∂2
yK

1 + ∂z(e
u∂zK

1) = 2 ∂z(e
uwL2),

∂2
xK

2 + ∂2
yK

2 + ∂z(e
u∂zK

2) = 2 ∂z(e
uwL1).

(4.36)

(4.37)

(4.38)

(4.39)

Next, to solve the second layer, make the ansätze

Z3 =
K1K2

w
+ L3, (4.40)

k = µ (dτ + A) + ω, (4.41)

µ = −K
1K2K3

w2
− 1

2

3∑
I=1

KILI
w

+M, (4.42)
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where ω is some unknown 1-form. Then the new functions M and L3 satisfy the equa-

tions

∂2
xM + ∂2

yM + ∂z(e
u∂zM) = ∂z(e

uL1L2),

∂2
xL3 + ∂2

yL3 + eu ∂2
zL3 = 4euwL1L2 − 4euw ∂zM

− 2eu(L1 ∂zK
1 + L2 ∂zK

2),

(4.43)

(4.44)

and the 1-form ω satisfies

dω = w ?
3

dM −M ?
3

dw − uzwM ?
3

dz

− 2wL1L2 ?
3

dz +
1

2

∑
I

(LI ?
3

dKI −KI ?
3

dLI)

− 1

2
uz(K

1L1 +K2L2) ?
3

dz +
1

2
uzK

3L3 ?
3

dz.

(4.45)

Therefore, to solve the “floating brane” system on the LeBrun base, one first finds a

function u that solves the SU(∞) Toda equation, which also defines the function K3 ≡
1
2
uz. To determine the base geometry requires a function w that solves (4.9). Once the

base is defined, one must solve (4.36)–(4.39) for L1, L2, K1, K2. Then one must solve

(4.43) and (4.44) for M and L3. Finally, one must solve (4.45) for the 1-form ω. The

full supergravity solution is then obtained from these functions and the ansätze (4.4)

and (4.5).

4.2.4 Possible asymptotics

The 5-dimensional Einstein equations obtained from (4.2) are

Ric(5)−1

2
R(5) g(5) =

1

2
T (5), (4.46)
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where the energy-momentum tensor T (5)
µν comes from varying the matter part of (4.2)

with respect to the inverse 5d metric gµν(5). Since the floating brane system (4.28)–(4.31)

is sufficient to guarantee the solution of the Einstein equations (4.46), we can learn

about the Ricci curvature of possible asymptotic regions by examining T (5)
µν . The full

5-dimensional T (5) ≡ T
(5)
µν dxµ ⊗ dxν is given by

1

2
T (5) = e0 ⊗ e0QIJ

[
1

2
Z−1

〈
dXI , dXJ

〉
4

+
1

2
Z
〈
d(Z−1

I ), d(Z−1
J )
〉

4

+
1

2
Z−2

〈
Θ(I) − Z−1

I dk, Θ(J) − Z−1
J dk

〉
4

]
− e0 ⊗QIJ ?

4

[
d(Z−1

I ) ∧ ?
4

(
Θ(J) − Z−1

J dk
)]

−QIJ ?
4

[
d(Z−1

I ) ∧ ?
4

(
Θ(J) − Z−1

J dk
)]
⊗ e0

+QIJ

[
dXI ⊗ dXJ − 1

2

〈
dXI , dXJ

〉
4
g(4)

− Z2 d(Z−1
I )⊗ d(Z−1

J ) +
1

2
Z2
〈
d(Z−1

I ), d(Z−1
J )
〉

4
g(4)

+ Z−1 Tâb̂
(
Θ(I) − Z−1

I dk, Θ(J) − Z−1
J dk

)
êa ⊗ êb

]
,

(4.47)

where the 5d frames are given by

e0 ≡ −Z−1 (dt+ k), ea ≡ Z1/2 êa, (4.48)

and g(4) = ds2
4 = δab ê

a ⊗ êb is the 4d metric. The contraction 〈·, ·〉4 is defined on

p-forms by

〈X, Y 〉4 =
1

p!
Xi1..ipY

i1..ip , (4.49)
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where indices are raised with g(4). And Tab(X, Y ) is the bilinear form defined in (3.49)

acting on 2-forms X, Y as

Tab(X, Y ) ≡ 1

2

(
XacYbc +XbcYac

)
− 1

4
δabXcdYcd. (4.50)

Are there asymptotically flat solutions?

To obtain asymptotically flat solutions, it is necessary that T (5) → 0 at infinity. In

particular, remembering thatQIJ is diagonal (4.3), we see that the time-time component

T
(5)
00 is positive-definite2:

1

2
T

(5)
00 = QIJ

[
1

2
Z−1

〈
dXI , dXJ

〉
4

+
1

2
Z
〈
d(Z−1

I ), d(Z−1
J )
〉

4

+
1

2
Z−2

〈
Θ(I) − Z−1

I dk, Θ(J) − Z−1
J dk

〉
4

]
.

(4.51)

Therefore each term must vanish individually. Hence for each I ∈ {1, 2, 3}, we must

have

dXI → 0, d(Z−1
I )→ 0, Θ(I) − Z−1

I dk → 0. (4.52)

The first condition implies that the ZI must all have the same asymptotic behavior. The

second condition implies that this behavior is ZI → const. The last condition implies

that, in the asymptotic region,

dk = Z1Θ(1) = Z2Θ(2) = Z3Θ(3). (4.53)

However, this last condition cannot be satisfied on the LeBrun class of base spaces.

From the definition (4.26) we see that Θ(3) is self-dual. But the floating brane equations

2Recall thatZ can only become negative when g(4) is “ambipolar”—the simultaneous flip ofZ → −Z
when g(4) goes from (+ + + +) to (−−−−) maintains the positive-definiteness of (4.51).
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(4.28) and (4.29) state that Θ(1),Θ(2) each have an anti-self-dual part proportional to the

Kähler form J . Since the Kähler form is strictly non-vanishing (it satisfies J ∧ J =

−2 vol4), then when ZI ∼ const, the 2-forms Θ(1),Θ(2) have a non-vanishing anti-

self-dual part. Therefore the last equality in (4.53) cannot be true, and there are no

asymptotically-flat solutions with a LeBrun base space3.

Are there asymptotically AdS-like solutions?

Having ruled out asymptotically-flat solutions, we can look for other interesting asymp-

totics. A logical choice is an AdS-like boundary condition, which is like the near-

horizon region of an extremal black hole, and is useful for studying things from the

holographic perspective. In ungauged 5d supergravity, the possibilities are AdS2 × S3

and AdS3 × S2. The AdS3 × S2 case involves complicated coordinate transformations

[99], so we will leave it for possible future study. However, it is simple to fit AdS2×S3

into the metric ansatz (4.4) by choosing

Z1, Z2, Z3 →
1

ρ2
, ds2

4(B)→ dρ2 + ρ2 dΩ2
3. (4.54)

Then one has

ds2
5 → −ρ4 (dt+ k)2 +

dρ2

ρ2
+ dΩ2

3, (4.55)

where the first two terms give the AdS2 factor and dΩ2
3 gives the S3 factor. Strict AdS2

requires also that k → 0. A non-vanishing k will yield a rotatingAdS2-like metric, such

as the near-horizon region of the BMPV black hole [89].

3The exception to this is when uz/w = const. Then Θ(3) ≡ 0 by (4.32) and the Ricci tensor (4.25)
vanishes. In this case, we can choose ω(3)

− ≡ 0 which allows asymptotic flatness. However, since we
are making a different discrete choice of ω(3)

− , this possibility is not continuously related to the generic
LeBrun ansatz.
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The rotation vector k is sourced by the off-diagonal components of the energy-

momentum tensor:

1

2
T

(5)
0a = −ea ¬

(
QIJ ?

4

[
d(Z−1

I ) ∧ ?
4

(
Θ(J) − Z−1

J dk
)])

. (4.56)

Given that ZI → 1/ρ2, we see that this can only vanish if (again):

dk = Z1Θ(1) = Z2Θ(2) = Z3Θ(3). (4.57)

But since in this case the ZI are not constant, this constraint is inconsistent with the fact

that the Θ(I) are closed:

dΘ(1) = dΘ(2) = dΘ(3) = 0. (4.58)

The only way around this problem is to suppose that in fact

dk = Z1Θ(1) = Z2Θ(2) = Z3Θ(3) = 0. (4.59)

But this condition is (again) inconsistent with the requirement that Θ(1),Θ(2) have anti-

self-dual parts proportional to the Kähler form (4.28) and (4.29):

Θ(1) − ?
4

Θ(1) = 2Z2 J, Θ(2) − ?
4

Θ(2) = 2Z1 J. (4.60)

And although the ZI ∼ 1/ρ2 here are tending to zero, there are enough positive powers

of ρ in (4.56) that the rotation vector k remains significant in the asymptotic region.

Hence we see that while AdS-like asymptotics are possible on the LeBrun base, they

will be strictly rotating ones, like the near-horizon regions of rotating black holes.

Therefore, in seeking non-BPS 5d microstate geometries using the floating brane

ansatz over a LeBrun base, we should not expect to find asymptotically-flat solutions,
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nor even asymptotically-AdS2 × S3 solutions. We see in particular that the obstruction

to finding such asymptotics is that Θ(1),Θ(2) have an anti-self-dual part proportional to

the Kähler form J , which is non-normalizable. Given this constraint, what we should

hope for is to find asymptotically-rotating-AdS2 × S3 solutions. Such solutions are

still useful; they correspond to the near-horizon region of rotating black holes, which

indicates that they might have an interpretation as microstates of those black holes.

* * *

4.3 Solutions on the LeBrun-Burns subclass

The simplest non-trivial subclass of LeBrun metrics (4.7) is obtained by choosing the

function u (4.8) to be

u = log 2z. (4.61)

It is then convenient to reparametrize by defining:

z ≡ 1

2
ζ2, V ≡ euw = 2zw = ζ2w. (4.62)

The LeBrun metric can then be written as

ds2
4 = ζ2

[
V −1 (dτ + A)2 + V

(dx2 + dy2 + dζ2

ζ2

)]
. (4.63)
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These 4-dimensional Kähler metrics were first studied by Burns [100] and so we call

them “LeBrun-Burns metrics”. We see that under the simplification (4.61), the 3-

dimensional metric is now the standard constant-curvature metric on the hyperbolic

plane, H3:

ds2
H3 =

dx2 + dy2 + dζ2

ζ2
. (4.64)

The equations (4.9) and (4.10) that define the four-dimensional base imply that V is a

harmonic function on the hyperbolic plane and that A is an appropriate monopole on

H3:

d ?
H3

dV = 0, dA = ?
H3

dV. (4.65)

4.3.1 Geometry of the LeBrun-Burns metric

Asymptotics

To avoid a conical singularity at ζ = 0, one must have V → 1 at this point so that the

metric in the (ζ, τ) direction limits to that of R2 in polar coordinates. Thus the metric

in the neighborhood of ζ = 0 is that of R4 and regularity requires that one restrict the

space to ζ ≥ 0. Similarly, if one requires V → 1 at infinity, the space is asymptotic

to R4 = C2. Note that the circle defined by τ lies in an R2 plane of the R4, and the

associated isometry therefore only commutes with another U(1) factor in the generic

SO(4) holonomy of the base metric. This is quite different from the way in which the

isometry associated with the U(1) fiber behaves in GH spaces.

The Green functions of the Laplacian on H3 are the functions:

G(x, y, ζ; a, b, c) ≡
(

(x− a)2 + (y − b)2 + ζ2 + c2√
((x− a)2 + (y − b)2 + ζ2 + c2)2 − 4c2ζ2

− 1

)
, (4.66)
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where one should remember that ζ ≥ 0 on H3 and so this function only has one

singularity in the domain of definition. The constant has been added so that G van-

ishes at infinity and at ζ = 0. Given G, we can then solve for A in (4.65). Putting

A = D(x, y, ζ; a, b, c) dφ, we obtain

D(x, y, ζ; a, b, c) ≡ (x− a)2 + (y − b)2 + ζ2 − c2√
((x− a)2 + (y − b)2 + ζ2 + c2)2 − 4c2ζ2

(4.67)

One can then take:

V = ε0 +
N∑
j=1

qj G(x, y, ζ; aj, bj, cj), (4.68)

A =
N∑
j=1

qj D(x, y, ζ; aj, bj, cj) dφ. (4.69)

With these choices and ε0 = 1, the LeBrun-Burns metric is a smooth Kähler metric on

C2 blown up at N points. It is thus a Kähler, electrovac generalization of the Gibbons-

Hawking metrics.

Near (aj, bj, cj), one has

G(x, y, ζ; aj, bj, cj) ∼
cj√

(x− aj)2 + (y − bj)2 + (ζ − cj)2
≡ cj

r
, (4.70)

D(x, y, ζ; aj, bj, cj) ∼
ζ − cj√

(x− aj)2 + (y − bj)2 + (ζ − cj)2
≡ cos θ, (4.71)

and the metric (4.63) behaves as:

ds2
4 = cj qj

[
q−2
j r (dτ + cos θ dφ)2 + r−1(dr2 + r2 dθ2 + r2 sin2 θ dφ2)

]
= cj qj

[
dρ2 + 1

4
ρ2
(
dθ2 + sin2 θ dφ2 + q−2

j (dτ + cos θ dφ)2
)]
, (4.72)
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where we have introduced spherical polar coordinates about (aj, bj, cj) and made a

change of variable r = 1
4
ρ2. Thus near the singular points of V , the metric is locally

R4/Zqj , and hence may be viewed as regular in string theory.

At infinity one has:

G(x, y, ζ; aj, bj, cj) ∼
2 c2

j ζ
2

(x2 + y2 + ζ2)2
, (4.73)

D(x, y, ζ; aj, bj, cj) ∼ 1, (4.74)

and hence V → ε0 and A→ dφ, and the metric is asymptotic to R4 = C2 for ε0 = 1.

Homology and periods

Exactly as in Gibbons-Hawking geometries, the LeBrun-Burns metrics have non-trivial

two-cycles defined by the U(1) fibers over any curve between the poles of V . More

specifically, the U(1) fiber (defined by τ ) taken over a generic line interval in the H3

base describes a cylinder. However, if one runs this interval between two poles of V at

points, ~a(i) and ~a(j) then the fiber is pinched off at the ends and the result is essentially

a topological two-sphere. The asymptotic behavior of the metric at each end of the

interval, (4.72), means that this two-sphere may, in fact, be modded out by some discrete

group that depends upon the values of qi and qj . The two-cycles defined in this way will

be denoted as ∆ij and are depicted in Figure 4.2.

The periods of these cycles are trivial to compute using (7.58):

1

2π

∫
∆ij

J =
1

2π

∫
∆ij

dτ ∧ dz = 2(zj − zi) = ζ2
j − ζ2

i , (4.75)

where zi = 1
2
ζ2
i denote the z-coordinates of the corresponding poles of V .
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Figure 4.2: The non-trivial cycles of the LeBrun-Burns metrics are defined by sweeping the
U(1) fiber along a path, in H3, between any two poles of the potential, V . The fiber is pinched
off at the poles. Here the fibers sweep out a pair of intersecting two-cycles.

The Maxwell fields, Θ(1),Θ(2),Θ(3) defined in (4.32), (4.34) and (4.35) have com-

ponents along the fiber of the form

Θ(I) = dτ ∧ d

(
K(I)

w

)
, I = 1, 2, 3, (4.76)

where K(1) and K(2) satisfy (4.38) and (4.39) and

K(3) ≡ 1

2
∂zu. (4.77)

From this it follows that these fields have fluxes

Π
(I)
ij ≡

K(I)

w

∣∣∣∣
~a(j)
− K(I)

w

∣∣∣∣
~a(i)
, I = 1, 2, 3. (4.78)

Note, in particular, that for the LeBrun-Burns metric K(3)w−1 = V −1 which vanishes at

all the ~a(i). Therefore Θ(3) has no non-trivial fluxes on the compact two cycles.

In summary, the bubbled non-BPS solutions generically have non-vanishing fluxes

only for Θ(1),Θ(2), whereas Θ(3) has trivial fluxes. We will see that this fact enters into

the regularity conditions and the bubble equations in Section 4.3.5.
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4.3.2 The floating brane equations on the LeBrun-Burns base

In specializing the LeBrun system of equations (4.36)–(4.39) and (4.43)–(4.45) to the

LeBrun-Burns metrics, we find two differential operators of interest:

L1H ≡ ∂2
xH + ∂2

y H + ζ−1 ∂ζ (ζ∂ζH), (4.79)

L2G ≡ ∂2
xG+ ∂2

y G+ ζ ∂ζ
(
ζ−1 ∂ζG

)
. (4.80)

Note that ζ2L2 is simply the Laplacian on H3. The operator L1 also appears in the

equations of motion and it is useful to note that it has a simple geometric interpretation.

Observe that the Laplacian on R4 = R2 × R2 may be written as

L̂1H = ∂2
xH + ∂2

y H + ζ−1 ∂ζ (ζ∂ζH) + ζ−2 ∂2
ϕH, (4.81)

where (x, y) are Cartesians on the first R2 and (ζ, ϕ) are polars on the second R2. Thus

solving equations that involve L1 may simply be viewed as looking for ϕ-independent

solutions to the flat Laplacian on R4. The equations and solutions that involve L1 are

thus extremely familiar from the extensive literature on black rings. In particular, it is

useful to note that the following are Green functions for L1:

H(x, y, ζ; a, b, c) ≡ 1√
((x− a)2 + (y − b)2 + ζ2 + c2)2 − 4 c2 ζ2

, (4.82)

At infinity one has:

H(x, y, ζ; a, b, c) ∼ 1

(x2 + y2 + ζ2)
. (4.83)
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Solving the linear system

To solve the linear system, one first solves the homogeneous equations:

L2V = 0, L2 (ζ2 L1) = 0, L2(ζ2 L2) = 0, (4.84)

and then uses these solutions in the equations that define the magnetic fluxes and the

angular momentum function, M :

L1K
(1) = 2 ζ−1∂ζ (V L2), L1K

(2) = 2 ζ−1∂ζ (V L1), (4.85)

L1M = ζ−1∂ζ (ζ2 L1 L2). (4.86)

The last step is to use these solutions in:

L2L3 = 4V
(
L1L2 − ζ−1∂ζM

)
− 2ζ

(
L1 ∂ζK

(1) + L2 ∂ζK
(2)
)
. (4.87)

The physical functions now have the form

Z1 =
K(2)

V
+ L1, Z2 =

K(1)

V
+ L2, Z3 =

ζ2K(1)K(2)

V
+ L3, (4.88)

µ = −ζ
2K(1)K(2)

V 2
− 1

2

ζ2 (K(1) L1 +K(2) L2)

V
− 1

2

L3

V
+M. (4.89)

The equations for ω reduce to

(∂yωζ − ∂ζωy) = −1

ζ
(M∂xV − V ∂xM)− 1

2ζ
∂xL3

− 1

2ζ

2∑
j=1

(K(j)∂x(ζ
2Lj)− ζ2Lj∂xK

(j)),
(4.90)
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(∂ζωx − ∂xωζ) = −1

ζ
(M∂yV − V ∂yM)− 1

2ζ
∂yL3

− 1

2ζ

2∑
j=1

(K(j)∂y(ζ
2Lj)− ζ2Lj∂yK

(j)),
(4.91)

(∂xωy − ∂yωx) = −1

ζ
(M∂ζV − V ∂ζM)− 1

2ζ
∂ζL3 − 2V L1L2

− 1

2ζ

2∑
j=1

(K(j)∂ζ(ζ
2Lj)− ζ2Lj∂ζK

(j)).
(4.92)

This system of equations has a gauge invariance that leaves the physical solution com-

pletely invariant. See Appendix A.1 for details.

4.3.3 A single-center solution with AdS-like asymptotics

Before writing down the general, multicenter solution to (4.84)–(4.87) and (4.90)–

(4.92), it is instructive to consider the simplest possible solution: a single-centered solu-

tion on an R4 background. The purpose of doing this is to reveal what kinds of black-

object geometries can be generated from the LeBrun-Burns metric using the solution

technique of Section 4.3.2, and what their asymptotic regions will look like. Indeed, we

will show that the natural boundary conditions at infinity correspond to the near-horizon

regions of black holes.

To make the base space completely flat, we take V ≡ 1 in the LeBrun-Burns met-

ric. It is important to note that even though we have thus trivialized the metric on the

base, the Maxwell field F is still non-zero, but is now purely anti-self-dual4 and propor-

tional to the complex structure J . Similarly, the other Maxwell fields (4.34) and (4.35)

have both anti-self-dual and self-dual parts on the base. This will generically mean that

supersymmetry is completely broken and that the solutions we get will be non-BPS.

4This means that F has vanishing energy-momentum tensor, consistent with the flatness of the base.
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The simplest possible solution

Perhaps the simplest non-trivial solution is a spherically symmetric one, whose sources

necessarily lie at (x, y, ζ) = (0, 0, 0) This example will demonstrate the typical asymp-

totic behavior5. In addition we set some of the electric potentials to zero:

L1 ≡ L2 ≡ 0. (4.93)

It is also convenient to introduce polar coordinates in R2 and R4: We already have ζ and

τ in one copy of R2 and so we define6

x = η cosφ, y = η sinφ, ζ = ρ cos θ, η = ρ sin θ, (4.94)

ρ ≡ x2 + y2 + ζ2. (4.95)

The functions K(I) and M are then homogeneous solutions to L1H = 0 and

the spherically symmetric solutions are proportional to H(x, y, ζ; 0, 0, 0) = ρ−2 (see

(4.82)). We therefore take

Z1 = K(2) =
β2

ρ2
, Z2 = K(1) =

β1

ρ2
, M =

γ

ρ2
, (4.96)

where β1, β2 and γ are constant parameters.

It is easy to see that one can satisfy (4.87) by taking:

L3 = L̂3 + 2M, L2L̂3 = 0, (4.97)

5The asymptotics are not substantially different if the sources instead lie at (x, y, ζ) = (0, 0, c).

6The coordinate θ here is not the same as the one in (4.72).
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for some function, L̂3. The natural choice for L̂3 is the function G in (4.66), but this

vanishes for c = 0, and one must take a limit:

L̂3 = β3 lim
c→0

1

2 c2
G(x, y, ζ; 0, 0, c) = β3

ζ2

ρ4
= β3

cos2 θ

ρ2
, (4.98)

One then has

Z3 = ζ2K(1)K(2) + L3 = (β1 β2 + β3)
cos2 θ

ρ2
+

2 γ

ρ2
, (4.99)

µ = − ζ2K(1)K(2) − 1

2
L̂3 = −1

2
(2 β1 β2 + β3)

cos2 θ

ρ2
. (4.100)

The last step is to solve for ω, for which we can choose the gauge ωz = 0. Equations

(4.90)–(4.92) then reduce to:

ζ ∂ζωy =
1

2
∂xL̂3, ζ ∂ζωx = −1

2
∂yL̂3, ∂xωy − ∂yωx = −1

2
ζ−1 ∂ζL̂3, (4.101)

for which the solution is:

ω = −β3

2

1

ρ4
(y dx− x dy) =

β3

2

sin2 θ

ρ2
dφ, (4.102)

where the homogeneous solutions have been chosen so that ω goes to zero at infinity.

The near-horizon limit of a black hole

Taking this simple solution, we obtain the 5-dimensional metric:

ds2
5 = −W0(θ)−2 ρ4

(
dt− 1

2
(β3 + 2 β1 β2)

cos2 θ

ρ2
dτ +

β3

2

sin2 θ

ρ2
dφ

)2

+W0(θ)
(dρ2

ρ2
+ dθ2 + cos2 θ dτ 2 + sin2 θ dφ2

)
,

(4.103)
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where

W0(θ) ≡
(
β1β2(2 γ + (β1 β2 + β3) cos2 θ)

) 1
3 . (4.104)

The conditions for absence of causal pathologies for solutions on the LeBrun-Burns

base are discussed in Appendix A.2. For the simple solution in this section there is no

Dirac-Misner string in ω and the condition for absence of CTC’s is that all constants γ,

β1, β2 are non-negative and

8γβ1β2 ≥ β3, (4.105)

which one can obtain, e.g., by setting t = const, θ = π/2 in (4.103).

For a generic choice of parameters satisfying (4.105), the metric (4.103) has the form

of a warped rotating AdS2 × S3. The general solution has unequal angular momenta in

each R2, and has a distorting warp factor W0(θ). For the special choice β3 = −β1β2

the function W0 becomes a constant and the two angular momenta become equal. The

metric then is precisely the near horizon limit of the BMPV black hole [89]. It is worth

emphasizing that the BMPV black hole (and its near horizon limit) is a supersymmetric

solution of supergravity whereas our solution has anti-self-dual flux that breaks super-

symmetry. We will see in Section 4.3.4 that these are the typical asymptotics of the

family of LeBrun-Burns-based solutions.

4.3.4 Multicenter solutions

To find multicenter solutions, we find that the equations (4.84)–(4.87) and (4.90)–(4.92)

are rather difficult to solve without imposing an additional axial symmetry. Therefore

we will restrict our search to solutions on an axisymmetric LeBrun-Burns base. This

provides an infinite class of explicit five-dimensional multi-centered solutions with (at
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least) one time-like and two space-like Killing vectors (∂t, ∂τ , ∂φ). Amongst our solu-

tions are multi-center generalizations of the solution in Section 4.3.3 as well as a class

of regular bubbled geometries that we discuss in some detail in Section 4.3.5 below.

General axisymmetric solutions

We will look for solutions on an axisymmetric LeBrun-Burns base in which the geome-

try at infinity has the form (4.103). The singular points of the harmonic function V , that

determines the LeBrun-Burns base, are located along the ζ axis at points cj:

V = ε0 +
N∑
j=1

qj Gj. (4.106)

Where for convenience we have defined

Gi ≡ G(x, y, ζ; 0, 0, ci) =
ρ2 + c2

i√
(ρ2 + c2

i )
2 − 4ζ2c2

i

− 1, (4.107)

Hi ≡ H(x, y, ζ; 0, 0, ci) =
1√

(ρ2 + c2
i )

2 − 4ζ2c2
i

, (4.108)

Di ≡ D(x, y, ζ; 0, 0, ci) =
ρ2 − c2

i√
(ρ2 + c2

i )
2 − 4ζ2c2

i

, (4.109)

where we will assume that ci 6= 0. It is trivial to solve (4.84) for the functions L1 and L2

La =
1

ζ2

(
`0
a +

N∑
i=1

`iaGi

)
, a = 1, 2. (4.110)

Solving (4.85) and (4.86) for K(a) and M one finds

K(1) = k0
1 +

β1

ρ2
+

N∑
i=1

ki1Hi − V L2 + 4ρ2

N∑
i,j=1

qi`
j
2HiHj, (4.111)

K(2) = k0
2 +

β2

ρ2
+

N∑
i=1

ki2Hi − V L1 + 4ρ2

N∑
i,j=1

qi`
j
1HiHj, (4.112)
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M = m0 +
γ

ρ2
+

N∑
i=1

miHi −
ζ2

2
L1L2 + 2ρ2

N∑
i,j=1

`i1`
j
2HiHj. (4.113)

After a somewhat tedious exercise7 one can also solve equation (4.87)

L3 = `0
3 +

N∑
i=1

`i3Gi − ζ2V L1L2

+
N∑
i=1

(
2(ε0 −Q)mi + (`0

1 − Λ1)ki1 + (`0
2 − Λ2)ki2

)
Hi

+ β3
ζ2

ρ4
+
(

2(ε0 −Q)γ + (`0
1 − Λ1)β1 + (`0

2 − Λ2)β2

) 1

ρ2

+ 2γ
N∑
i=1

qi
c2
i

ρ−2 −Hi

Hi

+
N∑
i=1

(2qimi + `i1k
i
1 + `i2k

i
2)(η2 − ζ2 + c2

i )H
2
i

+
N∑

i 6=j=1

(2qimj + `i1k
j
1 + `i2k

j
2)

c2
i − c2

j

Hj −Hi

Hi

+ 4
N∑

i,j=1

(
(ε0 −Q)`i1`

j
2 + (`0

1 − Λ1)qi`
j
2 + (`0

2 − Λ2)qi`
j
1

)
ρ2HiHj

+ 4
N∑

i,j,k=1

qi`
j
1`
k
2ρ

2(3ρ2 − 4ζ2 + c2
i + c2

j + c2
k)HiHjHk,

(4.114)

where we have defined

Q ≡
N∑
i=1

qi, Λ1 ≡
N∑
i=1

li1, Λ2 ≡
N∑
i=1

li2. (4.115)

7Some of the identities used to solve the equations for K(a), M , L3 and ωφ are collected in Appendix
Appendix A.3.
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The one form ω = ωφ dφ is given by

ωφ = ω0 +
β3

2

sin2 θ

ρ2
− γ

N∑
i=1

qi
c2
i

Di −
N∑
j=1

(
m0qj + k0

1`
j
1 + k0

2`
j
2 +

`j3
2

)
Dj

−
N∑
j=1

(2mjqj + kj1`
j
1 + kj2`

j
2)η2H2

j

−
N∑

i 6=j=1

(2qimj + ki1`
j
1 + ki2`

j
2)

2(c2
i − c2

j)
(DiDj + 4η2c2

iHiHj)

− 8
N∑

i,j,k=1

qi`
j
1`
k
2η

2ρ2HiHjHk,

(4.116)

where ω0 is a constant which should be fixed so as to avoid CTCs and Dirac-Misner

strings.

Substituting (4.110)–(4.114) in the expressions for Z1, Z2, Z3 and µ, (4.88)

and (4.89), one finds the most general non-BPS solution on an axisymmetric LeBrun-

Burns base captured by the floating brane ansatz of [31]. For easy comparison with the

solution in Section 4.3.3 we have chosen to single out the terms in the solution which

have poles at ρ = 0, i.e. the terms with coefficients involving β1, β2, β2 and γ.

In addition to the parameters β1, β2, β3 and γ, the solution in general has (8N +

7) parameters: {ci, ε0, qi, `
0
I , `

i
I , k

0
a, k

i
a,m0,mi}. As we will see in the next subsection

imposing regularity and absence of causal pathologies will greatly reduce the number of

independent parameters.

4.3.5 Regularity and bubble equations

The solution we construct here will be asymptotic to the metric (4.103), which can be

viewed as the “elementary” solution within our ansatz. These regular solutions on a base
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with non-trivial topology can be viewed as a non-supersymmetric generalization of the

BPS bubbled solutions of [74, 75].

We begin by defining a radial coordinate around each of the poles of the harmonic

functions

ρ2
i = η2 + (ζ − ci)2. (4.117)

We will be interested in constructing a solution that is regular at the locations of the

poles of the harmonic functions, ρi → 0, and is free of CTCs and Dirac-Misner strings.

For ρi → 0 we have the following expansion of the harmonic functions

Gi ∼
ci
ρi
, Hi ∼

1

2ciρi
. (4.118)

Since we are looking for a regular bubbled solution in five dimensions we will assume

that all functions in the solution have the same singular points (excluding the point ρ = 0

which, as discussed in the previous section, will be treated separately). The functions

Z1 and Z2 near a singular point, ρi → 0, diverge as

Z1 ∼
`i1
ciρi

, Z2 ∼
`i2
ciρi

. (4.119)

To ensure regularity we should set

`i1 = `i2 = 0, ∀i. (4.120)

The function Z3 near a singular point, ρi → 0, is

Z3 ∼
(
`i3ci +

ki1k
i
2

4ciqi

)
1

ρi
+
mi

ciρi

(
ε0 +

N∑
k=1,k 6=i

qk sign (c2
k − c2

i )

)

+
qimi(η

2 − ζ2 + c2
i )

2c2
i ρ

2
i

.

(4.121)
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The last term in the expression above is divergent and can be made to vanish only for

mi = 0. Therefore for a regular Z3 one should set

mi = 0, `i3 = − k
i
1k

i
2

4c2
i qi
, for all i. (4.122)

It is not hard to show that with this choice of constants the function µ will limit to a

constant near a singular point. The condition for absence of CTC’s8 requires that µ

should vanish at a singular point of V and this leads to the constraint:

m0 +
γ

c2
i

− ki1k
i
2

8c2
i q

2
i

= 0, for all i. (4.123)

Then to summarize, the conditions for regularity and absence of CTC’s and Dirac-

Misner strings near the poles of the harmonic functions requires that we set:

mi = `i1 = `i2 = 0, `i3 = − k
i
1k

i
2

4c2
i qi
,

m0 +
γ

c2
i

− ki1k
i
2

8c2
i q

2
i

= 0,

for all i. (4.124)

Note that these conditions are quite different from the regularity and causality con-

straints (3.35) and (3.40) for BPS bubbled solutions with a GH base [25]. In particular

for the class of bubbled solutions discussed here there is no analogue of the “bubble

equations” (or integrability conditions) familiar from the supersymmetric multi-center

solutions [25, 101]. However we still have an equation that fixes the locations of the

poles in the harmonic functions (but not the distance between them) in terms of the

parameters {γ,m0, k
i
1, k

i
2, qi}.

8This comes from Q ≥ 0, where Q is defined in Appendix A.2.
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Our analysis so far does not guarantee the regularity of the supergravity scalars (i.e.

the Kähler moduli of the tori in M-theory) and the absence of causal pathologies at

asymptotic infinity. To ensure that we should study the behavior of the solution at ρ →

∞. The harmonic functions have the following expansion

Gi ∼ 2c2
i

ζ2

ρ4
, Hi ∼

1

ρ2
. (4.125)

Imposing the regularity and causality constraints at ρ → ∞ one finds the following

constraints on the parameters of the solution:

m0 = k0
1k

0
2 = 0, `0

3 − (k0
1`

0
1 + k0

2`
0
2) = 0,

k0
1β2 + k0

2β1 + k0
1

N∑
i=1

ki2 + k0
2

N∑
i=1

ki1 = 0.
(4.126)

The constraints are easily solved by imposing `0
3 = k0

1 = k0
2 = m0 = 0, however there

are in principle other ways to satisfy the relations in (4.126), so we will not commit to

a specific solution. We also point out that once we have set m0 = 0 as required here,

then the regularity conditions (4.124) actually impose no constraints on the locations ci

of the sources. Hence in the solutions based on LeBrun-Burns, there are effectively no

bubble equations9.

The asymptotic expansion (ρ→∞) of the metric functions in the solution is

Z1 ∼
1

ε0

(
β2 +

N∑
i=1

ki2

) 1

ρ2
, Z2 ∼

1

ε0

(
β1 +

N∑
i=1

ki1

) 1

ρ2
, (4.127)

9While our solutions have made the additional assumption of axisymmetry, this conclusion is still
reasonable for all LeBrun-Burns solutions because, as seen in (4.1), one needs all three Θ(I) to have non-
trivial cohomological fluxes in order to obtain non-trivial bubble equations, and we have shown that Θ(3)

of the LeBrun-Burns metrics has trivial fluxes (4.78).
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Z3 ∼ 2(ε0 −Q)
γ

ρ2
+

1

ε0

ζ2

ρ4

[
β3ε0 + β1β2 +

N∑
i=1

(
β2k

i
1 + β1k

i
2 − ε0

ki1k
i
2

2qi

)
+

N∑
i,j=1

ki1k
j
2 − 4ε0γQ

]
,

(4.128)

µ ∼ − 1

2ε2
0

ζ2

ρ4

(
β3ε0 + 2β1β2 + 2

N∑
i=1

(β2k
i
1 + β1k

i
2)

+ 2
N∑

i,j=1

ki1k
j
2 − ε0

N∑
i=1

ki1k
i
2

2qi
− 4ε0γQ

)
.

(4.129)

The constraints (4.126) together with (4.124) lead to

ω =
β3

2

sin2 θ

ρ2
dφ. (4.130)

It is clear that at ρ → ∞ these regular bubbled solutions are asymptotic to the warped,

rotating AdS2 × S3 solution (4.103) presented in Section 4.3.3. The parameters of the

solution can be arranged such that the warp factor in the metric is a constant and the

solution is asymptotic to the near horizon BMPV black hole.

The axisymmetric multi-center solutions have 8N + 11 parameters. The regularity

and causality constraints studied in this section impose 5N + 4 relations on them, there-

fore we have a (3N +7)-parameter family of regular solutions with non-trivial topology

on the base. It should be emphasized that we have only analyzed in detail the condition

for absence of CTC’s near the singularity of the harmonic functions and at asymptotic

infinity. In principle one needs to ensure that there are no CTC’s globally and for this

one usually has to rely on numerics [102]. On the other hand, experience with many

examples suggests that once one has addressed this at singular points and ensured that

the metric coefficients are well-behaved then there are no CTC’s globally.

It is interesting to note that there is no analog of the bubble equations [25, 101] for

our regular non-BPS solutions. Bubble equations can be viewed as a form of angular
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momentum balance that constrains the location of sources and with pure flux solutions,

non-trivial bubble equations require non-zero sources for all three fluxes. In our solu-

tions, the magnetic flux of Θ(3) is trivial on the topological two-cycles and the complete

Maxwell field F , has no localized sources. Thus one should not be too surprised at

the absence of constraints on the location of the remaining flux sources. However, it is

surprising that the bubble sizes are not constrained to zero in the absence of Θ(3) flux. It

is possible this is allowed because of the AdS-like asymptotics.

* * *

4.4 Lift to 6 dimensions

In Section 3.3.3 we saw how the 5d N = 2 BPS equations (3.12)–(3.14) can be embed-

ded into the BPS conditions of the N = 1 6d theory of Section 3.3. This fact is unsur-

prising, because the 5d solutions are dimensional reductions of BPS configurations in

11d supergravity; one should be able to obtain a 6d BPS solution by simply holding onto

one of the circles of the T 6 that would otherwise be compactified.

What is surprising, however, is that one can lift non-BPS solutions of the 5d theory

into 6d BPS solutions as well. In [34], we show that this happens for the LeBrun class

of solutions. Even though the solutions based upon the LeBrun metrics in five dimen-

sions are not supersymmetric, the solutions are supersymmetric in the six-dimensional,

IIB duality frame. More generally, the LeBrun solutions are non-supersymmetric in M-

theory and are only supersymmetric in the particular IIB frame in which the electromag-

netic field of the LeBrun base is used to give the momentum charge to the overall solu-

tion. The reason for this is that the surviving supersymmetry necessarily has a charge
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under the U(1) of the momentum charge fibration in six dimensions. The supersymme-

try is broken by the trivial KK reduction of the six-dimensional solution and then any

trivial uplift of this solution, such as to M-theory, does not restore the supersymmetry.

This is a little reminiscent of Scherk-Schwarz reduction on a circle [91, 90] but the latter

explicitly introduces masses through dependence of the fields on the extra dimensions

whereas here the dependence on extra dimensions only arises in the supersymmetry and

not in the fields themselves (similarly to the “supersymmetry without supersymmetry”

of [92]).

4.4.1 The Lebrun metrics as a base for 6d BPS solutions

Here we show that the LeBrun metrics can be used as a four-dimensional base for con-

structing six-dimensional BPS solutions of the form described in Section 3.3. With

fairly simple ansätze one can find how the 5d quantities correspond to 6d quantities, and

we show that the entire system of floating brane equations (3.60)–(3.63) is then embed-

dable within the 6d BPS system (3.101)–(3.107), provided the base space B is within

the LeBrun class of metrics (4.7).

The first step is to find a 1-form β and three 2-forms J (A) that satisfy (3.74), (3.76)

and (3.77). We assume that β is independent of the 6th coordinate v. Then (3.77)

becomes simply

d̃β = ?
4

d̃β, (4.131)

and hence we need a self-dual, harmonic 2-form on the base. On the LeBrun back-

grounds we are provided a natural choice (4.26), so let us choose

d̃β = 1
2

Θ(3), β = 1
2
B(3) =

1

4

[
−
(
∂zu

w

)
(dτ + A) + (∂yu) dx− (∂xu) dy

]
,

(4.132)

where the factor of 1
2

will be useful later.

98



Next we need three J (A) satisfying the algebra (3.74). One obvious choice is

J̃ (1) ≡ ê0 ∧ ê1 − ê2 ∧ ê3 = eu/2
(

(dτ + A) ∧ dx− w dy ∧ dz
)
, (4.133)

J̃ (2) ≡ ê0 ∧ ê2 − ê3 ∧ ê1 = eu/2
(

(dτ + A) ∧ dy + w dx ∧ dz
)
, (4.134)

J (3) ≡ J = ê0 ∧ ê3 − ê1 ∧ ê2 = (dτ + A) ∧ dz − w eu dx ∧ dy, (4.135)

where the frames are defined in (4.13) and J is the original Kähler form. However,

J̃ (1), J̃ (2) and J (3) are v-independent and only J (3) is closed and so they do not satisfy

the differential constraint (3.76). On the other hand, if one defines a rotating form of

these structures:

J (1) ≡ cos(2 v) J̃ (1) − sin(2 v) J̃ (2), J (2) ≡ sin(2 v) J̃ (1) + cos(2 v) J̃ (2), (4.136)

one finds that the J (A) are a set of almost hyper-Kähler structures that do indeed obey

(3.76). The fact that this elementary modification works is a very special property of

the LeBrun family of metrics and does not work in other familiar examples of four-

dimensional metrics, like the Israel-Wilson-Perjés metrics used as a base for five or

six-dimensional supergravity solutions in [31].

With this choice for the J (A), it is easy to verify that

ψ̂ ≡ 1
16
εABC J (A)mnJ̇ (B)

mn J
(C) = J (3) = J. (4.137)

Thus in particular, ψ̂ is v-independent, and hence it will be consistent to assume v-

independence of all the fields in the 6d BPS system (3.101)–(3.107)
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From (4.26) and (4.137) one immediately sees that the duality conditions (3.101) of

the 6d BPS system,

1
2
(Θ(1) − ?

4
Θ(1)) = Z2ψ̂,

1
2
(Θ(2) − ?

4
Θ(2)) = Z1ψ̂, (4.138)

are precisely the same as non-BPS duality conditions in (4.28) and (4.29). This sug-

gests we identify the 5d non-BPS Z1, Z2,Θ
(1),Θ(2) with their 6d BPS counterparts

Z1, Z2,Θ
(1),Θ(2), and we may take them all to be v-independent. When all these quan-

tities are v-independent, then equations (3.102) and (3.103),

DΘ(2) − β̇ ∧Θ(2) = −1
2
∂v
(
?
4

(DZ1 + Z1β̇)
)
, (4.139)

DΘ(1) − β̇ ∧Θ(1) = −1
2
∂v
(
?
4

(DZ2 + Z2β̇)
)
, (4.140)

reduce simply to the requirement that Θ(1),Θ(2) be closed,

dΘ(1) = 0, dΘ(2) = 0, (4.141)

which is consistent with the 5d definition Θ(I) ≡ dBI .

Equations (3.104) and (3.105),

D ?
4

(
DZ1 + Z1β̇

)
= 2Θ(2) ∧ Dβ, (4.142)

D ?
4

(
DZ2 + Z2β̇

)
= 2Θ(1) ∧ Dβ, (4.143)

reduce, on v-independence, to the other non-BPS equations in (4.28) and (4.29):

d ?
4

dZ1 = Θ(2) ∧Θ(3), d ?
4

dZ2 = Θ(1) ∧Θ(3). (4.144)
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Finally, the last two equations (3.106) and (3.107),

?
4
D ?

4
L − 2〈β̇,L〉B = −1

2

√
Z1Z2 h

ij∂2
v

(√
Z1Z2 hij

)
− 1

4
∂v
(√

Z1Z2 h
ij
)
∂v
(√

Z1Z2 hij
)

− 2Z1Z2

(
∂vφ
)2

+ 2 ?
4

(
Θ(1) ∧Θ(2) − ψ̂ ∧ Dω

)
,

(4.145)

Dω + ?
4
Dω = 2Z1Θ(1) + 2Z2Θ(2) −F Dβ − 4Z1Z2ψ̂, (4.146)

reduce to (4.30) and (4.31),

d ?
4

dZ3 = Θ(1) ∧Θ(2) − J ∧ (dk − ?
4

dk), (4.147)

dk + ?
4

dk =
1

2

∑
I

ZI (Θ(I) + ?
4

Θ(I)). (4.148)

if one makes the identifications (as in Section 3.3.3)

F = −4Z3, ω = 2 k. (4.149)

One can then rewrite the metric (3.66) as a standard fibration of the v-circle over a

five dimensional space-time and upon reduction on this v-circle one obtains precisely

the metric (4.4) provided one sets u = 2t.

Thus the non-BPS “floating brane” solutions in five dimensions based upon the

LeBrun metrics found in [33] can be recast as supersymmetric solutions in the six-

dimensional framework. This appears to contradict the belief that the non-BPS systems

do not have supersymmetry. However it is relatively easy to resolve this apparent incon-

sistency.

One should note that the constancy of the Killing spinors (3.65) was contingent

upon being in a system of frames in which the almost hyper-Kähler forms have constant
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coefficients. However, the differential constraints on the J (A) required that we pass to

the system of rotating structures, (4.136) and so the frames, ẽa, for the six-dimensional

constant spinors must be related to the standard, v-independent frames, êa, of the LeBrun

base via:

ẽ1 = cos(2 v) ê1 − sin(2 v) ê2, ẽ2 = cos(2 v) ê2 + sin(2 v) ê1, (4.150)

One could, of course, work in six dimensions with the frames, êa, and transform every-

thing using the foregoing frame rotation. One would then find that the supersymmetries

necessarily depend upon v. It is for this reason that trivial dimensional reduction to five

dimensions breaks the supersymmetry.

More generally, if one works purely in five dimensions, or in any setting, like M-

theory, where there is no non-trivial Kaluza-Klein fibration, then there is no way to

preserve the supersymmetry because the fiber dependence that is essential to the super-

symmetry cannot be realized. Thus it is only in the six-dimensional theory and its IIB

uplift that the solutions with a LeBrun base can be rendered supersymmetric.

4.4.2 The solutions: asymptotics and regularity

Given the various identifications found Section 4.4.1, we find that the 6d BPS system

(3.101)–(3.107) reduces exactly to the floating brane system (3.60)–(3.63), with the

LeBrun metric (4.7) serving as the base space in each. Therefore the solutions we obtain

are the same, as given in Section 4.3.4. However, these solutions are now in a different

geometrical context, so it is worth re-examining their asymptotic behavior and regularity

conditions.
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Asymptotics at infinity

To understand the asymptotic behavior of the general multi-center solution of Sec-

tion 4.3.4 we will again look at the spherically symmetric solution on a flat R4 base

which corresponds to choosing V = 1 for the function determining the Burns base. The

sources for this solution lie at (x, y, ζ) = (0, 0, 0). We will also set some of the electric

potentials to zero:

L1 ≡ L2 ≡ 0 . (4.151)

The functions K(I) and M are then homogeneous solutions to L1H = 0, where

L1H ≡ ∂2
xH + ∂2

y H + ζ−1 ∂ζ (ζ∂ζH) , (4.152)

and we take

Z1 = K(2) =
β2

ρ2
, Z2 = K(1) =

β1

ρ2
, M =

γ

ρ2
, (4.153)

where β1, β2 and γ are constant parameters.

It is easy to see that the rest of the functions in the solution are

Z3 = `0
3 +

2 γ

ρ2
+ (β1 β2 + β3)

cos2 θ

ρ2
, (4.154)

µ = −1

2
(2 β1 β2 + β3)

cos2 θ

ρ2
, ω =

β3

2

sin2 θ

ρ2
dφ . (4.155)

The six-dimensional metric is then

ds2
6 = − ρ2

√
β1β2

dv

(
2du− 2(2 β1 β2 + β3)

cos2 θ

ρ2
dτ + 2β3

sin2 θ

ρ2
dφ− 4Z3 dv

)
+
√
β1β2

dρ2

ρ2
+
√
β1β2 (dθ2 + sin2 θ dφ2 + cos2 θ dτ 2). (4.156)
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For generic values of the parameters above (in particular for `0
3 6= 0) this solution is

asymptotic to a pp-wave type background at ρ → ∞. However for `0
3 = 0 and β3 =

−β1β2 the metric becomes precisely the near horizon metric of a BPS D1-D5-P black

string (see, for example, [103]). To have a precise identification of the parameters of

our solution with the charges of the D1-D5-P string we performed a careful comparison

with the 3-charge solutions in D1-D5-P frame discussed in [104]. We find the following

identification

Q1 = β2, Q5 = β1, QP = 8γ, J = β1β2, (4.157)

whereQ1, Q5 andQP are D1, D5 and momentum charges of the black string and J is its

angular momentum. Note that the entropy of the black string is S ∼
√
Q1Q5QP − J2

and we have the bound Q1Q5QP ≥ J2. It is also interesting to note that (4.157) implies

J = Q1Q5 which, for QP = 0, is the condition for a maximally spinning D1-D5

supertube [20]. In general however we have QP 6= 0 and the condition J = Q1Q5

seems less natural. It would be very interesting to understand this relation between J ,

Q1 and Q5 from the point of view of the dual D1-D5-P CFT.

Asymptotics near the charge centers

Having understood the asymptotic structure at infinity in a very simple example, we

now return the the generic multi-centered solutions of Section 4.3.4 and examine the

physics of solutions near these centers. As one would expect, one can easily recover

the solutions for multiple concentric black rings [73, 105, 106] from our general multi-

center solutions. The details depend upon the behavior of the solution as ρi → 0, where

ρi ≡
√
x2 + y2 + (ζ − ci)2 . (4.158)
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As ρi → 0, one can easily arrange that Z1, Z2 ∼ ρ−1
i , Z3 ∼ ρ−2

i , and V ∼ ρ−1
i , and each

such center thus corresponds to a rotating black ring/string. The reason for the differing

power of ρi in Z3 is the presence of local dipole charges; recall that a 3-charge black

ring solution looks schematically like [73, 105, 106]

Z3 ∼
Q3

Σ
− d1d2

Σ2
and cyclic. (4.159)

Due to the trivial nature of Θ(3) in the LeBrun-Burns metrics, the Θ(3) dipole charge

is zero, thus removing the more-strongly-divergent term from Z1, Z2. We expect that a

more general metric in the LeBrun class will have Θ(3) dipole charges and thus allow

centers which open up into rotating AdS3 × S3 throats.

Another possibility is that the geometry remain smooth as ρi → 0. In five dimen-

sions, this has been thoroughly analyzed in [33]. The local conditions are

mi = `i1 = `i2 = 0, `i3 = − k
i
1k

i
2

4c2
i qi
, m0 +

γ

c2
i

− ki1k
i
2

8c2
i q

2
i

= 0. (4.160)

These conditions will also lead to regular geometries in six dimensions. However, one

might ask whether the extra U(1) fiber (along the v coordinate) in six dimensions might

allow for more general regular solutions. We find that the answer is “no”, and so the

conditions for regularity remain as in (4.160). The reason for this is because Θ(3) has no

non-trivial fluxes; thus the KK monopole ingredient, which is necessary to make regular

supertubes as explained in Section 3.3.3, is absent. More general LeBrun metrics can

certainly have such non-trivial fluxes, just as Θ(3) can have non-trivial fluxes on GH

bases, but the structure of LeBrun-Burns metrics precludes such supertubes.

* * *
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4.5 Discussion and open problems

The 5-dimensional solutions

Using the floating brane ansatz of [31] we have constructed a large class of non-

BPS multi-centered supergravity solutions. The solutions are determined by a four-

dimensional Kähler base with non-trivial topology and that is a solution of the Euclidean

Einstein-Maxwell equations. To find explicit solutions one has to solve a coupled linear

system of inhomogeneous differential equations on this base. We managed to construct

the most general explicit solution of these equations on the axisymmetric LeBrun-Burns

base. The generic multi-centered solutions will have horizons but we showed explicitly

that by a judicious choice of parameters one can make the solutions completely smooth

and regular. Due to the Maxwell flux on the four-dimensional base the five-dimensional

solutions are not asymptotically flat but can be arranged to look like a warped, rotating

AdS2×S3 space at asymptotic infinity. For specific choice of parameters the asymptotic

metric is exactly the near horizon throat metric of the BMPV black hole. We have thus

constructed “hair in the back of a throat”.

There are a number of possible directions for further work in this area. First, it is

well-known that BPS supertubes with two electric and one magnetic dipole charge are

regular in six dimensions in the D1-D5 duality frame [19, 20, 104]. Such solutions can

thus potentially provide richer classes of regular geometries. Indeed, five-dimensional

regularity requires that all the ZI be non-singular but supertubes allow two of the ZI to

have poles and the singularities are resolved as Kaluza-Klein monopoles in six dimen-

sions. The solutions presented in Section 4.3.4, before five-dimensional regularity was

imposed, include solutions that correspond to families of concentric supertubes. Remov-

ing the singularities as in (4.119) required us to set some of the parameters to zero (see

(4.120)) and while we still found regular solutions with microstate structure, it restricted
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that family of solutions quite strongly and led us to solutions for which the bubble equa-

tions were trivial. We expect that for solutions with supertubes there will be some analog

of the familiar radius formula arising from the bubble equations, or integrability condi-

tions. We therefore expect there to be even richer classes of bubbles and “hair” if one

allows solutions that are regular in six dimensions but not necessarily in five.

It is also worth recalling that there are spectral flow methods that map regular, six-

dimensional supertube geometries onto five-dimensional, regular bubbled geometries

[107]. For BPS solutions, these transformations do not substantially modify the geom-

etry of the four-dimensional base, though they can modify the asymptotics at infinity.

On the other hand, for non-BPS solutions such spectral flows can completely change the

geometry of the base, for example, mapping a hyper-Kähler geometry onto an Israel-

Wilson electrovac solution [31]. It would be interesting to see how such spectral flows

might modify the solutions considered here, particularly if one first includes supertube

configurations. It will almost certainly move one beyond the LeBrun class of solutions

and perhaps give a richer class of geometries at infinity.

There are other natural generalizations of the solutions considered here. Our solu-

tions can be uplifted to eleven dimensions where they are sourced by intersecting M2

and M5 branes on T 6 [25]. It is fairly evident that there will also be solutions that can

be obtained from intersecting M2 and M5 branes wrapping two-cycles and four-cycles

in a more general Calabi-Yau three-fold. Going in the opposite direction, any solution

with a LeBrun base has a space-like Killing vector (defined by τ -translations) and so

one can perform a dimensional reduction along this direction to find supergravity solu-

tions in four dimensions. These solutions will clearly be non-BPS and will represent

an infinite class of multi-center four-dimensional solutions that are non-supersymmetric

generalizations of the solutions of [101].
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It would be interesting to explore the attractor mechanism for our solutions and make

connections with discussions on non-BPS attractors [108]. The multi-centered solutions

of Section 4.3.4 may realize non-BPS split attractors. It is interesting to note that in a

recent discussion on non-supersymmetric split attractor flows the authors of [108] also

found that there are no bubble equations for their non-generic solutions (or integrability

conditions). This fits with our analysis in Section 4.3.4 and it will be very interesting to

make this connection more precise. On the other hand it is known that there could be

bubble equations for non-BPS multi-center solutions, as discussed in [77, 109], and it

will be interesting to explore how generic are these constraints.

Since our solutions are asymptotic to anti-de Sitter space one can do holographic

analysis of the “hair” corresponding to our geometries and understand them as duals to

states (or thermal ensembles) in the corresponding CFT. The solutions presented here

have a warped and rotating AdS2 region and while the AdS2/CFT1 correspondence is

not understood in such detail as its higher-dimensional analogs10 there might be some

effective approach similar to the one in [111]. Alternatively, one might use a series

of dualities and transform the solutions to the D1-D5-P IIB duality frame [104] and

study the states in the D1-D5 CFT. One might then be able to study the stability of the

solutions and make some connection with the recent discussion of Hawking radiation

from non-supersymmetric solutions of the D1-D5 system [112, 113, 114].

One would also very much like to find explicit non-supersymmetric solutions that

have a throat region that looks like the solutions discussed in this chapter but are asymp-

totically flat at infinity. To achieve this, one will probably have to find a way of breaking

the relationship between the background electromagnetic field and the Kähler form. To

achieve this one will probably have to relax some of the simplifying assumptions of

10For a discussion on holography for backgrounds with an AdS2 factor see [110].
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the floating brane ansatz [31] and work with more general (and complicated) equa-

tions of motion. However, there are almost certainly even broader classes of non-

supersymmetric solutions that are determined by linear systems of equations and thus

such explicit non-BPS solutions may well be within reach.

The lift to 6 dimensions

By way of the uplift described in Section 4.4, we have also found a new class of BPS

solutions of six-dimensional supergravity coupled to a tensor multiplet and these solu-

tions can be trivially uplifted to supersymmeric solutions of IIB supergravity on T 4.

A key ingredient in our construction is a four-dimensional Kähler base with a U(1)

symmetry and vanishing Ricci scalar studied by LeBrun. For the LeBrun-Burns class

of such four-dimensional metrics the 6d BPS equations can be solved explicitly and

one can find closed form expressions for the metric and the background fields. It is

important to stress that these solutions provide the first examples of BPS backgrounds

of six-dimensional supergravity that do not have a hyper-Kähler base. In fact, almost

all explicit BPS solutions discussed previously have the very special Gibbons-Hawking

base11.

The supersymmetry conditions of six-dimensional supergravity impose, amongst

other things, the constraints (3.76) and (3.77) on the four-dimensional base of the solu-

tion. In contrast to the situation in five-dimensional supergravity, where this base has

to be hyper-Kähler, it is not clear to us whether there is a simple geometric meaning of

the more general constraint in six dimensions. It is quite conceivable that this constraint

could be given a very interesting meaning for some suitably arranged five-dimensional

11To the best of our knowledge the only solutions with a more-general hyper-Kähler base are the ones
constructed in [96].
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spatial geometry. Our analysis clearly demonstrates that some Kähler manifolds can sat-

isfy this constraint but we believe there will be a much more general class of geometries

that can be used to construct six-dimensional BPS solutions.

For judicious choice of parameters these 6d solutions are asymptotic, at infinity, to

the near horizon geometry of the BPS D1-D5-P black string. It is certainly important

to understand the microscopic brane configurations that source the solutions in more

detail. Since the D1-D5-P black string geometry is asymptotically locally AdS3 × S3

one can apply holographic methods to uncover which states in the D1-D5-P CFT are

dual to our regular solutions. The technology developed in [115] for the more restricted

two-charge D1-D5 geometries will be certainly useful in this regard. It will also be

interesting to see if there is an efficient way to count our regular geometries by some

generalization of the techniques used in [116, 23] to count two-charge supertubes or the

1
2
-BPS asymptotically AdS5 × S5 solutions of Lin-Lunin-Maldacena (LLM) [117].

As we emphasized, the Killing spinors of our backgrounds will not survive a triv-

ial dimensional reduction along the v-fiber and so supersymmetry will be broken in

such a reduction. Moreover, a subsequent trivial uplift, like embedding the solution

in M-theory, will not restore the supersymmetry. Since the six-dimensional solution

is BPS, this means that five-dimensional non-BPS solutions are necessarily extremal

because their mass is locked to their electric charges. Extremal non-BPS solutions in

four and five dimensions have drawn a lot of attention recently and there is a large num-

ber of known multi-centered non-BPS solutions (see for example [109]). It would be

interesting to reduce our solutions to four dimensions and understand whether the four-

dimensional, axi-symmetric solutions fit in one of the known classes of such solutions

discussed in [109] or whether the solutions discussed here provide a completely new

system. Furthermore it will be interesting to explore the action of spectral flow [107]

and more general U-duality symmetries of string theory on our solutions [118].
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Like their 5d non-BPS counterparts, our 6d BPS solutions are also not asymptoti-

cally flat and it would be nice to understand how to modify them such that we have a

supergravity solution asymptotic to R1,5. Although this is certainly an interesting ques-

tion we expect that it will not be easy to answer it. For example, one does not know how

to make the general 1
2
-BPS LLM solutions in IIB asymptotically flat [117].

Future prospects

On the other hand, there are certainly more general solutions within reach that go beyond

the ones constructed here. As we remarked earlier, in (4.61) we made an extremely sim-

ple, non-singular choice for the solution, u, of the Affine Toda equation and there are

much richer possibilities. Indeed, axi-symmetric solutions of the SU(∞) Toda equa-

tion can be obtained by transforming solutions of the Laplace equation on R3 [88]. It

would be interesting to start from such solutions and see to what extent one can generate

explicit BPS solutions. In fact, this approach will be studied in much further detail in

Chapter 5.
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Chapter 5

Solutions on LeBrun metrics with axial

symmetry

The material in this chapter is taken from [35], which is a paper on which I am the sole

author, and in which I follow up on the results of [33, 34].

5.1 Motivation

In Chapter 4 we discussed solutions to the “floating brane” equations on a 4d base of

Kähler Einstein-Maxwell metrics studied by LeBrun [85, 86]. These metrics are deter-

mined by two functions which solve the SU(∞) Toda equation and its linearization.

In a pair of papers [33, 34] (discussed in Sections 4.3 and 4.4), we chose an extremely

simple solution to the Toda equation (4.61), leading to the LeBrun-Burns subclass of

metrics, which are Kähler analogues to Gibbons-Hawking metrics with a hyperbolic

base instead of flat R3. On the LeBrun-Burns base, we solved the floating brane equa-

tions and obtained an infinite family of solutions.

These solutions were shown to have a few desirable properties. The LeBrun-Burns

metrics have the structure of a U(1) fiber over H3, in much the same way that Gibbons-

Hawking metrics are described by a U(1) fiber over R3. This U(1) fiber pinches off at

controlled points, which allows one to construct solutions with several 2-cycle “bubbles”

on which one can put cohomological fluxes. We also showed that with appropriate

choices of parameters, the solutions could be made regular and free of CTC’s.
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However, these solutions also had a few shortcomings. Due to the simplistic choice

of Toda solution (4.61), the self-dual 2-form Θ(3) of the LeBrun-Burns metrics is topo-

logically trivial. Hence, while one can use the U(1) fiber to sweep out 2-cycles, one can

only arrange two of the three “flavors” of fluxes to be cohomological on those 2-cycles.

The resulting “bubble equations” turn out to be independent of the sizes of the bubbles,

and thus the interplay between bubbles and fluxes, analogous to BPS solutions (see Sec-

tion 3.1), is gone. Furthermore, the solution is very degenerate, because it effectively

has only two types of dipole charges. As a result, the regularity conditions actually

demand that most of the parameters be set to zero. Finally, the solutions are not asymp-

totically flat; however, we have shown in Section 4.2.4 that this fact is generically true

of all LeBrun-based solutions, and thus we will not resolve this issue here. However, the

lack of asymptotic flatness should not be too great a concern. One does obtain solutions

whose asymptotics are like the near-horizon limit of a BMPV black hole [89]. So it is

not too far a stretch to say that these are BMPV microstate geometries, and probably the

asymptotically-flat region can be restored by relaxing the assumptions of the floating

brane ansatz.

As explained in Section 3.3, it has been shown that another linear system of equa-

tions can be revealed by re-organizing the BPS equations in the 6-dimensional IIB frame

[70, 71, 72]. As discussed in Section 4.4, this makes a curious connection to the 5-

dimensional story: the 5d non-BPS “floating brane” equations on a LeBrun base are

identical to the 6d BPS equations where all functions are made independent of the 6th

coordinate [34]. Therefore the exact same family of solutions plays two roles, both

supersymmetric and non-supersymmetric. The apparent discrepancy is explained in the

trivial KK reduction from 6 to 5 dimensions: the Killing spinor in 6 dimensions can be

charged under the U(1) on which the reduction occurs, which causes it to vanish in 5

dimensions.
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In this chapter, we improve upon the results of Section 4.3 and overcome its major

issues. Despite the 5d-6d link mentioned, we work strictly in the 5-dimensional frame,

and leave any investigation of new boundary conditions in 6d (such as supertubes, as

discussed in Section 4.4.2) to future work. This chapter is organized as follows: In

Section 5.2, we solve the SU(∞) Toda equation explicitly under the assumption of an

additional U(1) isometry. We determine the boundary conditions needed for the solu-

tions we wish to build, and we analyze the resulting base manifold in detail to explore

its geometric and topological properties. In Section 5.3, we solve the floating brane

equations on this base manifold explicitly, thus giving the full supergravity solution (we

will make frequent reference to the equations in Section 4.2.3). We will then determine

the conditions needed to make solutions regular in 5 dimensions. We derive the no-

CTC conditions, or “bubble equations” and analyze them. Finally, we give an explicit,

solved example of a 3-center solution. In Section 5.4, we discuss these results and open

problems.

5.2 Axisymmetric Kähler base spaces

Before we discuss solutions to the full system, we will explore the base space B in detail.

Our task is to solve the SU(∞) Toda equation which, while known to be integrable, is

also notoriously hard. However, if we impose an additional U(1) symmetry, there is a

known method of attack [119, 120, 87, 88].

First let us write the LeBrun metric in an explicitly U(1)× U(1)-invariant form,

g =
1

w
(dτ + A)2 + weu (dr2 + r2 dφ2) + w dz2, (5.1)
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where now all functions depend on r, z only. For completeness, the equations to be

solved in these coordinates become

1

r
∂r(rur) + (eu)zz = 0, (5.2)

1

r
∂r(rwr) + (euw)zz = 0, (5.3)

and

dA = rwr dφ ∧ dz + (euw)z r dr ∧ dφ. (5.4)

At this point, we can solve (5.3) and (5.4) generically. To accomplish this, note that the

Laplacian on the 3-dimensional base h is given by

eu ∆h(ϕ) =
1

r
∂r(rϕr) + (euϕz)z, (5.5)

and hence the Laplacian is related to the linearized Toda equation via ∂z:

∂z
(
eu ∆h(ϕ)

)
=

1

r
∂r(r∂rϕz) + (euϕz)zz. (5.6)

Therefore if we take some ŵ which solves the Laplace equation on h,

1

r
∂r(rŵr) + (euŵz)z = 0, (5.7)

then it is easy to show that (5.3) and (5.4) are solved by

w = ŵz, A = −rŵr dφ. (5.8)

One can think of ŵ as a “potential” that gives us the solutions for w and A.
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5.2.1 Solving the axisymmetric Toda equation

Now let us focus on the Toda equation with an axial symmetry (5.2). The additional

U(1) symmetry allows one to make a Bäcklund transformation to new coordinates ρ, η

[119, 120, 87, 88]:

r2eu = ρ2, log r = Vη, z = −ρVρ. (5.9)

The Toda equation can then be mapped onto the axisymmetric Laplace equation in R3

in cylindrical coordinates:
1

ρ
∂ρ(ρVρ) + Vηη = 0. (5.10)

In principle, one must then invert the transformation (5.9) to obtain u. But in practice,

for most functions V this is intractable. It is easier to change the metric to the new

coordinates ρ, η, which results in1

g =
1

w
(dτ + A)2 + w h, (5.11)

h = ρ2(V 2
ρη + V 2

ηη)(dρ
2 + dη2) + ρ2 dφ2. (5.12)

We must also change (5.3) and (5.4) into the new coordinates. The Laplacian ∆h

becomes, up to an overall factor, the cylindrically-symmetric Laplacian on R3,

ρ2(V 2
ρη + V 2

ηη) ∆h(ϕ) =
1

ρ
∂ρ(ρϕρ) + ϕηη, (5.13)

1N.B. – As a result of the transformations (5.9), the cylindrical coordinates ρ, η, φ inherit the orienta-
tion opposite to the usual: volh = ρ2(V 2

ρη + V 2
ηη) dρ ∧ dη ∧ dφ.
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and so the potential ŵ also solves

1

ρ
∂ρ(ρŵρ) + ŵηη = 0, (5.14)

whose solutions we know well. Then w and A are given by

w = ŵz =
1

ρ(V 2
ρη + V 2

ηη)

(
Vηη ŵρ − Vρη ŵη

)
. (5.15)

and

A = −rŵr dφ = − 1

V 2
ρη + V 2

ηη

(
Vρη ŵρ + Vηη ŵη

)
dφ. (5.16)

Therefore, the geometric data of the base space are determined in terms of two functions

V, ŵ that solve the axisymmetric Laplace equation in R3.

5.2.2 Boundary conditions

The task of writing an explicit base space is then reduced to solving cylindrically sym-

metric electrostatics problems in R3 [119]. The question is what kinds of electrostatic

problems give interesting solutions. We will argue for the specific form of boundary

conditions needed; the construction that results is essentially the same as that in [121]

for toric Kähler metrics.

By analogy with BPS solutions on Gibbons-Hawking bases [25], we expect to spec-

ify a collection of points along the η axis where w and K3 ≡ 1
2
uz have poles. The poles

of w control where the τ fiber pinches off, thus creating a series of homology 2-cycles

(provided that the 3-dimensional base h remain smooth at these points). The poles of

uz control sources of Θ(3). If uz has a pole where w does not, we expect the base met-

ric to be singular. But if uz has poles coincident with poles of w, we expect that the
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base geometry is smooth (but possibly with conical singularities), and such poles should

control the fluxes of Θ(3) on the adjacent 2-cycles.

In the simplest case, we consider wherew and uz each have a single, coincident pole.

Since both w and uz solve the same elliptic linear PDE (4.9) (with the same boundary

condition at infinity) and have only one “source point”, it follows that w and uz are

proportional. Hence Θ(3) = 0 and the metric is Ricci-flat, and therefore hyper-Kähler—

thus the metric (5.1) should be a Gibbons-Hawking metric, in alternative coordinates2.

Therefore we attempt to interpret metric (5.1) as a 1-center Gibbons-Hawking metric:

ds2(GH) =
R

q

(
dψ + q cos θ dφ

)2

+
q

R

(
dR2 +R2 dΩ2

2

)
, (5.17)

where dΩ2
2 is the metric on a unit 2-sphere. Comparing to (5.1), we identify z as the

radial coordinate, and take dΩ2
2 to be written in stereographic coordinates r, φ. Hence

we identify

eu =
4z2

(1 + r2)2
, uz =

2

z
, w =

q

z
, (5.18)

where q is any integer, and it is easy to verify that these solve (5.2) and (5.3) as expected.

Then as z → 0, the metric (5.1) approaches, as usual, the flat metric on R4/Zq. This

gives the canonical example of coincident poles in w, uz. We expect that near any loca-

tion where w, uz both blow up, the metric will locally have this form.

To get a function uz with many poles, we should choose a cylindrically-symmetric

Laplace solution V that gives rise to the behavior in (5.18), and then use linearity to

2In the general LeBrun ansatz, takingw ∼ uz gives not a Gibbons-Hawking metric, but a more general
hyper-Kähler manifold. However, if we set w ∼ uz in the U(1)× U(1)-invariant ansatz of (5.1), there is
always some linear combination of the U(1)’s which is tri-holomorphic, hence the manifold must in fact
be Gibbons-Hawking but written in a funny way. See also Appendix B.1
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combine several solutions at centered at different points. Using the Bäcklund transfor-

mation (5.9), we have

uz =
2Vηη

ρ2(V 2
ρη + V 2

ηη)
= − 2

ρVρ
=

2

z
, (5.19)

where the center equality is the boundary condition we need to satisfy near the source

point in order for uz to have the appropriate singular behavior. We see that while the

cylindrically-symmetric Laplace equation for V (5.10) is linear, the boundary condition

for V is nonlinear. To solve this boundary condition, one can guess a few known possi-

bilities for V . It turns out the appropriate choice is also the most obvious one to give a

pole in the numerator:

Vηη =
1√

ρ2 + η2
. (5.20)

Integrating this twice with respect to η and choosing appropriate integration constants,

we find

V = −
√
ρ2 + η2 + η log

η +
√
ρ2 + η2

ρ
. (5.21)

Then we have

z = −ρVρ =
√
ρ2 + η2, Vρη = −η

ρ

1√
ρ2 + η2

, (5.22)

and hence

ρ2(V 2
ρη + V 2

ηη) = 1, which implies uz =
2

z
, (5.23)

and the boundary condition is satisfied.

By the superposition principle, we can then write a solution with N such poles as

V = k3
0 η log ρ+

N∑
i=1

k3
i Hi(ρ, η), (5.24)
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Figure 5.1: The electrostatics problem corresponding to V . λ(η) is a line charge density profile
along the η axis, which is piecewise linear with “kinks” at each of the ηi.

where

Hi(ρ, η) = −
√
ρ2 + (η − ηi)2 + (η − ηi) log

η − ηi +
√
ρ2 + (η − ηi)2

ρ
, (5.25)

and the ηi are the locations of the poles on the η axis. Interpreted as an electrostatics

problem, this corresponds to the potential of a line charge along the η axis of varying

charge density λ(η). The charge density profile λ(η) is piecewise linear, with a “kink”

at each ηi as in Figure 5.1, such that

λ′′(η) =
N∑
i=1

k3
i δ(η − ηi), (5.26)

where the parameters k3
i represent the amount by which the slope jumps as one moves

across the kink at ηi. In V (5.24), we have also put an additional parameter k3
0 , which

represents the freedom to choose the value of λ′(η) at infinity3.

3Specifically, 2 k3
0 is the sum λ′(∞)+λ′(−∞), while the difference λ′(∞)−λ′(−∞) is given by the

sum of all the jumps k3
i .
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Figure 5.2: The electrostatics problem corresponding to ŵ. The line charge profile λ(η) is
piecewise constant, with “jumps” at each ηi.

We must also choose ŵ such that w = ŵz has 1/z type behavior at the source points.

It is easy to show that correct choice is

ŵ = q0 log ρ+
N∑
i=1

qiGi(ρ, η), (5.27)

Gi(ρ, η) = log
η − ηi +

√
ρ2 + (η − ηi)2

ρ
. (5.28)

As an electrostatics problem, this corresponds to a line charge profile λ(η) which is

piecewise constant, with “jumps” at each ηi as in Figure 5.2.

For completeness, it is helpful to write out the η- and ρ-derivatives of these, which

appear in all other formulas:

Vηη =
N∑
i=1

k3
i

Σi

, Vρη =
k3

0

ρ
− 1

ρ

N∑
i=1

k3
i (η − ηi)

Σi

, (5.29)

ŵη =
N∑
i=1

qi
Σi

, ŵρ =
q0

ρ
− 1

ρ

N∑
i=1

qi (η − ηi)
Σi

, (5.30)

where we have defined Σi ≡
√
ρ2 + (η − ηi)2. We note that this is essentially the

same construction as in [121] for scalar-flat toric Kähler 4-manifolds (which can always
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be written in LeBrun form). Thus the base space is defined via the functions (5.29)

and (5.30) and the 2N + 2 parameters k3
0, k

3
i , q0, qi.

We will impose one further requirement, which is that the sum of all these parameters

be even: (
k3

0 +
N∑
i=1

k3
i + q0 +

N∑
i=1

qi

)
∈ 2Z. (5.31)

This condition is required such that, at every singular point of the functions (5.29)

and (5.30), the metric (5.11) describes (locally) an orbifold point R4/G for some finite

group G. Without this condition, the metric at such points still approaches a conical

point, but the cone does not have the right deficit angles to be a quotient of R4, and thus

is not an orbifold. This is derived in Appendix B.2, especially Appendix B.2.5.

5.2.3 Near the singularities

The base space is constructed out of N “source points” where the functions V and w

are singular. In this section we look in the neighborhood of these points and show that

the manifold is perfectly smooth, up to orbifold identifications, in a similar manner to

Gibbons-Hawking metrics [69]. Specifically we will find that the metric (5.11) at these

points locally approaches the orbifold R4/G, where G ' Zm × Zn is a finite subgroup

of the maximal torus4 U(1)× U(1) ⊂ SO(4).

Taking the limit as (ρ, η)→ (0, η`) for some η`, we can define new coordinates

ρ = R sin θ, η − η` = R cos θ. (5.32)

4We note that the factors Zm,Zn ⊂ U(1) × U(1) are not necessarily rotations in a plane (i.e. fixing
every point in the orthogonal plane). One can have, for example, Zm acting in the first U(1) and Zn
acting in the diagonal U(1). Rotations in the diagonal U(1) fix only the origin.
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We will find it convenient to define the quantities

K̄3
` ≡

∑
i
i 6=`

k3
i sign(η` − ηi), Q̄` ≡

∑
i
i 6=`

qi sign(η` − ηi), (5.33)

and also the functions

K̃(θ) ≡ (k3
` )

2 + (K̄3
` − k3

0)2 + 2 k3
` (K̄

3
` − k3

0) cos θ, (5.34)

Q̃(θ) ≡ q2
` + (Q̄` − q0)2 + 2 q`(Q̄` − q0) cos θ, (5.35)

K̃Q(θ) ≡ k3
` q` + (K̄3

` − k3
0)(Q̄` − q0) +

(
k3
` (Q̄` − q0) + q`(K̄

3
` − k3

0)
)

cos θ. (5.36)

Then for small R, we have

ρ2(V 2
ηη + V 2

ρη)→ K̃(θ), w → 1

K̃(θ)

q̃`
R
, A→ −K̃Q(θ)

K̃(θ)
dφ, (5.37)

where we define the determinant:

q̃` ≡ q`(K̄
3
` − k3

0)− k3
` (Q̄` − q0). (5.38)

The metric becomes

ds2 =
K̃(θ)R

q̃`

(
dτ − K̃Q(θ)

K̃(θ)
dφ

)2

+
q̃`
R

(
dR2 +R2 dθ2

)
+

q̃`R

K̃(θ)
sin2 θ dφ2, (5.39)

which, surprisingly enough, is flat. Setting R = %2/(4 q̃`), this can be rearranged into

the more convenient form

ds2 = d%2 +
%2

4

[
dθ2 +

1

q̃`2

(
K̃(θ) dτ 2 − 2K̃Q(θ) dτ dφ+ Q̃(θ) dφ2

)]
. (5.40)
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We compare this to a flat metric5 on R4:

ds2 = d%2 +
%2

4

[
dθ2 + 2

(
1 + cos θ

)
dα2 + 2

(
1− cos θ

)
dβ2

]
, (5.41)

where both α, β are identified modulo 2π and θ ∈ [0, π]. The metrics (5.40) and (5.41)

are then related by a coordinate transformation

τ = (q` − Q̄` + q0)α− (q` + Q̄` − q0) β, (5.42)

φ = (k3
` − K̄3

` + k3
0)α− (k3

` + K̄3
` − k3

0) β. (5.43)

To discover the precise geometry in the neighborhood of the origin, we must

carefully follow the identifications of the angular coordinates. This entire process is

described in detail in Appendix B.2, with the main results in Appendix B.2.5 which will

be used here. We find it is natural to identify the coordinates (τ, φ) on the “diamond”

lattice,

(τ, φ) : (0, 0) ∼ (4π, 0) ∼ (2π, 2π) ∼ (2π,−2π), (5.44)

which can be written as a matrix ΛLB of column vectors which represent the coordinates

where (τ, φ) are identified:

ΛLB = 2π

1 1

1 −1

 , or ΛLB = 2π

2 1

0 1

 . (5.45)

We are free to choose any pair of column vectors that generate the same lattice of iden-

tifications; alternatively, ΛLB is defined only up to right action by GL(2,Z)6. Then

5This metric is related to the standard spherical coordinates on R4 by θ = 2ϑ.

6We define GL(2,Z) as the group of 2 × 2 matrices with integer entries and determinant ±1, hence
invertible over Z. This group is sometimes also called S∗L(2,Z) or SL±(2,Z).
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applying the coordinate transformation (5.42) and (5.43), we find that the (α, β) coordi-

nates should be identified on the lattice Γ̃, generated by the basis

Λ̃ = 2π · 1

2q̃`

k3
` + K̂3

` + q` + Q̂` k3
` + K̂3

` − q` − Q̂`

k3
` − K̂3

` + q` − Q̂` k3
` − K̂3

` − q` + Q̂`

 , (5.46)

where for ease of legibility we have defined

K̂3
` ≡ K̄3

` − k3
0, Q̂` ≡ Q̄` − q0. (5.47)

To determine the group G ' Zm × Zn, we then compare this lattice to a “reference”

lattice Γ, generated by the basis

Λ = 2π

1 0

0 1

 , (5.48)

which represents the ordinary 2π identifications that (α, β) would take if there were no

conical singularity. Given the lattices Γ̃,Γ generated by (5.46) and (5.48), one can then

find the groupG by reducing Λ̃−1Λ to Smith normal form, where one diagonalizes Λ̃−1Λ

by left and right GL(2,Z) actions:

R = P̃−1Λ̃−1ΛP, R =

r1 0

0 r2

 , where P, P̃ ∈ GL(2,Z). (5.49)

Given the parity condition (5.31), it is always true that Λ̃−1Λ = 2πΛ̃−1 has integer

entries. Then the numbers r1, r2 are integers, and determine G via

G = Zm × Zn, where m = r1, n = r2. (5.50)
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Specific details of the groups G

We then find a number of interesting facts (whose detailed derivation can be found in

Appendix B.2.5). We will assume the sum of all the parameters of the base space is even

as in (5.31), and thus every conical point is an orbifold point.

First, at every orbifold point it is always true that Γ ⊆ Γ̃ as a sublattice, and the

group G is formally given by the quotient G ' Γ̃/Γ. The order of the group G is

#G = |det(Λ̃−1Λ)| = |det(2πΛ̃−1)| = |q̃`|, (5.51)

and thus the group G is trivial exactly when q̃` = ±1. At such points, the metric

approaches flat R4 with no conical singularity.

Second, we would like to know under what conditions the LeBrun metric approaches

an orbifold point whose structure is like that of a charge m > 1 Gibbons-Hawking

metric. These are points where G ' Zm and the action of Zm is in the diagonal U(1)

of the maximal torus U(1) × U(1) ∈ SO(4). We find that such orbifold points occur

whenever:

q̃` = ±m, 2(K̄3
` − k3

0)

q̃`
∈ Z, and

2(Q̄` − q0)

q̃`
∈ Z. (5.52)

One can also considerG ' Zm acting in the anti-diagonal U(1), which results in similar

conditions:

q̃` = ±m, 2 k3
`

q̃`
∈ Z, and

2 q`
q̃`
∈ Z. (5.53)

More generally, G ' Zm×Zn where each Zk acts in some linear combination of the

two U(1)’s. In the simplest case, the Zk act by rotation within a plane; i.e. by rotating

(x1, x2) and leaving (x3, x4) fixed. However, the “diagonal” rotations discussed above
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act in both planes and do not fix any point aside from the origin. One can also obtain

more general rotations that rotate both (x1, x2) and (x3, x4) planes by unequal amounts.

In any case, an orbifold singularity with a finite group action such as R4/G is benign

in string theory [122], so in the context of microstate geometries, we will count such

points as regular.

5.2.4 At infinity

In the asymptotic region of the base metric, let us define

ρ = R sin θ, η = R cos θ. (5.54)

Then as R→∞, we have

ρ2(V 2
ρη + V 2

ηη)→ (k3
0)2 + (K3

?)2 − 2 k3
0K

3
? cos θ, (5.55)

w →
(

q0K
3
? − k3

0Q?

(k3
0)2 + (K3

?)2 − 2 k3
0K

3
? cos θ

)
1

R
, (5.56)

A→
(
k3

0q0 +K3
?Q? − (q0K

3
? + k3

0Q?) cos θ

(k3
0)2 + (K3

?)2 − 2 k3
0K

3
? cos θ

)
dφ, (5.57)

where the quantities K3
? , Q? are defined as

K3
? ≡

N∑
i=1

k3
i , Q? ≡

N∑
i=1

qi. (5.58)

We see that (5.55)–(5.57) have the same structure as (5.37). So at infinity, the base metric

approaches a metric with the same structure as (5.39). We can define the determinant

q̃∞ ≡ q0K
3
? − k3

0Q?, (5.59)
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and then the conditions (5.51) and (5.52), (5.53) apply in the same way. In particular,

one has smooth R4 at infinity whenever

q̃∞ = ±1. (5.60)

One can obtain R4/Zm, where Zm acts on the diagonal U(1) via

q̃∞ = ±m, 2K3
?

q̃∞
∈ Z, and

2Q?

q̃∞
∈ Z, (5.61)

or where Zm acts on the anti-diagonal U(1) via

q̃∞ = ±m, 2 k3
0

q̃∞
∈ Z, and

2 q0

q̃∞
∈ Z. (5.62)

In general, the geometry approaches R4/G∞, where again G∞ ' Zm × Zn.

5.2.5 Ambipolar bases

If the base space is considered in isolation, then we must restrict the “charges” q̃` at each

point to be positive. Otherwise, the function w will change sign7, and the signature of

the metric (5.1) will flip from (+ + + +) to (−−−−).

However, in the context of supergravity solutions, the metric (5.1) appears multiplied

by the warp factor Z = (Z1Z2Z3)1/3 in the full 5-dimensional metric,

ds2
5 = −Z−2 (dt+ k)2 + Z ds2

4. (5.63)

Therefore, we can allow w to change sign, so long as each of the Z1, Z2, Z3 changes

sign along the same locus, such that the 5-dimensional metric retains the signature

7Caveat: This is not quite true, as we will show in Section 5.2.6.

128



(−+ + + +). We call such a base space “ambipolar”, where the signature is allowed

to flip from (+ + + +) to (−−−−), as has been discussed at length in [25, 16]. This

justifies the use of q̃`, q̃∞ = ±1,±m in (5.52), (5.53) and (5.60)–(5.62).

With this allowed flexibility in the charges q̃`, we can construct a wide variety of

base spaces. In particular, it should be possible to have both q̃` = ±1 at every point

and q̃∞ = ±1 at infinity, thus allowing us to write down supergravity solutions with an

arbitrary number of bubbles and no orbifold points anywhere.

5.2.6 Engineering solutions

Here we will describe a simple algorithm for generating solutions with an arbitrary

number of points η`, each of which has trivial orbifold group (and thus is smooth). We

will assume that each q̃` = +1 in order to show an interesting result. It is simple to

generalize this algorithm to the more flexible ambipolar case where q̃` = ±1.

To derive this algorithm, we first observe that

Q̄i+1 − Q̄i = qi + qi+1, (5.64)

and hence one has

(Q̄i+1 + qi+1) = (Q̄i + qi) + 2qi+1, (5.65)

and similarly for K̄3
i . The parity condition (5.31) can also be written

k3
0 + q0 + (Q̄i + qi) + (K̄3

i + k3
i ) ∈ 2Z, (5.66)

where i ∈ {1 . . . N} is any of the N points. Since the qi are integers, (5.65) guarantees

that if (5.66) is true for any given i, it is true for all i. Therefore without explicitly
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writing down the sum of all the parameters, we can describe a recursive algorithm for

constructing solutions starting at i = 1 and adding as many points as we like.

A second observation we will need is that

q̃i+1 ≡ qi+1(K̄3
i+1 − k3

0)− k3
i+1(Q̄i+1 − q0) (5.67)

= qi+1(K̄3
i+1 + k3

i+1 − k3
0)− k3

i+1(Q̄i+1 + qi+1 − q0) (5.68)

= qi+1(K̄3
i + k3

i + 2k3
i+1 − k3

0)

− k3
i+1(Q̄i + qi + 2qi+1 − q0)

(5.69)

q̃i+1 = qi+1(K̄3
i + k3

i − k3
0)− k3

i+1(Q̄i + qi − q0), (5.70)

where the third line (5.69) follows from (5.65). Since we wish to set each q̃i = 1, the last

line (5.70) gives us a recurrence relation for the parameters qi, k3
i . Then the algorithm

proceeds as follows:

1. Define

ai ≡ K̄3
i + k3

i − k3
0, bi ≡ Q̄i + qi − q0, (5.71)

and choose any a1, b1, k
3
1, q1 such that

q̃1 ≡ q1 a1 − k3
1 b1 = 1, a1 + b1 + k3

1 + q1 ∈ 2Z. (5.72)

2. Next, find some k3
2, q2 such that (using (5.70))

q̃2 = q2 a1 − k3
2 b1 = 1, (5.73)

and such that

a2 = a1 + 2 k3
2, b2 = b1 + 2 q2 (5.74)
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are relatively prime8.

3. Repeat this as many times as desired, finding some k3
i+1, qi+1 such that

q̃i+1 = qi+1 ai − k3
i+1 bi = 1, (5.75)

and

ai+1 = ai + 2 k3
i+1, bi+1 = bi + 2 qi+1 (5.76)

are relatively prime.

4. After choosing N such k3
i , qi, plug them all back into the definitions (5.71) along

with a1, b1 from the initial step, and solve for the remaining parameters k3
0, q0.

It is simple to generalize this algorithm to produce a sequence of points with any desired

q̃i. In this case, the requirement that each ai, bi be relatively prime can be weakened,

noting that in general, gcd(ai, bi) must divide both q̃i and q̃i+1.

We also note that in the final step of the algorithm, there is no longer any freedom

to choose parameters, and k3
0, q0 must be solved for, from (5.71). Therefore once we

have laid down a sequence of N points with given q̃i, the orbifold structure at infinity is

fixed9.

If a specific behavior at infinity is required, one can re-write the algorithm to work

backwards. The “reverse” algorithm is not identical to the one written here, but it is

simple to work out from the reasoning in (5.65) and (5.66) along similar lines.

* * *

8This is required in order for the next constraint q̃i+1 = 1 to have a solution.

9However, the orbifold structure at infinity depends on the specific k3
i , qi of the solution, and the same

sequence of q̃i can result in different asymptotics!
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Using this algorithm it is easy to obtain some interesting solutions. We will give only

the solutions and not the details of the algorithm used to obtain them. These two exam-

ples show some surprising features which emphasize the difference between LeBrun

metrics and Gibbons-Hawking metrics regarding the types of allowed orbifold points:

Example 1: Every interior q̃i = 1, but at infinity q̃∞ = −1

The first example has three points, and is given by the parameters:

q1 = 4, q2 = −3, q3 = 2; q0 = −2, (5.77)

k3
1 = 5, k3

2 = −4, k3
3 = 1; k3

0 = −1. (5.78)

For this example, one has

q̃1 = 1, q̃2 = 1, q̃3 = 1, q̃∞ = −1. (5.79)

Hence at all the source points ηi one has smooth R4 with trivial orbifold group. However,

the minus sign in q̃∞ reveals that it is possible for a LeBrun metric to flip signature

(+ + + +) to (−−−−) at infinity even if all the interior points have positive “charges”!

This also implies that the naïve positivity condition mentioned at the beginning of

Section 5.2.5 is not quite correct, and requires that one also take into account the numer-

ator of (5.56) to have a metric with positive signature everywhere. Since in the context

of higher-dimensional supergravity solutions we do not require the signature of the base

to remain (+ + + +) everywhere, we will not worry about this.
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Example 2: Every interior q̃i ≥ 1, but at infinity q̃∞ = +1

A second important example is also given by three points:

q1 = −1, q2 = 2, q3 = 2; q0 = 2, (5.80)

k3
1 = 0, k3

2 = 1, k3
3 = 1; k3

0 = 1. (5.81)

and this example has

q̃1 = 3, q̃2 = 1, q̃3 = 1, q̃∞ = 1. (5.82)

In this case the metric does not unexpectedly flip signature. However, we do see that it

is possible for a LeBrun metric to be asymptotically flat (and not just locally flat) even

if the interior “charges” are all positive and some of them are greater than 1. This is in

contrast to Gibbons-Hawking metrics, where it is a mathematical theorem that the only

asymptotically (globally) flat hyper-Kähler metric in 4 dimensions is R4 [68]. Because

LeBrun metrics are merely Kähler and not hyper-Kähler, they are not subject to this

restriction, and the set of parameters (5.80) and (5.81) give an explicit example to this

effect.

It does not, however, appear to be possible to choose parameters such that all the

q̃i = +1 and q̃∞ = +1, although we have not found a way to prove this impossibility in

general.

5.2.7 A topological ménagerie

We have shown that the base metric approaches R4/G, for G ' Zm × Zn, near each

of the geometric charges where the τ fiber pinches off. As explained in Section 4.2.1,
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these points control the appearance of homology 2-spheres as the τ fiber sweeps along

a path between any two such points.

There are also additional phenomena which appear when we look more carefully at

the axis in the 3-dimensional base h:

ρ2(V 2
ρη + V 2

ηη)(dρ
2 + dη2) + ρ2 dφ2. (5.83)

Along the axis, but away from the Gibbons-Hawking points, one has

ρ2(V 2
ρη + V 2

ηη)→
(
k3

0 −
N∑
i=1

k3
i sign(η − ηi)

)2

≡ a2, (5.84)

which is a piecewise-constant function with jumps at each ηi. Whenever a2 = 1, then as

ρ→ 0, the φ circle pinches off smoothly. If instead a2 6= 1 and a2 > 0, then the φ circle

pinches off in a conical singularity R2/Za.

But it is also possible that a = 0. Expanding to the next order in ρ2, and imposing

k3
0 =

N∑
i=1

k3
i sign(η − ηi), (5.85)

one has, as ρ→ 0,

ρ2(V 2
ρη + V 2

ηη)→ ρ2f(η)2, w → 1

ρ2

g(η)

f(η)2
, A→ − h(η)

f(η)2
dφ, (5.86)

where the functions f(η), g(η), h(η) are given by

f(η) =
N∑
i=1

k3
i

|η − ηi|
, (5.87)

g(η) =

(
q0 −

N∑
i=1

qi sign(η − ηi)
)
f(η), (5.88)
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Figure 5.3: Homology 2-cycles in the axisymmetric base space. ∆ij and ∆k` are cycles formed
by sweeping the τ fiber between source points. ∆jk is a cycle formed by the φ circle. In the
ρ, η coordinates, the φ-cycle appears as a line segment between ~aj and ~ak. However, φ does not
pinch off there, but approaches a finite size as ρ→ 0.

h(η) =
N∑
i=1

qi
|η − ηi|

f(η)

+
1

2

(
q0 −

N∑
i=1

qi sign(η − ηi)
) N∑

j=1

k3
j sign(η − ηj)

(η − ηj)2
.

(5.89)

Then as ρ→ 0, the 4-metric can be rearranged to give

g → g(η)

f(η)2
dφ+

f(η)2

g(η)

[
g(η)2

f(η)2
(dρ2 + dη2) + ρ2 dτ 2

]
, (5.90)

where the coordinates τ, φ have now exchanged roles. Notably, along the entire segment

over which p vanishes, the φ circle remains a finite size as ρ → 0, whereas the τ circle

pinches off. In particular, we have

g(η)2

f(η)2
=

(
q0 −

N∑
i=1

qi sign(η − ηi)
)2

≡ 4b2, (5.91)

so the τ circle is pinching off in a conical singularity R2/Zb (the factor of 4 in (5.91) is

to account for the fact that the period of τ is 4π rather than 2π). This sort of homology

2-cycle, in which φ remains finite while τ pinches off along a finite portion of the axis,

is illustrated in Figure 5.3.
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We also point out that the axisymmetric LeBrun metrics we consider here are toric

Kähler manifolds, and there is possibly a more elegant description of what is going on

with the various types of 2-cycles using the techniques of toric geometry [121].

5.2.8 Magnetic flux through cycles

A desired property of these new solutions is that the magnetic 2-form Θ(3) have non-

trivial flux through the homological 2-cycles in the base. The 2-form Θ(3) is given by

Θ(3) =
1

2
(dτ + A) ∧ d

uz
w

+
1

2
w ?

3
d
uz
w
, (5.92)

but it will be more helpful to write it as

Θ(3) = dB3 = −1

2
d
[uz
w

(dτ + A) + rur dφ
]

(5.93)

where

1

2
uz =

Vηη
ρ2(V 2

ρη + V 2
ηη)

,
1

2
rur = −1 +

1

ρ(V 2
ρη + V 2

ηη)
Vρη, (5.94)

w =
1

ρ(V 2
ρη + V 2

ηη)

(
Vηη ŵρ − Vρη ŵη

)
. (5.95)

On a 2-cycle ∆ij swept out by the τ fiber, the flux can be computed via

Π
(3)
ij =

1

4π

∫
∆ij

Θ(3) =
1

4π

∫
∆ij

dτ ∧ d
K3

w
=
k3
j

q̃j
− k3

i

q̃i
, (5.96)

where q̃i ≡ qi(K̄
3
i −k3

0)−k3
i (Q̄i− q0). This is very reminiscent of the fluxes in the BPS

case [25], and is notably different to the previously-known non-BPS solutions [33, 34]

where Θ(3) had no topological fluxes.
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On a 2-cycle swept out by the φ circle, one has to be considerably more careful.

Along a line segment of the η axis between ηi and ηj where the φ circle has a finite size,

one can show that as ρ→ 0,

Θ(3) → 1

g0

d
[
− dτ +

f̃(η)

f(η)
dφ
]
, (5.97)

where

f(η) =
N∑
i=1

k3
i

|η − ηi|
, f̃(η) =

N∑
i=1

qi
|η − ηi|

, (5.98)

g0 =

(
q0 −

N∑
i=1

qi sign(η − ηi)
)
, (5.99)

and we note that along this single line segment between two source points, g0 is constant.

Outside this line segment, the approximation (5.97) no longer holds; in particular, we

should not be concerned about the sign(η − ηi) in g0, because the full Θ(3) (5.92) is

continuous everywhere and has no jumps. Then using (5.97), the flux of Θ(3) through a

φ cycle is given by

Π
(3)
ij =

1

4π

∫
∆ij

1

g0

d
f̃(η)

f(η)
∧ dφ =

1

2g0

(
qj
k3
j

− qi
k3
i

)
, (5.100)

where, interestingly, the k3
i , k

3
j have ended up in the denominator rather than in the

numerator as they were in (5.96).

We have thus succeeded in constructing a useful and interesting base space for

supergravity solutions. It has the homological 2-spheres we expected, swept out by τ ;

these have cohomological fluxes which can be adjusted in any desired way by choosing

parameters. As a bonus, we also obtain homological 2-spheres swept out by φ, which

also have cohomological flux.
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Interestingly, the fluxes of each type take different forms. If we assign units to the

parameters of the solution, then τ fluxes have units of “1/q” and φ fluxes have units

of “1/k”. This is consistent with the coordinate transformation (5.42), (5.43); if we

assume the angles α, β are dimensionless, then the the fluxes Π
(3)
ij will have the same

units through both τ cycles and φ cycles.

5.3 Multi-centered supergravity solutions

Now that we have an appropriate base space, we must solve the system (4.36) and (4.37),

(4.38), (4.39), (4.43), (4.44), and finally (4.45). The route to the solutions is tedious and

not particularly illuminating, so we will describe it only briefly.

First, the L1, L2 equations (4.36) and (4.37) are simply the linearized Toda equation,

which we have already solved to obtain w. We define “potentials” in the same way as in

(5.7),

L1 = ∂zL̂1, L2 = ∂zL̂2, (5.101)

such that L̂1, L̂2 solve the cylindrically-symmetric Laplace equation:

L̂1 = `0
1 log ρ+

∑
i

`i1Gi(ρ, η), L̂2 = `0
2 log ρ+

∑
i

`i2Gi(ρ, η), (5.102)

Gi(ρ, η) = log
η − ηi +

√
ρ2 + (η − ηi)2

ρ
, (5.103)

where sums are understood to run from 1 to N . Then L1, L2 can be written

L1 =
1

ρ(V 2
ρη + V 2

ηη)

(
Vηη L̂1,ρ − Vρη L̂1,η

)
, (5.104)

L2 =
1

ρ(V 2
ρη + V 2

ηη)

(
Vηη L̂2,ρ − Vρη L̂2,η

)
. (5.105)
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The K1, K2,M equations (4.38), (4.39), (4.43) are all similar. On the left-hand side

is the cylindrically-symmetric Laplace operator on R3, and on the right-hand side is

a product of two functions that solve the linearized Toda equation. Writing down the

obvious homogeneous part, and then making an appropriate guess to match the source

terms, the solutions are

K1 = k1
0 +

∑
i

k1
i

Σi

+
1

V 2
ρη + V 2

ηη

(
Vηη
(
ŵηL̂2,η − ŵρL̂2,ρ

)
+ Vρη

(
ŵηL̂2,ρ + ŵρL̂2,η

))
,

(5.106)

K2 = k2
0 +

∑
i

k2
i

Σi

+
1

V 2
ρη + V 2

ηη

(
Vηη
(
ŵηL̂1,η − ŵρL̂1,ρ

)
+ Vρη

(
ŵηL̂1,ρ + ŵρL̂1,η

))
,

(5.107)

M = m0 +
∑
i

mi

Σi

+
1

2

1

V 2
ρη + V 2

ηη

(
Vηη
(
L̂1,ηL̂2,η − L̂1,ρL̂2,ρ

)
+ Vρη

(
L̂1,ηL̂2,ρ + L̂1,ρL̂2,η

))
,

(5.108)

where Σi ≡
√
ρ2 + (η − ηi)2. We point out that the inhomogeneous parts of these

hold automatically given the equations solved by V, ŵ, L̂1, L̂2, and do not depend on the

specific forms we have written down in (5.29), (5.30), (5.104) and (5.105).

The L3 equation offers no shortcuts. After a tedious exercise, one can show its

solution is

L3 = `0
3 − `z3 ρVρ +

∑
i

1

Σi

(
k3

0`
i
3 + `0

1k
1
i + `0

2k
2
i + 2q0mi

)
(5.109)

+
∑
ij
i 6=j

1

ηi − ηj
Σi

Σj

(
k3
i `
j
3 + `i1k

1
j + `i2k

2
j + 2qimj

)
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−
∑
i

η − ηi
Σi

(
k3
i `
i
3 + `i1k

1
i + `i2k

2
i + 2qimi

)
+

ρ

V 2
ρη + V 2

ηη

[
Vρη

(
− ŵηL̂1,ηL̂2,η + ŵρL̂1,ρL̂2,η + ŵρL̂1,ηL̂2,ρ + ŵηL̂1,ρL̂2,ρ

)
+ Vηη

(
− ŵρL̂1,ρL̂2,ρ + ŵρL̂1,ηL̂2,η + ŵηL̂1,ρL̂2,η + ŵηL̂1,ηL̂2,ρ

)]
,

where the parameter `z3 multiplies z = −ρVρ. It is important to note here that the pair

k3
i , `

j
3 behaves oppositely to the pairs `i1, k

1
j and `i2, k

2
j . And again, the formula in the last

term holds automatically given the equations for V, ŵ, L̂1, L̂2.

Finally, one must solve the ω equation (4.45). If we write

ω = ω(φ) dφ, (5.110)

then (4.45) reduces to the two equations

r∂r
(
ω(φ)

)
=

1

2

(
ρ2L1 ∂zK

1 −K1 ∂z(ρ
2L1)

)
+

1

2

(
ρ2L2 ∂zK

2 −K2 ∂z(ρ
2L2)

)
+

1

4

(
L3 ∂

2
z (ρ

2)− ∂z(ρ2) ∂zL3

)
+ ρ2w ∂zM −M ∂z(ρ

2w)− 2ρ2wL1L2, (5.111)

−∂z
(
ω(φ)

)
=

1

2

(
L1 r∂rK

1 −K1 r∂rL1

)
+

1

2

(
L2 r∂rK

2 −K2 r∂rL2

)
+

1

4

(
L3 r∂ruz − uz r∂rL3

)
+ w r∂rM −M r∂rw.

(5.112)

And one can show that these are solved by the following formula:

ω(φ) = ω0 +
1

ρ2(V 2
ρη + V 2

ηη)

{
1

2
`z3

(
ρ2VρVρη − ηρ2(V 2

ρη + V 2
ηη)

)
(5.113)

+
1

2

(
k1

0`
0
1 + k2

0`
0
1 − `0

3 + 2m0q0

)(
k3

0 −
∑
i

η − ηi
Σi

k3
i

)
− 1

2
k3

0

∑
i

(
k1

0`
i
1 + k2

0`
i
2 + 2m0qi

)η − ηi
Σi
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+
1

2

∑
ij

k3
i

(
k1

0`
j
1 + k2

0`
j
2 + 2m0qj

)ρ2 + (η − ηi)(η − ηj)
ΣiΣj

+
1

2
k3

0

∑
ij
i 6=j

(
k1
i `
j
1 + k2

i `
j
2 − `i3k3

j + 2miqj
) 1

ηi − ηj
ρ2 + (η − ηi)(η − ηj)

ΣiΣj

− 1

2

∑
ijk
i 6=j

k3
k

(
k1
i `
j
1 + k2

i `
j
2 + 2miqj

) 1

ηi − ηj
1

ΣiΣjΣk

×

×
[
ρ2
(
η − ηi + ηj − ηk

)
+ (η − ηi)(η − ηj)(η − ηk)

]
+

1

2

∑
ik

k3
k

(
k1
i `
i
1 + k2

i `
i
2 + 2miqi

) ρ2

Σ2
iΣk

+
1

2

∑
ijk
i 6=k

k3
i k

3
j `
k
3

ηi − ηj
ηi − ηk

ρ2

ΣiΣjΣk

− 1

2

∑
ij

k3
i k

3
j `
i
3

ρ2

Σ2
iΣj

+
1

2

∑
i

(k3
i )

2`i3
ρ2

Σ3
i

+
1

2

∑
ijk
i 6=k

k3
i k

3
j `
k
3

1

ηi − ηk
(η − ηk)

(
ρ2 + (η − ηi)(η − ηj)

)
ΣiΣjΣk

+
∑
ijk

qi`
j
1`
j
2

ρ2

ΣiΣjΣk

}
,

where again, all sums are assumed to run over i, j, k ∈ {1 . . . N}.

We now have the complete data for constructing supergravity solutions. The solution

is characterized by N number of points ηi along the axis in the base space, and by

the 8N + 10 parameters {q0, k
1
0, k

2
0, k

3
0, `

0
1, `

0
2, `

0
3,m0, ω0, `

z
3, qi, k

1
i , k

2
i , k

3
i , `

i
1, `

i
2, `

i
3,mi},

which in general are constrained by the requirement for the absence of CTC’s and Dirac-

Misner strings. Finally, to complete the supergravity solution, one puts the functions

w,K1, K2, K3, L1, L2, L3,M into the ansätze of Sections 4.2 and 4.2.3.
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5.3.1 Asymptotics of the 5d metric

Now we look at the behavior of the 5-dimensional metric (4.4) at infinity. The param-

eters k1
0, k

2
0, `

z
3 lead to terms that blow up at infinity, so we set them to zero for the

remainder of our discussion:

k1
0 = 0, k2

0 = 0, `z3 = 0. (5.114)

We will use the coordinates R, θ defined via

ρ = R sin θ, η = R cos θ. (5.115)

Then the warp factors Z1, Z2 go as

Z1 ∼
(
K2
?K

3
? +Q?L

?
1

q0K3
? − k3

0Q?

)
1

R
, Z2 ∼

(
K1
?K

3
? +Q?L

?
2

q0K3
? − k3

0Q?

)
1

R
, (5.116)

where we define

K1
? ≡

N∑
i=1

k1
i , K2

? ≡
N∑
i=1

k2
i , K3

? ≡
N∑
i=1

k3
i , Q? ≡

N∑
i=1

qi,

L?1 ≡
N∑
i=1

`i1, L?2 ≡
N∑
i=1

`i2, L?3 ≡
N∑
i=1

`i3, M? ≡
N∑
i=1

mi.

(5.117)

To first order, the remaining metric functions Z3, µ, ω(φ) go as constants:

Z3 ∼ `0
3 −

∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj
, (5.118)

µ ∼ m0 −
1

2

K3
?

q0K3
? − k3

0Q?

(
`0

3 −
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)
, (5.119)
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ω(φ) ∼ ω0 +
1

2

Q?

q0K3
? − k3

0Q?

(
`0

3 −
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)

+

(
k3

0q0 +K3
?Q? − (q0K

3
? + k3

0Q?) cos θ

(k3
0)2 + (K3

?)2 − 2 k3
0K

3
? cos θ

)
×

×
[
m0 −

1

2

K3
?

q0K3
? − k3

0Q?

(
`0

3 −
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)]
.

(5.120)

We must have µ → 0, ω(φ) → 0 asymptotically in order to avoid CTC’s at infinity.

Therefore we must set

m0 =
1

2

K3
?

q0K3
? − k3

0Q?

(
`0

3 −
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)
, (5.121)

ω0 = −1

2

Q?

q0K3
? − k3

0Q?

(
`0

3 −
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)
. (5.122)

As one can see in Section 3.1, the ZI must all have the same asymptotic behavior for T 6

in the 11-dimensional metric (3.1) to remain compact at infinity. However, we can also

consider solutions where the ZI behave differently, if we give up the notion of lifting

them to 11-dimensional supergravity. As was pointed out in Section 4.4, a natural setting

for differing asymptotic behavior of the ZI is in the 6-dimensional theory obtained by

reducing IIB supergravity on T 4.

We first consider the case that all threeZI have the same asymptotic behavior. There-

fore we set

`0
3 =

∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj
. (5.123)
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Imposing (5.121), (5.122), (5.123), we expand Z3, µ, ω(φ) to the next order. This gives

Z3 ∼
1

R

{
1

q0K3
? − k3

0Q?

[(
(k3

0)2 + (K3
?)2 − 2 k3

0K
3
? cos θ

)
K1
?K

2
?

+
(
k3

0q0 +K3
?Q? − 2 k3

0Q? cos θ
)(
K1
?L

?
1 +K2

?L
?
2

)
+
(

(q0)2 + (Q?)
2 − 2 q0Q? cos θ

)
L1
?L

2
?

]
− 1

2

(
K1
?L

?
1 +K2

?L
?
2 +K3

?L
?
3 + 2Q?M?

)
cos θ

+
1

2

(
k3

0L
?
3 + 2q0M?

)}
(5.124)

and

µ ∼ 1

R

{
1

(q0K3
? − k3

0Q?)2

[
−K3

?

(
(k3

0)2 + (K3
?)2 − 2 k3

0K
3
? cos θ

)
K1
?K

2
?

−K3
?

(
k3

0q0 +K3
?Q? − 2 k3

0Q? cos θ
)(
K1
?L

?
1 +K2

?L
?
2

)
−Q?

(
k3

0q0 +K3
?Q? − (q0K

3
? + k3

0Q?) cos θ
)
L1
?L

2
?

]
+

1

2

1

q0K3
? − k3

0Q?

[(
k3

0 +K3
? cos θ

)(
K1
?L

?
1 +K2

?L
?
2

)
+
(
K3
? cos θ − k3

0

)(
K3
?L

?
3 + 2Q?M?

)]}
,

(5.125)

and

ω(φ) ∼
1

2R

K3
? sin2 θ

(k3
0)2 + (K3

?)2 − 2 k3
0K

3
? cos θ

(
K1
?L

?
1 +K2

?L
?
2 +K3

?L
?
3 +2Q?M?

)
. (5.126)
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The 5-dimensional metric (3.41) then becomes

ds2
5 = − R2

f4(θ)2

[
dt+

1

R
f5(θ) dτ +

1

R

(
f5(θ)f3(θ) + f6(θ)

)
dφ
]2

+
f4(θ)

f2(θ)

(
dτ + f3(θ) dφ

)2

+
f2(θ)f4(θ)

R2

[
f1(θ)(dR2 +R2 dθ2) +R2 sin2 θ dφ2

]
,

(5.127)

where generically speaking,

ρ2(V 2
ρη + V 2

ηη) ∼ f1(θ), w ∼ 1

R
f2(θ), A ∼ f3(θ) dφ (5.128)

Z ∼ 1

R
f4(θ), µ ∼ 1

R
f5(θ), ω ∼ 1

R
f6(θ) dφ, (5.129)

and simplifications likely occur in (5.127) if one works these out in more specificity.

Due to the dR2/R2 term, this metric is something related to AdS2 × S3. Specifically, it

is a warped, rotating quotient AdS2 × S3/G∞, where G∞ is a finite group acting on the

S3 factor as described in Section 5.2.4. If we choose parameters such that q̃∞ = ±1 as

defined in (5.59), then the base space approaches R4 without orbifold identifications, as

described in Section 5.2.5. One can then choose parameters such that

Z3 ∼
1

R
, µ ∼ 1

R
(c1 + c2 cos θ), ω ∼ O(R−2). (5.130)

Then changing coordinates via

R =
1

4
%2, θ = 2ϑ, τ = ψ + χ, φ = ψ − χ, (5.131)

(up to shifts in t and τ ), one obtains a 5-dimensional metric of the form

ds2
5 = −%4

(
dt+ J1

sin2 ϑ

%2
dψ + J2

cos2 ϑ

%2
dχ
)2

+
d%2

%2
+ dΩ2

3, (5.132)
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which is the metric of the near-horizon region of a BMPV black hole [89].

6d asymptotics

Alternatively, we can choose to allow Z3 ∼ (const) at infinity while Z1, Z2 ∼ 1/%2, and

therefore not impose (5.123). Then the 5-dimensional metric will generically be of the

form

ds2
5 = −%8/3 (dt+ k)2 + %−4/3 (d%2 + %2 dΩ2

3), (5.133)

which looks somewhat strange. As shown in Section 4.4, however, there is a natural

lift into 6-dimensional N = 1 supergravity coupled to one anti-self-dual tensor mul-

tiplet [70, 71, 72]. The metric ansatz in 6 dimensions can be written in terms of the

5-dimensional quantities as

ds2
6 = − 2√

Z1Z2

(
dv +B3

)(
du+ k − 1

2
Z3

(
dv +B3

))
+
√
Z1Z2 ds2

4, (5.134)

where B3 is the 1-form potential such at Θ(3) = dB3 as in (5.93). In this context,

applying the asymptotics at infinity where Z3 ∼ (const) and Z1, Z2 ∼ 1/%2 gives the

result

ds2
6 = −2%2 dv

(
du+ k − 1

2
Z3 dv) +

d%2

%2
+ dΩ2

3, (5.135)

which is a momentum wave propagating on AdS3 × (S3/G∞). Furthermore, nothing

prevents us from imposing Z3 ∼ 1/%2 in this lifted metric; in such a case, one would

obtain the 6-dimensional lift of the near-horizon BMPV metric (5.132), which is the

near-horizon metric of a BPS, rotating D1-D5-P black string [103].

Generally speaking, we see that our solutions are asymptotic to a warped, rotating

version of AdS2 × (S3/G∞), and for special choices of parameters, to near-horizon

BMPV. Alternatively, one can lift to IIB supergravity on T 4, giving a 6-dimensional

metric which allows Z3 to have different asymptotics to Z1, Z2. In this case, one can
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impose Z3 ∼ (const) to obtain a momentum wave solution propagating on AdS3 ×

(S3/G∞); or, imposing Z3 ∼ 1/%2, one obtains the near-horizon metric of a BPS,

rotating black string.

We should note, as explained in Section 4.2.4, that the “floating brane” equations

[31] on a LeBrun base do not have asymptotically flat solutions, and solutions must

generically have nonzero rotation parameters at infinity. The reason for this is that the

T00 component of the 5-dimensional energy-momentum tensor is a manifestly positive-

definite function of the ZI ,Θ(I). Even if we have ZI ∼ 1 at infinity, then Θ(1),Θ(2) still

contain a term proportional to the Kähler form J , which contributes a constant to T00

and prevents asymptotic flatness. The rotation at infinity comes from the off-diagonal

terms T0a, which also do not vanish.

5.3.2 Regularity conditions

The solutions we have obtained generically have a number of singularities at each ηi

which act as sources of the electric potentials ZI and magnetic field strengths Θ(I).

However, in the context of black hole microstate geometries, we are interested in solu-

tions that are everywhere smooth, with no singular sources. This can be accomplished

by choosing the parameters in such a way that singularities are eliminated. The nec-

essary condition for smoothness is that each of the functions Z1, Z2, Z3, µ, ω(φ) remain

non-singular as the source points are approached.

Looking near a point η`, we again define a local radial coordinate via

ρ = R sin θ, η − η` = R cos θ. (5.136)
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Then as R→ 0, we have

Z1 →
1

R

(
k2
`k

3
` + q``

`
1

q`
(
K̄3
` − k3

0

)
− k3

`

(
Q̄` − q0

)), (5.137)

Z2 →
1

R

(
k1
`k

3
` + q``

`
2

q`
(
K̄3
` − k3

0

)
− k3

`

(
Q̄` − q0

)), (5.138)

where again,

K̄3
` ≡

∑
i
i 6=`

k3
i sign(η` − ηi), Q̄` ≡

∑
i
i 6=`

qi sign(η` − ηi). (5.139)

Therefore, the singular parts of Z1, Z2 will vanish if

``1 = −k
2
`k

3
`

q`
, ``2 = −k

1
`k

3
`

q`
, (5.140)

at every source point. Next, imposing (5.140), we have

Z3 →
1

R

[
k1
`k

2
`

q2
`

(
q`(K̄

3
` − k3

0)− k3
` (Q̄` − q0)

)
− ``3(K̄3

` − k3
0) + 2m`(Q̄` − q0)

−
(
k3
` `
`
3 + 2m`q`

)
cos θ

]
,

(5.141)

and hence the singular part of Z3 vanishes if

``3 =
k1
`k

2
`

q`
, m` = −k

1
`k

2
`k

3
`

2q2
`

. (5.142)

Together, (5.140) and (5.142) are also sufficient to guarantee µ → (const) and ω(φ) →

(const) near η`; hence we will have a regular solution if we impose these conditions at

every source point.
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We note that these conditions appear exactly the same (up to signs that result from

differing conventions) as the smoothness conditions (3.35) in the original BPS story

[25]. However, there is a key difference: In these solutions, the parameters q` do not

directly control the charges at the singularities of w, but as in (5.37), the charges in w

are controlled by the determinants

q̃` ≡ q`(K̄
3
` − k3

0)− k3
` (Q̄` − q0). (5.143)

5.3.3 Fluxes through cycles

It will be useful to have expressions for the magnetic flux threading 2-cycles formed by

sweeping the τ fiber between source points in the 4-dimensional base space. We have

already calculated the flux of Θ(3) on these cycles (5.96):

Π
(3)
ij ≡

1

4π

∫
∆ij

Θ(3) =
k3
j

q̃j
− k3

i

q̃i
. (5.144)

Before calculating the remaining two fluxes, we will impose the regularity conditions

(5.140), (5.142). Then as we approach a source point η`, we have

K1

w
→ k1

` (K̄
3
` − k3

0)

q`
− `0

2 + L̄`2,
K2

w
→ k2

` (̄K
3
` − k3

0)

q`
− `0

1 + L̄`1, (5.145)

where we have defined new quantities

L̄`1 ≡
∑
i
i 6=`

`i1 sign(η` − ηi), L̄`2 ≡
∑
i
i 6=`

`i2 sign(η` − ηi). (5.146)
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Then the flux through τ cycles can be calculated in a way similar to (5.96):

Π
(1)
ij ≡

1

4π

∫
∆ij

Θ(1) =
k1
j (K̄

3
j − k3

0)

qj
+ L̄j2 −

k1
i (K̄

3
i − k3

0)

qi
− L̄i2, (5.147)

Π
(2)
ij ≡

1

4π

∫
∆ij

Θ(2) =
k2
j (K̄

3
j − k3

0)

qj
+ L̄j1 −

k2
i (K̄

3
i − k3

0)

qi
− L̄i1. (5.148)

One can in principle also calculate the fluxes through the 2-cycles swept out by φ, as

was done in Section 5.2.8. However, this is tedious and not very illuminating, so we

omit it.

5.3.4 Causality conditions: the “bubble equations”

We have determined the conditions that a solution is smooth (up to benign orbifold

singularities) as one approaches the various points η` in the base manifold. However, to

construct sensible supergravity solutions, one must also ensure that there are no closed

timelike curves.

Looking at the metric (4.4) on a surface of constant t, we can rearrange it as follows:

ds2
5 =

Q
w2Z2

(
dτ + A− w2µ

Q
ω

)2

+ Zw

(
ρ2 dφ2 − ω2

Q

)
+ Zw ρ2(V 2

ρη + V 2
ηη)(dρ

2 + dη2),

(5.149)

where

Q ≡ Z1Z2Z3w − w2µ2, Z ≡ (Z1Z2Z3)1/3. (5.150)

In order for CTC’s to be absent everywhere, (5.149) must be positive-definite. This

requires

Q ≥ 0, Zw ≥ 0, ρ2 dφ2 ≥ ω2

Q
. (5.151)
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It is generally impractical to enforce these global conditions from the local point of view

of choosing parameters in the solution; one must write down a solution and then explore

it numerically to look for CTC’s. However, one can look at local causality conditions

near the source points, and this leads to a system of equations that must be solved as a

necessary (but not sufficient) condition that a solution be causally sensible.

In the BPS context [25], this leads to a system of so-called “bubble equations” (3.40)

that relate the distances between the GH centers (as measured in the R3 base) to the

product of the fluxes of the Θ(I) through the various 2-cycles described by the GH cen-

ters. Thus the size of each “bubble” is governed by the amount of flux trapped on

it. Importantly, the bubble equations depend upon the product of all three fluxes. In

the previous work of Chapter 4 on non-supersymmetric solutions derived from floating

branes [33, 34], the third flux Θ(3) was topologically trivial and contributed no fluxes

to the bubble equations. The result was that the causality conditions did not constrain

the sizes of the homological 2-cycles. In these new solutions, however, Θ(3) has non-

trivial fluxes on the 2-cycles (as in Section 5.2.8), so we expect to find non-trivial bubble

equations.

Looking at (5.149) near the points η`, one finds two potential sources of CTC’s

coming from the two angular coordinates τ, φ. To eliminate CTC’s near these points,

we must require that

µ→ 0, ω → 0 at each η`. (5.152)

While these appear to be two different conditions, they are really the same. To see this,

we can rearrange the ω equation (4.45) as follows:

dω = wZ1 ?
3

d
K1

w
+ wZ2 ?

3
d
K2

w
+ wZ3 ?

3
d
K3

w
− 2wZ1Z2 ?

3
dz

+ w ?
3

dµ− µ dA.

(5.153)
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We choose parameters such that ω vanishes at infinity (5.121), (5.122), so for ω to be

non-vanishing somewhere on the axis would require Dirac-Misner strings. Given the

regularity conditions (5.140), (5.142), the only term in (5.153) that can source Dirac-

Misner strings is −µ dA. Therefore, to eliminate local CTC’s near the points, it is

enough to demand that µ vanish at each η`, which results in the following “bubble equa-

tions”:

−2m0 q̃` + `0
3 k

3
` = (k3

0 − K̄3
` )
∑
i
i 6=`

Π̂
(1)
`i Π̂

(2)
`i Π̂

(3)
`i

q`qi
r`i

+
1

2
k3
`

∑
ij
i 6=j

Π̂
(1)
ij Π̂

(2)
ij Π̂

(3)
ij

qiqj
rij

s(i, j) s(`, i) s(`, j),
(5.154)

where we have defined

rij ≡ |ηi − ηj|, Π̂
(I)
ij ≡

(
kIj
qj
− kIi
qi

)
, s(a, b) ≡ sign(ηa − ηb), (5.155)

q̃` ≡ q`(K̄
3
` − k3

0)− k3
` (Q̄` − q0). (5.156)

The combinations of parameters Π̂
(I)
ij which appear in the bubble equations are not the

physical fluxes Π
(I)
ij calculated in (5.96), (5.147) and (5.148). However, with a little

algebra one can show that they are related linearly and homogeneously10:

Π
(1)
`i = (−k3

0 + K̄3
` ) Π̂

(1)
`i +

N∑
j=1

k3
j Π̂

(1)
ij

(
s(`, j)− s(i, j)

)
, (5.157)

Π
(2)
`i = (−k3

0 + K̄3
` ) Π̂

(2)
`i +

N∑
j=1

k3
j Π̂

(2)
ij

(
s(`, j)− s(i, j)

)
, (5.158)

q̃`q̃i Π
(3)
`i = q`qi(−k3

0 + K̄3
` ) Π̂

(3)
`i + k3

`

N∑
j=1

qiqj Π̂
(3)
ij

(
s(`, j)− s(i, j)

)
. (5.159)

10Here we again assume the regularity conditions (5.140), (5.142) are imposed.
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These look tantalizingly like they might allow a simpler expression of the right-hand side

of (5.154); however, the presence of 1/r`i, 1/rij in the sums complicates the algebra, and

the expression we have written in (5.154) is probably the simplest.

We have thus succeeded in finding a family of non-BPS solutions with non-trivial

bubble equations which constrain the bubble diameters rij in terms of the fluxes trapped

on the bubbles. We also observe that there is a significant, important difference between

these non-BPS bubble equations and the well-known BPS version (3.40). The term on

the second line of (5.154) is entirely new: In order to avoid CTC’s at η`, the equa-

tions depend not only on the diameters r`i of the 2-cycles adjacent to η`, but also on

the diameters rij of each of the other 2-cycles. This is telling us about new physics:

these non-supersymmetric solutions exhibit a richer variety of E × B interactions than

previously known BPS solutions.

However, while these bubble equations differ from the BPS ones in this very impor-

tant way, they are similar in another particularly striking way: They are linear in

the inverse bubble diameters 1/rij . This stands in contrast to the so-called “almost

BPS” family of solutions where the bubble equations are cubic in the inverse distances

[78, 80, 79]. So although these solutions lack supersymmetry, they are in some sense

closer to BPS than the “almost BPS” solutions. This is of course because they are triv-

ial KK reductions of 6d geometries which are BPS in the IIB frame, as explained in

Section 4.4.

Ultimately, there are only N − 1 independent rij , so we expect there to be N − 1

independent bubble equations. This is easiest to demonstrate by looking directly at the

Dirac-Misner strings in ω. This results in the same set of bubble equations as above, but
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with each multiplied by a constant (which is different at each η`). Near η`, the Dirac-

Misner string part of ω is given by the jump that occurs in crossing from one side of η`

to the other:

ω
∣∣∣
θ=0
− ω

∣∣∣
θ=π

= −
(
A
∣∣∣
θ=0
− A

∣∣∣
θ=π

)
µ =

2 q̃`(
K̄3
` − k3

0

)2 −
(
k3
`

)2 µ dφ. (5.160)

Since ω contains a sequence of Dirac-Misner string sources along the η axis, and van-

ishes at both positive and negative infinity, then the sum of all the jumps must be zero.

Therefore, the weighted sum of all the bubble equations (5.154), each multiplied by the

coefficient in (5.160), must give zero. This weighted sum gives

m0 =
1

2

K3
?

q0K3
? − k3

0Q?

(
`0

3 −
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)
. (5.161)

which is the condition we have already imposed (5.121) in order that µ → 0 at infinity.

Hence as expected, the bubble equations constitute N − 1 independent equations in the

N − 1 independent variables rij .

Finally, there is a curious thing that happens if we impose all of the conditions

derived in Section 5.3.1 for near-horizon BMPV-like (i.e. warped, rotating AdS2 × S3)

asymptotics. First we note that the value of `0
3 in (5.123) is entirely a linear combation of

the inverse bubble diameters 1/rij . Second, when (5.123) is imposed, thenm0 = ω0 = 0

as in (5.121), (5.122). Therefore if we insist on near-horizon BMPV-like asymptotics,

the bubble equations will take the form, schematically,

∑
Π̂(1)Π̂(2)Π̂(3) qq

r
= 0. (5.162)
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If we instead think of this equation as a limiting process where we replace the right-hand

side with some δ and let δ → 0, then the solutions, as we follow this process, are scal-

ing solutions [123, 102, 79]. The right-hand side roughly scales as (Π)3/r, and thus if

we adjust the dipole charges while simultaneously shrinking the bubble diameters, such

that Π ∼ λ, r ∼ λ for λ small, this tends toward zero. In such solutions, the overall

size of the bubbled region shrinks (as measured in the 3-dimensional base), while the

ratios between the bubble sizes becomes constant. In the full 5-dimensional metric, this

represents the appearance of an arbitrarily deep throat, smoothly capped off by topolog-

ical bubbles at some finite depth. Thus one can see the near-horizon BMPV geometry,

and the related rotating-AdS-like metrics with angular dependence as in (5.127), as the

result of this limiting procedure.

More generally, if we consider asymptotic conditions where Z3 behaves differently

from Z1, Z2 (thus naturally lifting to the 6d IIB metric (5.135) rather than to 11d super-

gravity), we can set the constant `0
3 to anything we like. In this case, one can find finite,

non-trivial solutions to the bubble equations without subjecting them to a limiting pro-

cedure. We demonstrate this in Section 5.3.5.

5.3.5 An explicit numerical example

In this section we will give an explicit, solved example with three source points, illus-

trating how a smooth, CTC-free solution can be constructed. The solution will be in the

class asymptotic to (5.135), where Z3 ∼ (const) and Z1 ∼ 1/ρ2, Z2 ∼ 1/ρ2. We will

focus on satisfying the local conditions near the points, and not delve into exactly what

asymptotics result.

We begin by choosing three source points along the η axis and assigning them geo-

metric charges. The parameters of the solution are ordered in the manner drawn in
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Figure 5.4: Setup for a 3-center example. Geometric charges q1, q2, q3 are put at the points
~a1,~a2,~a3 along the η axis. One must then solve the bubble equations to find r12, r23.

Figure 5.4; thus by hypothesis the bubble diameters r12, r23 are positive. At the points

~a1,~a2,~a3 we put the following charges:

q0 = 2, q1 = 3, q2 = 2, q3 = 6,

k1
0 = 0, k1

1 = 5, k1
2 = 2, k1

3 = 3,

k2
0 = 0, k2

1 = 5, k2
2 = 4, k2

3 = 3,

k3
0 = 1, k3

1 = 2, k3
2 = 2, k3

3 = 2,

`0
1 = 0, `0

2 = 0, `0
3 = 10, `z3 = 0.

(5.163)

Our particular choices are made to satisfy a few constraints: 1) the parity condition

(5.31) such that each point will be an orbifold point; 2) the condition that all the Π̂
(I)
ij

are nonzero; 3) the condition that the q̃i are all “nice” numbers; 4) the condition that

the bubble equations yield real, positive solutions for the rij; and 5) the condition that

Q > 0 in order to be free of CTC’s. Choosing parameters (5.163) to satisfy all of these

properties is a bit of an art, and it would be interesting to better understand the moduli

space of physical solutions.

The value of `0
3 sets the overall scale of the solution, as it is the only unconstrained

constant sitting on the left-hand side of (5.154). Since we have put `0
3 6= 0, this solution

will have asymptotics best described in the 6d IIB frame as in (5.135). Most of the
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functions w,KI , LI ,M that make up the solution are too lengthy to write out, but as an

example, we have

ŵη =
3√

ρ2 + η2
+

2√
ρ2 + (η − r12)2

+
6√

ρ2 + (η − r12 − r23)2
, (5.164)

ŵρ =
2

ρ
− 3 η

ρ
√
ρ2 + η2

− 2 (η − r12)

ρ
√
ρ2 + (η − r12)2

− 6 (η − r12 − r23)

ρ
√
ρ2 + (η − r12 − r23)2

, (5.165)

and so on. There are two remaining constants m0, ω0 which we have not set in (5.163).

To meet the regularity conditions at infinity, these constants will be set equal to (5.121)

and (5.122), and then their numerical values will be determined after the rij are known

via solving the bubble equations (5.154).

At each source point, the base metric approaches R4/G`, where the order of G` at

the source point η` is given by #G` = |q̃`|, and for the parameters (5.163) these q̃` are

given by

q̃1 = 5, q̃2 = 8, q̃3 = 12, q̃∞ = 1. (5.166)

Therefore we see that this is another example of the phenomenon described in Sec-

tion 5.2.6, where the base metric can be asymptotically globally flat, despite having orb-

ifold points on the interior, and without resorting to making it “ambipolar” as described

in Section 5.2.5.

We will first analyze the groups at these orbifold points. We find that the lattice

generators Λ̃`, calculated from (5.46), are given by

Λ̃1 =
1

5

 2 −5

−3 10

 , Λ̃2 =
1

8

 2 −1

−2 5

 , Λ̃3 =
1

12

−2 7

−2 1

 , (5.167)

and the corresponding groups are

G1 ' Zdiag
5 , G2 ' Z8, G3 ' Z12 ' Z3 × Z4, (5.168)
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Figure 5.5: The unit cells Λ̃` of each lattice Γ̃` and their corresponding groups G` ' Γ̃`/Γ.
The small parallelograms represent the lattice generators (5.167) (where Λ̃1 has been shifted by
a right GL(2,Z) action in order to make it fit in the figure). The heavy red dots represent the
members of each group G`. The corners of the large squares are to be identified; they represent
the lattice Γ of the natural 2π identifications of the (α, β) coordinates in R4.

where G1 at point η1 acts in the diagonal U(1) of SO(4), which one can check using

(5.52). These lattice generators Λ̃`, and the groups given by G` ' Γ̃`/Γ, are illustrated

in Figure 5.5.

Next, we put the general expression form0 (5.121) into the bubble equations (5.154)

and solve them for the rij , subject to the triangle constraint

r12 + r23 = r13. (5.169)

At this point in the process it is quite possible to fail to find a solution. The rij should be

strictly positive (they do not enter the equations in a way that allows them to be treated

as “directional”). The bubble equations are linear in 1/rij , and (5.169) is linear in rij ,

hence one is solving a system of quadratic equations. Thus it is possible to get negative

or imaginary rij , and if this happens, one must adjust some of the dipole charges in

(5.163) and try again. For the particular charges used here, we obtain two solution sets

of real, positive rij , from which we select (via hindsight) the following:

r12 = 2.45827, r23 = 0.891937, r13 = 3.35021. (5.170)
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Figure 5.6: The functionQ ≡ Z1Z2Z3w−w2µ2 plotted near the source points at three different
levels of magnification. Q is everywhere non-negative, and therefore the solution is free of
CTC’s.

From this solution and the expressions (5.121) and (5.122), we then find

m0 = 1.96384, ω0 = −3.60037, (5.171)

which will then guarantee that there are no CTC’s at infinity.

Finally, to show there are no CTC’s anywhere, we plot

Q ≡ Z1Z2Z3w − w2µ2 (5.172)

in Figure 5.6. We see that it is positive near the centers as we expect, and appears to be

positive everywhere, giving us a supergravity solution which is globally free of closed

timelike curves11.

5.4 Discussion and open problems

Using the floating brane ansatz of [31] we have obtained a new, infinite family of solu-

tions to 5-dimensional N = 2 ungauged supergravity coupled to two vector multiplets.

To build the solutions, we start with a LeBrun metric for the 4-dimensional base. These

11Naturally, it is not enough just to look at graphs. It is also helpful to plot Q − |Q|, which quickly
reveals any place Q might go negative. This was checked in this example, and Q ≥ 0 everywhere.
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metrics are Kähler and solve the Euclidean-Einstein-Maxwell equations, and are speci-

fied by two functions that solve the SU(∞) Toda equation and its linearization. The full

supergravity solution is then constructed by solving the “floating brane equations” on

this base space. To these equations we obtain general, explicit solutions which generi-

cally represent a collection of concentric black rings stabilized by their angular momen-

tum and electromagnetic charges. Under appropriate regularity conditions, the black

rings are replaced by topological “bubbles”, and the solutions are smooth and horizon-

free. Imposing causality conditions, we obtain “bubble equations” which dictate the

sizes of topological bubbles in terms of the cohomological fluxes trapped on them.

The 4-dimensional Kähler base space is interesting in its own right, and we spend

some time analyzing its properties. Choosing a subclass of LeBrun metrics with

U(1) × U(1) symmetry, we are able to solve the Toda equation and write down an

explicit metric. Like the Gibbons-Hawking metrics, these metrics have an explicit U(1)

fiber that pinches off at various points along the axis to create a series of homological

2-spheres. However, a new feature of the LeBrun metrics is that homological 2-spheres

can also be formed by the other angular coordinate, and we obtain the specific bound-

ary conditions that allow this to happen. We also find a new feature as we approach the

Gibbons-Hawking points, or “geometric charges.” In the GH metric, the U(1) near these

points fibers over the S2 in the base to give S3/Zq, which makes the local metric an orb-

ifold R4/Zq. In the LeBrun metric, however, one generically has R4/G at these points,

where G ' Zm×Zn acts on the two angular coordinates in R4 ' R2×R2. Finally, and

perhaps most importantly, the explicit LeBrun metrics obtained have a Maxwell field

whose self-dual part Θ(3) is non-trivially trapped on these topological 2-cycles. This

allows rich new phenomena in the full supergravity solution that were not present in the

previous work of Sections 4.3 and 4.4.
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Looking at the full supergravity solution, we see a striking similarity between these

non-supersymmetric solutions and the previous, well-known BPS solutions [25], also

explained in Section 3.1. The regularity conditions take virtually the same form. By

demanding the absence of CTC’s, we also obtain “bubble equations” which have largely

the same features as in the BPS solutions: a 2-cycle is held open by the product of the

three flavors of fluxes trapped on it. However, the non-BPS bubble equations at a given

point involve not only the fluxes on cycles adjacent to that point, but also involve all

the fluxes on the nonadjacent cycles (which is a radical departure from the BPS bubble

equations). This indicates new physics that was not present in the BPS case, involving a

richer variety of E ×B type interactions.

It is known from previous work that these 5-dimensional non-supersymmetric solu-

tions on a Kähler base are actually trivial KK reductions of BPS solutions in the 6-

dimensional IIB frame [70, 71, 72]. This explains some of the features we see, and yet

makes others more mysterious. It seems clear that the 5-dimensional solutions are force-

balanced by a kind of “supersymmetry without supersymmetry” [92], and in fact might

be closer to BPS than the so-called “almost BPS” solutions [76, 77, 78]. For example,

the bubble equations here and in the traditional 5d BPS solutions are both linear in the

inverse distances 1/rij , whereas the “almost BPS” bubble equations are cubic. Still,

there are important differences between these bubble equations and the 5d BPS bubble

equations that must be explained if we are to think of these as “secretly BPS.”

Having found the non-BPS bubble equations, we also find that imposing the asymp-

totics of the near-horizon BMPV metric [89] precludes the existence of any finitely-

sized bubbled solutions. However, one can see the near-horizon BMPV-like metrics as

the result of a limiting process of scaling solutions [123, 102, 79]. Alternatively, one can

lift to the 6d IIB frame where one can allow different asymptotic behavior in one of the

warp factors, and in this case one can find an infinite family of smooth geometries, with
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finitely-sized bubbles held open by their cohomological fluxes, which are asymptotic to

a momentum wave solution on AdS3 × S3.

It would be interesting to explore further the lift to the 6d IIB frame, as was done

with the LeBrun-Burns metrics in Section 4.4. In 6 dimensions, one has the possibility

of regular supertubes, and one might also get a better handle on why the bubble equa-

tions differ between here and the traditional setting (particularly in containing non-local

interactions).

It would also be interesting to look for an asymptotically-flat completion of these

solutions in 5 dimensions by relaxing the simplifying assumptions used in the floating

brane ansatz [31]. This is certainly a non-trivial thing to do, as one will likely be forced

to address the full Einstein equations.

Finally, we also point out that while this work has focused on smooth solutions, one

also has within the same solution set an infinite family of singular solutions, representing

various collections non-supersymmetric, yet force-balanced, spinning 3-charge black

rings.

We have presented in Chapters 4 and 5 a number of results and techniques which we

hope yield insight into supergravity and black hole microstates. Recent progress in the

ability to find supergravity solutions is very exciting and full of possibilities, and it is

clear that there are many avenues waiting to be explored.
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Chapter 6

Superstrata and Supersheets

The material in this chapter is taken from [36], which I authored with collaborators

Orestis Vasilakis and Nick Warner.

6.1 Motivation

In Section 2.3 we discussed black hole constructions in string theory. We looked at the

2-charge black hole in 5 and 6 dimensions and showed that it has zero classical horizon

area. However, with α′ corrections it has a Planck-scale horizon, and its entropy can be

calculated microscopically from its D-brane construction. This entropy can be partially

accounted for by supertubes1, which are objects with 2 electric charges and 1 magnetic

dipole charge that can take an arbitrary shape as a function of 1 variable, while maintain-

ing 8 out of 32 supersymmetries (thus being 1
4
-BPS). One can find supergravity solutions

corresponding to supertubes of arbitrary shape in IIB reduced to 6 dimensions [19, 20],

where such solutions are smooth as shown in Section 3.3.3. It is such geometries that

lie at the heart of Mathur’s original fuzzball proposal for the microstate structure of

2-charge black holes (see, for example, [15, 21]).

We also looked at 3-charge black holes, and showed they have a macroscopic horizon

area that matches their microscopic entropy counting [65], scaling schematically as S ∼

Q3/2. However, while many smooth 3-charge BPS supergravity solutions are known,

we have yet to find the solutions that give enough entropy (see [25, 124, 125, 24] for

1That is, the entropy of supertube states makes up a finite fraction of the black hole entropy.
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some reviews). The entropy of supertubes scales as S ∼ Q; and in some 3-charge

circumstances this entropy can be enhanced to S ∼ Q5/4 [67, 104]. But S ∼ Q3/2

seems unreachable in the supergravity régime without something drastic.

The missing ingredient is of course the superstratum, which is a new class of BPS

object conjectured to give the S ∼ Q3/2 scaling in the 3-charge case [32]. These super-

strata generalize supertubes in several important ways, and could lead to microstate

geometries that provide the dominant semi-classical contribution to the microstate struc-

ture of the 3-charge system. The conjectured superstratum carries three electric charges

and three dipole charges, two of which are independent, and is described by an arbitrary,

(2 + 1)-dimensional world-surface. It is expected to be a regular, smooth solution in IIB

supergravity reduced to six space-time dimensions.

The argument for the existence of the superstratum has its origins in earlier work

[126] that suggested that one should be able to make two independent supertube tran-

sitions to produce new BPS solutions that carry three electric charges, two magnetic

dipole charges and depend upon functions of two variables. It was originally believed

that such objects would be non-geometric and have spatial co-dimension two, but it was

shown in [32] that if one does this in the proper manner for the D1-D5-P system in IIB

supergravity then the result will not only be a geometric BPS object with co-dimension

three but one that is also completely smooth. Indeed, very near the superstratum the

geometry approaches that of the supertube and so the smoothness follows directly from

that of the supertube geometry. Thus the superstratum provides a new microstate geom-

etry of co-dimension three that carries three electric charges, two independent magnetic

dipole charge and depends upon several functions of two variables.

This would all be a mere philosophical exercise if not for some exciting new develop-

ments for BPS solutions in six dimensions. First, the BPS equations for six-dimensional,

minimalN =1 supergravity [70] coupled to an anti-self-dual tensor multiplet [71] were
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shown to be linear,2 as was found in [72] and we have reviewed in Section 3.3.2. This

not only provides a huge simplification in solving the equations of Section 3.3.1 but

it also enables one to use superposition to obtain multi-component solutions and, more

abstractly, analyze the moduli spaces of such solutions. It is not only anticipated that this

will lead to interesting new developments in the study of black-hole microstate geome-

tries but that it will also lead to interesting new results for holography on AdS3 × S3

geometries.

While the arguments given in [32] for the existence of the superstratum are fairly

compelling, it still remains to construct one explicitly and thereby establish its existence

beyond all doubt. The fact that the BPS equations in six dimensions are linear gives

one hope that the explicit supergravity solution may just be within reach (although it

will still be extremely complicated). The construction in [32] has the virtue that it lays

out a sequence of steps, via two supertube transitions, to arrive at the superstratum and

so a possible route to making a superstratum might be to replicate these intermediate

steps in a series of progressively more complicated but exact supergravity solutions.

Indeed some initial progress in this direction was achieved in [72] where the D1-D5-P

system was pushed through the first supertube transition to obtain a new three-charge,

two-dipole charge3 generalized supertube with an arbitrary profile as a function of one

variable. We will refer to such a solution as a superthread.

The next step towards a superstratum, which will be the subject of this chapter,

requires the construction of a multi-superthread solution that could then be smeared

to a continuum and thus obtain a three-charge solution with a two-dimensional spatial

profile that is a function of two variables. This solution will still be singular and, like

2As with the corresponding result in five dimensions [73, 25], the equations that determine the spatial
base geometry are still non-linear.

3The two dipole charges in this solution are related to one another and so, to get to the superstratum,
a further independent dipole charge must be added via a second supertube transition [32].
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the standard supertube, will only become regular after the second supertube transition

in which a Kaluza-Klein monopole is combined with the smearing. This last step is

probably going to be the most difficult and will not be addressed here.

Figure 6.1: Multi-thread solution in which all the threads are parallel. When smeared the sheet
profile is described by a product of functions of one variable: the original thread profile and the
thread densities.

In [72] the step to the multi-superthread was only achieved for the highly restricted

situation in which each thread was given exactly the same profile with a rigid translation

to each distinct center. The smearing of such a multi-threaded solution will thus pro-

duce two-dimensional surface that is determined by a several functions of one variable,

namely the smearing density and the original superthread profile functions. (See Fig.

Figure 6.1). To get a surface that is truly a generic function of two variables one must

find the multi-superthread solution in which the threads at each center have independent

profile functions so that, in the continuum limit, one obtains a one-parameter family of

curves and hence a surface swept out by a generic function of two variables (See Fig.

Figure 6.2). The purpose of this chapter is to find this general a multi–thread solution.

The difficulty that we overcome here is that multiple superthreads with different pro-

files have highly non-trivial shape-shape interactions and we show exactly how these

contribute to the angular momentum and local momentum charge densities. It should,

of course, be stressed that even though our solutions represent only a step towards the
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ultimate goal of the superstratum, the multi-superthread solutions presented here are

completely new BPS solutions that are interesting in their own right.

Figure 6.2: Multi-thread solution in which all the threads have independent profiles. When
smeared the sheet profile is described by generic functions of two variables.

This chapter is organized as follows: In Section 6.2, we briefly summarize the linear

BPS system to be solved, and then we will present our new solutions which general-

ize the parallel superthreads of [72]. In Section 6.3 we will discuss regularity near the

superthreads and conditions for the absence of CTCs, and their relation to the asymp-

totic charges of the superthreads. In Section 6.4 we will discuss supersheets, which

are arbitrary 2-dimensional objects made of many superthreads, and are an important

step on the way to constructing superstrata. Finally in Section 6.5 we will discuss these

results and open problems.

6.2 Solving the BPS equations

In the quest for BPS objects fluctuating as a function of two variables, we must solve the

6d BPS system (3.101)–(3.107) where Z1, Z2,Θ
(1),Θ(2),F , ω are allowed to depend on

the 6th coordinate v. With v-dependence turned on, the equations can get quite tricky.

To tame these difficulties as much as possible, we will choose a simple base space.
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The context for these solutions is the 6d metric (3.66):

ds2
6 = −2H−1 (dv + β)

(
du+ ω +

1

2
F(dv + β)

)
+H ds2

4(B), (6.1)

where the 4d base space B is given by

ds2
4(B) = hij(x

k; v) dxi dxj. (6.2)

We will also find it helpful to define a “restricted” exterior derivative d̃ on B that acts

only on the xi and treats v as a constant:

d̃(ϕI dxI) =

(
∂ϕI
∂xi

)
v

dxi ∧ dxI , (6.3)

where I is a multi-index and ϕI dxI is a generic p-form. Using this, we define a “covari-

ant” exterior derivative D via

Dϕ ≡ d̃ϕ− β ∧ ∂vϕ, (6.4)

such that the total exterior derivative d (on u-independent fields) can be written

dϕ = (dv + β) ∧ ϕ̇+Dϕ, (6.5)

where we have used a dot to denote the v-derivative φ̇ ≡ ∂vφ.

Next we must choose a base space B with an “almost hyper-Kähler” structure (3.74).

We make the simplest possible choice: flat R4. Then the base metric is

ds2
4(B) = hij(x

k; v) dxi dxj ≡ δij dxi dxj. (6.6)
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Then the J (A) are just the usual SU(2) structure on R4, and the 1-form β ≡ 0, which

trivially solves Dβ = ?4Dβ.

With trivial β this means that there will be no Kaluza-Klein monopoles in the solu-

tion. The spatial part of the metric is simply flat R4×S1. In particular, it means that we

will not find regular, smooth solutions, because the KK monopole of β is necessary for

the smoothness of supertubes as explained in Section 3.3.3. However, we will still seek

interesting singular solutions that fluctuate as a function of two variables.

Since the J (A) are v-independent, we see from (3.81) that we also have ψ̂ ≡ 0. Then

the 6d BPS system can be written

Θ(1) − ?
4

Θ(1) = 0, Θ(2) − ?
4

Θ(2) = 0, (6.7)

d̃Θ(1) = −1
2
∂v ?

4
d̃Z2, d̃Θ(2) = −1

2
∂v ?

4
d̃Z1, (6.8)

d̃ ?
4

d̃Z1 = 0, d̃ ?
4

d̃Z2 = 0, (6.9)

together with

?
4

d̃ ?
4

d̃F = 2 ?
4

d̃ ?
4
ω̇ + 2 ∂2

v(Z1Z2)− 2 Ż1Ż2 − 4 ?
4

(
Θ(1) ∧Θ(2)

)
, (6.10)

d̃ω + ?
4

d̃ω = 2Z1Θ(1) + 2Z2Θ(2). (6.11)

The functions Z1, Z2 describe the D1 and D5 electric charges of the solution, whereas

the 2-forms Θ(1),Θ(2) describe the D1 and D5 magnetic dipole charges. The 1-form ω

gives the angular momentum, and the function F gives the momentum charge P.
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6.2.1 The new solutions

The first steps in our new solution directly parallel those of [72]. The harmonic func-

tions, Zi, are sourced on the thread profiles, ~F (p)(v):

Zi = 1 +
n∑
p=1

Qi p

|~x− ~F (p)(v)|2
, (6.12)

where we have required that Zi → 1 at infinity so that the metric is asymptotically

Minkowskian. The Maxwell fields, Θi, that solve (6.7) and (6.8) are simply given by:

Θi = 1
2

(1 + ?
4
) d̃

( n∑
p=1

Qi p Ḟ
(p)
m dxm

|~x− ~F (p)(v)|2

)
. (6.13)

As noted in [72], the magnetic dipoles of this solution may be thought of as being defined

by

~d1 = Q1
~̇F (v), ~d2 = Q2

~̇F (v), (6.14)

and they satisfy the constraint that is familiar from the five-dimensional, generalized

supertube [127, 128, 129]:

Q1

∣∣~d2

∣∣ = Q2

∣∣~d1

∣∣. (6.15)

This means that even though the solution has two dipole charges, only one of them is

independent of the other charges.

To write the solution for the angular momentum vector and the third function, F , it

is useful to define:

~R(p) ≡ ~x− ~F (p)(v), Rp ≡
∣∣~R(p)

∣∣ ≡ ∣∣~x− ~F (p)(v)
∣∣ , (6.16)
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and for each p and q, introduce the anti-self-dual 2-form area element:

A(p,q)
ij ≡ R

(p)
i R

(q)
j −R

(p)
j R

(q)
i − εijk`R

(p)
k R

(q)
` , (6.17)

where ε1234 = 1. The angular momentum vector can be written in three pieces:

ω = ω0 + ω1 + ω2 . (6.18)

where the first two parts are very similar to the those in [72]:

ω0 =
2∑
i=1

n∑
p=1

Qi p Ḟ
(p)
m dxm

|~x− ~F (p)(v)|2
,

ω1 =
1

2

n∑
p,q=1

(Q1 pQ2 q +Q2 pQ1 q)
Ḟ

(p)
m dxm

R2
pR

2
q

. (6.19)

The last part of the solution, ω2, is part of our new result and arises from the interaction

between non-parallel threads:

ω2 =
1

4

n∑
p,q=1
p6=q

(Q1pQ2q +Q2pQ1q)

(
Ḟ

(p)
i − Ḟ

(q)
i

)∣∣~F (p) − ~F (q)
∣∣2×

×
{(

1

R2
p

− 1

R2
q

)
dxi − 2

R2
pR

2
q

A(p,q)
ij dxj

}
. (6.20)

From this one can easily verify that

~∇ · ~ω = −∂v(Z1Z2), (6.21)
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which means that the equation for F simplifies to

∇2F = −2
[
Ż1Ż2 + ?

4
(Θ(1) ∧Θ(2))

]
= −4

n∑
p,q=1

(Q1pQ2q +Q2pQ1q)
1

R4
pR

4
q

×

×
[

(~R(p) · ~R(q))
(
~̇F (p) · ~̇F (q)

)
− ~̇F (p)i ~̇F (q)j A(p,q)

ij

]
.

(6.22)

This can be solved by the somewhat obvious guess:

F = −4− 4
n∑
p=1

Q3 p

R2
p

−1

2

n∑
p,q=1

(Q1pQ2q +Q2pQ1q)

R2
pR

2
q

(
~̇F (p) · ~̇F (q)

)
+

n∑
p,q=1
p6=q

(Q1pQ2q +Q2pQ1q)
1

R2
pR

2
q

Ḟ
(p)
i Ḟ

(q)
j A

(p,q)
ij∣∣~F (p) − ~F (q)
∣∣2 ,

(6.23)

where the first two terms represent particular choices for the harmonic pieces of F .

In normalizing these harmonic pieces we have kept in mind the fact that dimensional

reduction to five space-time dimensions yields F = −4Z3, where Z3 determines the

third electric charge of the solution and is on the same footing (in five dimensions) as

Z1 and Z2. The terms in ω and F that contain A(p,q)
ij express the non-trivial interac-

tion between non-parallel superthreads. These terms vanish for solutions with multiple

threads of parallel profiles, ~F (v), and hence did not appear in [72].

Finally, there are also possible harmonic pieces that can be added to the angular

momentum vector, ω. To define these, introduce the following self-dual harmonic forms

on R4:

Ω
(1)
+ = dx1 ∧ dx2 + dx3 ∧ dx4,

Ω
(2)
+ = dx1 ∧ dx3 − dx2 ∧ dx4,

Ω
(1)
+ = dx1 ∧ dx4 + dx2 ∧ dx3.

(6.24)
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Then the following are zero modes of the equation (6.11) that defines ω:

ωharm =
3∑

a=1

n∑
p=1

1

R4
p

J (a)
p (v) Ω

(a)
+ij R

(p)i dxj, (6.25)

where the J (a)
p (v) are v-dependent angular momentum densities. The one-form in (6.25)

is sourced along the profile of the superthread. Moreover, one can easily verify that:

d̃ ?
4
ωharm = 0, (6.26)

and so this induces no additional contribution to F in (6.10).

6.3 Regularity and the near-thread limit

The six-dimensional metric we are considering is:

ds2
6 = −2(Z1Z2)−1/2 dv

(
du+ ω + 1

2
F dv

)
+ 2(Z1Z2)1/2 |d~x|2. (6.27)

Regularity requires that Z1Z2 > 0 and we will ensure this by taking

Q1p , Q2p ≥ 0 for all p. (6.28)

Moreover, if one sets all displacements to zero except along the circular fiber

parametrized by v then the metric collapses to ds2
6 = −(Z1Z2)−1/2F dv2, which means

that one must require

−F ≥ 0 (6.29)
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everywhere if one is to avoid closed timelike curves. The expression for F in (6.23) is

somewhat complicated but the condition (6.29) can generically be satisfied if one takes

Q3p to be positive and large enough. We will discuss this further below.

The near-thread limit is going to be singular because it is locally a three-charge, two-

dipole charge object. However we must also ensure that there are no closed time-like

curves (CTC’s) near the superthreads. To that end we collect all the divergent and finite

parts of the metric in the limit Rp → 0:

Zi ∼
Qip

R2
p

+ 1 +
∑
q 6=p

Qiq

F 2
pq

+O(Rp), i = 1, 2,

F ∼ −Q1pQ2p

R4
p

∣∣ ~̇F (p)
∣∣2

− 1

R2
p

[
4Q3p +

∑
q 6=p

(Q1pQ2q +Q2pQ1q)

F 2
pq

(
~̇F (p) · ~̇F (q)

)]
+O(1),

ω ∼ −Q1pQ2p

R4
p

(
~̇F (p) · d~x

)
+

1

R3
p

3∑
a=1

J (a)
p (v) Ω

(a)
+ij R̂

(p)i dxj

+
1

R2
p

[
(Q1p +Q2p) +

∑
q 6=p

(Q1pQ2q +Q2pQ1q)

F 2
pq

] (
~̇F (p) · d~x

)
+O

( 1

Rp

)
.

(6.30)

where we have included the harmonic pieces, (6.25), of ω and where

F 2
pq ≡

∣∣~F (p) − ~F (q)
∣∣2, R̂(p) ≡

~R(p)

Rp

. (6.31)

Setting du = 0, one finds, at leading order as Rp → 0,

ds2 ∼
√
Q1pQ2p

R2
p

[∣∣ ~̇F (p)
∣∣2( dv −

~̇F (p) · d~x∣∣ ~̇F (p)
∣∣2
)2

+ dx2
⊥

]
. (6.32)
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where

dx2
⊥ ≡ |d~x|2 −

∣∣ ~̇F (p) · d~x
∣∣2∣∣ ~̇F (p)

∣∣2 , (6.33)

which is the spatial metric in R4 perpendicular to the tangent, ~̇F (p), to the superthread.

The asymptotic metric (6.32) is manifestly positive but not positive-definite: There is a

null direction along the supertube. That is, the leading order terms vanish precisely if

one takes

d~x = ~̇F (p) dλ, dv =
∣∣ ~̇F (p)

∣∣ dλ, (6.34)

for some infinitesimal displacement, dλ.

For this displacement one finds a leading order term coming from the harmonic

pieces of ω:

ds2
λ =

dλ2

Rp

1√
Q1pQ2p

3∑
a=1

J (a)
p (v) Ω

(a)
+ij R̂

(p)i Ḟ (p)j (6.35)

If one looks in the direction R(p)
i ∼ −

∑3
a=1 J

(a)
p (v) Ω

(a)
+ij Ḟ

(p)j one finds that ds2
λ is

negative and proportional to
∑3

a=1 (J
(a)
p (v))2

∣∣ ~̇F (p)
∣∣2. Thus for a superthread with ~̇F (p) 6=

0 one can only avoid CTC’s if one sets

J (a)
p (v) = 0; (6.36)

that is, the harmonic pieces, (6.25), produce CTC’s and so must be discarded. The

complete physical solution is thus given by ω0 + ω1 + ω2 defined in (6.19) and (6.20).

An important consequence of this analysis is that the angular momentum vector is

completely determined by the electric charges and profiles of the configuration. This

is slightly different from the five-dimensional solutions in which one has indepen-

dent choices of harmonic functions in the angular momentum vectors and the angular

momenta are then fixed in terms of the charges and positions of the sources via bubble
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equations, or integrability conditions, that remove CTC’s. For the six-dimensional solu-

tions presented here one fixes charges, positions and profiles and the angular-momentum

vector is adjusted automatically: there are no bubble equations.

Having now killed the leading order of the metric along the displacement (6.34) it

turns out that there is a finite order piece. As Rp → 0 the metric becomes:

ds2
λ =

dλ2√
Q1pQ2p

[
4Q3p −

∣∣ ~̇F (p)
∣∣2(Q1p +Q2p)

−
∑
q 6=p

(Q1pQ2q +Q2pQ1q)

F 2
pq

~̇F (p) ·
(
~̇F (p) − ~̇F (q)

)]
+O(Rp). (6.37)

Again, to avoid closed timelike curves we require that the quantity in brackets be non-

negative, which is equivalent to asking that

−F ≥ Ḟ
(p)
i ωi (6.38)

near each thread. Hence the positivity of ds2
λ in (6.37) places a lower bound on each of

the charges Q3p:

Q3p ≥
1

4

∣∣ ~̇F (p)
∣∣2(Q1p +Q2p) +

1

4

∑
q 6=p

(Q1pQ2q +Q2pQ1q)

F 2
pq

~̇F (p) ·
(
~̇F (p)− ~̇F (q)

)
. (6.39)

The individual bounds for each p depend upon the detailed geometric layout of the

threads but if one sums over all the threads then one obtains a global bound upon the

total charges:
n∑
p=1

Q3p ≥
1

4

n∑
p=1

∣∣ ~̇F (p)
∣∣2(Q1p +Q2p). (6.40)

The origins of these bounds can be understood in terms of “charges dissolved in flux”

[73]. From (6.14) one sees that the right-hand sides of (6.39) and (6.40) can be thought

of as the dipole-dipole interactions that give rise to an effective electric contribution to
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the momentum charge described by F . As we will describe below, the harmonic charge

term, described byQ3p inF , is the charge measured at infinity and so these bounds mean

that the only physically sensible solutions are those in which one does indeed correctly

account, at infinity, for the charge coming dipole-dipole interactions.

6.3.1 Asymptotic charges

The electric charges measured at infinity come from the asymptotic forms of Z1, Z2 and

Z3 ≡ −1
4
F . From the leading (O(R−2)) terms in (6.12) and (6.23) one can easily read

off the D1, D5, and P charges:

D1:
∑
p

Q1p, D5:
∑
p

Q2p P:
∑
p

Q3p. (6.41)

The terms in the tensor, A(p,q)
ij , defined (6.17) do not contribute in F because ~R(p) and

~R(q) become nearly parallel at large distances and so this term vanishes at leading order.

The asymptotic form of ω can be massaged into

ω ∼ 1

R2

∑
p

(
Q1p +Q2p

)
~̇F (p) · d~x+

2

R4

∑
p

(
Q1p +Q2p

)(
~R · ~F (p)

)
~̇F (p) · d~x

+
1

2

1

R4

∑
p,q
p 6=q

Q1pQ2q +Q2pQ1q

F 2
pq

Ri

[
F

(pq)
i

(
~̇F (pq) · d~x

)
− Ḟ (pq)

i

(
~F (pq) · d~x

)
+ εijk`F

(pq)
j Ḟ

(pq)
k dx`

]
+

1

2

1

R4
~R · d~x

∑
p,q
p 6=q

Q1pQ2q +Q2pQ1q

F 2
pq

(
~F (pq) · ~̇F (pq)

)
,

(6.42)

where ~F (pq) ≡ ~F (p) − ~F (q). The first term falls of as R−1 and is perhaps somewhat

unexpected. Mathematically it arises through the contribution of the constant terms

in the Zi to the source for ω in (6.11). These source terms mean that, to leading order,
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(1+?4) d̃ω limits to 2 (Θ1 +Θ2) and thus ω inherits an asymptotic behavior given by the

vector fields in parentheses in (6.13). In five dimensions, (Θ1 + Θ2) falls off faster and

leads to standard expansions for angular momenta in ω. The presence of the O(R−1)

terms in six-dimensions comes because of the v-dependent sources in (6.8). The fact

that this term is a total v-derivative means it will always vanish when we reduce to five

dimensions. This is because, in order to reduce to five dimensions, the sources must be

smeared in a way that kills all v dependence; hence the unusualO(R−1) term disappears

and one recovers the standard behavior of five-dimensional solutions. We will illustrate

this in the next section.

Physically, the O(R−1) terms represent a linear momentum for the configuration.

The somewhat unusual feature of the six-dimensional linear system is that all the equa-

tions are solved on a constant-v slice and that, for a given value of v, the solution is

insensitive to the configuration at other values of v and so, slice-by-slice, the solution

sees the superthread as indistinguishable from the thread that carries a linear momen-

tum. It is only when one smears the solution along a closed profile that the solution

combines different sections of the solution with different orientations so that the leading

momentum behavior cancels and leaves one with a more standard angular momentum.

The second term in (6.42) is purely rotational, and expresses the difference JT ≡

J1 − J2. The third term is the potential of a purely anti-self-dual 2-form, and so it

expresses the sum J1 +J2. The last term is a total derivative, and may be viewed as pure

gauge.
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6.4 Supersheets

6.4.1 General supersheets

It is straightforward to take the continuum limit of the multi-superthread solution. The

set of profiles, ~F (p)(v), are replaced by a function of two variables, ~F (σ, v), the discrete

charges, Qi p, are replaced by density functions, ρi(σ) and the sums are replaced by

integrals. Thus we have

Zi = 1 +

∫ 2π

0

ρi(σ) dσ

|~x− ~F (σ, v)|2
, (6.43)

Θi = 1
2

(1 + ?
4
) d̃

(∫ 2π

0

ρi(σ) ∂v ~F (σ, v) · d~x
|~x− ~F (σ, v)|2

dσ

)
, (6.44)

where we have chosen to normalize the smearing over the interval [0, 2π]. Following

(6.16) and (6.17) we define

~R(σ) ≡ ~x− ~F (σ, v), R(σ) ≡
∣∣~R(σ, v, ~x)

∣∣ , (6.45)

and the tensor

Aij(σ1, σ2) ≡ Ri(σ1)Rj(σ2)−Rj(σ1)Ri(σ2)− εijk`Rk(σ1)R`(σ2) , (6.46)

With these definitions, the rest of the continuum solution can be written

ω0 =
2∑
i=1

∫ 2π

0

ρi(σ) ∂v ~F (σ, v) · d~x
|~x− ~F (σ, v)|2

dσ, (6.47)

ω1 =
1

2

∫ 2π

0

∫ 2π

0

(
ρ1(σ1)ρ2(σ2) + ρ2(σ1)ρ1(σ2)

)
×

× ∂v ~F (σ1, v) · d~x
R(σ1, v, ~x)2R(σ2, v, ~x)2

dσ1dσ2,

(6.48)
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ω2 =
1

4

∫ 2π

0

∫ 2π

0

(
ρ1(σ1)ρ2(σ2) + ρ2(σ1)ρ1(σ2)

)(∂vFi(σ1, v)− ∂vFi(σ2, v)
)∣∣~F (σ1, v)− ~F (σ2, v)

∣∣2 ×

×
{(

1

R(σ1)2
− 1

R(σ2)2

)
dxi − 2

R(σ1)2R(σ2)2
Aij(σ1, σ2) dxj

}
dσ1dσ2,

(6.49)

F = −4− 4

∫ 2π

0

ρ3(σ)

R(σ)2
dσ

−
∫ 2π

0

∫ 2π

0

(ρ1(σ1)ρ2(σ2) + ρ2(σ1)ρ1(σ2))
1

R(σ1)2R(σ2)2
×

×

[
1

2

(
∂v ~F (σ1, v)

)
·
(
∂v ~F (σ2, v)

)
− ∂vFi(σ1, v) ∂vFj(σ2, v) Aij(σ1, σ2)∣∣~F (σ1, v)− ~F (σ2, v)

∣∣2
]
dσ1dσ2.

(6.50)

The integrals for ω2 andF have potential singularities at the coincidence limits, σ1 =

σ2, with a double pole coming from the denominator factor of |~F (σ1, v) − ~F (σ2, v)|2.

However, the tensor Aij has a simple zero as σ1 → σ2 and this skew tensor is further

contracted with factors that have simple zeroes in the coincidence limit. Thus there is

also a double zero in the numerator leading to a finite contribution in the coincidence

limit.

While we have smeared the multi-superthread solution into a single supersheet, it is

also clear that one can smear the multi-superthread solutions into multiple supersheets

and such solutions will be given by straightforward generalizations of (6.43)–(6.50).

Finally, we note that one can, of course, recover the multi-superthread solutions

from this continuum solution by replacing the density functions, ρa, by sums over delta

functions:

ρa(σ) =
N∑
j=1

Qa p δ
(
σ − σ(p)

)
, a = 1, 2, 3, (6.51)
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and where the individual profile functions are specified by the sampled values of

~F (σ, v):

~F (p)(v) = ~F
(
σ(p), v

)
. (6.52)

6.4.2 The five-dimensional generalized supertube as a supersheet

The supersheets described above are sourced by sheet profiles described by arbitrary

functions of two variables and are thus much more general than previously-known solu-

tions. However, it is worthwhile to smear our solutions in a more trivial way in order to

see exactly how five-dimensional solutions emerge. Therefore we give an example that

produces a v-independent sheet profile, allowing us to reduce on the v fiber and obtain

a standard five-dimensional solution.

A useful, non-trivial way to accomplish this is to choose any profile ~F (σ) in R4,

and define ~F (σ, v) = ~F (σ + κv). The result should then be a solution of the standard,

linear BPS system in five dimensions [73, 25]. One should also directly recover physical

constraints like radius relations. For simplicity, we will take the charge densities to be

constant and we will smear a simple helical configuration that will produce a cylinder

along v and a ring in R2 ⊂ R4:

~F (σ, v) =
(

0, 0, a cos(κv + σ), a sin(κv + σ)
)
, (6.53)

where κ and a are constants with κ = 2nπ
L

, for n ∈ Z. Each thread will have a constant

charge distribution, given by

ρi(σ) ≡ Qi

2π
. (6.54)
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To carry out the integrals (6.43) and (6.47)–(6.50), it is easiest to work in polar

coordinates on R2 × R2 given by:

x1 = η cosφ, x2 = η sinφ, x3 = ζ cosψ, x4 = ζ sinψ. (6.55)

Note thatR2 = η2+ζ2. From these coordinates we can easily go to spherical coordinates

by defining η = R cos θ and ζ = R sin θ. Then, for example, we obtainZ1 by integrating

Z1 = 1 +
Q1

2π

∫ 2π

0

dσ
1

η2 + ζ2 + a2 − 2aζ cos(σ + κv)

= 1 +
Q1√

(η2 + ζ2 + a2)2 − 4a2ζ2
.

(6.56)

The rest of the integrals are tedious, but straightforward. The result is

Z1,2 = 1 +
Q1,2

Σ
, F = −4− 4Q3

Σ
− κ2Q1Q2

1

Σ

(
η2 + ζ2

Σ
− 1

)
, (6.57)

ω =
κ

2
(Q1 +Q2)

(
η2 + ζ2 + a2

Σ
− 1

)
dψ + κQ1Q2

1

Σ2

(
η2 dφ+ ζ2 dψ

)
, (6.58)

where we have defined

Σ ≡
√

(η2 + ζ2 + a2)2 − 4a2ζ2 =
√

(R2 + a2)2 − 4a2R2 cos2 θ. (6.59)

At infinity, these behave as

Z1,2 ∼ 1 +
Q1,2

R2
, Z3 = −1

4
F ∼ 1 +

Q3

R2
, (6.60)

ω ∼ κ

R2

[(
(Q1 +Q2) a2 +Q1Q2

)
sin2 θ dψ +Q1Q2 cos2 θ dφ

]
(6.61)

=
1

2R2

[
J1 sin2 θ dψ + J2 cos2 θ dφ

]
, (6.62)
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where the five-dimensional angular momentum vector, k, is related to ω via ω = 2k.

This explains the factor of 2 in (6.62).

This solution corresponds, as expected, to the three-charge, two-dipole-charge gen-

eralized supertube [129], with charges Q1, Q2, Q3, and dipole charges

q1 ≡ −κQ2

2
, q2 ≡ −κQ1

2
, q3 ≡ 0. (6.63)

We define Q̃3 as

Q̃3 ≡ Q3 − 1
4
κ2Q1Q2. (6.64)

Note that Q̃3 is the constituent electric charge while the charge measured at infinity, Q3,

also contains the charge arising from the dipole-dipole interaction.

From (6.62) one can read off the angular momenta and one can also check that the

radius relation:

JT ≡ J1 − J2 = −1
2
κ a2 (Q1 +Q2) = (q1 + q2 + q3) a2 (6.65)

is satisfied automatically.

The condition that one has F ≤ 0 globally implies that Q̃3 ≥ 0 and hence:

Q3 ≥ 1
4
κ2Q1Q2 = q1 q2. (6.66)

This is simply the continuum analog of (6.40).

Near the ring, we find that to avoid CTC’s one must have:

Q1Q2

(
Q̃3 − 1

4
κ2a2(Q1 +Q2)

)
≥ 0, (6.67)
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and hence

Q̃3 ≥ 1
4
κ2a2 (Q1 +Q2) = 1

2
κ JT . (6.68)

This is not quite the same as the continuum limit of (6.39) because the latter bound

was derived assuming that Rq remained finite as Rp → 0 whereas the continuum limit

gets other important terms in from the coincidence limits when two threads approach

one another. This is evident from the fact that the general integrals in Section 6.4 are

finite in the coincidence limit but the continuum limit of (6.39) involves a divergent

integral.

We have thus recovered one of the standard five-dimensional solutions. The process

of obtaining a solution in five dimensions usually involves choosing some harmonic

functions and then adjusting the coefficients so as to avoid closed timelike curves. These

choices are already implicit in our six-dimensional solution and emerge directly in the

smeared solution.

6.5 Discussion and open problems

The BPS equations in six-dimensional, minimal N = 1 supergravity coupled to one

tensor multiplet have been shown to be a linear system [72] once an appropriate base

geometry has been determined. This allows one to use superposition to create a wide

variety of solutions and such solutions could lead to interesting new developments in the

study of black hole microstate geometries, as well has holography on AdS3× S3. It has

also been conjectured [32] that a new class of BPS microstate geometries, superstrata,

may exist. Such objects carry three electric charges and two independent dipole charges,

depend on arbitrary functions of two variables and are expected to be regular solutions

in the IIB duality frame. They are thus a sheetlike, three-charge generalization of the

supertube. The fact that they depend upon functions of two variables suggests that
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they should be able to store large amounts of entropy in their shape modes, indeed

the superstrata microstate geometries are expected to give the dominant semi-classical

contribution to the entropy of the three-charge system.

While compelling arguments have been given for the existence of superstrata [32],

it remains to explicitly construct one. The results we present here are a very significant

step in that direction.

The non-trivial aspect of our new solutions is that they take into account the shape-

shape interactions of the separate superthreads. It was evident in [72] that superthreads

interact non-trivially with one another when the threads have different profiles and so the

completely general multi-superthread was not constructed. Indeed, as depicted in Fig.

Figure 6.1, the multi-centered solutions found in [72] only involves parallel threads,

shifted by rigid translation in R4. Such solutions can only be smeared together into a

sheet depending on arbitrary functions of one variable with one set of functions describ-

ing the thread profile and another defining the smearing densities. To get a solution

that is genuinely a function of two variables by smearing, it is essential to construct the

multi-superthread solution in which all the threads can have independent profiles and

so the smeared threads yields a thread-density profile, ~F (σ, v). This is depicted in Fig.

Figure 6.2.

In this chapter we have analyzed the effect of this shape-shape interaction and pre-

sented the general solution with multiple threads of completely arbitrary and indepen-

dent shapes at each center. These solutions were then smeared to obtain new solutions

sourced by a two-dimensional sheet of completely arbitrary profile, described by arbi-

trary functions of two variables. It is also evident that our results can easily be general-

ized to multi-supersheet solutions.

We also checked our results against a known five-dimensional solution by taking a

simple helical profile and smearing it to a cylindrical sheet and dimensionally reducing.
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We thus recovered the generalized supertube solution with three-charges and two-dipole

charges [127, 128, 129]. We found that CTC conditions, like the radius relation, which

usually require an additional constraint on the five dimensional solution, emerge auto-

matically from our six-dimensional solutions.

The solutions presented in this chapter are completely new geometries and are inter-

esting in their own right as three-charge solutions sourced by arbitrary two-dimensional

surfaces. To obtain the superstratum we will need to do exactly what we have achieved

here but with an additional KKM magnetic charge smeared along the profile thereby

providing the required second independent dipole moment [32].

In the following chapter, we will attempt this in a restricted way such that ∂vβ = 0

in (3.76) and (3.77), thus making these equations a linear system. The more general

case of ∂vβ 6= 0 we will leave to future work.
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Chapter 7

Superstrata with v-indepentent KKM

charge

The material in this chapter is taken from [37], which I authored with my advisor and

collaborator Nick Warner.

7.1 Motivation

In Chapter 6 we discussed supersheets, which are BPS solutions to 6d N = 1 super-

gravity coupled to an anti-self-dual tensor multiplet. Supersheets have three electric

charges and one (independent) magnetic dipole charge, and are capable of taking a 2-

dimensional shape described by arbitrary functions of two variables. As such, they are

an important step along the way to finding a superstratum solution. However, unlike

superstrata, supersheets are lacking a KKM dipole charge that would allow them to be

smooth solutions of supergravity, and so they do not make proper microstate geometries.

In this chapter, we will discuss another angle of attack on the 6d BPS system (3.101)–

(3.107), where we will turn on KKM charge, but will keep it v-independent; the hope

is that one can still have fluctuations in the other charges as functions of two variables,

thus demonstrating the existence of superstrata as supergravity solutions, even if only in

this restricted case.

The general classification of BPS solutions in supergravity is expected to have a

wide range of applications, ranging from holography to the description of black-hole
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microstates. This issue has become particularly significant in six dimensions for sev-

eral reasons. First, it is perhaps the simplest setting of the D1-D5-P system, which

lies at the heart of the stringy description of BPS black holes with macroscopic hori-

zons [65] and the possible construction of microstate geometries (for reviews, see

[15, 25, 125, 24, 21]). Secondly, six-dimensional supergravity underlies the study of

AdS3 × S3 holography (see, for example, [59, 130, 131, 132, 115]). Thirdly, it has

become evident that while five-dimensional microstate geometries can resolve black-

hole singularities and provide rich families of solutions that sample the typical sector

of the black-hole conformal field theory, there are not enough such microstate geome-

tries to sample the states of the black hole with sufficient density so as to yield a semi-

classical description of the thermodynamics [133, 123, 134, 135]. The five-dimensional

microstate geometries are trivial compactifications of IIB supergravity and M-theory and

it is hoped that the incorporation of fluctuations in six, or more, dimensions will greatly

extend the phase-space coverage of the microstate geometries. Finally, there was some-

thing of a breakthrough in the analysis of six-dimensional supergravity in that the BPS

equations of the simplest, but probably most important class of such supergravities are

substantially linear [72]. This raises the possibility of finding new classes and families

of solution and analyzing the phase space structure more completely.

The jump from the five-dimensional to the six-dimensional BPS system is not

expected to be merely incremental in terms of solutions and structure. While five-

dimensions is just enough to resolve black-hole singularities, one of the key messages

in [133, 123, 134] is that this formulation is still too rigid. The index computations

of [134, 135] show that fluctuations around five-dimensional backgrounds involving

a simple “graviton gas” can produce a denser but still inadequate (for semi-classical

thermodynamics) sampling of microstates. One way to evade this conclusion is to put

fluctuations on non-perturbative structures in higher dimensions and for this even the
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humble, fluctuating supertube could, in principle, be sufficient particularly if the entropy

enhancement mechanism [67, 99] can be fully realized. A somewhat more radical pro-

posal was made in [32], where it was proposed that there should be a new kind of soli-

tonic object in six dimensions: the superstratum. This was conjectured to be a smooth,

six-dimensional microstate geometry whose shape and density modes can be general

functions of two variables. These objects also carry three charges and two independent

dipole charges and are thus very natural, fundamental constituents of the three-charge

black hole. The construction of superstrata, even in a restricted form, is one of the major

motivations for this chapter.

The theory that underlies much of the work on five-dimensional microstate geome-

tries is N = 2 supergravity coupled to two vector multiplets in five dimensions. The

three vector fields (including the graviphoton) are sourced by the essential three charges

of the system. This theory, when uplifted becomes minimal supergravity coupled to an

anti-self-dual tensor multiplet in six dimensions. One may also think of this in terms of

a compactification of the D1-D5-P system in IIB supergravity on a four-torus. The BPS

equations of this system were first extracted in [70, 71] but the form seemed hopelessly

non-linear at all levels. In spite of this, one could construct a limited set of non-trivial

solutions using spectral flow techniques [136]. However, it was shown in [72] that while

the requirements on the five-dimensional spatial background are essentially non-linear,

the BPS equations that determine all the charges, two sets of the magnetic fluxes and the

angular momentum are, in fact, linear. This means that there are certainly interesting

new classes of BPS solution within reach and some of these have already been obtained

[72, 36, 34, 137]. These solutions typically start with a simple background geometry

which is then decorated with non-trivial charges, magnetic fluxes and sometimes shape

modes. Such solutions, while interesting, are usually singular.
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Our purpose here is to start with non-trivial geometric backgrounds involving

Kaluza-Klein monopoles (KKM’s), analyze the BPS equations and then find new,

smooth microstate geometries that fluctuate non-trivially as a function of two variables.

In our analysis of the BPS equations, we find features that fit very well with the con-

structive algorithm outlined in [32]: We see that the BPS system can accommodate the

tilting and boosting of the parallel D1 and D5 branes, and the addition of momentum and

angular momentum densities, in such a manner that one induces d1-d5 dipole densities

by reorienting the D1-D5 charge densities and that all of this can be achieved in a way

that makes the densities into functions of two variables. It was further argued in [32] that

such solutions can be made smooth via the addition of an appropriately varying KKM

configuration. This last step generically involves solving non-linear equations and, to

date, the only known non-trivial solutions come from freezing fluctuations of the KKM

configuration1, which reduces the problem to a linear system. We use this strategy here

and freeze the KKM configuration. In this sense, our new solutions may be thought of

as a form of semi-rigid superstrata in that the KKM’s are rigid but the charge densities

fluctuate. As we will see, the fluctuations are limited by the rigidity of the Kaluza-Klein

monopoles and are ultimately sourced by an arbitrary, but finite, number of functions of

one variable. One the other hand, the one variable that appears in each such source can

be a different linear combination of the two variables that parametrize the fluctuations

and so our solutions are indeed doubly-fluctuating.

This chapter is organized as follows: In Section 7.2 we start with some important

conventions that differ between this chapter and the original exposition of 6d BPS solu-

tions in Section 3.3. In Section 7.2.1 we review the various background fields of min-

imal supergravity coupled to an anti-self-dual tensor multiplet in six dimensions, and

1There have been some interesting recent attempts to use string amplitude calculations to determine at
least the perturbative form of generic fluctuating KKM’s [138, 139, 140, 141].
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in Section 7.2.2 we give the BPS equations in the conventions of (7.6). Next in Sec-

tion 7.3 we specialize to a background that involves a collection of KKM’s fibered over

a four-dimensional Gibbons-Hawking (GH) base manifold. This is then recast as a torus

fibration over a flat, R3 base with the circles of the torus fibered non-trivially as a set

of doubled, independent KKM’s. The general, doubly fluctuating solution will depend

non-trivially on both directions on the torus. In Section 7.4 we reduce the BPS equa-

tions on this double KKM fibration and find a large class of fluctuating solutions that

are governed by a single differential operator. This operator is particularly interest-

ing because it is the six-dimensional Laplacian reduced on the “time coordinate.” The

appearance of such an operator is not surprising because BPS solutions necessarily have

some form of time-translation invariance, but the new feature here is that the form of the

six-dimensional supersymmetry means that this invariance is actually a null translation

and the reduction of the Laplacian thus produces a degenerate operator. In Section 7.5

we examine the regularity of such solutions, first by working with a particularly sim-

ple example and then using this to infer the structure of the general solutions. We find

that the rigidity of the doubled set of KKM monopoles restricts the fluctuations to be

sourced by functions of one variable but that the particular variable in the density func-

tions can slice the torus in different ways depending upon the KKM charges. Finally in

Section 7.6 we discuss these results and open problems.

In addition, in Appendix C there are some technical generalizations of our BPS

analysis.

7.2 The BPS solutions in six dimensions

The six-dimensional system we study is N = 1 minimal supergravity coupled to one

anti-self-dual tensor multiplet. This theory, upon trivial dimensional reduction, gives
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rise to N = 2, five-dimensional supergravity coupled to two vector multiplets and thus

contains three independent electromagnetic fields. In the six-dimensional theory, the

graviton multiplet contains a self-dual tensor field and so the entire bosonic sector con-

sists of the graviton, the dilaton and an unconstrained 2-form gauge field with a 3-form

field strength. The BPS equations of this theory were constructed in [70, 71] and in

[72] it was shown that the BPS system could be dramatically simplified and that most

of the equations could be reduced to a linear system. The 6d BPS system is reviewed in

Section 3.3; however, in this chapter we will adopt some slightly different conventions.

Conventions

In this chapter we will adopt some conventions slightly different from the presentation

of the 6d BPS system in Section 3.3. These are explained as follows:

We will proceed as usual with the 6d metric tensor in (−+ + + + +) signature,

ds2
6 = −2H−1 (dv + β)

(
du+ ω +

1

2
F(dv + β)

)
+H ds2

4(B), (7.1)

where everything is independent of the coordinate u. The 4d base space B is given by

ds2
4(B) = hij(x

k; v) dxi dxj. (7.2)

As before, we will find it useful to define a “restricted” exterior derivative d̃ on B that

acts only on the xi and treats v as a constant:

d̃(ϕI dxI) =

(
∂ϕI
∂xi

)
v

dxi ∧ dxI , (7.3)
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where I is a multi-index and ϕI dxI is a generic p-form. Using this, we define a “covari-

ant” exterior derivative D via

Dϕ ≡ d̃ϕ− β ∧ ∂vϕ, (7.4)

such that the total exterior derivative d (on u-independent fields) can be written

dϕ = (dv + β) ∧ ϕ̇+Dϕ, (7.5)

where we have used a dot to denote the v-derivative φ̇ ≡ ∂vφ.

In contrast to the conventions in Section 3.3, we will define

Θ̃(1) = 2Θ(1), Θ̃(2) = 2Θ(2), Θ̃(3) ≡ Dβ,

Z3 = −F , k = ω.
(7.6)

The functions Z1, Z2 remain the same as in Section 3.3. The changes (7.6) merely

represent another way to relate the 6d solutions to 5d solutions. Note however that we

will omit writing the tildes; so the Θ(j) of this chapter correspond to 2Θ(j) in Section 3.3

and Chapter 6.

On the metric (7.1) we can define a null-orthonormal frame

ds2
6 = −2e+ e− + δij e

i ej, (7.7)

by defining

e+ ≡ H−1
(
dv + β

)
, e− ≡ du+ ω +

1

2
FH e+, ei = H1/2 ẽi, (7.8)

193



where ẽi, i ∈ 1, 2, 3, 4 are an orthonormal frame on the 4d base B. In contrast to the

conventions of [70, 37], we will work using the more standard definition (like that of

[142]) of the Hodge dual,

?
n

(ei1 ∧ . . . ∧ eip) =
1

(n− p)!
εi1...ipj1...jn−p (ej1 ∧ . . . ∧ ejn−p). (7.9)

7.2.1 The 6d N =1 background fields

As outlined in Section 3.3, the first step to finding 6d BPS solutions is to find three

“almost hyper-Kähler structures” J (A) on the 4d base B that satisfy the quaternion alge-

bra (3.74). Together with the 1-form β in (7.1), these J (A) must solve the equations

d̃J (A) = ∂v(β ∧ J (A)), (7.10)

Dβ = ?
4
Dβ, or Θ(3) = ?

4
Θ(3). (7.11)

The self-dual condition on Dβ is nonlinear (in fact, it can be thought of as self-dual

Yang-Mills based on the group Diff(S1) of diffeomorphisms of the circle as explained

in Section 3.3), and this is the main source of difficulty in constructing superstratum

solutions. β represents the Kaluza-Klein monopole charge of the solution, and this

KKM charge is necessary for the solution to be smooth (as in Section 3.3.3). Hence a

completely general superstratum solution must find a non-trivial solution to (7.11).

The tensor gauge field and the dilaton

The three-form tensor gauge field satisfies a Bianchi identity and has the equation of

motion:

dG = 0, d
(
e2
√

2φ ?
6
G
)

= 0, (7.12)
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However, supersymmetry imposes strong constraints on the form of G and these con-

straints can be significantly simplified by writing G and its dual in terms of electric and

magnetic parts [72]:

G = d
[
− 1

2
Z−1

1 (du+ k) ∧ (dv + β)
]

+ Ĝ1, (7.13)

e2
√

2φ ?
6
G = d

[
1
2
Z−1

2 (du+ k) ∧ (dv + β)
]

+ Ĝ2, (7.14)

where

Ĝ1 ≡ −1
2
?
4

(DZ2 + Z2 β̇) + 1
2

(dv + β) ∧Θ(1), (7.15)

Ĝ2 ≡ 1
2
?
4

(DZ1 + Z1 β̇)− 1
2

(dv + β) ∧Θ(2). (7.16)

Thus the flux is defined in terms of two electrostatic potentials, Zj , and two two-forms,

Θ(j). Note that we have rescaled Θ(j) → 1
2
Θ(j) relative to the conventions of [72] and

Section 3.3. This new choice of normalization is probably the simplest way to map

the six-dimensional BPS equations onto the standard form of the five-dimensional BPS

equations. The Bianchi identities and Maxwell equations (7.12) require the closure

of the Ĝj , which shows that these quantities do indeed measure a conserved magnetic

charge.

The two-form fluxes are required to be self-dual up to shifts by the two-form, ψ:

?
4

Θ(1) = Θ(1) − 4 e−
√

2φ ψ = Θ(1) − 4Z2 ψ̂, (7.17)

?
4

Θ(2) = Θ(2) − 4 e
√

2φ ψ = Θ(2) − 4Z1 ψ̂, (7.18)

and so if one defines

Θ̂(1) ≡ Θ(1) − 2Z2 ψ̂, Θ̂(2) ≡ Θ(2) − 2Z1 ψ̂, (7.19)
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then these two-forms are self-dual:

Θ̂(j) ≡ ?
4

Θ̂(j), j = 1, 2. (7.20)

Supersymmetry also requires that the electric potentials be related to the warp factor

and dilaton in a simple generalization of the “floating brane ansatz” [31]:

Z1 ≡ H e
√

2φ, Z2 ≡ H e−
√

2φ. (7.21)

The form of G required by supersymmetry makes its self-dual part (in six dimen-

sions) the same as the self-dual part of spin connection. This means that the supersym-

metry variations become trivial and that the supersymmetry parameters are constant in

the frames and coordinates introduced above:

∂Mε = 0. (7.22)

The angular momentum vector and the momentum potential

It is convenient to define:

L ≡ k̇ + 1
2
F β̇ − 1

2
DF = 1

2
DZ3 − 1

2
β̇ Z3 + k̇, (7.23)

where we have introduced the momentum potential,

Z3 ≡ −F , (7.24)

so as to make direct contact with the five-dimensional formulation [74, 75, 25].
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The quantity, L, is gauge invariant under the transformation:

F → F + 2 ∂vf, k → k +Df, (7.25)

for any function, f(v, xm). This transformation is induced by a coordinate change u→

u+ f(v, xm) in the metric (7.1).

7.2.2 The BPS equations

Once one has constructed a background that satisfies the conditions stipulated in Sec-

tion 7.2.1 then the remaining BPS equations are linear. According to the conventions

defined in (7.6), the 6d BPS system of Section 3.3.2 can be written as follows. First, the

electrostatic potentials are related to the magnetic fluxes via:

DΘ(2) − β̇ ∧Θ(2) = −∂v
(
?
4

(DZ1 + Z1β̇)
)
, (7.26)

DΘ(1) − β̇ ∧Θ(1) = −∂v
(
?
4

(DZ2 + Z2β̇)
)
, (7.27)

D ?
4

(
DZ1 + Z1β̇

)
= Θ(2) ∧ Dβ, (7.28)

D ?
4

(
DZ2 + Z2β̇

)
= Θ(1) ∧ Dβ. (7.29)

These constitute linear systems in (Z1,Θ
(2)) and (Z2,Θ

(1)) independently.

The last layer of the BPS equations then relate the angular momentum vector to the

momentum potential, Z3 = −F :

?
4
D ?

4
L − 2〈β̇,L〉B = −1

2

√
Z1Z2 h

ij∂2
v

(√
Z1Z2 hij

)
− 1

4
∂v
(√

Z1Z2 h
ij
)
∂v
(√

Z1Z2 hij
)

− 2Z1Z2

(
∂vφ
)2

+ ?
4

(
1
2
Θ(1) ∧Θ(2) − 2ψ̂ ∧ Dk

)
,

(7.30)
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and finally

Dk + ?
4
Dk = Z1Θ(1) + Z2Θ(2) −F Dβ − 4Z1Z2ψ̂

= Z1

(
Θ(1) − 2Z2 ψ̂

)
+ Z2

(
Θ(2) − 2Z1 ψ̂

)
−F Dβ

= Z1Θ̂(1) + Z2Θ̂(2) + Z3Θ(3).

, (7.31)

Once again, this is a linear system for (Z3, k).

Note that if the background and fields are all v-independent, then these BPS equa-

tions reduce to:

d̃Θ(1) = d̃Θ(1) = 0, Θ(j) = ?
4

Θ(j), (7.32)

∇2
(4)Z1 = ?

4

(
Θ(2) ∧Θ(3)

)
, (7.33)

∇2
(4)Z2 = ?

4

(
Θ(1) ∧Θ(3)

)
, (7.34)

∇2
(4)Z3 = ?

4

(
Θ(1) ∧Θ(2)

)
, (7.35)

and finally

d̃k + ?
4

d̃k =
3∑
I=1

ZIΘ
(I). (7.36)

These are, of course, the canonically normalized five-dimensional BPS equations [74,

75, 25], discussed in Section 3.1.

7.3 BPS solutions with a Gibbons-Hawking base

We now simplify the BPS system by considering background geometries that are com-

pletely independent of v and in which one has a generic, multi centered Gibbons-

Hawking (GH) metric on the base. We will assume that the vector field, β, defining
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the fibration is also v independent. While we will simplify the base and the fiber poten-

tial in this manner, we will allow the fluxes, warp factors and dilaton to be v dependent.

7.3.1 The background geometry

We start by taking

ds2
4 = V −1

(
dψ + A)2 + V d~y · d~y, (7.37)

where, on the flat R3 defined by the coordinates ~y, one has:

∇2V = 0, ~∇× ~A = ~∇V. (7.38)

We take V to have the form

V = h+
N∑
j=1

qj
|~y − ~y(j)|

, (7.39)

for some fixed points, ~y(j) ∈ R3 and some charges, qj ∈ Z.

We use the following set of frames:

ẽ1 = V −1/2 (dψ + A), ẽa+1 = V 1/2 dya, a = 1, 2, 3. (7.40)

and define two associated sets of two-forms:

Ω
(a)
± ≡ ẽ1 ∧ ẽa+1 ± 1

2
εabc ẽ

b+1 ∧ ẽc+1, a = 1, 2, 3. (7.41)

The two-forms Ω
(a)
− are anti-self-dual, harmonic and non-normalizable and they define

the hyper-Kähler structure on the base. We therefore identify the J (A) in (3.74)

and (7.10) with the Ω
(A)
− . These are manifestly v-independent and thus, from (3.81),

we have ψ̂ ≡ 0. Moreover, from (7.11) we see that Θ(3) ≡ Dβ must be harmonic.
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The forms Ω
(a)
+ are self-dual and can be used to construct harmonic fluxes that are

dual to the two-cycles. In particular, we will take

Θ(3) ≡ −
3∑

a=1

(
∂a
(
V −1K3

))
Ω

(a)
+ , (7.42)

where∇2K3 = 0 on R3. The vector potential, β, is then given by:

β ≡ K3

V
(dψ + A) + ~ξ · d~y, (7.43)

where

~∇× ~ξ = −~∇K3. (7.44)

The one-form

α ≡ V (dv + β) = V (dv + ξ) +K3 (dψ + A), (7.45)

appears throughout the metric and flux and will play a significant role in that it has a

manifest symmetry between the v and ψ fibers, and between the flux potential and the

GH potential. This symmetry lies at the heart of the spectral flow transformations [107].

In particular, note that α→ −α under the mapping

V ↔ K3; v → −ψ, ψ → −v; A→ −ξ, ξ → −A. (7.46)

The negative signs are required so as to respect the relations (7.38) and (7.44) between

the harmonic functions and the vector potentials. We will refer to the transformation

(7.46) as spectral inversion.

If one rewrites the solution by making the interchange above, one must also send

u → −u so as to preserve the terms of the form α du in the metric and the electric
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potential terms in the flux. One can then rewrite the entire supersymmetric form in

terms of functions Z̃I , µ̃ and a one form ω̃. A straightforward calculation akin to that of

[107] shows that

Z̃i =
V

K3
Zi, i = 1, 2; Z̃3 =

K3

V
Z3 +

Z1Z2

K3
− 2µ,

k̃ = −k, µ̃ = − V

K3
µ+

Z1Z2V

(K3)2
, ω̃ = −ω. (7.47)

Under this transformation, the magnetic fluxes, Θ(j) are also mapped to Θ̃(j) = −Θ(j)

because of the flip in the sign of α.

The goal is to use this symmetry between two fibers to generate new classes of

solutions and to formulate the theory in such a manner as to make this symmetry more

apparent in BPS conditions.

7.3.2 The simplified BPS equations

With our choice of background geometry, the BPS equations simplify significantly. The

equations for the fluxes and potentials reduce to

DΘ(2) = − ?
4
DŻ1, D ?

4
DZ1 = Θ(2) ∧Θ(3), (7.48)

and

DΘ(1) = − ?
4
DŻ2, D ?

4
DZ2 = Θ(1) ∧Θ(3). (7.49)

The equations for k and Z3 become:

?
4
D ?

4
(DZ3 + 2 k̇) = ?

4

(
Θ(1) ∧Θ(2)

)
− 2

[
Z1∂

2
vZ2 + Z2∂

2
vZ1 + (∂vZ1)(∂vZ2)

]
,

(7.50)
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Dk + ?
4
Dk =

3∑
I=1

ZI Θ(I). (7.51)

7.3.3 The five-dimensional solutions

The “classic” solutions

To motivate the construction of the six-dimensional solutions, it is useful to begin by

recalling the well-known form of the five-dimensional BPS solutions as described in

Section 3.1. These solutions are independent of the GH fiber coordinate, ψ [106, 74, 75,

129, 143].

The fluxes, Θ(j) are harmonic and are given by expressions of the form (7.42):

Θ(J) = −
3∑

a=1

(
∂a
(
V −1KJ

))
Ω

(a)
+ , J = 1, 2, 3, (7.52)

where∇2Kj = 0 on R3.

The potentials, ZI , are given by

ZI =
KJ KK

V
+ LI , I = 1, 2, 3, (7.53)

where {I, J,K} = {1, 2, 3} are all distinct and where ∇2LI = 0 on R3. The angular

momentum vector has the form:

k = µ(dψ + A) + ~ω · d~y, (7.54)

with

µ =
K1K2K3

V 2
+

1

2

3∑
I=1

KI LI
V

+M, (7.55)
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and ∇2M = 0 on R3. The angular momentum on R3 is then given by

~∇× ~ω = V ~∇M −M~∇V +
1

2

3∑
I=1

(KI ~∇LI − LI ~∇KI), (7.56)

and (7.55) guarantees the integrability of this equation for ~ω.

The fact that these solutions are both ψ and v independent means that their form

must be invariant under spectral inversion (7.46). Indeed, the transformation (7.47) can

be rewritten as:

Ṽ =K3, K̃3 = V, K̃1 = L2, K̃2 = L1,

L̃1 =K2, L̃2 = K1, L̃3 = −2M, M̃ = −1
2
L3. (7.57)

More general five-dimensional solutions

The solutions above are independent of both v and ψ and since the most general, five-

dimensional BPS solutions have to satisfy (7.32)–(7.36), it is thus natural to ask about

generalizations that are still independent of v but depend upon ψ.

If the base metric, ds2
4, is smooth and Euclidean, it is easy to see that (7.42) rep-

resents the most general smooth solution to (7.32). Specifically, the equations, (7.32),

imply that the Θ(j) are harmonic and the possible choices for KJ given by:

KJ = kJ0 +
N∑
i=1

kJi
|~y − ~y(i)|

, (7.58)

for some parameters, kJi , form a basis for the harmonic forms. Thus, in five-dimensions,

the Θ(J) are necessarily ψ-independent.
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One can see this more explicitly by taking Θ(j) and subtracting its harmonic part,

Θ(J)
harm to yield Θ′(j) ≡ Θ(j) −Θ(J)

harm. This is necessarily exact and so Θ′(j) ∧Θ′(j)

(no sum on j) is also exact. Hence

0 =

∫
B

Θ′(j) ∧Θ′(j) =

∫
B

Θ′(j) ∧ ?
4

Θ′(j). (7.59)

However, the last integrand is necessarily non-negative and so one must have Θ′(j) ≡ 0.

There is, however, a gap in this argument for general BPS backgrounds: If the base

space is ambipolar [144, 74, 75, 25]. then the metric, ds2
4, is singular and so the Hodge

decomposition theorem no longer applies. It is therefore quite possible that in ambipolar

bases the Maxwell fields, Θ(j), might be able to have a ψ-dependence. This dependence

would, however, have to be sourced in some manner associated with the critical surfaces

where V vanishes. We will, however, not pursue this possibility here.

The simplest way to generate five-dimensional solutions that depend upon ψ was

discussed in [99]. These solutions are important because they represent an infinite fam-

ily of smooth microstate geometries in six-dimensions and thus can be used to generate

smooth microstate geometries in five dimensions by spectral flow [107]. These solutions

start with the fluxes exactly as in (7.52) and (7.58) and then introduce the ψ-dependence

in the next layer of BPS equations by letting the functions, LI , in (7.53) depend upon ψ.

Equations (7.33)–(7.35) then imply that the LI must be harmonic in four dimensions:

∇2
(4)LI = 0. (7.60)

The last BPS equation, (7.36), can now be written as

(µ~DV − V ~Dµ) + ~D× ~ω + V ∂ψ~ω = −V
3∑
I=1

ZI ~∇
(
V −1KI

)
, (7.61)
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where

~D ≡ ~∇− ~A∂ψ. (7.62)

The BPS equation, (7.36), has a gauge invariance: k → k + df and this reduces to:

µ→ µ+ ∂ψf, ~ω → ~ω + ~Df. (7.63)

It is simplest to use a Lorentz gauge-fixing condition, d ?4 k = 0, which reduces to

V 2 ∂ψµ+ ~D · ~ω = 0. (7.64)

The four-dimensional Laplacian can be written:

∇2
(4)F = V −1

[
V 2 ∂2

ψF + ~D · ~DF
]
. (7.65)

Now take the covariant divergence, using ~D, of (7.61) and use the Lorentz gauge choice,

and one obtains:

V
2∇2

(4)µ = ~D ·
(
V

3∑
I=1

ZI ~D
(
V −1KI

))
. (7.66)

Remarkably enough, this equation is still solved by:

µ = V −2K1K2K3 + 1
2

3∑
I=1

V −1KILI +M, (7.67)

where, once again, M is a harmonic function in four dimensions. Finally, we can use

this solution back in (7.61) to simplify the right-hand side to obtain:

~D× ~ω + V ∂ψ~ω = V ~DM −M~DV +
1

2

3∑
I=1

(
KI ~DLI − LI ~DKI

)
. (7.68)
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Once again one sees the emergence of the familiar symplectic form on the right-hand

side of this equation. One can also verify that the covariant divergence (using ~D) gener-

ates an identity that is trivially satisfied as a consequence of (7.38), (7.64), (7.67) and

∇2
(4)LI = ∇2

(4)M = 0. (7.69)

Spectral inversion revisited

One can now use the spectral interchange symmetry generated by (7.46) and realized in

(7.47) create convert the ψ-dependent solutions into new v-dependent solutions of the

BPS equations. In particular, the generalization of (7.47):

K3 Z̃1 = V Z1 = K3K2 + V L1, K3 Z̃2 = V Z2 = K3K1 + V L2, (7.70)

now means that the new solutions have v-dependent fluxes governed by:

K̃1(v, ~y) = L2(ψ, ~y)
∣∣
ψ=−v, K̃2(v, ~y) = L1(ψ, ~y)

∣∣
ψ=−v. (7.71)

These solutions will then obey the more general BPS equations (7.48)–(7.51). It is also

important to note that because (7.46) is simply induced by a coordinate change, the new

solution will also be smooth.

One can now hybridize this observation with the strategy of Section 7.3.3. That

is, one can start by using the new v-dependent fluxes and then, once again, allow the

solutions to develop a ψ-dependence allowing the L functions to depend upon ψ as well

as ~y. One then solves the remaining BPS equations. Rather than pursue this course

here we use this to motivate a significantly more general class of solutions that will be

developed in the next section.
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7.4 Families of doubly-fluctuating solutions

Based on the observations in the previous section, it is relatively easy to formulate an

ansatz that will capture at least all the solutions proposed in Section 7.3.3. We will see

that it captures a far more general class of solutions.

We will keep the geometry exactly as in Section 7.3: A GH base with the six-

dimensional geometry being completely independent of v. The background therefore

has the spectral inversion symmetry (7.46). We also introduce a generalization of the

operator (7.62):

~D ≡ ~∇− ~A∂ψ − ~ξ ∂v, (7.72)

and define the second order operator:

LF ≡ ~D · ~DF + (V ∂ψ −K3 ∂v)
2F. (7.73)

Both of these operators are invariant under (7.46). Also note that

LF = V ?
4
D ?

4
DF, (7.74)

where D is the operator defined in (7.4).

The appearance of the operator (7.73) is very easy to understand because it is essen-

tially the six-dimensional Laplacian for the metric (7.1) acting on u-independent func-

tions. That is, one can easily verify that

∇2
(6)F (v, ψ, ~y) = − 1

H V
LF (v, ψ, ~y). (7.75)
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7.4.1 The first layers of BPS equations

We generalize the expression for fluxes, (7.52), to

Θ(j) = −
3∑

a=1

(
Da

(
V −1Kj

))
Ω

(a)
+ , j = 1, 2, (7.76)

where, in principle, Kj is a function of v, ψ and ~y. We also use, without loss of gener-

ality, the ansatz

Z1 =
K3K2

V
+ L1, Z2 =

K3K1

V
+ L2, (7.77)

where the functions, Lj , are, as yet, general functions of v, ψ and ~y. For completeness,

the Appendix C contains the analysis of the BPS equations for the most general form of

the Θ(j).

If one substitutes this ansatz into the first BPS equations (7.48) and (7.49) one

obtains the following linear equations for Kj and Lj , j = 1, 2:

LKj = LLj = 0, j = 1, 2, (7.78)

∂ψK
1 + ∂vL2 = 0, ∂ψK

2 + ∂vL1 = 0, (7.79)

where L is defined in (7.73).

The general solution to the constraints (7.79) is simply:

Kj = K̂j(v, ~y) + ∂vHj(v, ψ, ~y), j = 1, 2, (7.80)

L1 = L̂1(ψ, ~y)− ∂ψH2(v, ψ, ~y), L2 = L̂2(ψ, ~y)− ∂ψH1(v, ψ, ~y), (7.81)

where

LK̂j = LL̂j = LHj = 0. (7.82)
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Note that the parts of the solution that involve K̂j and L̂j are actually redundant because

they can be absorbed into various zero-mode parts of theHj . We have specifically exhib-

ited K̂j and L̂j here because they represent precisely what would have been generated

by the procedure outlined in Section 7.3.3. This also makes it evident that the functions,

Hj , represent something completely new and much more general. We will discuss this

more below.

7.4.2 The last layer of BPS equations

Without loss of generality, we can, once again, use the ansätze:

Z3 =
K1K2

V
+ L3, k = µ(dψ + A) + ~ω · d~y, (7.83)

with

µ =
K1K2K3

V 2
+

1

2

3∑
I=1

KI LI
V

+M, (7.84)

where L3 and M are general functions that depend upon (v, ψ, ~y).

Equation (7.51) for the angular momentum vector reduces to a straightforward gen-

eralization of (7.68):

~D× ~ω + (V ∂ψ −K3∂v)~ω = V ~DM −M~DV +
1

2

3∑
I=1

(
KI ~DLI − LI ~DKI

)
. (7.85)

To simplify this and (7.50) we need to make a suitable generalization of the gauge

choice (7.64). To express this gauge, it is useful to introduce the spectral inversion of

the function, µ, under the effect of (7.57):

µ̃ ≡ L1 L2 V

(K3)2
+

1

2

(
K1 L1 +K2 L2

K3

)
− V M

K3
− 1

2
L3, (7.86)
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and define

Φ ≡ V 2 ∂ψµ+ (K3)2 ∂vµ̃

= K3∂ψ(K1K2) + V ∂v(L1L2) + 1
2

(V ∂ψ +K3∂v)(K
1L1 +K2L2)

+ (V ∂ψ −K3∂v)(
1
2
K3L3 + VM). (7.87)

The gauge choice that simplifies all the equations is to take

~D · ~ω + Φ = 0, (7.88)

but we will not impose this and we will retain Φ in our equations.

If one uses the equations (7.78) and (7.79) one finds that (7.50) collapses to

LL3 = −2 ∂v
[
~D · ~ω + Φ

]
, (7.89)

while the covariant divergence of (7.85) becomes:

1
2
K3 LL3 + V LM = (V ∂ψ −K3∂v)

[
~D · ~ω + Φ

]
. (7.90)

Combining this with (7.89) yields

LM = ∂ψ
[
~D · ~ω + Φ

]
. (7.91)

Therefore, with the gauge choice (7.88), the functionsKj and Lj are fixed by (7.80),

(7.81) and (7.82) and the remaining parts of the solution are given by (7.83), (7.84) and

(7.85) where L3 and M are general functions of (v, ψ, ~y) satisfying

LL3 = LM = 0. (7.92)
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These conditions then guarantee the integrability of (7.85) for ~ω.

7.4.3 The metric and its regularity

One can write the metric in a more symmetric form that is manifestly invariant under

spectral inversion. First recall that in (7.45) we defined the one form:

α ≡ V (dv + β) = V (dv + ξ) +K3(dψ + A). (7.93)

Now define the functions:

Ĥ ≡
√

(V Z1)(V Z2), Q ≡ Z1Z2Z3V − µ2V 2, (7.94)

and the 1-form

γ ≡ (K3)2 µ̃ (dψ + A)− V 2 µ (dv + ξ). (7.95)

All of these quantities are invariant under the spectral inversion transformation (7.57)

and the quantity Q is simply the E7(7) quartic invariant constructed out of the functions

V,KI , LI and M [25]:

Q =− V 2M2 − 2K1K2K3M −M V
3∑
I=1

KI LI −
1

4

3∑
I=1

(KILI)
2

+ V L1 L2 L3 + (K1K2L1L2 +K1K3L1L3 +K2K3L2L3). (7.96)

The six dimensional metric, (7.1) can now be written as:

ds2
6 = −2Ĥ−1 (du+ ω)α + Ĥ−3

[
Qα2 + γ2

]
+ Ĥ d~y · d~y. (7.97)
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The standard, bubbled microstate geometries [74, 75, 25, 107, 104, 143] (discussed

in Section 3.1) allow singularities at points in the R3 defined by ~y. Indeed, near such

a singular point, P , one has V ∼ qp
rp

while one also requires that the ZI are finite as

rp → 0 and the bubble equations require that µ(rp) = 0. This means that, as rp → 0,

one has

Ĥ,Q, α, γ ∼ O
(
r−1
p

)
. (7.98)

Since supertubes can be mapped onto microstate geometries by spectral flow [107], it

follows that supertube solutions have identical asymptotics to that of (7.98). One can

also check this directly. It then follows that in all such configurations the metric (7.97)

remains smooth (up to orbifold points). The apparent singularity on the R3 base can be

resolved by the standard coordinate change: rp = 1
4
R2.

For supertubes one can also get smooth solutions with slightly more singular behav-

ior than that allowed by (7.98) 2. Indeed, Q and γ can have double poles that cancel in

(7.97) so that the metric remains regular. The simplest, and perhaps only, examples of

this are coordinate transformations of solutions that satisfy (7.98) but in which constants

in F = −Z3 are removed via a re-definition of u. This can, in turn, move singular terms

between the functions that define the solution. To fix this ambiguity we will require that

our asymptotically flat solutions have Z3 → c3 at infinity, where c3 6= 0 is a constant.

Upon completing the square in (7.1) one can then rewrite the six-dimensional metric as:

ds2
6 = −(HZ3)−1(du+ k)2 + Z3H

−1
[
dv + β − Z−1

3 (du+ k)
]2

+H ds2
4(B). (7.99)

Since Z3 and H go to non-zero constants at infinity, this means that in Kaluza-Klein

reduction on the v circle to five dimensions, u becomes the time coordinate. It is in this

description that supertube solutions are most easily related to five-dimensional bubbled

2We are very grateful to Stefano Giusto for pointing this out and helping to clarify this point.
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Figure 7.1: The 5d base of the metric (7.99) has the structure of a T 2 fibered over R3. At ~ai,
the functionK3 is singular, and thus the v fiber pinches off there, leaving the ψ fiber a finite size.
At ~aj , the function V is singular, and this the ψ fiber pinches off, leaving the v fiber a finite size.
If both V,K3 are singular at some ~ak, then some linear combination of ψ, v shrinks, while the
orthogonal linear combination stays finite. The fiber over a curve in the base between ~ai and ~aj
gives a homology 3-sphere ∆ij .

solutions and both sets of solutions obey (7.98). Henceforth, we will assume that our

solutions, including supertubes, obey (7.98).

Finally, it is important to note that near a singular point of the harmonic functions,

the metric on the (v, ψ) torus has a pre-factor of Ĥ−3 ∼ r3
p and, given the asymptotic

behavior in (7.98), this will pinch off the circle defined by rpγ while the circle defined by

rpα will remain finite. For the standard five-dimensional bubbled microstate geometries

this corresponds to pinching off the ψ-circle while the v-circle remains finite and for the

standard supertube [107] the v-circle pinches off and the ψ-circle remains finite. This

fiber structure of the 5d base of (7.99) is illustrated in Figure 7.1.

7.4.4 The physical structure underlying the BPS system

In conjecturing the existence of a superstratum [32], one of the crucial first steps was

to argue that this D1-D5-P system would retain the same supersymmetries if the D1-D5

system were “tilted and boosted” so as to lay it out along an arbitrary closed profile

in (v, ψ, ~y). These configurations were then to be smeared along v so as to make a

supersheet and it was proposed that if this configuration also had a KKM dipole charge
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that was arranged in the proper manner then the whole BPS configuration would remain

smooth.

In the simplest, standard D1-D5-P configuration, the common direction of the D1-

D5 system lies along the circle defined by v while the momentum modes excite oscilla-

tions in the transverse four-manifold described by (ψ, ~y). If one tilts and boosts this con-

figuration in the manner described in [32] then some of the D1 and D5 electric charges

are tilted into d1 and d5 magnetic dipole charges and some of the momentum, P , is

tilted into angular momentum around the profile.

Now recall that the functions Z1 and Z2 encode the charge densities associated with

the D1 and D5 branes respectively and so the pairs, (L1, K
2) and (L2, K

1), encode the

(electric,magnetic) charge densities of the D1 and D5 branes respectively. The new

feature of the solutions presented here are the functions, Hj(v, ψ, ~y), appearing in (7.80)

and (7.81). These functions tie the D1-d1 and D5-d5 charges together in a manner that

reflects precisely the tilting process described in [32] and the fact that this arises directly

from the BPS conditions provides further support for the arguments given in [32]. It

should, of course, be remembered that we have frozen the background geometry so that

it is independent of (v, ψ) and so the shape of the profile that we are trying to generate

does not fluctuate directly. Instead, we are fluctuating the charge densities within the

(v, ψ)-independent profile and it is these densities that are being tilted and boosted. The

effect of these fluctuating densities back-react in the full metric and will thus change the

physical size of the configuration as a function of (v, ψ) and so the shape will indeed

ultimately fluctuate.

The fact that the functions, Hj(v, ψ, ~y), are general solutions of the reduced Lapla-

cian (7.75) is a very natural generalization of the harmonic charge sources that are part of
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the five-dimensional system. Indeed, one should recall that if there is a supersymmetry,

ε, then one can construct the vector3:

T µ ≡ ε̄γµε (7.100)

and this will generically be a time-like, or null Killing vector. In five dimensions this is

time-like and hence the BPS solutions have a time-translation invariance. However, in

six dimensions, T µ is a null vector [70] and this accounts for the u-independence of the

solution. The fact that T µ is null means that the hypersurfaces of constant u are null and

the induced metric on these surfaces is degenerate.

This accounts for the somewhat degenerate form of (7.73): While it involves deriva-

tives with respect to small five spatial variables, (v, ψ, ~y), it is written in a diagonal form

that is only the sum of four squares. This fact will have a significant impact on the space

of solutions. Indeed, one can imagine trying to find the Green functions for L by follow-

ing the approach of [99] and integrating out the time direction in the propagator of the

full Laplacian. In six-dimensions, this will involve integrating out the null coordinate

u in the Green function for the six-dimensional Laplacian. This is not a well-defined

procedure in the six-dimensional theory because the null initial-value problem may not

be well-posed and one will potentially be integrating along singularities corresponding

to propagating data.

7.5 Multi-centered configurations

Multi-centered are those solutions that start by taking a multi-centered geometry in

which V and K3 have the form (7.38) and (7.58). Initially, we will not make any

3The supersymmetry may have internal indices and this expression may involve some contractions
over these indices.
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assumptions about the form of the other functions, Kj, Lj , (j = 1, 2), L3 and M . We

start by analyzing, in detail, one of the simplest, non-trivial microstate geometries: the

two-centered solution and then use this to describe what we believe will be the structure

of a generic multi-centered solution.

7.5.1 The general two-centered configuration and AdS3 × S3

To define the general two-centered solution it is simplest to introduce cylindrical polar

coordinates, (z, ρ, φ), on the R3 base and define

r± ≡
√
ρ2 + (z ∓ a)2. (7.101)

The key geometric elements are then given by:

V =
q+

r+

+
q−
r−
, A =

(
q+

(z − a)

r+

+ q−
(z + a)

r−

)
dφ, (7.102)

K3 =
k+

r+

+
k−
r−
, ξ = −

(
k+

(z − a)

r+

+ k−
(z + a)

r−

)
dφ, (7.103)

The two-centered system is greatly simplified by working with bipolar coordinates:

ρ = a sinh ξ sin θ, z = a cosh ξ cos θ, (7.104)

and then one has:

r± = a (cosh ξ ∓ cos θ). (7.105)

One can then reparametrize the T 2 of (v, ψ) by introducing the angles, χ and η, defined

by:

∂χ = −(q+ + q−) ∂ψ + (k+ + k−) ∂v,

∂η = (q+ − q−) ∂ψ − (k+ − k−) ∂v,
(7.106)
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which is equivalent to

χ =
1

2 ∆

(
(k+ − k−)ψ + (q+ − q−) v

)
,

η =
1

2 ∆

(
(k+ + k−)ψ + (q+ + q−) v

)
,

(7.107)

where ∆ ≡ (q+k− − q−k+).

The operator L then has the relatively simple form:

LF = a−2(sinh2 ξ + sin2 θ)−2

[
1

sinh ξ
∂ξ
(

sinh ξ ∂ξF
)

+
1

sinh2 ξ
(∂η + cosh ξ ∂φ)2F

+
1

sin θ
∂θ
(

sin θ ∂θF
)

+
1

sin2 θ
(∂χ + cos θ ∂φ)2F

]
.

(7.108)

The manifolds, S3 and AdS3, can be thought of as a unit sphere in C2 and as a unit

hyperboloid in C1,1 respectively:

ds2
S3 = |dw1|2 + |dw2|2, |w1|2 + |w2|2 = 1; (7.109)

ds2
AdS3

= |dz1|2 − |dz2|2, |z1|2 − |z2|2 = 1. (7.110)

Parametrizing these surfaces in standard fashion:

w1 = cos
θ

2
ei(χ−φ), w2 = sin

θ

2
ei(χ+φ), (7.111)

z1 = cosh
ξ

2
ei(η−t), z2 = sinh

ξ

2
ei(η+t), (7.112)

leads to the polar forms

ds2
S3 = 1

4

(
dθ2 + sin2 θ dφ2 + (dχ− cos θ dφ)2

)
= 1

4
dθ2 + sin2 θ

2
(dχ+ dφ)2 + cos2 θ

2
(dχ− dφ)2; (7.113)

217



ds2
AdS3

= 1
4

(
dξ2 + sinh2 ξ dη2 − (dt− cosh ξ dη)2

)
= 1

4
dξ2 + sinh2 ξ

2
(dη + dt)2 − cosh2 ξ

2
(dη − dt)2. (7.114)

The Laplacians on these spaces are 4Lj where:

L1 F ≡
1

sinh ξ
∂ξ
(

sinh ξ ∂ξF
)

+
1

sinh2 ξ
(∂η + cosh ξ ∂t)

2F − ∂2
t F, (7.115)

L2 F ≡
1

sin θ
∂θ
(

sin θ ∂θF
)

+
1

sin2 θ
(∂χ + cos θ ∂φ)2F + ∂2

φF. (7.116)

The important point is that the operator, L, that defines the solutions of interest is

simply given by:

L = (L1 + L2)
∣∣
φ=t
. (7.117)

Thus, even though the final six-dimensional metric is not ultimately going to be AdS3×

S3, the differential operator, L, is precisely the Laplacian of AdS3 × S3 acting on u-

independent modes, where u ≡ φ− t.

7.5.2 Fluctuations

Generalities

It is rather straightforward to see that there are no non-singular BPS fluctuations that fall

off suitably rapidly at infinity on AdS3 × S3. Suppose that F (ξ, θ, ξ, η, φ) were such a

fluctuating mode and observe that:

0 = −
∫
AdS3×S3

a2(sinh2 ξ + sin2 θ)2 sinh2 ξ (FL F )

=

∫
AdS3×S3

sin2 θ
[
(sinh ξ ∂ξF )2 + (∂ηF + cosh ξ ∂φF )2

]
+ sinh2 ξ

[
(sin θ ∂θF )2 + (∂χF + cos θ ∂φF )2)

]
. (7.118)
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where we have assumed that F vanishes fast enough so that the boundary terms at infin-

ity that behave as ∼ e2ξF∂ξF can be discarded. All the terms in the integrand are

positive definite and so they must all vanish. This means that F must be constant. Given

the fact that the general operator, L, in (7.73) is the sum of squares, even when V is

ambipolar, one would expect a similar conclusion for a generic, multi-centered solution.

Thus fluctuating modes must either be non-normalizable or must have singularities.

While there might be interesting solutions that involve the former, as we discussed in

Section 7.4.3, earlier work shows there are huge families of smooth solutions in which

the harmonic functions are sourced on surfaces of spatial co-dimension 3. The simplest

of these has singular surfaces that are points in R3 and are swept out by (v, ψ). Thus

we will further specialize our notion of multi-centered solutions to those in which the

harmonic functions, Kj, Lj, L3 and M have singularities of order O(|~y − ~y(i)|−1) at the

points, ~y(i), where V and K3 are similarly singular. However, unlike V and K3, the

functions Kj, Lj, L3 and M will be allowed to depend upon (v, ψ). As noted earlier,

the effect of the singular behavior of the harmonic functions involves pinching off a

direction in the (v, ψ) torus, thereby creating a topological cycle that can then support

non-trivial, smooth cohomological fluxes.

We now examine perhaps the simplest example.

A specific example

We start with the solution in Section 7.5.1 with

q− = k+ = 1, q+ = k− = 0. (7.119)
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The base manifold, B, is then simply flat R4 = C2 and the coordinate change relating

this to the GH form is then

ζ1 =
√
r− cos(1

2
θ−) ei(ψ+φ)/2, ζ2 =

√
r− sin(1

2
θ−) ei(ψ−φ)/2, (7.120)

where (r−, θ−, φ) are polar coordinates with r− defined in (7.101). The Green function

of the Laplacian R4 for a source located at r+ = 0 is simply a constant multiple of Λ

where:

Λ−1 =
∣∣ζ1 −

√
2a
∣∣2 +

∣∣ζ2

∣∣2
=(r− + 2a)− 2

√
2ar− cos(1

2
θ−) cos 1

2
(ψ + φ).

(7.121)

One can then integrate this against any Fourier mode eim(ψ+φ)/2 to get a fluctuating

harmonic source. This is an elementary contour integral and it yields:

F+
m ≡

1

r+

(
cos(1

2
θ)

cosh(1
2
ξ)

)|m|
eim(ψ+φ)/2

=
1

a (cosh ξ − cos θ)

(
cos(1

2
θ)

cosh(1
2
ξ)

)|m|
e−im(χ+η−φ)/2.

(7.122)

where we have written the results in terms of the coordinates (7.104) and the angles

(χ, η) defined in (7.107). By construction, these are harmonic functions on the four-

dimensional base and thus satisfy LF+
m = 0, for all values of m.

One can similarly verify that

F−m ≡
1

r−

(
sin(1

2
θ)

cosh(1
2
ξ)

)|m|
e−im(v+φ)/2

=
1

a (cosh ξ + cos θ)

(
sin(1

2
θ)

cosh(1
2
ξ)

)|m|
e−im(χ−η+φ)/2

(7.123)
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also satisfy LF−m = 0. However, these functions now have explicit mode dependence

on v and thus go beyond the standard harmonic ansätze.

The functions, F±m = 0, have several very important properties. First, they are

smooth except except a O(r−1
± ) singularity as r± → 0. The zero-modes are precisely

F±0 = 1
r±

and, for m 6= 0, one has:

F+
m

∣∣
θ=π

= 0, F−m
∣∣
θ=0

= 0, m 6= 0. (7.124)

Finally, the second expressions in (7.122) and (7.123) show that the F±m , are smooth as

functions on AdS3 × S3, independent of the choice (7.119). One can therefore imme-

diately generalize our discussion by working in AdS3 × S3 and dropping the condition

(7.119) and leaving the parameters q± and k± completely generic. It should be noted

that we have not made a careful discussion of the proper periodicities of the angles, χ

and η and so one might be dealing with an orbifold of AdS3 × S3. We will, however,

continue to impose (7.119) so that we can easily relate our results to earlier work on

bubbled geometries and supertubes.

One can now generate solutions by takingHj , L3 andM to have Fourier expansions:

∞∑
m=−∞

(b+
m F

+
m + b−m F

−
m), (7.125)

where reality requires b±−m = (b±m)∗. The fact that all the functions only have singulari-

ties of order r−1
± means that one can create completely smooth geometries. At r+ = 0,

the function K3 is singular and the v fiber and the φ-circle pinch off. This point corre-

sponds to ξ = 0, θ = 0 and so (7.124) implies that the only non-trivial fluctuations come

from F+
m and so lie along the non-collapsing ψ fiber. The construction of regular solu-

tions exactly follows the discussion of the wiggling supertubes in [99]. As discussed in
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detail in [99], regularity near the supertube will impose constraints on the charge den-

sities in the Hj , L3 and M and there will be one remaining, freely choosable charge

density function, ρ+(ψ), at this point. Similarly, at r− = 0 or to ξ = 0, θ = π, the

function V is singular and the ψ fiber and the φ-circle pinch off. Again, (7.124) implies

that the only non-trivial fluctuations come from F−m and so lie along the non-collapsing

v fiber. The regularity at r− = 0 will be the spectral inversion of the regularity at r+ = 0

and one will be left with another freely choosable charge density function, ρ−(v).

To be more specific, one can find solutions with

Kj = K̂j(v, ~y), Lj = L̂j(ψ, ~y), j = 1, 2; (7.126)

L3 = L̂3(v, ~y), M = M(ψ, ~y), (7.127)

where a dependence on (ψ, ~y) implies an expansion in F+
m alone and a dependence on

(v, ~y) implies an expansion in F−m alone. In principle there are six freely choosable

charge density functions, three at each point: ρ+
J (ψ), ρ−J (v). At r+ = 0 one has θ = 0

and so the Kj and L3 collapse to their zero modes. The analysis of regularity then

exactly follows the analysis of [99], which means that the ρ+
J (ψ) can all be parametrized

in terms of one function, ρ+(ψ). At r− = 0 one has θ = π and so the Lj and M collapse

to their zero modes and analysis of regularity is the spectral inversion of the analysis at

r+ = 0, which means that the ρ−J (v) can all be parametrized in terms of one function,

ρ−(v).

If one removes the condition (7.119), and works with general q±, k±, then the fore-

going discussion goes through as before except that the collapsing circles and density
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functions are parametrized by (φ, χ ± η) and χ ∓ η respectively. Using (7.107), one

obtains

η + χ =
1

∆

(
k+ ψ + q+ v

)
, η − χ =

1

∆

(
k− ψ + q− v

)
, (7.128)

and these define the modes along the circles of finite size at r+ = 0 and r− = 0 respec-

tively. This is, of course, consistent with the observation that the finite circle and its

modes are defined by r±α as in Section 7.4.3.

7.5.3 The general form of these solutions

Perhaps the most important lesson of the last section is that in the multi-centered solu-

tions one can have have special classes of singular sources in the solution and, at these

sources, one circle in the (v, ψ) torus pinches off and the source charge can then be

spread in a general line distribution along the other direction.

This is also evident in the structure of the differential operator, L, defined in (7.73).

The (v, ψ) modes contribute to the following terms to this operator:

(V ∂ψ −K3 ∂v), ( ~A∂ψ + ~ξ ∂v). (7.129)

Suppose that V and K3 have their generic forms (7.39) and (7.58). Then the foregoing

terms will have singularities of the form O(|~y − ~y(j)|−1) except for modes ei(nv+pψ)

where the contributions for the two fibers cancel; that is, when:

p qj − n kj3 = 0. (7.130)

Thus the nature of the differential equation, and its solutions, will be quite different for

generic modes and for special modes satisfying (7.130). This identity implies qj(nv +
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pψ) = n(qjv + kj3ψ) and so these special modes at ~y(j) define the Fourier series of

functions of one variable that depend upon σj ≡ (qjv+ kj3ψ). Now recall that the circle

that remains of finite size is defined by rj α→ qj dv + kj3 dψ = dσj .

The modes satisfying this relationship lie along the circle that remains large at ~y(j)

and a linear charge distribution in these Fourier modes will only give rise to the required

O(|~y − ~y(j)|−1) singularity in the solutions to LF = 0. This identity implies qj(nv +

pψ) = n(qjv + kj3ψ) and so this means that the modes at ~y(j) must depend upon σj ≡

(qjv+ kj3ψ). Thus in a general solution we expect to be able to introduce line sources at

every point, ~y(j), and the source densities will be functions of one variable, σj .

We therefore expect that a generic fluctuating BPS solution based upon the ansatz

of Section 7.3.1 can depend in a highly non-trivial manner on both variables v and ψ,

however this dependence is generated by source functions of one variable located at the

points ~y(j). The modes introduced at ~y(j) depend upon the KKM and GH charges at

that point and so by varying these charges between points one can get broad classes of

fluctuations.

7.6 Discussion and open problems

We have analyzed the BPS equations of minimal six-dimensional supergravity coupled

to one anti-self-dual tensor multiplet. In particular, we have focussed upon a simple class

of five-dimensional spatial backgrounds that may be thought of as T 2 fibration over a

flat R3 base. This fibration is non-trivial because the fibration of the circles involves

two independent sets of KKM’s. The generic BPS configuration we considered could

fluctuate with densities that depend freely on both directions of the torus, T 2. However,

we found that requiring smooth configurations restricts these densities to functions of

one variable, albeit a different torus circle depending on each pair of KKM charges.
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Thus, by choosing different combinations of KKM charges one can obtain rich families

of doubly fluctuating microstate geometries that depend non-trivially on all directions

within the T 2.

It was conjectured that the general superstratum [32] will be a smooth solution of the

supergravity theory studied here and yet has shape and density modes that are general

functions of two variables. Our analysis here lends support to the construction outlined

in [32]. In particular, the first step of this construction involves tilting and boosting

the D1-D5-P system to generate d1-d5 dipole moments and angular momentum along

a new profile. We showed here that the six-dimensional BPS equations admit solutions

that precisely represent this tilting and boosting procedure.

The next and most difficult step in the construction of a generic superstratum is to

add KKM’s along the new profile so as to desingularize the tilted and boosted D1-D5-P

system. Here we have managed to realize this is a limited manner: Our solutions may

be thought of as semi-rigid superstrata in that they are not sourced by generic functions

of two variables. This seems to be a direct result of the rigidity of our array of Kaluza-

Klein monopoles: regularity at each KKM selects the direction of the charge density

dependence within the T 2. If the KKM charge configuration could be made to vary non-

trivially as a function of some combination of the T 2 fibers, v and ψ, then the smooth

configurations might indeed involve density functions that are generic functions of two

variables. This will, however, involve solving the non-linear system (7.10) and (7.11)

for a general vector field, β. While this is challenging, it may not be impossibly difficult

because it is a form of self-dual Yang Mills equation, as pointed out in Section 3.3.

Most of the focus of the latter part of this chapter has been upon microstate geome-

tries and smooth solutions. One should not forget that there are very interesting singular

solutions, like black holes and black rings. Our analysis of the BPS equations will cer-

tainly provide interesting new families of such solutions in which there are fluctuations
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along the T 2. More generally, the ultimate simplicity of the BPS system based on the

T 2 fibration suggests that it might be used as more general “floating-brane ansatz” as in

[31]. This might lead to six-dimensional generalizations of the whole class of almost-

BPS and non-BPS configurations.
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Chapter 8

Conclusions

It has been a long-standing question whether string theory, being a quantum theory of

gravity, can explain the puzzles of the information paradox discovered by Bekenstein

and Hawking [9, 10]. By examining the microscopic dynamics of the D-branes used to

construct black holes, it was shown that the classical Bekenstein entropy can be repro-

duced by the Cardy formula for the entropy of the CFT on the D-branes [65, 64]. This

tantalizing discovery shows that a string-theoretical explanation of the paradox is prob-

ably possible.

An important development in this story is the “fuzzball proposal” of Mathur [15],

who argues that string theory must make O(1) corrections at the horizon scale of black

holes in order for information to be extracted from them [12]. Therefore, we must

conclude that the horizon and the interior of a black hole are a classical fiction—even

though the curvature at the horizon might be arbitrary small, string theory must some-

how be sensitive to it. A full, stringy black hole must be some astronomical-scale ball

of “fuzz”, which has a complicated, but unitary, dynamics, and re-radiates out all the

information that falls in.

It is natural to ask whether any aspect of these “fuzzballs” can be seen in the super-

gravity limit of string theory. Are there classical solutions that represent black hole

microstates? Such solutions need to have asymptotic charges like a black hole, but in

the center they must remain smooth and free of horizons. Furthermore, one must have

a vast multiplicity of them—eS different states for the entropy S—to correspond to a
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given set of external charges. In 4 dimensions there are black hole uniqueness theo-

rems that prevent this; however, in higher dimensions one has many well-known infinite

families of solutions (see [25, 145] for reviews).

An important class of solutions are supertubes, which are BPS objects with 2 electric

charges and 1 magnetic dipole charge [17, 18], whose shape modes can fluctuate as an

arbitrary function of one variable while retaining supersymmetry. Supertubes are found

to be smooth in IIB supergravity reduced to 6 dimensions [19, 20, 18], and as microstate

geometries they are found to account for a finite fraction1 of the entropy of the 2-charge

BPS black hole [15, 21, 22, 23, 24].

Classically, however, the 2-charge black hole in 5 or 6 dimensions has a microscopic

horizon, so it would be much more interesting to find the supergravity microstates of the

3-charge black hole. In addition, since real astrophysical black holes are quite far from

being BPS, it would be interesting to understand non-BPS microstates.

Non-BPS microstates

In this thesis, we set out to quest after both of these prizes. First, we look at non-BPS

solutions in 5 dimensions. For these we employ the “floating brane ansatz” of [31]. This

gives a method for finding extremal, yet non-BPS, solutions of 5d N = 2 supergravity

coupled to two vector multiplets. It involves first finding an Einstein-Maxwell base

space, and then solving a linear system of equations on top of it.

For our base space we use the LeBrun family of metrics, which are Kähler and also

solve the Euclidean-Einstein-Maxwell equations [85, 86]. These metrics are defined

by two functions which solve the SU(∞) Toda equation and its linearization. The

nonlinear Toda equation is notoriously hard, so for our first family of solutions, we

1That is, the entropy of supertubes scales as
√
Q1Q5, just as the entropy of a 2-charge black hole.
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choose an extremely simple (nearly trivial) solution of it. This results in the LeBrun-

Burns class of metrics, which are described by a U(1) fiber over hyperbolic space H3

(in contrast to Gibbons-Hawking metrics which are a U(1) fiber over R3).

Based on the LeBrun-Burns metrics, we find an infinite family of supergravity solu-

tions in Chapter 4, and we analyze their properties. We find that it is possible to have

smooth, horizon-free solutions. However, due to the simplistic choice of Toda solution,

we find that the “bubble equations”, which should constrain the sizes of topological 2-

cycles, are trivial. This is due to one of the fluxes (defined by the Toda solution) being

topologically trivial. We also find that one cannot have asymptotically-flat supergrav-

ity solutions in the LeBrun class, but instead we find solutions asymptotic to warped,

rotating AdS2 × S3.

Next we discuss how our LeBrun-Burns solutions can be lifted into 6d supergravity,

where they turn out to be BPS! This was at first a surprising fact, since the solutions

are non-BPS in 5 dimensions. However, the lift to 6d is not trivial; it involves defin-

ing a set of rotating complex structures that depend on the new 6th coordinate (which

parametrizes a U(1) fiber). In turn this means that the 6d Killing spinor depends on

this fiber coordinate. Looking at this process in reverse, since the supersymmetry in 6d

depends on the fiber coordinate, when we do a trivial KK reduction to 5 dimensions, we

kill the supersymmetry. This provides a realization of the Scherk-Schwarz mechanism

[90, 91], or also “supersymmetry without supersymmetry” [92].

In Chapter 5, we improve upon these results by generalizing to all LeBrun metrics

with an extra axial symmetry (hence U(1) × U(1) symmetric). In this case, the Toda

equation reduces to a PDE in two independent variables, and there is a method to map

it onto the (linear) Laplace equation in 3 dimensions, also with axial symmetry [119,

120, 87, 88]. Employing this method, we find the family of all axisymmetric LeBrun

metrics that have the type of boundary conditions we wish to consider. We discuss all
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sorts of interesting new features in these metrics, such as the appearance of homological

2-cycles that are not swept out by the fiber coordinate. In particular, the self-dual flux

of these metrics is non-trivial on the homological 2-cycles, so we are able to derive

non-trivial bubble equations. This provides a satisfying picture of non-BPS microstate

geometries that is very analogous to the BPS story in [25].

Toward superstrata

While the 5d BPS story in [25] is fascinating for its ability to build a wide variety of

“bubbling” solutions via linear superposition, these solutions are far too restrictive to get

enough microstates to account for the entropy of a 3-charge BPS black hole. A slightly

more general idea is the supertube, which depends upon an arbitrary function of one

variable, and hence has a (classically) infinite-dimensional moduli space. However, as

we mentioned above, supertubes turn out to give the correct microstate counting for the

two charge system, whose entropy scales as S ∼ Q. This will fall short of the entropy

needed in the 3-charge system, which scales as S ∼ Q3/2. In some cases, the entropy

of supertubes can be enhanced to S ∼ Q5/4 [67, 104], but for a full understanding of

3-charge black holes, one needs something more.

The superstratum is a prime candidate for solving this puzzle. Superstrata are BPS

objects conjectured to exist [32, 126], which have 3 electric charges and 2 magnetic

dipole charges, and have shape modes which can fluctuate as functions of two variables

while maintaining supersymmetry. This doubly infinite set of modes is expected to give

the S ∼ Q3/2 entropy scaling needed in the 3-charge case. Furthermore, superstrata are

expected to be regular supergravity solutions in IIB reduced to 6 dimensions, in much

the same way that supertubes are. It has even been shown that the BPS equations in 6

dimensions can be reduced to a linear system [70, 71, 72], once the conditions defining a

4d base space have been satisfied. The main difficulty is that the conditions defining the

230



4d base are nonlinear. These same conditions define the Kaluza-Klein monopole charge

of the solution, which is necessary for the solution to be smooth, so this is a major hurdle

to be overcome.

To attack this problem, we have proceeded in two steps. First, in Chapter 6, we

turned off the KKM charge and focused on getting solutions which allowed for shape

modes given by arbitrary functions of two variables. We obtained solutions consist-

ing of several superthreads, which are 1-dimensional, singular objects; and by weaving

together several superthreads of varying shape, one can obtain supersheets, which have

an arbitrary 2-dimensional shape. Because they lack KKM charge, supersheets are sin-

gular solutions. However, they do represent very interesting supergravity solutions due

to their arbitrary shape modes depending on 2 variables.

The next step, presented in Chapter 7, is to turn on KKM charge, but let it be inde-

pendent of the fiber coordinates. This allows one to determine the base space easily (in

our case, we choose it to be Gibbons-Hawking). Then hopefully it will be possible to

find solutions on top of this base space that do fluctuate as functions of two variables.

We do not quite accomplish this, although we do get some rather interesting solutions.

We find that the 5d spatial slices of the solution can be given the structure of a T 2 fibered

over R3, and then the solution describes various points in the R3 where some circle in

the T 2 pinches off as a KK monopole. Where one circle pinches off, its dual circle in

the T 2 stays a finite size, and we can put fluctuations on this circle. Therefore solutions

will contain many arbitrary functions of one variable, but at each (smooth) source point,

one can choose how this one variable is oriented within the T 2 fiber. One can think of

these solutions as containing many supertubes of two different “flavors”, and their linear

combinations, each coming with an arbitrary function of one variable.
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Outlook and future prospects

We have found many supergravity solutions that are interesting both in their own right,

and as pieces of the information-paradox puzzle. We have pushed into the realm of non-

BPS solutions, which should point the way toward understanding non-supersymmetric

black holes. And we have made great progress on the quest for the superstratum, which

may be the dominant source of entropy in the classical régime of the 3-charge black

hole. There remain many unanswered questions to address in future work:

First, in the process of finding solutions on the LeBrun class of base metrics, we

showed that such solutions can never be asymptotically flat. The reason is that the

fluxes acquire an anti-self-dual part proportional to the Kähler form on the base, which

is non-normalizable. This non-vanishing part of the fluxes sources energy-momentum at

infinity and prevents asymptotic flatness. It would be very interesting in future research

to find a way to obtain asymptotically-flat solutions. This would truly complete the

analogy to the 5d BPS solutions in [25] and would allow for some useful comparisons.

More generally, one would like to know about non-extremal microstates, and this

problem is very hard. Only isolated examples exist [26, 27, 28, 29, 30], and it is not clear

how to proceed. Non-extremal solutions will certainly not be captured by the floating

brane ansatz [31], since extremality is what provided the very notion of “floating”.

Regarding superstrata, the future direction of work is clear: a proper, smooth super-

stratum fluctuating as a function of two variables remains to be constructed. An inte-

gral part of this construction will be to find some non-trivial solution to the nonlinear

equations that define the KKM charge on the 4-dimensional base. The full problem,

including the fluctuations one wants to find, is “cohomogeneity five”, and quite diffi-

cult. Perturbative approaches have been tried [141, 146], and this tactic may be enough

to prove existence. But it would be more satisfying to find a full solution, and perhaps

there is a way to do this.
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Appendix A

Details of the LeBrun-Burns solutions

A.1 Gauge invariance

The general solutions on a LeBrun-Burns base discussed in Section 4.3.2 have a “gauge

invariance” similar to the one present in multi-centered BPS solutions with a GH base

(see equation (94) in [25])). It is easy to check that the following transformation leaves

(4.88) and (4.89) invariant

K(1) → K(1) + γ1V, K(2) → K(2) + γ2V, (A.1)

L1 → L1 − γ2, L2 → L2 − γ1, (A.2)

L3 → L3 − γ1ζ
2K(2) − γ2ζ

2K(1) − γ1γ2ζ
2V, (A.3)

M →M + 1
2
γ1ζ

2L1 + 1
2
γ2ζ

2L2 − 1
2
γ1γ2ζ

2, (A.4)

One can also show that the equations for the one-form ω, (4.90)–(4.92), are invariant,

therefore the transformation above is a symmetry of the full solution.
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A.2 Causality

A supergravity background is causal only if there are no CTCs and Dirac-Misner

strings. To study the constraints imposed by these conditions one should study the

five-dimensional metric at a constant time slice:

ds2 = Q
(

dτ + A− µV 2

Q
ω

)2

+W 2V

(
η2dφ2 − ζ2

Q
ω2

)
+W 2V (dη2 + dζ2), (A.5)

where

Q ≡ W 6ζ2V − µ2V 2, W 2 ≡ (Z1Z2Z3)1/3. (A.6)

For absence of CTC’s we need to impose the following conditions

Q ≥ 0, W 2V ≥ 0, Z−1
I W 2 ≥ 0, I = 1, 2, 3. (A.7)

The last inequality comes from imposing positive definite metric in the six internal direc-

tions along T 6 upon uplift of our solutions to eleven-dimensional supergavity. The

expression for Q resembles quite closely the one for solutions with a GH base (see

equation (102) in [25])

Q = −M2V 2 + 2Mζ2K(1)K(2) +MV
(
ζ2K(1)L1 + ζ2K(2)L2 + L3

)
− 1

4

(
ζ2K(1)L1 + ζ2K(2)L2 + L3

)2
+ ζ2V L1L2L3

+
(
ζ4K(1)L1K

(2)L2 + L3ζ
2K(1)L1 + L3ζ

2K(2)L2

)
(A.8)

There is also the possibility of having Dirac-Misner strings in ω. To ensure that this

does not happen one has to require that ωφ vanishes for η = 0.
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A.3 Useful identities

Here we collect some identities used in Section 4.3.4. We used the following identities

to solve the equations for K(a) and M

L1

(
1

ζ2

)
=

4

ζ4
, (A.9)

L1

(
−1 +Gi

ζ2

)
=

2

ζ
∂ζ

(
1 +Gi

ζ2

)
, (A.10)

L1

(
−(1 +Gi)(1 +Gj)

ζ2
+ 4ρ2HiHj

)
=

2

ζ
∂ζ

(
(1 +Gi)(1 +Gj)

ζ2

)
. (A.11)

The following identities are useful when one solves the equation for L3

L2

(
1

ζ2

)
=

8

ζ4
, L2

(
−1 +Gi

ζ2

)
=

4

ζ
∂ζ

(
1 +Gi

ζ2

)
, L2 (−Hi) =

2

ζ
∂ζHi,

(A.12)

L2

(
−(1 +Gi)(1 +Gj)

ζ2
+ 4ρ2HiHj

)
=

4

ζ
∂ζ

(
(1 +Gi)(1 +Gj)

ζ2

)
− 8

ζ
∂ζ(ρ

2HiHj),

L2

(
− 1

c2
i − c2

j

Hj −Hi

Hi

)
=

2

ζ
(1 +Gi)∂ζHj, i 6= j (A.13)

L2

(
−(ρ2 + c2

i − 2ζ2)H2
i

)
=

2

ζ
(1 +Gi)∂ζHi,

L2

(
−(1 +Gi)(1 +Gj)(1 +Gk)

ζ2
+ 4ρ2(3ρ2 − 4ζ2 + c2

i + c2
j + c2

k)HiHjHk

)
=

4

ζ
∂ζ

(
(1 +Gi)(1 +Gj)(1 +Gk)

ζ2

)
− 8

ζ

[
(1 +Gi)∂ζ(ρ

2HjHk)

+ (1 +Gj)∂ζ(ρ
2HkHi) + (1 +Gk)∂ζ(ρ

2HiHj)
]
. (A.14)
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There are similar identities involving Di, Hi and Gi that we have used to solve the

equation for ωφ, however they are pretty lengthy and we refrain from presenting them

explicitly.

A.4 Black ring coordinates

To facilitate comparison of our solutions with the more standard black-ring and super-

tube solutions, it is useful to recall the canonical separable bipolar coordinates on R4,

[147] (we set a = b = 0 below):

x̃ ≡ −(G+ 1− 2c2H) = − x2 + y2 + ζ2 − c2√
((ζ − c)2 + x2 + y2)((ζ + c)2 + x2 + y2)

, (A.15)

ỹ ≡ −(G+ 1) = − x2 + y2 + ζ2 + c2√
((ζ − c)2 + x2 + y2)((ζ + c)2 + x2 + y2)

, (A.16)

In these coordinates the flat metric on R4 takes the form:

ds2
R4 =

R2

(x̃− ỹ)2

(
dỹ2

ỹ2 − 1
+ (ỹ2 − 1) dτ 2 +

dx̃2

1− x̃2
+ (1− x̃2) dφ2

)
. (A.17)

where R = c. In particular, note that the canonical coordinates, x̃ and ỹ, are simply

related to the Green functions that we have been using and thus the solutions of Sec-

tions 4.3.3 and 4.3.4 can easily be expressed as rational functions of x̃ and ỹ.
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Appendix B

Additional details for axisymmetric

LeBrun solutions

B.1 Relation of LeBrun to Gibbons-Hawking metrics

The LeBrun metric (4.7) is the most general scalar-flat Kähler metric with a U(1) isom-

etry (generated by ∂τ ). As discussed in Section 4.2.2, they are also Euclidean-Einstein-

Maxwell solutions, with Ricci tensor

Rµν(g) =
1

2

(
FµρFνρ −

1

4
gµνFρσFρσ

)
, (B.1)

where the Maxwell field F ≡ Θ(3) − ω(3)
− has self-dual and anti-self-dual parts

Θ(3) =
1

2
(dτ + A) ∧ d

uz
w

+
1

2
w ?

3
d
uz
w
, ω

(3)
− = J. (B.2)

In the case that uz/w ≡ α for some constant α, one has that F is purely anti-self-dual,

and hence Rµν = 0. Then the LeBrun metric is actually hyper-Kähler (although not

Gibbons-Hawking, because the U(1) isometry is not tri-holomorphic in general). One

has in this case

w =
1

α
uz, A =

1

α
(uy dx− ux dy). (B.3)
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One can then give the hyper-Kähler structure explicitly in terms of the basic anti-

self-dual 2-forms,

Ω
(1)
− = e1 ∧ e2 − e3 ∧ e4 = eu/2

[
(dτ + A) ∧ dx− w dy ∧ dz

]
, (B.4)

Ω
(2)
− = e1 ∧ e3 − e4 ∧ e1 = eu/2

[
(dτ + A) ∧ dy − w dz ∧ dx

]
, (B.5)

Ω
(3)
− = e1 ∧ e4 − e2 ∧ e3 = (dτ + A) ∧ dz − weu dx ∧ dy, (B.6)

which satisfy

dΩ
(1)
− =

1

2
du ∧ Ω

(1)
− , dΩ

(2)
− =

1

2
du ∧ Ω

(2)
− , dΩ

(3)
− = 0. (B.7)

The Kähler 2-forms J (A) are then given by

J (1) = cos
ατ

2
Ω

(1)
− − sin

ατ

2
Ω

(2)
− , (B.8)

J (2) = sin
ατ

2
Ω

(1)
− + cos

ατ

2
Ω

(2)
− , (B.9)

J (3) = Ω
(3)
− . (B.10)

These satisfy dJ (A) = 0 and the quaternion algebra (3.74) according to the prescription

(3.75) in Section 3.3.

B.1.1 The U(1)× U(1)-invariant case

If a LeBrun metric meets the hyper-Kähler conditions (B.3) and has two commuting

U(1) isometries (given by ∂τ , ∂φ), then some linear combination of these U(1)’s is tri-

holomorphic, and the metric is actually Gibbons-Hawking written in some alternative

coordinates. In this section we show this explicitly.
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TransformingA in (B.3) to cylindrical coordinates r, φ yieldsA = − 1
α
rur dφ. How-

ever, we will find it convenient to introduce a gauge parameter λ and write (B.3) in the

form

w =
1

α
uz, A =

1

α

[
2λ− (2 + rur)

]
dφ. (B.11)

The reasons for this are twofold. First is that the combination 2 + rur is particularly

simple after the Bäcklund transformation (5.9):

2 + rur =
2Vρη

ρ(V 2
ρη + V 2

ηη)
. (B.12)

Second is that the gauge parameter λ (with conventional factor of 2) will be convenient

in matching up to the near-singularity limit of the LeBrun metrics in (5.37).

With these conventions and in r, φ coordinates, it is simplest to write the expressions

for the J (A) in full:

J (1) = eu/2
{

(dτ + A) ∧
[

cos

(
ατ

2
+ λφ

)
dr − r sin

(
ατ

2
+ λφ

)
dφ

]
+ w dz ∧

[
sin

(
ατ

2
+ λφ

)
dr + r cos

(
ατ

2
+ λφ

)
dφ

]} (B.13)

J (2) = eu/2
{

(dτ + A) ∧
[

sin

(
ατ

2
+ λφ

)
dr + r cos

(
ατ

2
+ λφ

)
dφ

]
+ w dz ∧

[
− cos

(
ατ

2
+ λφ

)
dr + r sin

(
ατ

2
+ λφ

)
dφ

]} (B.14)

J (3) = (dτ + A) ∧ dz − euw r dr ∧ dφ. (B.15)

It is then straightforward to show that the particular linear combination

Y ≡ −λ ∂τ +
α

2
∂φ (B.16)
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is the tri-holomorphic Killing vector:

LY J (A) = d ιY J
(A) = 0, for J (A) = J (1), J (2), J (3). (B.17)

Therefore an axisymmetric LeBrun metric satisfying (B.11) can be re-written in

Gibbons-Hawking form

ds2(GH) =
1

V
(dψ + Ãχ dχ)2 + V (dR2 +R2 dθ2 +R2 sin2 θ dχ2). (B.18)

In particular, the vector Y in (B.16) generates the tri-holomorphic isometry, which

means it must be proportional to ∂ψ. Therefore, Y is orthogonal to dχ,

ιY dχ = 0, Y ≡ −λ ∂τ +
α

2
∂φ. (B.19)

Hence the coordinate χ orthogonal to the Gibbons-Hawking fiber is

χ ∼ ατ

2
+ λφ, (B.20)

which we ought to have suspected from the form of (B.13)–(B.15). We should note that

the coordinate ψ along the Gibbons-Hawking fiber is not uniquely determined, as a shift

in ψ by any constant multiple of χ can be absorbed in the definition of Ã ≡ Ãχ dχ in

(B.18).

B.1.2 Near-singularity limit of LeBrun as Gibbons-Hawking

In the near-singularity limit discussed in (5.37), the metric becomes a “one point”

LeBrun metric and therefore one has uz/w = α automatically. Therefore the LeBrun
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metric in the neighborhood of the source points becomes (locally) a Gibbons-Hawking

metric. In the Bäcklund-transformed LeBrun metric (5.11),

g =
1

w
(dτ + A)2 + w

[
ρ2(V 2

ρη + V 2
ηη)(dρ

2 + dη2) + ρ2 dφ2
]
, (B.21)

this can be shown by setting ρ = R sin θ, η − η` = R cos θ as usual, and then sending

the angular coordinates (τ, φ) to the (ψ, χ) of Gibbons-Hawking via a linear map acting

only on these coordinates.

The previous section gives us χ ∼ (ατ/2) + λφ for free; we need only identify the

parameters α, λ. In the small R limit, we have

ρ2(V 2
ηη + V 2

ρη)→ K̃(θ), w → 1

K̃(θ)

q̃`
R
, A→ −K̃Q(θ)

K̃(θ)
dφ, (B.22)

as well as

uz →
2k`

K̃(θ)

1

R
, 2 + rur → −

2

K̃(θ)
(k` cos θ + K̄`), (B.23)

where q̃` is a determinant:

q̃` ≡ q`(K̄
3
` − k3

0)− k3
` (Q̄` − q0). (B.24)

A short bit of algebra then reveals

α =
2k`
q̃`
, λ = − q

q̃`
, χ ∼ ατ

2
+ λφ =

k` τ − q` φ
q̃`

. (B.25)

Next, we compare the near-center axisymmetric LeBrun metric (5.40)

ds2(LB) = d%2 +
%2

4

[
dθ2 +

1

q̃`2

(
K̃(θ) dτ 2 − 2K̃Q(θ) dτ dφ+ Q̃(θ) dφ2

)]
, (B.26)
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to a 1-center Gibbons-Hawking metric. Specifically we choose a GH metric with

“charge” 1:

ds2(GH) = R
(
dψ + cos θ dχ

)2
+

1

R

(
dR2 +R2 dθ2 +R2 sin2 θ dχ2

)
, (B.27)

and by setting R = %2/4 this can be written

ds2(GH) = d%2 +
%2

4

[
dθ2 + dψ2 + dχ2 + 2 cos θ dψ dχ

]
. (B.28)

One can then find the coordinate change relating (B.26) and (B.28):

ψ =
1

q̃`

(
(K̄3

` − k3
0) τ − (Q̄` − q0)φ

)
, χ =

1

q̃`

(
k3
` τ − q` φ

)
, (B.29)

which matches our expectations in (B.25).

We should note that depending on the parameters q0, q`, Q̄`, k
3
0, k

3
` , K̄

3
` it is possible

for ψ, χ to become identified in many different ways, giving a conical point at % →

0 with group structure G ' Zm × Zn for some integers m,n. In Appendix B.2 we

will develop an algorithm to compute m,n and thus determine G from the parameters

q0, q`, Q̄`, k
3
0, k

3
` , K̄

3
` .

B.2 Groups at conical points from lattices in SO(4)

In this section we discuss how to compute the group structure at the conical singularities

of the LeBrun metrics. We stress that there are two possible types of conical singular-

ities that may occur: orbifold points where the geometry approaches R4/G for some

finite group G ⊂ SO(4), and more general conical singularities that cannot be locally
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modeled as a quotient space of R4. To illustrate the difference, consider two different

2-dimensional cone metrics:

ds2
A = dr2 + r2 dθ2

n2
, ds2

B = dr2 + r2m
2 dθ2

n2
, θ ∼ θ + 2π, (B.30)

for m,n > 0 ∈ Z relatively prime1. In the first metric ds2
A, a circuit around the tip

of the cone subtends 2π/n radians; hence an n-fold cover of this space will fill out the

standard R2, and this is the quotient space R2/Zn. In the second metric ds2
B, however,

a path enclosing the origin subtends 2πm/n radians, and there is no p-fold cover of this

space that gives us R2; hence it is not a quotient of R2. Nevertheless, it has a group

structure which can be defined via the lattice inside U(1) generated by e2πmi/n. Since m

and n are relatively prime, this is again Zn.

In a similar manner, we will analyze the conical singularities of the LeBrun metrics.

However, since the metric (B.26) allows two different angular coordinates to be iden-

tified in a non-standard way, computing the group structure at such points is no longer

obvious by inspection as it was in (B.30). We will describe in detail how to define and

compute these groups, and we will derive a simple condition to restrict our metrics to

have orbifold singularities only, without the presence of more general conical singular-

ities. We will proceed somewhat pedantically; the more practical computations can be

found in Appendices B.2.4 and B.2.5.

1If m < n the cone ds2
B has a deficit angle, and if m > n it has an excess angle. A flat d-dimensional

cone with excess angle can always be isometrically embedded in (d + 1)-dimensional Minkowski space
R1,d as a cone outside the lightcone. The lightcone itself is approached in the limit of infinite excess
angle.
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B.2.1 Coordinates on R4 and on U(1)× U(1) ⊂ SO(4)

The group structure at each conical point in the LeBrun metric is some group G '

Zm×Zn which is a finite subgroup of SO(4) acting in the maximal torus U(1)×U(1)2.

We will deduce G by looking at how coordinates in the LeBrun metric are identified,

and this makes use of a canonical map between two of the angular coordinates of R4

and coordinates on U(1)× U(1) ⊂ SO(4). This map is defined as follows:

Choosing standard U(1)× U(1)-invariant spherical coordinates on R4,

ds2(R4) = dρ2 + ρ2
(

dθ2 + cos2 θ dα2 + sin2 θ dβ2
)
, (B.31)

the orbits of the maximal torus T 2
SO(4) ⊂ SO(4) are precisely the tori ρ = const, θ =

const, giving a natural relation between T 2
SO(4) and the coordinates (α, β). Specifically,

for every ρ ∈ (0,∞), θ ∈ (0, π/2) one has a smooth embedding3

ερ,θ : T 2
SO(4) → R4, given by (α, β) 7→ (ρ, θ, α, β), (B.32)

and hence we can regard the coordinates (α, β) equally well as coordinates on T 2
SO(4).

Furthermore, since R4 is invariant under 2π rotations along either of these coordinates,

one has the same identifications of these coordinates in both R4 and T 2
SO(4):

(α, β) : (0, 0) ∼ (2π, 0) ∼ (0, 2π) ∼ (2π, 2π), (B.33)

and hence the embedding ερ,θ is a global embedding (i.e. an embedding of the whole

T 2
SO(4) ↪→ R4). If we choose the particular image at ρ = 1, θ = π/4 (i.e. the Clifford

2Zm,Zn can act on linear combinations of the U(1)’s; e.g. Zm might act on the diagonal U(1) and
Zn on the anti-diagonal U(1), etc.

3The embedding ερ,θ degenerates at the endpoints ρ = 0 or θ = 0, π/2; however, this will not be
important here.
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torus in R4), then ερ,θ is also globally isometric (given a suitable normalization of the

Haar measure on SO(4)).

The existence of this canonical isometric embedding ερ,θ : T 2
SO(4) → R4 will justify

our treatment of T 2
SO(4) ⊂ SO(4) and the Clifford torus T 2

(α,β) ⊂ R4 as the same, and

thereby use the (identifications of) coordinates along T 2
(α,β) ⊂ R4 to determine the group

structure G ⊂ T 2
SO(4) of conical points in the LeBrun metric.

B.2.2 Tori from lattices

It is useful to think of a torus T 2
Γ as the quotient of R2 by the action of some lattice Γ.

Here Γ is some additive group with generators ~a1,~a2 ∈ R2:

Γ = {~g ∈ R2 : ~g = Λ~s, ~s ∈ Z2}, Λ ≡
(
~a1 ~a2

)
, (B.34)

where the basis Λ is a matrix whose columns are the generators of Γ. The choice of basis

is not unique—the same lattice results if we send Λ→ ΛP for any P ∈ GL(2,Z)4. The

group action αΓ of Γ on R2 is the usual

αΓ : Γ× R2 → R2, given by (~g, ~x) 7→ ~x+ ~g, (B.35)

and then the torus can be written T 2
Γ ' R2/αΓ, or by the standard abuse of notation,

T 2
Γ ' R2/Γ, when it is clear from context what group action we are talking about. We

will also need the quotient map ρΓ:

ρΓ : R2 → R2/Γ ' T 2
Γ , given by ~x 7→ [~x ], (B.36)

4We define GL(2,Z) as the group of 2 × 2 matrices with integer entries and determinant ±1, hence
invertible over Z. This group is sometimes also called S∗L(2,Z) or SL±(2,Z).
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where [~x ] is the equivalence class of ~x under the group action αΓ.

B.2.3 Lattices within tori

In a similar manner to ds2
B in (B.30) we will define the group action G ' Zm × Zn

at a conical point of the LeBrun metric as the finite subgroup of the maximal torus

U(1)× U(1) ⊂ SO(4) which is generated by the lattice Γ̃ of coordinate identifications,

allowing this lattice to “wrap around” U(1) × U(1) multiple times if needed5. Just as

e2πm/n ∈ U(1) generates the same subgroup as e2πi/n (for m,n relatively prime), it is

always possible to choose a new basis in which the lattice wraps around only once. Now

we will make this notion more precise:

Take some torus T 2
Γ ' R2/Γ defined by a lattice Γ (with basis Λ) which acts on R2

via the group action αΓ, and where ρΓ is the quotient map R2 → R2/Γ. Consider a

second lattice Γ̃ (with basis Λ̃) acting on R2 via the group action αΓ̃. This lattice group

action then descends along ρΓ to the group action αG of the group G on T 2
Γ such that the

following diagram commutes:

Γ̃× R2 R2

G× (R2/Γ) R2/Γ,

αΓ̃

ρΓ × ρΓ ρΓ

αG

(B.37)

where ρΓ(Γ̃) is defined via the natural inclusion Γ̃ ↪→ R2. The group action αG is

αG : G× (R2/Γ)→ R2/Γ, given by
([
~̃g
]
,
[
~x
])
7→
[
~x
]

+Λ

[
~̃g
]
, (B.38)

5One can also consider the more general problem of finding finite subgroups of Lie groups, which
are also referred to as “lattices”, and on which there is a great deal of mathematical literature (see e.g.
[148, 149, 150], as well as [151]). The simplest examples are the cyclic groups Zm ⊂ SO(2) and the
regular polyhedra in SO(3).
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where +Λ is addition modulo the unit cell Λ of the lattice Γ which defines the torus. We

are then interested in understanding the group G ≡ ρΓ(Γ̃):

We point out that G is not given by the lattice quotient Γ̃/Γ, because this operation

is only defined when Γ ⊆ Γ̃; that is, when all the points in Γ are also in Γ̃. Rather, the

quotient map ρΓ acts on R2 and carries Γ̃ ⊂ R2 along with it. The groupG then contains

the image under ρΓ of every ~̃g ∈ Γ̃:

G =
{[
~̃g
]
∈ R2/Γ :

[
~̃g
]

=
[
Λ̃~s
]
, ~s ∈ Z2

}
. (B.39)

Under certain nice conditions6, G is a lattice in R2/Γ, and its preimage ρ−1
Γ (G) is a

lattice in R2. The preimage ρ−1
Γ (G) is actually the “smallest” lattice that contains both

Γ and Γ̃ as sublattices, so one typically has that Γ̃ is strictly a sublattice of ρ−1
Γ (G)

(with equality if and only if Γ ⊆ Γ̃). In fact, there is a sense in which we can write

ρ−1
Γ (G) = lcm(Γ, Γ̃), where a lattice Γ′ is considered a “multiple” of another lattice Γ if

Γ′ contains Γ, such that the lattice quotient Γ′/Γ makes sense7.

We have said that LeBrun metrics can have both orbifold points and more general

conical singularities, and we can now clarify the conditions under which one or the other

occurs. The torus of angular coordinates near a conical point in the LeBrun metric is

R2/Γ̃, whereas the torus of standard R4 is R2/Γ. One has a quotient of R4 (and thus an

orbifold point) whenever R2/Γ is some p-fold cover of R2/Γ̃. This happens precisely

when Γ ⊆ Γ̃ as a sublattice, or equivalently when ρ−1
Γ (G) = Γ̃. Otherwise one has a

conical singularity that is not an orbifold.

6Γ and Γ̃ must be commensurable. If they are not, then G will be dense in R2/Γ and thus fail to
be a lattice. For sensible results one must have Λ−1Λ̃ ∈ GL(2,Q). In the LeBrun metrics with integer
parameters, we will only see rational lattices, so this is not a problem.

7Note that as lattices, Z is a “multiple” of 2Z and not the other way around, because Z contains 2Z,
and one can sensibly define the quotient Z/2Z ' Z2.
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By analogy with the U(1) case in (B.30), the basis of the preimage lattice ρ−1
Γ (G)

can be written

ΛG ≡ gcd(Λ, Λ̃), (B.40)

where we define the (left) gcd of two matrices Λ, Λ̃ ∈ GL(2,Q) as the matrix ΛG ∈

GL(2,Q) of largest determinant such that Λ−1
G Λ and Λ−1

G Λ̃ are both integer. It turns

out the answer is unique up to right multiplication ΛG → ΛGQ by Q ∈ GL(2,Z),

and it is invariant under right multiplications of the arguments (Λ, Λ̃) → (ΛP, Λ̃P̃ ) by

P, P̃ ∈ GL(2,Z). So it has all the required properties of a lattice basis. As we will

show, gcd(Λ, Λ̃) can be computed by reducing Λ̃−1Λ to Smith normal form using an

algorithm analogous to the Euclidean algorithm.

Having found a basis for the preimage ρ−1
Γ (G), it is then simple to write down a more

useful form of G ' ρΓ(ρ−1
Γ (G)). In particular, since Γ ⊆ ρ−1

Γ (G), the lattice quotient

G ' ρ−1
Γ (G)/Γ makes sense, and it is given by (omitting brackets [ · ] for equivalence

classes):

G = {~g ∈ R2/Γ : (~g ∼= ΛG ~s mod Λ), ~s ∈ Z2}, ΛG ≡ gcd(Λ, Λ̃). (B.41)

In the basis ΛG, the structure of G as a direct product of cyclic groups Zm × Zn will be

more obvious. In the following section, we will show how to compute gcd(Λ, Λ̃) and

find precisely the cyclic groups for which G ' Zm × Zn.

B.2.4 Orbifold points and more general conical singularities

Near each conical point in the LeBrun metric, one finds that the (local) metric

approaches that of flat R4, but with the U(1) × U(1) coordinates identified on a lat-

tice Γ̃ different from the usual one Γ. One can define a group structure G, which is

a finite subgroup of U(1) × U(1) ⊂ SO(4), by comparing the two lattices Γ, Γ̃. The
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conical point is an orbifold point precisely when Γ ⊆ Γ̃ as a sublattice, and then the

local geometry approaches R4/G. In this section we will compute G.

Let Γ be the standard lattice on which to identify the U(1) × U(1) coordinates of

R4. In the coordinates

ds2(R4) = dρ2 + ρ2
(

dθ2 + cos2 θ dα2 + sin2 θ dβ2
)
, (B.42)

one has (α, β) ∼ (α + 2π, β) ∼ (α, β + 2π), and hence the basis Λ of Γ can be written

Λ = 2π

1 0

0 1

 . (B.43)

In other coordinates, one must transform the lattice basis accordingly. Given a (linear)

coordinate transformationM : (α, β)→ (α′, β′), the new lattice basis Λ′ is given by

α′
β′

 =M

α
β

 , Λ′ =MΛ, (B.44)

where M acts only from the left, because Λ is a collection of column vectors. For

example, if we transform to a 1-center Gibbons-Hawking chart with coordinates ψ =

α + β, χ = α− β, the new lattice ΓGH is given by the basis

ΛGH = 2π

1 1

1 −1

 , or ΛGH = 2π

2 1

0 1

 , (B.45)

as these are equivalent under right action by GL(2,Z). In any case, given a standard

lattice Γ such that R2/Γ ' U(1) × U(1) ⊂ SO(4) in our particular choice of coor-

dinates, we can then compare this to the lattice Γ̃ of coordinate identifications in (the

near-singularity limit of) the LeBrun metric.
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Figure B.1: The lattice bases ΛP and Λ̃P̃ are parallel. There exist rational numbers r1, r2

such that ~a1 = r1 ~e1 and ~a2 = r2 ~e2. In this case r1 = 3 and r2 = 4/3.

Reduction to Smith normal form

The lattices Γ, Γ̃ have unit cells which are parallelograms of any dimensions and oriented

in any directions. Let Λ, Λ̃ be a choice of basis for each of Γ, Γ̃. Since the lattices

are rational to each other, we can always make a change of basis via right action by

P, P̃ ∈ GL(2,Z) such that the new bases ΛP, Λ̃P̃ are parallel, by which we mean

Λ̃P̃R = ΛP, where R =

r1 0

0 r2

 , (B.46)

for some rational numbers r1, r2 > 0. This is shown in Figure B.1.

The rational numbers r1, r2 give the factors by which each leg of ΛP is larger than

the same leg of Λ̃P̃ . It is easy to see that each leg of Λ̃P̃ generates a cyclic group modulo

the unit cell ΛP , and hence one has

G ' Zm × Zn, where m =
r1

gcd(1, r1)
, n =

r2

gcd(1, r2)
. (B.47)

Then the basis ΛG ≡ gcd(Λ, Λ̃) of the preimage lattice ρ−1
Γ (G) (defined as in (B.37)) is

given by

ΛG =
(
~g1 ~g2

)
, where ~g1 = gcd(1, r1)~e1, ~g2 = gcd(1, r2)~e2. (B.48)
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An orbifold point occurs precisely when r1, r2 are integers, in which case the lattice

cell Λ̃ already “fits into” Λ evenly. Then (B.47) can be written simply

G ' Zm × Zn, where m = r1, n = r2. (B.49)

That is, at an orbifold point, the entries in the diagonal matrix R give the orders of

Zm,Zn.

What is left is to find r1, r2 in the first place. To do this, one takes (B.46) and isolates

the diagonal matrix R:

R = P̃−1Λ̃−1ΛP. (B.50)

We do not need to know P, P̃ ∈ GL(2,Z) explicitly; we merely need to describe an

algorithm for diagonalizing Λ̃−1Λ by independent actions of GL(2,Z) from both the

left and the right. This is precisely the algorithm for finding the Smith normal form of a

matrix. Since we have available both left and right GL(2,Z) actions, we may apply any

sequence of elementary row or column operations which are invertible over Z.

Hence to obtain R we diagonalize Λ̃−1Λ via the following process. At every step of

the algorithm, we may

1. Swap any two rows or any two columns, or

2. Multiply any row, or any column, by −1, or

3. Add an integer multiple of any row (column) to another row (column).

The objective is to reach a diagonal matrix (this is always possible). The full algorithm

for the Smith normal form continues until the matrix is not only diagonal, but each entry

along the diagonal divides the next, i.e. r1|r2 in this case. For our purposes, however,

any diagonal matrix will do (and the result may not be unique).
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In the case where the result is not unique, different possible results R yield different

ways of writing the same group G. For example, a given matrix might be diagonalized

in two different ways to give G ' Z4 × Z6 or G ' Z2 × Z12, but these groups are

isomorphic. The same matrix cannot also be diagonalized to give, e.g. Z3 × Z8—the

algorithm as constructed preserves the group structure8.

Once we have obtained R, we can then calculate the group G via (B.47). We note

that the order of G is

#G = mn =
r1

gcd(1, r1)
× r2

gcd(1, r2)
≥ r1r2

gcd(1, r1r2)
. (B.51)

But r1r2 = detR = det(Λ̃−1Λ). Hence in terms of our lattice bases, we can put a lower

bound on #G:

#G ≥ det Λ

gcd(det Λ, det Λ̃)
, (B.52)

where we assume, without loss of generality, that det Λ, det Λ̃ > 0 (which can always

be arranged by the right action of GL(2,Z)). We note further that, at an orbifold point

where r1, r2 ∈ Z, the inequality (B.52) is saturated, and then we can calculate the order

of the group G directly from Λ, Λ̃.

B.2.5 The conical points of LeBrun metrics

In this section we will find the groupsG at the conical points of the LeBrun metric using

the methods outlined in the previous section.

8Specifically, the reduction to Smith normal form of a square matrix M preserves the sequence of
invariant factors r1|r2| . . . |rn such that detM = r1r2 . . . rn and each ri|ri+1. It is precisely this
sequence that distinguishes when the direct product of cyclic groups Zr1 ×Zr2 × . . .×Zrn is isomorphic
to another direct product of the same order.
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Near the conical points, the LeBrun metric approaches the form (5.40) and (B.26)

ds2(LB) = d%2 +
%2

4

[
dθ2 +

1

q̃`2

(
K̃(θ) dτ 2 − 2K̃Q(θ) dτ dφ+ Q̃(θ) dφ2

)]
, (B.53)

and one must then compare it to a standard flat metric on R4. One choice is a 1-center

Gibbons-Hawking metric (B.28):

ds2(GH) = d%2 +
%2

4

[
dθ2 + dψ2 + dχ2 + 2 cos θ dψ dχ

]
. (B.54)

The coordinate change to (ψ, χ) of Gibbons-Hawking is (B.29)

ψ =
1

q̃`

(
(K̄3

` − k3
0) τ − (Q̄` − q0)φ

)
, χ =

1

q̃`

(
k3
` τ − q` φ

)
. (B.55)

Alternatively, we can compare to the more standard R4 metric,

ds2(R4) = d%2 + %2
(

dϑ2 + cos2 ϑ dα2 + sin2 ϑ dβ2
)
, (B.56)

related to (B.54) via ψ = α + β, χ = α − β and θ = 2ϑ. From the LeBrun coordinates

(τ, φ), one can go to (α, β) via

α =
1

2q̃`

(
(k3
` + K̄3

` − k3
0) τ − (q` + Q̄` − q0)φ

)
, (B.57)

β =
1

2q̃`

(
(k3
` − K̄3

` + k3
0) τ − (q` − Q̄` + q0)φ

)
. (B.58)

While the transformation (B.55) to (ψ, χ) looks simpler, we will generally find it less

confusing to work with (α, β), with the exception of the following paragraph:

In order to apply the method of the previous section, we first need to identify a

“standard” lattice Γ, which means we need to sort out how the LeBrun coordinates

(τ, φ) should be identified in the first place. This is actually an arbitrary choice (it
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will merely affect how we interpret the various parameters q`, k3
` ). However, we can

use the transformation to Gibbons-Hawking (B.55) as a guide to make a “nice” choice.

We observe that the coordinate transformation (B.55) has determinant −1/q̃`, so let us

choose some parameters such that

q̃` ≡ q`(K̄
3
` − k3

0)− k3
` (Q̄` − q0) = 1. (B.59)

Making the choice q` = K̄3
` − k3

0 = 1, k3
` = Q̄` − q0 = 0, we obtain very simply

ψ = τ, χ = −φ. (B.60)

So, we will find it very natural to identify τ, φ on a diamond:

(τ, φ) : (0, 0) ∼ (4π, 0) ∼ (2π, 2π) ∼ (2π,−2π). (B.61)

and then the above choice of parameters corresponds to flat R4 with trivial orbifold

group.

From here forward we will stick to the (α, β) coordinates. By following the identifi-

cations (B.61) along the coordinate transformation (B.57), (B.58), we obtain the lattice

Γ̃ in the coordinates (α, β) given by the basis

Λ̃ = 2π · 1

2q̃`

k3
` + K̂3

` + q` + Q̂` k3
` + K̂3

` − q` − Q̂`

k3
` − K̂3

` + q` − Q̂` k3
` − K̂3

` − q` + Q̂`

 , (B.62)

where for ease of legibility we have defined

K̂3
` ≡ K̄3

` − k3
0, Q̂` ≡ Q̄` − q0. (B.63)
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The standard lattice Γ in the coordinates (α, β) is given simply by the basis

Λ = 2π

1 0

0 1

 , (B.64)

which makes the calculations easy, as Λ̃−1Λ is just 2πΛ̃−1.

From (B.52), we see that the order of the group G is at least |q̃`|:

det(Λ̃−1Λ) = −q̃`, and hence #G ≥ |q̃`|, (B.65)

And if r1, r2 ∈ Z, we have simply

#G = |q̃`| at orbifold points. (B.66)

When is a conical point an orbifold point?

As we have pointed out, an orbifold point occurs when r1, r2 ∈ Z, or alternatively, when

Λ̃−1Λ ∈ Mat2(Z), the set (not group) of 2× 2 matrices with integer entries. This yields

the condition

1

2

 k3
` − K̂3

` − q` + Q̂` −k3
` − K̂3

` + q` + Q̂`

−k3
` + K̂3

` − q` + Q̂` k3
` + K̂3

` + q` + Q̂`

 ∈ Mat2(Z), (B.67)

where notably the 1/q̃` in (B.62) has dropped out. Thus a LeBrun metric contains only

orbifold points, and no generic conical points, when the sum of all the parameters is

even: (
k3

0 +
N∑
i=1

k3
i + q0 +

N∑
i=1

qi

)
∈ 2Z. (B.68)
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Conversely, none of the conical points have the quotient structure R4/G if the sum of

parameters is odd. We will assume this sum is even such that each conical point is an

orbifold point with structure R4/G.

When is the group G trivial?

The group G is trivial whenever Γ̃,Γ are the same lattice. This happens whenever

Λ̃−1Λ ∈ GL(2,Z). That is,

1

2

 k3
` − K̂3

` − q` + Q̂` −k3
` − K̂3

` + q` + Q̂`

−k3
` + K̂3

` − q` + Q̂` k3
` + K̂3

` + q` + Q̂`

 ∈ GL(2,Z), (B.69)

Thus again the sum of the parameters k3
0, k

3
i , q0, qi must be even. The determinant of

this matrix is q̃` ≡ q`K̂
3
` − k3

` Q̂`. Therefore for the metric to locally look like R4 with

no conical singularity requires

q̃` = ±1, and
(
k3

0 +
N∑
i=1

k3
i + q0 +

N∑
i=1

qi

)
∈ 2Z. (B.70)

When is the group G like a Gibbons-Hawking orbifold group?

A 1-center Gibbons-Hawking metric with “charge” m, written

ds2(GH) =
r

m

(
dψ +m cos θ dχ

)2

+
m

r

(
dr2 + r2 dθ2 + r2 sin2 θ dχ2

)
, (B.71)

is a metric on the orbifold R4/Zm, where Zm acts in the diagonal U(1) of the maximal

torus U(1)× U(1) ∈ SO(4). In (α, β) coordinates, this corresponds to the lattice ΓGH

with basis

ΛGH = 2π

1 p
m

0 p
m

 , (B.72)
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where p and m are relativaly prime. The LeBrun metric then has a “diagonal” orbifold

point whenever Λ̃−1ΛGH ∈ GL(2,Z), or equivalently, whenever Λ−1
GHΛ̃ ∈ GL(2,Z),

since the determinant is ±1 in any case. This requires first that

det(Λ−1
GHΛ̃) = − m

pq̃`
= ±1, or m = ±pq̃`. (B.73)

But since p and m are relatively prime, we must have p = 1 and q̃` = m. Next, writing

out Λ−1
GHΛ̃ we have

1

2q̃`

 2(K̂3
` + Q̂`) 2(K̂3

` − Q̂`)

q̃`(k
3
` − K̂3

` + q` − Q̂`) q̃`(k
3
` − K̂3

` − q` + Q̂`)

 ∈ GL(2,Z). (B.74)

So again, the sum of all the parameters must be even, and one gets a “diagonal” orbifold

point wherever
2(K̄3

` − k3
0)

q̃`
∈ Z and

2(Q̄` − q0)

q̃`
∈ Z. (B.75)

One may also consider Zm acting in the “anti-diagonal” U(1), which in (α, β) coordi-

nates corresponds to the lattice ΓGH with basis

ΛGH = 2π

1 − 1
m

0 1
m

 . (B.76)

One can similarly show that these points occur for q̃` = m and

2 k3
`

q̃`
∈ Z and

2 q`
q̃`
∈ Z. (B.77)
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Appendix C

More general equations for 6d

solutions with KK monopoles

In Section 7.4, we made certain simplifying assumptions that result in a system of equa-

tions constrained by (7.79). This gives a particularly simple set of equations Lf = 0,

where f is any of K1, K2, L1, L2, L3,M . However, this is not the most general form

of the equations. Revisiting (7.76), we can easily make a general ansatz at least for the

Θj and do it in a manner that leads to a similar simplification of the source terms. We

simply introduce vector fields, ~λj , into (7.76):

Θj = −
3∑

a=1

(
Da

(
V −1Kj

)
+ λj a

)
Ω

(a)
+ , j = 1, 2 . (C.1)

Then the constraints (7.79) are replaced by

~D(∂ψK1 + ∂vL2) = ~D× ~λ1 − (V ∂ψ −K3∂v)~λ1,

~D(∂ψK2 + ∂vL1) = ~D× ~λ2 − (V ∂ψ −K3∂v)~λ2.
(C.2)

The remainder of the equations can be organized (after some manipulation) into pairs

that exhibit manifest symmetry under spectral interchange. The first layer are given by

LK1 = −V ~D · ~λ1 − 2 ~∇V · ~λ1 + V (V ∂ψ −K3∂v)(∂ψK1 + ∂vL2), (C.3)

LL2 = K3
~D · ~λ1 + 2 ~∇K3 · ~λ1 −K3 (V ∂ψ −K3∂v)(∂ψK1 + ∂vL2), (C.4)
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and a similar pair under exchanging the subscripts (1↔ 2). The second layer becomes

LL3 = −2∂v
(
~D · ~ω + Φ

)
+ 2V ~λ1 · ~λ2 +K2

~D · ~λ1 + 2 ~DK2 · ~λ1 +K1
~D · ~λ2 + 2 ~DK1 · ~λ2

−K2(V ∂ψ −K3∂v)(∂ψK1 + ∂vL2)−K1(V ∂ψ −K3∂v)(∂ψK2 + ∂vL1)

− 2 (V ∂ψ −K3∂v)K2 (∂ψK1 + ∂vL2)− 2 (V ∂ψ −K3∂v)K1 (∂ψK2 + ∂vL1)

+ 2V (∂ψK1 + ∂vL2)(∂ψK2 + ∂vL1),

(C.5)

and

LM = ∂ψ
(
~D · ~ω + Φ

)
−K3

~λ1 · ~λ2 + 1
2
L1

~D · ~λ1 + ~DL1 · ~λ1 + 1
2
L2

~D · ~λ2 + ~DL2 · ~λ2

− 1
2
L1(V ∂ψ −K3∂v)(∂ψK1 + ∂vL2)− 1

2
L2(V ∂ψ −K3∂v)(∂ψK2 + ∂vL1)

− (V ∂ψ −K3∂v)L1 (∂ψK1 + ∂vL2)− (V ∂ψ −K3∂v)L2 (∂ψK2 + ∂vL1)

−K3 (∂ψK1 + ∂vL2)(∂ψK2 + ∂vL1),

(C.6)

which show the spectral interchange symmetry and the dependence on ∂ψK1 +∂vL2 and

∂ψK2 + ∂vL1. Again, Φ is defined as in (7.87). Finally, for ~ω, we have

~D× ~ω + (V ∂ψ −K3∂v)~ω = V ~DM −M~DV +
1

2

3∑
I=1

(
KI ~DLI − LI ~DKI

)
− (K2K3 + V L1)~λ1 − (K1K3 + V L2)~λ2,

(C.7)

which is invariant under spectral interchange.
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