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comunidad del Civestav, la cual contribuyó de una forma u otra, a la realización de

este trabajo.

ii



Quiero también expresar mi agradecimiento al Dr. David A. Leahy de la uni-
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2.5.2 Anomaĺıa mezclada para Campos de spin 3
2

. . . . . . . . . . 49

v



3 Efectos de la interacción noconmutativa λΦ4
? en la evaporación de

un hoyo negro en dos dimensiones. 51

3.0.3 Antecedentes de la radiación de agujeros negros . . . . . . . . 51

3.1 Radiación en un agujero negro bidimensional con interacción λΦ4 . . 53

3.2 Correcciones noconmutativas al Flujo de radiación . . . . . . . . . . . 58

3.3 Corrección a segundo orden noconmutativa al Hamiltoniano H?
I . . . 63

3.4 Construcción de los diagramas de la teoŕıa noconmutativa . . . . . . 66
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0.1 Resumen

Resumen

En este trabajo se examinan las anomaĺıas quirales gravitacionales y de norma en un

espacio noconmutativo a través de un cálculo perturbativo expĺıcito de diagramas de

Feynman a un lazo en varias dimensiones. El análisis depende de cómo se acopla la

gravedad a los campos de materia noconmutativos. El cálculo de Delbourgo-Salam

de la contribución de la anomaĺıa axial gravitacional al decaimiento del pión neutro

es estudiado en detalle. En este proceso, demostramos que la anomaĺıa quiral de

Weyl gravitacional pura en dos dimensiones no recibe correcciones noconmutativas.

Se discute la anomaĺıa quiral gravitacional pura en 4k + 2 dimensiones con campos

de materia representados por fermiones quirales de spin 1
2

y 3
2
, y en ambos casos

se encuentra una corrección noconmutativa. Las anomaĺıas mixtas son finalmente

consideradas para ambos casos.

Por otra parte se estudian los efectos de una interacción —noconmutativa— so-

bre la emisión de part́ıculas debida a un agujero negro. Se usa un modelo λΦ4
? de

interacción para un campo escalar sin masa en un agujero negro bidimensional. Para

la parte conmutativa usual este modelo sufre de divergencias infrarojas. Cuando se

introducen las correcciones noconmutativas se aprecia que en éstas predominan las

divergencias ultravioleta. No obstante, es posible describir una corrección nocon-

mutativa a la radiación de Hawking. Además se discuten algunos efectos no locales

que son consecuencia de la noconmutatividad.
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Abstract

In the present work we examine the chiral gravitational and gauge anomalies in

a non commutative space trough an explicit perturbative calculation using one-loop

Feynman diagrams in various dimensions. The analysis depends on how gravity

is coupled to noncommutative matter fields. Delbourgo-Salam calculation of the

gravitational axial anomaly contribution to the neutral pion decay is studied in

detail. During the process, we show that the pure chiral gravitational Weyl anomaly

in two dimensions does not receive noncommutative corrections. We study the pure

gravitational chiral anomaly in 4k+ 2 dimensions with matter fields represented by

chiral fermions of spin 1
2

and 3
2

and in both cases a noncommutative correction is

found. Finally mixed anomalies are considered for both cases.

On the other hand we study the effects of a noncommutative interaction on

the particle emission due to a Black Hole. A λΦ4
? interaction model for a massless

scalar field in a two dimensional Black Hole is used. In the standard commutative

case this model possess infrared divergences. When the noncommutative correccions

are included we notice that ultraviolet divergences prevail. However, it is possible

to describe a noncommutative correction on Hawking’s radiation. Besides, some

nonlocal effects of the noncommutativity are discussed.
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Caṕıtulo 1

Introducción

“De las frases que aqúı escribo, sólo una que otra hará algún progreso; las demás

son como el ruido de las tijeras del peluquero, que debe mantenerlas en movimiento

para hacer con ellas un corte en el momento preciso”. (L. Wittgenstein, “Obser-

vaciones”).

1.1 Breve revisión de la teoŕıa de Anomaĺıas

Podemos decir que la base de las teoŕıas de las interacciones funadamentales es

el pricipio de la simetŕıa de gauge. Por otra parte, en términos generales, puede

establecerse que una Anomaĺıa se defina como la violación de una corriente (a nivel

cuántico) que clásicamente es conservada. De manera que una Anomaĺıa señala

el rompimiento de una simetŕıa de gauge y, por tanto, arruina la consistencia de

una teoŕıa. Evitar las anomaĺıas puede conducir, por un lado, a constricciones

muy importantes de las cantidades f́ısicas en cuestión. Pero, por otra parte, las

anomaĺıas son muy necesarias para describir ciertos hechos experimentales —como

veremos más adelante—. Estas dos facetas contrastantes, son precisamente, lo que

hace tan importante el papel de las anomaĺıas en la F́ısica moderna.

En la primera parte de esta tesis estudiaré las anomaĺıas axiales o quirales,

las cuales corresponden a una corriente axial de fermiones. La historia de estas

anomaĺıas se remonta a un pasado ya bastante largo. El inicio puede marcarse en
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1949 con la disertación doctoral de J. Steinberger [1] quien calculó un diagrama de

Feynman para un modelo pión-nucleón, con el objeto de describir el decaimiento

π0 → γγ. Dos años después, J. Schwinger [2] señaló que la conservación de la

coriente axial en QED —lo cual constituye una consecuencia inmediata de la simetŕıa

axial— queda rota cuando el operador de corriente es apropiadamente regularizado.

Posteriormente, en los años 60 el “Álgebra de corrientes” de Gell-Man se popularizó

y, en este contexto, Sutherland y Veltman probaron un teorema que establećıa que

el pión neutro no puede decaer en dos fotones! Ante esta evidente contradicción

con el experimento, Bell y Jackiw resolvieron el problema usando un modelo σ. La

anomaĺıa corrige el resultado del teorema anterior por una cantidad bien definida,

la cual resultó estar en excelente acuerdo con el experimento. Por su parte, S.

Adler [3] en Princeton llegó a resultados similares. Actualmente la “anomaĺıa ABJ”

(Adler-Bell-Jackiw) es un resultado ampliamente conocido. Mediante el cálculo del

—actualmente— famoso diagrama triangular llegamos a la ley de conservación rota

∂µj5
µ = A , (1.1)

donde A representa la anomaĺıa ABJ

A =
e2

16π2
εµναβFµνFαβ . (1.2)

Es un hecho en verdad notable que la anomaĺıa se pueda calcular mediante la

utilización de diagramas a un lazo, i.e. que no hay correcciones radiativas al cálculo

de la misma. Esto constituye —de hecho— el Teorema de Adler-Bardeen [4].

La extensión de los resultados anteriores a campos de gauge no abelianos Aµ =

Aa
µT

a con Fµν = F a
µνT

a, nos conduce, por una parte, a la anomaĺıa de singlete

A = ∂ρj5
ρ =

1

16π2
εµναβtrFµνFαβ , (1.3)

y por otra parte, al resultado de la anomaĺıa de Bardeen no abeliana

−Ga[Aµ] = (Dρj
ρ)a = ± 1

24π2
εµνρσtrT a∂µ(Aν∂ρAσ +

1

2
AνAρAσ) , (1.4)
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donde el signo ± establece la diferencia entre quiralidad positiva y/o negativa.

A mediados de los años 70 surgieron las primeras interpretaciones topológicas en

la teoŕıa de Anomaĺıas. Varios investigadores, entre ellos Rebbi, Nielsen, y Jackiw

[5] descubrieron que la anomaĺıa de singlete está determinada por el Teorema del

ı́ndice. La razón de esto es que la anomaĺıa puede expresarse en términos de la suma

de las eigenfunciones del operador de Dirac, donde únicamente sobreviven los modos

cero de una determinada quiralidad

1

2i

∫
dxA(x) =

∫
dx

∑
n
φ†n(x)γ5φn(x) = n+ − n− = Indice(D+) , (1.5)

donde la diferencia en la quiralidad de los modos cero representa el ı́ndice del oper-

ador de Weyl:

D+ = 6DP+ (1.6)

De manera que usando el Teorema de Atiyah-Singer [6] es posible expresar el ı́ndice

en términos de las clases caracteŕısticas, en este caso, para c2(P ), la segunda clase

de Chern [7]

Indice(D+) = − 1

8π2

∫
trFF . (1.7)

Otra ĺınea de investigación importante en el estudio de las anomaĺıas se inició

en 1979 cuando K. Fujikawa [8] publicó su trabajo sobre la integral de camino para

fermiones cuantizados en un campo de gauge externo:

Z[Aµ] = e−W [Aµ] =

∫
dψψe−S[Aµ] , (1.8)

con la acción clásica dada por

S =

∫
dxψ(i 6D −m)ψ , (1.9)

donde 6D = γµ(∂µ + Aµ). Podŕıa pensarse, ingenuamente, que ninguna anomaĺıa

debiera aparecer dado que bajo una transformación quiral
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ψ → eiβ(x)γ5ψ , (1.10)

y

ψ → ψe−iβ(x)γ5 , (1.11)

puede verificarse que la acción clásica permanece invariante. Sin embargo, Fujikawa

descubrió que la medida de la integral de camino no permanece invariante. En

efecto, la medida se transforma como

dψdψ → dψdψ exp
[
− 2i

∫
dxβ(x)

∑
n

φ†n(x)γ5φn(x)
]
. (1.12)

Aqúı las φn son eigenfunciones del operador de Dirac 6D y la anomaĺıa está contenida

precisamente en el Jacobiano

2
∑

n

φ†n(x)γ5φn(x) = − 1

16π2
εµναβtrFµνFαβ , (1.13)

Podemos ver que este procedimiento corresponde a una evaluación local del ı́ndice.

Actualmente sabemos que el método de Fujikawa —que es un enfoque no perturbativo—

está relacionado ı́ntimamente al método del “heat kernel” aśı como a la regular-

ización de la función zeta. No obstante que este enfoque representa una importante

ĺınea de investigación, en la presente tesis no será utilizado. El lector interesado

puede consultar la referencia [8].

En los años 80 el estudio de las anomaĺıas se robusteció al encontrarse métodos

matemáticos más poderosos: cohomoloǵıa, topoloǵıa y geometŕıa diferencial. Du-

rante esta década las anomaĺıas empezaron a ser representadas en términos de formas

diferenciales. Por ejemplo, las anomaĺıas de singlete y la anomaĺıa no abeliana se

pueden reescribir como:

A = d ? j5 =
1

4π2
trFF =

1

4π2
dtr(A dA+

2

3
A3) (1.14)

y
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Ga[A] = −(D ? j)a = ± 1

24π2
trT a d(A dA+

1

2
A3) , (1.15)

respectivamente. La ecuación que define la anomaĺıa es la condición de consistencia

de Wess-Zumino. A nivel de la formulación BRST, ésta puede ser expresada de

manera compacta como

sG(v, A) = s

∫
vaGa[A] = 0 , (1.16)

donde v = vaT a denota el campo fantasma de Fadeev-Popov y s es el operador

BRST (tal que s2 = 0). De manera general, podemos establecer que toda solución

no trivial, representa un anomaĺıa consistente. Obviamente, la solución trivial es

Gtriv = sG̃[A] . (1.17)

Matemáticamente, la condición de Wess-Zumino corresponde a cociclos en coho-

moloǵıas. Stora y Zumino [9, 10] iniciaron el tratamiento moderno de las anomaĺıas.

Fueron ellos quienes encontraron una cadena descendente de ecuaciones en la que,

diversos polinomios en v, A, y F están ligados uno al otro en diferentes dimensiones

P (F n)− dQ0
2n−1 = 0 , (1.18)

sQ0
2n−1 + dQ1

2n−2 = 0 , (1.19)

sQ0
2n−2 + dQ1

2n−3 = 0 , (1.20)

. . .

sQ2n−1
0 = 0 . (1.21)

donde P (F n) es un polinomio simétrico e invariante de gauge. Por otra parte los

términos “cadena” Qk
2n−1−k pueden ser resueltos en una forma sencilla. En éstos, el
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ı́ndice inferior denota el grado de la p-forma, mientras que en ı́ndice superior denota

la potencia del polinomio en v. Lo más asombroso de dicha estructura algebraica

es que posee una contraparte en f́ısica. Por ejemplo, la tercera de las ecuaciones de

Stora-Zumino representa una versión local de la condición de consistencia de Wess-

Zumino, de manera tal que podemos identificar el término-cadena Q1
2n−2 —que es

una estructura puramente algebraica— con la anomaĺıa G(v, A) en f́ısica en 2n− 2

dimensiones

G(V,A) = N

∫
M2n−2

Q1
2n−2(v, A) . (1.22)

La constante N es una constante de normalización que no es determinada por la

cadena. Si elegimos como polinomio invariante a la traza simetrizada, strF , puede

verse que recuperamos la anomaĺıa singlete en 2n dimensiones. De modo que ambas

anomaĺıas, tanto la de singlete como la no Abeliana, aún cuando son diferentes en

su naturaleza, están estrechamente relacionadas en diferentes dimensiones.

Un “renacimiento” importante dentro de los métodos topológicos inició con el

trabajo de Atiyah y Singer quienes en 1968 publicaron su famoso “Teorema del

ı́ndice” [6]. El Teorema del ı́ndice fué retomado por Álvarez, Singer y Zumino,

quienes descubrieron que la anomaĺıa no Abeliana está relacionada a un teorema del

ı́ndice más “refinado”, conocido como teorema de la familia del ı́ndice [11].

Por su parte, Álvarez-Gaumé y Ginsparg [12] en ese mismo año, relacionaron la

anomaĺıa en 2n dimensiones con un teorema del ı́ndice en (2n+2) dimensiones. Las

2 dimensiones extra surgen al considerar familias biparamétricas de potenciales de

gauge

−G(v, A) = 2πi
in+1

(2π)n+1(n+ 1)!

∫
S2n

Q1
2n . (1.23)

Y vemos que la anomaĺıa está dada por el término de cadena de Stora-Zumino Q1
2n

con la correcta normalización.

Por otra parte y de manera paralela al desarrollo en teoŕıas de gauge, se dió

un rápido desarrollo en teoŕıas de gravedad. La gravitación es una parte funda-
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mental en la teoŕıa de campos que no puede olvidarse de ninguna manera. La

investigación moderna en las teoŕıas que incorporan la interacción de gravedad con

materia inicia con el trabajo de Álvarez-Gaumé y Witten publicado en el año 1983

con el t́ıtulo Gravitational Anomalies [13]. Esta ĺınea de investigación culminó con

el descubrimiento de Green y Schwarz en 1984 [14] de que las anomaĺıas de gauge y

gravitacionales se cancelan mutuamente en una teoŕıa de Yang Mills 10-dimensional

acoplada a supergravedad (N = 1). Esto sucede si el grupo de gauge es S0(32) ó

E8 × E8. Dichas cancelaciones se dan en supergravedad (D = 10) tipo IIB y tipo

I.

Aqúı la gravitación es considerada como una teoŕıa de gauge donde las trans-

formaciones de norma son los difeomorfismos. De manera que ahora tenemos una

violación cuántica a la ley clásica de conservación del tensor de enerǵıa-momento,

i.e. tenemos una anomaĺıa de Einstein

δE
ξ W [gµν ] = −

∫
dx

√
|g| ξν∇µ < T µν >= GE(ξ) , (1.24)

donde ξ representa un cambio infinitesimal de coordenadas. En el caṕıtulo 2 nos

ocuparemos de este tipo de estructuras. Paralelamente consideraremos el efecto que

tiene sobre las anomaĺıas gravitacionales el introducir una deformación noconmuta-

tiva del espacio-tiempo.

1.2 Elementos de la teoŕıa de campos noconmu-

tativa

Por otra parte, la noconmutatividad del espacio ha sido considerada desde hace algún

tiempo cuando se trata de estudiar una posible forma de regular las divergencias UV

en teoŕıa cuántica de campos y en relatividad general. La gravedad cuántica tiene

un principio de incertidumbre que nos previene de medir posiciones a una escala

menor que la longitud de Plank. El momento y la enerǵıa requeridos para hacer una

medición de esta naturaleza, modificaŕıa la geometŕıa a dichas escalas. Es natural

9



preguntarse si estos efectos podŕıan ser modelados por una relación de conmutación

entre las coordenadas del espacio tiempo.

A continuación daré algunos de los elementos básicos de la teoŕıa de campos

noconmutativa. El enfoque que considero a continuación dista mucho de ser formal.

La idea es, en su lugar, proporcionar los elementos fundamentales para seguir los

cálculos que se darán a lo largo de esta tesis.

En la mecánica cuántica tradicional tenemos las siguientes relaciones de con-

mutación entre los operadores de posición y momento

[X̂i, P̂j] = i~δij (1.25)

y

[X̂i, X̂j] = [P̂i, P̂j] = 0 , (1.26)

donde los ı́ndices i, j, k = 1, 2, 3 corren sobre las coordenadas espaciales. No hay

evidencia, sin embargo, de que estas relaciones de conmutación sigan siendo válidas

a distancias “muy pequeñas” o bien, a “muy altas” enerǵıas. Una generalización

que podŕıamos encontrar natural de dichas relaciones de conmutación es la siguiente

[X̂i, X̂j] = iθij , (1.27)

donde θij es un parámetro constante —con dimensiones de [L]2—. Obviamente que

cuando se introduce esta condición en las coordenadas, se arruina la invariancia

de Lorentz. Recordemos, sin embargo, que hemos supuesto que las anteriores rela-

ciones de conmutación aparecen a distancias l muy pequeñas, i.e. que para l√
θ
>> 1

debeŕıamos recobrar la simetŕıa de Lorentz. Esta es una de las caracteŕısticas de

nuestra teoŕıa de campos noconmutativa, que al menos a nivel clásico, en el ĺımite
l√
θ
>> 1 debeŕıamos recuperar una teoŕıa de campo conmutativa previamente cono-

cida.

Ahora, la ecuación anterior puede ser extendida a las coordenadas de espacio

tiempo

10



[X̂µ, X̂ν ] = iθµν . (1.28)

Lo que constituye una definición de espacio noconmutativo, i.e. cualquiera donde

las coordenadas satisfagan la relación anterior de conmutación. Para constrúır la

correspondiente teoŕıa de campo perturbativa, es más conveniente usar campos que

sean funciones en lugar de operadores. Para pasar a estos campos manteniendo la

relación de conmutación válida, definiremos a continuación el producto en el espacio

de funcionales. Este nuevo producto es introducido a través de la —aśı llamada—

correspondencia de Weyl-Wigner-Moyal:

Φ̂(X̂)↔ Φ(x) ; (1.29)

y, consecuentemente

Φ̂(X̂) =

∫
α

eiαX̂φ(α)dα , (1.30)

φ(α) =

∫
e−iαxφ(x)dx , (1.31)

donde α y x son variables reales. Aśı,

(
φ1 ? φ2

)
(x) ≡

[
e

i
2
θµν∂ξµ∂ηνφ1(x+ ξ)φ2(x+ η)

]
ξ=η=0

, (1.32)

Esto último sugiere que podemos trabajar en un espacio conmutativo usual para

el cual la multiplicación se modifica a lo que se conoce como producto estrella. Es

fácil verificar que el bracket de Moyal (el conmutador en el cual el producto usual

se modifica con un producto estrella) entre dos coordenadas, satisface la relación de

conmutación deseada

[xµ, xν ]M = iθµν . (1.33)
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Propiedades del producto estrella

Ahora enumeramos algunas de las identidades comunes del álgebra del producto

estrella.

1. Producto estrella entre exponenciales

eikx ? eiqx = ei(k+q)xe
−i
2

kθq , (1.34)

donde kθp ≡ kµpνθµν .

2. Representación del producto ? en el espacio de momentos.

Sea f̃(k) y g̃(k) las componentes de Fourier de f y g. Entonces

(f ? g)(x) =

∫
d4kd4qf̃(k)g̃(q)e−

i
2
(kθq)ei(k+q)x . (1.35)

3. Asociatividad,

[
(f ? g) ? h

]
(x) =

[
f ? (g ? h)

]
(x) , (1.36)

lo cual puede ser inmediatamente probado trabajando en el espacio de momentos.

4. Productos estrella bajo una integral

∫
(f ? g)(x)d4x =

∫
(g ? f)(x)d4x =

∫
(fg)(x)d4x (1.37)

De aqúı puede deducirse la propiedad ćıclica

∫
(f1 ? f2 ? . . . fn)(x)d4x =

∫
(fn ? f1 ? . . . fn−1)(x)d

4x . (1.38)

5. Conjugación compleja

(f ? g)∗ = g∗ ? f ∗ . (1.39)
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Es evidente que si f es una función real entonces f ? f también será real.

Teoŕıa de campo noconmutativa a nivel clásico

La acción para el análogo noconmutativo de la teoŕıa Φ4 real puede escribirse

S[Φ] =

∫
d4x

[
1

2
∂µΦ ? ∂µΦ− m2

2
Φ ? Φ− λ

4!
Φ ? Φ ? Φ ? Φ

]
. (1.40)

Debido a las propiedades del producto estrella mencionadas en la subsección anterior,

la parte cuadrática de la acción es la misma que en el caso conmutativo. De manera

que la parte que se vé modificada está en el término de interacción.

Momento conjugado y ecuaciones de movimiento

Las ecuaciones de movimiento clásicas pueden ser obtenidas, como en el caso

conmutativo, minimizando la acción

δS

δΦ
= 0 , (1.41)

Entonces las ecuaciones de movimiento para la teoŕıa del campo escalar con una

interacción tipo λΦ4 quedan

(∂µ∂
µ +m2)Φ =

λ

3!
(Φ ? Φ ? Φ)(x) . (1.42)

Ahora, con el objeto de encontrar el momento conjugado debemos primero distinguir

dos casos importantes:

(i) θ0i = 0 .

En este caso únicamente encontramos derivadas temporales en el término cinético

de manera que el momento conjugado es el mismo que en el caso conmutativo.

(ii) θ0i 6= 0 .
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Este caso es más complicado debido a que tenemos un número infinito de derivadas

temporales en el término de interacción. Obviamente se trata de un caso no trivial,

dado que el momento conjugado depende del término de interacción. El hecho de

que tengamos un número infinito de derivadas en el tiempo sugiere que la teoŕıa

es no local en el tiempo y por lo tanto, cabe esperar que exista violación de la

causalidad.

Teorema de Noether

Daré a continuación una breve derivación del Teorema de Noether, extendido al

caso de Teoŕıas de campo noconmutativas. Supongamos que tenemos una acción que

posee una simetŕıa global continua. Para una transformación infinitesimal podemos

escribir

S[Φ] = S[Φ + εF(φ)], con ε = const. (1.43)

Si ahora tomamos el parámetro ε dependiente de las coordenadas x, podremos definir

la corriente J mediante la relación

S[Φ + ε(x)F ]− S[Φ] ≡ −
∫
Jµ

(
Φ(x)

)
∂µε(x) . (1.44)

Anteriormente hemos establecido que estamos interesados en variaciones de la acción

tal que cualquier variación de los campos alrededor de la trayecctoria clásica, dejen

a ésta invariante, i.e., δS/δΦ = 0. En particular, si δΦ = ε(x)F entonces

∫
Jµ

(
Φ(x)

)
∂µε(x) = 0 , (1.45)

y después de una integración por partes∫
∂µJ

µ

(
Φ(x)

)
ε(x)d4x = 0 , (1.46)

de manera que la corriente Jµ es conservada. Este es un resultado general y puede

usarse para cualquier teoŕıa noconmutativa. El concepto de corriente conservada es
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ligeramente diferente que en el caso conmutativo. Como una consecuencia de las

propiedades del producto de Moyal, podemos establecer que

∂µJ
µ = [f, g]M , (1.47)

para ciertas funciones f y g. Este resultado parece bastante “natural” dado que en

el ĺımite conmutativo (θ → 0) el bracket de Moyal se desvanece y recuperamos el

resultado clásico ∂µJ
µ = 0. Por otra parte, si integramos la ecuación anterior sobre

las coordenadas del espacio obtenemos

∂0

∫
J0d3x+

∫
~∇ · ~Jd3x = 0 , (1.48)

y de aqúı podemos decir que, como en el caso conmutativo, la carga Q

Q =

∫
J0d3x , (1.49)

es conservada. Es necesario hacer incapié de que esto es aśı únicamente cuando

θ0i = 0 dado que solo en este caso tiene sentido hablar del concepto de conservación

de carga.

Campo escalar

En esta parte consideraremos una teoŕıa arbitraria con una interacción V [Φ]. Se dá

por sentado que dicha interacción contiene términos que dependen del producto de

Moyal. Como se verá más adelante, consideraremos una interacción de la forma λΦ4,

no obstante la discusión que daré a continuación, no depende de la forma expĺıcita

de la función Hamiltoniana. Denotemos por S la acción de nuestra teoŕıa, entonces:

S =

∫
d4x

[
1

2
∂µΦ∂µΦ− m2

2
Φ2 − V [Φ]

]
. (1.50)

Dado que la parte libre de esta acción es cuadrática en los campos y derivadas de

estos campos, es conveniente escoger el espacio de Fock y en particular el estado de
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vaćıo para que sean exactamente los mismos que en el caso conmutativo, de manera

que los campos pueden ser expandidos en términos de los mismos operadores de

creación y aniquilación, es decir

Φ(x) =
∑

k

[
a(k)e−ikx + a†(k)eikx

]
eiωt. (1.51)

Para aplicar el método de cuantización canónica deberemos primero calcular el mo-

mento Π(x) conjugado al campo Φ, i.e.

[Φ(~x, t),Π(~y, t)] = iδ(3)(~x− ~y) . (1.52)

No obstante, una aplicación directa de este método puede conducirnos a severos

problemas. En primer lugar como hemos señalado anteriormente, para la teoŕıa

clásica, en el caso θ0i 6= 0 la teoŕıa muestra problemas relacionados con causalidad.

Es por esto que se estudia generalmente el caso θ0i = 0. Para este caso el momento

conjugado es justamente el mismo que aparece en el caso conmutativo

Π = ∂0Φ (1.53)

En la teoŕıa noconmutativa hay una ambiguedad al aplicar las condiciones de cuanti-

zación en el espacio de posiciones. En general, hemos visto que para tratar un espacio

no conmutativo, podŕıamos trabajar en uno conmutativo usual y reemplazar todos

los productos entre funciones con productos estrella. Sin embargo las condiciones

de cuantización definidas entre los campos y sus momenta conjugados, se calculan

en puntos diferentes, mientras que el producto estrella solo tiene sentido entre fun-

ciones calculadas en el mismo punto. Podemos escapar de estos problemas si desde

el principio trabajamos en el espacio de momentos y aplicamos directamente las

condiciones de cuantización en el espacio de momentos:

[Φ̃(k), Π̃(q)] = iδ(4)(k − q) , (1.54)

Esto es posible porque en el espacio de momentos, la diferencia entre el conmutador

usual y el bracket de Moyal es justamente un factor de fase eikθq el cual no tiene
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relevancia en la función δ que aparece del lado derecho.

Desde este punto de vista, la cuantización se puede explorar como en el caso

conmutativo. Al nivel de la teoŕıa libre todo se mantiene igual y únicamente la

interacción guarda un “registro” de la estructura noconmutativa del espacio a través

del producto estrella. Esto se manifetará de manera expĺıcita en el caṕıtulo 3 de la

tesis cuando observemos el efecto de una interacción noconmutativa en una teoŕıa

hamiltoniana.

La tesis está organizada de la siguiente manera: en el caṕıtulo 2 comenzamos

con algunos argumentos acerca de ciertos aspectos globales de las anomaĺıas grav-

itacionales noconmutativas. En las secciones 2.1 y 2.2 proporcionamos las carac-

teŕısticas básicas de la gravedad perturbativa noconmutativa aśı como de las cor-

respondientes reglas de Feynman noconmutativas que provienen del acoplamiento

de los fermiones de Weyl a la gravedad. La sección 2.2.1 la dedico al cálculo de lo

que he denominado el “análogo noconmutativo” de la anomaĺıa gravitacional axial

de Delbourgo-Salam, la cual corresponde a la corrección gravitacional a la anomaĺıa

ABJ (axial) en cuatro dimensiones. En la sección 2.3 se discute la anomaĺıa quiral de

gauge gravitacional en dos dimensiones. Para este caso, la generalización noconmu-

tativa coincide totalmente con la conmutativa y no existe corrección noconmutativa.

La sección 2.4 está dedicada a extender el cálculo de la amplitud a un lazo para la

dimensión D = 4k+2. Aqúı, luego de algunos preliminares, calculamos la anomaĺıa

de gauge quiral gravitacional al evaluar directamente la amplitud perturbativa de

los diagramas a un lazo en el procedimiento de Schwinger. En esta misma sección

se calcula la amplitud para fermiones de spin 3
2
. En la sección 2.5 se describe sepa-

radamente las anomaĺıas mezcladas entre campos de gauge y campos gravitacionales

acoplados con spin 1
2

ó 3
2

en un espacio noconmutativo.

El caṕıtulo 3 está dedicado a explorar la radiación de un agujero negro en dos

dimensiones cuando se introduce una interacción noconmutativa entre los campos

escalares que la producen. En la sección 3.1 hago una breve revisión del caso

conmutativo. Ah́ı se introduce los fundamentos de la teoŕıa libre de interacciones.

En la sección 3.2 presento la corrección noconmutativa a dicho flujo de radiación.
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En esta sección es presentada la versión deformada de la interacción.

La sección 3.3 presenta la corrección noconmutativa del Hamiltoniano de inter-

acción a segundo orden en el parámetro de noconmutatividad Θ. Se encuentra una

expresión para dicha corrección y se establece que ésta es no trivial. Siguiendo con

nuestro enfoque, en la sección 3.4 se sugiere un método que involucra la modifi-

cación del equivalente de los diagramas de Feynman para llevar a cabo el cálculo

de las amplitudes de los términos encontrados en la sección previa. Se utiliza una

diagramática que generaliza la introducida oirginalmente en las referencias [80] y

[82].

La sección 3.5 explora, finalmente, el cálculo del flujo noconmutativo de part́ıculas

de un agujero negro. Para ello se utiliza los resultados descritos en las dos secciones

anteriores, encontrándose una expresión general para la amplitud noconmutativa.

En la sección 3.6 se expone los detalles del cálculo del flujo noconmutativo de

part́ıculas salientes en un agujero negro. Se hace un análisis de las divergencias

presentes en dicha amplitud, encontrándose que, a diferencia de la contraparte con-

mutativa, aqúı predominan las divergencias ultravioleta.

En el caṕıtulo 4 presento las Conclusiones y Perspectivas de esta tesis.
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Caṕıtulo 2

Anomaĺıas gravitacionales en la

teoŕıa noconmutativa

“Then shall the Realm of Albion, Come to great confusion...”. ( “Entonces el reino

de Albión se verá en una gran confusión...”). (W. Shakespeare, “La tragedia del

rey Lear”, Tercer acto, escena 2)

La teoŕıa de campos noconmutativa posee efectos novedosos e intrigantes en la

teoŕıa cuántica como el recientemente descubierto efecto de mezcla UV/IR en la

referencia [15] que tiene, de hecho, su origen en Teoŕıa de cuerdas. Otra sorpresa

muy agradable es la profunda relación con la Teoŕıa M [16, 17] (para ver una revisión

completa se puede consultar, por ejemplo [18, 19]). Otro efecto importante de la

Teoŕıa cuántica de campos lo constituyen las Anomaĺıas. Las anomaĺıas de gauge, en

particular anomaĺıas quirales de gauge y axiales en teoŕıas de gauge noconmutativas,

han sido discutidas en una serie de art́ıculos por diferentes autores [20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. En particular, las

anomaĺıas de gauge noconmutativas en Teoŕıa de Yang-Mills —noconmutativa—

han sido consideradas en las referencias [23, 25, 26, 28, 29] donde se trabaja con

diagramas planares con grupo de gauge U(N). Para el caso de diagramas no planares

ha habido varios trabajos como puede verse en [24, 30, 40]. El análisis puede ser

extendido a otros grupos de gauge introduciendo el mapeo de Seiberg-Witten como
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puede verse en [34, 36, 37, 38, 39].

Por otra parte, recientemente se ha propuesto varias teoŕıas de gravedad no-

conmutativa. En particular, en las referencias [41, 42, 43, 44, 45, 46], se analiza

diferentes deformaciones de Moyal de la gravitación de Einstein en cuatro dimen-

siones. Todas esas acciones sin embargo, son no manifiestamente invariantes bajo

las tranformaciones completas noconmutativas dado que son deformadas de man-

era no trivial por el producto de Moyal con un parámetro de noconmutatividad

constante. No son, por lo tanto, invariantes ante difeomorfismos, en la medida en

que el producto de Moyal depende del sistema de coordenadas. Esos productos

pueden volverse invariantes ante difeomorfismos sustituyendo el producto de Moyal

?M por el producto de Kontsevich ?K [47]. En el presente trabajo vamos a asumir

que se utiliza el producto de Kontsevich ?K aunque se evitará el uso del sub́ındice

K. Recientemente se ha encontrado otras propuestas noconmutativas que pueden

consultarse en las referencias [48, 49]. En la primera de las referencias se construye

una acción topológica noconmutativa, manifiestamente invariante SO(1,3) para los

términos theta gravitacionales. Para ciertas condiciones de frontera apropiadas nos

da la posibilidad de proporcionar indicios acerca de instantones gravitacionales no-

conmutativos aśı como de anomaĺıas gravitacionales de Lorentz noconmutativas. En

el último de los art́ıculos se discute un caso dinámico de gravedad de Einstein de-

formando a la Moyal (o Kontsevich) la proyección auto dual de la teoŕıa de Einstein

para encontrar una teoŕıa noconmutativa manifiestamente invariante SL (2,C).

Las acciones topológicas noconmutativas las cuales son la combinación lineal del

número de Euler χ̂(X) y de la signatura σ̂(X), siendo acciones invariantes ante

̂SO(3, 1), son muy importantes dado que describen el rompimiento de la simetŕıa

quiral ante la presencia de campos gravitacionales. Debido a las dificultades técnicas

que surgen al tratar de hacer noconmutativa a la acción χ(X), se propone una man-

era de lograr esto al hacer a la acción noconmutativa χ̂(X) la cual es ̂SL(2,C) in-

variante, a partir de una versión noconmutativa para la signatura, lo cual es también

una acción ̂SL(2,C) invariante.

Por otra parte, las anomaĺıas de norma locales están asociadas a la falta de in-
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variancia de la acción efectiva fermiónica a un lazo Γ(Q) = log
[
det 6D

]
, donde

e−Γ =
∫
DψDψ∗e−

R
X L, bajo transformaciones de gauge infinitesimales con los cam-

pos de materia quirales ψ(x) y ψ∗(x) definidos en una representación compleja Q

del grupo de gauge G.

En el caso de los acoplamientos gravitacionales a la materia, existen diferentes

tipos de anomaĺıas gravitacionales, dependiendo del tipo de transformaciones de

simetŕıa que se esté analizando. Aśı, la anomaĺıa de Lorentz (o de automorfismos)

está relacionada a la falta de invariancia de gauge de Γ bajo las transformaciones

de Lorentz. Cuando el grupo de simetŕıa es el grupo de difeomorfismos Diff(X)

de una variedad de espacio tiempo suave X y Γ(Q) es no generalmente covariante,

entonces tenemos la anomaĺıa de difeomorfismos.

En otro orden de ideas, las correcciones gravitacionales a la anomaĺıa ABJ (Adler-

Bell-Jackiw) fueron originalmente calculadas por Delbourgo y Salam [50] y trabajos

posteriores relacionados con éste pueden verse en las referencias [51, 52]. Poco

tiempo después, las anomaĺıas gravitacionales fueron calculadas en una forma sis-

temática por Alvarez-Gaumé y Witten [13] (puede verse también [12]). En el pre-

sente trabajo no consideraremos anomaĺıas gravitacionales globales aunque el lector

interesado puede consultar una excelente exposición en [53].

En la referencia [48] se argumenta acerca de una versión noconmutativa del

grupo de Lorentz ŜO(4) siguiendo un procedimiento global para calcular anomaĺıas

quirales en una teoŕıa de gauge, procedimiento sugerido por Harvey [54], y el cual

está basado en la literatura matemática [55]. La aplicación de estas ideas a las trans-

formaciones de difeomorfismos conectadas a la identidad, podŕıan predecir novedosos

efectos gravitacionales noconmutativos, que seŕıan calculadas expĺıcitamente como

una corrección noconmutativa de la contribución gravitacional a la anomaĺıa quiral.

En el presente trabajo calculamos anomaĺıas gravitacionales quirales y axiales

partiendo de una teoŕıa gravitacional noconmutativa completa y nos enfocamos en el

lagrangiano de interacción entre fermiones quirales y gravitones en el espacio tiempo

noconmutativo. En general, seguimos la observación de t’Hooft de que las anomaĺıas

pueden ser estudiadas en términos de la teoŕıa de campo efectiva de bajas enerǵıas y
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consideraremos una teoŕıa efectiva de campo noconmutativa describiendo la acción

efectiva —a un lazo— de fermiones en un campo de fondo, siendo éste el campo grav-

itacional noconmutativo (para las anomaĺıas gravitacionales puras) y/o el campo de

Yang-Mills noconmutativo (para las anomaĺıas mezcladas). Nos restringiremos al

cálculo de diagramas perturbativos a un lazo entre fermiones quirales con gravi-

tones externos y/o gluones en varias dimensiones. Únicamente consideraremos los

diagramas planares en este trabajo.

2.0.1 Preliminares de Anomaĺıas gravitacionales noconmu-

tativas: Aspectos globales

Antes de proceder al cálculo de las anomaĺıas gravitacionales en el contexto nocon-

mutativo me gustaŕıa hacer algunas consideraciones globales acerca de la naturaleza

de dichas anomaĺıas.

Desde una perspectiva topológica, las anomaĺıas gravitacionales locales son obtenidas

a través del cálculo de ciertos grupos de homotoṕıa adecuados al grupo de gauge

relevante.

En la referencia [48] se dan argumentos acerca de una versión noconmutativa del

grupo de Lorentz ŜO(4) siguiendo un procedimiento global para calcular anomaĺıas

quirales en una teoŕıa de gauge; procedimiento sugerido por Harvey en [54], el cual

está basado en la literatura matemática [55]. Su propuesta se fundamenta en asumir

que ŜO(4) consiste del conjunto dado por el álgebra de operadores ortogonales

compactos Ocpt(H), definido sobre el espacio de Hilbert real (separable) H. La

propiedad de compacidad “elimina” en cierta forma el teorema de Kuiper, el cual

establece que el conjunto de operadores ortogonales puro O(H) posee grupos de

homotoṕıa triviales [55]. Esta álgebra tiene subálgebras no triviales las cuales poseen

la misma homotoṕıa que SO(∞) (hasta una periodicidad de Bott 8), lo que puede

dar origen a novedosos efectos topológicos no triviales en gravedad noconmutativa.

La anomaĺıa de Lorentz local noconmutativa es detectada con π3(Ocpt(H)) = Z. La

elección de Ocpt(H) como una versión de ŜO(4) = SO(∞) es altamente no única,
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por tanto hay muchas posibilidades de lograr esto y no existe un procedimiento

natural para definir ŜO(4) y es ciertamente necesario contar con una manera de

calcular más expĺıcitamente la anomaĺıa gravitacional local.

En teoŕıas gravitacionales, el grupo de Lorentz es únicamente una parte del

grupo de simetŕıa completo. Por lo tanto, el espacio moduli de la teoŕıa de gravedad

pura involucra una estructura del espacio fase más rica la cual consiste del es-

pacio cociente: M = T /Γ+
∞, donde T = Met(X)/Diff+

0 (X) es el espacio de

Teichmüller y Γ+
∞ es el grupo de la clase de mapeos dado por el grupo cociente

Γ+
∞ = Diff+(X)/Diff+

0 (X). Aqúı, Met(X) es el espacio moduli de métricas Rie-

mannianas sobreX,Diff+(X) es el grupo de todos los difeomorfismos que preservan

la orientación sobre X y Diff+
0 (X) es el grupo de difeomorfismos que preservan la

orientación sobre X los cuales están conectados a la identidad. Sin embargo, hay

una restricción en la dimensionalidad del espacio tiempo en el cual la anomaĺıa de

difeomorfismos puede existir. Ésta puede existir únicamente para dimX = 4k + 2

dimensiones dado que solo en esta dimensión el grupo ortogonal O(1, D − 1) posee

representaciones complejas.

Las anomaĺıas gravitacionales locales en el caso usual conmutativo aparecen

cuando el grupo de la clase de mapeos es el grupo trivial i.e., Γ+
∞ = 1. Por lo tanto

el espacio moduli está dado por M = Met(X)/Diff+
0 (X). Las anomáıas gravita-

cionales globales están relacionadas a la disconexidad de Γ+
∞, i.e. π0(Γ

+
∞) 6= 1.

Ahora, el espacio moduli para gravedad noconmutativa puede ser definido por

M̂ = T̂ /Γ̂+
∞ con T̂ = M̂et(X)/ ̂Diff+

0 (X) y Γ̂+
∞ = ̂Diff+(X)/ ̂Diff+

0 (X). Por

supuesto que, para poder llevar a cabo algunos cálculos en anomaĺıas, uno debe

ser capaz de proveer definiciones adecuadas para Γ̂+
∞,

̂Diff+(X) y ̂Diff+
0 (X).

Las anomaĺıas gravitacionales locales noconmutativas surgiŕıan cuando π2(M̂) =

π1(
̂Diff+

0 (X)) 6= 1, donde M̂ = M̂et(X)/ ̂Diff+
0 (X).

Una vez más, la elección de alguna versión adecuada de ̂Diff+
0 (X) es con mu-

cho, no única; existen muchas posibilidades para éste y no existe un procedimiento

“natural” para definir ̂Diff+
0 (X) aśı que se hace necesario una forma más expĺıcita

para calcular anomaĺıas gravitacionales locales. En esta tesis evitaré el uso de la

23



perspectiva topológica y calcularé las anomáıas gravitacionales quirales a través

del cálculo directo y expĺıcito de diagramas de Feynman a un lazo para fermiones

quirales acoplados a gravitones externos y/o campos de gauge. Para lograr esto,

usaremos las reglas de Feynman para una gravedad noconmutativa adecuada, dadas

en la sección siguiente.

2.1 El acoplamiento noconmutativo de Gravedad

y Fermiones quirales

En la presente sección daremos un breve repaso del campo gravitacional perturba-

tivo noconmutativo puro y su interacción con fermiones de Weyl noconmutativos.

Nuestro propósito es llamar la atención acerca de la estructura relevante de los

acoplamientos y las reglas de Feynman, lo cual será necesario para la siguiente

sección.

Como ya he mencionado en la introducción, en el momento presente no ex-

iste una teoŕıa de gravitación noconmutativa realista y bien definida. En la pre-

sente tesis no trabajaremos con una teoŕıa de gravedad noconmutativa espećıfica.

Esto obedece a que al final no consideraremos ninguna teoŕıa espećıfica de gravedad

pura, sino que estaremos interesados exclusivamente en las interacciones del campo

gravitacional noconmutativo linealizado con fermiones quirales. Sin embargo, para

ser concretos revisaremos brevemente una propuesta particular de la Gravedad

de Einstein (noconmutativa) [42] dada por la acción de Einstein-Hilbert nocon-

mutativa: ÎEH = − 1
16πGN

∫
X
d4x(−e) ? ea

µ(x) ? eb
ν(x) ? R

µν
ab (x), donde gµν(x) =

ea
µ(x) ? eb

ν(x)ηab, y Rab
µν(x) = ∂µω

ab
ν (x) − ∂νω

ab
µ (x) + [ωµ(x), ων(x)]

ab
? , con ωab

µ (x),

siendo la conexión de spin noconmutativa, mientras que el conmutador usual es

sustitúıdo por [A,B]? ≡ A ?B −B ?A, el bracket de Moyal. Aqúı, el producto ? se

define por F ?G(x) ≡ exp

(
i
2
Θµν ∂

∂yµ
∂

∂zν

)
F (y)G(z)

∣∣∣∣
y=z=x

. En esta primera parte de

la tesis tomaremos θ0ν = 0.

24



La Gravedad perturbativa noconmutativa es definida mediante una expansión

perturbativa de la forma: I = I(0) + I(1) + I(2) + O(κ4) de la acción de Einstein-

Hilbert noconmutativa [45] la cual es generada a través de una expansión de la

métrica como sigue: gµν = ηµν − κhµν + κ2hα
µ ? hαν − κ3hα

µ ? hαβ ? h
β
ν +O(κ4).

En la referencia [45] se exponen las reglas de Feynman de esta teoŕıa de Gravedad

noconmutativa. En lo que sigue daremos las correspondientes reglas de Feynman

que gobiernan el acoplamiento de la métrica linealizada noconmutativa hµν(x) a

fermiones quirales.

2.2 Acoplamiento de Gravedad a Fermiones quirales

A continuación consideremos la teoŕıa de Gravedad en 4k + 2 dimensiones. El

acoplamiento del campo gravitacional con Fermiones quirales está dado como es

usual, por la Lagrangeana

Iint =

∫
d4k+2x det(e) ? eµa(x) ?

1

2
ψ(x) ? iΓaDµ

(
1− Γ̄

2

)
ψ(x), (2.1)

donde Dµ es la derivada covariante con respecto a la conexión de spin ωab
µ y está

dada por Dµψ(x) = ∂µψ(x) + 1
2
ωµcdσ

cdψ(x), con σcd = 1
4
[Γc,Γd], Γ̄ = Γ1 . . .Γ4k+2 y

donde las Γ’s son las matrices de Dirac en 4k + 2 dimensiones euclideanas.

Nuestra acción noconmutativa se puede reescribir en dos partes Iint = I1 + I2

donde

I1 =
1

2

∫
dx det(e) ? eµa(x) ? ψ(x) ? iΓa

↔
∂µ

(
1− Γ̄

2

)
ψ(x) (2.2)

e

I2 =
1

4

∫
dx det(e) ? eµa(x) ? ωcd

µ (x) ? iψ(x) ? Γacd

(
1− Γ̄

2

)
ψ(x), (2.3)

donde definimos, de manera usual Γacd = 1
6
(ΓaΓcΓd ± permut.).
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La linealización de nuestra acción noconmutativa Iint dada por la ecuación (2.1)

nos conduce a la deformación de Moyal de la gravedad lineal dada por la Lagrangeana

L1 = −1

4
ihµν(x) ? ψ(x) ? Γµ

↔
∂ ν

(
1− Γ̄

2

)
ψ(x), (2.4)

y

L2 = − 1

16
ihλα(x) ? ∂µhλα(x) ? ψ(x) ? Γµλν

(
1− Γ̄

2

)
ψ(x). (2.5)

Las reglas de Feynman correspondientes pueden deducirse de las Lagrangeanas

(2.4) y (2.5) y vienen dadas por las siguientes expresiones

− i
4
εµνΓµ

(
1− Γ̄

2

)
(p+ p′)ν exp

(
− i

2
Θρσpρp

′
σ

)
(2.6)

y

− i

16
Γλµν

(
1− Γ̄

2

)
ε(1)

ναε
(2)
λα exp

( i
2
Θρσpρp

′
σ

)

×
[
k1µ exp

( i
2
Θρσk1ρk2σ

)
− k2µ exp

( i
2
Θρσk1ρk2σ

)]
, (2.7)

donde ε
(i)
µα son los tensores de polarización del campo del gravitón. Las reglas de

Feynman dadas por las ecuaciones (2.6) y (2.7) pueden deducirse de los siguientes

diagramas

2.2.1 Anomaĺıa gravitacional de Delbourgo-Salam nocon-

mutativa

Las anomaĺıas gravitacionales en cuatro dimensiones fueron originalmente estudi-

adas por Delbourgo y Salam [50] como una corrección gravitacional a la violación

de la simetŕıa global responsable del decaimiento: π0 → γγ. Esta idea fue poste-

riormente desarrollada en diversos trabajos [51, 52]. En esta sección discutiremos
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p pp+k p+k+k'

k k k, ,,e e e(1) (1) (2) (2)

Figura 2.1: Diagramas de Feynman para L1 y L2.

la contraparte noconmutativa. Delbourgo y Salam [50] demostraron que, en el de-

caimiento anteriormente citado, además del diagrama triangular con tres corrientes;

se tiene otro diagrama similar con una corriente Jµ de una simetŕıa global y dos ten-

sores Tµν de enerǵıa-momento, diagrama que también es anómalo. La contribución

correspondiente a la identidad de Ward anómala está dada por

1

384π2
RκλρσR

ρσ
µνε

κλµν . (2.8)

Esta es, precisamente, proporcional al invariante de signatura σ(X) —o la primera

clase de Pontrjagin— que junto con el número de Euler χ(X) son los invariantes

topológicos clásicos de una variedad de espacio tiempo X. Ahora discutiremos en

detalle la derivación de la contraparte noconmutativa de la ecuación (2.8). La am-

plitud de dispersión del proceso en cuatro dimensiones está dada por la expresión

Tr

∫
d4p{Γ · p,Γκλµν}

exp
(
− i

2
Θρσ(p− k2)ρ(p+ k1)σ

)
[Γ · (p+ k1)−M ]

ερ1σ1p
ρ1Γσ1

×
exp

(
− i

2
Θρσ(p+ k1)ρpσ

)
(Γ · p−M)

ερ2σ2p
ρ2Γσ2

exp
(
− i

2
Θρσpρ(p− k2)σ

)
[Γ · (p− k2)−M ]

, (2.9)

donde hemos usado la regla de Feynman (2.6) en cada uno de los vértices del dia-

grama triangular aśı como los correspondientes propagadores fermiónicos.
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Con el objeto de evaluar esta amplitud, promovemos la integral anterior, de 4 a

2` dimensiones, de la siguiente forma

∫
d2`p

(Γ · (p+ k1) +M)[
(p+ k1)2 −M2

] · exp
(
− i

2
Θρσ(p− k2)ρ(p+ k1)σ

)
ερ1σ1p

ρ1Γσ1
(Γ · p+M)[
p2 −M2

]
× exp

(
− i

2
Θρσ(p+ k1)ρpσ

)(Γ · (p− k2) +M)[
(p− k2)2 −M2

] ερ2σ2p
ρ2Γσ2 · exp

(
− i

2
Θρσpρ(p− k2)σ

)
(2.10)

y de manera usual introducimos los parámetros de Feynman

1

ABC
≡ 2

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
δ(1− x− y − z)
(xA+ yB + zC)3

, (2.11)

con A = (p + k1)
2 −M2, B = (p − k2)

2 −M2 y C = p2 −M2. Después de una

redefinición del momento p→ p′ = p+ k1x− k2y encontramos que xA+ yB + (1−
x− y)C = p′2 + k2

3xy −M2 y omitiendo la operación de la traza de las matrices de

Dirac, encontramos que xA+ yB + (1− x− y)C = p′2 + k2
3xy −M2 y∫ 1

0

dxdydz δ(1− x− y − z)
∫

d2`p

(p2 + k2
3xy −M2)3

×Tr

{
{Γ · p,Γκλµν}

[
Γ · (p+ zk1 − xk3) +M

]
(p+ xk2)

ρ1Γσ1

×
[
Γ·(p+xk2−yk1)+M

]
(p− yk1)

ρ2Γσ2
[
Γ (p+yk3−zk2)+M

]}
exp

(
− i

2
Θρσk1ρk2σ

)
.

(2.12)

Aqúı hemos redefinido nuevamente p′ → p y hemos desarrollado la suma de las

contribuciones de las fases en en el parámetro noconmutativo Θ. Integrando la

variable z y manteniendo únicamente los términos divergentes, tenemos finalmente

que

2kρ1

2 k
ρ2

1

∫ 1

0

dxdy θ(1− x− y)xy
∫

d2`p

(p2 + k2
3xy −m2)3

×Tr({Γ · p,Γκλµν}Γ · p Γσ1Γσ2Γ · k1Γ · k2) exp

(
− i

2
Θρσk1ρk2σ

)
, (2.13)
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donde θ(x) es la función unitaria de Heaviside. Ahora procedemos a calcular la

traza de los productos de matrices gamma usando la propiedad ćıclica de la traza

aśı como la identidad Tr
(
ΓκλµνΓ

σ1Γσ2ΓαΓβ
)

= 2`δ
[σ1

[κ δ
σ2
λ δ

α
µδ

β]
ν] = 2`εσ1σ2αβεκλµν obten-

emos finalmente

2kρ1

2 k
ρ2

1

∫ 1

0

dxdy θ(1− x− y)xy
∫

d2`p

(p2 + k2
3xy −m2)3

2

(
`− 2

`

)
×Tr

[
{Γ · p,Γκλµν}Γσ1Γσ2Γ · k1Γ · k2 + . . .

]
exp

(
− i

2
Θρσk1ρk2σ

)
(2.14)

o, de manera alternativa

2`+1kρ1

2 k
ρ2

1

∫ 1

0

dxdy θ(1− x− y)xy
∫

d2lp

(p2 + k2
3xy −m2)3

2

(
`− 2

`

)
×k1αk2βε

σ1σ2αβεκλµν exp

(
− i

2
Θρσk1ρk2σ

)
. (2.15)

En la integración del momento p usamos la siguiente identidad

∫
d2`p

p2

(p2 + k2
3xy −M2)3

=
iπ`

(k2
3xy −M2)3−`

Γ(2− `)
Γ(3)

`(k2
3xy −M2). (2.16)

Entonces podemos reescribir la ecuación 2.15 como

2`+1(`− 2)kρ1

2 k
ρ2

1 ε
σ1σ2αβεκλαβk1αk2β exp

(
− i

2
Θρσk1ρk2σ

)
×(4π)−`Γ(2− `)

∫
(k2

3xy −M2)
`−2
ixy θ(1− x− y)dxdy + . . . . (2.17)

Desarrollando la expansión de la función gamma Γ(ε) para valores pequeños de

ε con ε = 2− `, tomando luego el ĺımite `→ 2 y evaluando la integral en x e y nos

queda

−ik
ρ1

2 k
ρ2

1

12π2
εσ1σ2αβεκλαβk1αk2β exp

(
− i

2
Θρσk1ρk2σ

)
. (2.18)

Tomando en consideración la amplitud —invariante de Lorentz— más general,

obtenemos
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− i

192π2
ερ1σ1(k1)ερ2σ2(k2)k1αk2βε

σ1σ2αβ
(
ηρ1ρ2k1·k2−kρ2

1 k
ρ1

2

)
εκλαβ exp

(
− i

2
Θρσk2ρk1σ

)
.

(2.19)

En el espacio de las coordenadas esta última expresión puede ser reescrita como

εσ1σ2αβ

(
∂α∂γhρ1σ1 ? ∂β∂

γhρ1
σ2
− ∂α∂

ρ2hρ1σ1 ? ∂β∂
ρ1hρ2σ2

)
εκλαβ. (2.20)

Lo cual puede expresarse, a la vez —de manera compacta— de la siguiente forma:

1

384π2
Rκλρσ ? R

ρσ
µνε

κλµν . (2.21)

La ec. (2.21) constituye, precisamente, el invariante de signatura noconmutativo

τ̂(X) =
∫
R ? R̃ d4x. En esta última expresión la tilde sobre R denota al operador

dual de Hodge con respecto a los ı́ndices del espacio tangente. Vale la pena con-

frontar este resultado con la signatura σ̂(X) de la referencia [48], donde la dualidad

de Hodge está asociada a los ı́ndices de la tetrada.

2.3 Anomaĺıa gravitacional pura noconmutativa

en D = 2

En la sección previa hemos introducido las reglas de Feynman para Gravedad cuántica

perturbativa noconmutativa, relevantes para calcular las anomaĺıas gravitacionales

quirales. Antes de calcular la anomaĺıa gravitacional noconmutativa en D = 4k + 2

dimensiones en esta sección, vamos a familiarizarnos con los detalles del cálculo de

la anomaĺıa gravitacional pura en dos dimensiones en el caso noconmutativo. En

todo el cálculo seguiremos las convenciones y notación de la referencia [13].

2.3.1 Cálculo expĺıcito en dos dimensiones

En dos dimensiones, la acción noconmutativa para un Fermión en presencia de un

campo gravitaccional está dada por I =
∫
d2x det(e) ? eµa(x) ? 1

2
ψ̄(x) ? iΓa∂µψ(x).
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“A nivel” linealizado, la Lagrangeana está dada por

Lint = −1

4
hµν(x) ? iψ̄(x) ? Γµ∂νψ(x). (2.22)

El correspondiente tensor de enerǵıa-momento está, entonces, dado por

Tµν(x) =
1

2
iψ̄(x) ? Γµ∂νψ(x). (2.23)

En las coordenadas del cono de luz x± = 1√
2
(x0 ± x1), las matrices de Dirac

pueden descomponerse como Γ± = 1√
2
(Γ0+Γ1), con (Γ±)2 = 0 and Γ+Γ−+Γ−Γ+ = 2.

En estas coordenadas el tensor de enerǵıa-momento tiene la expresión

T++(x) =
1

2
iψ̄(x) ? Γ+∂+ψ(x), (2.24)

mientras que la acción de interacción (2.22) del campo gravitacional con los fermiones

en las coordenadas del cono de luz, se reduce a

Lint = −1

4
ih−−(x) ? ψ̄(x) ? Γ+∂+ψ(x), (2.25)

de manera que solo la componente h−−(x) del gravitón está acoplada a la materia

quiral descrita por la componente T++(x) del tensor de enerǵıa-momento. La acción

efectiva a segundo orden en la métrica perturbada hµν está codificada en la función

de correlación de dos puntos

U(p) =

∫
d2x exp

(
ip · x

)
〈Ω|T (T++(x) ? T++(0)|Ω〉, (2.26)

donde

〈Ω|T (T++(x)?T++(0)|Ω〉 = −1

4

∫ 2∏
i=1

d2qi
(2π)2

2∏
j=1

d2q′i
(2π)2

〈˜̄ψ(q1)γ+∂+ψ(q′1)·˜̄ψ(q2)γ+∂+ψ(q′2)〉

× exp
(
i(q1 − q′1)x

)
exp

(
i(q2 − q′2)x

)
exp

(
i
Θρσ

2

3∑
j=1

qρ
j q
′σ
j

)
. (2.27)

La correspondiente identidad de Ward “ingenua” está dada por p−U(p) = 0.

Esto debeŕıa implicar que U(p) = 0 para todo p−, por lo que deberá haber una
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anomaĺıa. Entonces podemos calcular U(p) mediante la evaluación del correspon-

diente diagrama a un lazo con dos gravitones externos fig.(2.2), lo cual da como

resultado

U(p) = −1

4

∫
dk+dk−
(2π)2

(2k + p)2
+

k+ exp
(
− i

2
Θρσkρpσ

)
k+k− + iε

×
(k + p)+ exp

(
− i

2
Θρσp′ρkσ

)
(k + p)+(k + p)− + iε

δ(p+ p′) · exp
(
i(p+ p′)x

)
= −1

4

∫
dk+dk−
(2π)2

(2k+p)2
+

1

k− + iε/k+

exp
(
− i

2
Θρσp′ρpσ

)
(k + p)− + iε/(k + p)+

·δ(p+p′)·exp
(
i(p+p′)x

)
,

(2.28)

Donde hemos utilizado la regla de Feynman (2.6) para calcular U(p).

T T
k

p+k

++ ++

Figura 2.2: Diagrama noconmutativo a un lazo con dos gravitones externos.

En las coordenadas del cono de luz el producto de Moyal queda expresado por

exp
(
− i

2
Θρσp′ρpσ

)
= exp

(
− 1

2
Θ+−(p′+p− − p′−p+)

)
. Ahora, mediante métodos

anaĺıticos estándar —integración en el plano complejo— el cálculo de las integrales

arroja el resultado

U(p) =
i

8π

∫ 0

−p+

dk+

(2k + p)2
+

p−
exp

(
− i

2
Θρσp′ρpσ

)
δ(p+ p′)

=
i

24π

p3
+

p−
exp

(
− i

2
Θρσp′ρpσ

)
exp

(
i(p+ p′)x

)
δ(p+ p′). (2.29)
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Por lo tanto, la identidad de Ward gravitacional anómala está dada por

p−U(p) =
i

24π
p3

+ exp

(
− i

2
Θρσp′ρpσ

)
exp

(
i(p+ p′)x

)
δ(p+ p′). (2.30)

El cálculo del diagrama de dos gravitones acoplados con fermiones quirales en la

teoŕıa noconmutativa viene dado por la acción efectiva

Leff
+ (hµν) = − 1

192π

∫
d2pd2p′

p3
+

p−
h−−(p)

× exp

(
− i

2
Θρσp′ρpσ

)
h−−(p′) exp

(
i(p+ p′)x

)
δ(p+ p′). (2.31)

De manera similar al caso conmutativo, en la presente situación no hay forma de

agregar contratérminos genéricos ∆Leff
+ tales que Leff

+ + ∆Leff
+ sea invariante bajo

transformaciones generales de coordenadas.

Aśı, considerando un fermión de Dirac en 1+1 dimensiones, tendremos entonces

que la correspondiente acción Leff
D será la superposición de Leff

+ y su correspondiente

término conjugado Leff
− resultando

Leff
D (hµν) = − 1

192π

∫
d2pd2p′

[
p3

+

p−
h−−(p) exp

(
− i

2
Θρσp′ρpσ

)
h−−(p′)

+
p3
−

p+

h++(p) exp

(
− i

2
Θρσp′ρpσ

)
h++(p′)

]
exp

(
i(p+ p′)x

)
δ(p+ p′). (2.32)

Esta acción no es invariante bajo transformaciones infinitesimales generales de co-

ordenadas δxµ = εµ, se puede ver que la métrica hµν se transforma como δhµν(x) =

−∂µεν(x)− ∂νεµ(x) o, en el espacio de momentos

δh++(p) = −2ip+ε+, δh+−(p) = −ip−ε+− ip+ε−, δh−−(p) = −2ip−ε−. (2.33)

No obstante en este caso existe un contratérmino que denotamos por ∆Leff
D el cual

puede ser agregado a la acción efectiva Leff
D de tal forma que sea invariante bajo

transformaciones de coordenadas generales
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∆Leff
D = − 1

192π

∫
d2pd2p′

[
p3

+

p−
h−−(p) exp

(
− i

2
Θρσp′ρpσ

)
h−−(p′)

+
p3
−

p+

h++(p) exp

(
− i

2
Θρσp′ρpσ

)
h++(p′) + 2p+p−h++(p) exp

(
− i

2
Θρσp′ρpσ

)
h−−(p′)

−4p2
+h−−(p) exp

(
− i

2
Θρσp′ρpσ

)
h+−(p′)− 4p2

−h++(p) exp

(
− i

2
Θρσp′ρpσ

)
h+−(p′)

+4p+p−h+−(p) exp

(
− i

2
Θρσp′ρpσ

)
h+−(p′)

]
δ(p+ p′). (2.34)

A pesar de la apariencia poco atractiva de esta última ecuación, es fácil ver que

esta acción puede ser reescrita en forma compacta de la siguiente manera

∆Leff
D = − 1

192π

∫
d2pd2p′

R(p) exp
(
− i

2
Θρσp′ρpσ

)
R(p′)

p+p−
δ(p+ p′), (2.35)

lo cual —después de un integración en la variable p′— nos da la corrección usual a

la contraparte conmutativa de (2.34).

∆Leff
D = − 1

192π

∫
d2p

R(p)R(−p)
p+p−

. (2.36)

donde R(p) es la expresión linealizada de la curvatura escalar noconmutativa la cual

puede expresarse como R(p) = p2
+h−− + p2

−h++ − 2p+p−h+−.

Hay una corrección cuántica a la ley de conservación T+−(p) = 0, la cual es válida

clásicamente, debido a la introducción del término h+− dentro de la Lagrangeana

de interacción ∆Leff
D y tenemos entonces un valor de expectación de T+− diferente

de cero lo cual da origen a una anomaĺıa gravitacional de la forma

〈2T+−(p)〉 = −2
δ∆Leff

D

δh+−(−p)
= − 1

24π
R(p). (2.37)

Debido a la conservación del momento lineal, tenemos del análisis de arriba que

p′ = −p a través de δ(p + p′) y el factor de fase exp
(
− iΘρσp′ρpσ

)
es igual a

uno, por lo que no existe modificación alguna a la anomaĺıa gravitacional en dos
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dimensiones en un espacio noconmutativo. Este resultado contrasta enormemente

con lo que sucede en D = 4 dimensiones, como vimos en la sección anterior. Las

ideas que se discuten en la siguiente sección ayudarán a esclarecer estos resultados.

2.4 Anomaĺıas gravitacionales noconmutativas en

D = 4k + 2

“O matter, and impertinency mix’d, Reason in madness”. (!Oh mezcla de buen

sentido y de absurdo! !Tanta razón en medio de la locura!). (W. Shakespeare,“La

tragedia del rey Lear”, Cuarto acto, escena 6.)

2.4.1 Preliminares

En esta subsección calcularé el diagrama a un lazo de D
2

+ 1 = 2k + 2 gravitones

externos con momentum p
(i)
µ y polarizaciones ε

(i)
µν con i = 1, . . . , 2k + 2. En este

cálculo seguiremos la referencia [13] usando la prescripción de Adler de un diagrama

equivalente con 2k+1 gravitones externos con una única inserción de un factor axial
1
2
(1− Γ̄) y 2k+1 vértices no anómalos. En lo que sigue asumiremos que el tensor de

polarización εµν el cual está dado por εµν = i(pµεν +pνεµ) (donde εµ es el parámetro

involucrado en la transformación de coordenadas xµ → xµ + εµ) puede factorizarse

de la forma: ε
(i)
µν = ε

(i)
µ · ε(i)

ν .

Por lo tanto, la amplitud a un lazo es proporcional a:

A ∝ Tr

[
Γ̄ exp

(
− i

2
Θρσkρ(k − p(1) − · · · − p(2k+1))σ

)
(6k +M)

× 6ε(1) exp

(
− i

2
Θρσ(k−p(1))ρkσ

)
(6k− 6p(1)+M) 6ε(2) exp

(
− i

2
Θρσ(k−p(1)−p(2))ρ(k−p(1))σ

)
×(6k− 6p(1)− 6p(2) +M) 6ε(3) exp

(
− i

2
Θρσ(k − p(1) − p(2) − p(3))ρ(k − p(1) − p(2))σ

)
· · · × 6ε(2k+1) exp

(
− i

2
Θρσ(k − p(1) − · · · − p(2k+1))ρ(k − p(1) − · · · − p(2k))σ

)
35



×(6k− 6p(1) − · · ·− 6p(2k+1) +M)

]
, (2.38)

donde hemos utilizado la regla de Feynman (2.6) en cada uno de los vértices no

anómalos. En la anterior amplitud hemos omitido (2k + 1) factores de la forma
1

p2−M2 en cada uno de los vértices no anómalos.

Ahora, con el objeto de eliminar los productos de las matrices de Dirac que apare-

cen en la amplitud anterior, requerimos que Tr
(
Γ̄Γµ1Γµ2 . . .Γµ4k+2

)
= −22k+1εµ1µ2...µ4k+2

.

De esta manera podemos factorizar la dependencia en el parámetro de noconmuta-

tividad Θ

A ∝ 22k+1MR
(
ε(i), p(j)

)
, (2.39)

donde el término R(ε(i), p(j)) es un factor cinemático el cual depende únicamente de

los momenta externos y de los vectores de polarización

R(ε(i), p(j)) = −εµ1µ2...µ4k+2
p(1)

µ1
ε(1)

µ2
p(2)

µ3
ε(2)

µ4
. . . p(2k+1)

µ4k+1
ε(2k+1)

µ4k+2
, (2.40)

lo que —evidentemente— deja a R(ε(i), p(j)) independiente del parámetro noconmu-

tativo Θ.

Utilizando la regla de Feynman (2.6) en cada uno de los 2k + 1 vértices, ten-

emos que, para el vértice i-ésimo hay una inserción de un factor: −1
4
iε

(i)
µ (p +

p′)µ 1
p2−M2 exp

(
− i

2
Θρσpρp

′
σ

)
, donde p es el momento entrante y p′ es el momento

saliente. La contribución total está “codificada” en la amplitud Z(ε(i), p(j),Θ). La

amplitud total está entonces dada por

I 1
2

= 22k+1M2R(ε(i), p(j)) · Z(ε(i), p(j),Θ), (2.41)

donde Z puede ser reinterpretada como la amplitud para un campo escalar cargado

de masa M y carga 1
4

en un lazo acoplado a (2k + 2) fotones de momenta p(j) y

tensores de polarización ε(i), dentro de un espacio tiempo noconmutativo.

Entonces toda la información sobre el parámetro noconmutativo está contenida

en la amplitud Z y lo que necesitamos es una manera de calcular dicha amplitud
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Z(ε(i), p(j),Θ) =

∫
d4k+2k

∏2k+2
j=1 exp

(
− i

2
Θρσ

∑
j p

(j)
ρ p

(j+1)
σ

)
ε · (pj + pj+1)∏2k+2

j=1 (p2
j −M2)

.

(2.42)

Como en el caso conmutativo, este problema puede ser resuelto reduciéndolo

al cálculo de la amplitud para un diagrama a un lazo con 2k + 2 fotones externos

interactuando no conmutativamente con un campo escalar complejo masivo con

carga 1
4

y con propagadores i/(p2 −M2) con la condición de que el i-ésimo vértice

tenga un factor −1
4
iε

(i)
µ (p+ p′)µ exp

(
− i

2
Θρσpρp

′
σ

)
, donde p es el momento y ε

(i)
µ son

los tensores de polarización [13]. El diagrama correspondiente a este proceso está

representado en la figura (2.3).

Este problema fue originalmente discutido por Schwinger [2] para el caso con-

mutativo y usado por Álvarez-Gaumé y Witten [13] para calcular Z. En esta tesis

seguiremos la misma estrategia para el caso noconmutativo. En la siguiente sub-

sección daremos los detalles del cálculo expĺıcito de esta interacción residual nocon-

mutativa. Básicamente lo que tenemos es una interacción noconmutativa de éstas

en cada vértice no anómalo y encontraremos una solución exacta para dicha inter-

acción, aplicándolas finalmente para el cálculo de Z. La figura 2.3 en la página

siguiente es útil para el cálculo de esta amplitud.

2.4.2 Cálculo expĺıcito de la Interacción residual noconmu-

tativa

Comenzaremos con una teoŕıa para un campo escalar complejo de masa M acoplado

a un campo de gauge abeliano en un espacio noconmutativo. Debido a la bosonización

no conmutativa, este sistema será equivalente al modelo de Schwinger. El modelo

de Schwinger ha sido discutido en el contexto noconmutativo en diversos art́ıculos

[56, 57, 58, 59], no obstante, en el presente trabajo seguiremos un procedimiento

diferente. Considere la siguiente acción
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Figura 2.3: Diagrama noconmutativo para D = 4k + 2.

L =

∫
d2px

(
Dµφ̄ ? Dµφ+M2φ̄ ? φ

)
, (2.43)

con Dµφ = ∂µφ − ieAµ ? φ and Dµφ̄ = ∂µφ̄ + ieφ̄ ? Aµ. Si utilizamos la definición

para el producto estrella (f ? g)(x) = f(ξ)e
←−
∂ αΘαβ−→∂ βg(η)

∣∣
ξ=η=x

, donde se define
←−
∂ αΘαβ−→∂ β ≡ i

2
Θαβ←−∂ α

−→
∂ β. Algunos resultados encontrados por Schwinger [2] fueron

usados en la referencia [13] como una herramienta para calcular la anomaĺıa grav-

itacional en 4k + 2 dimensiones para gravitones acoplados a campos de spin 1
2
.

El primer término del lado derecho de (2.43) para gravitones acoplados a materia

∫
d2pxDµφ̄ ?Dµφ =

∫ (
∂µφ̄+ ieφ̄e

←−
∂ αΘαβ−→∂ βAµ

)(
∂µφ− ieAµe

←−
∂ αΘαβ−→∂ βφ

)
, (2.44)

donde hemos usado la propiedad de ciclicidad de la traza i.e.
∫
dxf(x) ? g(x) =∫

dxf(x)g(x) para todo f y g. Expandiendo el lado derecho de esta expresión e

integrando por partes, podemos factorizarlo como sigue

∫
φ̄

{
−

[
∂µ − ie

(
e
←−
∂ αΘαβ−→∂ βAµ

)][
∂µ − ie

(
Aµe

←−
∂ αΘαβ−→∂ β

)]}
φ. (2.45)

De manera que la acción original (2.43) resulta ser:
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L =

∫
φ̄

{
−

[
∂µ − ie

(
e
←−
∂ αΘαβ−→∂ βAµ

)][
∂µ − ie

(
Aµe

←−
∂ αΘαβ−→∂ β

)]
+M2

}
φ. (2.46)

Definamos ahora la función de partición Euclideana para un campo escalar ma-

sivo complejo propagándose en un campo electromagnético (constante) de la sigu-

iente forma:

Z =

∫
[Dφ][Dφ̄] exp

(
− L

)
, (2.47)

entonces la acción efectiva Γ está relacionada a la función de partición en la

forma Z = e−Γ

Γ = Tr ln

{
−

[
∂µ − ie

(
e
←−
∂ αΘαβ−→∂ βAµ

)][
∂µ − ie

(
Aµe

←−
∂ αΘαβ−→∂ β

)]
+M2

}
. (2.48)

La representación de Schwinger para la función logaŕıtmica puede ser expresada

como sigue

Γ = −Tr

∫ ∞

0

ds

s

{
e
−s

[
−

(
∂µ−ie

(
e
←−
∂ αΘαβ−→∂ β Aµ

))(
∂µ−ie

(
Aµe

←−
∂ αΘαβ−→∂ β

))
+M2

]
− e−s

}
.

(2.49)

Podemos escribir la intensidad de campo Fµν del campo electromagnético con-

stante —como es usual en la representación de Schwinger— como una matriz diago-

nal por bloques y trabajar únicamente con un bloque genérico de dos componentes.

Igualmente, tomaremos la siguiente norma:

A1 = 0, A2 = Fx1. (2.50)

Debe resaltarse que en esta norma, los órdenes más altos que el primer orden, se

desvanecen en la expansión del producto de Moyal. Manteniendo esto en mente

podemos calcular la acción efectiva Γ como:
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Γ = −Tr

∫ ∞

0

ds

s
e−sM2

exp

{
s

[
(∂µ−ieAµ)(∂µ−ieAµ)−ie i

2
Θαβ(∂µ∂αAµ∂β+∂αAµ∂

µ∂β)

ie
i

2
Θαβ(∂α∂βA

µ∂µ + ∂βA
µ∂α∂µ)− e2

(
i

2
Θαβ(Aµ∂αAµ∂β − ∂α∂βA

µAµ − ∂βA
µ∂αAµ)

−
(
i

2

)2

ΘαβΘλδ(∂α∂βA
µ∂λAµ∂δ + ∂βA

µ∂α∂λAµ∂δ + ∂βA
µ∂λAµ∂α∂δ)

)]}
− e−s.

(2.51)

Ahora nos enfocamos en el operador exponencial dado por

[
∂µ − ie

(
e
←−
∂ αΘαβ−→∂ βAµ

)][
∂µ − ie

(
Aµe

←−
∂ αΘαβ−→∂ β

)]
,

es necesario únicamente un espacio bidimensional expandido por el bloque corre-

spondiente. Luego de algunas simplificaciones obtenemos que este operador nos da

∂2
1 + ∂2

2 − ieFx1∂2 + i2e2F 2(x1)2 + eΘF∂2
2 − i

2
e2ΘF 2x1∂2 + 1

4
e2Θ2F 2∂2

2 . Aśı que

finalmente esto factoriza como

∂2
1 +

[(
1 +

eΘF

2

)
− ieFx1

]2

. (2.52)

Ahora, luego de sustitúır p̂j = −i∂j en esta última expresión, obtenemos

−
{
p̂2

1 +

[(
1 +

eΘF

2

)
p̂2 − eF x̂1

]2}
. (2.53)

Ahora, con el objeto de encontrar la acción efectiva (2.49) necesitamos calcular,

alternativamente

I = Tr exp

(
− s

{
p̂2

1 +

[(
1 +

eΘF

2

)
p̂2 − eF x̂1

]2})
(2.54)

Considerando el problema en una caja de volumen L× L y utilizando la definición

de la traza, obtenemos, finalmente
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I =

( ∫
dx2

∫
dp2

2π

)
Tr1 exp

(
− s

{
p̂2

1 + e2F 2

[
x̂1 −

(
1

eF
+

Θ

2

)
p2

]2})
. (2.55)

Aśı, hemos obtenido la acción efectiva de un oscilador armónico unidimensional.

Entonces,
(

1
eF

+ Θ
2

)
p2 con centro efectivo en (x1)0 =

(
1

eF
+ Θ

2

)
p2. La condición de

frontera: 0 ≤ p2 ≤
(

1
eF

+ Θ
2

)−1
L implica que

I = (V olR2)
1

2π

(
eF

1 + ΘeF
2

)
try exp{−s(p̂2

y + e2F 2ŷ2)} (2.56)

donde L = V olR. Esta traza nos proporciona —precisamente— la función de par-

tición de un oscilador armónico ordinario dado por

Trye
−s(p̂2

y+e2F 2ŷ2) =
1

2

1

sinh(seF )
. (2.57)

Obtenemos, finalmente

I = (V olR2)
1

4π

(
eF

1 + ΘeF
2

)
1

sinh(seF )
. (2.58)

Entonces la acción efectiva (2.49) está dada por

Γ ∝ −
∫ ∞

0

ds

s

p∏
j=1

1

4π

(
xj/2

1 +
Θxj

4

)
1

sinh(
sxj

2
)
e−sM2

+ constant, (2.59)

donde xj = 2eF .

2.4.3 Anomaĺıa gravitacional para Campos de spin 1
2

Usando la ecuación (2.59) concerniente a la amplitud total de la interacción residual,

obtenemos

Z = −
∫ ∞

0

ds

s

2k+1∏
j=1

1

4π

( 1
2
xj

sinh(
sxj

2
)

)(
1

1 + Θ
xj

4

)
exp(−sM2). (2.60)

Luego de una integración en s obtenemos finalmente
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Z = − 1

(4π)2k+1

1

M2

2k+1∏
j=1

1
2
xj

4π sinh(1
2
xj)

(
1

1 + Θ
xj

4

)
. (2.61)

Esta ecuación puede también ser reescrita como

I 1
2

= −i 1

(2π)2k+1
R(ε(i), p(j))ÂΘ(X), (2.62)

donde

ÂΘ(X) =
2k+1∏
j=1

( 1
2
xj

sinh(1
2
xj)

)(
1

1 + Θ
xj

4

)
, (2.63)

es el aśı llamado “roof-genus” noconmutativo. El roof-genus entra en el Teorema

de Atiyah-Singer, de manera que, nuestro cálculo conduce —evidentemente— a una

deformación noconmutativa del Teorema de Atiyah-Singer.

2.4.4 Anomaĺıa gravitacional para Campos de spin 3
2

Ahora nos gustaŕıa calcular el diagrama a un lazo de 2k + 2 gravitones externos de

momento p
(i)
µ y polarizaciones ε

(i)
µν con i = 1, . . . , 2k + 2 acoplados con Campos de

Rarita-Schwinger de spin 3
2
. Con el objeto de llevar a cabo este cálculo utilizaremos

la prescripción de Adler para encontrar un diagrama equivalente con 2k+1 gravitones

externos, donde hay una única inserción de un factor axial 1
2
(1− Γ̄) y 2k+1 vértices

no anómalos.

Comenzamos con las contribuciones noconmutativas linealizadas de norma fija

LRS
1 =

1

4
ihαβ ? ψµ ? Γα

↔
∂

(1− Γ̄

2

)
ψµ (2.64)

y

LRS
2 =

1

2
iGσαν ? ψ̄

σ ? Γνψα, (2.65)
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donde Gσαν =
(
∂σhαν−∂αhσν

)
. El análisis de la determinación de la norma involucra

la existencia de campos de ghost que modifican la amplitud total y que es modificada

por I 3
2
(total) = I 3

2
(gravitino)− I 1

2
.

Usando las reglas de Feynman asociadas a LRS
1 y LRS

2 en cada uno de los 2k +

1 vértices, tenemos que, para el i-ésimo vértice existe la inserción de un factor:

−1
4
iε

(i)
µ (p + p′)µ 1

p2−M2 exp
(
− i

2
Θρσpρp

′
σ

)
, donde p es el momento entrante y p′ es

el momento saliente. La contribución completa está “codificada” en la amplitud

Ẑ(ε(i), p(j),Θ). La amplitud total está dada por

I 3
2

= 22k+1iM2R(ε(i), p(j)) · Z̃(ε(i), p(j),Θ), (2.66)

dondeR(ε(i)p(j)) es el mismo factor cinemático que (2.40), el cual depende únicamente

de los momenta externos y de los vectores de polarización, aśı que Z̃ puede ser con-

siderada como la amplitud para el acoplamiento de un campo vectorial abeliano

noconmutativo —complejo y cargado— en un lazo acoplado a 2k+2 fotones de mo-

menta p(j) y tensores de polarización ε(i) en un espacio tiempo noconmutativo. Esta

interacción residual noconmutativa es descrita por las correspondientes interacciones

Lagrangeanas

L
(res)
1 =

1

4
Aµ ? φ̄σ ? ∂µφ

σ (2.67)

y

L
(res)
2 =

1

2
Gµν ? φ̄σ ? φ

σ, (2.68)

donde Gµν = ∂µAν − ∂νAµ − i
4
[Aµ, Aν ]?. La primera acción (2.67) nos da precisa-

mente la interacción que hemos discutido en la subsección previa y que consiste

de D campos escalares complejos con carga 1
4

acoplados a 2k + 2 “fotones” nocon-

mutativos. La segunda Lagrangeana (2.68) corresponde a un momento magnético

noconmutativo el cual tiene el término usual
∫
dDx φ̄µ ? (∂µAν − ∂νAµ) ? φν más un

término adicional de la forma

− i
4

∫
d4k+2x φ̄µ ? [Aµ, Aν ]? ? φ

ν , (2.69)
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el cual proviene del término cuadrático de la definición de Gµν . El término lineal es

exactamente el mismo que en el caso de spin 1
2

y entonces ambos términos pueden

ser reunidos y corresponden con el cálculo de Z para el caso de spin 1
2

en la sub-

sección previa. De modo que en este caso la única diferencia radica en el término

de interacción (2.69). Ahora procederé a calcular dicho término. Utilizaremos la

propiedad de ciclicidad de la traza con el objeto de remover el producto ? que surge

del conmutador de Moyal [Aµ, Aν ]?. Teniendo esto en mente obtenemos

− i
4

∫
d4k+2x

{(
φ̄µe

←−
∂ αΘαβ−→∂ βAµ

)
·
(
Aνe

←−
∂ αΘαβ−→∂ βφν

)
−

(
φ̄µe

←−
∂ αΘαβ−→∂ βAν

)
·
(
Aµe

←−
∂ αΘαβ−→∂ βφν

)}
. (2.70)

Ahora, usando la gauge (2.50) el único término que contribuye es el término de

segundo orden en Θ en la ecuación (2.70). Reordenando todos los términos e in-

tegrando por partes, todos los términos se cancelan idénticamente, lo cual significa

que el término cuadrático no contribuye a la amplitud. Entonces, la Lagrangeana

que “sobrevive” está dada por

L =

∫
d4k+2x φ̄σ ?

{
−

[
∂µ − ie

(
e
←−
∂ αΘαβ−→∂ βAµ

)]
×

[
∂µ − ie

(
Aµe

←−
∂ αΘαβ−→∂ β

)]
+M2 − i

2
Fµν

}
? φσ. (2.71)

Aśı, la acción efectiva se lee como

Z̃ = −Tr

∫ ∞

0

ds

s

×
{
e
−s

[
−

(
∂µ−ie

(
e
←−
∂ αΘαβ−→∂ β Aµ

))(
∂µ−ie

(
Aµe

←−
∂ αΘαβ−→∂ β

))
+M2− i

2
Fµν

]
− e−s

}
. (2.72)

Todos los términos exponenciales se factorizan y podemos ver que el problema se

reduce al mismo del cálculo para spin 1
2

de la subsección previa más la contribución

del factor tr exp
(
− 1

2
sF µν

(j)

)
= 2 cosh(sxj).
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Por lo tanto, obtenemos la amplitud Z̃ mediante la consideración de la con-

tribución ghost y esto da

Z̃ = −
∫ ∞

0

ds

s

2k+1∏
j=1

1

4π

( 1
2
xj

sinh(
sxj

2
)

)(
1

1 + Θ
xj

4

)(
− 1 +

2k+1∑
i=0

2 cosh(xi)

)
exp(−sM2).

(2.73)

Después de una integración sobre la variable z obtenemos, finalmente que

Z̃ = − 1

(4π)2k+1

1

M2

2k+1∏
j=1

1
2
xj

4π sinh(1
2
xj)

(
1

1 + Θ
xj

4

)(
− 1 +

2k+1∑
i=0

2 cosh(xi)

)
. (2.74)

De modo que la amplitud total para los campos de Rarita-Schwinger está dada

por

I 3
2
(total) = −i 1

(2π)2k+1
R(ε(i), p(j))

2k+1∏
j=1

1
2
xj

4π sinh(1
2
xj)

(
1

1 + Θ
xj

4

)(
−1+

2k+1∑
i=0

2 cosh(xi)

)
.

(2.75)

De esta forma, la amplitud total para los campos de Rarita-Schwinger es también

modificada por el factor dependiente de Θ justamente como en el caso de campos

de spin 1
2

de la subsección previa.

2.5 Anomaĺıas noconmutativas mezcladas

2.5.1 Anomaĺıas mezcladas para Campos de spin 1
2

En esta subsección se calculará la contribución de las anomaĺıas mixtas, las cuales

incluyen, no únicamente el acoplamiento de fermiones quirales a la gravedad sino

también la contribución de los campos de gauge no abelianos. Las anomaĺıas de

gauge noconmutativas para el caso de los campos de Yang-Mills han sido calculadas

en varios art́ıculos, véase por ejemplo [23, 25, 26, 28, 29] para diagramas planares

con grupo de norma U(N).
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Consideraremos un espacio tiempo noconmutativo de dimensión par D = 2n y

calcularemos amplitudes a un lazo para r gluones externos y n + 1 − r gravitones

externos. Ahora nos concentratremos en los diagramas anómalos noconmutativos

con n+ 1− r par. Un resultado reciente concerniente al cálculo de las anomaĺıas de

gauge quirales en la Teoŕıa de Yang-Mills en una dimensión par de espacio tiempo ha

sido desarrollada a través del uso de la condición de consistencia de Wess-Zumino

en la referencia [26]. En el presente trabajo aplicamos el procedimiento de [25].

Para el caso de diagramas no planares se ha desarrollado cierto trabajo previo en

[24, 40, 30]. Este análisis puede ser extendido a otros grupos de gauge a través de

la introducción del mapeo de Seiberg-Witten como puede verse en las referencias

[34, 36, 37, 38, 39].

Antes de proceder a evaluar los diagramas que tienen una contribución impor-

tante, revisemos primeramente algunas ideas relevantes de la Teoŕıa de Yang-Mills

noconmutativa. Consideremos, para empezar una Teoŕıa de Gauge con conexión

hermı́tica, invariante bajo la simetŕıa del grupo de Lie G, con campos de gauge

Aµ y transformaciones de gauge: δλAµ = ∂µλ + i
[
λ,Aµ

]
, con λ = λiTi, donde Ti

son los generadores del álgebra de Lie G del grupo G, en la representación adjunta.

En la Teoŕıa de Yang-Mills noconmutativa, el producto de funciones en la variedad

de espacio tiempo es promovido al producto de Moyal. Las transformaciones dadas

arriba son generalizadas para la teoŕıa noconmutativa como δλÂµ = ∂µΛ̂+i
[
Λ̂, Âµ

]
?
,

donde los conmutadores en este caso son definidos como
[
A,B

]
?
≡ A ? B − B ? A.

Debido a la noconmutatividad, un conmutador genérico toma valores en lo que se

denomina el Álgebra envolvente universal ( o como se conoce en el idioma inglés:

Universal Enveloping Algebra) U(G,R) del álgebra de Lie G en la representación R

(para más detalles, véase por ejemplo [60]). En particular,
[
Λ̂, Âµ

]
?

toma valores en

el álgebra envolvente universal U(su(N), ad) del álgebra de Lie su(N) (donde, por

cierto, G = SU(N)) en la representación adjunta ad. Por lo tanto, Λ̂ y los cam-

pos de gauge Âµ tomarán también valores en esta álgebra. Escribamos por ejemplo

Λ̂ = Λ̂ITI y Â = ÂITI , entonces,
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[
Λ̂, Âµ

]
?

=
{
Λ̂I , ÂJ

µ

}
?

[
TI , TJ

]
+

[
Λ̂I , ÂJ

µ

]
?

{
TI , TJ

}
, (2.76)

donde {A,B}? ≡ A ? B + B ? A es el anticonmutador noconmutativo y los ı́ndices

I, J,K etcétera, corren sobre el número de generadores del álgebra envolvente. En-

tonces todos los productos de los generadores TI serán necesarios con el objeto de

cerrar el álgebra U(G, ad). Su estructura puede ser obtenida mediante el cálculo

sucesivo de los conmutadores y anticonmutadores comenzando a partir de los gen-

eradores de G, hasta que el álgebra quede “cerrada”,

[
TI , TJ

]
= ifIJ

KTK ,
{
TI , TJ

}
= dIJ

KTK . (2.77)

La intensidad de campo está definida como F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]?, y por

tanto toma valores en U(G, ad).

De este modo, las anomaĺıas axiales en 2n dimensiones pueden ser obtenidas

mediante el cálculo de la amplitud asociada al diagrama a un lazo con r gluones

externos y n + 1− r gravitones externos. En el caso noconmutativo a cada vértice

de gluón le tenemos que insertar un término de la forma:

−iΓµT I
L exp

(
− i

2
Θρσp1ρp2σ

)
δ(p1 + p2 + k), (2.78)

donde T I
L es el generador del álgebra envolvente U(G,R) en la representación R

proporcionada por los fermiones izquierdos. El factor de la teoŕıa de grupo asociada

con un diagrama dado es: Tr
(
T I1

L ·T
I2
L · · · ·T

Ir
L

)
. Luego de que este factor es extráıdo,

en cada vértice de gluón tendremos un factor dado por

−iΓµ exp
(
− i

2
Θρσp1ρp2σ

)
δ(p1 + p2 + k). (2.79)

Por otra parte en cada vértice de gravitón, tenemos que insertar el factor

− i
4
εµνΓµ

(
1− Γ̄

2

)
(p+ p′)ν exp

(
− i

2
Θµνpµp

′
ν

)
.

El álgebra de matrices Γ de Dirac puede ser desarrollada y entonces tenemos que

la traza no distingue los vértices del gravitón y del gluón. Por lo tanto, el factor
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cinemático R(ε(i), p(j)) es exactamente el mismo que antes. Luego de esto, el vértice

del gravitón corresponde al de un campo escalar masivo complejo de carga 1
4

inter-

actuando con “fotones”, lo cual da origen a una teoŕıa efectiva noconmutativa de

campos escalares cargados, acoplados a fotones externos del mismo tipo del que fue

descrito en la sección previa. Luego de hacer los cálculos pertinentes del álgebra

de Dirac y de la traza en los ı́ndices de grupo para el vértice del gluón (2.78 ten-

emos −i exp
(
− i

2
Θρσp1ρp2σ

)
. Este vértice noconmutativo restante corresponde al

acoplamiento de un campo escalar a los mencionados escalares complejos masivos.

Por lo tanto, los diagramas restantes están constitúıdos de campos escalares externos

y fotones acoplados con campos escalares complejos, con los propagadores usuales

i/(p2 −M2), los cuales obedecen interacciones noconmutativas.

De manera similar a lo que ocurre en el caso conmutativo, ahora tenemos que

restringir la fórmula de la traza a la traza simétrica dado que la noconmutatividad

“respeta” la simetŕıa bajo permutaciones de las ĺıneas externas como puede verse

en la referencia [61]. Por tanto, el factor Z ′ es dado por

Z ′(Θ) = −STr

[
T I1

L T
I2
L . . . T Ir

L exp

(
− i

2
Θρσ

r−1∑
`=1

p`
1ρp

`
2σ

)]

×
(

∂

∂M2

)r ∫
ds

s

2k+1∏
j=1

[ 1
2
xj

4π sinh(
sxj

2
)

1(
1 + Θ

xj

4

)]
exp(−sM2), (2.80)

donde la derivada establece, como en el caso conmutativo, que el vértice −i · exp
(
−

i
2
Θρσp1ρp2σ

)
puede ser obtenido a través de una derivada con respecto a la masa al

cuadrado M2, i.e. i
p2−M2 (−i) i

p2−M2 = ∂
∂M2

[
i

p2−M2

]
. Aqúı STr es la traza simetrizada

en el factor correspondiendo a la amplitud de gauge y es constrúıda mediante la

inserción, en cada vértice, de un factor: −iΓµ exp
(
− i

2
Θρσ`

(j)
ρ `

(j+1)
σ

)
. Entonces la

traza simetrizada está dada por

Tr
[
T I1

L T
I2
L . . . T Ir

L

]{
cos

`(1)Θ`(2)

2
·cos

`(3)Θ`(4)

2
. . . cos

`(r−1)Θ`(r)

2
+las permutaciones

}
,

donde `(i)Θ`(i+1) ≡ Θρσ`
(i)
ρ `

(i+1)
σ .
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Por ejemplo, para r = 4 tenemos que

Tr
[
T I1

L T
I2
L T

I3
L T

I4
L

]{
cos

`(1)Θ`(2)

2
· cos

`(3)Θ`(4)

2
+ cos

`(1)Θ`(3)

2
· cos

`(2)Θ`(4)

2

+ cos
`(1)Θ`(4)

2
· cos

`(2)Θ`(3)

2

}
.

Luego de una integración en s obtenemos finalmente que la mezcla total de la

anomaĺıa está dada por

I ′1
2

= −STr

[
T I1

L T
I2
L . . . T Ir

L exp
(
− i

2
Θρσ

r−1∑
`=1

p`
1ρp

`
2σ

)]

× i

(2π)
n
2

R(ε(i), p(j))

n
2∏

j=1

1
2
xj

4π sinh(1
2
xj)

1(
1 + Θ

xj

4

) . (2.81)

La interpretación de la anomaĺıa de gauge es justo como en el caso de la anomaĺıa

de gauge quiral en la teoŕıa de Yang-Mills. En el caso del grupo de norma U(N),

como se describió en la referencia [26], la noconmutatividad impone condiciones más

restrictivas para la cancelación de la anomaĺıa. Aśı, para que una teoŕıa de gauge

noconmutativa esté libre de anomaĺıas, dicha teoŕıa deberá ser, necesariamente, no

quiral. En cuatro dimensiones, las teoŕıas de campos de norma quirales noconmuta-

tivas con grupo U(N), con materia; son libres de anomaĺıas; pero esto ya no puede

ser cierto en dimensiones mayores. Por ejemplo en el caso presente de D = 4k + 2

dimensiones, se ha demostrado [26] que para la materia adjunta, la anomaĺıa quiral

no se desvanece y es precisamente 2N veces la anomaĺıa en la representación funda-

mental.

2.5.2 Anomaĺıa mezclada para Campos de spin 3
2

En una forma totalmente análoga al caso de las anomaĺıas mezcladas noconmutativas

de campos de gauge y gravitacionales acoplados a campos de materia quirales y

complejos de spin 1
2
, podemos calcular las anomaĺıas mezcladas para el caso de spin

3
2
. Entonces tenemos
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Z̃ ′(Θ) = −STr

[
T̃ I1

L T̃
I2
L . . . T̃ Ir

L exp
(
− i

2
Θρσ

r∑
`=1

p`
1ρp

`
2σ

)]

×
(

∂

∂M2

)r ∫
ds

s

2k+1∏
j=1

[ 1
2
xj

4π sinh(
sxj

2
)

1(
1 + Θ

xj

4

)](
− 1 +

2k+1∑
i=0

2 cosh(xi)

)
exp(−sM2).

(2.82)

Luego de una integración en s se tiene, finalmente que

I ′3
2

= −STr

[
T̃ I1

L T̃
I2
L . . . T̃ Ir

L exp
(
− i

2
Θρσ

r∑
`=1

p`
1ρp

`
2σ

)]

× i

(2π)
n
2

R(ε(i), p(j))

n
2∏

j=1

1
2
xj

4π sinh(1
2
xj)

1(
1 + Θ

xj

4

)( n
2∑

i=1

2 cosh(xi)

)
, (2.83)

donde STr denota la traza como fue definida en la subsección previa, es decir

es constrúıda mediante la inserción, en cada vértice, de un factor: −iΓµ exp
(
−

i
2
Θρσ`

(j)
ρ `

(j+1)
σ

)
.
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Caṕıtulo 3

Efectos de la interacción

noconmutativa λΦ4
? en la

evaporación de un hoyo negro en

dos dimensiones.

“Mi distinguido señor, en este mundo no es tan fácil poner en claro estas cosas

evidentes. Siempre he encontrado que estas cosas evidentes son las más enredadas

de todas”. (H. Melville, “Moby Dick”, cap. LXXXV).

3.0.3 Antecedentes de la radiación de agujeros negros

Desde la segunda mitad de la década de los 70’s, se ha escrito una gran cantidad de

trabajos sobre la cuantización de campos libres en espacios de fondo curvos. En esos

años la motivación fundamental para considerar tales campos era la creciente evi-

dencia de que éstos pod́ıan emitir radiación en la cercańıa de un campo de gravedad

muy intenso [62]. No obstante, los trabajos relacionados con campos interactuantes

no han sido tan numerosos. En la ref. [65] puede verse uno de los trabajos más

detallados sobre campos cuánticos interactuantes en espacios curvos. Una de las di-
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ficultades que surgen en esta área es que los cálculos de las teoŕıas perturbativas se

complican notablemente. Paralelamente queda el problema de definir los estados de

vaćıo en diferentes regiones de dichos espacios curvos. Para una revisión moderna de

la radiación de Hawking y campos cuánticos en espacios curvos pueden consultarse

las referencias [63] y [93].

Por otra parte, en los últimos años se ha notado un creciente interés en los

efectos de la geometŕıa noconmutativa en diferentes modelos cosmológicos. Esto

es porque la cosmoloǵıa podŕıa proporcionar una posible manera de probar teoŕıas

más allá del modelo estándar de la f́ısica de part́ıculas. Un ejemplo de esto puede

verse en [66]. Ah́ı se señala la posibilidad de que una geometŕıa noconmutativa

podŕıa inducir fluctuaciones en el proceso de inflación, modificando las relaciones

de dispersión a distancias cortas. En este trabajo la gravedad no es afectada por la

noconmutatividad, manteniéndose como un “expectador”.

Asimismo, ha habido novedosos intentos de explorar las consecuencias de la

noconmutatividad en un espacio tiempo de Schwarzschild. La idea de la noconmu-

tatividad en las coordenadas del espaciotiempo ha estado en la literatura desde hace

años [67].

En [68] se obtiene el horizonte de eventos de un agujero negro en un espacio

tiempo noconmutativo, desarrollando un cálculo perturbativo a segundo orden. De-

bido a que este tipo de agujero negro es no rotante, no se presentan correcciones a

primer orden en el parámetro de noconmutatividad [69]. En algunos de los trabajos

recientes, los efectos del espaciotiempo noconmutativo son codificados en algunas

propiedades de un agujero negro de Schwarzschild como son el área del horizonte

de eventos y la temperatura de Hawking. La desviación de esas propiedades de sus

valores usuales depende del parámetro de noconmutatividad [70].

Recientemente se ha estudiado algunos modelos cosmológicos en los cuales tanto

la gravedad como los campos de materia son noconmutativos. Esto es descrito

en el famoso modelo de Connes-Lott [71]. Otra discusión de la materia nocon-

mutativa propagándose en un espaciotiempo dinámico noconmutativo (linealizado)

puede verse en la referencia [72]. Aqúı son calculadas las anomaĺıas gravitacionales
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en varias dimensiones, incluyendo el cálculo de la cancelación de anomaĺıas en su-

pergravedad en diez dimensiones.

Motivado por esta ĺınea de razonamiento, en el presente caṕıtulo estudiaré el

efecto de la noconmutatividad en el flujo de radiación en un agujero negro de

Schwarzschild obtenido al considerar una interacción del tipo λΦ4
? en los campos

escalares de materia. De esta parte del trabajo de tesis recientemente se ha acep-

tado para su publicación el art́ıculo [73].

3.1 Radiación en un agujero negro bidimensional

con interacción λΦ4

El descubrimiento de que en el horizonte de eventos de un agujero negro se emite

radiación es atribúıdo generalmente a Stephen Hawking [62]. Existe, sin embargo,

evidencia de que Yakov Zeldovich e Igor Novikov teńıan un modelo bastante desar-

rollado de la solución desde 1971, como puede verse en la referencia [74]. Como

refiere Kip Thorne en este libro, una de las limitantes —en el caso de Zeldovich—

para hallar la respuesta correcta, se debió a que en ese tiempo no se contaba con

una teoŕıa sobre las leyes que rigen los campos cuánticos en espacios curvos. En la

segunda mitad de la década de los años 70 esta situación cambió drásticamente. A

partir de entonces y hasta la fecha, el número de trabajos sobre la cuantización en

espacios curvos se ha incrementado notablemente. Una revisión detallada y actual

de este tópico puede verse en [75]

En su trabajo sobre la radiación de agujeros negros publicado en 1975 [62],

Hawking consideró un modelo de campos de materia no interactuantes dentro de

una geometŕıa clásica (descrita por la métrica de Schwarzschild). El ejemplo más

simple que uno podŕıa considerar es el de una part́ıcula neutra de spin cero con

masa m descrita por un campo real de Klein-Gordon la cual se propaga en la región

I del diagrama de Penrose (fig. A.1) del espacio tiempo de Schwarzschild extendido.

Este campo satisface la ecuación
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gµν∇µ∇νΦ−m2Φ = 0, (3.1)

donde

gµν∇µ∇νΦ = (−g)−
1
2∂µ

(
(−g)

1
2 gµν∂νΦ

)
. (3.2)

En ausencia de interacciones entre los campos de materia, el agujero negro emitirá

part́ıculas con una temperatura T = 1/8πM [62]. El estado de esta radiación será

de un flujo de part́ıculas salientes a la temperatura citada. La pregunta que surge a

continuación es si dicha emisión permanece inalterada cuando se toman en cuenta

las autointeracciones entre los campos. Ahora, para un agujero negro inmerso en un

baño térmico a la temperatura T = 1/8πM , existen argumentos (ver por ejemplo

[76] para anticipar que la radiación seguirá siendo térmica. Esto no es del todo

inesperado. El lector interesado puede consultar la referencia [77] (éste es uno de

los primeros trabajos en tratar el tema). Por el principio del balance detallado uno

puede esperar que los decaimientos u otros procesos causados por la interacción sean

compensados precisamente por sus inversos cuando los flujos entrantes y salientes

son ambos de naturaleza térmica y están a la misma temperatura. Si la emisión

de un agujero negro fuese no térmica en el interior de un baño térmico, la segunda

ley de la termodinámica podŕıa ser violada, i.e. el agujero negro emitiŕıa radiación

no térmica de baja entroṕıa mientras absorbe radiación térmica de alta entroṕıa

resultando en un decremento neto de entroṕıa en el sistema completo. Sin embargo,

cuando el agujero negro no se encuentra en equilibrio con sus alrededores —y por

tanto el flujo entrante no tiene la misma temperatura que el agujero negro— uno

no espera, obviamente, que el flujo saliente sea térmico. Consideremos por ejemplo

el caso en que la masa del agujero negro se mantenga constante. Las densidades

de enerǵıa de las radiaciones entrante y saliente son entonces las mismas. Si la

radiación entrante es no térmica (baja entroṕıa) entonces la radiación saliente puede

ser también no termal, la única restricción termodinámica es que su entroṕıa sea al

menos tan grande como la de la radiación entrante. Para una revisión actualizada

sobre la radiación de agujero negro puede consultarse [78].
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Para un agujero negro en cuatro dimensiones rodeado por el vaćıo, la densidad

de enerǵıa de la radiación emitida decrece a medida en que se expande en el exterior

del agujero negro. Para un flujo de part́ıculas en equilibrio térmico la temperatura

de equilibrio está determinada por la densidad. Para un campo no interactuante,

sin embargo, el espectro emitido permanece térmico con la temperatura original del

agujero negro, una temperatura que es demasiado alta para una densidad de enerǵıa

siempre decreciente.

Cualquier interacción del campo tendŕıa como efecto un distorsión del espectro

y un decremento de la enerǵıa media de los “cuantos” emitidos. Esta dilución de la

densidad de enerǵıa que ocurre en cuatro dimensiones, no sucede en un modelo bidi-

mensional de agujero negro. Aún en la presencia de interacciones, un flujo saliente

de naturaleza térmica permanecerá en equilibrio consigo mismo. Sin embargo, los

flujos entrante y saliente pueden interactuar entre śı. Podemos considerar ambos

flujos como dos baños térmicos separados entre śı. Si están a la misma temperatura

de T = 1/8πM , están en equilibrio y el balance detallado se puede aplicar para

mantener la naturaleza térmica del espectro.

La presencia de un agujero negro rompe la invariancia translacional y por lo

tanto, la conservación de momento, de manera que es de esperar que ocurran inter-

acciones entre las part́ıculas entrantes y salientes.

Birrel y Davies [79] han investigado la emisión de part́ıculas para un modelo de

Thirring bidimensional y encontraron que: ...“para el modelo de Thirring al menos,

la radiación emitida es de naturaleza térmica aún en la presencia de interacciones”.

Este resultado sorprendente parece ser consecuencia de la invariancia conforme del

modelo de Thirring. Dado que cualquier espacio bidimensional es conformalmente

plano, existe un análogo conforme de la conservación de momento lo cual previene

cualquier interacción entre los flujos salientes y entrantes.

Para encontrar justificación f́ısica para el último enunciado, se ha propuesto

introducir una interacción del tipo λΦ4 para un campo escalar sin masa en presencia

de un agujero negro bidimensional como puede verse en el trabajo [80].

En la presente tesis examinaremos dicho enfoque. Tratando de mantener esta
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tesis como un trabajo “autocontenido”, daré a continuación una breve introducción

al enfoque utilizado en esta referencia. Luego de la introducción procederé a explicar

como puede “deformarse” el producto entre operadores en la interacción. En esencia,

se propone reemplazar el producto usual entre los operadores que representan al

campo escalar en la interacción λΦ4 por una nueva interacción de la forma λΦ4
? =

λΦ ? Φ ? Φ ? Φ y ver el efecto que produce esta nueva interacción en el flujo de

part́ıculas salientes.

Como hemos visto anteriormente los campos escalares sin masa Φ satisfacen la

ecuación de “onda”

1√
−g

∂µ

(√
−ggµν∂νΦ

)
= 0, (3.3)

Por otra parte, la métrica de un agujero negro bidimensional (ver apéndice) está

dada por

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2

=

(
1− 2M

r

)
dudv, (3.4)

donde u y v se definen en el Apéndice A como u = t − r∗, v = t + r∗ y r∗ es la

coordenada “tortuga” definida en el apéndice:

r∗ = r + 2M ln

(
r

2M
− 1

)
. (3.5)

Ahora consideremos la solución de la ec.(3.3). Podemos, expresar estos campos

de la forma

Φ(u, v) = ΦO(u) + ΦI(v) , (3.6)

donde ΦO y ΦI son campos que dependen de las coordenadas u y v respectivamente.

Los sub́ındices indican que se trata de campos salientes (O) o entrantes (I) como se

verá enseguida. Con el objeto de cuantizar el campo, se expanden estas soluciones en
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modos normales aśı como usando operadores de creación y destrucción “apropiados”

para estos modos. La expansión más simple viene dada en términos de las ondas

planas

χω = N
e−iωv

(2|ω|)1/2
, (3.7)

para los modos entrantes, y

ψω = N
e−iωu

(2|ω|)1/2
, (3.8)

para los modos salientes. De manera que las componentes en la ec.(3.6) pueden

expandirse

ΦI =
∑
ω>0

(bωχω + b†ωχ
∗
ω) , (3.9)

ΦO =
∑
ω>0

(Cωψω + C†ωψ
∗
ω) . (3.10)

En lo que resta de la tesis adoptamos esta convención para los campos que repre-

sentan part́ıculas entrantes y salientes, respectivamente. En las ecuaciones (3.7) y

(3.8) hemos introducido el parámetro N el cual es un factor de normalización que

no depende de la frecuencia.

Para dar significado a estas expresiones debemos interpretar cada uno de los

operadores. Definiremos el estado de vaćıo de los estados de campos entrantes como

aquél estado |s〉 para el cual

bω|s〉 = 0 , (ω > 0) . (3.11)

Los estados correspondientes |s′〉 definidos con el operador Cω representan el vaćıo

para estados de part́ıculas salientes, i.e.,

Cω|s′〉 = 0, (ω > 0). (3.12)
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Como es usual, |s〉 and |s′〉 están relacionadas a través de una transformación de

Bogoliubov. En esos términos, el flujo térmico de part́ıculas salientes del agujero

negro con frecuencia ω corresponde al valor de expectación del operador de número

C†ωCω, i.e.

dF

dω
(ω) =

1

π
tr

(
ρC†ωCω

)
, (3.13)

donde ρ es la matriz de densidad. Ésta se construye de la siguiente forma:

ρ = ρO ⊗ ρI ,

donde

ρO = |0〉〈0| , (3.14)

ρI =
⊗

ω

∑
nω

e−nωωβ′|nω〉I〈nω|I , (3.15)

y |nω〉I es el estado de n “cuantos” en el modo entrante con enerǵıa ω a temperatura

β’.

Ahora examinaremos qué es lo que sucede cuando introducimos un término de

autointeracción para el campo escalar Φ. En particular estamos interesados en el

valor esperado del flujo de part́ıculas salientes. Utilizando el cuadro de interacción,

la matriz de densidad evoluciona [81] a través de una matriz S de manera que

ρ(t) = S(t)ρ(0)S†(t) , (3.16)

donde ρ(0) la matriz de densidad inicial y S es una matriz de evolución que definire-

mos en la siguiente sección.

3.2 Correcciones noconmutativas al Flujo de ra-

diación

“Hay algunas empresas en que el método adecuado es un desorden cuidadoso”. (H.

Melville, “Moby Dick”, cap. LXXXII)
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A continuación introducimos una autointeracción noconmutativa para los cam-

pos en nuestro modelo de agujero negro bidimensional. La interacción será del tipo

λΦ4
? ≡ λΦ ? Φ ? Φ ? Φ. El significado de la operación ? será, asimismo explicado

en esta sección. Las coordenadas u y v dependen de las coordenadas canónicas no-

conmutativas (r, t) de la forma usual u = t − r∗ y v = t + r∗ donde la coordenada

r∗ se definió previamente. Por lo tanto los campos Φ dependen de las coordenadas

noconmutativas xµ = (r, t), i.e. [xµ, xν ] = iΘµν . Entonces promovemos todos los

productos de las funciones de los modos normales en productos estrella [18]. Es

natural entonces definir el producto de Moyal

(
Φ1 ? Φ2

)
(x) ≡

[
e

i
2
Θµν∂ξµ∂ην Φ1(x+ ξ)Φ2(x+ η)

]
ξ=η=0

, (3.17)

donde Θµν = Θεµν es la matriz determinada por el parámetro noconmutativo Θ.

Ahora introducimos la interacción noconmutativa, modificando las ecuaciones

para S(t) dadas en [80] como sigue

S?(t) = T exp

[
− i

∫ t

H?
I (t′)dt′

]
, (3.18)

donde el Hamiltoniano noconmutativo H∗I (t) está dado por

H?
I (t) =

∫
λ

4
Φ1?Φ2?Φ3?Φ4 dr

=
λ

4

∫
dr

(
Φ(x1)?Φ(x2)

)(
Φ(x3)?Φ(x4)

)
=

λ

4

∫
dre−

i
2

←−
∂ 1Θ12−→∂ 2e−

i
2

←−
∂ 3Θ34−→∂ 4Φ(x1)Φ(x2)Φ(x3)Φ(x4). (3.19)

Consideremos ahora el diagrama de la siguiente página que representa la interacción

λΦ4
? de los campos escalares. El término de interacción (figura( 3.1)) debe ser

simétrico bajo la permutación de cualquier par de campos. Por lo tanto deberemos

simetrizar la última expresión [18, 61] para obtener

λ

12

∫
drF (Θ) · Φ(x1)Φ(x2)Φ(x3)Φ(x4), (3.20)
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F

1 2

3 4

Figura 3.1: Representación gráfica de la interacción noconmutativa entre los campos.

donde

F (Θ) = cos
∂1Θ∂2

2
cos

∂3Θ∂4

2
+cos

∂1Θ∂3

2
cos

∂2Θ∂4

2
+cos

∂1Θ∂4

2
cos

∂2Θ∂3

2
. (3.21)

donde se introdujo la notación ∂iΘ∂j ≡
←−
∂ iΘ

ij−→∂ j. Por lo que, a nivel de la

interacción, la corrección noconmutativa únicamente introduce un factor de fase

F (Θ)dado por los términos de los cosenos. Este factor es el que se introduce en el

vértice de la interacción —fig.(3.1)—.

Al mismo tiempo, vemos de la ec.(3.18), que la corrección noconmutativa al

Hamiltoniano de interacción, se refleja también en la evolución de la matriz de

densidad. Procediendo de manera análoga a la sección 3.1 tenemos que el flujo de

part́ıculas ec.(3.13) se verá como

dF ?

dω
(ω) =

1

π
tr

(
ρ(t) ? C†ωCω

)
=

1

π
tr

(
S?(t)ρ(0)S?†(t)C†ωCω

)
, (3.22)

donde S?(t) = 1 + S?
1(t) + S?

2(t) + . . . . Debido al hecho de que ρ(0) y Cω son

independientes de las coordenadas locales r y t y que S?(t) depende únicamente de

t, el producto de Moyal no aparece en la ec. (3.22).
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Calculando S? a segundo orden en el parámetro λ y demandando que S?S?† = 1,

tenemos que

dF ?

dω

∣∣∣∣
2

(ω) =
1

π

∑
α

pα

〈
α

∣∣∣∣S?†
1

[
C†ωCω, S

?
1

]∣∣∣∣α〉
=

1

π

∑
αβ

pα(nωβ − nωα)

∣∣∣∣〈β∣∣∣∣S?
1

∣∣∣∣α〉∣∣∣∣2, (3.23)

donde usamos el hecho que {|α〉}, {|β〉} son conjuntos de estados ortogonales y

completos del campo Φ. Son seleccionados de manera tal que serán eigenestados del

operador de número para cada uno de los modos de Φ. Aqúı pα denota las funciones

de probabilidad térmicas para los estados |α〉 en la matriz de densidad ρ(0). Además

nωα y nωβ representan el número de “cuantos” salientes de enerǵıa ω en los estados

|α〉 y |β〉, respectivamente. La expresión: |〈β|S?
1 |α〉|

2 representa la probabilidad de

transición del sistema, que, iniciando en el estado |α〉 evoluciona hasta un estado

final |β〉 bajo la interacción noconmutativa y, finalmente, nωβ − nωα ≡ ∆nω es la

diferencia en el número de part́ıculas salientes de enerǵıa ω durante el proceso.

En la derivación de la ec. (3.23) hemos usado el hecho de que

S?
1 + S?†

1 = 0 , (3.24)

S?
1 ? S

?†
1 + S?†

2 + S?
2 = 0 . (3.25)

Aqúı, S?
1 sólo depende de la coordenada t, por lo que el producto de Moyal, en este

caso, se reduce al producto usual.

Por otra parte si introducimos la ecuación (3.21) en S?
1 y S?†

1 , tenemos que las

correcciones noconmutativas empiezan a segundo orden en el parámetro Θ. Entonces

las correcciones noconmutativas provienen del término de interacción noconmutativo

λΦ4
?. Los campos escalares pueden ser expandidos en modos ortogonales cuya base

está dada por las ondas planas en la ec. (3.8)

Los intentos de calcular correcciones usando la exponencial completa se ven

impedidos por el hecho de que los campos escalares contienen, a su vez, funciones
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exponenciales —ecs.(3.7, 3.8)— por lo que se presentan derivadas a todos los órdenes.

Como un cálculo exacto no es posible adoptamos aqúı una expansión perturbativa

en Θ << 1. Para ser concretos calculamos la corrección noconmutativa de orden

más bajo, la cual será cuadrática en Θ.

De manera que ahora el producto de los campos en la interacción S?
1(t) queda

S?
1(t) = − i

4

∫ t

λ

(
Φ1 ? Φ2 ? Φ3 ? Φ4 + permutaciones

)
dr′dt′, (3.26)

aqúı “permutaciones” denota la suma de todas las permutaciones que provienen de

la ec. (3.20), la cual es manifiestamente simétricaen el intercambio de cualquier par

de campos (véase ec. (3.30) más adelante).

En la siguiente sección calcularemos la primera corrección noconmutativa distinta

de cero, la cual es una corrección a segundo orden en la expansión de productos de

Moyal para el Hamiltoniano de interacción H?
I . Por lo tanto podemos escribir

H?
I = HI +HNC

I [Θ2] +O[Θ4], (3.27)

donde HNC
I [Θ2] estará dado por la ec. (3.44) (ver más adelante). Si sustitúımos

esta última expresión en S?
1 obtenemos

S?
1 = S1 + SNC

1 [Θ2] +O[Θ4], (3.28)

con S1 denotando la acción conmutativa usual descrita en la referencias [80, 82].

Aqúı SNC
1 [Θ2] está dada por

SNC
1 [Θ2] = −i

∫
HNC

I [Θ2]dt. (3.29)

En la siguiente sección vamos a considerar las correcciones noconmutativas al flujo

de part́ıculas salientes de un agujero negro.
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3.3 Corrección a segundo orden noconmutativa al

Hamiltoniano H?
I

Hemos mencionado que la corrección noconmutativa al Hamiltoniano de interacción

a primer orden en el parámetro de noconmutatividad Θ puede ser calculada y de-

saparece. Para ver que esto es aśı tomemos la interacción λΦ4
? con los productos de

los campos simetrizados de la manera siguiente:

∫
drλΦ4

? =
λ

6

∫
dr

(
Φ1 ? Φ2 · Φ3 ? Φ4 + Φ1 ? Φ2 · Φ4 ? Φ3 + Φ2 ? Φ1 · Φ3 ? Φ4

+ Φ2 ? Φ1 · Φ4 ? Φ3 + Φ1 ? Φ3 · Φ2 ? Φ4 + Φ1 ? Φ3 · Φ4 ? Φ2

+ Φ3 ? Φ1 · Φ2 ? Φ4 + Φ3 ? Φ1 · Φ4 ? Φ2 + Φ1 ? Φ4 · Φ2 ? Φ3

+ Φ1 ? Φ4 · Φ3 ? Φ2 + Φ4 ? Φ1 · Φ2 ? Φ3 + Φ4 ? Φ1 · Φ3 ? Φ2

)
. (3.30)

Por supuesto, esta ecuación es equivalente a la ec. (3.20).

Sabemos que los productos de Moyal dependen de Θµν el cual es antisimétrico y

por lo tanto los términos como Φ1 ?Φ2 ·Φ3 ?Φ4 y el correspondiente Φ1 ?Φ2 ·Φ4 ?Φ3

en la expresión dada arriba, son el negativo uno de otro a primer orden en Θ, y por

lo tanto se cancelan. Igualmente ocurre para el resto de los pares de términos de

la expresión dada arriba. Conclúımos que la corrección noconmutativa al flujo de

part́ıculas —ec. (3.21)— tendrá una primera corrección distina de cero a segundo

orden en Θ.

La amplitud noconmutativa 〈β|S?
1 |α〉 dada en la ec.(3.23) para el flujo de ra-

diación saliente a segundo orden en λ puede calcularse de varias formas. Una de

ellas es usando una representación diagramática. En la siguiente sección veremos

esto. Veremos que aparecen términos que contienen elementos de matriz de S1 y

de SNC
1 a segundo orden el Θ. Hay que resaltar que para calcular las correcciones

noconmutativas al flujo de part́ıculas salientes a todos los órdenes en Θ, podemos

utilizar una vez más los diagramas propuestos originalmente por [80]. Dichos dia-

gramas se verán modificados por la interacción noconmutativa como ya se mencionó
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en la sección previa —véase la figura 3.1 y ecs.(3.20 y 3.21)—. La mayor parte de los

términos pueden ser calculados de manera directa, aún cuando los pasos intermedios

son laboriosos.

De la ecuación 3.21 se tiene que

cos

(
∂1Θ∂2

2

)
cos

(
∂3Θ∂4

2

)
= 1− 1

2!

[(
∂1Θ∂2

2

)2

+

(
∂3Θ∂4

2

)2]
+O[Θ4]. (3.31)

y usando la expansión en serie de potencias para la función cos (α)

cos (α) = 1− α2

2!
+
α4

4!
− α6

6!
+ . . .

para el primer sumando de la expresión entre corchetes de la ecuación anterior

cos

(
∂1Θ∂2

2

)
cos

(
∂3Θ∂4

2

)
=

[
1− 1

2!

(
∂1Θ∂2

2

)2

+
1

4!

(
∂1Θ∂2

2

)4

+ . . .

]
×

[
1− 1

2!

(
∂3Θ∂4

2

)2

+
1

4!

(
∂3Θ∂4

2

)4

+ . . .

]
= 1− 1

2!

[(
∂1Θ∂2

2

)2

+

(
∂3Θ∂4

2

)2]
+O[Θ4]

(3.32)

y desarrollando los términos de la forma

(
∂1Θ∂2

)2 ≡
(←−
∂ µ1Θ

µν−→∂ ν2

)2

= Θ2
(←−
∂ 1

−→
∂ 2 −

←−
∂ 2

−→
∂ 1

)2
, (3.33)

con resultados similares para
(
∂3Θ∂4

)2
, etcétera. Sustituyendo la última expresión

en la ec.(3.21) tenemos que, la primera contribución noconmutativa no nula viene

dada por

−Θ2

8
Φ(x1)

[←−
∂2

r

−→
∂2

t − 2
←−
∂ r

←−
∂ t

−→
∂ r

−→
∂ t +

←−
∂2

t

−→
∂2

r

]
Φ(x2)

(
Φ(x3)Φ(x4)

)
, (3.34)

64



donde los Φ(xi) = ΦI(xi) + ΦO(xi) fueron dados anteriormente. Para calcular los

términos que aparecen en la última ecuación usaremos que

∂2
t ψωi

= −ω2
iψωi

, (3.35)

∂r∂tψωi
= ω2

i

(
1− 2M

r

)−1

ψωi
, (3.36)

∂2
rψωi

= iωi

(
1− 2M

r

)−2(
iωi −

2M

r2

)
ψωi

, (3.37)

para los modos salientes —con expresiones análogas para los complejos conjugados

ψ∗ωi
—. De manera similar tenemos que

∂2
t χωi

= −ω2
i χωi

, (3.38)

∂r∂tχωi
= −ω2

i

(
1− 2M

r

)−1

χωi
, (3.39)

∂2
rχωi

= iωi

(
1− 2M

r

)−2(
iωi +

2M

r2

)
χωi

, (3.40)

para los modos entrantes χωi
—con expresiones análogas para los complejos conju-

gados χ∗ωi
—. A continuación evaluaremos las derivadas que aparecen en la ec.(3.34),

por ejemplo, para el primer término, tenemos que

Φ(x1)
←−
∂2

r

−→
∂2

tΦ(x2) =

(
1− 2M

r

)−2 ∑
ω1,ω2

{
ω2

1Φ(x1)ω
2
2Φ(x2)

−i2M
r2

[(
ω1Φ(x1)

)(
ω2

2Φ(x2)
)
− 2ω1

(
b†1χ

∗
1 + C1ψ1

)(
ω2

2Φ(x2)
)]}

, (3.41)

De manera similar calculamos el término que contiene las derivadas cruzadas

Φ(x1)2
←−
∂ r

←−
∂ t

−→
∂ r

−→
∂ tΦ(x2) =

−2

(
1− 2M

r

)−2 ∑
ω1,ω2

{[
ω2

1Φ(x1)− 2ω2
1ΦI(x1)

][
ω2

2Φ(x2)− 2ω2
2ΦI(x2)

]}
(3.42)

Procediendo de manera análoga con el último término de la ec.(3.34) obtenemos

Φ(x1)
←−
∂2

t

−→
∂2

rΦ(x2) =

(
1− 2M

r

)−2 ∑
ω1,ω2

{
ω2

1Φ(x1)ω
2
2Φ(x2)

65



−i2M
r2

[(
ω2

1Φ(x1)
)(
ω2Φ(x2)

)
− 2ω2

1Φ(x1)ω2

(
b†2χ

∗
2 + C2ψ2

)]}
, (3.43)

Si ahora sumamos todas las contribuciones anteriores y sustitúımos en la ec.(3.21)

la corrección noconmutativa al Hamiltoniano queda

HNC
I (Θ2) = −

∫
dr
λΘ2

96
Φ(x1)

[←−
∂2

r

−→
∂2

t−2
←−
∂ r

←−
∂ t

−→
∂ r

−→
∂ t+
←−
∂2

t

−→
∂2

r

]
Φ(x2)Φ(x3)Φ(x4)+permut.

= −
∫
dr
λΘ2

24

(
1− 2M

r

)−2 ∑
ω1,ω2

{
ω2

1ΦI(x1)ω
2
2ΦO(x2) + ω2

1ΦO(x1)ω
2
2ΦI(x2)

+i
M

r2

[
ω1

(
b†1χ

∗
1+C1ψ1

)(
ω2

2Φ(x2)
)
+

(
ω2

1Φ(x1)
)
ω2

(
b†2χ

∗
2+C2ψ2

)]}
Φ(x3)Φ(x4)+permut.

(3.44)

Y procediendo de manera similar para el término Φ(x3)
(
∂3Θ∂4/2

)2
Φ(x4) queda

una ecuación igual pero con x1 → x3 y x2 → x4. Aún falta simetrizar, es decir sumar

los términos que provienen de cos (∂1Θ∂3/2) cos (∂2Θ∂4/2)+cos (∂1Θ∂4/2) cos (∂2Θ∂3/2).

Esta es la primera corrección noconmutativa no nula de H?
I .

3.4 Construcción de los diagramas de la teoŕıa no-

conmutativa

Para constrúır diagramas que tienen una correspondencia uno a uno con las difer-

entes contribuciones a la amplitud 〈β|S?
1 |α〉, vamos a utilizar algunas reglas útiles.

A continuación daré algunos detalles sobre este método. El lector interesado puede

consultar la referencia [80]. Todos los diagramas consisten de un vértice con cuatro

ĺıneas convergiendo, o bien dos ĺıneas y un lazo. Las reglas son las siguientes:

1. Se escribe la interacción Φ4
? ordenado normalmente dentro de la amplitud

〈β|S?
1 |α〉. Esta regla se obtiene de la expresión 3.21.

2. Para cada término Cωψω dibújese una ĺınea con una flecha apuntando (de

izquierda a derecha) hacia el vértice. Esto representa una part́ıcula saliente en el

estado inicial.

66



3. Para cada término C†ωψ
∗
ω dibújese una ĺınea con una flecha apuntando (de

izquierda a derecha) hacia afuera del vértice. Esto representa una part́ıcula saliente

en el estado final.

4. Para cada término bωχω dibújese una ĺınea con una flecha apuntando (de

derecha a izquierda) hacia el vértice. Esto representa una part́ıcula entrante en el

estado inicial.

5. Para cada término b†ωχ
∗
ω dibújese una ĺınea apuntando (de derecha a izquierda)

hacia afuera del vértice. Esto representa una part́ıcula entrante en el estado final.

6. Para los términos χ∗ω1?χω2δω1,ω2 ó ψ∗ω1
?ψω2δω1,ω2 obtenidos en el ordenamiento

normal de Φ, dibújese un lazo unido al vértice.

Los diferentes diagramas utilizados de acuerdo a la presencia de part́ıculas en-

trantes y/o salientes y en los estados inicial y/o final se representan en la figura 3.2

dada en la siguiente página.

Para encontrar las diferentes contribuciones al flujo de part́ıculas dF ?

dω
|2 que

provienen de los diversos diagramas descritos arriba, seguiremos los siguientes reglas:

(i) Se forman los elementos de matriz entre los estados 〈β| y |α〉 de los cuatro

operadores b’s y C’s en forma normalmente ordenada para las cuatro “patas” del

diagrama.

(ii) Se multiplica por (i/4)
∫
drdt las funciones que provienen de cada una de las

cuatro patas del diagrama.

(iii) Se multiplica por un factor entero que es el número de veces que se repite

dicho término en el ordenamiento normal de 〈β|λΦ4
?|α〉. En la evaluación de éste,

está presente el factor de simetrización

[
cos ∂1Θ∂2

2
cos ∂3Θ∂4

2
+ cos ∂1Θ∂3

2
cos ∂2Θ∂4

2
+

cos ∂1Θ∂4

2
cos ∂2Θ∂3

2

]
.

(iv) Tómese el cuadrado del resultado de los pasos anteriores.

(v) Multipĺıquese el resultado del inciso (iv) por ∆nωpα/π y tómese la suma

sobre todos los estados |α〉 y |β〉.
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Partícula entrante estado inicial

Partícula entrante estado final

Partícula saliente estado inicial

Partícula saliente estado final

C y

w w

b  
w w

*

w w

C y
w w

*

χ

χ

b  

Figura 3.2: Diagramas básicos para representar la interacción.

(vi) Se suma finalmente sobre todos los valores de ωi diferentes de ω.

Un detalle que vale la pena mencionar es que únicamente consideraremos la

contribución de diagramas que en los cuales |∆nω| = 1. La razón es la siguiente:

Las integrales de las funciones de modo contienen términos de la forma∫
e−i(ω−ω1−ω2−ω3)tdt ≈ δ(ω − ω1 − ω2 − ω3) , (3.45)

Este es el principio de conservación de la enerǵıa. Esto restringe a |∆nω| a los valores

0, 1, 2 ó 3 ya que |∆nω| = 4 violaŕıa la conservación de enerǵıa a menos que ω = 0.

|∆nω| = 0 no contribuye al flujo de part́ıculas y |∆nω| = 2 ó 3 han sido evaluados

en la referencia [80] y se encuentra que sus contribuciones no cambian los resultados

obtenidos. De manera que todos los diagramas con ∆nω = +1 representan los
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inversos de los procesos en los que ∆nω = −1. De hecho la relación entre ambos

diagramas es muy simple pues podemos obtener uno del otro mediante una reflexión

respecto al eje vertical y, finalmente, invirtiendo el sentido de todas flechas.

Es posible ver [80] que los únicos diagramas que contribuyen a la amplitud

dF ?

dω

∣∣∣∣
2

(ω) son los que se enumeran en la figura 3.3 de la siguiente página, los cuales

pueden calcularse expĺıcitamente usando las expresiones (3.23) ó (3.23).

La mayor parte de los diagramas —con excepción del No.10— tienen cuatro

patas externas y convergen en un vértice. En la siguiente sección veremos cómo es

que se utiliza esta diagramática.

3.5 Cálculo del flujo noconmutativo de part́ıculas

En esta sección daremos las correcciones noconmutativas al flujo de part́ıculas

salientes. Por ejemplo, para el caso del diagrama No.1 (y su reflexión), si seguimos

las reglas descritas en la sección previa, la contribución al flujo da como resultado

la siguiente amplitud

2(12)2

16π

∑
ω1,ω2,ω3

∑
α,β

pα

(∣∣∣∣〈β∣∣∣∣C†ωC1C2b3

∣∣∣∣α〉∣∣∣∣2 − ∣∣∣∣〈β∣∣∣∣C†1C†2b†3Cω

∣∣∣∣α〉∣∣∣∣2)

×
∣∣∣∣ ∫

drdt λ
[
ψ∗1 ? ψ

∗
2 · ψω ? χ

∗
3 + ψ∗1 ? ψ

∗
2 · χ∗3 ? ψω + ψ∗2 ? ψ

∗
1 · ψω ? χ

∗
3

+ψ∗2 ? ψ
∗
1 · χ∗3 ? ψω + ψ∗1 ? ψω · ψ∗2 ? χ∗3 + ψ∗1 ? ψω · χ∗3 ? ψ∗2

+ψω ? ψ
∗
1 · ψ∗2 ? χ∗3 + ψω ? ψ

∗
1 · χ∗3 ? ψ∗2 + ψ∗1 ? χ

∗
3 · ψ∗2 ? ψω

+ψ∗1 ? χ
∗
3 · ψω ? ψ

∗
2 + χ∗3 ? ψ

∗
1 · ψ∗2 ? ψω + χ∗3 ? ψ

∗
1 · ψω ? ψ

∗
2

]∣∣∣∣2, (3.46)

donde el último factor representa las contribuciones noconmutativas del diagrama
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3

3

1 2 4

5 6 7 8

9 10 11

12 13 14

ψω ψω ψω ψω
1

2

3

3

1
2

1
2

3

1
2

3

12

3

ψω
1

2
3

1

23

2

1

1

2

3
1 2

3

3
2132

1

3

21

ψω

ψω ψω

ψω
ψωψω

ψω ψω ψω

ωχ

Figura 3.3: Diagramas planares de la teoŕıa noconmutativa que contribuyen al flujo.

No. 1 descrito en la fig.(3.3) aśı como su “reflexión”. Si sumamos únicamente

sobre aquellos subestados |α2〉 que no tienen enerǵıas ω, ω1, ω2 ú ω3 se obtiene

18

π

∑
ω1,ω2

∑
ω3

∑
α1

pα1

(∣∣∣∣〈β∣∣∣∣C†ωC1C2b3

∣∣∣∣α1

〉∣∣∣∣2 − ∣∣∣∣〈β∣∣∣∣C†1C†2b†3Cω

∣∣∣∣α1

〉∣∣∣∣2)

×
∣∣∣∣ ∫

drdt λF (Θ) · ψ∗1ψ∗2ψωχ
∗
3

∣∣∣∣2, (3.47)
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donde F (Θ) está dado por la ec. (3.21). La función de probabilidad térmica pα1

está dada por

pα1 =
(
1−e−βω

)(
1−e−βω1

)(
1−e−βω2

)(
1−e−β′ω3

)
exp

[
− β

(
kω + k1ω1 + k2ω2

)
− β′k3ω3

]
.

(3.48)

Finalmente, evaluando los elementos de matriz nos da

18

π

∑
ω1,ω2

∑
ω3

∑
k,k1,k2,k3

k(k1 +1)(k2 +1)(k3 +1) exp

[
− β

(
kω + k1ω1 + k2ω2

)
− β′k3ω3

]

×
(
e(β−β′)ω3 − 1

)∣∣∣∣ ∫
drdt λF (Θ) · ψ∗1ψ∗2ψωχ

∗
3

∣∣∣∣2. (3.49)

Por razones de brevedad omitiré en esta sección los detalles del este cálculo. El lector

interesado puede consultarlos en [82]. En la expresión anterior, por ejemplo, cada

una de las sumas sobre k y ki se evalúa usando apropiadamente la serie geométrica,

de manera que la amplitud anterior queda

18

π
g(ω)

∑
ω1,ω2

∑
ω3

(
g(ω1)+1

)(
g(ω2)+1

)(
g′(ω3)+1

)(
e(β−β′)ω3−1

)
H?(ω, ω1, ω2, ω3),

(3.50)

donde

g(ωi) =

(
eβωi − 1

)−1

, g′(ωj) =

(
eβ′ωj − 1

)−1

, (3.51)

H?(ω, ω1, ω2, ω3) =

∣∣∣∣ ∫
drdt λF (Θ) · ψ∗1ψ∗2ψωχ

∗
3

∣∣∣∣2, (3.52)

con i, j = 1, 2.

La contribución conmutativa usual [80] al flujo de radiación del diagrama descrito

arriba viene dada por

9

2πL2

g(ω)

ω

∑
ω1,ω2

∑
ω3

g(ω1) + 1

ω1

g(ω2) + 1

ω2

g′(ω3) + 1

ω3

(
e(β−β′)ω3 − 1

)
H(2ω3) δω,ω1+ω2+ω3

(3.53)
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donde

H(ω) =

∣∣∣∣ ∫
drλeiωr∗

∣∣∣∣2 . (3.54)

donde usamos el hecho de que N = L−1/2 en ecs. (3.7,3.8). La integral radial H(ω)

involucra a las dependencias radiales de las funciones de “modo” que provienen de

las ψ’s y χ’s de la interacción Φ4 (conmutativa).

Ahora procederemos a evaluar H(ω). Se observa un comportamiento divergente

para este término cuando ω tiende a cero si dejamos que λ sea distinta de cero

(para valores de r arbitrarios). Para regularizar esta divergencia hacemos un corte

en la interacción para grandes distancias. Para el agujero negro λ toma la siguiente

dependencia espacial [80]

λ = λbh, para 2M < r < K (3.55)

λ = 0, para r > K (3.56)

donde K >> 2M . Para ver el comportamiento asintótico de H(ω) consideremos la

expresión [83] para el cuadrado de la función gamma de argumento imaginario

Γ(iy)Γ(−iy) =
∣∣Γ(iy)

∣∣2 =
π

y sinh πy
, (3.57)

donde Γ(z) se define por

Γ(z) =

∫ ∞

0

tz−1e−tdt .

Es posible ver que H(ω) se puede expresar de esta forma. Para convencernos de

que aśı es, reescribimos r∗ = r∗(r) (tal como se definió en la sección 3.1) y se hace

el cambio de variable ρ = r − 2M en la ec.(3.54) de manera que, H(ω) se puede

reescribir —usando la identidad (3.57)— como:

H(ω) ' λbh
2 β

2ω

[
sinh

βω

4

]−1

, ω >>
1

K
,

H(ω) ' λbh
2K2, ω <<

1

K
. (3.58)
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aśı que H(ω) tiende a 1
ω2 en el ĺımite cuando ω → 0. La divergencia para valores

grandes de K a bajas frecuencias se dá porque —para una dimensión espacial—

la densidad de part́ıculas no decrece al incrementar la distancia, de manera que la

interacción entre los varios modos continúa con la misma intensidad para distancias

arbitrariamente grandes.

Regresemos ahora a la evaluación de la contribución de dF/dω|2 a partir de los

diagramas relevantes (que incluyen a los diagramas “inversos”). Para evaluar las

sumas sobre las frecuencias, vamos al ĺımite continuo, haciendo tender L a infinito

y reemplazando las sumas por integrales de la forma

∑
ωi

→ L

π

∫ Λ

π/L

dωi ,

donde Λ es un corte ultravioleta introducido para regular cualquier divergencia ul-

travioleta que pueda ocurrir. Volveremos a este punto más adelante. Todos los

diagramas dados en la figura (3.3), salvo el diagrama No.10 tienen expresiones sim-

ilares a la dada por la ecuación (3.53).

En lo que resta de esta sección haré algunos comentarios acerca de la regular-

ización de las divergencias infrarojas en el flujo dF/dω|2. Para empezar, es necesario

remarcar que para la parte conmutativa estándar del diagrama No.1 dada anterior-

mente, las divergencias en el infrarojo están dadas por integrales de la forma [80]

(A1L+B1 lnL+ C1)(A2L+B2 lnL+ C2) , (3.59)

donde Ai, Bi y Ci son funciones que dependen de ω exclusivamente. Para ver que

esto es aśı hacemos la expansión en serie de Taylor para cada factor de la ecuación

(3.53) y posteriormente se integra término a término reagrupando en potencias de

L . Por ejemplo, para obtener el término “ĺıder” de la ec.(3.59) —A1(ω)A2(ω)L2—

basta que hagamos tender a cero a ω1 y ω2 simultáneamente en la ec.(3.53) como

ω1 = ω2 = π/L (L→∞). De esta forma obtenemos

9

2π3

(
g(ω)

ω

)(
g′(ω) + 1

ω

)(
e(β−β′)ω − 1

)
H(2ω)

(
L

βπ

)2
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Con mucho, el término que diverge como L2, para L → ∞, es el que tiene el peor

comportamiento en el infrarojo, los siguientes términos son de la forma: L lnL y

L respectivamente. Esto ha sido ya comentado por Leahy en [82]. Discutiré este

método con mayor detalle en la subsección 3.6.2.

A continuación estudiaremos el comportamiento de las distintas contribuciones

a las divergencias en esta amplitud, para ello analizaremos la parte noconmutativa a

segundo orden en el parámetro Θ del diagrama No.1 . En vista de que el resto de los

diagramas de cuantro patas tienen contribuciones similares a la amplitud dF ?/dω|2,
solo revisaré en detalle este caso.

Posteriormente estudiaremos las divergencias introducidas por el diagrama de

lazo (No. 10).

3.6 Contribución del término de interferencia a la

amplitud dF ?

dω

En la sección 3.3 hemos revisado la corrección noconmutativa a segundo orden para

la interacción H?
I . Vimos que ésta constituye la primera corrección no trivial al

Hamiltoniano. Puede verse de las ecs.(3.23 y 3.28), que el flujo noconmutativo toma

la forma

dF ?

dω

∣∣∣∣
2

(ω) =
1

π

∑
α

pα

{〈
α
∣∣S†1[Nω, S1

]∣∣∣∣α〉
+ Θ2

〈
α

∣∣∣∣S†NC
1

[
Nω, S1

]∣∣∣∣α〉
+ Θ2

〈
α

∣∣∣∣S†1[Nω, S
NC
1

]∣∣∣∣α〉
+ Θ4

〈
α

∣∣∣∣S†NC
1

[
Nω, S

NC
1

]∣∣∣∣α〉}
. (3.60)

Notamos inmediatamente que el primer término del lado derecho en esta última

ecuación 1
π

∑
α pα〈α|S†1[Nω, S1]|α〉 es exactamente la amplitud —conmutativa usual—

calculada originalmente por Leahy y Unruh [80].

A continuación evaluaremos la contribución de los términos a segundo orden en

el parámetro Θ. Para esto notamos que
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〈
α

∣∣∣∣S†NC
1

[
Nω, S1

]∣∣∣∣α〉
=

〈
α

∣∣∣∣S†NC
1 NωS1

∣∣∣∣α〉
−

〈
α

∣∣∣∣S†NC
1 S1Nω

∣∣∣∣α〉
=

〈
α

∣∣∣∣S†NC
1

∣∣∣∣β〉〈
β

∣∣∣∣NωS1

∣∣∣∣α〉
−

〈
α

∣∣∣∣S†NC
1

∣∣∣∣β〉〈
β

∣∣∣∣S1Nω

∣∣∣∣α〉
= nωβ

〈
α

∣∣∣∣S†NC
1 S1

∣∣∣∣α〉
− nωα

〈
α

∣∣∣∣S†NC
1 S1

∣∣∣∣α〉
. (3.61)

y de manera análoga:

〈
α

∣∣∣∣S†1[Nω, S
NC
1

]∣∣∣∣α〉
= nωβ

〈
α

∣∣∣∣S†1SNC
1

∣∣∣∣α〉
− nωα

〈
α

∣∣∣∣S†1SNC
1

∣∣∣∣α〉
, (3.62)

por lo que al sumar los resultados anteriores tenemos que

〈
α

∣∣∣∣S†NC
1

[
Nω, S1

]∣∣∣∣α〉
+

〈
α

∣∣∣∣S†1[Nω, S
NC
1

]∣∣∣∣α〉
= nωβ

〈
α

∣∣∣∣S†NC
1 S1 + S†1S

NC
1

∣∣∣∣α〉
− nωα

〈
α

∣∣∣∣S†NC
1 S1 + S†1S

NC
1

∣∣∣∣α〉
.

(3.63)

de manera que para encontrar el término de interferencia basta calcular el valor de

expectación de la matriz (real) S†NC
1 S1 + S†1S

NC
1 . De la ec.(3.44) se puede ver que

los elementos de matriz de SNC
1 no son los mismos que los de S1. Anticipamos que

tendremos menos procesos que puedan representarse por medio de los diagramas

descritos en la sección 3.4. Podemos, sin embargo evaluar uno de ellos y analizar

el tipo de divergencias que presenta. Esto es precisamente lo que haremos en la

siguiente subsección.

3.6.1 Diagrama noconmutativo a segundo orden en Θ

En esta subsección analizaré la corrección noconmutativa a la amplitud dF ?/dω

proveniente de la “interferencia” entre las matrices SNC
1 y S1. Para ello usaremos

el procedimiento revisado previamente en las secciones 3.4 y 3.5. Para ver los
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diagramas que contribuyen a la interferencia tomemos los términos que aparecen

en el segundo renglón entre corchetes en la ec.(3.44). De aqúı y de las ecs.(3.63) y

(3.29) podemos ver que el conmutador
[
C†ωCω, S

NC
1

]
viene dado por

∫
drdt

iλΘ2

24(1− 2M/r)2

∑
ω1,ω2

{
ω2

1ω
2
2

[
C†ωCω,

(
ΦI(x1)ΦO(x2) + ΦO(x1)ΦI(x2)

)
Φ3Φ4

]

+

[
C†ωCω,

−iM
r2

[
ω1

(
b†1χ

∗
1 + C1ψ1

)(
ω2

2Φ(x2)
)

+
(
1↔ 2

)]
Φ3Φ4

]}
+ permut.,

=

∫
drdt

iλΘ2

24(1− 2M/r)2

∑
ω1,ω2

ω2
1ω

2
2

{(
ΦI(x1)(Φ

−
ω − Φ+

ω ) + (Φ−ω − Φ+
ω )ΦI(x2)

)
Φ3Φ4

+
(
ΦI(x1)ΦO(x2) + ΦO(x1)ΦI(x2)

)(
Φ3(Φ

−
ω − Φ+

ω ) + (Φ−ω − Φ+
ω )Φ4

)}
+<

[
C†ωCω, S

NC
1

]
+ permutations (3.64)

donde usé la notación dada en la referencia [82]: Φ−ω ≡ ψ∗ωC
†
ω y Φ+

ω ≡ ψωCω. Una

vez más usé la palabra permutaciones para denotar el uso de la ec. (3.30). Además

<
[
C†ωCω, S

NC
1

]
corresponde a la parte real de dicho conmutador. La razón para no

escribirlo expĺıcitamente es porque S1 es antihermı́tico, y cuando sumamos ambas

contribuciones del lado izquierdo de la ec. (3.63), dicho término se desvanece.

Ahora procederé a evaluar una de las contribuciones de la ecuación (3.64).

Tomamos por ejemplo el término:

iΘ2

24

∫
drdt λ

(
1− 2M

r

)−2 ∑
ω1,ω2

ω2
1ω

2
2ΦI(x1)ΦO(x2)Φ3(Φ

−
ω − Φ+

ω ) + permut.

descomponiendo los campos usando las funciones de modo y la diagramática de-

scrita en la subsección 3.4 puede verse que algunos de los términos que surgen en

este producto son C†ωb1C2C3 y b†1C
†
2C
†
3Cω. Para que su contribución a la amplitud

sea diferente de cero, debemos multiplicarlos por los correspondientes productos de

operadores provenientes de S†1. Por ejemplo, para el término Θ2〈α|S†1[Nω, S
NC
1 ]|α〉

dado anteriormente, la expresión correspondiente será
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〈
α

∣∣∣∣Θ2

96

∫
dr′dt′ λΦ′4

∫
drdtλ

(
1− 2M

r

)−2 ∑
ω1,ω2

ω2
1ω

2
2ΦI(x1)ΦO(x2)Φ3(Φ

−
ω−Φ+

ω )+perm.

∣∣∣∣α〉
.

(3.65)

El vértice noconmutativo está contenido en el término de interacción dado por

[C†ωCω, S
?
1

]
. Recordadndo la expansión S?

1 = S1 + SNC
1 [Θ2] + O[Θ4] el diagrama

noconmutativo 1 con el vértice relleno, puede ser resuelto en diagramas estándar de

Leahy y Unruh [80, 82], pero incluyendo derivadas de orden más alto (ver figura 3.4

más adelante). En el siguiente diagrama hemos ilustrado esto a segundo orden en

Θ:

1ψω
1

2

3

ψω
1

2

3

ψω

3

ω

1
2

3

= +Q2 Q2+ + ...

jy

jc

jy2 2

2

jy
2

Figura 3.4: Diagrama No.1 noconmutativo a segundo orden en Θ.

Es posible ver que el resultado anterior se puede calcular como en la sección 3.5,

donde la “información” de la noconmutatividad está contenida en los productos

estrella de las funciones de modo. La siguiente amplitud puede calcularse usando

el diagrama noconmutativo 3.4 intercambiando las funciones de modo χ3 por ψ1 y

viceversa. Repitiendo el procedimiento descrito en la subsección 3.4 para el término

de arriba, encontramos la siguiente expresión para esa amplitud

Θ2

96πL2

g(ω)

ω

∑
ω1

∑
ω2

∑
ω3

ω1

(
g(ω1)+1

)
ω2

(
g(ω2)+1

)g′(ω3) + 1

ω3

(
e(β−β′)ω3−1

)
H̃(2ω3)δω,1+2+3,

(3.66)

donde g(ωi) y g′(ωi) fueron definidos anteriormente en la ec.(3.51) y H̃(ω) ahora

tiene la siguiente expresión:
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H̃(ω) =

∫
λ2

(
1− 2M

r

)−2

exp

[
iω(r∗ − r∗′)

]
drdr′. (3.67)

Un aspecto importante que hay que remarcar es que cerca del horizonte de even-

tos del hoyo negro la función H̃(ω) no se desvanece, lo cual śı ocurre en el caso con-

mutativo. Para ver esto recordemos que la expresión usual de H(ω) —ec.(3.54)—

cuando r tiende a 2M es

∣∣∣∣ ∫ K

2M

dr lim
r→2M

λeiωr∗
∣∣∣∣2 =

∣∣∣∣ ∫ K

−∞
dr∗ lim

r→2M
λ

(
1− 2M

r

)
eiωr∗

∣∣∣∣2,
donde se usa que dr/dr∗ = (1 − 2M/r). Lo cual tiene la interpretación de que la

interacción —conmutativa usual— de los campos, se desvanece en el horizonte de

eventos [82]. No ocurre aśı con la corrección noconmutativa. Tomemos por ejemplo

la contribución de la amplitud noconmutativa dada por ec.(3.65)

Θ2λ2

96π

∫
dtdt′

∫
dr∗dr′

∗
(
1− 2M

r′

)(
1− 2M

r

)−1〈
α

∣∣∣∣Φ′4 ∑
ω1,ω2

ω2
1ω

2
2ΦIΦOΦ3(Φ

−
ω−Φ+

ω )

∣∣∣∣α〉
,

(3.68)

podemos notar que no desaparece en el horizonte de eventos. Procediendo como en el

caso conmutativo previo vemos que esto puede ser explicado si vemos la contribución

de H̃(ω) a la amplitud noconmutativa en el ĺımite cuando r → 2M y r′ → 2M in

ec. (3.67) tenemos que

∫ K

−∞
lim

r′→2M
dr′
∗
λ

(
1− 2M

r′

)
e−iωr′∗

{ ∫ K

−∞
dr∗ lim

r→2M
λ

(
1− 2M

r

)−1

eiωr∗
}
, (3.69)

lo cual en general no se cancela. En general este ĺımite depende de las sucesiones

con las que nos “aproximemos” al punto r = 2M, r′ = 2M . Si tomamos los ĺımites

iterados tendremos que H̃(ω) diverge. Una manera de evitar esta divergencia seŕıa

elegir λ de manera apropiada para eliminar el término (1− 2M/r′)−1. Sin embargo

dicho procedimiento no tiene una justificación f́ısica clara. Una situación similar ha

sido ya revisada en [80] para el caso de un espacio plano.
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Lo enterior nos permite afirmar que en el horizonte de eventos existe una con-

tribución noconmutativa del flujo de part́ıculas proveniente de la interferencia entre

las matrices S1 (interacción conmutativa) y SNC
1 [Θ2] (corrección noconmutativa a

segundo orden en Θ). La única manera de “apagar” el efecto de esta interacción

noconmutativa en el horizonte de eventos es tomar el parámetro de no conmutativi-

dad igual a cero (Θ→ 0). Esto es, que los efectos de la interacción noconmutativa

están presentes en todo el espacio-tiempo —inclúıdo el horizonte de eventos—. En

base a estas consideraciones, cabe esperar un comportamiento divergente del flujo

de part́ıculas justo en el horizonte de eventos proveniente de la corrección puramente

noconmutativa Θ4〈α|S†NC
1 [Nω, S

NC
1 ]|α〉. Este comportamiento divergente proviene

de términos proporcionales a las integrales radiales H̃(ω) en el ĺımite cuando r tiende

a 2M .

Casi todos los diagramas descritos en la figura 3.3 (con excepción del diag. 10)

tienen contribuciones similares a la dada en la ec.(3.66). Es claro entonces que los

términos divergentes que provienen de S1 y SNC
1 tienen diferente comportamiento

en el infrarojo y que una renormalización como la que se intenta en la subsección

3.6.4 únicamente remueven las divergencias infrarojas del tipo L2 que provienen de

los diagramas conmutativos aśı como algunas divergencias ultravioleta del tipo ln Λ

y no tiene efecto sobre los que provienen de la expansión de S?
1 a órdenes mayores

en Θ.

3.6.2 Comportamiento de las divergencias presentes en el

término 〈α|S†1SNC
1 + S†NC

1 S1|α〉

En esta parte discutiré el comportamiento de las distintas divergencias que surgen

al evaluar el flujo noconmutativo a diversos órdenes en Θ.

Hemos visto que la corrección conmutativa usual al flujo de part́ıculas [80] está

plagada de divergencias infrarrojas. El análisis de dichas divergencias surge al hacer

una expansión en series de Taylor de la amplitud 〈α|S†1[Nω, S1]|α〉. Para ello es

conveniente recordar algunas expresiones útiles [82] :
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g(ωi)

ωi

=
1

βω2
i

− 1

2ωi

+ . . .

g(ωi) + 1

ωi

=
1

βω2
i

+
1

2ωi

+ . . .

H̃(2ω − 2ωi) = H̃(2ω)− ωi
dH̃

dω
(2ω) + . . .(

1− e[(β−β′)(ω−ωi)]
)

=
(
1− e[(β−β′)ω]

)
+ (β − β′)e[(β−β′)ω]ωi + . . .

g′(ω − ωi) + 1

ω − ωi

=
g′(ω) + 1

ω

[
1 +

(
β′

eβ′ω − 1
+

1

ω

)
ωi + . . .

]
(3.70)

con i = 1, 2. Sustituyendo estas expresiones en la ec.(3.66) y haciendo ω3 = ω −
ω1 − ω2, podemos ver que, a diferencia del caso conmutativo, aqúı no tenemos una

contribución para el término “ĺıder” (aquél que posee el “peor” comportamiento en

el infrarrojo). La primera contribución del flujo noconmutativo toma la forma

Θ2

πL2

g(ω)

ω

1

β2

g′(ω) + 1

ω

(
e(β−β′)ω − 1

)
H̃(2ω) (3.71)

donde usamos que limωi→0 ωi

(
g(ωi)+1

)
= 1/(β). Esta última expresión se desvanece

cuando tomamos el ĺımite continuo (i.e L→∞). De donde podemos anticipar que la

corrección no conmutativa al flujo debida a la interferencia SNC
1 y S1 no presentará

divergencias infrarojas. Para calcular el resto de las divergencias de esta contribución

es necesario pasar al ĺımite continuo, sustituyendo las sumas infinitas sobre las fre-

cuencias ωi por intergrales en las expresiones dadas en la ec.(3.70). Para el caso de

la corrección introducida por el término cuártico en Θ: Θ4〈α|S†NC
1 [Nω, S

NC
1 ]|α〉 es

posible anticipar —usando las ecuaciones (3.70)— que no se presentarán divergen-

cias infrarrojas sino ultravioleta puras.

Por ejemplo tomemos la ecuación 3.66 que aparece al considerar la interferen-

cia S†NC
1 S1. Para encontrar las diferentes divergencias que caracterizan esta con-

tribución procederemos de la siguiente forma:

(a) Tomamos ω1 6= ω2. En este caso tenemos que, al pasar al ĺımite continuo la

expresión anterior toma la forma
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Θ2

96πL2

(
L

π

)2
g(ω)

ω

∫ Λ

π/L

∫ Λ

π/L

dω1dω2 ω1

(
g(ω1)+1

)
ω2

(
g(ω2)+1

)g′(ω − ω1 − ω2) + 1

ω − ω1 − ω2(
e(β−β′)(ω−ω1−ω2) − 1

)
H̃(2ω − 2ω1 − 2ω2), (3.72)

donde usamos la conservación de enerǵıa ω = ω1 +ω2 +ω3. Sustituyendo las expan-

siones de Taylor para cada factor dadas en 3.70 podemos ver que la primera de las

divergencias ultravioleta que se presenta es

Θ2

π4

g(ω)

ω

(
Λ

β

)2
g′(ω) + 1

ω

(
e(β−β′)ω − 1

)
H̃(2ω) =

Θ2

π4
F (ω)Λ2, (3.73)

donde Λ es el corte ultravioleta elegido anteriormente. Las divergencias restantes

son también ultravioleta.

(b) Ahora ω1 = ω2. Ambas part́ıculas salientes tienen la misma frecuencia y por

tanto la estad́ıstica se modifica. Para ver que esto es aśı analicemos el factor pα

pα = (1− e−βω)(1− e−βω1)(1− e−β′ω3)× exp
[
− β(kω + k1ω1)− β′k3ω3

]
, (3.74)

Procediendo de manera similar al caso anterior puede verse [82] que la contribución

al flujo noconmutativo de part́ıculas cuando ω1 = ω2 está dado por

Θ2

96πL2

g(ω)

ω

∑
ω1

∑
ω3

g′(ω3) + 1

ω3

2g2(ω1)e
2βω1

(
e(β−β′)ω3 − 1

)
H̃(2ω3)δω,ω1+ω2+ω3 (3.75)

una vez más transformamos las sumas en integrales y usamos la conservación de

enerǵıa para quitarnos una variable ω = 2ω1 + ω3 con lo cual obtenemos

Θ2

96πL2

(
L

π

)
g(ω)

ω

∫ Λ

π/L

dω3 2g2(ω−ω3/2)e2β(ω−ω3)/2 g
′(ω3) + 1

ω3

(
e(β−β′)ω3 − 1

)
H̃(2ω3)

(3.76)

Esta última expresión no posee divergencias infrarrojas o ultravioleta al tomar el

ĺımite cuando ω3 tiende a cero.
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Se puede conclúır que los términos proporcionales a Λ, Λ2, etcétera, provenientes

de la interferencia son los dominantes en este caso. Estas divergencias ultravioleta

puras aparecen a diferentes órdenes de magnitud en el parámetro de no conmuta-

tividad y no es claro que puedan ser renormalizados.

3.6.3 Corrección noconmutativa del diagrama de lazo

A continuación revisaré la corrección noconmutativa del diagrama No. 10 de la

figura 3.3. Este diagrama es importante porque posee tanto divergencias infrarojas

como ultravioletas. Estamos interesados en la parte de Φ4? que se acopla a un

estado caracterizado por tener un campo entrante (ΦI) y uno saliente (ΦO) dados

por las ecuaciones (3.9) y (3.10) respectivamente. Analicemos la expansión de Φ4
?

de la siguiente forma

Φ4
? = (ΦI + ΦO)4

? = ΦI?
4 + 4ΦI?

3 ?ΦO + 6ΦI?
2 ?ΦO?

2 + 4ΦI ?ΦO?
3 + ΦO?

4 , (3.77)

si tomamos el término ΦI ?ΦO?
3 y hacemos uso de las propiedes del producto ? que

revisamos en el caṕıtulo 1 de esta tesis, tenemos que

ΦI ? ΦO?
3 = ΦI ? ΦO(ΦO?)

2

= ΦI ? ΦO

(
C2

ωψ
2
ω? + CωC

†
ωψω ? ψ

∗
ω + C†ωCωψ

∗
ω ? ψω + C†2ω ψ

2
ω?

)
.

(3.78)

cuando se tomen los valores de expectación de los campos tendremos que 〈α|C2
ω|α〉 =

0 = 〈α|C†2ω |α〉 quedando

ΦI ? ΦO?
3 → ΦI ? ΦO

(
CωC

†
ωψω ? ψ

∗
ω + C†ωCωψ

∗
ω ? ψω

)
. (3.79)

Procediendo de manera similar con ΦI?
3 ? ΦO se puede ver que

ΦI?
3 ? ΦO →

(
bωb
†
ωχω ? χ

∗
ω + b†ωbωχ

∗
ω ? χω

)
ΦI ? ΦO . (3.80)
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Entonces la parte de Φ4
? que contiene el término ΦI ? ΦO está dada por

ΦI ? ΦO 12
∑
ω1

(
χ∗ω1

? χω1 + ψ∗ω1
? ψω1

)
, (3.81)

donde el factor de 12 representa todas las combinaciones en que puede presentarse

dicho estado. Haciendo actuar el producto ? en las funciones de modo que aparecen

dentro de la suma, se puede ver que la ecuación anterior queda

ΦI ? ΦO 12
∑
ω1

(
χ∗ω1

χω1 + ψ∗ω1
ψω1

)
, (3.82)

donde la última igualdad se dá porque
(
χ∗ω1

? χω1 +ψ∗ω1
?ψω1

)
≡

(
χ∗ω1

χω1 +ψ∗ω1
ψω1

)
.

Puede verificarse esta igualdad a cada orden en el parámetro de noconmutatividad.

Es decir que las correcciones noconmutativas introducidas en el diagrama No.10

son provenientes exclusivamente de la enerǵıa de los campos que están en las patas

externas ΦI , ΦO. De manera tal que la ecuación (3.82) contiene a orden cero en Θ,

el resultado obtenido por Leahy [80]

ΦIΦO 12
∑
ω1

1

Lω1

. (3.83)

En el paper citado [80] se ve que insertando esta expresión en la ecuación para

el flujo (conmutativo) de part́ıculas salientes dF/dω|2 —ec.(3.53)— y tomando el

ĺımite continuo en la suma ∑
ω1

1

Lω1

→ L

π

∫ Λ

π/L

1

Lω1

dω1 ,

se tiene que la contribución puramente conmutativa del diagrama No. 10 (y su

inverso) al flujo saliente es

(
−36λ2

π3

)(
g(ω)

ω

)(
g′(ω) + 1

ω

)
H(2ω)

[
1− exp ((β − β′)ω)

](
ln Λ + lnL/π

)2
.

(3.84)

el cual puede reescribirse como
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36λ2

π3
f(ω)

(
ln Λ + lnL/π

)2
.

No obstante, es posible agregar al hamiltoniano de interacción HI de la ec.(3.19) un

término [80] de la forma δm2Φ2 tal que su contribución a dF/dω|2

f ′(ω)

[
12
δm2

π2

(
ln Λ + lnL/π

)
+ 4

(δm2)
2

π

]
, (3.85)

donde f ′(ω) tiene la misma forma que en la ec.(3.84) (salvo por un factor con-

stante). De manera que se puede elegir δm2 tal que se remuevan todos los términos

proporcionales a este último resultado. Esto remueve las divergencias ultravioleta

descritas arriba aśı como las infrarojas más dif́ıciles (i.e. las que se comportan como

L2). Aún quedan términos de la forma L, KL y lnL. Se puede intentar regularizar

las restantes divergencias infrarojas y ultravioletas, lo que representa una enorme

cantidad de cálculo debido a que los restantes términos de la ec. (3.59) contienen

una gran cantidad de factores. Esto ha sido ya discutido en [80] y lo mencionaré en

las conclusiones de esta tesis.

Tomemos nuevamente el diagrama no.10 noconmutativo, considerando la con-

tribución del proceso que contiene a la interacción de los campos ΦI ? ΦO.

ΦI ? ΦO 12
∑
ω1

(
χ∗ω1

? χω1 + ψ∗ω1
? ψω1

)
= ΦI ? ΦO 12

∑
ω1

1

Lω1

, (3.86)

Las correcciones noconmutativas que provienen del término ΦI ? ΦO pueden ser

desarrollas. A primer orden en Θ este último término queda

(ΦI ? ΦO) =
Θ

2
ω2

(
1− 2M

r

)−1

(ΦIΦO) , (3.87)

y para r >> 2M se comporta como Θω2/2. Esta última corrección noconmutativa

depende exclusivamente de la enerǵıa ω de las patas externas del diagrama No.10

noconmutativo, por lo que está caracterizada por un diagrama planar. Las diver-

gencias que presenta esta expresión son similares a las encontradas en la ec.(3.84).
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3.6.4 Renormalización de la masa

Es posible agregar un término de masa de la forma λδm2Φ2
? al Hamiltoniano para

transformarlo en

H?
I =

∫
dr
λ

4
(Φ ? Φ ? Φ ? Φ + δm2Φ ? Φ + permut.),

=

∫
dr
λ

4
(Φ ? Φ ? Φ ? Φ + δm2Φ2 + permut.) (3.88)

por las propiedades del producto ?. Dicho término no afecta las soluciones del

campo libre. Se propaga en la matriz S1 y no modifica a SNC
1 . Cuando se introduce

el término de masa dado en esta última ecuación, el flujo de part́ıculas (conmutativo

usual) 〈α|Φ′4[C†ωCω,Φ
4]|α〉 se vé modificado por la adición de los siguientes términos:

4δm2

(
〈α|Φ′2[C†ωCω,Φ

4]|α〉+ 〈α|Φ′4[C†ωCω,Φ
2]|α〉

)
+

(
4δm2

)2〈α|Φ′4[C†ωCω,Φ
2]|α〉 .

(3.89)

El primer término ya ha sido evaluado con anterioridad. Para evaluar los restantes

términos se procede de manera análoga a las secciones previas. Es posible ver que

los términos que son proporcionales al término de masa tienen una contribución al

flujo de part́ıculas de la forma

g(ω)

(
g′(ω) + 1

)(
H(2ω)

ω2

)(
1− exp (β − β′)ω

)
,

donde las funciones g(ω) y g′(ω) fueron definidas anteriormente y H(2ω) tiene la

misma estructura que antes. Es posible elegir δm2 tal que se remuevan todos los

términos proporcionales a este último resultado. No obstante esto solamente re-

mueve las divergencias infrarojas más dif́ıciles (i.e. las que se comportan como L2)

aśı como las ultravioleta. La discusión sobre el comportamiento de las divergen-

cias que están presentes en los diagramas inclúıdos anteriormente, podŕıa repetirse

para el resto de los diagramas noconmutativos que provienen del Hamiltoniano de

interacción (3.19) y (3.30).

En la sección de conclusiones y perspectivas analizaré brevemente estos resulta-

dos.
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Caṕıtulo 4

Conclusiones y Perspectivas

En la presente tesis hemos estudiado las anomaĺıas gravitacionales axiales y quirales

en el contexto de la teoŕıa de campos noconmutativa. Una faceta interesante es

que éstas son generalizaciones de altas dimensiones naturales de los estudios de

anomaĺıas axiales y de gauge en teoŕıas de gauge noconmutativas. Con el objeto

de calcular los efectos noconmutativos hemos usado una linealización de una defor-

mación noconmutativa de la teoŕıa de Einstein [45], pero en principio, podŕıamos

usar una teoŕıa noconmutativa de gravedad. Esta deformación noconmutativa de la

gravedad lineal ha sido acoplada a fermiones quirales noconmutativos, asumiendo

que ambos, tanto la gravedad como los campos de materia, son deformados con el

mismo parámetro de deformación Θ. Aśı, nos enfocamos en la interacción de fermi-

ones quirales y el campo gravitacional. Hemos proporcionado las reglas de Feynman

de esta teoŕıa noconmutativa, en particular (2.6) fue la regla necesaria para deter-

minar las anomaĺıas asociadas a los diagramas planares. Anomaĺıas procedentes

de diagramas no planares no fueron consideradas en el presente trabajo. La única

modificación aparece en los vértices de los diagramas de Feynman y usamos éstos

para calcular una serie de procesos que involucran a las anomaĺıas gravitacionales.

Luego de discutir las reglas de Feynman, hemos calculado la contribución nocon-

mutativa a la anomaĺıa axial (ABJ) gravitacional lo que conduce al decaimiento del

pión en dos fotones. Esta extensión noconmutativa de la anomaĺıa de Delbourgo-
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Salam es obtenida a través del uso adecuado del método de la regularización dimen-

sional, encontrándose que éste da precisamente una deformación noconmutativa de

la signatura τ̂(X) lo cual es precisamente el análogo de espacio tiempo a la signatura

del grupo desarrollada en la referencia [48].

Como en el caso conmutativo usual, la anomaĺıa de Delbourgo-Salam noconmu-

tativa, no destruye el difeomorfismo o la invariancia de norma de Lorentz local a nivel

cuántico. No obstante, la noconmutatividad puede afectar también esas simetŕıas

de gauge aśı como las transformaciones de Lorentz y las simetŕıas de difeomorfismos

son afectadas en las teoŕıas de campo noconmutativas.

En el caso bidimensional de la anomaĺıa quiral gravitacional pura, hemos calcu-

lado la anomaĺıa de difeomorfismos y hemos encontrado que la noconmutatividad

no afecta a la acción efectiva Γ(Q) y, por la tanto la anomaĺıa es la misma que en

el caso conmutativo usual obtenido en la referencia [13]. Esto es también llevado a

cabo en el caso general de D = 4k + 2 dimensiones. Ah́ı, la anomaĺıa fue obtenida

encontrando primero una interacción residual noconmutativa de un campo escalar

complejo con un campo de gauge U(1). Aqúı, como es usual en el caso conmutativo,

para cada vértice de acoplamiento hemos trasladado la interacción del gravitón y

del fermión quiral, al problema del vértice de un campo escalar complejo acoplado

con fotones externos no dinámicos. La acción efectiva es calculada usando una

versión noconmutativa bidimensional del modelo de Schwinger. Encontramos una

deformación noconmutativa de la acción efectiva dada por las expresiones (2.62) y

(2.63). El cálculo de la anomaĺıa para un lazo de fermiones de spin 3
2

fue también

desarrollada obteniéndose la correspondiente corrección noconmutativa, la cual está

dada por la expresión (2.75).

Las anomaĺıas mezcladas fueron también calculadas dentro de este contexto y

aqúı también encontramos correcciones noconmutativas dadas por (2.81) y por (2.83)

para campos de spin 1
2

y 3
2

respectivamente.

Existen numerosos tópicos interesantes concernientes a los resultados de este tra-

bajo. Uno de ellos consiste en la aplicación a las diferentes teoŕıas de supergravedad

que provienen de las teoŕıas de cuerdas. Seŕıa muy interesante calcular las anomaĺıas
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gravitacionales y de gauge de los campos de p-formas antisimétricos en un fondo no-

conmutativo y revisar las condiciones para la cancelación de estas anomaĺıas nocon-

mutativas en supergravedad tipo I y tipo II en diez dimensiones. Antes de intentar

resolver estos problemas uno debeŕıa, quizá, primeramente plantear el problema de

crear una teoŕıa adecuada de una extensión noconmutativa en una teoŕıa de gauge

para potenciales de grado más alto y en dimensiones mayores.

Otro problema interesante es el cálculo de anomaĺıas gravitacionales debidas a

diagramas no planares siguiendo las referencias [24, 30, 40]. En la presente tesis nos

limitamos al cálculo de anomaĺıas de gauge quirales para el grupo U(N). Es tentador

desde mi punto de vista, extender el cálculo a otros grupos de gauge utilizando el

mapeo de Seiberg-Witten como se ha hecho en diferentes trabajos en este sentido

[34, 36, 37, 38, 39]. Seŕıa también muy interesante aplicar el mapeo de Seiberg-

Witten para el sector gravitacional como se discutió en [42, 43, 48, 49].

Por otra parte, se ha estudiado el efecto de una interacción en un modelo de

agujero negro bidimensional. Es bien conocido, a partir de la segunda mitad de

la década de 1970, que un agujero negro emite radiación. Este es un resultado

ligado al nombre de figuras tan importantes como Zeldovich, Novikov y Unruh [84].

Precisamente Unruh y Leahy [80] fueron los primeros en darse cuenta que si se

introduce una interacción de la forma λΦ4, se modifica la naturaleza térmica de la

radiación emitida por el agujero negro. Su resultado, sin embargo, está “plagado”

de divergencias, principalmente infrarojas. En esta tesis se generaliza los resultados

para la expresiones que determinan el tipo de interacción de los campos escalares

—ecuaciones (3.18) y (3.19)— y del flujo de radiación —ec.(3.23)—.

En la presente tesis se introdujo una modificación en el producto de operadores,

promoviéndose dichos productos en productos “Moyal”. De esta manera se modificó

la expresión de la interacción del tipo λΦ4 a una interacción noconmutativa λΦ?4

—ver ecs. (3.19) y (3.30)—.

En el cálculo del flujo noconmutativo de part́ıculas se hizo necesario modificar

los diagramas “de Feynman”, las cuales se representan gráficamente en la figura

(3.3). Éstos diagramas incluyen, de manera natural, a los encontradas por Leahy y
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Unruh [80].

Una vez que se introduce dicha modificación, la interacción contiene términos

proporcionales al parámetro de noconmutatividad Θ, lo cual es de esperarse. En el

desarrollo puede verse que se recupera el resultado conmutativo estándar cuando se

permite que Θ → 0. Se hizo el cálculo expĺıcito de la correccción a segundo orden

al Hamiltoniano de interacción, ec.(3.44) encontrándose que al ser introducido en la

matriz S?
1 obtenemos la modificación noconmutativa correspondiente —ec.(3.28)—

del resultado reportado por [80]. Con esa información se estimó la contribución al

flujo noconmutativo a segundo orden en Θ proveniente del término de “interferen-

cia” entre las matrices S†NC
1 [Θ2] y S1. Para ello se eligió uno de los términos de

dicha interferencia y se calculó expĺıcitamente su contribución. Se encontró de esa

forma una corrección noconmutativa a segundo orden en Θ —ver ec. (3.66)— al

resultado reportado en el art́ıculo de Leahy y Unruh [80]. Encontramos que la no-

conmutatividad introduce, por una parte, un cambio en el comportamiento de las

divergencias presentes en dicha amplitud. Para ello se desarrolló cada factor de la

expresión citada anteriormente en series de Taylor y se integró sobre las enerǵıas, de

la manera usual. Se vió que la primera de las divergencias ultravioleta es de la forma
Θ2

π4 F (ω)Λ2 como se ve de la ec.(3.73). El resto de las divergencias son también po-

tencias en el parámetro de corte Λ. En el caso de las correcciones noconmutativas a

órdenes mayores en Θ, las divergencias presentes en las amplitudes correspondientes

presentan todas un comportamiento ultravioleta más acentuado. Esto es debido a

la presencia de factores de la forma∫ Λ

π/L

ωn
i dωi =

Λn+1

n+ 1
,

en las amplitudes correspondientes.

Adicionalmente, se encontró que la noconmutatividad tiene el efecto de introducir

un flujo distinto de cero en todo el espacio, particularmente en el horizonte de

eventos, como puede verse de la expresión ec.(3.67). Esto llama la atención dado

que el flujo conmutativo usual se desvanece justo en el horizonte de eventos y para

valores de r mayores que 2M comienza a aparecer gradualmente [82]. Esto es otro
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efecto puramente noconmutativo. En la referencia [85] puede verse una discusión

similar (ah́ı se deforma la interacción entre los campos introduciendo el aśı llamado

oscilador armónico deformado). El método de deformación (q-deformation) que

se sigue en dicho art́ıculo difiere del usado en esta tesis, no obstante encontramos

varias coincidencias. La primera de ellas es que el flujo noconmutativo se desv́ıa del

espectro térmico usual encontrado por Hawking [62].

Por otra parte, la modificación a la contribución del diagrama de lazo noconmu-

tativo No.10 de la fig.(3.3), produce exclusivamente diagramas planares. Esto puede

explicarse porque el efecto de la noconmutatividad solamente se refleja en las “patas

externas” de dicho diagrama noconmutativo como puede verse en la ec.(3.82).

4.1 Perspectivas

Uno de los problemas más interesantes que surgen en esta tesis —y con mayores

implicaciones en f́ısica-matemática— consiste en conectar nuestros resultados dados

por las ecuaciones (2.62), (2.63) y (2.75) con el teorema del ı́ndice de Atiyah-Singer

para las familias de operadores eĺıpticos y proporcionar fórmulas expĺıcitas para

éstas anomaĺıas noconmutativas en términos de polinomios invariantes los cuales

describen clases caracteŕısticas de Pontrjagin y de Chern. Los resultados obtenidos

en la presente tesis representan buenas expectativas de que dicha continuación es,

ciertamente, posible. Esto se deja para un trabajo futuro. Por otra parte, una

descripción en términos de la condición de consistencia de Wess-Zumino como se ha

hecho en el trabajo de [26] vale la pena para el caso de gravedad. Con el objeto de

llevar a cabo esto, la referencia [88] seŕıa una fuente muy importante.

Finalmente, seŕıa muy interesante también, encontrar un enfoque global al estu-

dio de las anomaĺıas, incluyendo anomaĺıas globales gravitacionales (como se propone

en [53]) y comparar esto con los resultados dados recientemente por Perrot [89] en

el cálculo anomaĺıas gravitacionales noconmutativas, usando diferentes herramien-

tas globales. Este enfoque, no obstante, va más allá de los propósitos del presente

trabajo.
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Por otra parte, en relación con los resultados del caṕıtulo 3, recientemente se ha

propuesto una novedosa derivación de la radiación de agujero negro por Robinson

y Wilczek [90]. En esta referencia se estudia la relación entre la radiación saliente

de un agujero negro y la cancelación de anomaĺıas gravitacionales en el horizonte

de eventos. En dicho art́ıculo se propone que la fuente de la anomaĺıa se localiza

precisamente en el horizonte de eventos. Esta región es importante porque ah́ı la

geometŕıa es no singular pero es donde las ecuaciones se simplifican. Analicemos lo

siguiente: La radiación saliente de un agujero negro surge cuando se considera la

cuantización de la materia en un espacio tiempo de fondo que contiene un horizonte

de eventos. Se encuentra entonces que el espectro del número de ocupación de los

modos del campo cuantizado, en el vaćıo corresponde al de un cuerpo negro a una

temperatura dada por la gravedad superficial del horizonte. La derivación de Hawk-

ing [62] es bastante f́ısica pero descansa en algunas hipótesis como la no interacción

entre los campos. En el enfoque de Wilczek se pone énfasis en la cancelación de

anomaĺıas gravitacionales. En la primera parte de esta tesis, se revisó el caso más

simple que surge al considerar un campo escalar quiral en D = 2 dimensiones. En

ese caso vimos que la anomaĺıa queda como en la ec. (2.37)

〈2T+−(p)〉 = −2
δ∆Leff

D

δh+−(−p)
= − 1

24π
R(p),

o equivalentemente

∇µT
µ
ν =

1

96π
√
−g

εβδ∂δ∂αΓα
νβ.

Hay muchos ejemplos en la f́ısica donde las anomaĺıas se han conectado a la ex-

istencia de flujo de corrientes, como se ha explicado en los primeros caṕıtulos de la

tesis. Sin embargo no hay muchas publicaciones en donde se explore la relación entre

la radiación de agujero negro y la no conservación del tensor de enerǵıa-momento.

Hace ya varios años Christensen y Fulling [91] demostraron que es posible usar una

anomaĺıa en simetŕıa conforme para derivar importantes constricciones de los ten-

sores de enerǵıa-momento de los campos cuánticos en el background de un agujero
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negro. Dicha anomaĺıa aparece como una contribución a la traza Tα
α del tensor de

enerǵıa-momento en una teoŕıa en la cual dicho tensor, clásicamente, se anula. En

un art́ıculo muy reciente [92] Wilczek et al retoman este enfoque y al mismo tiempo

extienden su análisis, descrito arriba, para el caso de radiación de part́ıculas car-

gadas en un agujero negro del tipo Reissner-Nordstrom (R-N). Para ello consideran

anomaĺıas de gauge aśı como gravitacionales en el horizonte de eventos. Demuestran

que para evitar el rompimiento de covariancia general y de invariancia de gauge a

nivel cuántico, el flujo total de carga y enerǵıa en cada onda parcial de un campo

cuántico cargado en un agujero negro R-N debe ser igual al un cuerpo negro (1+1)

dimensional a la temperatura de Hawking. El enfoque de dichos trabajos es muy

cercano al que he seguido en la presente tesis. De hecho tanto la primera parte de la

tesis, que trata con anomaĺıas en teoŕıas que involucran la interacción de gravedad

con materia, como el caṕıtulo 3, donde se explora la radiación de un agujero ne-

gro debida a un campo escalar interactuante, pueden ser estudiados como tópicos

relacionados. Este es, precisamente el enfoque de Wilczek. Como una extensión de

las ideas desarrolladas en esta tesis, es posible deformar la geometŕıa del espacio de

fondo e investigar la modificación que surja al promover los productos usuales en

productos de Moyal. Esto generalizará, en primer lugar, los resultados descritos en

[90] y [92]. Este proyecto, sin embargo, queda como una investigación a desarrollar

en un futuro próximo.
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Apendice A

Fundamentos geométricos de

agujeros negros

A continuación describiremos la geometŕıa de un agujero negro estacionario. Esta

sección es una revisión breve de resultados bien conocidos y no pretende ser un estu-

dio detallado. Una revisión detallada acerca de agujeros negros clásicos puede verse

en [93]. La interacción entre el campo gravitacional y el campo electromagnético

está determinada por las ecuaciones de Einstein-Maxwell acopladas. En la norma

de Lorentz (∇aAa = 0) son:

∇µ∇µAν −Rµ
νAµ = 0 , (A.1)

y

Rµν −
1

2
gµνR = 8πTµν , (A.2)

donde Tµν es el tensor de enerǵıa-momento electromagnético

Tµν =
1

4π

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ
)
. (A.3)

La solución de agujero negro estacionario sujeta a la restricción de que los parámetros

momento angular, carga eléctrica y masa tomen valores definidos, es descrita por la
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métrica de Kerr:

ds2 = −
(

∆− a2sin2θ

Σ

)
dt2 − 2asin2θ(r2 + a2 −∆)

Σ
dt dφ

+

(
(r2 + a2)

2 −∆a2sin2θ

Σ

)
sin2θdφ2 +

Σ

∆
dr2 + Σdθ2 , (A.4)

aqúı el potencial vectorial electromagnético toma la forma

Aa = −Qr
Σ

(
(dt)a − asin

2θ(dφ)a

)
, (A.5)

donde Σ = r2 +a2cos2θ y ∆ = r2 +a2 +Q2−2Mr. Q, M y a son los tres parámetros

de la familia de soluciones y puede verse que corresponden a la carga eléctrica, la

masa y el momento angular por unidad de masa del agujero negro a = J/M . Cuando

Q = 0 tenemos que Aa = 0 y la métrica del espaciotiempo se reduce a la familia de

soluciones de Kerr en el vaćıo. Para a = 0 recuperamos las soluciones de Reissner-

Nordstrom

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2

+r2
(
dθ2 + sin2θdφ2

)
, (A.6)

y, por supuesto, cuando Q = a = 0 obtenemos la métrica de Schwarzschild

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2θdφ2

)
, (A.7)

la cual constituye el ejemplo mejor conocido de un agujero negro estático. Debido

a su simplicidad, revisaré este caso a continuación.

La métrica de Schwarzschild describe, obviamente, un espaciotiempo de cu-

atro dimensiones, sin embargo, debido a la simetŕıa esférica, podemos analizar

únicamente la región bidimensional descrita en términos de las coordenadas r y t y

suprimir de la métrica de Schwarzschild la dependencia angular. Aśı, nos enfocamos

en un modelo 1 + 1 dimensional donde ahora la métrica queda
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ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 ,

La métrica anterior puede reescribirse en una forma más simple en términos de la

nueva coordenada r∗ definida por

r∗ = r + 2M ln

(
r

2M
− 1

)
, (A.8)

tal que dr∗/dt = (1− 2M/r)−1 de manera que ahora

ds2 = −
(

1− 2M

r

)(
dt2 − dr∗2

)
,

Como estamos interesados en explorar la estructura causal en las “cercańıas” del agu-

jero negro, es usual en este punto introducir las coordenadas nulas {u, v} definidas

como u = t− r∗ y v = t+ r∗ de modo que ahora la métrica toma la forma

ds2 = −
(

1− 2M

r

)
dudv , (A.9)

donde ahora tenemos a r definida impĺıcitamente como función de u y v por

r + 2M ln

(
r

2M
− 1

)
= r∗ =

(v − u)
2

, (A.10)

tal que el elemento de ĺınea ds2 se puede reescribir como

ds2 = −2M

r
exp
−r
2M

exp
v − u
4M

dudv . (A.11)

Una vez más definimos coordenadas nulas dadas ahora por:

U = − exp
(−u
4M

)
, (−∞ < U < 0) ,

y

V = exp
( v

4M

)
, (0 < V <∞) ,

en términos de las cuales la métrica queda
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ds2 = −32M3

r
exp

( −r
2M

)
dUdV (A.12)

=
32M3

r
exp

( −r
2M

)(
− dT 2 + dX2

)
, (A.13)

donde U = T −X y V = T +X. La relación entre las coordenadas “nuevas” (T,X)

y las “originales” (t, r) está dada por

X2 − T 2 = −UV = exp
(v − u

4M

)
= exp

( r∗

2M

)
=

(
r

2M
− 1

)
exp

( r

2M

)
, (A.14)

y
X + T

X − T
=

V

−U
= exp

(u+ v

4M

)
= exp

( t

2M

)
, (A.15)

o, equivalentemente

(
r

2M
− 1

)
exp

( r

2M

)
= X2 − T 2 ,

y

t

2M
= 2 arctan

T

X
= ln

1 + T
X

1− T
X

. (A.16)

En estas nuevas coordenadas la singularidad de las componentes de la métrica en r =

2M ha desaparecido y consecuentemente el espacio puede ser extendido permitiendo

que los valores de U y V no tengan restricciones.

Otra representación de este espacio tiempo puede obtenerse mapeando U y V a

unas coordenadas nulas cuyos valores se restrinjan a intervalos finitos como

U = tan
1

2
Ũ ,

y

V = tan
1

2
Ṽ ,
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Figura A.1: Diagrama de Penrose para un agujero negro de Schwarzschild.

El diagrama que representa a esta última región se conoce como diagrama de Pen-

rose quien fue el primero en señalar la conveniencia de trabajar con estas regiones

“conformalmente” equivalentes:

En este diagrama el horizonte de eventos está localizado en r = 2M que es

precisamente la ĺınea que separa las regiones I y II . La singularidad en r = 0

śı que constituye una singularidad “verdadera”, por ejemplo, la curvatura escalar

RµναβR
µναβ es infinita en este punto. Sin embargo, gracias a la “nueva” geometŕıa, es

posible asignar al exterior del agujero negro una región (región I) como puede verse

en la figura A.1. En este diagrama I+, I− se denominan futuro cronológico y pasado

cronológico respectivamente; análogamente J+ y J− son el infinito nulo futuro y el

infinito nulo pasado respectivamente. En realidad el diagrama de Penrose completo

contiene otras regiones que no inclúımos en esta figura. Sin embargo para nuestros

propósitos basta con la región descrita arriba. Ahora el horizonte de eventos puede

visualizarse de una manera más simple. Divide el espacio tiempo en dos regiones I

y II que están disconexas. Es ésta la región de interés para analizar la radiación de

agujero negro.
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