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Relativistic hydrodynamics has been ap-
plied successfully to describe the dynamics of
Quark Gluon Plasma (QGP) created in high
energy nucleus-nucleus collisions. The causal
description of this matter, with extreme low
value of viscosity (n/s) has generated a lot
of interest and has led to the development of
various dissipative hydrodynamic theories. In
the present work, we intend to study an im-
portant feature of boost invariant causal dis-
sipative hydrodynamics - ”"hydrodynamic at-
tractor” [1] through thermal particle produc-
tion. We consider the recently obtained an-
alytical solutions of higher-order causal vis-
cous hydrodynamic theories under longitudi-
nal boost invariance [2] to study thermal par-
ticle spectra from QGP. Thermal dileptons
and photons, which are emitted during the
entire evolution of QGP, contain information
about different stages of evolution and hence
can be considered as most useful tool to study
the hydrodynamic attractor. We calculate the
dilepton and photon yields in the presence of
Chapman-Enskog like viscous corrections to
the distribution function and study the par-
ticle spectra under Bjorken expansion by em-
ploying the analytical solutions, including the
attractor solution, of higher order viscous fluid
dynamics [3].

Considering the boost invariant expansion
of Bjorken, with Milne coordinates z# =
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(1,7,%,Ms), the evolution equations for energy
density, € and normalized shear stress 7 are
obtained as [2, 3]
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where 7 = 7w/4P. We consider the coeffi-
cients, a, A and ~ corresponding to the third-
order theory developed in Ref [4]. These cou-
pled equations can be solved analytically for
certain approximations of relaxation time 7.
We note that for a conformal system, we have
Tt = 5(n/s) = const. The equations are
solved analytically for three cases of 7, ~ 1/T,
where 7T is either a constant or follows the
ideal of Navier-Stokes evolution. The analyti-
cal solutions thus obtained correspond to dif-
ferent values of integration constant «, with
a = 0,00 denoting the attractor and repul-
sor respectively. Also, using the analytic so-
lutions, we constrain the values of « to lie be-
tween o = 0 and oo [3]. Next, we study the
particle spectra by employing the attractor so-
lution.

Within relativistic kinetic theory, the rate

of dilepton emission from gg annihilation pro-
cess, q7 — v* — [T~ is given by
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where M? represent the invariant mass

of virtual photon and p is the dilepton
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4—momentum.  o(M?) denote the cross-
section for this process in Born approximation
and f(E12,T) is the modified quark (anti-
quark) distribution function in the presence
of viscous correction i.e., f = fo+ 0f. Keep-
ing the terms upto quadratic in momenta, we
write the total dilepton emission rate in the
Maxwell-Boltzmann limit as sum of ideal and
viscous contributions [3]
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Similarly, photon emission rate for Compton
scattering, q(q)g — q(q)7y and ¢ annihilation,
qq — g7y is obtained as sum of ideal and vis-
cous parts [3]
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Next, we determine the dilepton and photon
yields by integrating the above expressions
over space-time evolution of QGP along with
the temperature and 7 profiles. We choose the
evolution of T" and 7 corresponding to ideal
T approximation. In Fig. 1, we plot the ra-
tio of viscous to ideal dilepton yield, R;+;-
as a function of transverse momentum of the
dileptons produced by varying the parameter
a. The solid curve represents the attractor
solution and dotdashed curve denotes the re-
pulsor. The ideal case (§f = 0) is represented
using dotted line and the dashed lines corre-
spond to ratios for different values of o ranging
from 10 to 5000. It is found that the particle
yields are maximum for the attractor and min-
imum for repulsor. Yields corresponding to
various « values lie between both these curves.
As « increases the suppression to the yield in-
creases and the curves approach the repulsor.
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Fig. 2 shows the strength of viscous to ideal
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FIG. 1: Ratio of viscous to ideal dilepton yield for

(2|p|2 - 3M2) Tr ~ 1/T;4 approximation.
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FIG. 2: Ratio of viscous to ideal photon spectra
for 7. ~ 1/T;q approximation.

photon spectra for 7, ~ 1/T;4. We conclude
from this study that maximum increment in
yield is observed for attractor and maximum
suppression is for repulsor.
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