del

@ Centro de Investigacion y de Estudios Avanzados
Instituto Politécnico Nacional

DEPARTAMENTO DE FISICA

Aspectos de la teoria cuantica de campos
noconmutativa en espacios curvos

Tesis que presenta

Carlos Arturo Soto Campos

para obtener el Grado de
Doctor en Ciencias

en la Especialidad de

Fisica
Director de tesis: Dr. Héctor Hugo Garcia Compean

México, Distrito Federal Noviembre, 2006



A mis Padres

A mis Hermanas y Hermanos.



Agradecimientos

Deseo expresar mi méas profundo agradecimiento al Dr. Héctor Hugo Garcia
Compean. Ademas de su inmejorable asesoria, y apoyo profesional, debo agradecer
la amistad con la que me ha distinguido. Quiero recalcar la constante motivacion
de la que hemos disfrutado muchos de sus colaboradores a través de sus cursos y
charlas en los que nos ha ensenado a no conformarnos sino hasta obtener lo mejor
de uno mismo. Agradezco al jefe del departamento Dr. Gerardo Herrera Corral
por su importante apoyo. Asimismo al Coordinador del departamento de Fisica,
Dr. Gabriel Lopez Castro por su invaluable apoyo y asesoria. Este trabajo ha sido
desarrollado gracias al soporte académico brindado por la Coordinacién a su cargo.

Quiero también agradecer a un gran nimero de profesores y amigos del depar-
tamento de Fisica. Trataré de no omitir a ninguno y les pido disculpas a aquéllos
que olvide mencionar: Martin Hernandez, Sergio Tomés, Mauricio Carbajal, José
Méndez, Miguel Rocha, David Fernandez, Nora Breton, Vladimir Manko, Alberto
Garcia Diaz, Tonatiuh Matos, Abdel Pérez, Orlando Zelaya, Omar Miranda, Daniel
Olguin, Carlos Arteaga, Rodrigo Pelayo, Julio César, Sendic Estrada (por su gen-
tileza en revisar y discutir el capitulo 3 de esta tesis), Pavel, Alfredo, Francisco
Turrubiates, Jorge Rosas, Jorge Téllez, Imelda, Xavier, Cuauhtémoc, Karla, Sara,
Luz, Rocio, Mald, Paty Pliego, Julieta, Flor, Paty Villar, Isa, Bety, Charo, Es-
ther, Diana, a Elvia, Claudia y todas las companeras del Departamento de Servicios
escolares —asi como a los directivos del mismo—, Vladimir Cuesta, Edgar, Idr-
ish, Alejandro Garcia, Alejandro Gallardo, Pablo Rodriguez, Nicolds, Juan Carlos,
Aldo, Pablo Paniagua, Luis (“Compa”), Roberto, Wilberth, Christian Garay (por
su asesorfa en LaTeX), Ricardo Pérez (por el soporte técnico), asi como a toda la
comunidad del Civestav, la cual contribuyé de una forma u otra, a la realizacién de

este trabajo.

i



Quiero también expresar mi agradecimiento al Dr. David A. Leahy de la uni-
versidad de Calgary (Alberta, Canadd) por proporcionarme amablemante copia de
algunas partes de su tesis de doctorado. A Salvador Cubeiro y Gloria Arreola:
Gracias! Y a Nadia, por su enorme paciencia y comprension...y por sus frecuentes

cuestionamientos sobre el valor de mis ideas.

Finalmente deseo hacer patente mi agradecimiento al Consejo Nacional de Cien-
cia y Tecnologia por brindarme el apoyo de las becas de Maestria y Doctorado

niumero 60582. La presente Tesis fue escrita gracias a ese apoyo.

il



v



Contenido

0.1 Resumen . . . . . . . .

1 Introduccién
1.1 Breve revisién de la teoria de Anomalias . . . . . . . . . . ... ...

1.2 Elementos de la teoria de campos noconmutativa . . . . . .. .. ..

2 Anomalias gravitacionales en la teoria noconmutativa

2.0.1 Preliminares de Anomalias gravitacionales noconmutativas:
Aspectos globales . . . . . ... ...
2.1 El acoplamiento noconmutativo de Gravedad y Fermiones quirales . .
2.2 Acoplamiento de Gravedad a Fermiones quirales . . . . . . . .. . ..
2.2.1  Anomalia gravitacional de Delbourgo-Salam noconmutativa
2.3 Anomalia gravitacional pura noconmutativaen D=2 . . . ... . ..
2.3.1  Calculo explicito en dos dimensiones . . . . . . .. .. ...
2.4 Anomalias gravitacionales noconmutativas en D =4k +2 . . . . . ..
2.4.1 Preliminares . . . . . . . .. .. L o
2.4.2 Célculo explicito de la Interaccién residual noconmutativa
2.4.3 Anomalia gravitacional para Campos de spin
2.4.4 Anomalia gravitacional para Campos de spin = . . . . . . ..
2.5 Anomalias noconmutativas mezcladas . . . . . . .. ...

2.5.1 Anomalias mezcladas para Campos de spin % .........

2.5.2  Anomalia mezclada para Campos de spin % ..........

v



3 Efectos de la interaccién noconmutativa \®} en la evaporacién de

un hoyo negro en dos dimensiones. 51

3.0.3 Antecedentes de la radiacién de agujeros negros . . . . . . .. 51
3.1 Radiacién en un agujero negro bidimensional con interacciéon A®* . . 53
3.2 Correcciones noconmutativas al Flujo de radiacién . . . . . . . . . .. 58
3.3 Correccién a segundo orden noconmutativa al Hamiltoniano Hy . . . 63
3.4 Construccion de los diagramas de la teoria noconmutativa . . . . . . 66
3.5 Cdlculo del flujo noconmutativo de particulas . . . . . .. ... ... 69
3.6 Contribuciéon del término de interferencia a la amplitud % ...... 74

3.6.1 Diagrama noconmutativo a segundo ordenen © . . . . . . .. 75

3.6.2 Comportamiento de las divergencias presentes en el término

(a|STSNC + STNCSyla) . .. 79

3.6.3 Correccién noconmutativa del diagrama de lazo . . . . . . . . 82

3.6.4 Renormalizacién de lamasa . . . . . ... ... ... ..... 85

4 Conclusiones y Perspectivas 87
4.1 Perspectivas . . . . . . .. 91

A Fundamentos geométricos de agujeros negros 95
Bibliografia 100

vi



0.1 Resumen

Resumen

En este trabajo se examinan las anomalias quirales gravitacionales y de norma en un
espacio noconmutativo a través de un céalculo perturbativo explicito de diagramas de
Feynman a un lazo en varias dimensiones. El andlisis depende de cémo se acopla la
gravedad a los campos de materia noconmutativos. El calculo de Delbourgo-Salam
de la contribucion de la anomalia axial gravitacional al decaimiento del pién neutro
es estudiado en detalle. En este proceso, demostramos que la anomalia quiral de
Weyl gravitacional pura en dos dimensiones no recibe correcciones noconmutativas.
Se discute la anomalia quiral gravitacional pura en 4k + 2 dimensiones con campos
de materia representados por fermiones quirales de spin % y %, y en ambos casos
se encuentra una correccion noconmutativa. Las anomalias mixtas son finalmente
consideradas para ambos casos.

Por otra parte se estudian los efectos de una interaccién —noconmutativa— so-
bre la emisién de particulas debida a un agujero negro. Se usa un modelo A®? de
interaccién para un campo escalar sin masa en un agujero negro bidimensional. Para
la parte conmutativa usual este modelo sufre de divergencias infrarojas. Cuando se
introducen las correcciones noconmutativas se aprecia que en éstas predominan las
divergencias ultravioleta. No obstante, es posible describir una correccién nocon-
mutativa a la radiacién de Hawking. Ademas se discuten algunos efectos no locales

que son consecuencia de la noconmutatividad.



Abstract

In the present work we examine the chiral gravitational and gauge anomalies in
a non commutative space trough an explicit perturbative calculation using one-loop
Feynman diagrams in various dimensions. The analysis depends on how gravity
is coupled to noncommutative matter fields. Delbourgo-Salam calculation of the
gravitational axial anomaly contribution to the neutral pion decay is studied in
detail. During the process, we show that the pure chiral gravitational Weyl anomaly
in two dimensions does not receive noncommutative corrections. We study the pure
gravitational chiral anomaly in 4k + 2 dimensions with matter fields represented by
chiral fermions of spin % and % and in both cases a noncommutative correction is
found. Finally mixed anomalies are considered for both cases.

On the other hand we study the effects of a noncommutative interaction on
the particle emission due to a Black Hole. A A\®} interaction model for a massless
scalar field in a two dimensional Black Hole is used. In the standard commutative
case this model possess infrared divergences. When the noncommutative correccions
are included we notice that ultraviolet divergences prevail. However, it is possible

to describe a noncommutative correction on Hawking’s radiation. Besides, some

nonlocal effects of the noncommutativity are discussed.



Capitulo 1

Introduccion

“De las frases que aqui escribo, solo una que otra hard algun progreso; las demds
son como el ruido de las tijeras del peluquero, que debe mantenerlas en movimiento
para hacer con ellas un corte en el momento preciso”. (L. Wittgenstein, “Obser-

vaciones” ).

1.1 Breve revision de la teoria de Anomalias

Podemos decir que la base de las teorias de las interacciones funadamentales es
el pricipio de la simetria de gauge. Por otra parte, en términos generales, puede
establecerse que una Anomalia se defina como la violacién de una corriente (a nivel
cudntico) que clasicamente es conservada. De manera que una Anomalia senala
el rompimiento de una simetria de gauge y, por tanto, arruina la consistencia de
una teoria. Evitar las anomalias puede conducir, por un lado, a constricciones
muy importantes de las cantidades fisicas en cuestion. Pero, por otra parte, las
anomalias son muy necesarias para describir ciertos hechos experimentales —como
veremos mas adelante—. Estas dos facetas contrastantes, son precisamente, lo que
hace tan importante el papel de las anomalias en la Fisica moderna.

En la primera parte de esta tesis estudiaré las anomalias axiales o quirales,
las cuales corresponden a una corriente axial de fermiones. La historia de estas

anomalias se remonta a un pasado ya bastante largo. El inicio puede marcarse en
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1949 con la disertacién doctoral de J. Steinberger [1] quien calcul6 un diagrama de
Feynman para un modelo pién-nucleén, con el objeto de describir el decaimiento
7 — ~v. Dos afios después, J. Schwinger [2] sefialé que la conservacién de la
coriente axial en QED —lo cual constituye una consecuencia inmediata de la simetria
axial— queda rota cuando el operador de corriente es apropiadamente regularizado.
Posteriormente, en los anos 60 el “Algebra de corrientes” de Gell-Man se popularizo
y, en este contexto, Sutherland y Veltman probaron un teorema que establecia que
el pién neutro no puede decaer en dos fotones! Ante esta evidente contradiccion
con el experimento, Bell y Jackiw resolvieron el problema usando un modelo o. La
anomalia corrige el resultado del teorema anterior por una cantidad bien definida,
la cual resulté estar en excelente acuerdo con el experimento. Por su parte, S.
Adler [3] en Princeton llegé a resultados similares. Actualmente la “anomalia ABJ”

(Adler-Bell-Jackiw) es un resultado ampliamente conocido. Mediante el cdlculo del

—actualmente— famoso diagrama triangular llegamos a la ley de conservacién rota

aujz =A (1.1)
donde A representa la anomalia ABJ

A= %;EW@’FWFM : (1.2)

Es un hecho en verdad notable que la anomalia se pueda calcular mediante la

utilizacion de diagramas a un lazo, i.e. que no hay correcciones radiativas al calculo
de la misma. Esto constituye —de hecho— el Teorema de Adler-Bardeen [4].

La extensién de los resultados anteriores a campos de gauge no abelianos A, =

a a i a a £ 3
ALT® con Fy,, = Fj, T nos conduce, por una parte, a la anomalia de singlete

1
A=j; = o5 trFuFag (1.3)

y por otra parte, al resultado de la anomalia de Bardeen no abeliana

a P\ ]' vpo a 1
—-GA,] = (D,j")" = imgﬂ P7trT0,(AL0,As + §AVAPA(,) , (1.4)



donde el signo + establece la diferencia entre quiralidad positiva y/o negativa.

A mediados de los afios 70 surgieron las primeras interpretaciones topoldgicas en
la teoria de Anomalias. Varios investigadores, entre ellos Rebbi, Nielsen, y Jackiw
[5] descubrieron que la anomalia de singlete estd determinada por el Teorema del
indice. La razon de esto es que la anomalia puede expresarse en términos de la suma
de las eigenfunciones del operador de Dirac, donde iinicamente sobreviven los modos

cero de una determinada quiralidad

1

% deA(z /dzz O} (2)Y5hn(x) = ny —n_ = Indice(Dy) (1.5)

donde la diferencia en la quiralidad de los modos cero representa el indice del oper-
ador de Weyl:

Dy =DP, (1.6)
De manera que usando el Teorema de Atiyah-Singer [6] es posible expresar el indice

en términos de las clases caracteristicas, en este caso, para ca(P), la segunda clase
de Chern [7]

1
Indice(Dy) = 3 trFF . (1.7)

Otra linea de investigacion importante en el estudio de las anomalias se inici6
en 1979 cuando K. Fujikawa [8] public6 su trabajo sobre la integral de camino para

fermiones cuantizados en un campo de gauge externo:

Z[A,) = e Wil = / dype Sl (1.8)

con la acciéon clasica dada por

S = /dw(z’ D—m) (1.9)

donde ) = +*(0, + A,). Podria pensarse, ingenuamente, que ninguna anomalia

debiera aparecer dado que bajo una transformacién quiral



Y — eP@ny (1.10)

P — e P (1.11)

puede verificarse que la accién clésica permanece invariante. Sin embargo, Fujikawa
descubrié que la medida de la integral de camino no permanece invariante. En

efecto, la medida se transforma como

dipdip — dipdip exp [ — / dzf(z Z¢T ysbn(@)] (1.12)

Aqui las ¢, son eigenfunciones del operador de Dirac [P y la anomalia esta contenida

precisamente en el Jacobiano

1
2Z¢T N156n (@) = = e 5"t B Fap (1.13)

Podemos ver que este procedimiento corresponde a una evaluacién local del indice.
Actualmente sabemos que el método de Fujikawa —que es un enfoque no perturbativo—
estd relacionado intimamente al método del “heat kernel” asi como a la regular-
izacién de la funcién zeta. No obstante que este enfoque representa una importante
linea de investigacion, en la presente tesis no serd utilizado. El lector interesado
puede consultar la referencia [8].

En los anos 80 el estudio de las anomalias se robustecié al encontrarse métodos
matematicos mas poderosos: cohomologia, topologia y geometria diferencial. Du-
rante esta década las anomalias empezaron a ser representadas en términos de formas
diferenciales. Por ejemplo, las anomalias de singlete y la anomalia no abeliana se

pueden reescribir como:

A=dxj° = %W‘FF = —dtr(A dA + A3) (1.14)



GlA] = =(D#j)" = =+

. 1
5astrT d(A dA+§A3) : (1.15)

respectivamente. La ecuacién que define la anomalia es la condicién de consistencia
de Wess-Zumino. A nivel de la formulacién BRST, ésta puede ser expresada de

manera compacta CcOo1mo

sG(v, A) :s/v“G“[A] —0 (1.16)

donde v = v*T* denota el campo fantasma de Fadeev-Popov y s es el operador
BRST (tal que s?> = 0). De manera general, podemos establecer que toda solucién

no trivial, representa un anomalia consistente. Obviamente, la solucion trivial es

Griv = sG[A] . (1.17)

Matematicamente, la condicion de Wess-Zumino corresponde a cociclos en coho-
mologias. Stora y Zumino [9, 10] iniciaron el tratamiento moderno de las anomalias.
Fueron ellos quienes encontraron una cadena descendente de ecuaciones en la que,

diversos polinomios en v, A, y F estan ligados uno al otro en diferentes dimensiones

P(F") —dQy,, =0 (1.18)
San—l + dQ%n—? =0 ’ (]‘]‘9)
San—2 + dQ%n—i’) =0 ) (120)

Q=0 . (1.21)

donde P(F™) es un polinomio simétrico e invariante de gauge. Por otra parte los

términos “cadena” Q% | , pueden ser resueltos en una forma sencilla. En éstos, el
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indice inferior denota el grado de la p-forma, mientras que en indice superior denota
la potencia del polinomio en v. Lo méas asombroso de dicha estructura algebraica
es que posee una contraparte en fisica. Por ejemplo, la tercera de las ecuaciones de
Stora-Zumino representa una version local de la condicién de consistencia de Wess-
Zumino, de manera tal que podemos identificar el término-cadena Q3 , —que es
una estructura puramente algebraica— con la anomalia G(v, A) en fisica en 2n — 2

dimensiones

GV A =N | Qhy(v.A) . (1.22)

Moy —2
La constante N es una constante de normalizacion que no es determinada por la
cadena. Si elegimos como polinomio invariante a la traza simetrizada, strF', puede
verse que recuperamos la anomalia singlete en 2n dimensiones. De modo que ambas
anomalias, tanto la de singlete como la no Abeliana, aiin cuando son diferentes en
su naturaleza, estan estrechamente relacionadas en diferentes dimensiones.

Un “renacimiento” importante dentro de los métodos topoldgicos inicié con el
trabajo de Atiyah y Singer quienes en 1968 publicaron su famoso “Teorema del
indice” [6]. El Teorema del indice fué retomado por Alvarez, Singer y Zumino,
quienes descubrieron que la anomalia no Abeliana estd relacionada a un teorema del
indice més “refinado”, conocido como teorema de la familia del indice [11].

Por su parte, Alvarez-Gaumé y Ginsparg [12] en ese mismo afo, relacionaron la
anomalia en 2n dimensiones con un teorema del indice en (2n + 2) dimensiones. Las
2 dimensiones extra surgen al considerar familias biparamétricas de potenciales de

gauge

Z'nJrl

)" (n+ 1)1 g2

~G(v, A) = 2mi Q5, - (1.23)

Y vemos que la anomalia estd dada por el término de cadena de Stora-Zumino Q3
con la correcta normalizacién.
Por otra parte y de manera paralela al desarrollo en teorias de gauge, se di6

un rapido desarrollo en teorias de gravedad. La gravitacion es una parte funda-



mental en la teoria de campos que no puede olvidarse de ninguna manera. La
investigacion moderna en las teorias que incorporan la interaccién de gravedad con
materia inicia con el trabajo de Alvarez-Gaumé y Witten publicado en el ano 1983
con el titulo Gravitational Anomalies [13]. Esta linea de investigacién culminé con
el descubrimiento de Green y Schwarz en 1984 [14] de que las anomalias de gauge y
gravitacionales se cancelan mutuamente en una teoria de Yang Mills 10-dimensional
acoplada a supergravedad (N = 1). Esto sucede si el grupo de gauge es S0(32) 6
Es x Es. Dichas cancelaciones se dan en supergravedad (D = 10) tipo I/B y tipo
I.

Aqui la gravitacion es considerada como una teoria de gauge donde las trans-
formaciones de norma son los difeomorfismos. De manera que ahora tenemos una
violacion cuéantica a la ley clasica de conservacion del tensor de energia-momento,

l.e. tenemos una anomalia de Einstein

W o) = = [ de/Ig] 69, < T = G (E) (1.24)

donde ¢ representa un cambio infinitesimal de coordenadas. En el capitulo 2 nos
ocuparemos de este tipo de estructuras. Paralelamente consideraremos el efecto que
tiene sobre las anomalias gravitacionales el introducir una deformacién noconmuta-

tiva del espacio-tiempo.

1.2 Elementos de la teoria de campos noconmu-

tativa

Por otra parte, la noconmutatividad del espacio ha sido considerada desde hace algiin
tiempo cuando se trata de estudiar una posible forma de regular las divergencias UV
en teoria cuantica de campos y en relatividad general. La gravedad cuantica tiene
un principio de incertidumbre que nos previene de medir posiciones a una escala
menor que la longitud de Plank. El momento y la energia requeridos para hacer una

medicién de esta naturaleza, modificaria la geometria a dichas escalas. Es natural
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preguntarse si estos efectos podrian ser modelados por una relacién de conmutaciéon
entre las coordenadas del espacio tiempo.

A continuacion daré algunos de los elementos basicos de la teoria de campos
noconmutativa. El enfoque que considero a continuacién dista mucho de ser formal.
La idea es, en su lugar, proporcionar los elementos fundamentales para seguir los
calculos que se daran a lo largo de esta tesis.

En la mecanica cudntica tradicional tenemos las siguientes relaciones de con-

mutacién entre los operadores de posicion y momento

(X, Pj] = ihéy; (1.25)
y
[Xi, X;] =[P, P]=0, (1.26)

donde los indices ¢, j, k = 1,2,3 corren sobre las coordenadas espaciales. No hay
evidencia, sin embargo, de que estas relaciones de conmutacion sigan siendo validas
a distancias “muy pequenas” o bien, a “muy altas” energias. Una generalizacion

que podriamos encontrar natural de dichas relaciones de conmutacion es la siguiente

[Xian] =10 (1.27)

donde 6;; es un pardmetro constante —con dimensiones de [L]*—. Obviamente que
cuando se introduce esta condicion en las coordenadas, se arruina la invariancia
de Lorentz. Recordemos, sin embargo, que hemos supuesto que las anteriores rela-
ciones de conmutacién aparecen a distancias [ muy pequenas, i.e. que para \/Lé >>1
deberiamos recobrar la simetria de Lorentz. Esta es una de las caracteristicas de
nuestra teoria de campos noconmutativa, que al menos a nivel clésico, en el limite
\/Lé >> 1 deberiamos recuperar una teoria de campo conmutativa previamente cono-
cida.

Ahora, la ecuacién anterior puede ser extendida a las coordenadas de espacio

tiempo
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(X, X, =6, . (1.28)

Lo que constituye una definicién de espacio noconmutativo, i.e. cualquiera donde
las coordenadas satisfagan la relacion anterior de conmutacién. Para construir la
correspondiente teoria de campo perturbativa, es més conveniente usar campos que
sean funciones en lugar de operadores. Para pasar a estos campos manteniendo la
relacién de conmutacion valida, definiremos a continuacién el producto en el espacio
de funcionales. Este nuevo producto es introducido a través de la —asi llamada—
correspondencia de Weyl-Wigner-Moyal:

A

P(X) & d(x) ; (1.29)

y, consecuentemente

d(X) = / X p(a)da (1.30)

o(a) :/e_io‘xgb(x)dx , (1.31)

donde « y x son variables reales. Asi,

(¢1 % ¢2) () = {eéawaﬁuan" ¢1(z + ) da(x + 1) ; (1.32)

£=n=0
Esto ultimo sugiere que podemos trabajar en un espacio conmutativo usual para
el cual la multiplicaciéon se modifica a lo que se conoce como producto estrella. Es
facil verificar que el bracket de Moyal (el conmutador en el cual el producto usual
se modifica con un producto estrella) entre dos coordenadas, satisface la relacion de

conmutacién deseada

[T, 2]y = 10, - (1.33)
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Propiedades del producto estrella

Ahora enumeramos algunas de las identidades comunes del algebra del producto

estrella.

1. Producto estrella entre exponenciales

eik:}c % el — ei(kJrfI)Ie%ikeq , (1.34)
donde kfp = k*p“0,,.

2. Representacion del producto x en el espacio de momentos.

Sea f(k) y §(k) las componentes de Fourier de f y ¢. Entonces

(f % 9)(x) = / I'kd g f(R)g(q)e s R0 ikrar (1.35)

3. Asociatividad,

[(f*g)xh](x) = [f*(gxn)](x) , (1.36)
lo cual puede ser inmediatamente probado trabajando en el espacio de momentos.

4. Productos estrella bajo una integral

[ ra@ds= [(genats = [(fo)@as (1.37)

De aqui puede deducirse la propiedad ciclica

/(f1 w ok ) (@)dbw = /(fn*fl o) @) (1.38)

5. Conjugacion compleja

(fxg) =g *f" . (1.39)

12



Es evidente que si f es una funcién real entonces f x f también sera real.

Teoria de campo noconmutativa a nivel clasico

La accién para el andlogo noconmutativo de la teoria ®* real puede escribirse

L |1 m? A
S|P = [ d'x §8M(I>*8“<I>—7(I>*<I>—E<I>*<I>*CI>*(I> : (1.40)

Debido a las propiedades del producto estrella mencionadas en la subseccién anterior,
la parte cuadratica de la accion es la misma que en el caso conmutativo. De manera

que la parte que se vé modificada esta en el término de interaccién.

Momento conjugado y ecuaciones de movimiento

Las ecuaciones de movimiento clasicas pueden ser obtenidas, como en el caso

conmutativo, minimizando la accién

05 _
ob

Entonces las ecuaciones de movimiento para la teoria del campo escalar con una

0, (1.41)

interaccién tipo A®* quedan

(0,0" +m*)® = %(@ * D% D)(z) . (1.42)

Ahora, con el objeto de encontrar el momento conjugado debemos primero distinguir

dos casos importantes:

(i) 6o, = 0 .

En este caso inicamente encontramos derivadas temporales en el término cinético

de manera que el momento conjugado es el mismo que en el caso conmutativo.
(ii) 0o # 0 .

13



Este caso es mas complicado debido a que tenemos un niimero infinito de derivadas
temporales en el término de interaccion. Obviamente se trata de un caso no trivial,
dado que el momento conjugado depende del término de interaccién. El hecho de
que tengamos un numero infinito de derivadas en el tiempo sugiere que la teoria
es no local en el tiempo y por lo tanto, cabe esperar que exista violacién de la

causalidad.

Teorema de Noether

Daré a continuacion una breve derivacion del Teorema de Noether, extendido al
caso de Teorias de campo noconmutativas. Supongamos que tenemos una accioéon que
posee una simetria global continua. Para una transformacion infinitesimal podemos

escribir

S[®] = S[® + eF(¢)], con e = const. (1.43)

Si ahora tomamos el parametro ¢ dependiente de las coordenadas x, podremos definir

la corriente J mediante la relacién

S[® + e(2)F] — S[®] = — / I ((I)(x)) Dpe(z) (1.44)

Anteriormente hemos establecido que estamos interesados en variaciones de la accién
tal que cualquier variacion de los campos alrededor de la trayecctoria clasica, dejen

a ésta invariante, i.e., §S/d® = 0. En particular, si 0¢ = e(z)F entonces

/J” (@(x))@us(x) =0 , (1.45)
y después de una integracién por partes
/0,“]“ (@(m))e(az)d% =0, (1.46)

de manera que la corriente J* es conservada. Este es un resultado general y puede

usarse para cualquier teoria noconmutativa. El concepto de corriente conservada es
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ligeramente diferente que en el caso conmutativo. Como una consecuencia de las

propiedades del producto de Moyal, podemos establecer que

a,uJM - [fa g]M ; (147)

para ciertas funciones f y ¢. Este resultado parece bastante “natural” dado que en
el limite conmutativo (0 — 0) el bracket de Moyal se desvanece y recuperamos el
resultado clésico d,J* = 0. Por otra parte, si integramos la ecuacién anterior sobre

las coordenadas del espacio obtenemos

%/J%%+/ﬁuM%:0, (1.48)

y de aqui podemos decir que, como en el caso conmutativo, la carga ()

Q:/ﬂfw, (1.49)

es conservada. Es necesario hacer incapié de que esto es asi tinicamente cuando
fo; = 0 dado que solo en este caso tiene sentido hablar del concepto de conservacion

de carga.

Campo escalar

En esta parte consideraremos una teoria arbitraria con una interaccién V[®]. Se da
por sentado que dicha interaccion contiene términos que dependen del producto de
Moyal. Como se verd més adelante, consideraremos una interaccién de la forma A®,
no obstante la discusién que daré a continuacién, no depende de la forma explicita

de la funciéon Hamiltoniana. Denotemos por S la accion de nuestra teoria, entonces:

a1 m’ 2

Dado que la parte libre de esta accion es cuadratica en los campos y derivadas de

estos campos, es conveniente escoger el espacio de Fock y en particular el estado de
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vacio para que sean exactamente los mismos que en el caso conmutativo, de manera
que los campos pueden ser expandidos en términos de los mismos operadores de

creacién y aniquilacién, es decir

d(x) = Zk la(k)e ™™ + af(k)e™]e™". (1.51)

Para aplicar el método de cuantizacién canénica deberemos primero calcular el mo-

mento I[I(z) conjugado al campo P, i.e.

[®(Z, 1), (7, t)] = 6B (& — 7)) . (1.52)

No obstante, una aplicacién directa de este método puede conducirnos a severos
problemas. En primer lugar como hemos senalado anteriormente, para la teoria
clasica, en el caso 0p; # 0 la teoria muestra problemas relacionados con causalidad.
Es por esto que se estudia generalmente el caso 6y; = 0. Para este caso el momento

conjugado es justamente el mismo que aparece en el caso conmutativo

Il = 0, ® (1.53)

En la teoria noconmutativa hay una ambiguedad al aplicar las condiciones de cuanti-
zacion en el espacio de posiciones. En general, hemos visto que para tratar un espacio
no conmutativo, podriamos trabajar en uno conmutativo usual y reemplazar todos
los productos entre funciones con productos estrella. Sin embargo las condiciones
de cuantizacion definidas entre los campos y sus momenta conjugados, se calculan
en puntos diferentes, mientras que el producto estrella solo tiene sentido entre fun-
ciones calculadas en el mismo punto. Podemos escapar de estos problemas si desde
el principio trabajamos en el espacio de momentos y aplicamos directamente las

condiciones de cuantizacion en el espacio de momentos:

[©(k), I(q)] = i6™W(k —q) | (1.54)

Esto es posible porque en el espacio de momentos, la diferencia entre el conmutador

usual y el bracket de Moyal es justamente un factor de fase €% el cual no tiene
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relevancia en la funcién 6 que aparece del lado derecho.

Desde este punto de vista, la cuantizacién se puede explorar como en el caso
conmutativo. Al nivel de la teoria libre todo se mantiene igual y tnicamente la
interaccion guarda un “registro” de la estructura noconmutativa del espacio a través
del producto estrella. Esto se manifetara de manera explicita en el capitulo 3 de la
tesis cuando observemos el efecto de una interaccién noconmutativa en una teoria

hamiltoniana.

La tesis esta organizada de la siguiente manera: en el capitulo 2 comenzamos
con algunos argumentos acerca de ciertos aspectos globales de las anomalias grav-
itacionales noconmutativas. En las secciones 2.1 y 2.2 proporcionamos las carac-
teristicas basicas de la gravedad perturbativa noconmutativa asi como de las cor-
respondientes reglas de Feynman noconmutativas que provienen del acoplamiento
de los fermiones de Weyl a la gravedad. La seccién 2.2.1 la dedico al célculo de lo
que he denominado el “andlogo noconmutativo” de la anomalia gravitacional axial
de Delbourgo-Salam, la cual corresponde a la correccién gravitacional a la anomalia
ABJ (axial) en cuatro dimensiones. En la seccién 2.3 se discute la anomalfa quiral de
gauge gravitacional en dos dimensiones. Para este caso, la generalizacién noconmu-
tativa coincide totalmente con la conmutativa y no existe correccion noconmutativa.
La seccion 2.4 estd dedicada a extender el célculo de la amplitud a un lazo para la
dimension D = 4k + 2. Aqui, luego de algunos preliminares, calculamos la anomalia
de gauge quiral gravitacional al evaluar directamente la amplitud perturbativa de
los diagramas a un lazo en el procedimiento de Schwinger. En esta misma seccion
se calcula la amplitud para fermiones de spin % En la seccion 2.5 se describe sepa-

radamente las anomalias mezcladas entre campos de gauge y campos gravitacionales

acoplados con spin % 0 % en un espacio noconmutativo.

El capitulo 3 esta dedicado a explorar la radiaciéon de un agujero negro en dos
dimensiones cuando se introduce una interaccién noconmutativa entre los campos
escalares que la producen. En la secciéon 3.1 hago una breve revision del caso
conmutativo. Ahi se introduce los fundamentos de la teoria libre de interacciones.

En la secciéon 3.2 presento la correccion noconmutativa a dicho flujo de radiacion.
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En esta seccion es presentada la version deformada de la interaccion.

La seccion 3.3 presenta la correccién noconmutativa del Hamiltoniano de inter-
accion a segundo orden en el pardmetro de noconmutatividad ©. Se encuentra una
expresion para dicha correccién y se establece que ésta es no trivial. Siguiendo con
nuestro enfoque, en la seccién 3.4 se sugiere un método que involucra la modifi-
cacion del equivalente de los diagramas de Feynman para llevar a cabo el calculo
de las amplitudes de los términos encontrados en la secciéon previa. Se utiliza una
diagramadtica que generaliza la introducida oirginalmente en las referencias [80] y
[82].

La seccion 3.5 explora, finalmente, el calculo del flujo noconmutativo de particulas
de un agujero negro. Para ello se utiliza los resultados descritos en las dos secciones
anteriores, encontrandose una expresién general para la amplitud noconmutativa.
En la seccion 3.6 se expone los detalles del calculo del flujo noconmutativo de
particulas salientes en un agujero negro. Se hace un anélisis de las divergencias
presentes en dicha amplitud, encontrandose que, a diferencia de la contraparte con-
mutativa, aqui predominan las divergencias ultravioleta.

En el capitulo 4 presento las Conclusiones y Perspectivas de esta tesis.
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Capitulo 2

Anomalias gravitacionales en la

teoria noconmutativa

“Then shall the Realm of Albion, Come to great confusion...”. ( “Entonces el reino
de Albion se verd en una gran confusion...”). (W. Shakespeare, “La tragedia del

rey Lear”, Tercer acto, escena 2)

La teoria de campos noconmutativa posee efectos novedosos e intrigantes en la
teoria cudntica como el recientemente descubierto efecto de mezcla UV/IR en la
referencia [15] que tiene, de hecho, su origen en Teoria de cuerdas. Otra sorpresa
muy agradable es la profunda relacién con la Teorfa M [16, 17] (para ver una revisién
completa se puede consultar, por ejemplo [18, 19]). Otro efecto importante de la
Teorfa cuantica de campos lo constituyen las Anomalias. Las anomalias de gauge, en
particular anomalias quirales de gauge y axiales en teorias de gauge noconmutativas,
han sido discutidas en una serie de articulos por diferentes autores [20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. En particular, las
anomalias de gauge noconmutativas en Teoria de Yang-Mills —moconmutativa—
han sido consideradas en las referencias [23, 25, 26, 28, 29] donde se trabaja con
diagramas planares con grupo de gauge U(N). Para el caso de diagramas no planares
ha habido varios trabajos como puede verse en [24, 30, 40]. El andlisis puede ser

extendido a otros grupos de gauge introduciendo el mapeo de Seiberg-Witten como
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puede verse en [34, 36, 37, 38, 39].

Por otra parte, recientemente se ha propuesto varias teorias de gravedad no-
conmutativa. En particular, en las referencias [41, 42, 43, 44, 45, 46], se analiza
diferentes deformaciones de Moyal de la gravitacién de Einstein en cuatro dimen-
siones. Todas esas acciones sin embargo, son no manifiestamente invariantes bajo
las tranformaciones completas noconmutativas dado que son deformadas de man-
era no trivial por el producto de Moyal con un pardametro de noconmutatividad
constante. No son, por lo tanto, invariantes ante difeomorfismos, en la medida en
que el producto de Moyal depende del sistema de coordenadas. Esos productos
pueden volverse invariantes ante difeomorfismos sustituyendo el producto de Moyal
*pr por el producto de Kontsevich g [47]. En el presente trabajo vamos a asumir
que se utiliza el producto de Kontsevich xx aunque se evitara el uso del subindice
K. Recientemente se ha encontrado otras propuestas noconmutativas que pueden
consultarse en las referencias [48, 49]. En la primera de las referencias se construye
una accién topolégica noconmutativa, manifiestamente invariante SO(1,3) para los
términos theta gravitacionales. Para ciertas condiciones de frontera apropiadas nos
da la posibilidad de proporcionar indicios acerca de instantones gravitacionales no-
conmutativos asi como de anomalias gravitacionales de Lorentz noconmutativas. En
el ultimo de los articulos se discute un caso dinamico de gravedad de Einstein de-
formando a la Moyal (o Kontsevich) la proyeccién auto dual de la teorfa de Einstein

para encontrar una teoria noconmutativa manifiestamente invariante SL (2, C).

Las acciones topoldgicas noconmutativas las cuales son la combinacion lineal del
nimero de Euler Y(X) y de la signatura o(X), siendo acciones invariantes ante
SO/(?Tl), son muy importantes dado que describen el rompimiento de la simetria
quiral ante la presencia de campos gravitacionales. Debido a las dificultades técnicas
que surgen al tratar de hacer noconmutativa a la acciéon x(X), se propone una man-
era de lograr esto al hacer a la accién noconmutativa x(X) la cual es SITQ,\C) in-
variante, a partir de una versién noconmutativa para la signatura, lo cual es también

—

una accion SL(2, C) invariante.

Por otra parte, las anomalias de norma locales estan asociadas a la falta de in-
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variancia de la accién efectiva fermidénica a un lazo I'(Q) = log [det D], donde
el = [ DyYDyre Jx T bajo transformaciones de gauge infinitesimales con los cam-
pos de materia quirales 1 (z) y 1*(z) definidos en una representacién compleja @
del grupo de gauge G.

En el caso de los acoplamientos gravitacionales a la materia, existen diferentes
tipos de anomalias gravitacionales, dependiendo del tipo de transformaciones de
simetria que se esté analizando. Asi, la anomalia de Lorentz (o de automorfismos)
esta relacionada a la falta de invariancia de gauge de I' bajo las transformaciones
de Lorentz. Cuando el grupo de simetria es el grupo de difeomorfismos Dif f(X)
de una variedad de espacio tiempo suave X y I'(Q) es no generalmente covariante,

entonces tenemos la anomalia de difeomorfismos.

En otro orden de ideas, las correcciones gravitacionales a la anomalia ABJ (Adler-
Bell-Jackiw) fueron originalmente calculadas por Delbourgo y Salam [50] y trabajos
posteriores relacionados con éste pueden verse en las referencias [51, 52]. Poco
tiempo después, las anomalias gravitacionales fueron calculadas en una forma sis-
tematica por Alvarez-Gaumé y Witten [13] (puede verse también [12]). En el pre-
sente trabajo no consideraremos anomalias gravitacionales globales aunque el lector

interesado puede consultar una excelente exposicién en [53].

En la referencia [48] se argumenta acerca de una versién noconmutativa del
grupo de Lorentz S/O@ siguiendo un procedimiento global para calcular anomalias
quirales en una teoria de gauge, procedimiento sugerido por Harvey [54], y el cual
estd basado en la literatura matematica [55]. La aplicacién de estas ideas a las trans-
formaciones de difeomorfismos conectadas a la identidad, podrian predecir novedosos
efectos gravitacionales noconmutativos, que serfan calculadas explicitamente como

una correccion noconmutativa de la contribucion gravitacional a la anomalia quiral.

En el presente trabajo calculamos anomalias gravitacionales quirales y axiales
partiendo de una teoria gravitacional noconmutativa completa y nos enfocamos en el
lagrangiano de interaccién entre fermiones quirales y gravitones en el espacio tiempo
noconmutativo. En general, seguimos la observacion de t’Hooft de que las anomalias

pueden ser estudiadas en términos de la teoria de campo efectiva de bajas energias y
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consideraremos una teoria efectiva de campo noconmutativa describiendo la accién
efectiva —a un lazo— de fermiones en un campo de fondo, siendo éste el campo grav-
itacional noconmutativo (para las anomalias gravitacionales puras) y/o el campo de
Yang-Mills noconmutativo (para las anomalias mezcladas). Nos restringiremos al
calculo de diagramas perturbativos a un lazo entre fermiones quirales con gravi-
tones externos y/o gluones en varias dimensiones. Unicamente consideraremos los

diagramas planares en este trabajo.

2.0.1 Preliminares de Anomalias gravitacionales noconmu-

tativas: Aspectos globales

Antes de proceder al cédlculo de las anomalias gravitacionales en el contexto nocon-
mutativo me gustaria hacer algunas consideraciones globales acerca de la naturaleza
de dichas anomalias.

Desde una perspectiva topoldgica, las anomalias gravitacionales locales son obtenidas
a través del calculo de ciertos grupos de homotopia adecuados al grupo de gauge
relevante.

En la referencia [48] se dan argumentos acerca de una versién noconmutativa del
grupo de Lorentz S/O_(I) siguiendo un procedimiento global para calcular anomalias
quirales en una teorfa de gauge; procedimiento sugerido por Harvey en [54], el cual
estd basado en la literatura matemadtica [55]. Su propuesta se fundamenta en asumir
que @ consiste del conjunto dado por el algebra de operadores ortogonales
compactos Oy (H), definido sobre el espacio de Hilbert real (separable) H. La
propiedad de compacidad “elimina” en cierta forma el teorema de Kuiper, el cual
establece que el conjunto de operadores ortogonales puro O(H) posee grupos de
homotopia triviales [55]. Esta dlgebra tiene subdlgebras no triviales las cuales poseen
la misma homotopia que SO(o0) (hasta una periodicidad de Bott 8), lo que puede
dar origen a novedosos efectos topoldgicos no triviales en gravedad noconmutativa.
La anomalfa de Lorentz local noconmutativa es detectada con m3(Oqp(H)) = Z. La

eleccién de Oy (H) como una version de @ = SO(00) es altamente no tunica,
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por tanto hay muchas posibilidades de lograr esto y no existe un procedimiento

natural para definir SO(4) y es ciertamente necesario contar con una manera de

calcular mas explicitamente la anomalia gravitacional local.

En teorias gravitacionales, el grupo de Lorentz es tunicamente una parte del
grupo de simetria completo. Por lo tanto, el espacio moduli de la teoria de gravedad
pura involucra una estructura del espacio fase mas rica la cual consiste del es-
pacio cociente: M = T/TL, donde T = Met(X)/Diff(X) es el espacio de
Teichmiiller y T'Z es el grupo de la clase de mapeos dado por el grupo cociente
't = Dif fH(X)/Dif ff (X). Aqui, Met(X) es el espacio moduli de métricas Rie-
mannianas sobre X, Dif fT(X) es el grupo de todos los difeomorfismos que preservan
la orientacion sobre X y Dif fi (X) es el grupo de difeomorfismos que preservan la
orientacién sobre X los cuales estan conectados a la identidad. Sin embargo, hay
una restriccion en la dimensionalidad del espacio tiempo en el cual la anomalia de
difeomorfismos puede existir. Esta puede existir inicamente para dimX = 4k + 2
dimensiones dado que solo en esta dimensién el grupo ortogonal O(1, D — 1) posee

representaciones complejas.

Las anomalias gravitacionales locales en el caso usual conmutativo aparecen
cuando el grupo de la clase de mapeos es el grupo trivial i.e., T'Z, = 1. Por lo tanto
el espacio moduli estd dado por M = Met(X)/Diff(X). Las anomaias gravita-
cionales globales estan relacionadas a la disconexidad de T’ , ie. mo(I'L) # 1.
Ahora, el espacio moduli para gravedad noconmutativa puede ser definido por
M = T/T% con T = Met(X)/Dif f(X) y T% = Diff+(X)/Dif f(X). Por
supuesto que, para poder llevar a cabo algunos cédlculos en anomalias, uno debe
ser capaz de proveer definiciones adecuadas para fg\g, DiﬁJF\(X )y DiﬁJ\(X ).

Las anomalias gravitacionales locales noconmutativas surgirian cuando m(M) =

T (Dif £ (X)) # 1, donde M = Met(X)/Dif f; (X).

Una vez més, la eleccién de alguna versiéon adecuada de Dif f;"(X) es con mu-
cho, no tunica; existen muchas posibilidades para éste y no existe un procedimiento
—_—

“natural” para definir Dif fi"(X) asi que se hace necesario una forma més explicita

para calcular anomalias gravitacionales locales. En esta tesis evitaré el uso de la
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perspectiva topoldgica y calcularé las anomaias gravitacionales quirales a través
del calculo directo y explicito de diagramas de Feynman a un lazo para fermiones
quirales acoplados a gravitones externos y/o campos de gauge. Para lograr esto,
usaremos las reglas de Feynman para una gravedad noconmutativa adecuada, dadas

en la seccion siguiente.

2.1 El acoplamiento noconmutativo de Gravedad

y Fermiones quirales

En la presente secciéon daremos un breve repaso del campo gravitacional perturba-
tivo noconmutativo puro y su interaccién con fermiones de Weyl noconmutativos.
Nuestro proposito es llamar la atencién acerca de la estructura relevante de los
acoplamientos y las reglas de Feynman, lo cual serd necesario para la siguiente

seccion.

Como ya he mencionado en la introduccién, en el momento presente no ex-
iste una teoria de gravitacién noconmutativa realista y bien definida. En la pre-
sente tesis no trabajaremos con una teoria de gravedad noconmutativa especifica.
Esto obedece a que al final no consideraremos ninguna teoria especifica de gravedad
pura, sino que estaremos interesados exclusivamente en las interacciones del campo
gravitacional noconmutativo linealizado con fermiones quirales. Sin embargo, para
ser concretos revisaremos brevemente una propuesta particular de la Gravedad

de Einstein (noconmutativa) [42] dada por la accién de Einstein-Hilbert nocon-

mutativa: gy = —terae Jx d'a(—e) x el(x) x e)(x) x Ry (x), donde g,,(z) =
en(@) * e (), ¥ Ry (1) = Jup(x) = Owi’(z) + [wu(@), wu (@), con wi(x),

siendo la conexién de spin noconmutativa, mientras que el conmutador usual es

sustituido por [A, B], = Ax B — B A, el bracket de Moyal. Aqui, el producto * se
define por F'x G(z) = exp (%@‘“’ii) F(y)G(z)

Byi 9w . En esta primera parte de

Yy=z=zx

la tesis tomaremos 0% = (.
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La Gravedad perturbativa noconmutativa es definida mediante una expansién
perturbativa de la forma: I = I© 4 [ + 1@ 4 O(k*) de la accién de Einstein-
Hilbert noconmutativa [45] la cual es generada a través de una expansién de la
métrica como sigue: g, = Ny — Khy + /{2hz‘ * hoy — /@3hl‘j * hop * RS + O(k%).

En la referencia [45] se exponen las reglas de Feynman de esta teoria de Gravedad
noconmutativa. En lo que sigue daremos las correspondientes reglas de Feynman
que gobiernan el acoplamiento de la métrica linealizada noconmutativa h,,(x) a

fermiones quirales.

2.2 Acoplamiento de Gravedad a Fermiones quirales

A continuacién consideremos la teoria de Gravedad en 4k + 2 dimensiones. El
acoplamiento del campo gravitacional con Fermiones quirales estd dado como es

usual, por la Lagrangeana

1— 1-T
Ly = /d4k+2x det(e) x e (x) % §w(az) *il',D,, <T) W(x), (2.1)
donde D, es la derivada covariante con respecto a la conexién de spin wzb y estd
dada por D, (z) = 9,0 (x) + swpcac™p(z), con 0% = T¢I, T =T ... Lypyo y
donde las I'’s son las matrices de Dirac en 4k + 2 dimensiones euclideanas.
Nuestra accién noconmutativa se puede reescribir en dos partes I;,; = I1 + I

donde

/ d det(e) " () x () * Ty D, (ﬂ) (z) (2.2)

I = .

N —

I = i/dm det(e) * e"(z) x wi () * ith(x) *racd(l ; F)w(m), (2.3)

donde definimos, de manera usual I'y.g = %(FaFch + permut.).
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La linealizacién de nuestra accién noconmutativa I;,; dada por la ecuacién (2.1)

nos conduce a la deformacion de Moyal de la gravedad lineal dada por la Lagrangeana

L= —iih“"(m) «D(x) «T, D, (%)1&(@“), (2.4)
y
Ly = —%ih,\a(x) * Ophaa () % () % THY <%> (). (2.5)

Las reglas de Feynman correspondientes pueden deducirse de las Lagrangeanas
(2.4) y (2.5) y vienen dadas por las siguientes expresiones

i 1-T i
—f‘”Fu (T) (p+71')vexp ( — 56”"]%19;) (2.6)

i o (1-T (.
1 () e (et

x [k:m exp (%@’”k‘lpk’gg) — Jigy, exp (%@p“klpk%)} , (2.7)

donde 5,(2 son los tensores de polarizacién del campo del graviton. Las reglas de
Feynman dadas por las ecuaciones (2.6) y (2.7) pueden deducirse de los siguientes

diagramas

2.2.1 Anomalia gravitacional de Delbourgo-Salam nocon-

mutativa

Las anomalias gravitacionales en cuatro dimensiones fueron originalmente estudi-
adas por Delbourgo y Salam [50] como una correccién gravitacional a la violacién

0

de la simetria global responsable del decaimiento: 7@ — 7. Esta idea fue poste-

riormente desarrollada en diversos trabajos [51, 52]. En esta seccién discutiremos
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Figura 2.1: Diagramas de Feynman para L; y Ls.

la contraparte noconmutativa. Delbourgo y Salam [50] demostraron que, en el de-
caimiento anteriormente citado, ademas del diagrama triangular con tres corrientes;
se tiene otro diagrama similar con una corriente J* de una simetria global y dos ten-
sores T}, de energfa-momento, diagrama que también es anémalo. La contribucion

correspondiente a la identidad de Ward andémala esta dada por

1
38472

Esta es, precisamente, proporcional al invariante de signatura o(X) —o la primera

Ryorpo RETEMN. (2.8)

clase de Pontrjagin— que junto con el nimero de Euler x(X) son los invariantes
topoldgicos clasicos de una variedad de espacio tiempo X. Ahora discutiremos en
detalle la derivacién de la contraparte noconmutativa de la ecuacién (2.8). La am-

plitud de dispersién del proceso en cuatro dimensiones estd dada por la expresion
exp ( — %@p"(p —ka),(p+ kl)g)
- (p+ k) — M]

exp (= 5077p,(p — k2),)
L (p— ko) — M] ’

Tr / d4p{r D, Fn)\,uu} 5p101pp1 o

exp (— £077(p+ k1),po) .
(1’\ .p o M) pP202

pIro? (2.9)

donde hemos usado la regla de Feynman (2.6) en cada uno de los vértices del dia-

grama triangular asi como los correspondientes propagadores fermionicos.
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Con el objeto de evaluar esta amplitud, promovemos la integral anterior, de 4 a

2¢ dimensiones, de la siguiente forma

I'-p+M)
P> — M

I'-(p+k)+M) i
d% ( . — —OP(p—k k - - P11
/ P+ k)2 — 17 D (= 507 (0 = k)op + 1)o)Eponp

(- (p— ko) + M)
[(p = k2)? — M?]

x exp ( — %@”" (p+ k1) Do) Epponl”?T7% - exp (— %@p"pp(p — ko))

(2.10)
y de manera usual introducimos los parametros de Feynman
2/d/d/ —r—y—2) (2.11)
— = x .
ABC Y xA+yB+zC)3’
con A= (p+k))>—M?* B=(p—Fky)?— M?*y C = p?>— M2 Después de una

redefiniciéon del momento p — p’ = p + kyx — koy encontramos que xA +yB + (1 —
—y)C = p"?* + k2xy — M? y omitiendo la operacién de la traza de las matrices de

Dirac, encontramos que *A +yB + (1 —z — y)C = p? + kizy — M? y

1 d%p
dredydz 6(1 — x — y —
/0 vdydz o(1 =z =y z)/(p2+k‘§xy—M2)3

xTr{{F D, Dna } [+ (p+ zky — whs) + M| (p + xky)”' T

x [+ (p+xko—yky)+M] (p — yk1)”*T7* [ (p+yks—zks)+M] } exp (—%@”"klpk20> .

(2.12)
Aqui hemos redefinido nuevamente p’ — p y hemos desarrollado la suma de las
contribuciones de las fases en en el pardmetro noconmutativo ©. Integrando la
variable z y manteniendo tinicamente los términos divergentes, tenemos finalmente

que

d2£p
(p? + k3zy — m?)?

1
2]{;511{{)2/ drdy 0(1 — x — y)xy/
0
X Tr({T - p, Toau )T - p TOUT2T - ki T - k) exp ( - %@”"klpk%), (2.13)
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donde 6(z) es la funcién unitaria de Heaviside. Ahora procedemos a calcular la
traza de los productos de matrices gamma usando la propiedad ciclica de la traza
asi como la identidad Tr(FKAHVFUIFUQF“Fﬁ) = 2£5[[:1 5?5;}55}] = 2z5U1"2a55H,\uV obten-

emos finalmente

! d* (-2
2]{;2’0%{’2/ drdy 0(1 — x — y)xy/ P 2( 7 )
0

(p* + kizy — m?)?

«Tr {{F 9, Do -TO TP - kgD oy + . } exp ( - %@p"klpk%) (2.14)

o, de manera alternativa

1 d2lp {—2
ol p1 P2 / 1— 7 — / 2
ky' Ky ; dxdy 6( T —y)zy (p? + k2zy — m2)3 14

Xk’lakggﬁglgzaﬁﬁn)\‘uy exp ( — %@pgklpkgg) . (215)

En la integracién del momento p usamos la siguiente identidad

2 ! 2 —7)
2! b - o ((R2xy — M?). (2.1
/ PR T Ry — 3PP ey — 3Pt T (et M. (216

Entonces podemos reescribir la ecuacién 2.15 como
7
2”1(5 - 2)k2plk5250102aﬂ5n,\aﬂk1ak25 exp < - §@pak1pk20>

X (4m) T (2 — 0) / (K2y — M) Pizy 6(1 — o — y)dady + . ... (2.17)

Desarrollando la expansion de la funcién gamma I'(g) para valores pequenos de
€ con € = 2 — {, tomando luego el limite ¢ — 2 y evaluando la integral en = e y nos

queda

kpl P2
LA
1272

Tomando en consideracion la amplitud —invariante de Lorentz— mas general,

7
EUIUQQﬁE,{)\aﬁklang exXp ( — E@paklpkgg). (218)

obtenemos
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7
19272

s 1) 2 sn=” > (kK 2nan 030 (5 € )

(2.19)

En el espacio de las coordenadas esta tltima expresion puede ser reescrita como

g1o2ef (aaawhplm * 8@8%2 - aaap2hp101 * aﬂam hp202) Erxap- (2'20>

Lo cual puede expresarse, a la vez —de manera compacta— de la siguiente forma:

1

38472
La ec. (2.21) constituye, precisamente, el invariante de signatura noconmutativo

Ryonpo * RO (2.21)

7(X)= [ Rx R d*z. En esta tdltima expresion la tilde sobre R denota al operador
dual de Hodge con respecto a los indices del espacio tangente. Vale la pena con-
frontar este resultado con la signatura o(X) de la referencia [48], donde la dualidad

de Hodge esta asociada a los indices de la tetrada.

2.3 Anomalia gravitacional pura noconmutativa

en D=2

En la seccion previa hemos introducido las reglas de Feynman para Gravedad cuantica
perturbativa noconmutativa, relevantes para calcular las anomalias gravitacionales
quirales. Antes de calcular la anomalia gravitacional noconmutativa en D = 4k + 2
dimensiones en esta seccién, vamos a familiarizarnos con los detalles del calculo de
la anomalia gravitacional pura en dos dimensiones en el caso noconmutativo. En

todo el calculo seguiremos las convenciones y notacién de la referencia [13].

2.3.1 Calculo explicito en dos dimensiones

En dos dimensiones, la accion noconmutativa para un Fermion en presencia de un

campo gravitaccional estd dada por I = [ d*z det(e) * e"*(z) x 2 (z) x iTa0u1h(z).
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“A nivel” linealizado, la Lagrangeana estd dada por

Lins = —}th(x) « () % D00 (x). (2.22)

El correspondiente tensor de energia-momento esta, entonces, dado por

1 -
T(x) = §z¢(x) *,0,90(x). (2.23)
En las coordenadas del cono de luz 2+ = \%(1’0 + '), las matrices de Dirac

pueden descomponerse como I'F = \%(Fo—i—Fl), con (IM*)2=0and T+ T'F = 2.

En estas coordenadas el tensor de energia-momento tiene la expresiéon

1.-
Tiv(z) = §Z¢($) * Dy 0(2), (2.24)
mientras que la accién de interaccién (2.22) del campo gravitacional con los fermiones

en las coordenadas del cono de luz, se reduce a

1 _

Line = =i () % 9(2) * T 04(), (2.25)
de manera que solo la componente h__(x) del gravitén esta acoplada a la materia
quiral descrita por la componente 7',  (x) del tensor de energia-momento. La accién
efectiva a segundo orden en la métrica perturbada h,,, estd codificada en la funcién

de correlacion de dos puntos

U) = [ @resp (ip-2) QT (T () « T (019, (2.26)
donde

(QUT (T (1) T (0)]2) = — / qugH s (D)4 04 (a1 D) 020063

x exp (i(q1 — q1)x) exp (i(q2 — ¢3)x) exp ( r quqf’). (2.27)

La correspondiente identidad de Ward “ingenua” estda dada por p_U(p) = 0.
Esto deberfa implicar que U(p) = 0 para todo p_, por lo que deberd haber una
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anomalfa. Entonces podemos calcular U(p) mediante la evaluacién del correspon-
diente diagrama a un lazo con dos gravitones externos fig.(2.2), lo cual da como

resultado

1 [ dk,dk_ , kyexp (— $0°7k,p,)
v) / omz R
(k+p)yexp (— 077D k,)
(k+p)+(k +p)- +ie

1 /dk+dk( k) 1 exp (— £677p!p,)

4 (2n)? Tk +ie/ky (k+p)- +ie/(k+p)t

S(p+p)-exp (i(p+p)x)

O(p+p')-exp (i(p+p')x),
(2.28)

Donde hemos utilizado la regla de Feynman (2.6) para calcular U(p).

p+k

Figura 2.2: Diagrama noconmutativo a un lazo con dos gravitones externos.

En las coordenadas del cono de luz el producto de Moyal queda expresado por
exp( — %@p”p;pg) = exp( — %@*‘(pﬁrp_ — p’_p+)). Ahora, mediante métodos
analiticos estandar —integracion en el plano complejo— el calculo de las integrales

arroja el resultado

i f° 2k +p)3 i po s :
U(p) —/ dk+(p—)+e><p(—§@””pppa)5(p+p)

- 8 —p _
_ i exp | — z@””p’ po ) exp (i(p+p')x)d(p +p'). (2.29)
247 p_ 9 p
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Por lo tanto, la identidad de Ward gravitacional anémala estd dada por

!

p-Ulp) = Y

i / . / /
Pl exp ( — 5®’”pppa> exp (i(p +p')z)d(p + p'). (2.30)

El calculo del diagrama de dos gravitones acoplados con fermiones quirales en la

teoria noconmutativa viene dado por la accién efectiva

1
1927

X exp ( — %@p”p;po) h—_(p')exp (i(p+p")x)6(p+ 1) (2.31)

3
e p
L+ff(hm,) = d2pd2p’p—jh__(p)

De manera similar al caso conmutativo, en la presente situacién no hay forma de
agregar contratérminos genéricos ALif ! tales que Lif f4 ALif ! sea invariante bajo
transformaciones generales de coordenadas.

Asi, considerando un fermion de Dirac en 1+ 1 dimensiones, tendremos entonces
que la correspondiente accién Lgcf serd la superposicién de Lif ! y su correspondiente

término conjugado L resultando

3 .
eff - - 2,72,/ p_+ o 1 po ! /
Ly () = =155 | dpdp {p_ h——(p) exp ( 50 pppa> h——(p)
2 i .
+§—h++(p) exp ( - 59’”29;190) h++(p’)] exp (i(p + p')z)d(p + p'). (2.32)
+

Esta acciéon no es invariante bajo transformaciones infinitesimales generales de co-
ordenadas dz* = ¢, se puede ver que la métrica hy, se transforma como 0h,, () =

—0uen () — Oye,() 0, en el espacio de momentos

0hyt(p) = —2ipiey, 6hy—(p) = —ip_ey —ipie—, Oh__(p) = —2ip_e_. (2.33)

No obstante en este caso existe un contratérmino que denotamos por ALefo el cual
puede ser agregado a la accion efectiva Lgf de tal forma que sea invariante bajo

transformaciones de coordenadas generales
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3

1 D 1
ALeff - - d2 d2 / —+h,, — Z@Qriy . h (v
D T90m pd°p {p (p) eXp< 507 Pup ) (p')

pS

3 i i
+p—+h++ (p) exp ( - 56””1?21%) his(P') + 201 p-hyy(p)exp ( — 59’3“1921)0) h-—(p)

i i
—4p%h_(p) exp < - Q@”"Pﬁma) hi—(p") — 4p® hyy(p) exp ( — 59”19;1)0) he(p)

i / / /
+4pyp_hy_(p)exp ( - 59””pppa> hi(p )} o(p+p). (2.34)

A pesar de la apariencia poco atractiva de esta tltima ecuacién, es facil ver que

esta accion puede ser reescrita en forma compacta de la siguiente manera

1 R(p)exp ( — 507 p,ps) R(p')
ALeff _ __/ 2, 921 2 p / 9

lo cual —después de un integracién en la variable p’— nos da la correccién usual a

la contraparte conmutativa de (2.34).

1 R(p)R(—p)
N (L / 2y THPIH=P) )
D 1997 p Dip_ (2.36)

donde R(p) es la expresion linealizada de la curvatura escalar noconmutativa la cual
puede expresarse como R(p) = pZh__ +p hyy —2pip_hy_.

Hay una correccién cudntica a la ley de conservacién T _(p) = 0, la cual es valida
clasicamente, debido a la introduccién del término hy_ dentro de la Lagrangeana
de interaccion ALEL{f y tenemos entonces un valor de expectacion de 7'y _ diferente
de cero lo cual da origen a una anomalia gravitacional de la forma

eff
(T (p) = ~25= s = R (). (2.37)

Debido a la conservacion del momento lineal, tenemos del andlisis de arriba que

, —_—

p = —p a través de 0(p + p’) y el factor de fase exp ( — i@p“p;pa) es igual a

uno, por lo que no existe modificaciéon alguna a la anomalia gravitacional en dos
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dimensiones en un espacio noconmutativo. Este resultado contrasta enormemente
con lo que sucede en D = 4 dimensiones, como vimos en la seccién anterior. Las

ideas que se discuten en la siguiente seccién ayudaran a esclarecer estos resultados.

2.4 Anomalias gravitacionales noconmutativas en

D =4k + 2

“O matter, and impertinency mix’d, Reason in madness”. (!Oh mezcla de buen
sentido y de absurdo! !Tanta razén en medio de la locura!). (W. Shakespeare, “La

tragedia del rey Lear”, Cuarto acto, escena 6.)

2.4.1 Preliminares

En esta subseccién calcularé el diagrama a un lazo de % + 1 = 2k + 2 gravitones
externos con momentum p,(f) y polarizaciones 58,1 con i = 1,...,2k + 2. En este
célculo seguiremos la referencia [13] usando la prescripcién de Adler de un diagrama
equivalente con 2k + 1 gravitones externos con una unica insercion de un factor axial

$(1—T) y 2k +1 vértices no anémalos. En lo que sigue asumiremos que el tensor de

polarizacién €, el cual estd dado por €, = i(p,e, +p.€,) (donde €, es el pardmetro

involucrado en la transformacion de coordenadas z# — z# + ") puede factorizarse

de la forma: 5,(3 = sff) e,

Por lo tanto, la amplitud a un lazo es proporcional a:
Ao Tr {I_’ exp ( — %@p“kp(k —pM - - p(2k+1))g> K+ M)
ot xp (=507 (b ) 0= 00 2 e 507 (=), (-1,
(b= pV =g + M) &V exp ( - %@p"(k‘ —p = p® = p),(k = p» — p(z))a)
e x 24D xpy ( _ %@pa(k CpM ) ) p(Q’“))a)
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X (=t = =g 4 M| (2.38)

donde hemos utilizado la regla de Feynman (2.6) en cada uno de los vértices no
anémalos. En la anterior amplitud hemos omitido (2k 4 1) factores de la forma
zﬁ en cada uno de los vértices no anémalos.

Ahora, con el objeto de eliminar los productos de las matrices de Dirac que apare-

cen en la amplitud anterior, requerimos que Tr(I'T',, T, ... T ) = —2%+!

L pagge Epapa.. papta-

De esta manera podemos factorizar la dependencia en el parametro de noconmuta-

tividad ©

A oc 22 MR (e pl0)), (2.39)

donde el término R(¢¥, pl)) es un factor cinemético el cual depende tinicamente de

los momenta externos y de los vectores de polarizacion

By G k k
R, pD) = =l Pl P e (2.40)

lo que —evidentemente— deja a R(e®, p\9)) independiente del pardmetro noconmu-
tativo ©.

Utilizando la regla de Feynman (2.6) en cada uno de los 2k + 1 vértices, ten-

emos que, para el vértice i-ésimo hay una inserciéon de un factor: —izsﬁ)(p +

i )“pQ_lM2 exp ( — %@p"pppﬁ,), donde p es el momento entrante y p’ es el momento
saliente. La contribucién total estd “codificada” en la amplitud Z(¢@, pl) ©). La

amplitud total esta entonces dada por

I, — 22’f+1M2R(5(i),p(j)) . Z(g(i),p(j), 0), (2.41)

[NIES

donde Z puede ser reinterpretada como la amplitud para un campo escalar cargado

de masa M y carga }L en un lazo acoplado a (2k + 2) fotones de momenta p\¥) y

tensores de polarizacién €, dentro de un espacio tiempo noconmutativo.
Entonces toda la informacion sobre el parametro noconmutativo esta contenida

en la amplitud Z y lo que necesitamos es una manera de calcular dicha amplitud
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[T5" exp ( - 307 % pgj)Pc(ij)) e (pj +pin)

T152 (02 — M2)

Z(e(l)’p(])’ @) — /d4k+2k
(2.42)

Como en el caso conmutativo, este problema puede ser resuelto reduciéndolo
al calculo de la amplitud para un diagrama a un lazo con 2k + 2 fotones externos
interactuando no conmutativamente con un campo escalar complejo masivo con
carga % y con propagadores i/(p* — M?) con la condicién de que el i-ésimo vértice
tenga un factor —iié,(f) (p+p)exp (—£67p,p.,), donde p es el momento y gff) son
los tensores de polarizacién [13]. El diagrama correspondiente a este proceso estd
representado en la figura (2.3).

Este problema fue originalmente discutido por Schwinger [2] para el caso con-
mutativo y usado por Alvarez-Gaumé y Witten [13] para calcular Z. En esta tesis
seguiremos la misma estrategia para el caso noconmutativo. En la siguiente sub-
seccion daremos los detalles del cédlculo explicito de esta interaccién residual nocon-
mutativa. Béasicamente lo que tenemos es una interaccién noconmutativa de éstas
en cada vértice no anémalo y encontraremos una solucién exacta para dicha inter-
acciéon, aplicdndolas finalmente para el cdlculo de Z. La figura 2.3 en la péagina

siguiente es util para el calculo de esta amplitud.

2.4.2 Calculo explicito de la Interaccién residual noconmu-

tativa

Comenzaremos con una teoria para un campo escalar complejo de masa M acoplado
a un campo de gauge abeliano en un espacio noconmutativo. Debido a la bosonizacion
no conmutativa, este sistema sera equivalente al modelo de Schwinger. El modelo
de Schwinger ha sido discutido en el contexto noconmutativo en diversos articulos
[56, 57, 58, 59], no obstante, en el presente trabajo seguiremos un procedimiento

diferente. Considere la siguiente accién
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Figura 2.3: Diagrama noconmutativo para D = 4k + 2.

L= /d2px(D“gz_5*Dugb+ M?¢ % ¢), (2.43)

con D,¢p = 0,0 — ieA, x ¢ and D#QE = “qg + ied x A,,. Si utilizamos la definicién
para el producto estrella (f *x g)(z) = f(f)egaG)aﬂg/gg(n)’g:n:x, donde se define
3a@aﬁ 5)5 =10 30(5)/3. Algunos resultados encontrados por Schwinger [2] fueron

usados en la referencia [13] como una herramienta para calcular la anomalia grav-
1
5.
El primer término del lado derecho de (2.43) para gravitones acoplados a materia

itacional en 4k + 2 dimensiones para gravitones acoplados a campos de spin

/ &y DV gx Dy = / (8"¢+z’e¢e<§aeaﬁ35/ﬂ‘) (8u¢—ieAuega@Qﬁ35¢), (2.44)

donde hemos usado la propiedad de ciclicidad de la traza i.e. [dzf(x)* g(z) =
[ dxf(z)g(x) para todo fy g. Expandiendo el lado derecho de esta expresién e

integrando por partes, podemos factorizarlo como sigue

/ ¢{ — {8’* e (ega@“‘*gm“)} {au e (AuegaQ“‘*?ﬁ)] }¢. (2.45)

De manera que la accién original (2.43) resulta ser:
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L= / gz?{ - [aﬂ — e (ﬁa@“@m#)] {au — e (Auega@am[,)] + M2}¢>. (2.46)

Definamos ahora la funcién de particiéon Euclideana para un campo escalar ma-
sivo complejo propagéndose en un campo electromagnético (constante) de la sigu-

iente forma:

7 = / [D¢][Dg]exp ( — L), (2.47)

entonces la accién efectiva I' estd relacionada a la funcién de particién en la

forma Z = e T

= Trln { - [aﬂ — e (ega@“ﬁgmﬂﬂ {au e (Auega@“"gﬁ)] + MQ}. (2.48)

La representacion de Schwinger para la funcion logaritmica puede ser expresada

como sigue

© Js ( —S |: (8”1'6 (ega@aﬁgﬁAH)) (@Lie (A#ega@aﬁgﬁ)) +M2:|

F:—Tr/ —{e —6_5}
0 S

(2.49)

Podemos escribir la intensidad de campo Fj,, del campo electromagnético con-

stante —como es usual en la representacién de Schwinger— como una matriz diago-

nal por bloques y trabajar inicamente con un bloque genérico de dos componentes.

[gualmente, tomaremos la siguiente norma:

A =0, Ay = Fa'. (2.50)

Debe resaltarse que en esta norma, los 6rdenes méas altos que el primer orden, se
desvanecen en la expansion del producto de Moyal. Manteniendo esto en mente

podemos calcular la accién efectiva I' como:
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[=—Tr / %e_SMQ exp {s {(8"—2‘6/&")(8u—ieAu)—z'e%@aﬂ(a“aaAuag—l—aaAuﬁ“ag)
0

ie%@aﬁ (0a03A"D, + 05APD,0,) — € <%@aﬁ (APD4A, 05 — D0a05 AP A, — D5 APD,A,)

-\ 2
_ <%) OO (0,05 AP0 A, 05 + 05 A*DyOr A, 05 + @BAM&\AH&I@&))} } e
(2.51)

Ahora nos enfocamos en el operador exponencial dado por

{8“ _ie (63(@‘4*5)514/1)} {aﬂ — e (Auegaeaﬁﬁﬁﬂ ,

es necesario unicamente un espacio bidimensional expandido por el bloque corre-
spondiente. Luego de algunas simplificaciones obtenemos que este operador nos da
07 + 03 — ieFz'0y + i*e*F?(2')? + eOF 05 — Le*OF%1'0, + 1€20?F?0;. Asf que

finalmente esto factoriza como

OF 2
02 + {(1 + < > ) —z'eFxl} . (2.52)
Ahora, luego de sustituir p; = —i0; en esta ultima expresién, obtenemos
eOF 2
—{ﬁ%+ [(1 + = )ﬁ2 - eszl] } (2.53)

Ahora, con el objeto de encontrar la accién efectiva (2.49) necesitamos calcular,

alternativamente

cOF ?
[:Trexp (—S{ﬁ%—i- {(1+T>ﬁ2—€F§31:| }) (2.54)

Considerando el problema en una caja de volumen L x L y utilizando la definicion

de la traza, obtenemos, finalmente
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I= (/dxg/%)m exp(— s{ﬁi + e F? {551 - (% + %)mr}). (2.55)

Asi, hemos obtenido la accion efectiva de un oscilador arménico unidimensional.

Entonces, (# + %) po con centro efectivo en (x1)y = (% + %) po. La condicién de

frontera: 0 < py < (& + %)_1L implica que

1 el . .
I = (V01R2)% (H—9ﬁ>try exp{—s(p; + € F*§*)} (2.56)
2

donde L = VolR. Esta traza nos proporciona —precisamente— la funciéon de par-

ticién de un oscilador armoénico ordinario dado por

R . 1 1
Trje *Gi+e ") = -~ 2.57
e 2 sinh(seF) (257)
Obtenemos, finalmente
1 el 1
I = (VolR*)— : 2.58
(Vo )47T (1 - GSF) sinh(seF') (2.58)
Entonces la accién efectiva (2.49) esta dada por
*ds +r 1 ( /2 ) 1 >
I x —/ —1l— I ) ————e*M 1 constant, (2.59)
0 S ]1_[1 Am \ 1 + % sinh(=?%)

donde z; = 2eF.

1

2.4.3 Anomalia gravitacional para Campos de spin ;

Usando la ecuacién (2.59) concerniente a la amplitud total de la interaccién residual,

obtenemos

2k+1

Z——/W@Hi 3% ! (—sM?) (2.60)
o s e 4w \sinh(5) ) \ 1+ ©% eRPATEE - '

2

Luego de una integracién en s obtenemos finalmente
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1 | 2k 1 .
Z=- e 2 — . 2.61
(47)2K+1 M2 H 47 sinh(32;) (1 + @ZJ) (2.61)

j=1

Esta ecuacion puede también ser reescrita como

=~ R(eW, p) Ao (X), (2.62)

donde

es el asi llamado “roof-genus” noconmutativo. El roof-genus entra en el Teorema
de Atiyah-Singer, de manera que, nuestro calculo conduce —evidentemente— a una

deformacion noconmutativa del Teorema de Atiyah-Singer.

3

2.4.4 Anomalia gravitacional para Campos de spin j

Ahora nos gustaria calcular el diagrama a un lazo de 2k + 2 gravitones externos de
momento pﬁf) y polarizaciones 6,(?, con v =1,...,2k 4+ 2 acoplados con Campos de
Rarita-Schwinger de spin % Con el objeto de llevar a cabo este calculo utilizaremos
la prescripcion de Adler para encontrar un diagrama equivalente con 2k+1 gravitones
externos, donde hay una tnica insercién de un factor axial %(1 —T) y 2k+1 vértices
no anémalos.

Comenzamos con las contribuciones noconmutativas linealizadas de norma fija

1. - 1-T
L{%S = ZZh ﬂ*wu*f‘a 0 (T)wu (264)
y
RS ]' 70 v,
LES = G 07 5 T, (2.65)
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donde G, = (0aha,,—8ahm,). El analisis de la determinacién de la norma involucra
la existencia de campos de ghost que modifican la amplitud total y que es modificada
por Ig(total) =13 (gravitino) — Iy.

Usando las reglas de Feynman asociadas a LE* y LI* en cada uno de los 2k +
1 vértices, tenemos que, para el i-ésimo vértice existe la insercion de un factor:
—%Lz'eg) (p + p’)“pz_lM2 exp ( — %@p"pppf,), donde p es el momento entrante y p’ es
el momento saliente. La contribucion completa estda “codificada” en la amplitud

2(5(i),p(j), ©). La amplitud total estd dada por

Iy = 22 iMP R(eW, pl)) - Z(eD, p), 0), (2.66)

donde R(e®"pl)) es el mismo factor cinematico que (2.40), el cual depende tinicamente
de los momenta externos y de los vectores de polarizacion, asi que z puede ser con-
siderada como la amplitud para el acoplamiento de un campo vectorial abeliano
noconmutativo —complejo y cargado— en un lazo acoplado a 2k + 2 fotones de mo-
menta pt¥) y tensores de polarizacién € en un espacio tiempo noconmutativo. Esta
interaccion residual noconmutativa es descrita por las correspondientes interacciones

Lagrangeanas

res 1 n o
L{re) = TAY X g x 00 (2.67)

res 1 T
L; ) = §Guu * ¢a * ¢a’ (268)

donde G, = 0,A, — 0, A, — i[A“,A”]*. La primera accién (2.67) nos da precisa-
mente la interaccién que hemos discutido en la subsecciéon previa y que consiste
de D campos escalares complejos con carga }1 acoplados a 2k + 2 “fotones” nocon-
mutativos. La segunda Lagrangeana (2.68) corresponde a un momento magnético
noconmutativo el cual tiene el término usual [ dPz ¢* * (9,4, — 0,A,) * ¢ mas un
término adicional de la forma

i

- / d*" P2 ¢ x (A, A * 8, (2.69)
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el cual proviene del término cuadratico de la definicién de G ,,,. El término lineal es
. . 1 , .
exactamente el mismo que en el caso de spin 5 y entonces ambos términos pueden
ser reunidos y corresponden con el calculo de Z para el caso de spin % en la sub-
seccion previa. De modo que en este caso la unica diferencia radica en el término
de interaccién (2.69). Ahora procederé a calcular dicho término. Utilizaremos la
propiedad de ciclicidad de la traza con el objeto de remover el producto x que surge

del conmutador de Moyal [A,, A,],. Teniendo esto en mente obtenemos

_i‘/d4k+2x {(ggue(g(IG‘lﬂgﬂAu) X (Aue(EO(@“ﬁﬁﬁqbV)
. (qguega@aﬁgﬁAu) A (Aue(ga@aﬂﬁggby) } (270)

Ahora, usando la gauge (2.50) el tinico término que contribuye es el término de
segundo orden en © en la ecuacién (2.70). Reordenando todos los términos e in-
tegrando por partes, todos los términos se cancelan idénticamente, lo cual significa
que el término cuadratico no contribuye a la amplitud. Entonces, la Lagrangeana

que “sobrevive” estd dada por

L= /d4k+2x 97 * { — {8“ —ie (egaeaﬁgﬁfl‘?}

x {aﬂ e (Auega@“‘%)] + M- %FW} * 6. (2.71)

Asi, la accion efectiva se lee como

—s {— (8“—ie (egaeaﬁgﬂfw)) (8M—ie (Aue‘ga@aﬂg’ﬁ)> +M2—;F,W}
x{e - e_s}. (2.72)

Todos los términos exponenciales se factorizan y podemos ver que el problema se
reduce al mismo del calculo para spin % de la subseccién previa mas la contribucion

del factor trexp ( — %SF(’;’)') = 2 cosh(sz;).
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Por lo tanto, obtenemos la amplitud Z mediante la consideracién de la con-

tribucion ghost y esto da

~ oods 2k+1 1 lx- 1 okt
Z=— - il Pt | 1 5 cosh(. o)
/0 s };[1 4w<sinh(%))(1+@%)( +; cos (xz)) exp(—sM?)

(2.73)

Después de una integracion sobre la variable z obtenemos, finalmente que

1 | 2k 1 ) -
z 2%j
zZ=- (47)2k+1 M? H 47 sinh(%xj) (1 ¥+ @%> ( -1+ Z QCOSh(SC@')). (2.74)

j=1 i=0
De modo que la amplitud total para los campos de Rarita-Schwinger esta dada

por

1 2k+1 1, 1 2k+1

Is (total) = —i————R(e®, p¥) 2J — -1 2 cosh(x;) |.
3 (otal) =~ e BT, PY) ]1;[1 47 sinh(Lz,) \1+ 0% +; cosh(z:)
(2.75)
De esta forma, la amplitud total para los campos de Rarita-Schwinger es también

modificada por el factor dependiente de © justamente como en el caso de campos

de spin % de la subseccion previa.

2.5 Anomalias noconmutativas mezcladas

1

2.5.1 Anomalias mezcladas para Campos de spin ;

En esta subseccion se calculara la contribucion de las anomalias mixtas, las cuales
incluyen, no unicamente el acoplamiento de fermiones quirales a la gravedad sino
también la contribucion de los campos de gauge no abelianos. Las anomalias de
gauge noconmutativas para el caso de los campos de Yang-Mills han sido calculadas
en varios articulos, véase por ejemplo [23, 25, 26, 28, 29] para diagramas planares

con grupo de norma U(N).

45



Consideraremos un espacio tiempo noconmutativo de dimensién par D = 2n y
calcularemos amplitudes a un lazo para r gluones externos y n + 1 — r gravitones
externos. Ahora nos concentratremos en los diagramas anémalos noconmutativos
con n+ 1 —r par. Un resultado reciente concerniente al célculo de las anomalias de
gauge quirales en la Teoria de Yang-Mills en una dimensién par de espacio tiempo ha
sido desarrollada a través del uso de la condicién de consistencia de Wess-Zumino
en la referencia [26]. En el presente trabajo aplicamos el procedimiento de [25].
Para el caso de diagramas no planares se ha desarrollado cierto trabajo previo en
[24, 40, 30]. Este andlisis puede ser extendido a otros grupos de gauge a través de
la introduccién del mapeo de Seiberg-Witten como puede verse en las referencias
(34, 36, 37, 38, 39].

Antes de proceder a evaluar los diagramas que tienen una contribuciéon impor-
tante, revisemos primeramente algunas ideas relevantes de la Teoria de Yang-Mills
noconmutativa. Consideremos, para empezar una Teoria de Gauge con conexion
hermitica, invariante bajo la simetria del grupo de Lie G, con campos de gauge
A, y transformaciones de gauge: 0 A, = O\ + z'[)\,AM], con A\ = \Tj;, donde T;
son los generadores del algebra de Lie G del grupo G, en la representacién adjunta.
En la Teoria de Yang-Mills noconmutativa, el producto de funciones en la variedad
de espacio tiempo es promovido al producto de Moyal. Las transformaciones dadas
arriba son generalizadas para la teoria noconmutativa como )\A\u = 8#K—|—z' [K, A\u} o
donde los conmutadores en este caso son definidos como [A, BL =AxB—- BxA.
Debido a la noconmutatividad, un conmutador genérico toma valores en lo que se
denomina el Algebra envolvente universal ( 0o como se conoce en el idioma inglés:
Universal Enveloping Algebra) U(G,R) del algebra de Lie G en la representaciéon R
(para més detalles, véase por ejemplo [60]). En particular, [/A\, Eﬂ]* toma valores en
el dlgebra envolvente universal U(su(N),ad) del algebra de Lie su(N) (donde, por
cierto, G = SU(N)) en la representaciéon adjunta ad. Por lo tanto, A v los cam-
pos de gauge A\u tomaran también valores en esta dlgebra. Escribamos por ejemplo
A =AT; y A= ATy, entonces,
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R A, = (N A 0.1 + [V A7), (1,10}, (270

donde {A, B}, = Ax B+ B x A es el anticonmutador noconmutativo y los indices
I, J, K etcétera, corren sobre el nimero de generadores del algebra envolvente. En-
tonces todos los productos de los generadores T serdn necesarios con el objeto de
cerrar el algebra U(G,ad). Su estructura puede ser obtenida mediante el calculo
sucesivo de los conmutadores y anticonmutadores comenzando a partir de los gen-

eradores de G, hasta que el algebra quede “cerrada”,

(17, 1)) = ifrs" T, {T,,1,} = dry Tk (2.77)

La intensidad de campo esta definida como ﬁ;w = GM;L, — &,gu — z‘[/Alu, /Aly]*, y por
tanto toma valores en U(G, ad).

De este modo, las anomalias axiales en 2n dimensiones pueden ser obtenidas
mediante el calculo de la amplitud asociada al diagrama a un lazo con r gluones
externos y n + 1 — r gravitones externos. En el caso noconmutativo a cada vértice

de gluén le tenemos que insertar un término de la forma:

. i
—il* T exp (= 5O pigpas)d(p1 + pa + ), (2.78)

donde T} es el generador del dlgebra envolvente U(G,R) en la representacién R
proporcionada por los fermiones izquierdos. El factor de la teoria de grupo asociada
con un diagrama dado es: Tr (TLI1 T -TLIT). Luego de que este factor es extraido,

en cada vértice de gluén tendremos un factor dado por

. (I
—il™" exp ( — 5@” plppgg)cS(pl +po+ k). (2.79)

Por otra parte en cada vértice de graviton, tenemos que insertar el factor

i e [(1=T -
—15“ L, (T) (p+p),exp < — 5@” pupﬁ,) .
El algebra de matrices I' de Dirac puede ser desarrollada y entonces tenemos que

la traza no distingue los vértices del gravitén y del gluén. Por lo tanto, el factor
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cinemético R(e(i), pl )) es exactamente el mismo que antes. Luego de esto, el vértice
del graviton corresponde al de un campo escalar masivo complejo de carga i inter-
actuando con “fotones”, lo cual da origen a una teoria efectiva noconmutativa de
campos escalares cargados, acoplados a fotones externos del mismo tipo del que fue
descrito en la seccion previa. Luego de hacer los célculos pertinentes del dlgebra
de Dirac y de la traza en los indices de grupo para el vértice del gluén (2.78 ten-
emos —1i exp ( — %@”"plppgo). Este vértice noconmutativo restante corresponde al
acoplamiento de un campo escalar a los mencionados escalares complejos masivos.
Por lo tanto, los diagramas restantes estan constituidos de campos escalares externos
y fotones acoplados con campos escalares complejos, con los propagadores usuales
i/(p? — M?), los cuales obedecen interacciones noconmutativas.

De manera similar a lo que ocurre en el caso conmutativo, ahora tenemos que
restringir la férmula de la traza a la traza simétrica dado que la noconmutatividad
“respeta” la simetria bajo permutaciones de las lineas externas como puede verse

en la referencia [61]. Por tanto, el factor Z’ es dado por
i r—1
_ 1E%salt I, o (AW

r dS 2k+1 ll’ 1
X — 2= T }exp(—sMQ), (2.80)
( ) / s J[[l {4# sinh(=%) (1 + @I]>

donde la derivada establece, como en el caso conmutativo, que el vértice —i - exp (—

0
oM?

%@p"pmng) puede ser obtenido a través de una derivada con respecto a la masa al
2 i N i D i / . .
cuadrado M~*, i.e. e (—z)pLM2 = 51 [pLMQ]. Aqui STr es la traza simetrizada

en el factor correspondiendo a la amplitud de gauge y es construida mediante la

insercién, en cada vértice, de un factor: —iI'* exp ( — %@p"ﬁg)égjﬂ)). Entonces la

traza simetrizada esta dada por

(Dep2) (3 e (r=1)@Qp(r)
Tr [T£1T£2 . .Tir} { €0s ————"C08 — ...CO8 T—I—las permutaciones},

donde (@) = @ro gl gt
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Por ejemplo, para r = 4 tenemos que

(e (B3O Vil YiG) (2)epH)
Tr [TLII TLIQTL&TLI‘*} coS - COS + cos - COS
2 2 2 2
A YiC)) 12 03)
+ cos 5 - COS 5 } .

Luego de una integracién en s obtenemos finalmente que la mezcla total de la

anomalia esta dada por

. r—1
I = ~STy [TLHTLIZ L Thexp (- %6”” Zpﬁppgg)]
/=1

. 3 1
72 . . 5Lj 1
x ——=R(e®, pi¥) 27 . 2.81
EmTHEp )E4wsinh(§xj) (1+6%) (2:81)

La interpretacién de la anomalia de gauge es justo como en el caso de la anomalia
de gauge quiral en la teoria de Yang-Mills. En el caso del grupo de norma U(N),
como se describié en la referencia [26], la noconmutatividad impone condiciones més
restrictivas para la cancelacién de la anomalia. Asi, para que una teoria de gauge
noconmutativa esté libre de anomalias, dicha teoria deberd ser, necesariamente, no
quiral. En cuatro dimensiones, las teorias de campos de norma quirales noconmuta-
tivas con grupo U(N), con materia; son libres de anomalias; pero esto ya no puede
ser cierto en dimensiones mayores. Por ejemplo en el caso presente de D = 4k + 2
dimensiones, se ha demostrado [26] que para la materia adjunta, la anomalia quiral
no se desvanece y es precisamente 2N veces la anomalia en la representacion funda-

mental.

3

2.5.2 Anomalia mezclada para Campos de spin 3

En una forma totalmente analoga al caso de las anomalias mezcladas noconmutativas
de campos de gauge y gravitacionales acoplados a campos de materia quirales y
complejos de spin %, podemos calcular las anomalias mezcladas para el caso de spin

g. Entonces tenemos
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Z'(0) = —STr [fLIlfLIQ L Th exp ( @p‘f ZplprU }

o 241 1 2k+1
—1 2 cosh(z; —sM?).
(aw) [ II Lmh (H@%)]( -3 2ot >) exp(—sM?)
(2.82)
Luego de una integracion en s se tiene, finalmente que
~ ~ ~ i "

Ii = —STr {TLHTLE . Tfexp (- 56’ Z pippg(,)}
X %R(e(i) p9) ﬁ Al Z 2 cosh(z;) (2.83)

(2m)2 ’ e dmsinh(5;) (14 @xj '

donde STr denota la traza como fue definida en la subseccién previa, es decir

es construida mediante la insercién, en cada vértice, de un factor: —il'*exp ( —
i Qpo (4) pG+1)
577U s )
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Capitulo 3

Efectos de la interaccién
noconmutativa A\®} en la
evaporacion de un hoyo negro en

dos dimensiones.

“Mi distinguido senior, en este mundo no es tan fdcil poner en claro estas cosas
evidentes. Siempre he encontrado que estas cosas evidentes son las mds enredadas
de todas”. (H. Melville, “Moby Dick”, cap. LXXXV).

3.0.3 Antecedentes de la radiaciéon de agujeros negros

Desde la segunda mitad de la década de los 70’s, se ha escrito una gran cantidad de
trabajos sobre la cuantizacién de campos libres en espacios de fondo curvos. En esos
anos la motivacion fundamental para considerar tales campos era la creciente evi-
dencia de que éstos podian emitir radiacién en la cercania de un campo de gravedad
muy intenso [62]. No obstante, los trabajos relacionados con campos interactuantes
no han sido tan numerosos. En la ref. [65] puede verse uno de los trabajos més

detallados sobre campos cuanticos interactuantes en espacios curvos. Una de las di-
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ficultades que surgen en esta area es que los calculos de las teorias perturbativas se
complican notablemente. Paralelamente queda el problema de definir los estados de
vacio en diferentes regiones de dichos espacios curvos. Para una revision moderna de
la radiacién de Hawking y campos cuanticos en espacios curvos pueden consultarse
las referencias [63] y [93].

Por otra parte, en los ultimos anos se ha notado un creciente interés en los
efectos de la geometria noconmutativa en diferentes modelos cosmolégicos. Esto
es porque la cosmologia podria proporcionar una posible manera de probar teorias
mas alla del modelo estandar de la fisica de particulas. Un ejemplo de esto puede
verse en [66]. Ahi se senala la posibilidad de que una geometria noconmutativa
podria inducir fluctuaciones en el proceso de inflacion, modificando las relaciones
de dispersion a distancias cortas. En este trabajo la gravedad no es afectada por la
noconmutatividad, manteniéndose como un “expectador”.

Asimismo, ha habido novedosos intentos de explorar las consecuencias de la
noconmutatividad en un espacio tiempo de Schwarzschild. La idea de la noconmu-
tatividad en las coordenadas del espaciotiempo ha estado en la literatura desde hace
anos [67].

En [68] se obtiene el horizonte de eventos de un agujero negro en un espacio
tiempo noconmutativo, desarrollando un céalculo perturbativo a segundo orden. De-
bido a que este tipo de agujero negro es no rotante, no se presentan correcciones a
primer orden en el pardmetro de noconmutatividad [69]. En algunos de los trabajos
recientes, los efectos del espaciotiempo noconmutativo son codificados en algunas
propiedades de un agujero negro de Schwarzschild como son el area del horizonte
de eventos y la temperatura de Hawking. La desviacién de esas propiedades de sus

valores usuales depende del pardmetro de noconmutatividad [70].

Recientemente se ha estudiado algunos modelos cosmoloégicos en los cuales tanto
la gravedad como los campos de materia son noconmutativos. Esto es descrito
en el famoso modelo de Connes-Lott [71]. Otra discusiéon de la materia nocon-
mutativa propagandose en un espaciotiempo dindmico noconmutativo (linealizado)

puede verse en la referencia [72]. Aqui son calculadas las anomalias gravitacionales
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en varias dimensiones, incluyendo el calculo de la cancelaciéon de anomalias en su-
pergravedad en diez dimensiones.

Motivado por esta linea de razonamiento, en el presente capitulo estudiaré el
efecto de la noconmutatividad en el flujo de radiacién en un agujero negro de
Schwarzschild obtenido al considerar una interaccién del tipo A®? en los campos
escalares de materia. De esta parte del trabajo de tesis recientemente se ha acep-

tado para su publicacion el articulo [73].

3.1 Radiacién en un agujero negro bidimensional

con interaccién \d*

El descubrimiento de que en el horizonte de eventos de un agujero negro se emite
radiacién es atribuido generalmente a Stephen Hawking [62]. Existe, sin embargo,
evidencia de que Yakov Zeldovich e Igor Novikov tenian un modelo bastante desar-
rollado de la solucién desde 1971, como puede verse en la referencia [74]. Como
refiere Kip Thorne en este libro, una de las limitantes —en el caso de Zeldovich—
para hallar la respuesta correcta, se debié a que en ese tiempo no se contaba con
una teoria sobre las leyes que rigen los campos cuanticos en espacios curvos. En la
segunda mitad de la década de los anos 70 esta situacién cambié drasticamente. A
partir de entonces y hasta la fecha, el nimero de trabajos sobre la cuantizacién en
espacios curvos se ha incrementado notablemente. Una revisién detallada y actual
de este tépico puede verse en [75]

En su trabajo sobre la radiacién de agujeros negros publicado en 1975 [62],
Hawking consider6 un modelo de campos de materia no interactuantes dentro de
una geometria cldsica (descrita por la métrica de Schwarzschild). El ejemplo més
simple que uno podria considerar es el de una particula neutra de spin cero con
masa m descrita por un campo real de Klein-Gordon la cual se propaga en la region
I del diagrama de Penrose (fig. A.1) del espacio tiempo de Schwarzschild extendido.

Este campo satisface la ecuacion
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gV, NV, ® —m*® =0, (3.1)
donde

GV, = (—g) 20, ((—g) 29" 0,) . (3.2)

En ausencia de interacciones entre los campos de materia, el agujero negro emitira
particulas con una temperatura T'= 1/87M [62]. El estado de esta radiacién serd
de un flujo de particulas salientes a la temperatura citada. La pregunta que surge a
continuacion es si dicha emisiéon permanece inalterada cuando se toman en cuenta
las autointeracciones entre los campos. Ahora, para un agujero negro inmerso en un
bano térmico a la temperatura 7' = 1/87 M, existen argumentos (ver por ejemplo
[76] para anticipar que la radiacién seguira siendo térmica. Esto no es del todo
inesperado. El lector interesado puede consultar la referencia [77] (éste es uno de
los primeros trabajos en tratar el tema). Por el principio del balance detallado uno
puede esperar que los decaimientos u otros procesos causados por la interaccién sean
compensados precisamente por sus inversos cuando los flujos entrantes y salientes
son ambos de naturaleza térmica y estan a la misma temperatura. Si la emision
de un agujero negro fuese no térmica en el interior de un bano térmico, la segunda
ley de la termodinamica podria ser violada, i.e. el agujero negro emitiria radiacion
no térmica de baja entropia mientras absorbe radiacién térmica de alta entropia
resultando en un decremento neto de entropia en el sistema completo. Sin embargo,
cuando el agujero negro no se encuentra en equilibrio con sus alrededores —y por
tanto el flujo entrante no tiene la misma temperatura que el agujero negro— uno
no espera, obviamente, que el flujo saliente sea térmico. Consideremos por ejemplo
el caso en que la masa del agujero negro se mantenga constante. Las densidades
de energia de las radiaciones entrante y saliente son entonces las mismas. Si la
radiacién entrante es no térmica (baja entropia) entonces la radiacién saliente puede
ser también no termal, la tinica restriccién termodindmica es que su entropia sea al
menos tan grande como la de la radiacién entrante. Para una revisién actualizada

sobre la radiacién de agujero negro puede consultarse [78].
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Para un agujero negro en cuatro dimensiones rodeado por el vacio, la densidad
de energia de la radiacion emitida decrece a medida en que se expande en el exterior
del agujero negro. Para un flujo de particulas en equilibrio térmico la temperatura
de equilibrio estd determinada por la densidad. Para un campo no interactuante,
sin embargo, el espectro emitido permanece térmico con la temperatura original del
agujero negro, una temperatura que es demasiado alta para una densidad de energia

siempre decreciente.

Cualquier interaccién del campo tendria como efecto un distorsion del espectro
y un decremento de la energia media de los “cuantos” emitidos. Esta dilucion de la
densidad de energia que ocurre en cuatro dimensiones, no sucede en un modelo bidi-
mensional de agujero negro. Aun en la presencia de interacciones, un flujo saliente
de naturaleza térmica permanecerd en equilibrio consigo mismo. Sin embargo, los
flujos entrante y saliente pueden interactuar entre si. Podemos considerar ambos
flujos como dos bafos térmicos separados entre si. Si estan a la misma temperatura
de T = 1/8wM, estan en equilibrio y el balance detallado se puede aplicar para

mantener la naturaleza térmica del espectro.

La presencia de un agujero negro rompe la invariancia translacional y por lo
tanto, la conservacion de momento, de manera que es de esperar que ocurran inter-

acciones entre las particulas entrantes y salientes.

Birrel y Davies [79] han investigado la emisién de particulas para un modelo de
Thirring bidimensional y encontraron que: ... “para el modelo de Thirring al menos,
la radiacién emitida es de naturaleza térmica atin en la presencia de interacciones”.
Este resultado sorprendente parece ser consecuencia de la invariancia conforme del
modelo de Thirring. Dado que cualquier espacio bidimensional es conformalmente
plano, existe un analogo conforme de la conservaciéon de momento lo cual previene

cualquier interaccion entre los flujos salientes y entrantes.

Para encontrar justificacién fisica para el ultimo enunciado, se ha propuesto
introducir una interaccién del tipo A®* para un campo escalar sin masa en presencia

de un agujero negro bidimensional como puede verse en el trabajo [80].

En la presente tesis examinaremos dicho enfoque. Tratando de mantener esta
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tesis como un trabajo “autocontenido”, daré a continuacién una breve introduccién
al enfoque utilizado en esta referencia. Luego de la introduccién procederé a explicar
como puede “deformarse” el producto entre operadores en la interacciéon. En esencia,
se propone reemplazar el producto usual entre los operadores que representan al
campo escalar en la interaccién A®* por una nueva interaccién de la forma \®*, =
AP % ® x & x & y ver el efecto que produce esta nueva interaccion en el flujo de
particulas salientes.
Como hemos visto anteriormente los campos escalares sin masa ¢ satisfacen la
ecuaciéon de “onda”
1 17
Ly, (\/—_gg“ a@) o, (3.3)
V=9
Por otra parte, la métrica de un agujero negro bidimensional (ver apéndice) estd

dada por

-1
ds® = (1 - ﬂ)alt2 - (1 - ﬂ) dr?
r r

- (-2 »

donde u y v se definen en el Apéndice A como u =t —7r", v =t+7r*y r*esla

coordenada “tortuga” definida en el apéndice:

,
= 2MIn{ — —1| . .
r*=r+ n<2M ) (3.5)

Ahora consideremos la solucién de la ec.(3.3). Podemos, expresar estos campos

de la forma

O(u,v) = Po(u) + P1(v) (3.6)

donde ®¢ y ®1 son campos que dependen de las coordenadas u y v respectivamente.
Los subindices indican que se trata de campos salientes (O) o entrantes (I) como se

vera enseguida. Con el objeto de cuantizar el campo, se expanden estas soluciones en
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modos normales asi como usando operadores de creacion y destruccion “apropiados”
para estos modos. La expansion mas simple viene dada en términos de las ondas

planas

—iwv

e
Xw = NW 3 (3.7)
para los modos entrantes, y
Yo =N—s | (3.8)
(2lw])'”?

para los modos salientes. De manera que las componentes en la ec.(3.6) pueden

expandirse

w>0
w>0

En lo que resta de la tesis adoptamos esta convencién para los campos que repre-
sentan particulas entrantes y salientes, respectivamente. En las ecuaciones (3.7) y
(3.8) hemos introducido el parametro N el cual es un factor de normalizacién que
no depende de la frecuencia.

Para dar significado a estas expresiones debemos interpretar cada uno de los
operadores. Definiremos el estado de vacio de los estados de campos entrantes como

aquél estado |s) para el cual

buls) =0 ,(w>0) . (3.11)

Los estados correspondientes |s’) definidos con el operador C,, representan el vacio

para estados de particulas salientes, i.e.,

C,ls") =0, (w>0). (3.12)

o7



Como es usual, |s) and |s’) estan relacionadas a través de una transformacién de
Bogoliubov. En esos términos, el flujo térmico de particulas salientes del agujero

negro con frecuencia w corresponde al valor de expectacién del operador de niimero
CiC,, ie.

dF 1
%(w) = ;tr(pCle) : (3.13)

donde p es la matriz de densidad. Esta se construye de la siguiente forma:

p=po@pr ,
donde
po = [0){0 , (3.14)
pr = ®w26—nuwﬁ’|nw>l<nw|l : (3.15)

¥ |nw); es el estado de n “cuantos” en el modo entrante con energfa w a temperatura
67

Ahora examinaremos qué es lo que sucede cuando introducimos un término de
autointeraccion para el campo escalar . En particular estamos interesados en el

valor esperado del flujo de particulas salientes. Utilizando el cuadro de interaccién,

la matriz de densidad evoluciona [81] a través de una matriz S de manera que

p(t) = S(t)p(0)S'(t) (3.16)

donde p(0) la matriz de densidad inicial y S es una matriz de evolucién que definire-

mos en la siguiente seccién.

3.2 Correcciones noconmutativas al Flujo de ra-
diacién

“Hay algunas empresas en que el método adecuado es un desorden cuidadoso”. (H.
Melwville, “Moby Dick”, cap. LXXXII)
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A continuacién introducimos una autointeraccién noconmutativa para los cam-
pos en nuestro modelo de agujero negro bidimensional. La interaccion sera del tipo
AP% = \® « ® x & « . El significado de la operacién * serd, asimismo explicado
en esta seccién. Las coordenadas u y v dependen de las coordenadas candnicas no-
conmutativas (r,t) de la forma usual u =t — r* y v = ¢t + r* donde la coordenada
r* se defini6 previamente. Por lo tanto los campos ® dependen de las coordenadas
noconmutativas z* = (r,t), i.e. [z, 2] = i©". Entonces promovemos todos los
productos de las funciones de los modos normales en productos estrella [18]. Es

natural entonces definir el producto de Moyal

(@1 % ®5)(z) = {eégwaﬁuanu@l(x + &) Dy + n)} : (3.17)
&=n=0
donde O = O¢c"” es la matriz determinada por el parametro noconmutativo ©.
Ahora introducimos la interaccién noconmutativa, modificando las ecuaciones

para S(t) dadas en [80] como sigue

t
S*(t) = Texp [—z/ Hf(t’)dt’}, (3.18)
donde el Hamiltoniano noconmutativo Hj(t) estd dado por

A
H;(t) = /Z®1*¢2*¢)3*©4 dr

= 2 (ot (stmspsate)

)\ iT — i3 —
= Z/dr6_281@12826_28393484®(x1)@(x2)@(m3)¢>($4). (3.19)

Consideremos ahora el diagrama de la siguiente pagina que representa la interaccion
A®? de los campos escalares. El término de interaccién (figura( 3.1)) debe ser
simétrico bajo la permutacién de cualquier par de campos. Por lo tanto deberemos
simetrizar la dltima expresién [18, 61] para obtener

A

D drF(©) - ®(x1)®(z2)P(23)P(14), (3.20)
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d, P,

Figura 3.1: Representacion grafica de la interacciéon noconmutativa entre los campos.

donde

0100, 0300, 01005 0200, 0100, 0,005
cos cos + cos + CcOoS

F(O) = 5 5 Cos —— €08 — C08 ——— €08 ——

. (3.21)

donde se introdujo la notaciéon 9,00; = gi@“gj. Por lo que, a nivel de la
interaccion, la correccién noconmutativa tnicamente introduce un factor de fase
F(©)dado por los términos de los cosenos. Este factor es el que se introduce en el
vértice de la interaccién —fig.(3.1)—.

Al mismo tiempo, vemos de la ec.(3.18), que la correccién noconmutativa al
Hamiltoniano de interaccién, se refleja también en la evoluciéon de la matriz de
densidad. Procediendo de manera andloga a la seccion 3.1 tenemos que el flujo de

particulas ec.(3.13) se vera como

F~ 1
ddw (w) = ;tr(p(t) *CI,C’W)
- Ly (s*(t)p(())s*f(t)cj,cw), (3.22)
s
donde S*(t) = 1+ S}(t) + S5(t) + .... Debido al hecho de que p(0) y C, son

independientes de las coordenadas locales r y t y que S*(t) depende tinicamente de

t, el producto de Moyal no aparece en la ec. (3.22).
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Calculando S* a segundo orden en el pardmetro A y demandando que S*S*T = 1,

sitlcic,, Si a>

Cst)

donde usamos el hecho que {|a)},{|3)} son conjuntos de estados ortogonales y

tenemos que

dF*
dw

© = 1Y me

1
= ; Zpa(nwﬁ - nwa)
af

2
2

Stla )|, (3.23)

completos del campo ®. Son seleccionados de manera tal que seran eigenestados del
operador de niimero para cada uno de los modos de ®. Aqui p, denota las funciones
de probabilidad térmicas para los estados |«) en la matriz de densidad p(0). Ademés
Nwa Y Nwp representan el nimero de “cuantos” salientes de energia w en los estados
la) y |B), respectivamente. La expresién: |(3]S|a)|? representa la probabilidad de
transicion del sistema, que, iniciando en el estado |a) evoluciona hasta un estado
final |5) bajo la interaccién noconmutativa y, finalmente, n,g — nyo = An, es la
diferencia en el nimero de particulas salientes de energia w durante el proceso.

En la derivacién de la ec. (3.23) hemos usado el hecho de que

Sr+87T = 0, (3.24)
SrxST 4S5t +55 = 0. (3.25)

Aqui, ST sé6lo depende de la coordenada ¢, por lo que el producto de Moyal, en este
caso, se reduce al producto usual.

Por otra parte si introducimos la ecuacién (3.21) en Sty SfT, tenemos que las
correcciones noconmutativas empiezan a segundo orden en el parametro ©. Entonces
las correcciones noconmutativas provienen del término de interaccion noconmutativo
A®%. Los campos escalares pueden ser expandidos en modos ortogonales cuya base
estd dada por las ondas planas en la ec. (3.8)

Los intentos de calcular correcciones usando la exponencial completa se ven

impedidos por el hecho de que los campos escalares contienen, a su vez, funciones
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exponenciales —ecs. (3.7, 3.8)— por lo que se presentan derivadas a todos los 6rdenes.
Como un célculo exacto no es posible adoptamos aqui una expansion perturbativa
en © << 1. Para ser concretos calculamos la correccién noconmutativa de orden

mas bajo, la cual sera cuadratica en ©.

De manera que ahora el producto de los campos en la interacciéon S} (t) queda

.t
Si(t) = —% / A (@1 *x Dy Py x Dy + permutaciones> dr'dt’, (3.26)

aqui “permutaciones” denota la suma de todas las permutaciones que provienen de
la ec. (3.20), la cual es manifiestamente simétricaen el intercambio de cualquier par

de campos (véase ec. (3.30) mas adelante).

En la siguiente seccion calcularemos la primera correccién noconmutativa distinta
de cero, la cual es una correccion a segundo orden en la expansién de productos de
Moyal para el Hamiltoniano de interaccién Hj. Por lo tanto podemos escribir

H;y = H; + HNY[9?] + 001, (3.27)
donde HNC[©?] estard dado por la ec. (3.44) (ver mds adelante). Si sustitufmos
esta tultima expresion en ST obtenemos

St =8 + SNle? + o[eY, (3.28)
con S; denotando la accién conmutativa usual descrita en la referencias [80, 82].
Aquf SNC[©?] estd dada por

SNCO% = —i / HNC©?dt. (3.29)

En la siguiente seccion vamos a considerar las correcciones noconmutativas al flujo

de particulas salientes de un agujero negro.
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3.3 Correccién a segundo orden noconmutativa al

Hamiltoniano H7y

Hemos mencionado que la correccion noconmutativa al Hamiltoniano de interaccion
a primer orden en el parametro de noconmutatividad © puede ser calculada y de-
saparece. Para ver que esto es asi tomemos la interaccién A®? con los productos de

los campos simetrizados de la manera siguiente:

A
/drAcbjf = g/dr((bl*@g-<I>3*CI>4+<I>1*<I>2-<I>4*¢)3+@2*CI>1-(133*@4

@2*@1'@4*@3‘1"@1*@3'@2*@4"‘@1*@3'@4*@2
(I)g*q)l'@2*@44—@3*@1'@4*@24‘@1*@4'@2*@3

+ o+

@1*@4'@3*@2+¢)4*®1'@2*@34—@4*@1'@3*@2). (330)

Por supuesto, esta ecuacién es equivalente a la ec. (3.20).

Sabemos que los productos de Moyal dependen de ©#" el cual es antisimétrico y
por lo tanto los términos como @1 x @5 - O3+ P4 y el correspondiente P x Py - Oy x Py
en la expresion dada arriba, son el negativo uno de otro a primer orden en ©, y por
lo tanto se cancelan. Igualmente ocurre para el resto de los pares de términos de
la expresion dada arriba. Concluimos que la correcciéon noconmutativa al flujo de
particulas —ec. (3.21)— tendrd una primera correccién distina de cero a segundo

orden en ©.

La amplitud noconmutativa (3|St|a) dada en la ec.(3.23) para el flujo de ra-
diacién saliente a segundo orden en A puede calcularse de varias formas. Una de
ellas es usando una representaciéon diagramatica. En la siguiente seccién veremos
esto. Veremos que aparecen términos que contienen elementos de matriz de Sy y
de SN¢ a segundo orden el ©. Hay que resaltar que para calcular las correcciones
noconmutativas al flujo de particulas salientes a todos los érdenes en ©, podemos
utilizar una vez més los diagramas propuestos originalmente por [80]. Dichos dia-

gramas se veran modificados por la interaccién noconmutativa como ya se mencioné
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en la seccién previa —véase la figura 3.1 y ecs.(3.20 y 3.21)—. La mayor parte de los
términos pueden ser calculados de manera directa, aiin cuando los pasos intermedios

son laboriosos.

De la ecuacién 3.21 se tiene que

2 2
e (432)en(42) 13[4+ (452 o

y usando la expansién en serie de potencias para la funcién cos («)

cos(a)=1— —+———+...

para el primer sumando de la expresiéon entre corchetes de la ecuacién anterior
s (21002 (0004 _ [, 1000, 2 1 (0:60, ! N
2 2 B 21\ 2 4\ 2 o
1 03@84 2 1 83684 !
|:1 5 ( 5 ) + 1 7 + ...

S CERCDIRE

X

(3.32)
y desarrollando los términos de la forma
— — 2
(0:00,)" = (9,16"3.2)
Wi — = 2
= 0%(0105— 0204) , (3.33)

con resultados similares para (83684)2, etcétera. Sustituyendo la ultima expresion

en la ec.(3.21) tenemos que, la primera contribucién noconmutativa no nula viene

dada por
—6? DI — = = 3 3
3 qD(iL'l) [8 Ta t — 287«8ta7. 3t —1—8 t@ r}q)(xz)(@(xg)fb(m)), (334)



donde los ®(x;) = P1(x;) + Po(x;) fueron dados anteriormente. Para calcular los

términos que aparecen en la ultima ecuacién usaremos que

oM\ !
0.0, = Wi (1 - —) Yo, (3.36)
r
oM 2M
r r
para los modos salientes —con expresiones analogas para los complejos conjugados
Y. —. De manera similar tenemos que
iXwi = —Wikews (3.38)
oM\ !
OrOixw, = —wi (1 - —) Xewi (3.39)
r
oM\ 2M
U ) O T
r r

para los modos entrantes x,, —con expresiones analogas para los complejos conju-
gados X, —. A continuacién evaluaremos las derivadas que aparecen en la ec.(3.34),
por ejemplo, para el primer término, tenemos que
< = oM\
D(21)0?,0%D(5) = <1 - —) > {wf@(xl)wgcp(xz)

r
wi,w2

_ii_]‘f [(wlap(l«l)) (wW3P(22)) — 2wi (Blx} + Crey) (wéfb(xz))] } : (3.41)

De manera similar calculamos el término que contiene las derivadas cruzadas

@(xl)Q(gr(gth?t@(xg) =

_2<1 - ¥) _QWZE {[wfcp(xl) — 2wl (71)] [wiP(z2) — 2w§q>1(;n2)]} (3.42)

Procediendo de manera andloga con el iltimo término de la ec.(3.34) obtenemos

—

(o) ) = (1~ %) > {utoieso)
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2 (@) (s (2) — 2630 (1) (s + Cos)| } , (343)

Si ahora sumamos todas las contribuciones anteriores y sustituimos en la ec.(3.21)

la correcciéon noconmutativa al Hamiltoniano queda

— —

2 — — —
2O (1) [P, P —20, 0, 0, 0 -+ 0P, | B () ® (13)®(4)+ permut.

H}VC(@2) = _\/er

A6? oM\ ~°
= — /drﬂ (1 — T) L‘; {wf@l(xl)ué@o(mg) +wf®o(x1)w§<]§](x2)

+ir_]\/2[ [wl (b{x”{—l—Cﬂ/q) (w%@(m)) + (w%fb(m‘l))wz (ng;—FngQ)} }@(xg)q)(m)—i-permut.
(3.44)
Y procediendo de manera similar para el término ®(z3)(9;00,/ 2)2@@4) queda
una ecuacion igual pero con r; — r3y o — x4. Aun falta simetrizar, es decir sumar
los términos que provienen de cos (0;003/2) cos (0,00, /2)+cos (01004/2) cos (05005 /2).

Esta es la primera correccién noconmutativa no nula de Hj.

3.4 Construccion de los diagramas de la teoria no-

conmutativa

Para construir diagramas que tienen una correspondencia uno a uno con las difer-
entes contribuciones a la amplitud (3|S7|a), vamos a utilizar algunas reglas utiles.
A continuacién daré algunos detalles sobre este método. El lector interesado puede
consultar la referencia [80]. Todos los diagramas consisten de un vértice con cuatro

lineas convergiendo, o bien dos lineas y un lazo. Las reglas son las siguientes:

1. Se escribe la interaccién ®} ordenado normalmente dentro de la amplitud

(B|ST|a). Esta regla se obtiene de la expresién 3.21.

2. Para cada término C, 1), dibiijese una linea con una flecha apuntando (de
izquierda a derecha) hacia el vértice. Esto representa una particula saliente en el

estado inicial.
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3. Para cada término CJ¢)? dibtijese una linea con una flecha apuntando (de
izquierda a derecha) hacia afuera del vértice. Esto representa una particula saliente

en el estado final.

4. Para cada término b, Y, dibtijese una linea con una flecha apuntando (de
derecha a izquierda) hacia el vértice. Esto representa una particula entrante en el

estado inicial.

5. Para cada término b! x* dibujese una linea apuntando (de derecha a izquierda)

hacia afuera del vértice. Esto representa una particula entrante en el estado final.

6. Para los términos x7,; * Xw20w1,w2 0 ¥, %Y, 00, w, Obtenidos en el ordenamiento

normal de @, dibidjese un lazo unido al vértice.

Los diferentes diagramas utilizados de acuerdo a la presencia de particulas en-
trantes y/o salientes y en los estados inicial y/o final se representan en la figura 3.2
dada en la siguiente pagina.

Para encontrar las diferentes contribuciones al flujo de particulas %b que

provienen de los diversos diagramas descritos arriba, seguiremos los siguientes reglas:

(i) Se forman los elementos de matriz entre los estados (5| y |a) de los cuatro
operadores b’s y (s en forma normalmente ordenada para las cuatro “patas” del

diagrama.

(ii) Se multiplica por (i/4) [ drdt las funciones que provienen de cada una de las
cuatro patas del diagrama.
(iii) Se multiplica por un factor entero que es el nimero de veces que se repite

dicho término en el ordenamiento normal de (3|A®?|a). En la evaluacién de éste,

esta presente el factor de simetrizacion | cos @ coS @ + cos @ cos @ +

cos 10% o5 .00 |

(iv) Témese el cuadrado del resultado de los pasos anteriores.

(v) Multipliquese el resultado del inciso (iv) por An,p,/7 y témese la suma

sobre todos los estados |a) y |5).
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Particula entrante estado inicial b,\ X

tny

Particula entrante estado final b Xx
Particula saliente estado inicial Cﬂ,ﬂw
] , , o
Particula saliente estado final Cw

Figura 3.2: Diagramas basicos para representar la interaccién.

(vi) Se suma finalmente sobre todos los valores de w; diferentes de w.

Un detalle que vale la pena mencionar es que tnicamente consideraremos la
contribucién de diagramas que en los cuales |An,| = 1. La razén es la siguiente:

Las integrales de las funciones de modo contienen términos de la forma
/ei(‘”“”“’?“’f“)tdt ~oO(w—w; —wy —ws) , (3.45)

Este es el principio de conservacién de la energia. Esto restringe a |An,| a los valores
0,1, 2 6 3 ya que |An,| = 4 violarfa la conservacién de energia a menos que w = 0.
|An,| = 0 no contribuye al flujo de particulas y |An,| = 2 6 3 han sido evaluados
en la referencia [80] y se encuentra que sus contribuciones no cambian los resultados

obtenidos. De manera que todos los diagramas con An, = +1 representan los
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inversos de los procesos en los que An, = —1. De hecho la relacién entre ambos
diagramas es muy simple pues podemos obtener uno del otro mediante una reflexion
respecto al eje vertical y, finalmente, invirtiendo el sentido de todas flechas.

Es posible ver [80] que los unicos diagramas que contribuyen a la amplitud
dF*

%=1 (w) son los que se enumeran en la figura 3.3 de la siguiente pagina, los cuales
2

pueden calcularse explicitamente usando las expresiones (3.23) 6 (3.23).

La mayor parte de los diagramas —con excepcion del No.10— tienen cuatro
patas externas y convergen en un vértice. En la siguiente seccién veremos cémo es

que se utiliza esta diagramatica.

3.5 Calculo del flujo noconmutativo de particulas

En esta seccién daremos las correcciones noconmutativas al flujo de particulas
salientes. Por ejemplo, para el caso del diagrama No.1 (y su reflexion), si seguimos

las reglas descritas en la seccién previa, la contribucién al flujo da como resultado

(letcicani) )

/drdt N[0 % 05 ke X DT X+ U Y %
‘Hﬁ;*iﬁX;*iﬁw—i-i/ff*?/fww;*Xg‘i‘wT*wa;*@

R T A O e I D K A S UNE P R I S
2
R R N e e R I S e R LHER TN (3.46)

la siguiente amplitud

2(12)?
o X S

w1,w2,w3 a,

2
ClCCybs - ‘<ﬁ‘CIC§b§Cw

X

donde el dltimo factor representa las contribuciones noconmutativas del diagrama
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2
1 1
2
1 3 1
Vo 1 2 Yo 2 Yo 3 Yo 4
3 2
3 2 1 1
Vo o
W 2
2 5 1 1 6 ® 3 7 3 8
3
1 2
L
1 Ve Yo Ve 3
9 10 1

N
- .
e N
w
<
8 -
Kw
w

Vo
3 12

Figura 3.3: Diagramas planares de la teoria noconmutativa que contribuyen al flujo.

No. 1 descrito en la fig.(3.3) asi como su “reflexién”. Si sumamos unicamente

sobre aquellos subestados |as) que no tienen energias w, wy, we 1 w3 se obtiene

o) -(eccho))

/ drdt AF(O) - iusud| - (3.47)

2
ClLCyCobs - ‘<ﬁ‘0105b220w

LS

w1,w2 W3 aq

X
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donde F(©) estd dado por la ec. (3.21). La funcién de probabilidad térmica p,,

esta dada por

Doy = (1—6’&") (1—6’5“1> <1—eiﬁ“’2> (1—67@‘”3) exp [ - ﬁ(kw + kwr + k2w2) - 5%30)3} :
(3.48)

Finalmente, evaluando los elementos de matriz nos da

% Z Z Z k(ki+1)(ka+1)(ks+1)exp [ - 5(1“0 + kwr + k2w2> - ﬁ/kSWS}

wi,w2 w3 kki,ke,k3

« (ew—ﬁ’)ws _ 1) /drdt AF(O) - id5uxs

Por razones de brevedad omitiré en esta seccion los detalles del este calculo. El lector

2

(3.49)

interesado puede consultarlos en [82]. En la expresién anterior, por ejemplo, cada
una de las sumas sobre k y k; se evalia usando apropiadamente la serie geométrica,

de manera que la amplitud anterior queda

W) 303 (glon)+1) (gle) +1) (9 (wa)+1) (902 1) M (w0, 01, 0, 3),

w1,w2 w3
(3.50)

o) = (e - 1)1, gy = (& - 1)1, (351)

2, (3.52)

donde

H(w, wy,ws, ws3) = '/drdt AF(©) - s x;

coni,j=1,2.
La contribucién conmutativa usual [80] al flujo de radiacién del diagrama descrito

arriba viene dada por

1 1 1 ,
0 s s el F L) S L s 1) B () b

2rl? w w1 w9 Ws
wi,w2 w3

(3.53)
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donde

2

H(w) = ‘ / dr\e™™ (3.54)

donde usamos el hecho de que N = L~Y/2 en ecs. (3.7,3.8). La integral radial H(w)

involucra a las dependencias radiales de las funciones de “modo” que provienen de

las 1’s y x’s de la interaccién ®* (conmutativa).

Ahora procederemos a evaluar H(w). Se observa un comportamiento divergente
para este término cuando w tiende a cero si dejamos que A sea distinta de cero
(para valores de r arbitrarios). Para regularizar esta divergencia hacemos un corte
en la interaccion para grandes distancias. Para el agujero negro A\ toma la siguiente

dependencia espacial [80]

A = N\, para 2M <r < K (3.55)
A = 0, para r> K (3.56)

donde K >> 2M. Para ver el comportamiento asintético de H (w) consideremos la
expresion [83] para el cuadrado de la funcién gamma de argumento imaginario
D(iy)T(~iy) = [Dy)| = —— . (3.57)
y sinh 7y
donde I'(z) se define por

F(z):/ t=te~tdt .
0

Es posible ver que H(w) se puede expresar de esta forma. Para convencernos de
que asi es, reescribimos 7* = r*(r) (tal como se definié en la seccién 3.1) y se hace
el cambio de variable p = r — 2M en la ec.(3.54) de manera que, H(w) se puede

reescribir —usando la identidad (3.57)— como:

1

1
H(w) ~ Abﬁ%[sinh%"] L w>>
1

Hw) ~ M K? w<< (3.58)

?.
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asi que H(w) tiende a ﬁ en el limite cuando w — 0. La divergencia para valores
grandes de K a bajas frecuencias se da porque —para una dimensién espacial—
la densidad de particulas no decrece al incrementar la distancia, de manera que la
interaccion entre los varios modos continiia con la misma intensidad para distancias
arbitrariamente grandes.

Regresemos ahora a la evaluacién de la contribucién de dF'/dw|y a partir de los
diagramas relevantes (que incluyen a los diagramas “inversos”). Para evaluar las
sumas sobre las frecuencias, vamos al limite continuo, haciendo tender L a infinito

y reemplazando las sumas por integrales de la forma

L A
WZZH;/;/dez )

donde A es un corte ultravioleta introducido para regular cualquier divergencia ul-
travioleta que pueda ocurrir. Volveremos a este punto mas adelante. Todos los
diagramas dados en la figura (3.3), salvo el diagrama No.10 tienen expresiones sim-

ilares a la dada por la ecuaciéon (3.53).

En lo que resta de esta seccién haré algunos comentarios acerca de la regular-
izacién de las divergencias infrarojas en el flujo dF'/dwl|,. Para empezar, es necesario
remarcar que para la parte conmutativa estandar del diagrama No.1 dada anterior-

mente, las divergencias en el infrarojo estdn dadas por integrales de la forma [80]
(A1L+Bl 1HL—|—01)(A2L—|—BQ 1I1L—|—02) s (359)

donde A;, B; y C; son funciones que dependen de w exclusivamente. Para ver que
esto es asi hacemos la expansion en serie de Taylor para cada factor de la ecuacién
(3.53) y posteriormente se integra término a término reagrupando en potencias de
L . Por ejemplo, para obtener el término “lider” de la ec.(3.59) —A;(w)Ag(w)L*—
basta que hagamos tender a cero a w; y we simultdneamente en la ec.(3.53) como

wy =wy =7/L (L — 00). De esta forma obtenemos

B(2) () (£
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Con mucho, el término que diverge como L?, para L — oo, es el que tiene el peor
comportamiento en el infrarojo, los siguientes términos son de la forma: LInL y
L respectivamente. Esto ha sido ya comentado por Leahy en [82]. Discutiré este
método con mayor detalle en la subseccién 3.6.2.

A continuacion estudiaremos el comportamiento de las distintas contribuciones
a las divergencias en esta amplitud, para ello analizaremos la parte noconmutativa a
segundo orden en el parametro © del diagrama No.1 . En vista de que el resto de los
diagramas de cuantro patas tienen contribuciones similares a la amplitud dF*/dwl|s,
solo revisaré en detalle este caso.

Posteriormente estudiaremos las divergencias introducidas por el diagrama de
lazo (No. 10).

3.6 Contribucion del término de interferencia a la
dF*
dw

amplitud

En la seccién 3.3 hemos revisado la correccién noconmutativa a segundo orden para
la interaccion Hjy. Vimos que ésta constituye la primera correcciéon no trivial al
Hamiltoniano. Puede verse de las ecs.(3.23 y 3.28), que el flujo noconmutativo toma

la forma

dF*
dw

SINC N, S1]

(w) = %%:pa{@\sj[m,sl} a>+@2<a a>

a)+6'(a a)}. oo

Notamos inmediatamente que el primer término del lado derecho en esta tltima

2

+ @2<a Si[N,, S SIVCIN,, SN

ecuacion £ 3 pala|SI[N,, Si]|a) es exactamente la amplitud —conmutativa usual —
calculada originalmente por Leahy y Unruh [80].
A continuacién evaluaremos la contribucion de los términos a segundo orden en

el parametro ©. Para esto notamos que
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SINC[NL, Si]

(a

a) = (a

<a
= nw5<oz
y de manera andloga:

<a a> = nw3<a a> — nm<a
por lo que al sumar los resultados anteriores tenemos que
<a a> + <a a> = nwﬂ<a
— nwa<oc

de manera que para encontrar el término de interferencia basta calcular el valor de

SINON,, S, a> - <a SINCSI N,

s

SR a> - nwa<a SiNCs

)
s ()

) a>. (3.61)

SINC

S1N,,

SI[N,, S¢] SisNe Sisye

a>, (3.62)

SINC [N, 51 ST[N., Y] SINCS, + SjgNe

)
3

(3.63)

SINCS, + sigNe

expectacién de la matriz (real) STVYS; + STSNC. De la ec.(3.44) se puede ver que
los elementos de matriz de S¢ no son los mismos que los de S;. Anticipamos que
tendremos menos procesos que puedan representarse por medio de los diagramas
descritos en la seccion 3.4. Podemos, sin embargo evaluar uno de ellos y analizar
el tipo de divergencias que presenta. KEsto es precisamente lo que haremos en la

siguiente subseccién.

3.6.1 Diagrama noconmutativo a segundo orden en ©

En esta subseccién analizaré la correccién noconmutativa a la amplitud dF*/dw
proveniente de la “interferencia” entre las matrices SN¢ y S;. Para ello usaremos

el procedimiento revisado previamente en las secciones 3.4 y 3.5. Para ver los
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diagramas que contribuyen a la interferencia tomemos los términos que aparecen
en el segundo rengléon entre corchetes en la ec.(3.44). De aqui y de las ecs.(3.63) y

(3.29) podemos ver que el conmutador [C’:ﬂC’w, SN C] viene dado por

/drdt24(1 Z—)\g.;{/r)Q Z {w%w% [C’le, (@1(:151)(1)0(:52) + @o(x1)®1(x2)>®3®4]

wi,w2

+ [Cj)Cw, iQ [wl (b}xf + 011/11> (w%@(m)) + <1 — 2)} CI>3CI>4] } + permut.,

- /drdt24(1 i_)\(;);/[/rf > wfwg{ <@1($1)(‘1’; — @)+ (o, - ‘I’I)@I(@)) P3Py

w1,w2

#(@r()olza) + Boler)r(ra)) (wa(0; — 02) + (05— 02)) |
+R[CIC,, 57¢] + permutations (3.64)

donde usé la notaciéon dada en la referencia [82]: @ = ¢*Cl v ®F = 4,C,. Una
vez mas usé la palabra permutaciones para denotar el uso de la ec. (3.30). Ademas
%[CJJCW, SN C} corresponde a la parte real de dicho conmutador. La razén para no
escribirlo explicitamente es porque S es antihermitico, y cuando sumamos ambas
contribuciones del lado izquierdo de la ec. (3.63), dicho término se desvanece.
Ahora procederé a evaluar una de las contribuciones de la ecuacién (3.64).

Tomamos por ejemplo el término:

24 " r WiwoR1(T1)¥0o(T2)®3(%, o permut.
wi,w2

descomponiendo los campos usando las funciones de modo y la diagramatica de-
scrita en la subseccion 3.4 puede verse que algunos de los términos que surgen en
este producto son Clb;CyCs y biC’gC’;C’w. Para que su contribucién a la amplitud
sea diferente de cero, debemos multiplicarlos por los correspondientes productos de
operadores provenientes de SI. Por ejemplo, para el término ©2(a|S][N,, SN|a)

dado anteriormente, la expresion correspondiente sera
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2

(s

96

wi,w2

(3.65)

El vértice noconmutativo estd contenido en el término de interaccion dado por
[CIC,, St]. Recordadndo la expansién S; = S; + S{Y[O% + O[©'] el diagrama
noconmutativo 1 con el vértice relleno, puede ser resuelto en diagramas estandar de
Leahy y Unruh [80, 82], pero incluyendo derivadas de orden mas alto (ver figura 3.4

maés adelante). En el siguiente diagrama hemos ilustrado esto a segundo orden en

O:

3 3 3 2
OX;
) + @ 2 + @ 2 (1]
1 1 6%& 1
Yo 1 2 Yo 2 Yo a%p az ® 2

Figura 3.4: Diagrama No.l noconmutativo a segundo orden en ©.

Es posible ver que el resultado anterior se puede calcular como en la seccion 3.5,
donde la “informacién” de la noconmutatividad estda contenida en los productos
estrella de las funciones de modo. La siguiente amplitud puede calcularse usando
el diagrama noconmutativo 3.4 intercambiando las funciones de modo x3 por ¥; y
viceversa. Repitiendo el procedimiento descrito en la subseccion 3.4 para el término

de arriba, encontramos la siguiente expresion para esa amplitud

2M\ 2
_/dr'dt’ )\q>’4/drdt)\<1 — T> Z Wiwi® (1) P (22) D3 (P, — D) +perm.

@),

a7 32 S (s ) o)1) PR (0 ) 2t

w3
w] w2 w3
(3.66)
donde g(w;) v ¢'(w;) fueron definidos anteriormente en la ec.(3.51) y H(w) ahora

tiene la siguiente expresion:
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H(w) = / A2 <1 - g) B exp [m(r* - r*’)} drdr'. (3.67)

Un aspecto importante que hay que remarcar es que cerca del horizonte de even-
tos del hoyo negro la funciéon H(w) no se desvanece, lo cual si ocurre en el caso con-

mutativo. Para ver esto recordemos que la expresién usual de H(w) —ec.(3.54)—

‘/ dr* lim A(l—%>
r—2M r

donde se usa que dr/drx = (1 — 2M/r). Lo cual tiene la interpretacién de que la

cuando r tiende a 2M es

K .
/ dr lim X"
2

M r—2M

2

Y

interaccién —conmutativa usual— de los campos, se desvanece en el horizonte de
eventos [82]. No ocurre asi con la correccién noconmutativa. Tomemos por ejemplo

la contribucién de la amplitud noconmutativa dada por ec.(3.65)

2)\2 . 2M 2M\
G;Gjr / dtdt’ / dr*dr’ )(1 - —) <oz’<I>’4 S Wi 0ods(d, — D))

’
w1,w2

(3.68)

podemos notar que no desaparece en el horizonte de eventos. Procediendo como en el

caso conmutativo previo vemos que esto puede ser explicado si vemos la contribucion

de H(w) a la amplitud noconmutativa en el limite cuando » — 2M y r’ — 2M in

ec. (3.67) tenemos que

K ; IMN\ .o K oM\t .
/ lim dr’ )\( : )e_“‘” {/ dr* lim )\<1— —) e™r }, (3.69)
oo T 2M r oo r—2M r

lo cual en general no se cancela. En general este limite depende de las sucesiones

con las que nos “aproximemos” al punto r = 2M,r" = 2M. Si tomamos los limites
iterados tendremos que H (w) diverge. Una manera de evitar esta divergencia serfa
elegir A de manera apropiada para eliminar el término (1 — 2M/r')~". Sin embargo
dicho procedimiento no tiene una justificacién fisica clara. Una situacion similar ha

sido ya revisada en [80] para el caso de un espacio plano.
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Lo enterior nos permite afirmar que en el horizonte de eventos existe una con-
tribucion noconmutativa del flujo de particulas proveniente de la interferencia entre
las matrices S (interaccién conmutativa) y SNY[0©?] (correccién noconmutativa a
segundo orden en ©). La tnica manera de “apagar” el efecto de esta interaccién
noconmutativa en el horizonte de eventos es tomar el parametro de no conmutativi-
dad igual a cero (© — 0). Esto es, que los efectos de la interaccién noconmutativa
estan presentes en todo el espacio-tiempo —incluido el horizonte de eventos—. En
base a estas consideraciones, cabe esperar un comportamiento divergente del flujo
de particulas justo en el horizonte de eventos proveniente de la correccion puramente
noconmutativa ©4(a|S{¥[N,, SNC]|a). Este comportamiento divergente proviene
de términos proporcionales a las integrales radiales H (w) en el limite cuando r tiende
a 2M.

Casi todos los diagramas descritos en la figura 3.3 (con excepcion del diag. 10)
tienen contribuciones similares a la dada en la ec.(3.66). Es claro entonces que los
términos divergentes que provienen de S; y SNC tienen diferente comportamiento
en el infrarojo y que una renormalizaciéon como la que se intenta en la subseccion
3.6.4 unicamente remueven las divergencias infrarojas del tipo L? que provienen de
los diagramas conmutativos asi como algunas divergencias ultravioleta del tipo In A

y no tiene efecto sobre los que provienen de la expansion de ST a 6rdenes mayores

en O.

3.6.2 Comportamiento de las divergencias presentes en el

término (a|S]SNC + STV S |a)

En esta parte discutiré el comportamiento de las distintas divergencias que surgen
al evaluar el flujo noconmutativo a diversos érdenes en ©.

Hemos visto que la correccién conmutativa usual al flujo de particulas [80] estd
plagada de divergencias infrarrojas. El analisis de dichas divergencias surge al hacer
una expansion en series de Taylor de la amplitud (a|S][N,,Si]|a). Para ello es

conveniente recordar algunas expresiones ttiles [82] :
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g(wi) 1 1

w; - ﬂwf_Zwi+“'
glw)+1 1 1
w; N ﬁwi2+2wi+"'
H(2w —2w;) = H(2w) — wi— (2
(2w — 2w;) (2w) —w dw( w) +
(1 _ 6[(6—6’)@—%-)]) _ (1 _ e[(ﬁ—ﬁ’)w}> + (8= )l 4
/ —w; 1 / 1 / 1
gw—w)+1l  gw)+ |:1+(6/L+_)wi+”.:| (3.70)
w — wj w efv—1 w

con i = 1,2. Sustituyendo estas expresiones en la ec.(3.66) y haciendo w3 = w —
wy — wo, podemos ver que, a diferencia del caso conmutativo, aqui no tenemos una
contribucién para el término “lider” (aquél que posee el “peor” comportamiento en

el infrarrojo). La primera contribucién del flujo noconmutativo toma la forma

7?; g(j) %g/(”;r ! (eW—ﬁ’)w - 1)1?(2@ (3.71)
donde usamos que lim,,; o w; (g(w,-)—l—l) = 1/(B). Esta tltima expresién se desvanece
cuando tomamos el limite continuo (i.e L — o). De donde podemos anticipar que la
correccién no conmutativa al flujo debida a la interferencia SNV y S no presentard
divergencias infrarojas. Para calcular el resto de las divergencias de esta contribucion
es necesario pasar al limite continuo, sustituyendo las sumas infinitas sobre las fre-
cuencias w; por intergrales en las expresiones dadas en la ec.(3.70). Para el caso de
la correccién introducida por el término cudrtico en ©: ©4(a|SIVY[N,,, SNC]|) es
posible anticipar —usando las ecuaciones (3.70)— que no se presentaran divergen-
cias infrarrojas sino ultravioleta puras.

Por ejemplo tomemos la ecuacién 3.66 que aparece al considerar la interferen-
cia SINCSL Para encontrar las diferentes divergencias que caracterizan esta con-

tribucién procederemos de la siguiente forma:

(a) Tomamos w; # wy. En este caso tenemos que, al pasar al limite continuo la

expresion anterior toma la forma
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02 (L\’gw) [ [ J(Ww—w —wy)+1
- == dw- d, 1 1
SE (W) » /W/L /ﬁ/L widwy wy (g(w1)+ )wz<g(w2)+ > F—

(ew—ﬁ/)(wwrw) _ 1) H(2w — 2wy — 2ws), (3.72)

donde usamos la conservacion de energia w = wy + wy + ws. Sustituyendo las expan-
siones de Taylor para cada factor dadas en 3.70 podemos ver que la primera de las

divergencias ultravioleta que se presenta es

2
S—z@ (%) —gl(wgf ! (el 1) H(2w) = S—jF(w)AZ, (3.73)
donde A es el corte ultravioleta elegido anteriormente. Las divergencias restantes
son también ultravioleta.

(b) Ahora w; = wy. Ambas particulas salientes tienen la misma frecuencia y por

tanto la estadistica se modifica. Para ver que esto es asi analicemos el factor p,

Po = (L—e ™) (1 —e ™)1 —e ) xexp [— Bkw + kywr) — B'ksws|, (3.74)

Procediendo de manera similar al caso anterior puede verse [82] que la contribucién

al flujo noconmutativo de particulas cuando w; = ws estd dado por

@2
967 L2

g(w) g (w3)+1 o1 8w ~
(T Z Z 2—1292(001)626 (6@ Fes 1>H(2w3)5w7w1+m+w3 (3.75)

w] w3

una vez mas transformamos las sumas en integrales y usamos la conservacién de

energia para quitarnos una variable w = 2w; + w3 con lo cual obtenemos

e (L\gw) [* ) 2Bw—wn)/29 (@Ws) + 10 5 g N\ 7
ot ()27 o 20ty R (0 )
(3.76)

Esta tultima expresién no posee divergencias infrarrojas o ultravioleta al tomar el

limite cuando ws tiende a cero.
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Se puede concluir que los términos proporcionales a A, A2, etcétera, provenientes
de la interferencia son los dominantes en este caso. Estas divergencias ultravioleta
puras aparecen a diferentes 6rdenes de magnitud en el parametro de no conmuta-

tividad y no es claro que puedan ser renormalizados.

3.6.3 Correccion noconmutativa del diagrama de lazo

A continuacion revisaré la correccién noconmutativa del diagrama No. 10 de la
figura 3.3. Este diagrama es importante porque posee tanto divergencias infrarojas
como ultravioletas. Estamos interesados en la parte de ®*x que se acopla a un
estado caracterizado por tener un campo entrante (®;) y uno saliente (o) dados
por las ecuaciones (3.9) y (3.10) respectivamente. Analicemos la expansién de &%

de la siguiente forma

D= () 4+ Do)} = @14 +4D,° % Do+ 60,2 % Do, % + 4D, + Do, + Dot (3.77)

si tomamos el término ®; x ®p,® v hacemos uso de las propiedes del producto * que

revisamos en el capitulo 1 de esta tesis, tenemos que

D x Do, = By x Do (Do)
= @yx @0 (CEY2, + CLClt w0l + CLCLUL * v + CI2, ).
(3.78)

cuando se tomen los valores de expectacion de los campos tendremos que («|C?|a) =

0 = (a|C?|a) quedando
Dy x ©o,° — Dy x Do (CL.Clh, * % + CLCE x1by) (3.79)
Procediendo de manera similar con ®,% x ®¢ se puede ver que
1% % Do — (Dbl Xew * X5 4 BLbLXE * X)) @1 * o (3.80)
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Entonces la parte de &} que contiene el término ®; x & estd dada por

Oy xPo 12) (X0, * Xen T U5, * W) (3.81)

w1
donde el factor de 12 representa todas las combinaciones en que puede presentarse
dicho estado. Haciendo actuar el producto x en las funciones de modo que aparecen

dentro de la suma, se puede ver que la ecuaciéon anterior queda

Oy x Do 12 (XoyXen + U0 0w) (3.82)

w1
donde la ultima igualdad se d& porque (X;"Jl * Xy T Y0, *¢w1) = (XZZIle + 7, wwl).
Puede verificarse esta igualdad a cada orden en el parametro de noconmutatividad.
Es decir que las correcciones noconmutativas introducidas en el diagrama No.10
son provenientes exclusivamente de la energia de los campos que estan en las patas
externas @y, ®o. De manera tal que la ecuacién (3.82) contiene a orden cero en O,

el resultado obtenido por Leahy [80]

1
00 12 T (3.83)
1
w1

En el paper citado [80] se ve que insertando esta expresién en la ecuacién para
el flujo (conmutativo) de particulas salientes dF'/dw|s —ec.(3.53)— y tomando el

limite continuo en la suma
1 L /A 1
— 2w,
o Lw, T Jayr Lwr

se tiene que la contribucién puramente conmutativa del diagrama No. 10 (y su

inverso) al flujo saliente es

(—iiV) (g&u)) <g’<wi+ 1>H(2w) [1—exp (8= 8)w)] (InA+1InL/7)* .
(3.84)

el cual puede reescribirse como
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362

3

fw)(InA+ lnL/w)2

No obstante, es posible agregar al hamiltoniano de interaccién Hy de la ec.(3.19) un
término [80] de la forma dm?®? tal que su contribucién a dF'/dw|,
2

f(w) 1267T—nz2(1nA—l—lnL/7r) +4@ , (3.85)
donde f’(w) tiene la misma forma que en la ec.(3.84) (salvo por un factor con-
stante). De manera que se puede elegir m? tal que se remuevan todos los términos
proporcionales a este ultimo resultado. Esto remueve las divergencias ultravioleta
descritas arriba asi como las infrarojas més dificiles (i.e. las que se comportan como
L?). Adn quedan términos de la forma L, KL y In L. Se puede intentar regularizar
las restantes divergencias infrarojas y ultravioletas, lo que representa una enorme
cantidad de calculo debido a que los restantes términos de la ec. (3.59) contienen
una gran cantidad de factores. Esto ha sido ya discutido en [80] y lo mencionaré en

las conclusiones de esta tesis.

Tomemos nuevamente el diagrama no.10 noconmutativo, considerando la con-

tribucién del proceso que contiene a la interaccién de los campos ®; x $p.

1

— 3.86
. (59

Opx o 12)  (Xoy * Xen T U5, *Whuy) = Pp 12)
w1 w1

Las correcciones noconmutativas que provienen del término ®; x & pueden ser

desarrollas. A primer orden en © este ultimo término queda

S oM\ !

(CI)] * CI)O) = 5(,«)2 (1 — —) ((I)[q)o) s (387)

y para r >> 2M se comporta como Ow?/2. Esta tltima correcciéon noconmutativa

depende exclusivamente de la energia w de las patas externas del diagrama No.10

noconmutativo, por lo que esta caracterizada por un diagrama planar. Las diver-

gencias que presenta esta expresién son similares a las encontradas en la ec.(3.84).
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3.6.4 Renormalizacion de la masa

Es posible agregar un término de masa de la forma Aém*®? al Hamiltoniano para

transformarlo en

A
H; = /dr1(<b*®*®*®+5m2®*®+permut.),

A
— /drz(q)*q)*@*d)—i—émQ(I)Q + permut. ) (3.88)

por las propiedades del producto *. Dicho término no afecta las soluciones del
campo libre. Se propaga en la matriz S; y no modifica a SV¢. Cuando se introduce
el término de masa dado en esta iltima ecuacidn, el flujo de particulas (conmutativo

usual) (a|®[CIC,,, ®*]|a) se vé modificado por la adicién de los siguientes términos:

46m? (<a|<b/2[C’Jij, dY|a) + (a|®[CiC., <I>2]|a>> + (4(5m2)2(a|<1>/4[0l0w, ®?)|a)
(3.89)
El primer término ya ha sido evaluado con anterioridad. Para evaluar los restantes
términos se procede de manera analoga a las secciones previas. Es posible ver que
los términos que son proporcionales al término de masa tienen una contribucion al

flujo de particulas de la forma

o) (5 + 1) (FED) (1= exp (5 - 9

donde las funciones g(w) y ¢’(w) fueron definidas anteriormente y H(2w) tiene la

misma estructura que antes. Es posible elegir dm? tal que se remuevan todos los
términos proporcionales a este ultimo resultado. No obstante esto solamente re-
mueve las divergencias infrarojas mas dificiles (i.e. las que se comportan como L?)
as{ como las ultravioleta. La discusién sobre el comportamiento de las divergen-
cias que estan presentes en los diagramas incluidos anteriormente, podria repetirse
para el resto de los diagramas noconmutativos que provienen del Hamiltoniano de
interaccién (3.19) y (3.30).

En la seccién de conclusiones y perspectivas analizaré brevemente estos resulta-

dos.
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Capitulo 4
Conclusiones y Perspectivas

En la presente tesis hemos estudiado las anomalias gravitacionales axiales y quirales
en el contexto de la teoria de campos noconmutativa. Una faceta interesante es
que éstas son generalizaciones de altas dimensiones naturales de los estudios de
anomalias axiales y de gauge en teorias de gauge noconmutativas. Con el objeto
de calcular los efectos noconmutativos hemos usado una linealizacién de una defor-
macién noconmutativa de la teoria de Einstein [45], pero en principio, podriamos
usar una teoria noconmutativa de gravedad. Esta deformacion noconmutativa de la
gravedad lineal ha sido acoplada a fermiones quirales noconmutativos, asumiendo
que ambos, tanto la gravedad como los campos de materia, son deformados con el
mismo parametro de deformacién ©. Asi, nos enfocamos en la interaccion de fermi-
ones quirales y el campo gravitacional. Hemos proporcionado las reglas de Feynman
de esta teoria noconmutativa, en particular (2.6) fue la regla necesaria para deter-
minar las anomalias asociadas a los diagramas planares. Anomalias procedentes
de diagramas no planares no fueron consideradas en el presente trabajo. La tnica
modificacién aparece en los vértices de los diagramas de Feynman y usamos éstos

para calcular una serie de procesos que involucran a las anomalias gravitacionales.

Luego de discutir las reglas de Feynman, hemos calculado la contribucién nocon-
mutativa a la anomalia axial (ABJ) gravitacional lo que conduce al decaimiento del

pion en dos fotones. Esta extension noconmutativa de la anomalia de Delbourgo-
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Salam es obtenida a través del uso adecuado del método de la regularizacion dimen-
sional, encontrandose que éste da precisamente una deformacién noconmutativa de
la signatura 7(X) lo cual es precisamente el andlogo de espacio tiempo a la signatura

del grupo desarrollada en la referencia [48].

Como en el caso conmutativo usual, la anomalia de Delbourgo-Salam noconmu-
tativa, no destruye el difeomorfismo o la invariancia de norma de Lorentz local a nivel
cuantico. No obstante, la noconmutatividad puede afectar también esas simetrias
de gauge asi como las transformaciones de Lorentz y las simetrias de difeomorfismos

son afectadas en las teorias de campo noconmutativas.

En el caso bidimensional de la anomalia quiral gravitacional pura, hemos calcu-
lado la anomalia de difeomorfismos y hemos encontrado que la noconmutatividad
no afecta a la accién efectiva I'(Q)) y, por la tanto la anomalia es la misma que en
el caso conmutativo usual obtenido en la referencia [13]. Esto es también llevado a
cabo en el caso general de D = 4k + 2 dimensiones. Ahi, la anomalia fue obtenida
encontrando primero una interaccién residual noconmutativa de un campo escalar
complejo con un campo de gauge U(1). Aqui, como es usual en el caso conmutativo,
para cada vértice de acoplamiento hemos trasladado la interaccion del graviton y
del fermién quiral, al problema del vértice de un campo escalar complejo acoplado
con fotones externos no dinamicos. La accién efectiva es calculada usando una
versiéon noconmutativa bidimensional del modelo de Schwinger. Encontramos una
deformacién noconmutativa de la accién efectiva dada por las expresiones (2.62) y
(2.63). El célculo de la anomalia para un lazo de fermiones de spin % fue también
desarrollada obteniéndose la correspondiente correccién noconmutativa, la cual esta

dada por la expresién (2.75).

Las anomalias mezcladas fueron también calculadas dentro de este contexto y

aqui también encontramos correcciones noconmutativas dadas por (2.81) y por (2.83)

para campos de spin % y % respectivamente.
Existen numerosos topicos interesantes concernientes a los resultados de este tra-
bajo. Uno de ellos consiste en la aplicacién a las diferentes teorias de supergravedad

que provienen de las teorias de cuerdas. Seria muy interesante calcular las anomalias
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gravitacionales y de gauge de los campos de p-formas antisimétricos en un fondo no-
conmutativo y revisar las condiciones para la cancelacién de estas anomalias nocon-
mutativas en supergravedad tipo I y tipo II en diez dimensiones. Antes de intentar
resolver estos problemas uno deberia, quizd, primeramente plantear el problema de
crear una teoria adecuada de una extensiéon noconmutativa en una teoria de gauge
para potenciales de grado mas alto y en dimensiones mayores.

Otro problema interesante es el calculo de anomalias gravitacionales debidas a
diagramas no planares siguiendo las referencias [24, 30, 40]. En la presente tesis nos
limitamos al célculo de anomalias de gauge quirales para el grupo U(N). Es tentador
desde mi punto de vista, extender el calculo a otros grupos de gauge utilizando el
mapeo de Seiberg-Witten como se ha hecho en diferentes trabajos en este sentido
(34, 36, 37, 38, 39]. Serfa también muy interesante aplicar el mapeo de Seiberg-

Witten para el sector gravitacional como se discutié en [42, 43, 48, 49].

Por otra parte, se ha estudiado el efecto de una interaccién en un modelo de
agujero negro bidimensional. Es bien conocido, a partir de la segunda mitad de
la década de 1970, que un agujero negro emite radiacién. Este es un resultado
ligado al nombre de figuras tan importantes como Zeldovich, Novikov y Unruh [84].
Precisamente Unruh y Leahy [80] fueron los primeros en darse cuenta que si se
introduce una interaccién de la forma A®*, se modifica la naturaleza térmica de la
radiacién emitida por el agujero negro. Su resultado, sin embargo, esta “plagado”
de divergencias, principalmente infrarojas. En esta tesis se generaliza los resultados
para la expresiones que determinan el tipo de interaccion de los campos escalares
—ecuaciones (3.18) y (3.19)— y del flujo de radiaciéon —ec.(3.23)—.

En la presente tesis se introdujo una modificacion en el producto de operadores,
promoviéndose dichos productos en productos “Moyal”. De esta manera se modific
la. expresién de la interaccién del tipo A®* a una interaccién noconmutativa AP**
—ver ecs. (3.19) y (3.30)—.

En el célculo del flujo noconmutativo de particulas se hizo necesario modificar
los diagramas “de Feynman”, las cuales se representan graficamente en la figura

(3.3). Estos diagramas incluyen, de manera natural, a los encontradas por Leahy y
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Unruh [80].

Una vez que se introduce dicha modificacién, la interacciéon contiene términos
proporcionales al parametro de noconmutatividad ©, lo cual es de esperarse. En el
desarrollo puede verse que se recupera el resultado conmutativo estandar cuando se
permite que © — 0. Se hizo el calculo explicito de la correcccién a segundo orden
al Hamiltoniano de interaccién, ec.(3.44) encontrandose que al ser introducido en la
matriz S} obtenemos la modificacién noconmutativa correspondiente —ec.(3.28)—
del resultado reportado por [80]. Con esa informacién se estimé la contribucién al
flujo noconmutativo a segundo orden en © proveniente del término de “interferen-
cia” entre las matrices S]V9[02] y S;. Para ello se eligié uno de los términos de
dicha interferencia y se calcul6 explicitamente su contribucién. Se encontré de esa
forma una correccién noconmutativa a segundo orden en © —ver ec. (3.66)— al
resultado reportado en el articulo de Leahy y Unruh [80]. Encontramos que la no-
conmutatividad introduce, por una parte, un cambio en el comportamiento de las
divergencias presentes en dicha amplitud. Para ello se desarrollé cada factor de la
expresion citada anteriormente en series de Taylor y se integrd sobre las energias, de
la manera usual. Se vid que la primera de las divergencias ultravioleta es de la forma
?—EF (w)A? como se ve de la ec.(3.73). El resto de las divergencias son también po-
tencias en el parametro de corte A. En el caso de las correcciones noconmutativas a
6rdenes mayores en O, las divergencias presentes en las amplitudes correspondientes
presentan todas un comportamiento ultravioleta mas acentuado. Esto es debido a
la presencia de factores de la forma

A
An+1
/ w'dw; = ,
n/L n+1

en las amplitudes correspondientes.

Adicionalmente, se encontré que la noconmutatividad tiene el efecto de introducir
un flujo distinto de cero en todo el espacio, particularmente en el horizonte de
eventos, como puede verse de la expresién ec.(3.67). Esto llama la atencién dado
que el flujo conmutativo usual se desvanece justo en el horizonte de eventos y para

valores de r mayores que 20 comienza a aparecer gradualmente [82]. Esto es otro
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efecto puramente noconmutativo. En la referencia [85] puede verse una discusién
similar (ahf se deforma la interaccion entre los campos introduciendo el asi llamado
oscilador arménico deformado). El método de deformacién (g-deformation) que
se sigue en dicho articulo difiere del usado en esta tesis, no obstante encontramos
varias coincidencias. La primera de ellas es que el flujo noconmutativo se desvia del
espectro térmico usual encontrado por Hawking [62].

Por otra parte, la modificacién a la contribucién del diagrama de lazo noconmu-
tativo No.10 de la fig.(3.3), produce exclusivamente diagramas planares. Esto puede
explicarse porque el efecto de la noconmutatividad solamente se refleja en las “patas

externas” de dicho diagrama noconmutativo como puede verse en la ec.(3.82).

4.1 Perspectivas

Uno de los problemas mads interesantes que surgen en esta tesis —y con mayores
implicaciones en fisica-matematica— consiste en conectar nuestros resultados dados
por las ecuaciones (2.62), (2.63) y (2.75) con el teorema del indice de Atiyah-Singer
para las familias de operadores elipticos y proporcionar férmulas explicitas para
éstas anomalias noconmutativas en términos de polinomios invariantes los cuales
describen clases caracteristicas de Pontrjagin y de Chern. Los resultados obtenidos
en la presente tesis representan buenas expectativas de que dicha continuacion es,
ciertamente, posible. Esto se deja para un trabajo futuro. Por otra parte, una
descripcion en términos de la condicién de consistencia de Wess-Zumino como se ha
hecho en el trabajo de [26] vale la pena para el caso de gravedad. Con el objeto de
llevar a cabo esto, la referencia [88] serfa una fuente muy importante.

Finalmente, serfa muy interesante también, encontrar un enfoque global al estu-
dio de las anomalias, incluyendo anomalias globales gravitacionales (como se propone
en [53]) y comparar esto con los resultados dados recientemente por Perrot [89] en
el cdlculo anomalias gravitacionales noconmutativas, usando diferentes herramien-
tas globales. Este enfoque, no obstante, va mas alld de los propdsitos del presente

trabajo.
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Por otra parte, en relacién con los resultados del capitulo 3, recientemente se ha
propuesto una novedosa derivacion de la radiacién de agujero negro por Robinson
y Wilczek [90]. En esta referencia se estudia la relacién entre la radiacién saliente
de un agujero negro y la cancelaciéon de anomalias gravitacionales en el horizonte
de eventos. En dicho articulo se propone que la fuente de la anomalia se localiza
precisamente en el horizonte de eventos. Esta region es importante porque ahi la
geometria es no singular pero es donde las ecuaciones se simplifican. Analicemos lo
siguiente: La radiacion saliente de un agujero negro surge cuando se considera la
cuantizacion de la materia en un espacio tiempo de fondo que contiene un horizonte
de eventos. Se encuentra entonces que el espectro del nimero de ocupacion de los
modos del campo cuantizado, en el vacio corresponde al de un cuerpo negro a una
temperatura dada por la gravedad superficial del horizonte. La derivacion de Hawk-
ing [62] es bastante fisica pero descansa en algunas hipé6tesis como la no interaccién
entre los campos. En el enfoque de Wilczek se pone énfasis en la cancelacién de
anomalias gravitacionales. En la primera parte de esta tesis, se revisé el caso més
simple que surge al considerar un campo escalar quiral en D = 2 dimensiones. En

ese caso vimos que la anomalia queda como en la ec. (2.37)

SALY 1
Shy_(—p) 24«

(2T —(p)) = -2

o equivalentemente

1
VI = —rx
v 96my/—g

Hay muchos ejemplos en la fisica donde las anomalias se han conectado a la ex-

istencia de flujo de corrientes, como se ha explicado en los primeros capitulos de la
tesis. Sin embargo no hay muchas publicaciones en donde se explore la relacion entre
la radiacion de agujero negro y la no conservacion del tensor de energia-momento.
Hace ya varios anos Christensen y Fulling [91] demostraron que es posible usar una
anomalia en simetria conforme para derivar importantes constricciones de los ten-

sores de energia-momento de los campos cuanticos en el background de un agujero
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negro. Dicha anomalia aparece como una contribucién a la traza T del tensor de
energia-momento en una teoria en la cual dicho tensor, clasicamente, se anula. En
un articulo muy reciente [92] Wilczek et al retoman este enfoque y al mismo tiempo
extienden su analisis, descrito arriba, para el caso de radiaciéon de particulas car-
gadas en un agujero negro del tipo Reissner-Nordstrom (R-N). Para ello consideran
anomalias de gauge asi como gravitacionales en el horizonte de eventos. Demuestran
que para evitar el rompimiento de covariancia general y de invariancia de gauge a
nivel cuantico, el flujo total de carga y energia en cada onda parcial de un campo
cudntico cargado en un agujero negro R-N debe ser igual al un cuerpo negro (1+1)
dimensional a la temperatura de Hawking. El enfoque de dichos trabajos es muy
cercano al que he seguido en la presente tesis. De hecho tanto la primera parte de la
tesis, que trata con anomalias en teorias que involucran la interaccién de gravedad
con materia, como el capitulo 3, donde se explora la radiacién de un agujero ne-
gro debida a un campo escalar interactuante, pueden ser estudiados como tépicos
relacionados. Este es, precisamente el enfoque de Wilczek. Como una extensién de
las ideas desarrolladas en esta tesis, es posible deformar la geometria del espacio de
fondo e investigar la modificacion que surja al promover los productos usuales en
productos de Moyal. Esto generalizard, en primer lugar, los resultados descritos en
[90] y [92]. Este proyecto, sin embargo, queda como una investigaciéon a desarrollar

en un futuro préximo.
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Apendice A

Fundamentos geométricos de

agujeros negros

A continuacién describiremos la geometria de un agujero negro estacionario. Esta
seccion es una revision breve de resultados bien conocidos y no pretende ser un estu-
dio detallado. Una revision detallada acerca de agujeros negros clasicos puede verse
en [93]. La interaccién entre el campo gravitacional y el campo electromagnético
estda determinada por las ecuaciones de Einstein-Maxwell acopladas. En la norma

de Lorentz (V*A, = 0) son:

VAV, A, — REA, =0 | (A1)
y
1
R;w - ig,uuR = 87TT,LLU ) (AQ)

donde 7}, es el tensor de energfa-momento electromagnético

1 1 i
T = E(Fuszf - ZQWFPUFP ) : (A.3)

La solucién de agujero negro estacionario sujeta a la restriccion de que los parametros

momento angular, carga eléctrica y masa tomen valores definidos, es descrita por la
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métrica de Kerr:

gt — A — a’sin0 e 2asin®0(r? 4 a* — A)dt "
by by
2 2\2 Aa2sin? D
L) — AT 2gas2 4 Z a2 4 g (A.4)
by A
aqui el potencial vectorial electromagnético toma la forma
_ @ . 2
A, = _E<(dt)a — asin®0(dg),) | (A.5)

donde ¥ = r?+a%cos?0 y A = r?+a?>+Q*—2Mr. Q, M y a son los tres parametros
de la familia de soluciones y puede verse que corresponden a la carga eléctrica, la
masa y el momento angular por unidad de masa del agujero negro a = J/M. Cuando
@ = 0 tenemos que A, = 0 y la métrica del espaciotiempo se reduce a la familia de
soluciones de Kerr en el vacio. Para a = 0 recuperamos las soluciones de Reissner-

Nordstrom

r 72

2 2\ —1
d82:—<1—%+Q—)dt2+(1—¥+%) dr?

+r*(d6” + sin®0d¢?) (A.6)

y, por supuesto, cuando () = a = 0 obtenemos la métrica de Schwarzschild

oM oM\
ds® = — (1 - T) dt* + (1 - T> dr +7?(d6” +sin®0de”) (A7)

la cual constituye el ejemplo mejor conocido de un agujero negro estatico. Debido
a su simplicidad, revisaré este caso a continuacion.

La métrica de Schwarzschild describe, obviamente, un espaciotiempo de cu-
atro dimensiones, sin embargo, debido a la simetria esférica, podemos analizar
unicamente la regién bidimensional descrita en términos de las coordenadas r y t y
suprimir de la métrica de Schwarzschild la dependencia angular. Asi, nos enfocamos

en un modelo 1 4+ 1 dimensional donde ahora la métrica queda
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oM oM\ !
dSZZ_(l__>dt2+(1__) i
T T

La métrica anterior puede reescribirse en una forma més simple en términos de la

nueva coordenada r* definida por

’
* = 2M1 — =1 A.
r r+ H(QM ) , (A.8)

tal que dr*/dt = (1 — 2M/r)~" de manera que ahora

ds® = — (1 — %) (dt® — dr*?)

r

Como estamos interesados en explorar la estructura causal en las “cercanias” del agu-
jero negro, es usual en este punto introducir las coordenadas nulas {u, v} definidas

comou=t—1r"yv=t+r" de modo que ahora la métrica toma la forma

r

ds® = — (1 — %>dudv : (A.9)

donde ahora tenemos a r definida implicitamente como funciéon de v y v por

r .
r+2M In (m—l) =r" = : (A.10)

tal que el elemento de linea ds® se puede reescribir como

2M — —
ds® = — — exp 2]\2 exp U4Mu dudv . (A.11)

Una vez mas definimos coordenadas nulas dadas ahora por:

U:—exp(ﬁ) , (Foo<U<0) ,

V:exp(ﬁ) , (0<V <o),

en términos de las cuales la métrica queda
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ds® = — " exp(Q_M) audv (A.12)
3 —
_ 32i” exp (50) (— dT? +dX?) | (A.13)

donde U =T —-X yV =T+ X. La relacién entre las coordenadas “nuevas” (T, X)

y las “originales” (t,r) esta dada por

V—Uu

2_T2_ [y = _ LA W !
X°-T°=-UV exp(4M) exp(QM) <2M 1)exp(2M), (A.14)

y
X+T \%4 u—+v t
= — = = —_— A.l
x—7 v ) meelgy) (A.15)
0, equivalentemente
r r 9 9
(m-l)@Xp(m):X —T s
y
1+ %
M 2 arctan X = In = % (A.16)

En estas nuevas coordenadas la singularidad de las componentes de la métrica en r =
2M ha desaparecido y consecuentemente el espacio puede ser extendido permitiendo
que los valores de U y V no tengan restricciones.
Otra representaciéon de este espacio tiempo puede obtenerse mapeando U y V' a
unas coordenadas nulas cuyos valores se restrinjan a intervalos finitos como
U = tan %f] )



]

colapso

Figura A.1: Diagrama de Penrose para un agujero negro de Schwarzschild.

El diagrama que representa a esta ultima regién se conoce como diagrama de Pen-
rose quien fue el primero en senalar la conveniencia de trabajar con estas regiones
“conformalmente” equivalentes:

En este diagrama el horizonte de eventos estd localizado en r = 2M que es
precisamente la linea que separa las regiones I y II . La singularidad en r = 0
si que constituye una singularidad “verdadera”, por ejemplo, la curvatura escalar
R0 R** es infinita en este punto. Sin embargo, gracias a la “nueva” geometria, es
posible asignar al exterior del agujero negro una regién (regién I) como puede verse
en la figura A.1. En este diagrama I'", I~ se denominan futuro cronolégico y pasado
cronoldgico respectivamente; andlogamente J* y J~ son el infinito nulo futuro y el
infinito nulo pasado respectivamente. En realidad el diagrama de Penrose completo
contiene otras regiones que no incluimos en esta figura. Sin embargo para nuestros
propdsitos basta con la region descrita arriba. Ahora el horizonte de eventos puede
visualizarse de una manera mas simple. Divide el espacio tiempo en dos regiones |
y II que estan disconexas. Es ésta la region de interés para analizar la radiacién de

agujero negro.
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