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Abstract

At this time, for cosmology, it is crucial to develop robust inference frameworks that will improve

our understanding of the standard cosmological model, shedding light to open problems it cur-

rently suffers of. However, the increasing complexity of current analyses urged the need for op-

timal data compression algorithms and alternative simulation-based Bayesian approaches, which

development was boosted by Machine Learning advances. The work presented in this thesis fo-

cuses on testing and applying these techniques to problems in the field of gravitational waves and

the Lyman-α forest, and the content can be effectively split up into two main building blocks.

The first part aims at addressing whether density estimation simulation-based inference yields

unbiased estimates of cosmological parameters in the presence of selection effects. As a test case

we use mock binary neutron stars mergers catalogues for the Hubble constant estimation, given a

toy hierarchical model. Not only did this method yield statistically unbiased estimates of H0, but

its precision almost matched the one of standard Bayesian analysis.

The second part of my work explores if and how information can be optimally and efficiently

extracted from Lyman-α correlation functions. First, we aim to understand whether the baryon

acoustic oscillations peak alone, as considered in standard analyses, constitutes a sufficient sum-

mary to capture all the relevant cosmological information. Performing a direct fit to the full shape

of simple mock correlations, we demonstrated that there is extra information and we traced it back

to the Alcock-Paczyński effect and redshift space distortions. Finally, in another work, we apply

score compression to realistic mocks, finding good agreement with the traditional approach at the

posterior level. Moreover, we find that the covariance matrix estimated from data via subsampling

is a good approximation to the true covariance.
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Impact statement

This thesis work exploits extensions to standard analysis frameworks, to increase the efficiency in

cosmological inference tasks. The novel work here presented is made of two main parts, which

resulted in incredibly different contributions.

The first part refers to applying neural density estimation in the field of gravitational waves.

Being based on a simple hierarchical model of light standard sirens catalogue, this work does not

aspire to bring a direct contribution at the real data level, but rather at the methodological level.

This work sets itself as a proof-of-concept to demonstrate that in presence of selection effects,

the results of simulation-based inference tools are not biased with respect to standard approaches.

Demonstrating this is extremely important because of the problems traditional Bayesian analyses

have to deal with, which makes simulation-based methods so appealing. Not only the parameters-

data space is increasing, but accounting for selection effects in the analytical form of a likelihood

can require computationally expensive and/or inaccurate approximations. Hence, proving these

novel methods are reliable is a must.

The second part, which relates to Lyman-α correlation functions, instead brought contribu-

tions to the vega code, used within the Dark Energy Spectroscopic Instrument (DESI) Lyman-

α working group for fitting and modelling the correlation functions, in terms of extensions to

the standard analysis. In particular, in the directions of both performing direct cosmological in-

ference, building an interface to the cobaya sampler, and compressing the data vector into an

optimal set of summary statistics, to increase the efficiency of the analysis.

This work led to two first author peer-reviewed publications. Beyond academia, this work faces

challenges of modern cosmology which are more broadly extended. The rapid advancement in

technology and the definition of Big Data structures is driving multiple fields to explore and apply

these same cutting-edge tools for different purposes.
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Thesis roadmap

Despite being robust over a wide range of observables, the standard cosmological model is fac-

ing open fundamental questions, such as those related to the physical nature of dark energy and

dark matter. Given a model, this can be tested against observations by performing parameter in-

ference and the larger and more accurate the datasets will be the better the constraints. How-

ever, the increase in data sample size and model complexity has established numerical challenges

that traditional inference methods can hardly face. This urged the need for data compression and

simulation-based frameworks, which are at the base of the work here presented.

This thesis starts in Part I by providing an introduction to both the standard cosmological

model and cosmological inference, setting some background knowledge needed to understand

the original work later presented. Chapter 1 provides an overview of the standard model, from

the dynamics of the homogeneous Universe to a high-level introduction to structure formation.

Chapter 2 expands on the probes of interest used to place constraints on cosmological parameters,

namely gravitational waves and the Lyman-α forest. Finally, the standard inference framework is

presented in Chapter 3, together with alternative approaches relevant to this work.

The main projects I have been working on during my PhD are presented in Part II, mainly split

into two blocks. The first one refers to the work presented in Chapter 4 and it is built around

testing the reliability of the simulation-based inference algorithm. In particular, we tested it while

performing population-level inference of the Hubble constant from light standard sirens, simu-

lated from a simple toy model. Given the latter, we are able to run both the traditional analytical

and the likelihood-free approaches, testing the second against biases, with a particular focus on

selection effects. The second block is linked to the study of how cosmological information can

be extracted from Lyman-α forest correlation functions, alternatively to standard analyses, and it

is developed in Chapter 5 and Chapter 6. First, in Chapter 5, we test the cosmological informa-

tion contained in the full correlation functions, beyond the baryon acoustic oscillations peak, by

extending the traditional framework to allow for direct cosmological inference. Then, in Chap-
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ter 6 we apply score compression on realistic Lyα correlation functions and explore some of its

outcomes, including reliable covariance matrix estimation and goodness of fit tests.

Finally, Part III summarises the main findings of these works and develops an outlook on a few

extensions to the frameworks built here.
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Introduction
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1 The standard model of cosmology

Over the last century, our understanding of the evolution of the Universe throughout cosmic

eras significantly progressed, culminating in the formulation of a consensus model, namely the

ΛCDM paradigm. The latter is named after the two most abundant components in the Universe

at present time, namely the cosmological constant Λ, responsible for the cosmic acceleration, and

cold dark matter (CDM), responsible for structure formation. Despite the success of the model in

explaining cosmological observations, there are still deep open questions we have not yet solved,

such as the nature of the dominant dark energy and dark matter components. To further improve

our comprehension and constrain our models, a good amount of diversified data and reliable in-

ference tools are both indispensable. Testing standard inference analyses in cosmology and exten-

sions to them is the goal of this work. The first part of this thesis provides an overview of the

standard cosmological model in Chapter 1, further focusing on some probes of interest for this

work in Chapter 2 and finally introducing the standard inference framework and some alternative

approaches in Chapter 3.

The current modelling of the history and dynamics of the Universe is based on the Cosmo-

logical Principle, which assumes the Universe to be isotropic and homogeneous, at large scales.

In other words, the Universe appears to be the same in every direction and from every location,

respectively. However, we do have observational evidence that at small scales there is a significant

deviation from homogeneity, and instead the Universe is highly structured.

This Chapter is structured as follows. In Sect. 1.1 I summarise the basics of the ΛCDM model,

with a focus on the Universe components and dynamics, and their interplay. Then, in Sect. 1.2

I introduce inhomogeneities and only highlight the key concepts of structure formation that are

propaedeutic for understanding part of the original work presented in Part II.
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1 The standard model of cosmology

1.1 The homogeneous Universe

1.1.1 General Relativity framework

Einstein’s theory of General Relativity (GR) (Einstein, 1915) has proven multiple times to be a

robust mathematical description of the Universe’s geometry and dynamics. Besides effectively

explaining Solar System phenomena, such as the perihelion precession of Mercury’s orbit, this

theory confirmed its outstanding success with the first gravitational wave detection in 2015 (Ab-

bott et al., 2016), a century later. This theory completely overturned the concept of gravity as a

force, instead describing it as a geometrical property of the four-dimensional spacetime. In partic-

ular, the geometry of such a manifold is intrinsically connected to any energy source distribution

as formally described by Einstein’s field equations

Gµν = 8πGTµν + Λgµν (1.1)

with Gµν ≡ Rµν −
1

2
gµνR . (1.2)

Throughout this introductory chapter we will assume the c = 1 convention for simplicity. Eq. (1.1)

elegantly connects the Einstein tensor Gµν on the left-hand side (LHS), which incorporates the

spacetime’s geometry and curvature, to the energy contributionTµν on the right-hand side (RHS),

multiplied by Newton’s gravitational constant G , and the cosmological constant Λ.

The Einstein tensor is a function of a metric tensor gµν , which encodes the geometrical proper-

ties of the spacetime, and both the Ricci tensor Rµν and scalar R, which relate to the local curva-

ture induced by the source of Tµν . In particular, the concept of metric tensor gµν is at the core of

the GR formalism. In an arbitrary coordinate system described by some coordinate X = (t,x),

such a tensor returns the invariant distance between two infinitesimally close points via

ds2 = gµνdX
µdXν , (1.3)

where we used the Einstein summation convention.
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1.1 The homogeneous Universe

In an isotropic and homogeneous Universe, gµν is given by the Friedmann-Lemaître-Robertson-

Walker (FLRW) metric, such that the line element in polar spatial coordinates (r, θ, ϕ) is given by

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (1.4)

In this equation the dimensionless scale factor a(t) accounts for the Universe expansion / con-

traction, where by convention a(t0) = 1 at present time t0, whereas k is the curvature constant,

which can either be negative if the Universe is open, positive if closed and null if flat (Euclidean).

1.1.2 Background dynamics

Assuming a perfect fluid behaviour for the constituents of the Universe, the energy-momentum

tensor can be written as Tµν = diag(−ρ, P, P, P ), where ρ is the energy density and P the

isotropic fluid pressure. It is worth noticing here that the tensor is diagonal because the Cosmo-

logical Principal assumption does not allow anisotropic stress. Given this expression for Tµν , in a

FLRW spacetime, Einstein’s equations lead to the following Friedmann equations

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (1.5)

ä

a
=− 4πG

3
(ρ+ 3P ) +

Λ

3
, (1.6)

where ȧ and ä are the first and second time derivative of the scale factor. As the Universe changes

its size with time, in principle either expanding or contracting, it is useful to define the Hubble

and the deceleration parameters

H(t) ≡ ȧ(t)

a(t)
q(t) ≡ −a(t)ä(t)

ȧ(t)2
, (1.7)

which encode the rate of expansion/contraction and how quickly this same rate varies, respec-

tively. We refer to their value at present time t0 as the Hubble constant H0, which is one of the

standard parameters of the cosmological model, and q0.
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1 The standard model of cosmology

The conservation of the energy-momentum ∇µT
µ
µ = 0, where ∇µ denotes the covariant

derivative, yields

ρ̇+ 3H(ρ+ P ) = 0 , (1.8)

which combined to the Friedmann equations allows for the following solution

 a(t) ∝ t
2

3(1+P/ρ) if P ̸= −ρ

a(t) ∝ eHt otherwise
, (1.9)

which explicitly relates how the scale factor changes as a function of the properties of a given fluid.

1.1.3 Distances

Because of the cosmic flow or local peculiar motions, the objects we see can move either further or

closer to the observer. As they move, the spectra coming from a light source will present a shift in

observed wavelength (λo) with respect to the one (λe) at emission time te, such that we can define

the redshift

z =
λo − λe

λe
. (1.10)

We refer to the cosmological redshift as that sourced by the Universe background dynamics, and

it is related to the scale factor via

1 + z =
1

a(te)
. (1.11)

In 1929, Hubble provided experimental evidence of the Universe expansion, reconstructing

the diagram presented in Fig. 1.1, which shows how the target extra-galactic nebulae were mov-

ing further from the observer proportionally to their distance. This is a striking example of how

distances are an incredibly powerful tool to constrain the expansion history, leading decades later

to the discovery of the cosmic acceleration by Riess et al. (1998) and Perlmutter et al. (1999), who

used luminosity distances of Type Ia supernovae. In cosmology we distinguish between luminos-

ity and angular diameter distances, which are respectively derived from the flux and geometry of
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1.1 The homogeneous Universe

Figure 1.1: Original figure taken from Hubble (1929), it plots the velocity–distance relation among extra-
galactic nebulae.

objects.

Let us assume flatness for simplicity and let us first derive an expression for the luminosity distance

via a simple reasoning. The flux is related to the luminosity of a source via the distance of the latter

by

F =
L

4πD2
L

, (1.12)

being DL the newly defined luminosity distance. Because of the expansion, the loss of energy of

photons along the path and the difference between λe and λo needs to be taken into account,

leading to an effective form for the flux

F =
L

4πD2
M(1 + z)2

, (1.13)

being DM the comoving distance between the observer and the light source, defined as

DM =

∫ z

0

dz

H(z)
. (1.14)
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1 The standard model of cosmology

By definition of DM, then the luminosity distance will be given by

DL = (1 + z)

∫ z

0

dz

H(z)
. (1.15)

Rather than the flux of a source, we might instead be interested in using its geometrical prop-

erties. Under the assumption of a flat FLRW Universe, in the limit of small angles, for a distant

object of fixed physical size l and angular diameter dθ on the sky, the distance to the object is

DA = l
dθ . Still under the hypothesis of a flat Universe, the angle dθ is equal to the comoving size

of the object l/a divided by the comoving distance DM, which yields

DA =
DM

(1 + z)
, (1.16)

where we have used Eq. (1.11) to express DA as a function of redshift.

1.1.4 Energy content

As already seen with the Friedmann equations, under perfect isotropic fluid assumptions, the

constituents of the Universe contribute to the rate of expansion with their energy density. How

much all these components contribute to the total energy budget changes over time, given that,

by integration of Eq. (1.8), each of them has a density that varies with the scale factor as

ρ ∝ a−3(1+w) , (1.17)

being w = P/ρ the equation of state for that component. Defining the critical density today

as ρc =
3H2

0

8πG
(in this notation ρc = ρc,0), the energy contribution of a certain constituent i is

usually expressed in terms of the density parameter at present time

Ωi ≡
ρi
ρc

=
8πG

3H2
0

ρi . (1.18)

The energy budget components are:
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1.1 The homogeneous Universe

• Baryons. By baryons we indicate all ordinary matter that interacts both gravitationally and

electromagnetically, which energy density varies as ρb ∝ a−3, with their equation of state

wb = 0. At present time baryons only account for approximately 5% of the total energy

budget, taking either the form of objects, like stars and galaxies, or diffuse gas. At early

times, baryons were characterised by a tight coupling to photons, but as the primordial

plasma reached sufficiently low temperatures, the first atoms started forming, defining the

epoch of recombination. Subsequently, the number of free electrons dropped and baryons

effectively decoupled from radiation. Hydrogen atoms became neutral and baryonic parti-

cles were free to collapse to form structures; further details will be given in Sect. 1.2.

• Dark Matter. By dark matter we indicate all matter that behaves like a pressureless fluid

(wc = 0) but does not interact electromagnetically, hence ‘dark’. At present time, it ac-

counts for almost 27% of the total energy budget. First observed via galaxies’ rotation

curves (Rubin and Ford, 1970), its particle nature has not been yet understood, however

we do have experimental evidence from structure formation that it is ‘cold’ dark matter,

namely characterised by non-relativistic velocities. Indeed, if its thermal velocity would

have been too large, only structures located in larger potential wells would have formed,

which is not what we observe.

• Dark Energy. Today it is the most abundant component, with approximately ΩΛ ≈ 0.7,

and it generically refers to the mechanism which is driving the current acceleration phase

of the Universe expansion, only recently discovered in 1998 (Perlmutter et al., 1999; Riess

et al., 1998). The nature of this component is unclear and there is a plethora of currently

explored models, among which the current standard model prefers the cosmological con-

stant Λ. The latter is characterised by an equation of state equal to wΛ = −1, such that its

energy density is constant over time.

• Photons. Relativistic particles characterised by wγ = 1/3, and hence energy density that

varies as ργ ∝ a−4. Most of the photons we currently see are relics from the Big Bang and
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1 The standard model of cosmology

constitute the cosmic microwave background (CMB). Despite their small contribution at

present time, with Ωr ≈ 10−5, at early times they were the dominant source of energy.

• Neutrinos. These particles are not only characterised by weak and gravitational interac-

tions, but they also oscillate between different mass states. Understanding the nature of

neutrinos and placing a constraint on the sum of their masses are active areas of research.

Initially neutrinos were relativistic and part of the radiation component, turning into a

non-relativistic pressureless species around z ∼ 100.

• Curvature. In case of non-zero curvature, this can be included among the components

to the energy budget, characterised by wk = −1/3, as per Eq. (1.5). Current observations

strongly favour a flat Universe (Planck Collaboration et al., 2020; Alam et al., 2021).

Figure 1.2: This figure represents the evolution of components’ energy densities over time. The two epochs
referred to aeq and aΛ are the epochs at which the matter energy density equals the radiation
and cosmological constant ones, respectively. Image taken from Dodelson and Schmidt (2020).

Grouping all the above components into three main classes of fluids, namely radiation (wr =

1/3), matter (wm = 0) and the cosmological constant (wΛ = −1), and expressing the curvature

contribution in terms of Ωk = −k/H2
0 , the Friedmann equation in Eq. (1.5) can be rewritten as

a function of the density parameters at present time as
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1.2 Inhomogeneities

H2 = H2
0 (Ωra

−4 +Ωma
−3 +Ωka

−2 +ΩΛ) . (1.19)

The expansion rate is a direct effect of which component is dominant during a certain cosmo-

logical epoch. From early to late times, it is possible to distinguish, as clearly visible in Fig. 1.2, the

radiation, matter and dark energy domination eras.

1.2 Inhomogeneities

Despite being homogeneous and isotropic at large scales, the Universe is highly structured at

smaller scales. The presence of matter overdensities, in the form of filaments and nodes, over

voids is visible in the cosmic web representation in Fig. 1.3. These deviations from the homogene-

Figure 1.3: Snapshot of the Universe at present time, from the Millennium Simulations, available at https:
//wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/.

ity discussed in Sect. 1.1 can be statistically characterised as a function of the cosmological scale.

To this aim, in cosmology we usually refer to either a two-point correlation function in real space

or, equivalently, to its Fourier transform, the power spectrum. For a given fluid i, at coordinate x

and time t, it is possible to define the overdensity field δi(x, t) with respect to its mean density

ρ̄i(t) as

δi(x, t) =
ρi(x, t)− ρ̄i(t)

ρ̄i(t)
(1.20)
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1 The standard model of cosmology

By definition of Eq. (1.20), the mean value of the overdensity field must be zero, ⟨δ(x, t)⟩ = 0.

The Fourier transform of the δi(x, t) can be written as

δi(k, t) =

∫
δi(x, t)e

−ik·xd3x , (1.21)

with k the 3D wavevector, which amplitude will be the wavenumber k = |k|. Considering

two regions of space, separated by an infinitesimal r, at the same time t, we define the two-point

correlation function as

ξ(|r|, t) = ⟨δ(x, t), δ(x+ r, t)⟩ (1.22)

and the power spectrum P (k, t) to be its Fourier transform, which satisfies

⟨δ(k, t)δ(k′, t)⟩ = (2π)3P (k, t)δD(k+ k′). (1.23)

The time evolution of the power spectrum is of high interest for cosmology. According to the

standard cosmological model, the seeds to primordial perturbations were initially sourced by an

inflationary mechanism, an early rapid expansion phase (Guth, 1981; Starobinsky, 1980). Inflation

also generates tensor fluctuations, but that is not of interest for this work, as we will see in what

follows.

1.2.1 Scalar perturbations

In GR we distinguish between scalar, vectorial and tensorial perturbations. At linear order, they

evolve independently (Dodelson and Schmidt, 2020), which means they can be conveniently

studied separately. We are restricting the analysis to scalar perturbations only, as they are the most

relevant for structure formation. While vector perturbations have only decaying modes, tensor

fluctuations are instead linked to the generation of gravitational waves, beyond the scope of this

introduction, and they do not couple to the matter and radiation densities, not being responsible
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1.2 Inhomogeneities

for the large-scale structure. Finally, in cosmology, we assume these perturbations to be adiabatic,

as predicted by simple inflationary models.

The evolution of perturbations with respect to the underlying homogeneous background can

be studied by perturbing the quantities that enter the Einstein field equations. In particular, any

perturbed quantity x assumes the form of x = x̄ + δx, where the two terms are, respectively,

the unperturbed background value and the perturbation, which is assumed to be small, such that

δx≪ x̄. Whenever this condition is not satisfied we enter the non-linear regime.

Starting from the LHS of Eq. (1.1), the basic component to perturb is the FLRW metric, assum-

ing flatness for simplicity. This poses a problem of coordinate choice, also known as gauge choice,

which is non-trivial. Some choices can drastically simplify the calculations; we restrict ourselves

to the Newtonian gauge so that the perturbed line element becomes

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + (1− 2Φ)δijdx
idxj ], (1.24)

where Ψ and Φ are the perturbation variables and τ =
∫ t
0

t
a(t)dt is the conformal time. The two

variablesΨ andΦ can be respectively thought as the Newtonian potential and the perturbation to

the spatial curvature. On the other hand, perturbations to the RHS of the Einstein field equations

correspond to perturbing the energy-momentum tensor, such that Tµ
ν = T̄µ

ν + δTµ
ν . This could

possibly introduce a form of anisotropic stress, but we require that to be zero, so that Ψ = Φ.

The evolution of perturbative modes δi(k) (see Eq. (1.21)) primarily depends on their scale.

All modes start as super-horizon, meaning their wavenumber k is smaller than the comoving Hub-

ble radiusH ≡ aH , and as the Universe evolves and the horizon expands, modes progressively

cross it, becoming sub-horizon. Effectively the horizon serves as a threshold between two different

regimes, as the perturbations evolve differently depending on whether their scale is larger or lower

than it. Secondly, their evolution is also affected by the cosmological era, namely by the dominant
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1 The standard model of cosmology

source of energy at a certain epoch, either radiation, matter or dark energy (late Universe). As an

example, this is evident from the equation for the evolution of the perturbation Φ

Φ′′ + 3(1 + w)HΦ′ + wk2Φ = 0 , (1.25)

where ′ denotes derivatives with respect to conformal time τ andH ≡ aH . The dependence on

the background dynamics, or equivalently on the cosmological era, is expressed via the equation

of statew, and the Hubble parameter, and also the third addend on the LHS depends on the scale.

The evolution of perturbations through the radiation and matter epochs can be encoded into the

transfer function T (k), which help us relate the perturbations we observe today to the primordial

curvature perturbationsR(k) via (Dodelson and Schmidt, 2020)

Φ(k, a) ∼ R(k)× {Transfer function(k)} × {Growth factor(a)}, (1.26)

where the growth factor accounts for the amplitude growth at late times, well within the matter

domination (alate), such that, for a > alate,

Φ(k, a)

Φ(k, alate)
≡ D+(a)

a
. (1.27)

We also here define a related quantity that will be useful throughout the thesis, the growth rate

f(a) ≡ dlnD+(a)

dln a
, (1.28)

which is related to the matter density via f(a) ≃ Ωm(a)0.55 (Peebles, 1980).

The primordial power spectrum for curvature perturbationsR as predicted by inflation is

PR(k) = 2π2k−3As

(
k

kP

)ns−1

, (1.29)
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1.2 Inhomogeneities

whereAs andns are respectively the amplitude of scalar perturbations and the scalar index, while

kP is some pivot scale. Finally, given the decomposition in Eq. (1.26), the linear power spectrum

of matter at late times can be obtained from the PR(k) as (Dodelson and Schmidt, 2020)

Plin(k, a) ∝ D2
+(a)T

2(k)PR(k) . (1.30)

Evolution of single fluids

Considering now a single fluid i, the evolution for its density contrast δi = δρi
ρi

is obtained by a

combination of the mass and momentum conservation on sub-horizon scales, in Fourier space,

and the Poisson equation. The first two equations, which are the continuity and Euler equations,

are respectively obtained from the ν = 0 and ν = i components of the perturbed stress-energy

conservation law

∇µT
µ
ν = 0 . (1.31)

Instead, the Poisson equation is obtained by combining the 00 and 0i components of the Einstein

field equations. The resulting equation for the evolution of a fluid perturbation is

δ̈i + 2Hδ̇i +
c2s
a2
(
k2 − k2J

)
δi = 0 , (1.32)

where c2s = dP̄i/dρ̄i is the speed of sound and kJ =
√
4πGρ̄a2/c2s is the Jeans scale (Jeans,

1902). Eq. (1.32) takes into account three different effects: Hubble drag, fluid pressure and grav-

ity. Not only the background dynamics affect the evolution of perturbation modes, as earlier

mentioned, but there is also a fine interplay between gravitational collapse and pressure effects.

On small scales, characterised by k ≫ kJ , the solution to Eq. (1.32) is a damped oscillator: while

pressure drives the oscillation opposing to the gravitational collapse, the Hubble friction damps

it. On the other hand, at large scales (k ≪ kJ ) the solutions are growing modes.

Let us now consider the evolution of dark matter perturbations through the epoch of matter-

radiation equality (teq), namely when the energy densities of matter and radiation were equal.
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1 The standard model of cosmology

Once defined a new variable y = a/a(teq), it is possible to rearrange Eq. (1.32) for the evolution

of cold dark matter perturbations δc, for which wc = 0 and cs can be ignored, into the Mészáros

equation (Meszaros, 1974)

d2δc
dy2

+
2 + 3y

2y(y + 1)

dδc
dy
− 3

2y(y + 1)
δc = 0 . (1.33)

This equation admits two separate solutions:

δc ∝


2 + 3y

(2 + 3y)ln

[√
1 + y + 1√
1 + y − 1

]
− 6
√
1 + y

. (1.34)

During radiation domination (y ≪ 1), on most scales the (‘dominant’) solution is δc ∝ ln a: the

rate at which dark matter collapse is slowed down by the effect of radiation. On the other hand,

for y ≫ 1, it grows faster as the first solution to Eq. (1.33) is δc ∝ a, while the second falls off as

y−3/2. Finally in the late Universe, when dark energy starts dominating, the growth is suppressed

and instead δc = const on all scales.

Photon-baryon oscillations

At earlier times, before the epoch of recombination, baryons and photons were tightly coupled

due to Compton scattering, effectively behaving as a single fluid. The evolution of the baryons

and photons density contrasts, which are respectively denoted as δb and δγ , follow (Peebles and

Yu, 1970; Hu and White, 1996; Eisenstein et al., 2007)

δ′′b +
HR
1 +R

δ′b − c2s∇2δb = ∇2Φ =
3

4

(
δ′′γ +

HR
1 +R

δ′γ − c2s∇2δγ

)
, (1.35)

where R = (3ρ̄b)/(4ρ̄γ) and the speed of sound in the coupled fluid is cs = c/
√

3(1 +R).

Eq. (1.35) is the equation for a driven oscillator with frequency c2sk: as the baryons would tend to

collapse inside the potential well, photons provide pressure to support them, resulting in an os-

cillatory behaviour. However at the epoch of recombination, when the decoupling happens, the

16



1.2 Inhomogeneities

Figure 1.4: This plot shows the evolution over time (different panels correspond to different reshifts, start-
ing from earlier times) of the perturbations mass profile for dark matter (black), baryons (blue),
photons (red) and neutrinos (green), around a localised adiabatic perturbation. For a descrip-
tion refer to the text. Image taken from Eisenstein et al. (2007)
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1 The standard model of cosmology

sustaining pressure disappears and the oscillations freeze leaving an imprint on both the distribu-

tions of baryons and photons, which we call baryon acoustic oscillations (BAO). The creation of

the imprint at the level of the dark matter distribution is schematically shown in Fig. 1.41, where

the frames are snapshots of the perturbation mass profile evolution over time for a single localised

perturbation, as a function of the radius. While dark matter is left at the centre of the perturba-

tion and neutrinos are able to free-stream, photons and baryons modes travel alongside up to a

certain radius, which corresponds to the sound horizon at the drag epoch zd ≃ 1020

rd =

∫ ∞

zd

cs(z)

H(z)
dz , (1.36)

when baryons decoupled from photons, hence stopped being ‘dragged’ by them. After decou-

pling, photons are able to free-stream, and while baryons modes grow as δb ∝ a, like dark mat-

ter ones; these two components also gravitationally interact and fall into each other’s overden-

sities, resulting in the configuration in the final panel of Fig. 1.4. In the real Universe, many of

these perturbations overlap, which results in an increased clustering at the typical comoving ra-

dius rd ≃ 150Mpc from an overdensity. This emerges as a peak in matter tracer’s correlation

functions, as we will later see.

1.2.2 The effect of peculiar velocities

As part of the growth of structures there are peculiar velocities: in a local system, objects move with

respect to the Hubble flow because of local interactions. These motions contribute to the redshift

of the object, shifting it towards larger values if the source is moving away from us along the line

of sight, or smaller if moving towards the observer. This results in the so called redshift space

distortions (RSD), which are distortions in the matter distributions in redshift-space. Referring

to the redshift-space instead of the real-space effectively means mapping the objects’ position as a

function of their redshift rather than their physical distance. In particular, for an object located at

x in real-space, the position s in redshift-space will be equal to s = x−uz(x)ẑ, where the shift

1A clearer animation can be found at https://scholar.harvard.edu/deisenstein/book/export/html/28634
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1.2 Inhomogeneities

Figure 1.5: Redshift space distortions in both the linear (on the left) and non-linear (on the right) regimes,
with respect to the central overdensity in orange, towards which the velocity flow (light blue
arrows) is pointing: the dashed line refer to the distribution in real space, while solid in redshift
space. The dotted arrow indicates the displacement caused by the line of sight velocity. Image
taken from Dodelson and Schmidt (2020)

is induced by the peculiar velocity componentuz(x) along the line of sight axis ẑ. The amplitude

of the RSDs is set by the overall amplitude of the velocity power spectrum, which depends on the

logarithmic growth rate f and on the linear power amplitude σ8. The latter is the expected rms

overdensity in a sphere of comoving radius R = 8h−1Mpc, defined as

σ2
8 ≡⟨δ2m,8(x)⟩ (1.37)

with δm,R(x) ≡
∫

δm(x′)WR(|x− x′|)d3x′ , (1.38)

where WR(x) is a tophat window function with radius R.

At small scales, as it can be seen in Fig. 1.5, peculiar velocities contribute with non-linear redshift

space distortions, causing elongations in redshift space, known as the fingers of God.

1.2.3 Beyond the linear regime

So far we restricted ourselves to the assumption of linear perturbations. However, at late times, as

the modes keeps on evolving and matter collapses under gravity, highly non-linear structures form,

in particular at smaller scales, such as galaxies. Studying the complex coupling between different
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1 The standard model of cosmology

modes is non-trivial, and instead paved the way to the development of N-body and hydrodynam-

ical simulations.

The non-linear evolution of structure also affects the BAO feature in the matter distribution:

despite being more important at smaller scales, non-linearities also affect the larger scales and in

particular cause a broadening of the acoustic peak. Eisenstein et al. (2007) demonstrated that this

can be simply modelled in terms of a Gaussian smoothing with respect to the linear theory power

spectrum, such that

P (k) = Plin(k)e

(
−

k2∥
2σ2

∥
− k2⊥

2σ2
⊥

)
, (1.39)

where k = {k∥, k⊥} is the wavenumber with components parallel and perpendicular to the line

of sight and (σ∥, σ⊥) are the corresponding smoothing parameters. These two parameters are

predicted following the relations

σ⊥ = s0D σ∥ = s0D(1 + f) , (1.40)

being s0 a cosmology-dependent length, D and f the growth factor and the growth rate, respec-

tively.
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2 Cosmological observables

In Chapter 1 we briefly introduced some basic building blocks of the ΛCDM paradigm, but cos-

mology is certainly not limited to it and includes a variety of theoretical models that also extend to

more complex phenomena. However, the constraining power we have on those models depends

on the amount of informative data we have from cosmological probes of interest. Over the last

decades, we have collected a significant amount of data, over a wide range of observables, that en-

abled us to progressively tighten constraints on cosmological parameters. However, we are not

yet at the point of clarifying for example the nature of dark energy and dark matter, and instead

tensions between different datasets are arising, an example of which is a disagreement in the H0

value (see Di Valentino et al. 2021 for a review). Usually the term ‘H0 tension’ refers to the discrep-

ancy, currently at 5.0σ, in the measurement of H0 given by the Cosmic Microwave Background

(CMB) (Planck Collaboration et al., 2020), H0 = (67.27± 0.60) km s−1Mpc−1, and Type Ia

supernovae calibrated on Cepheids (Riess et al., 2022), H0 = (73.04 ± 1.04) km s−1Mpc−1.

However, this disagreement can be further generalised distinguishing between two main groups of

probes: early and late time probes. While the latter are direct model-independent measurements,

the H0 value inferred from early time probes is model-dependent, which means that potentially

this tension could be a hint for physics beyond ΛCDM, if no systematics are found.

The CMB and Type Ia supernovae (Brout et al., 2022) are among the most famous constraining

probes of ΛCDM, along with galaxy clustering (Alam et al., 2021) and weak lensing (Heymans

et al., 2021; Abbott et al., 2023). However, in this Chapter, we will focus on the two I used

throughout my work: gravitational waves and the Lyman-α forest. These only recently started to

gain popularity and emerged as promising alternatives.
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2 Cosmological observables

2.1 Gravitational waves

Gravitational waves (GW) are ripples of the spacetime manifold caused by highly energetic ex-

treme phenomena that generate curvature fluctuations that indeed propagate like waves. Their

existence was postulated already by Einstein in his theory of General Relativity and finally got

empirically verified with the first detection in 2015 by LIGO (Abbott et al., 2016), paving the way

to the series of observing runs for the current LIGO-Virgo-KAGRA Collaboration1.

As already seen in Sect. 1.2, the equations for the evolution of perturbations are obtained by per-

turbing the terms in the Einstein field equations. Earlier we restricted ourselves to scalar compo-

nents, whereas now we are interested in the tensor ones. A fully detailed mathematical derivation

for these equations is outside the scope of this work and I will instead introduce the key quantities

we are interested in. Under the assumption of a flat space, the perturbed metric can be written as

an expansion around the Minkowskian metric ηµν

gµν = ηµν + hµν , (2.1)

in the limit of small perturbations (|hµν | ≪ 1). Assuming the wave propagates along the direc-

tion z with frequency ω and hij is symmetric and traceless, then (Hartle, 2003)

hij(t, z) =


h+ h× 0

h× −h+ 0

0 0 0

 cos[ω(t− z/c)] . (2.2)

We define the two polarisations h+ and h× as strains of the wave.

Gravitational waves could either arise from primordial processes, single spinning massive objects

or compact binary inspirals, but in the interest of this thesis I will only be considering GW orig-

inating from compact binaries. For a comprehensive review please refer to LSC-Virgo collabora-

1https://observing.docs.ligo.org/plan/
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2.1 Gravitational waves

tion white paper and Riles (2013). By compact binaries we mean systems that are either made of

Figure 2.1: This plot shows the evolution of the detected strain as the system configuration changes. Figure
adapted from Abbott et al. (2016)

binary neutron stars (BNS), binary black holes (BBH) or a NS-BH pair, that evolve as shown in

the upper part of Fig. 2.1 through inspiral, merger and ringdown phases. As the objects start the

inspiriling phase, they emit energy in the form of gravitational waves, while moving towards each

other until merging. At that point, they coalesce into one object, characterised by the effective

chirp mass Mc, reaching the highest strain amplitude, and finally the system settles down to its

final state, during the ringdown phase.

Among the different science goals that can be achieved with these probes (see Sathyaprakash and

Schutz 2009 and Bailes et al. 2021 for reviews), we are interested in placing a constraint on the

Hubble constant H0 (Mastrogiovanni et al., 2022), as further explained in Sect. 4.1. In particu-

lar, it was Schutz (1986) to first suggest using these systems to compute H0, given both the local-

isation, hence an estimated redshift, and the fact that the amplitude of the fluctuation provides

a self-calibrated measurement of their distance. This latter property is the reason why they are

referred to as standard sirens. At time τobs, which is the time to coalescence as measured by the
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2 Cosmological observables

observer, the average polarisation amplitude hc(τobs) for gravitational waves emitted by compact

object mergers can be expressed as (Maggiore, 2007)

hc(τobs) =
4

DL

(
G(1 + z)Mc

c2

)5/3
(
πf

(obs)
gw (τobs)

c

)2/3

, (2.3)

where f (obs)
gw (τobs) is the GW frequency measured by the observer and the dependence on the

luminosity distance is highlighted in the first factor. For a Euclidean expanding Universe, know-

ing the redshift and the luminosity distance can lead to an estimate of the Hubble parameter via

H0 = cz/DL(z), locally. The nature of the binary components hugely impacts the chance for

an electromagnetic (EM) follow-up, and hence the precision of the H0 constraint. If the EM

counterpart is detected – light standard sirens – the host galaxy is identified and the redshift of

the source can be measured, hence yielding H0 when combined with DL. Otherwise, if no EM

counterpart is detected – dark standard sirens – the redshift can be estimated by summing up

the contributions from all the possible host galaxies that are within the confidence region of the

GW localisation Schutz (1986). Both these methods were tested on GW170817, which repre-

sents the very first detection of both electromagnetic and gravitational emission from a binary

neutron star system. While Fishbach et al. (2019) applied the statistical approach, estimating

H0 = 76.0+48.0
−23.0 km s−1Mpc−1, using the source redshift largely improved the constraining

power, yielding H0 = 70.0+12.0
−8.0 km s−1Mpc−1 (Abbott et al., 2017), see Fig. 2.2.

Motivated by the challenges of traditional Bayesian analyses for estimating H0 from BNS sys-

tems, in Chapter 4 we test a simulation-based framework, where the likelihood function is not

computed and instead estimated through neural networks given a set of simulations. The theory

beyond this implementation will be first presented in Chapter 3.

2.2 Lyman-α forest

After being observed in the 1960s (Schmidt, 1965; Scheuer, 1965; Bahcall and Salpeter, 1965;

Gunn and Peterson, 1965), the Lyman-α forest has recently proved its success as an alternative
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2.2 Lyman-α forest

Figure 2.2: H0 constraint from the GW170817 event (in blue) against the Planck (Planck Collaboration
et al., 2016) and SH0ES (Riess et al., 2016) contours (in light green and orange respectively).
Figure taken from Abbott et al. (2017).

probe for characterising matter distribution, probing the BAO peak at redshift z > 2 (Busca

et al., 2013; Slosar et al., 2013; Kirkby et al., 2013; Font-Ribera et al., 2014). The Lyman-α forest,

as shown in the lower panel of Fig. 2.3, is a series of absorption lines produced in high-redshift

quasar (QSO) spectra by Lyman-α transitions of neutral hydrogen (HI) placed along the line the

sight. The restframe wavelength at which the absorption happens is λα = 1215.67Å . Those

photons that are characterised at the time of emission by a wavelength λe ≤ λα get redshifted

as they travel and eventually, as they reach λα, they will undergo Lyα absorption if they are in a

HI cloud. As a result, given the quasar and cloud redshifts zQSO and zHI, absorption lines will

be observed at λobs = λe(1 + zQSO) = λα(1 + zHI), with a probability that depends on the

properties of the neutral hydrogen in the inter-galactic medium (IGM).

The absorption probability is linked to the Lyα optical depth τα viaP ∝ e−τα and we are able

to relate τα to gas with smooth line-of-sight velocity gradient dv/dx as per (McQuinn, 2016)

τα(z) = 1.3δb

( xHI

10−5

)(1 + z

4

)3/2(H(z)

1 + z

)(
dv

dx

)−1

, (2.4)
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Figure 2.3: This figure shows the spectra as a function of the emitted wavelength for a low (upper panel)
and high (lower panel) redshift QSOs, where the series of absorption lines is striking in the
second case. Adapted from Bill Keel’s website https://pages.astronomy.ua.edu/keel/agn/

forest.html.

where δb is the baryon overdensity and xHI the fraction of hydrogen that is neutral. As already

mentioned in Sect. 1.2.2, peculiar velocities contribute with additional shifts in redshift, which

here means that the final redshift attributed to a line will differ to the one caused by the Hubble

flow alone. However, introducing gradients in the velocity field make things more complex, ef-

fectively changing the shape of the line and hence the value of the overdensities.

The observed quantity of interest is the transmitted flux and what we care about for the analysis

are its correlation functions, given the flux fluctuations

δF (λ) =
f(λ)

F̄ (λ)C(λ)
− 1 (2.5)

as a function of the flux f(λ), the mean transmitted flux fraction F̄ (λ) and the continuumC(λ),

which are all related by F = f/C . The continuum of the spectrum is defined as the unabsorbed

spectrum of the quasar, which we can only estimate.
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2.2 Lyman-α forest

In linear theory, define the cosine of the line-of-sight angleµ, the overdensity related to discrete

matter tracers can be expressed in the form of

δstracer(k) = (b+ µ2f)δm , (2.6)

which accounts for two main results of the growth of structures theory. First of all, discrete matter

tracers, such as galaxies or quasars, are biased with respect to the dark matter distribution, which

means that their particular distribution does not match the one of matter, as for example we know

that galaxies only form where the density distribution peaks. This at linear order can be expressed

as δtracer(x) = btracerδm(x) via some linear bias parameter btracer (Bardeen et al., 1986; Dekel

and Lahav, 1999; Sheth and Tormen, 1999). Secondly, tracers are not mapped in real-space, but

rather in redshift-space, where peculiar velocities affect the position of the sources: if a tracer is

located at x, the position s in redshift-space will be shifted as in s = x−uz(x)ẑ by the peculiar

velocity component uz(x) along the line-of-sight axis ẑ. Assuming an irrotational velocity field,

the projection of the velocity along the line-of-sight can be expressed as uz = ∂/∂z∇−2θ, with

θ ≡∇ ·u being the velocity divergence. In linear theory, the tracer’s overdensity in redshift-space

can be then obtained as (Percival and White, 2009)

δstracer(k) = δtracer(k)− µ2θ(k) , (2.7)

given the cosine of the line-of-sight angle µ. Further assuming linear theory for the velocity field,

θ(k) = −fδ(k), where f is the linear growth rate (see Eq. 1.28).

The tracer power spectrum then assumes the form of

P s
tracer(k, µ) = b2(1 + µ2β)2Plin(k) , (2.8)

where β ≡ f/b (Kaiser, 1987) and Plin(k) is the isotropic linear matter power spectrum.

In the case of the Lyα forest, the situation is slightly more complicated: the transmitted flux frac-
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Figure 2.4: Plots for the 3D Lyα correlation function in bins of µ, together with the best-fit model. The
BAO peak is visible at a separation of about 100h−1Mpc. Image taken from du Mas des Bour-
boux et al. (2020)

tion F is a non-linear function of the redshift-space optical depth and hence Eq. (2.6) needs to

be modified (Seljak, 2012). This can be accounted for by introducing the Lyα velocity divergence

bias factor bη,α, such that βα ≡
bη,αf

bα
(Arinyo-i-Prats et al., 2015), where bα is the Lyα linear

bias parameter. Therefore we can define the Lyα power spectrum as

Pα(k, µ) = bα(1 + βαµ
2)2Plin(k) = (bα + bη,αµ

2f)2Plin(k) . (2.9)

Beyond this simple modelling, in reality it gets more complex and additional absorption can

be caused by either heavier elements, generically defined as metals, and Damped Lyman alpha sys-

tems2 (DLAs), which are characterised by a large column density of hydrogen, namely log(NHI) >

20.3. Metals and DLAs effectively act to contaminate the forest, and hence the correlation func-

tions. DLAs produce complete absorption, over a wide range of wavelengths, surrounded by

damped wings, which depend on the column density. These wings are modelled by a Voigt pro-

file and can also affect the absorption line profiles at lower column densities, impacting the cor-

relation function of the transmitted flux. Font-Ribera et al. (2012) showed that the broadening
2In the work that follows we will refer to high column density regions as HCDs.
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effect of DLAs along the line-of-sight can be expressed in terms of new effective Lyα parameters

via the definition of an extra functionFDLA which only depends on k∥, since the absorption pro-

files of DLAs only manifest along the line-of-sight. The effective parameters will be defined as per

(de Sainte Agathe et al., 2019)

b
′
Lyα = bLyα + bDLAFDLA(k∥) , (2.10)

b
′
Lyαβ

′
Lyα = bLyαβLyα + bDLAβDLAFDLA(k∥) , (2.11)

where bDLA and βDLA are the DLAs linear bias and RSD parameter, respectively. On the other

hand, metals present in the intergalactic medium can also absorb the light emitted from the quasar

at some discrete wavelenghts, within the Lyα forest region of the spectra, hence contaminating it.

At the level of the Lyα correlation function, metal lines cause the appearance of extra bumps near

the line-of-sight, at a separation that corresponds to the relative wavelength separation between the

metal and the Lyα lines. As an example, in Fig. 2.4, additionally to the BAO feature, extra bumps

are visible at∼ 55− 60Mpc/h, due to SiII(1190Å) and SiII(1193Å),∼ 21Mpc/h, caused by Si-

III(1207Å), and finally∼ 105Mpc/h, less visible, as the effect of SiII(1260Å) (Farr et al., 2020).

By defining for each metal linemi a set of linear bias bmi and RSD parameterβmi , the contamina-

tion to the Lyα auto-correlation function ξauto will account for the correlation between each mi

and Lyα (ξLyα×mi), and among all metal pairs (
∑

j ̸=i ξmi×mj ).

In cosmological analyses, metals and DLAs are treated as systematics.

The first 3D Lyα correlation measurement came from the Sloan Digital Sky Survey (SDSS)

data (Slosar et al., 2011), with the most recent shown in Fig. 2.4, which uses SDSS DR16 data

(du Mas des Bourboux et al., 2020). Current standard analyses of the Lyα correlation func-

tions are used to measure the BAO feature, considering not only the Lyα auto-correlation func-

tion (Slosar et al., 2013; Busca et al., 2013; Kirkby et al., 2013), but also the cross-correlation of

Lyα spectra with quasars position (Font-Ribera et al., 2014; du Mas des Bourboux et al., 2017;

Blomqvist et al., 2019; du Mas des Bourboux et al., 2020). The availability of Lyα data will now

29



2 Cosmological observables

have an incredible boost with the data coming from the DESI (Dark Energy Spectroscopic Instru-

ment) experiment, with the first EDR (DESI Collaboration et al., 2023) catalogue of Lyα forests

already being published (Ramírez-Pérez et al., 2023). Such a new instrument will contribute with

up to 1 million high-redshift quasars with z > 2 over five years of observations.

Current Lyα forests analyses are limited to infer cosmological information from the BAO peak

component, this justifies the works presented in Chapter 5 and Chapter 6, where extensions to the

current framework are explored and tested. In particular, the work presented in Chapter 5 aims at

exploring whether there is extra information beyond the BAO peak alone coming from both the

Lyα auto- and cross-correlation with quasars, also investigating which effects might contribute to

it. Finally, in Chapter 6 we develop a framework for compressing the Lyα correlation data down

and, as a secondary goal, testing the goodness of the estimated covariance matrix used in Lyα

analyses. The approach we propose is score compression, which is a data compression algorithm I

introduce in Sect. 3.2.1.
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Open questions in cosmology, such as the nature of dark energy and dark matter, have led to a

plethora of theoretical models, among which it is difficult to prefer one over the other. On the

other hand, over the last decades, there has been a boost in the instrumental power and amount

of data we have to further probe the Universe dynamics and phenomena. In this data-driven era

then it is crucial to set an efficient and reliable framework for the inference of model parameters

given the data collected.

Most of the cosmological analyses rely on Bayesian statistics, which I introduce in Sect. 3.1,

along with Monte Carlo algorithms for probabilistic computation. Despite being a well-tested

framework, often its feasibility is challenged by the complexity of the tackled inference problems.

Indeed, cosmological inference sometimes involves either too many dimensions or computation-

ally expensive processes, which pave the way to alternative implementations, involving data com-

pression and forward-modelling, respectively briefly discussed in Sect. 3.2. These concepts are at

the basis of this thesis original work, outlined in Part II, where a more detailed methodological

description is given.

3.1 Bayesian Inference

Probability P (X|M) is a mathematical property for an event X which defines how likely that

event is to happen, provided a modelM. In particular, it is characterised by two fundamental

equations called the sum and product rules, respectively

P (X|M) + P (X̄ |M) = 1 , (3.1)

P (X ,Y|M) = P (X|Y,M)P (Y|M) , (3.2)
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where X̄ defines the event ofX not happening andY is another event. BecauseP (X ,Y|M) =

P (Y,X|M), Eq. (3.2) yields the Bayes theorem

P (X|Y,M) =
P (Y|X ,M)× P (X|M)

P (Y|M)
. (3.3)

In a parameter inference context, if we assumeX to be the model parameter θ andY to be some

set of data D, Eq. (3.3) can be rewritten as

P (θ|D,M) =
P (D|θ,M)× P (θ|M)

P (D|M)
, (3.4)

which provides the probability of parameter values given the data, namely the posterior distribu-

tion P (θ|D,M). In particular, the latter is proportional to the sampling distribution

P (D|θ,M), otherwise referred to as the likelihood function L when evaluated at the observed

set of data, multiplied by the prior knowledge P (θ|M) (also referred to as π(θ)) about the pa-

rameters given the modelM. The denominator of Eq. (3.4) is called evidence Z , and acts as a

normalisation term for the posterior distribution.

Given a model described by N parameters, we might only be interested in learning about the

probability distribution for a subset of them. To this aim, another fundamental concept for

Bayesian statistics, obtained from Eqs. (3.1-3.2), is marginalisation. A simple demonstration for

this principle is provided in Sivia and Skilling (2006). In the generic event (X ,Y) setup, where

Yi are all the possible values thatY can assume, marginalisation implies

P (X|M) =
∑
Yi

P (X ,Yi|M), (3.5)

becoming of the form

P (θi|D,M) =

∫
θ0

..

∫
θi−1

∫
θi+1

..

∫
θN

P (θ̂|D,M)dθ̂, (3.6)
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in the continuous (data, parameters) space when we are solely interested in the posterior for the

i-th parameter θi. Marginalisation is handy also for computing the evidence as

Z ≡ P (D|M) =

∫
P (D,θ|M)dθ =

∫
P (D|θ,M)P (θ|M)dθ . (3.7)

3.1.1 Monte Carlo approaches

Monte Carlo methods are a class of algorithms based on repeated random sampling in order to

estimate a certain target quantity. In the context of Bayesian statistics for cosmological analy-

ses, probability distributions are approximated with the aid of samplers based on Markov chain

Monte Carlo and nested sampling, introduced in the following paragraphs. I here only introduce

these algorithms as their implementations are used within this thesis work, namely Cobaya for

Metropolis-Hastings, PyStan for NUT sampling and finally Polychord for nested sampling.

For a deeper investigation of these two classes of methods please refer to Gelman et al. (2013) and

Skilling (2004) respectively.

Markov chainMonte Carlo methods

A Markov chain Monte Carlo (MCMC) is a memory-less random walk that draws values of the

parameters set θ in order to evaluate the target posterior distribution. Assuming that at the i-th

step the algorithm starts from a point θi−1, first a θ∗ is randomly sampled from a proposal dis-

tribution and then the chain will eventually transition from θi−1 to θ∗, otherwise new proposals

are generated. This walk is defined as memory-less because the probability of transitioning from

θi−1 to θ∗ only depends on θi−1, and not on all the preceding samples. The requirement for

the transition probability distribution T (θi = θ∗|θi−1) is to allow for convergence of the chain

to the posterior distribution. I here briefly present two MCMC methods which have been used

throughout the work: the classic Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970)

and Hamiltonian Monte Carlo (Neal, 2011; Betancourt, 2018).
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i) Metropolis-Hastings algorithm The random walk begins by drawing a starting

point θ0 from a distribution p0(θ) and sequentially (for i = 1, 2, .. steps) sample proposal

θ∗ from q(θ∗|θi−1) until one new point is accepted and further proceed to the next step

until convergence. Given the probability p(θ|D) of drawing a generic set of parameters θ

conditioned on the data D, the acceptance/rejection algorithm is based on the computation

of the ratio

r =
p(θ∗|D)/q(θ∗|θi−1)

p(θi−1|D)/q(θi−1|θ∗)
, (3.8)

such that

θi =


θ∗ with probability α(θi,θi−1) = min{r, 1}

θi−1 otherwise

. (3.9)

The transition probability is then given by T (θi,θi−1) = α(θi,θi−1)q(θi,θi−1). This

ensures that the detailed balance

p(θi|D)T (θi,θi−1) = p(θi−1|D)T (θi−1,θi) (3.10)

is fulfilled, sampled points will be correlated and p(θ|D) is the equilibrium distribution

of the Markov chain, to which the chain converges. Once the chain has converged, the

algorithm recovers samples from the posterior distribution, finally yielding an estimate of

the latter.

ii)HamiltonianMonteCarlo (hmc) This is an MCMC algorithm that improves the

efficiency of the random walk by introducing an auxiliary momenta variable ϕ and building

a Hamiltonian framework to run the sampling process. For each parameter θj there exists

a momentum ϕj with an associated independent distribution p(ϕ), usually a multivariate

normal distribution centred at 0 and with the covariance given by a ‘mass matrix’ M , and

they are both sampled together in a way that ϕ influences the transitioning rule of θ. In

particular, given a first random draw ofϕ from p(ϕ), the sampling process follows a ‘leapfrog

steps’ integration algorithm to update both θ∗ andϕ∗. This means that the update toθ∗ and
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3.1 Bayesian Inference

ϕ∗ happens after the following steps have been repeated a fixed number of times:

ϕ ← ϕ+
ϵ

2

d log p(θ|D)

d θ

θ ← θ + ϵM−1ϕ

ϕ ← ϕ+
ϵ

2

d log p(θ|D)

d θ

(3.11)

where ϵ is the discretization time in each leapfrog step. The acceptance/rejection step will

follow as before with the acceptance ratio now being defined as

r =
p(θ∗|D)p(ϕ∗)

p(θi−1|D)p(ϕi−1)
. (3.12)

No U-turn sampler (NUTS). NUTS is an adaptive extension of HMC, where the number of

leapfrog steps is not fixed a priori but is rather determined at each iteration in order to make

the sampling more efficient (Hoffman and Gelman, 2011). In particular, the core idea is to

avoid ‘U-turns’, namely resampling backwards along the same trajectory that has already been

sampled (see Fig.3 of Neal 2011). To this end, the NUTS algorithm randomly samples either

backwards or forwards in time a number of points which double at each leapfrog step (1 sam-

ple at step 1, 2 samples at step 2, 4 samples at step 3 and so on) – schematic two-dimensional

representation in Fig. 3.1 – and adaptively stops the trajectory if the angle between the direc-

tions of two samples’ gradients in a step is smaller than 90 degrees. At that point the sampling

restarts in the same way from a point that has been sampled within the last set of consecutive

steps in such a way that the trajectory will be different.

Nested sampling

Nested sampling is an alternative Monte Carlo approach which aims at estimating the evidence

Z . As the latter (Eq. 3.7) quickly becomes infeasible for a large parameter space, the idea behind

this method (Skilling, 2006) is to transform it in the form of
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Figure 3.1: This figure shows an example of binary tree via subsequent doubling in a two-dimensional case.
Image taken from Hoffman and Gelman (2011).

Z =

∫ 1

0
L(X)dX . (3.13)

X in Eq. (3.13) is the proportion of prior within the contour defined by L = λ:

X(λ) =

∫ ∫
..

∫
L(θ)>λ

π(θ)dθ , (3.14)

and it is a decreasing function of the likelihood (see Fig. 3.2). The sampling algorithm first starts

by randomly sampling N live points from the full prior and proceeds by iteratively sampling new

points and substituting those with the larger X (lower L) value, such that at each step the edge

becomes the new λ threshold and the resampled live point satisfies the new L > λ condition.

Therefore, progressively the iso-likelihood contours are narrowed down (see Fig. 3.2) and the re-

sampling algorithm is what differentiates the various implementations of nested sampling. For

each iteration k, we can define the encoded prior mass at that iteration as Xk, which will corre-

spond to the edge likelihood valueLk. If new samples are uniformly generated from progressively

smaller nested regions, at each step the encoded prior mass shrinks on average by e1/N and assum-

ing no uncertainties we could crudely assign Xk = e−k/N . Alternatively, Xk can be sampled by

setting Xk = tkXk−1, being tk a random number within (0, 1) drawn from P (tk) = NtN−1
k .
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3.1 Bayesian Inference

Figure 3.2: This sequence of panels shows five consecutive nested sampling steps. Each panel shows on
the right the likelihood function as a function of X for a simplified model, the area below that
function is the evidenceZ , while on the left it shows the sampled points in the parameter space.
As we sample, the point with highest X becomes grey, and it acts as the new edge interval for
sampling a new point. Five iterations with three live points (first panel, step 0) yields eight
samples in total. Images taken and adapted from Skilling (2006).
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By conveniently defining stripes of widthwk = Xk−Xk−1, the evidence integral can be obtained

as

Z =
∑
k

wkLk . (3.15)

Finally, at each Xk we can define the posterior as being pk =
Lk

Z
.

3.2 Extensions to the standard framework

3.2.1 Data compression

First attributed to Richard Bellman (Bellman, 1957; Bellman and Kalaba, 1959), the term curse

of dimensionality refers to the fact that when the number of dimensions in a problem increases,

the amount of data needed to maintain the same accuracy increases more rapidly, exponentially

in most cases. This is often the case in cosmological analyses, for which dimensionality reduction

is required prior to inference. In what follows, I provide examples of data compression algorithms

I used, which are either based on analytical approximations or on the use of Machine Learning.

In general, the data compression task can be recast as a problem of achieving a dimensionality

which is as low as possible and still encodes the largest amount of information we are interested

in, ideally preserving all of it. To this aim, it is important to keep in mind that some of these al-

gorithms require the existence of a generative model, which must be good enough to ensure the

relevant information is captured in the first place.

Relevant to this work there are in particular two different data compression algorithms I here

briefly mention and will use in Chapter 4 and Chapter 6, respectively:

• Score compression. This analytical approach (Alsing and Wandelt, 2018) is based on the

idea that, if we Taylor expand the log-likelihood L around the peak, at linear order the

term that will contain the coupling between data and parameters will only be the score

function s = ∇L∗, namely the gradient of the log-likelihood evaluated at some fidu-
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3.2 Extensions to the standard framework

cial set of parameters θ∗. For N sampled parameters θ, the gradient will be of the form

∇ = (∂/∂θ1, ..., ∂/∂θN ) and the compressed vector will hence be given by as many com-

ponents. This data compression scheme is applied to a science case in Chapter 6, where a

more detailed description is given.

• Regression networks. Among all applications of ML, data compression algorithms are widely

used in Astrophysics, from variational auto-encoders (Portillo et al., 2020) to neural net-

works (Charnock et al., 2018). Particularly relevant for the project presented in Chapter 4

are regression networks (Bishop, 2006). A simplistic scheme of a neural network is given

in Fig. 3.3. The scheme can be divided into three main layers: the input, hidden and output

layers. Generically speaking, the layer (l) (for l ≥ 1, as l = 0 corresponds to the input

Figure 3.3: Schematic representation of a single hidden layer neural network, wherex are the input features
and y the output (prediction) of the network, while z generically indicate the intermediate
variables in the hidden layer. To each of these variables is assigned a set of nodes. The nodes of
each layer are combined via the weightsw (see Eq. 3.16) to produce the nodes of the subsequent
layer. Image taken from Bishop (2006).

layer) is composed of M (l) units1 and to each of them is allocated a non-linear activation

function h(l)(·) of the inputs z(l−1)
i from the previous layer as

z
(l)
j = h(l)

(
a
(l)
j

)
= h

M(l−1)∑
i=1

w
(l)
ji z

(l−1)
i + w

(l)
j0

, (3.16)

1Defined as hidden units if they are part of a hidden layer.
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where j = 1, ...,M (l), w(l)
ji are the weights and w

(l)
j0 the biases. If we are at the first hidden

layer (l = 1), then the z(l−1)
i vector will be made of the inputs to the neural network and

M (l−1) is their dimensionality, and if we are at the last layer then z
(l)
j are the outputs of the

network andM (l) is their dimensionality. This type of structure is defined as a feed-forward

neural network and we refer to all architecture and setup parameters as hyperparameters. As

a training dataset {xt,yt} is fed in, during the training, the weights and biases change to

minimise a chosen error function of the network output with respect to the known true

output yt, a typical choice is the mean squared error. This same error provides a metric

to the performance of the network and it is used to judge the goodness of the training by

evaluating its predictions over another set of data, defined as the test set. In the process of

fine-tuning the hyperparameters, there is an extra testing dataset defined as the validation

set. In the context of data compression, such a neural network structure can be used for

regression purposes. Namely, based on the idea that the generative model for some data is

known, it is possible to train the network feeding in simulations as inputs to the network

and the generative parameters as target outputs. This means that, when fed with data, then

a regression network will provide an estimate of the parameters of interest.

To conclude, a data compression method is whatever kind of mapping from the data space to

a smaller set of compressed summary statistics. Independently of its nature, either an analytical

compression scheme or a Machine Learning algorithm, the basic requirement is to allow for the

information of interest to be preserved.

3.2.2 Simulation-based Inference

Our ability to constrain parameters in the Bayesian framework can be limited by a missing analyt-

ical form for the likelihood function. Often in cosmology, we assume the sampling distribution is

Gaussian, but sometimes that might be either a bad approximation or unfeasible to numerically

compute. In these cases, a convenient way to approximate the likelihood function, or the poste-

rior distribution, is based on forward-modelling. Assuming there exists a trustworthy model that
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can be used to generate simulations for different model and nuisance parameters, synthetic data

can indeed be used to numerically evaluate some target distribution. This is simulation-based in-

ference (SBI) (see Cranmer et al. 2020 for a review).

Two common approaches to SBI are Approximate Bayesian Computation (ABC) (Rubin, 1984;

Beaumont et al., 2002; Sisson et al., 2018) and density-estimation simulation-based inference (Fan

et al., 2013; Papamakarios et al., 2019; Lueckmann et al., 2018; Alsing et al., 2018). In the simple

case of rejection ABC, the target probability is estimated by generating samples and keeping those

that are within a certain threshold ϵ from the observed dataset (left panel in Fig. 3.4), the lower

the ϵ the better the approximation. The downside of this method is that it can be extremely in-

efficient, not only all data realisations that are outside of the ϵ interval are wasted, but also this

whole procedure must start over given new data. Instead, density-estimation simulation-based

inference, which we will refer to as DELFI2 is based on the idea of estimating the target density

in the full joint space of data and parameters and then evaluating it at the observed realisation.

In particular, this latter method uses neural networks to fit parametric forms to the target proba-

bility distribution. Given the estimators task, if the dimensionality of the joint space of data and

parameters is too high, prior data compression is needed to facilitate the computations. In this

case then the estimation would happen in the joint (summaries t, parameters) space. The final

posterior can be obtained by estimating either the joint density p(θ, t), the conditional p(θ|t) or

p(t|θ), as extensively explained by Alsing et al. (2019), who see the advantage of the latter against

the others and propose an implementation, called Pydelfi, which we apply in Chapter 4.

Neural Density Estimators

As already mentioned, the idea behind neural density estimation is to parameterise the target

distribution, in our case p(t|θ;w), with neural networks via their weights w, training them on

the joint (summaries, parameters) space. The Pydelfi implementation uses two classes of neural

2DELFI stands for Density-Estimation Likelihood-Free Inference, as prior to SBI this class of method was referred
to as LFI.
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Figure 3.4: This figure is a visual comparison of the rejection ABC (left panel) and density estimation (right
panel) algorithms. Given the (data, parameters) space, the ABC approach consists of generat-
ing simulations and accepting those that lie within ϵ (dark red lines in the upper part of the left
panel) from the observation (orange line in the upper part of the panels). On the right panel
instead, an example of density estimation is shown with target distribution being the joint den-
sity p(θ, t). Figure obtained modifying an example picture of Alsing et al. (2019).

density estimators (NDEs): mixture density networks (MDN; Bishop 1994) and masked autore-

gressive flows (MAFs; Papamakarios et al. 2019).

i) Mixture Density Networks These are mixture models, where the weights and proper-

ties of the K components are free functions of the parameters θ and are parameterised in terms

of the weights w of a chosen neural network. This means that if the model is a Gaussian mixture

density model network, the likelihood function is modelled as (Alsing et al., 2019)

p(t|θ;w) =
K∑
k=1

rk(θ;w)N [t|µk(θ;w),Ck(θ;w)] , (3.17)

where each component has a relative weight rk(θ;w), meanµk(θ;w) and covarianceCk(θ;w).

Referring to the schematic representation in Fig. 3.3, given a training set of {θ, t}, the inputs are

the parameters θ, while rk(θ;w), µk(θ;w) and Ck(θ;w) (for k = 1, ..,K) are the outputs.
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The network is trained to minimise [−
∑

i lnp(ti|θi;w)] and the structure is more complex than

in the Figure. The larger the number of components the more flexible the model is.

ii) Masked Autoregressive Flow A MAF is a stack of Masked Autoencoders for Density

Estimation (MADEs; Germain et al. 2015), which are a particular example of neural autoregressive

models (Uria et al., 2016). Specifically considering the target p(t|θ), this can be factorised as

p(t|θ) =
dim(t)∏

i

p(ti|t1:i−1,θ) (3.18)

via the chain rule. The property of p(ti|t1:i−1,θ) being dependent on the preceding random

variables t1:i−1, such that p(ti|t1:i−1,θ), is called autoregressive property. Neural autoregressive

models provide parametric fits to each p(ti|t1:i−1,θ) via their weights, similarly to the previous

case, such that p(t|θ;w) =
∏

i p(ti|t1:i−1,θ;w). Given the input parameters θ and corre-

sponding summaries t, the MADE models each conditional as a Gaussian, so that all the means

µi(θ;w) and variances σi(θ;w) (for i = 1, ..,dim(t)) are functions of (t1:i−1, θ) parame-

terised by the weights w, masked to satisfy the autoregressive property. For details refer to Ger-

main et al. (2015).

The parameters of each conditional are combined to provide a unique output

ui =
ti − µi(t1:i−1,θ;w)

σi(t1:i−1,θ;w)
, (3.19)

which is the normalised value of the summary ti. The idea behind MAFs is to construct a stack

of MADES so that the u outputs of one MADE are the inputs to the next one, resulting in a

larger flexibility; for any details refer to Papamakarios et al. (2019). As for MDNs, also this model

is trained in order to minimise [−
∑

i lnp(ti|θi;w)].

43



3 Data analysis techniques

In Chapter 4 we will test the reliability of the simulation-based inference algorithm in esti-

mating the Hubble constant from some gravitational waves toy model. Given the latter, we run

both the traditional analytical and the likelihood-free approaches, testing the second against bi-

ases. Instead, from Chapter 5 we will switch to Lyα forest science. We will test the cosmological

information contained in the full correlation functions, beyond the BAO peak, by extending the

traditional framework to allow for direct cosmological inference. Finally, in Chapter 6 we apply

score compression on realistic Lyα correlation functions and explore some of its outcomes, in-

cluding reliable covariance matrix estimation.

44



Part II

Simulation-based inference and data

compression applied to cosmology
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4 Unbiased likelihood-free inference

ofH0 from light standard sirens

Multi-messenger observations of binary neutron star mergers offer a promising path towards reso-

lution of the Hubble constant (H0) tension, provided their constraints are shown to be free from

systematics such as the Malmquist bias. In the traditional Bayesian framework, accounting for se-

lection effects in the likelihood requires calculation of the expected number (or fraction) of detec-

tions as a function of the parameters describing the population and cosmology; a potentially costly

and/or inaccurate process. This calculation can, however, be bypassed completely by performing

the inference in a framework in which the likelihood is never explicitly calculated, but instead fit

using forward simulations of the data, which naturally include the selection. This is Likelihood-

Free Inference (LFI). Here, we use density-estimation LFI, coupled to neural-network-based data

compression, to infer H0 from mock catalogues of binary neutron star mergers, given noisy red-

shift, distance and peculiar velocity estimates for each object. We demonstrate that LFI yields

statistically unbiased estimates of H0 in the presence of selection effects, with precision matching

that of sampling the full Bayesian hierarchical model. Marginalizing over the bias increases the

H0 uncertainty by only 6% for training sets consisting ofO(104) populations. The resulting LFI

framework is applicable to population-level inference problems with selection effects across astro-

physics.

The work presented in this chapter has been published, see Gerardi et al. (2021).

4.1 Introduction

In recent years, late-time measurements (Riess et al., 2021; Birrer et al., 2019; Wong et al., 2019) of

the Hubble Constant, H0, have diverged from estimates provided by early-time probes (Planck

47



4 Unbiased likelihood-free inference of H0 from light standard sirens

Collaboration et al., 2020; Addison et al., 2018; Dark Energy Survey Collaboration and South

Pole Telescope Collaboration, 2018; Philcox et al., 2020) (see Bernal et al. 2016; Verde et al. 2019;

Bernal et al. 2021 for a summary). At the heart of the discrepancy is a 4.2σ tension between

the latest direct measurement of H0 = (73.2 ± 1.3) km s−1Mpc−1 by the SH0ES Team’s

Cepheid-supernova distance ladder (Riess et al., 2021) and the model-dependent value of H0 =

(67.4 ± 0.5) km s−1Mpc−1 inferred from observations of the cosmic microwave background

(CMB) anisotropies by the Planck satellite (Planck Collaboration et al., 2020). While unforeseen

systematic effects (Rigault et al., 2015; Jones et al., 2015; Rigault et al., 2020; Jones et al., 2018;

Freedman et al., 2020; Brout and Scolnic, 2021) might be the cause of this disagreement, it is

possible that this is a hint for new physics beyond the standard ΛCDM model (see Di Valentino

et al. 2021 for a comprehensive summary of potential theoretical solutions). Despite considerable

effort, however, no consensus on an explanation has been reached. This strongly motivates the

need for a new, independent, direct probe ofH0. Gravitational waves (GWs) emitted by compact-

object mergers — so-called standard sirens — are very promising in this regard (Schutz, 1986; Holz

and Hughes, 2005; Dalal et al., 2006; Nissanke et al., 2010; Taylor et al., 2012; Messenger and

Read, 2012; Nissanke et al., 2013; Oguri, 2016; Del Pozzo et al., 2017; Vitale and Chen, 2018; Seto

and Kyutoku, 2018; Feeney et al., 2019; Gray et al., 2020; Feeney et al., 2021; Vitale et al., 2021),

since their amplitude provides a self-calibrated estimate of the luminosity distance, d, depending

only on General Relativity.

There are three types of compact-object systems typically considered for H0 studies (Abbott

et al., 2020): binary black holes (BBH), binary neutron stars (BNS) and neutron star - black hole

(NSBH) systems. The potential for BNS and NSBH systems to have electromagnetic (EM) coun-

terparts makes them particularly promising, as if an EM counterpart can be detected, the merger’s

host galaxy can be identified and its redshift measured, yieldingH0 when combined with d (Dalal

et al., 2006; Nissanke et al., 2010; Nissanke et al., 2013; Vitale and Chen, 2018; Chen et al., 2018;

Feeney et al., 2019; Seto and Kyutoku, 2018; Abbott et al., 2017). The first BNS system detected by

the LIGO-Virgo Consortium, GW170817 (Abbott et al., 2017b), also produced an EM counter-
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part (Abbott et al., 2017a), constraining H0 to 70.0+12.0
−8.0 km s−1Mpc−1 (Abbott et al., 2017).

The 10% constraints produced by this single event are expected to shrink to∼ 1% in the next 5-

10 years once O(100) events have been observed (Chen et al., 2018; Feeney et al., 2019; Seto and

Kyutoku, 2018).

For standard siren estimates ofH0 to resolve the current tension, they must be shown to be free

from systematic errors. Standard siren datasets suffer from Malmquist bias (Malmquist, 1922,

1925) which, left untreated, results in H0 being overestimated. Traditional Bayesian methods

must therefore take this effect into account by including in the likelihood terms involving the

number (or, equivalently, fraction) of mergers that are expected to be detected given a set of pop-

ulation and cosmological parameters, N̄(Ω) (Loredo, 2004; Abbott et al., 2017; Mandel et al.,

2019; Mortlock et al., 2019; Vitale et al., 2021). The simplest method for calculating the expected

number of detections is through Monte Carlo integration, i.e., repeated simulations of the dataset.

Implementing this directly within a posterior sampling algorithm is, however, completely unfea-

sible, given the sheer number of simulations that would be needed. Instead, a single large cata-

logue of detected mergers can be generated using a fiducial set of population parameters and then

reweighted to approximate N̄ for any value of population parameters sampled (Tiwari, 2018).

If the distribution of object parameters changes rapidly as a function of population parameters,

however, a large (potentially computationally unfeasible) number of fiducial-population simu-

lations are required to guarantee there are enough non-zero weights for the estimate of N̄ to be

reliable (the effective number of detected mergers must be at least four times the measured num-

ber (Farr, 2019)). Alternatively, N̄ can be evaluated on a grid of Ω and interpolated to generic

population parameters (Mortlock et al., 2019; Feeney et al., 2021). While no reweighting is neces-

sary in this case, the dependence on gridded computations means this method scales very poorly

with parameter-set dimensionality.

Recently, Talbot and Thrane (2020) proposed a machine-learning based approach to this prob-

lem. The authors use a Gaussian mixture model to fit the distribution of object parameters found

using a set of detected mergers drawn from a fiducial population. By dividing out the prior on
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the object parameters for the fiducial population, they obtain an estimate of the probability of

detecting a merger given its parameters. This estimate can be combined with the prior on the

object parameters for a generic population to calculate N̄ at any point sampled, either directly

or via a neural-network-based interpolation. This approach suffers less bias than the reweighting

method due to the assumption of a fiducial population, and comes at a cost of only O(1000)

simulated populations. However, the estimate of the detection probability as a function of ob-

ject parameters is only defined over the range of parameters supported by the fiducial population;

should this range change rapidly with the population parameters, the method’s N̄ estimates will

lose accuracy.

Here, we take a different approach, demonstrating that the computation of N̄ can be com-

pletely bypassed using Likelihood-Free Inference (LFI), which requires no analytic knowledge

of the likelihood function. Specifically, we use Density-Estimation LFI (DELFI) (Papamakarios

et al., 2019; Lueckmann et al., 2018; Alsing et al., 2018, 2019), in which the distribution of data

as a function of the parameters that generated them is fit by supplying density estimators with a

training set of simulated datasets. This fit is then used as a proxy likelihood to obtain posteriors on

the parameters of interest. As the simulated data include the selection function, LFI automatically

accounts for the Malmquist bias.

LFI’s ability to accelerate the inference of the properties of individual BBH mergers has been

demonstrated in a number of recent works (George and Huerta, 2018; Shen et al., 2021; Gab-

bard et al., 2021; Chua and Vallisneri, 2020; Green et al., 2020; Green and Gair, 2021; Delaunoy

et al., 2020). Here, we apply LFI to population-level inference, taking as our example the infer-

ence of H0 from 100 simulated GW-selected BNS mergers with EM counterparts. In this par-

ticular setting, traditional Bayesian inference (with N̄ interpolated from a grid of cosmological

values (Mortlock et al., 2019)) is feasible, and we take this approach as a ground truth from which

we can robustly quantify any systematic errors introduced by LFI. We take as our inputs sets of

individual mergers’ observed redshifts, distances (generated via traditional (Abbott et al., 2017b)

or likelihood-free analyses (e.g. Green and Gair, 2021)) and peculiar velocities, performing our
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4.2 Simulations

Figure 4.1: The hierarchical model used to describe our BNS population and data, adapted from Mortlock
et al. (2019). Read top-to-bottom, parameters (circles) are drawn from probability distributions
(orange rectangles) to generate observed quantities (double circles). I represents the prior infor-
mation assumed about the cosmological parameters, Ω = [H0, q0], and quantities within the
red plate are specific to an individual merger.

LFI analysis with the aid of Pydelfi (Alsing et al., 2019). While we concentrate here on the in-

ference of H0 from BNS, the technique is applicable to population studies in general (e.g. The

LIGO Scientific Collaboration et al., 2021; Kim, 2021).

We describe the hierarchical model we use to simulate our BNS mergers in Sect. 4.2, and explain

our inference method in Sect. 4.3, highlighting the importance of data compression. Results are

discussed in Sect. 4.4, and conclusions are drawn in Sect. 4.5.

4.2 Simulations

In this work we assume we possess noisy estimates of redshift ẑ, distance d̂ and peculiar velocity v̂

for each BNS merger. The mergers’ [ẑ, d̂, v̂] are generated via the hierarchical model in Fig. 4.1,
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4 Unbiased likelihood-free inference of H0 from light standard sirens

which is loosely based on the model used in Mortlock et al. (2019). We assume that the strain data

have been pre-compressed into estimates of d̂, which can be done rapidly using the likelihood-

free method of Green and Gair (2021). Given the aforementioned prospects for solving the H0

tension, we fix the number of mergers toN = 100. We consider two test cases, both assuming the

same set of observables, but distinguished by whether GW selection is applied. Considering these

two cases allows us to differentiate the impact of LFI alone from LFI specifically in the presence

of selection effects.

In the following we wish to infer two cosmological parameters — the Hubble constant, H0,

and the deceleration parameter, q0 — which we denote by Ω = [H0, q0]. For a given choice of

Ω, true redshifts are randomly sampled from

P (zi|Ω, zmax) =
1

(1 + zi)

dV

dz
(Ω)H(zmax − zi)

≃ 4π

(1 + zi)

c3z2

H3
0

[1− 2(1 + q0)zi]H(zmax − zi), (4.1)

where H is a Heaviside step function. The final line is a good approximation for zmax ≪ 1.

Given a single cosmological redshift draw, the ith distance is given by (Visser, 2004)

di(zi, H0, q0) =
czi
H0

[
1 +

1

2
(1− q0)zi

]
. (4.2)

Denoting asN (µ, σ) the normal distribution of mean µ and standard deviation σ, peculiar ve-

locities are sampled from

P (vi) = N (µv∥ , σv∥)

= N (0 km s−1, 500 km s−1). (4.3)
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We convert our true redshifts, distances and peculiar velocities into observed quantities x̂ =

[ẑ, d̂, v̂] assuming, for simplicity, the marginal likelihoods are Gaussian1, as follows

P (ẑ|z, v) = N (z + v/c, σẑ = 1.2× 10−3) (4.4)

P (d̂|d) = N (d, σd̂ = d/10) (4.5)

P (v̂|v) = N (v, σv̂ = 200 km s−1). (4.6)

When GW selection is not applied, we simulate populations by simply drawing from the above

distributions N times. When using GW selection, we require that the signal-to-noise ratio (SNR),

defined as

ρi(d̂i) = 12

(
250Mpc

d̂i

)
, (4.7)

is greater than ρ∗ = 12 for i = [1, N ]. Introducing the GW selection changes the distribu-

tion of GW sources, reducing the effective upper redshift limit in a cosmology-dependent way,

as shown in Fig. 4.2; the peak of the redshift distribution broadens and shifts to higher z for in-

creasing H0, while q0 has a much smaller impact over this redshift range. For values of H0 ∈

[60, 80] km s−1Mpc−1 and q0 ∈ [−2, 1], the redshift distribution is peaked at z ≃ 0.05. To

ensure we generate sources at similar redshifts for our selection and no-selection populations (and

consequently obtain similar constraints on cosmological parameters) we set zmax equal to 0.05

and 0.13 for the no-selection and selection cases, respectively.

4.3 Method

4.3.1 Traditional Inference

We begin by outlining the traditional approach to inferring parameters from GW-selected pop-

ulations, before describing our adopted likehood-free methodology. The traditional framework

has been set out in numerous references (Schutz, 1986; Dalal et al., 2006; Nissanke et al., 2010;
1The σd̂ ∝ d scaling of the distance uncertainty is chosen for simplicity. A better motivated choice would be σd̂ ∝
d2, given that the signal-to-noise ratio, Eq. 4.7, scales as 1/d (e.g., Mortlock et al., 2019).
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Figure 4.2: The dependence of BNS redshift distributions on q0 (top) and H0 (bottom) for our no-
selection (dashed) and selection datasets (solid). To obtain comparable constraints on H0 from
the two datasets, we impose a cutoff at zmax = 0.05 for the no-selection case, while using
zmax = 0.13 for the selection case. The input distribution for the selection dataset is shown
as a dot-dashed line.

Taylor et al., 2012; Nissanke et al., 2013; Abbott et al., 2017; Mandel et al., 2019; Chen et al., 2018;

Feeney et al., 2019; Gray et al., 2020; Vitale et al., 2021; Mortlock et al., 2019), but we will follow

the notation of Mortlock et al. (2019) here. For simplicity, in this work we set aside the inference

of the BNS properties (e.g. the NS mass distribution) and focus on the cosmology. As we are con-

sidering a fixed sample size here, the posterior on the cosmological parameters given a catalogue

x̂ = [ẑ, d̂, v̂] can be written as

P (z,v, H0, q0|x̂) ∝
P (H0)P (q0)[
N̄(H0, q0)

]N× (4.8)

N∏
i=1

P (zi|H0, q0, zmax)P (vi)P (ẑi|zi, vi)P (d̂i|di)P (v̂i|vi).
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We assume truncated Gaussian priors on the cosmological parameters

P (H0) =H(H0 − 60)H(80−H0)

×N
(
70 km s−1Mpc−1, 20 km s−1Mpc−1

)
P (q0) =H(q0 + 2)H(1− q0)N (−0.55, 0.5). (4.9)

All other distributions are taken to match those set out in Sect. 4.2.

The impact of the selection function is captured by the factor of
[
N̄(H0, q0)

]−N . N̄ (which,

recall, denotes the expected number of detected mergers) must be evaluated at every point in pa-

rameter space sampled by a particular inference tool. Here, we follow Mortlock et al. (2019) in

evaluating N̄ on a 10 × 10 grid in H0 and q0 (boosting the fiducial detection rate

Γ = 1540Gpc−3yr−1 (Abbott et al., 2017b) by a factor of 130 to reduce sample variance), and

then fitting using a fourth-order (15-coefficient) polynomial. Following Mortlock et al. (2019), we

then perform traditional Bayesian Inference using No-U-Turn-Sampling (Hoffman and Gelman,

2011) as implemented in the PyStan package (Carpenter et al., 2017; Stan Development Team,

2018), explicitly sampling each merger’s true redshift and peculiar velocity along with H0 and q0.

We take the marginal posteriors on H0 and q0 output by PyStan as the ground truth in the tests

that follow.

4.3.2 Likelihood-Free Inference

Explicitly calculating N̄(H0, q0) at each point of parameter space sampled is computationally

unfeasible. The methods proposed to circumvent this issue must balance computational cost and

accuracy. The standard method of estimating N̄ via a reweighted sum over a set of detected merg-

ers generated using a fiducial population (Tiwari, 2018; Farr, 2019; The LIGO Scientific Col-

laboration et al., 2021) works well provided the object-level parameter distribution for generic

population parameters does not differ too strongly from that of the fiducial population (Farr,

2019). To counter this, the fiducial detected merger population must be oversampled, increas-
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ing the cost of both generating the detected sample and evaluating the likelihood. The cost of the

former will become prohibitive in any setting where the distributions of object parameters have fi-

nite (or strongly suppressed) support which changes with the population parameters. Talbot and

Thrane (2020) estimates N̄ by fitting the distribution of object parameters found in the fiducial

detection set and from this obtaining an estimate of the probability of detecting a merger given its

parameters. This reduces both the computational cost and the bias due to estimating the detec-

tion probability from a fiducial population that might differ strongly from the underlying truth;

however, it still fundamentally depends on the assumption of a fiducial population. The gridded

approximation (Mortlock et al., 2019) we use for our traditional Bayesian analysis here does not

require a fiducial population but is computationally expensive, requiring ∼ 130 × N selected

mergers for each single point of the grid, hence∼ 13000 detected samples in total. It can not be

scaled to problems with a large number of population parameters.

Here we demonstrate that we can bypass the N̄ calculation entirely using likelihood-free meth-

ods, which are based solely on simulations and therefore naturally account for selection effects. In

particular, we use Density-Estimation Likelihood Free Inference (DELFI) (Papamakarios et al.,

2019; Lueckmann et al., 2018; Alsing et al., 2018, 2019), in which synthetic mergers sampling

the joint parameter-data space (Ω, x̂) are used to train neural density estimators (NDEs) to fit

P (x̂|Ω), the probability of obtaining GW-selected data given the population parameters. By fit-

ting this distribution, we implicitly marginalize over the mergers’ true redshifts and peculiar veloc-

ities. The fit is evaluated at the observed data x̂obs to obtain P (x̂obs|Ω;w), a parametric model

for the likelihood depending on the trained weights w of the neural density estimators. This is

then multiplied by the prior to yield the final posterior P (Ω|x̂obs) ∝ P (Ω)P (x̂obs|Ω;w).

Our LFI analysis usesPydelfi2, an implementation of DELFI developed by Alsing et al. (2019),

based on Papamakarios et al. (2019), Lueckmann et al. (2018) and Alsing et al. (2018). Pydelfi

learns a parametric model to the conditional distribution P (x̂|Ω) — via on-the-fly or precom-

puted simulations — using a set of NDEs. The NDE components can be freely chosen as a com-

2https://github.com/justinalsing/pydelfi
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bination of mixture density networks (MDNs) and masked autoregressive flows (MAFs) (see Als-

ing et al. 2019; Bishop 1994; Papamakarios et al. 2017; Papamakarios et al. 2019 for details on the

NDEs). To reduce the possibility of pathological behavior from one particular NDE affecting

our results, we create an ensemble of estimators by stacking together five MDNs (with one to five

Gaussian components) and one MAF. We use the same ensemble of NDEs for all Pydelfi runs.

To reduce variance in our results, we train all of the NDEs using a fixed set of 2000 simulated

training populations, rather than letting the algorithm generate on-the-fly simulations. These

training samples are obtained by uniformly drawing from H0 ∈ [60, 80] km s−1Mpc−1 and

q0 ∈ [−2, 1]. The choice of the training-set size is empirically driven by the estimators’ efficiency:

there exists a (setting-specific) limiting training-set size beyond which there is no significant im-

provement in the training (Alsing et al., 2019). Reducing the training set to 1000 populations

significantly impacts the quality of our results; boosting it to 10000 does not improve the results

enough to justify the higher computational cost.

Data compression method

As the simulated catalogues consist of N = 100 sources, performing LFI on the raw data would

require fitting a 302-dimensional probability distribution, which is unfeasible (given the available

resources in terms of number of simulations and our fidelity requirements). In order to reduce

the dimensionality of the inference space, the data must be compressed to a set of summary statis-

tics t̂. While there is no general requirement over the dimensionality of the compressed vector, we

specifically require for our purposes the latter to be a vector of dim(t̂) ≡ dim(Ω) components

(i.e., one compressed summary per parameter of interest). Identifying suitable summary statistics

translates into finding a map f : x̂ → t̂ that compresses the data while retaining as much infor-

mation as possible. Methods capable of performing such a mapping include score compression

(Alsing and Wandelt, 2018; Alsing et al., 2018; Alsing and Wandelt, 2019a), Information Maxi-

mizing Neural Networks (Charnock et al., 2018) and regression neural networks (NNs) (Bishop,

2006). In this work, we train regression neural networks to compress generic merger data into

57



4 Unbiased likelihood-free inference of H0 from light standard sirens

estimates of the generative cosmological parameters. For training purposes, we need to construct

a set of training and validation datasets, for which the underlying cosmology is known and will

constitute the target. The network will ultimately compress the noisy data to a set of summary

statistics which correspond to a prediction about the generative cosmological model. To avoid any

dependence on the particular training initialization of a single network, we create an ensemble of

9 trained neural networks, all defined by the same settings and trained on the same exact data but

using different random initial weights.

The raw observables span a broad range of magnitudes — ẑ ≃ O(10−2), d̂ ≃ O(102) and

v̂ ≃ O(103) — which can cause problems in the training process. If there are large differences in

scale between different components of the data vector, the NN will naturally prioritize the larger

components, effectively ignoring part of the dataset. Moreover, the magnitude of the data vector

determines the update rate, so large values might lead to stability problems. Prior to feeding data

into any neural network, therefore, we normalize the data to ensure they are all at roughly the same

scale. We first sort all merger catalogues by redshift to reduce the variability to which each NN

input node is exposed. We then concatenate each catalogue’s ẑ, d̂ and v̂ to create a single 300-

element raw-input vector. Finally we shift and scale by the mean and standard deviation of 100

catalogues generated at our fiducial cosmology [H0, q0] = [70,−0.5] to create the normalized

inputs for our regression networks. We also normalize the target parameters which generated the

training and validation datasets, shifting and scaling their distributions to be within 0 and 1. The

NN predictions — our summary statistics — are hence normalized estimates of the cosmological

parameters.

Data compression optimization

The choice of architecture and settings for our neural networks is completely free, which poses

an intimidating optimization problem over the vast number of possible NN architectures and

settings. To define a NN we must choose an architecture, its activation function and training,

by tuning batch size, learning rate and potentially employing regularization methods. We can-
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not reasonably explore all of these choices, and we therefore consider neural networks composed

of two hidden layers, each made of 128 hidden units, fix the activation function to be a Leaky

ReLU (Maas et al., 2013) with alpha = 0.01,3 and focus on finding the best combination of

batch sizenbatch and learning rateα from a small set of choices, namelynbatch = [100, 500] and

α = [10−4, 5 × 10−4, 10−3]. To avoid potential overfitting, we consider regularization terms,

which control the training while acting on the loss function, set to be the mean squared error

(MSE). We toggle between Ridge and Lasso regression methods, which use L2 and L1 regular-

izations respectively (Hastie et al., 2009), and explore a few values of the parameters weighting

the regularization term, λ1,2, namely {λ1,2 = 0},{λ1 = 0, λ2 = [10−4, 2 × 10−4]} and

{λ1 = [10−4, 2× 10−4], λ2 = 0}. We define the optimal compressor as the NN for which Py-

delfi most faithfully reproduces PyStan’s results for a range of [H0, q0]. The process by which

we determine the optimal NN settings is described in the following.

For each combination of batch size, learning rate and regularization, we first train the regres-

sion NN on a set of ntrain samples of known cosmology, validating with a further nval datasets.

To determine the impact of the amount of training data available on the final inference, we con-

sider two training set sizes, the first with [ntrain, nval] = [5000, 2000] and the second with

[500000, 100000]. In all cases, the generative cosmologies are sampled from H0 ∈

[60, 80] km s−1Mpc−1 and q0 ∈ [−2, 1] using the Latin hypercube method.

To determine the NN parameters that optimize LFI performance for a range of underlying

cosmologies, we generate 100 test catalogues for cosmological parameters sampled from H0 ∈

[65, 75] km s−1Mpc−1 and q0 ∈ [−0.7,−0.3] using the Latin hypercube method (the reason

for this restricted range will be explained in Sect. 4.4). We then perform traditional Bayesian in-

ference and LFI on each test catalogue, for each choice of NN parameters. Given these results,

we compute the differences bH0 = Ĥtrad
0 − ĤLFI

0 and bq0 = q̂trad0 − q̂LFI
0 between the

maximum-posterior estimates of the cosmological parameters from the traditional and LFI ap-

3https://keras.io/api/layers/activation_layers/leaky_relu/
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proaches, which we define as “biases”4. Compiling the results from all of the test catalogues, we

calculate the means (b̄H0,q0) and standard deviations (σbH0,q0
) of the biases injected by LFI for

each compression NN. The optimal compression network is chosen to be that which minimizes

the standard deviation of the H0 bias, provided its mean bias is consistent with zero.

In addition to requiring LFI produces unbiased estimates of the cosmological parameters, we

also want to ensure our compression is as lossless as possible, i.e., that the LFI and traditional con-

straints have similar H0 uncertainties. To do so, we need the total uncertainty in the LFI parame-

ter constraints, which we approximate as the quadrature sum of the “raw” uncertainty of the LFI

posteriors and the additional uncertainty due to the bias.5 We estimate the former by calculating

the mean variance of the LFI cosmological parameter posteriors over all 100 test catalogues; the

uncertainty on the bias is simply σbH0
. Hence, the increase in the H0 uncertainty expected from

replacing traditional Bayesian inference with LFI in this setting can be estimated by calculating

%σ̂H0
incr = 100×


√(

σH0
LFI

)2
+ σ2

bH0

σH0
trad

− 1

. (4.10)

4.4 Results

We first consider the no-selection case to demonstrate the feasibility of LFI in this setting and

obtain a baseline for its impact on the precision and accuracy of the inference. We then add in GW

selection to determine whether selection specifically affects LFI’s performance, and to provide a

final estimate of the systematics.

4As such, these biases contain contributions from any inaccuracies in the traditional N̄ estimation and inference
(expected to be small) and loss of information through imperfect compression. If the compression is lossless and
the PyStan inference introduces no error, the PyStan and LFI posteriors should match perfectly.

5This is equivalent to marginalizing over an unknown additive bias, assuming the parameters and bias are indepen-
dent and Gaussian-distributed.
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NO SELECTION CASE
nbatch α regularizer bH0 [km s−1Mpc−1] bq0 fH0

σ f q0
σ %σ̂H0

incr

TRAINING and VALIDATION parameters: [ntrain, nval] = [5000, 2000]

100
10−4 λ1 = 10−4 0.024± 0.35 −0.003± 0.095 1.014± 0.045 0.95± 0.035 7.64%

5× 10−4 λ1 = 10−4 −0.002± 0.365 0.004± 0.098 1.028± 0.042 0.952± 0.032 9.43%
10−3 λ1 = 10−4 0.007± 0.352 0.009± 0.09 1.024± 0.048 0.952± 0.038 8.58%

500
10−4 λ1 = 10−4 0.012± 0.358 −0.003± 0.092 1.003± 0.043 0.947± 0.036 6.81%

5× 10−4 λ1 = 10−4 0.026± 0.328 0.001± 0.091 1.018± 0.051 0.948± 0.026 7.3%
10−3 λ1 = 10−4 0.021± 0.322 −0.0± 0.087 1.012± 0.054 0.943± 0.036 6.45%

TRAINING and VALIDATION parameters: [ntrain, nval] = [500000, 100000]

100
10−4 λ2 = 2× 10−4 −0.073± 0.193 0.015± 0.061 0.979± 0.042 0.945± 0.038 −0.05%

5× 10−4 – −0.061± 0.218 0.014± 0.071 0.978± 0.048 0.948± 0.04 0.35%
10−3 – −0.058± 0.21 0.02± 0.058 0.973± 0.042 0.945± 0.04 −0.35%

500
10−4 λ2 = 10−4 −0.043± 0.193 0.017± 0.066 0.972± 0.041 0.944± 0.039 −0.77%

5× 10−4 λ2 = 2× 10−4 −0.053± 0.208 0.015± 0.061 0.975± 0.046 0.944± 0.037 −0.15%
10−3 λ2 = 10−4 −0.062± 0.189 0.012± 0.06 0.979± 0.048 0.946± 0.035 −0.22%

Table 4.1: Means and standard deviations for the biases bH0,q0 , posterior-width ratios fH0,q0 and percent-
age increase in H0 uncertainty for the NNs whose regularization choice minimizes the bias for
each combination of batchsize nbatch and learning rate α in the no-selection case.

4.4.1 No-Selection Case

Considering the no-selection case first gives us a baseline for gauging LFI’s performance in the

more complex setting with selection, allowing us to determine whether selection specifically has

any impact on LFI. We train our compression NNs for all combinations of the aforementioned

batchsize, learning rate and regularizer choices, for both training-set sizes [ntrain, nval]. Each

of these neural networks provides different compression performance and thus all are tested as

compressors in the LFI workflow. An example of compression performance for [ntrain, nval] =

[500000, 200000] is given in Fig. 4.3, which shows the summary statistics t̂ output by the regres-

sion NN against the generative cosmological parameters for the validation set. Focusing on the

t̂1−H0 and t̂2−H0 plots for now, we notice that the width and slope of the distribution change

at the edges of the training set, shaded in grey. As the NN behaviour might be suboptimal in these

ranges, we generate the test samples used to optimize the compressor settings from values of H0

within [65, 75] km s−1Mpc−1, lying in the unshaded area.

We identify the best regularization for each combination of batchsize and learning rate using

the bH0 distribution. The bH0 and bq0 probability densities are respectively shown as blue and

orange violin plots in Fig. 4.4, for [ntrain, nval] = [5000, 2000], and summarized in Table 4.1.
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Figure 4.3: The summary statistics t̂ = (t̂1, t̂2) output by our compression NN plotted against the cos-
mological parameters at which the corresponding data were generated. This NN was trained
with [nbatch, α, λ1,2] = [100, 10−4, 0], and the points correspond to the validation dataset
for the [ntrain, nval] = [500000, 200000] setup. The shaded areas indicate the regions of H0

where the slopes of the summary statistics change with respect to the central trend.
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Figure 4.4: Violin plots for the bH0 = Ĥtrad
0 − ĤLFI

0 (blue) and bq0 = q̂trad0 − q̂LFI
0 (orange) bias

distributions for the no-selection setting. Results are shown for the NNs whose regularization
choice minimizes the bias for each combination of batchsize nbatch and learning rate α. Dots
represent the mean biases, and lines the 1σ errorbars. The mean biases are consistent with zero,
and the bias distributions are considerably narrower than the relevant parameter posteriors, for
all NNs plotted.
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Results for all NN parameter choices can be found in Tables 4.6.1 and 4.6.2. From the violin

plots we see that the likelihood-free inference of both H0 and q0 is unbiased, since the bias is

consistent with zero for all choices of NN parameters. For the best models, independent of the

specific NN parameters and data realization, LFI’s maximum posterior estimate for both parame-

ters is typically well within PyStan’s 1σ posterior uncertainty (≥ 0.89 km s−1Mpc−1 for these

test populations).

We observe that for our smaller training set, regularization greatly improves performance. As

an example, considering [nbatch, α] = [100, 10−4] we find that adding a regularization term

λ1 = 10−4 reduces σbH0
from 1.75 to 0.35 and markedly increases the H0 constraining power,

reducing fH0
σ = σLFI

H0
/σtrad

H0
from1.95 to1.06. With regularization added, the width of the LFI

H0 posterior is compatible with PyStan’s. Considering the larger training set reduces the impact

of the regularizer and significantly reduces the H0 LFI posterior’s uncertainty, which we find to

be systematically∼ 2−3% smaller than PyStan’s: we suspect that this is due to slight overfitting

by Pydelfi. The LFI q0 constraints are also ∼ 5% tighter than PyStan’s, independent of the

size of the training set.

For the [ntrain, nval] = [5000, 2000] setup, the network with [nbatch, α, λ1] = [500, 10−3,

10−4] imparts the smallest bias in the H0 posterior, with σbH0
= 0.32. The H0 bias shrinks

further when using our larger training set, with σbH0
= 0.19. As the bias is small and consistent

with zero it could be ignored when doing population-level inference; here, however, we marginal-

ize over it and find that it would impart a 6.45% and -0.05% increase in the quoted H0 uncer-

tainty, respectively: well within any reasonable tolerance. We note here that this slight increase in

uncertainty is entirely down to imperfect compression, since in tests Pydelfi provides the same

posteriors when rerunning on the same compressed data.

One advantage of using a regression neural network for compression is that it only relies on a

fiducial model for the computation of the mean and standard deviations used to normalize the

neural network inputs. Nevertheless, the compression is sensitive to the choice of the training

and validation data, as well as the range of sampled Ω values. To investigate the randomness of
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Figure 4.5: Distribution of generative parameters and LFI posterior biases. The one-sigma range of the bias
is shaded grey. The neural network model used to perform the compression and generate this
plot corresponds to the NN parameters combination [nbatch, α, λ1] = [500, 10−3, 10−4] for
[ntrain, nval] = [5000, 2000].

the H0 bias with respect to the sampled parameter space, we plot the biases against the generative

parameters for all 100 test catalogues for our best compression network in Fig. 4.5. We find there is

no major correlation between the true parameters and the biases (for example, for the best model

of the [ntrain, nval] = [5000, 2000] setup, we find correlation coefficients of C(H0, bH0) =

−0.13 and C(q0, bH0) = −0.023).

4.4.2 Selection Case

We now proceed to determine the impact of selection on the compression. As in the no-selection

case, we first optimize the regularization for each combination of batchsize and learning rate. We

compute the distributions of the H0 and q0 biases, plotting the results for the best compressors

in Fig. 4.6 and tabulating their performance in Table 4.2. Results for all the NN parameters can

be found in Tables 4.6.3 and 4.6.4. As in the no-selection case, the LFI maximum-posterior pa-

rameter estimates are unbiased when compared to the PyStan baseline.
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Figure 4.6: Violin plots for the bH0
(blue) and bq0 (orange) bias distributions for the setting with GW se-

lection. Results are shown for the NNs whose regularization choice minimizes the bias for each
combination of batchsize nbatch and learning rate α. Dots represent the mean biases, and lines
the 1σ errorbars. As in the no-selection case, the mean biases are all consistent with zero, and
the bias distributions are all considerably narrower than the relevant parameter posteriors.

SELECTION CASE
nbatch α regularizer bH0 [km s−1Mpc−1] bq0 fH0

σ f q0
σ %σ̂H0

incr

TRAINING and VALIDATION parameters: [ntrain, nval] = [5000, 2000]

100
10−4 λ1 = 10−4 −0.015± 0.338 0.014± 0.115 1.013± 0.039 1.005± 0.044 6.53%

5× 10−4 λ1 = 10−4 −0.02± 0.313 −0.001± 0.122 1.014± 0.041 1.005± 0.058 5.9%
10−3 λ1 = 10−4 0.014± 0.357 0.008± 0.119 1.018± 0.042 1.006± 0.051 7.67%

500
10−4 λ1 = 10−4 −0.002± 0.334 0.019± 0.116 1.025± 0.04 1.01± 0.049 7.63%

5× 10−4 λ1 = 10−4 0.001± 0.313 0.012± 0.128 1.025± 0.038 1.013± 0.036 6.99%
10−3 λ1 = 10−4 0.051± 0.329 0.011± 0.137 1.019± 0.053 1.011± 0.058 6.91%

TRAINING and VALIDATION parameters: [ntrain, nval] = [500000, 100000]

100
10−4 λ2 = 10−4 −0.032± 0.184 0.022± 0.092 0.976± 0.031 1.006± 0.036 −0.73%

5× 10−4 λ2 = 10−4 −0.033± 0.177 0.02± 0.092 0.979± 0.039 1.003± 0.043 −0.56%
10−3 – 0.0± 0.183 0.026± 0.091 0.965± 0.03 1.004± 0.038 −1.88%

500
10−4 λ1 = 10−4 −0.022± 0.178 0.015± 0.093 0.978± 0.036 1.003± 0.039 −0.7%

5× 10−4 λ2 = 10−4 −0.013± 0.18 0.019± 0.086 0.977± 0.035 1.006± 0.038 −0.68%
10−3 λ2 = 2× 10−4 −0.01± 0.199 0.021± 0.083 0.979± 0.043 1.003± 0.042 −0.18%

Table 4.2: Means and standard deviations for the biases bH0,q0 , posterior-width ratios fH0,q0 and percent-
age increase in H0 uncertainty for the NNs whose regularization choice minimizes the bias for
each combination of batchsize nbatch and learning rate α in the selection case.
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As before, for our smaller training set regularization overall largely improves the performance.

Considering [nbatch, α] = [100, 10−4] as an example as before, we find that regularizing the

training for λ1 = 10−4 reduces the uncertainty on the H0 bias from 1.71 to 0.34 and greatly

improves the H0 constraining power, from fH0
σ = 1.77 to 1.06. As in the no-selection case,

the LFI posteriors produced using the optimal compressors are completely compatible with PyS-

tan’s. Again, increasing the training set size reduces the impact of the regularizer and significantly

reduces the LFI H0 posterior’s uncertainty, to∼ 2.5% smaller than PyStan’s.

For the [ntrain, nval] = [5000, 2000] setup two NN compressors minimize the H0 bias, with

σbH0
= 0.31. These are defined by [nbatch, α, λ1] = {[100, 5 × 10−4, 10−4], [500, 5 ×

10−4, 10−4]}. As in the no-selection case the best models compressors use λ1 regularization.

For the larger [ntrain, nval] = [500000, 100000] setup, the smallest standard deviation for the

H0 bias is again considerably smaller: σbH0
= 0.18 for the compressor with [nbatch, α, λ2] =

[100, 5 × 10−4, 10−4]. As in the no-selection case, we compute the percentage increase in un-

certainty onH0 imparted by replacing traditional inference with LFI, marginalizing over the bias.

For the aforementioned three best compressors, these percentage increases are {5.9%, 6.99%}

and−0.56%, respectively, compatible with that determined for the no-selection case. Including

GW selection does not impact LFI performance on a statistical level. Illustrative examples of the

H0-q0 joint posteriors produced by Pydelfi and PyStan can be found in Fig. 4.6.1.

In Fig. 4.7 we plot the values of the bH0 and bq0 distributions against true input cosmology pa-

rameters. Unlike in Fig. 4.5, there is a clear dependence of bH0 and bq0 on the true value ofH0 that

generated the data. The strongest correlation is between the q0 bias and the generative H0, with a

correlation coefficient of−0.47 for the best model [nbatch, α, λ1] = [100, 5 × 10−4, 10−4] of

the smaller training set [ntrain, nval] = [5000, 2000]. Increasing the size of the training sample

generates stronger correlation (−0.66 for the best model). This indicates the regression (or, in-

deed, an imperfect fit to PyStan’s N̄ ) is not capturing the selection function perfectly, and that

other compression methods may fare better. Nevertheless, for the optimal compressors the biases
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Figure 4.7: Distribution of generative parameters and LFI posterior biases for the GW selection setting.
The one-sigma range of the bias is shaded grey. The neural network model used to per-
form the compression and generate this plot corresponds to the NN parameters combination
[nbatch, α, λ1] = [100, 5× 10−4, 10−4] for [ntrain, nval] = [5000, 2000].
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on the cosmological parameters are consistent with zero, and have standard deviations which are

a small fraction of the full posterior uncertainty.

4.5 Conclusions

We have investigated the ability of Likelihood Free Inference (LFI) to estimate the cosmological

expansion from GW-selected populations of binary neutron star mergers with EM counterparts.

When computing the parameter posterior using traditional Bayesian inference, selection effects

must be taken into account through the computation of the expected number of detected sources,

N̄ . This is a computationally expensive (and potentially inaccurate) process, even in approximate

forms (Tiwari, 2018; Farr, 2019; Mortlock et al., 2019). As LFI does not explicitly evaluate the

posterior, instead building a proxy likelihood using neural density estimator fits to parameter–

simulated-dataset pairs, there is no need to calculate N̄ when performing LFI. Instead, the selec-

tion is naturally built into the simulations on which the method is based.

The goal of this work was to compare the precision and accuracy achievable using LFI to that

of traditional Bayesian inference in the presence of selection effects. We note that improvements

to the traditional found-injection approach broadening injection-set coverage (through, e.g., de-

signer injection sets covering a range of populations) have the potential to improve the resulting

N̄ estimates. A quantitative comparison (in terms of precision, accuracy and computational cost,

and considering more complete data models) of the LFI approach with improved found-injection

methods is strongly motivated by the findings of this proof-of-concept work.

In this work we considered GW selection only; adding EM selection would increase the com-

putational burden, making accounting for selection effects even more expensive. We employed

“pre-processed” 100-merger datasets, consisting of noisy estimates of redshift, distance and pecu-

liar velocity for each merger, assuming the distances have already been inferred from GW strains

(which can be performed rapidly as in Green and Gair (2021) to yield a fully LFI-based pipeline).

Given the high dimensionality of the input data, LFI methods require the data to be compressed

to a set of summary statistics. We trained ensembles of regression neural networks for this purpose,

69



4 Unbiased likelihood-free inference of H0 from light standard sirens

passing their outputs to the density-estimation likelihood-free-inference package Pydelfi to in-

fer the cosmological parameters. Both of these stages require the provision of training data: we

have presented results for compression networks trained using [ntrain, nval] = [5000, 2000] and

[ntrain, nval] = [500000, 100000]populations; in all cases Pydelfiwas trained using 2000 sim-

ulated populations. Given each population contains 100 mergers, the total number of detected

mergers required to train the two setups was 9× 105 and 6× 108, respectively.

LFI’s precision and accuracy depends sensitively on the compression method’s ability to re-

tain salient information about the parameters of interest. We trained a large suite of regression

networks (each containing two hidden layers of 128 hidden units) for compression, optimizing

the learning rate, batch size and regularization based on Pydelfi’s ability to infer H0 using the

networks’ outputs. Specifically, we selected the network whose resulting H0 inference best repro-

duced the traditional Bayesian “ground truth” (as implemented usingPyStan) for a set of 100 test

datasets, taking the differences between maximum-posteriorH0 estimates for the two methods as

our metric.

Testing the method first on datasets in which no GW selection was made, we demonstrated

that LFI provides unbiased H0 estimates when using suitably optimized regression-network data

compression. For our optimal combination of training variables, we found a bias (defined as the

difference between the maximum-posterior PyStan and Pydelfi estimates) on H0 of bH0 =

0.021 ± 0.322 km s−1Mpc−1: consistent with zero and with a standard deviation a factor of

roughly three smaller than the posterior uncertainty on H0. Marginalizing over this bias would

lead to an increase of only 6.45% in the uncertainty on H0. Adding in GW selection, we find no

impact on LFI’s performance: LFI is still able to provide unbiased estimates ofH0 in the presence

of selection effects. For the best model we obtain bH0 = −0.02± 0.313 km s−1Mpc−1, which

would yield an increase in uncertainty on H0 of only 5.9% when marginalized over. Increasing

the number of samples used to train the compression networks results in LFI posteriors that are

statistically indistinguishable from their traditional Bayesian counterparts in mean and variance;

however, this comes with a significant increase in computational cost. When processing GW-
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selected data, we note a small but significant correlation between the H0 and q0 biases and the

generativeH0 values. This indicates a different choice of compressor architecture and setup might

improve results, but investigating alternative compression methods is left for future work.

As this method is simulation-based, having a trustworthy and sufficient generative model is crit-

ical. This analysis has been conducted on simplified mock data, for which we know the underlying

model. In the context of real observations, more-realistic simulations, such as those implemented

in LALSuite (LIGO Scientific Collaboration, 2018), are needed. As current ground-based inter-

ferometers enhance their sensitivity (Abbott et al., 2020), third-generation GW detectors such as

Einstein Telescope (Sathyaprakash et al., 2012) and Cosmic Explorer (Abbott et al., 2017) come

online, and the BNS sample builds, including instrumental systematics (Sun et al., 2020) and

an as-yet elusive model of joint EM-GW selection (e.g. Rosswog et al., 2017; Scolnic et al., 2017;

Cowperthwaite et al., 2019; Setzer et al., 2019; Chen, 2020; Mastrogiovanni et al., 2021; Feeney

et al., 2021; Raaijmakers et al., 2021) will become ever more important. In this work we have fo-

cused on inferring the cosmological parameters only, but complete inference of the population

properties of BNS catalogues must include parameters fixed here, such as the merger rate, mass

distributions and equation of state (e.g. Abbott et al., 2018; Farrow et al., 2019; Landry et al.,

2020; The LIGO Scientific Collaboration et al., 2021; Galaudage et al., 2021; Mastrogiovanni

et al., 2021). Extending the analysis to incorporate these parameters is left to future work. Finally,

we note that, though we have focused on the inference of the cosmological expansion from GW-

selected catalogues of binary neutron star mergers with EM counterparts here, this method can

be applied to a broad range of population analyses in the presence of selection effects (The LIGO

Scientific Collaboration et al., 2021; Kim, 2021).

The code is provided at https://github.com/frgerardi/LFIH0_BNS.git.

4.6 Appendix: Full tables

For completeness, in the following we tabulate the results for all combinations of learning rate,

batchsize and regularization explored for both no-selection and selection analyses.
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NO SELECTION CASE
nbatch α regularizer bH0 [km s−1Mpc−1] bq0 fH0

σ f q0
σ %σ̂H0

incr

TRAINING and VALIDATION parameters: [ntrain, nval] = [5000, 2000]

100

10−4

– 0.369± 1.752 0.002± 0.098 1.951± 0.124 0.948± 0.023 165.74%
λ2 = 10−4 −0.002± 0.459 0.008± 0.089 1.055± 0.043 0.95± 0.028 15.59%

λ2 = 2× 10−4 0.054± 0.415 0.008± 0.095 1.056± 0.05 0.95± 0.028 13.95%
λ1 = 10−4 0.024± 0.35 −0.003± 0.095 1.014± 0.045 0.95± 0.035 7.64%

λ1 = 2× 10−4 0.012± 0.398 0.009± 0.1 1.038± 0.049 0.95± 0.037 11.58%

5× 10−4

– −0.101± 1.612 −0.003± 0.103 1.855± 0.116 0.948± 0.031 148.89%
λ2 = 10−4 0.008± 0.404 0.012± 0.082 1.043± 0.039 0.948± 0.031 12.24%

λ2 = 2× 10−4 −0.003± 0.423 0.011± 0.084 1.04± 0.042 0.948± 0.029 12.76%
λ1 = 10−4 −0.002± 0.365 0.004± 0.098 1.028± 0.042 0.952± 0.032 9.43%

λ1 = 2× 10−4 −0.006± 0.415 0.011± 0.083 1.027± 0.042 0.947± 0.03 11.27%

10−3

– 0.053± 0.498 0.005± 0.09 1.058± 0.037 0.954± 0.028 17.55%
λ2 = 10−4 −0.014± 0.385 0.009± 0.083 1.04± 0.045 0.952± 0.032 11.32%

λ2 = 2× 10−4 −0.012± 0.391 0.005± 0.09 1.036± 0.048 0.949± 0.031 11.15%
λ1 = 10−4 0.007± 0.352 0.009± 0.09 1.024± 0.048 0.952± 0.038 8.58%

λ1 = 2× 10−4 −0.026± 0.418 0.011± 0.086 1.022± 0.048 0.948± 0.035 10.94%

500

10−4

– 0.087± 2.066 −0.007± 0.105 2.047± 0.163 0.948± 0.025 195.21%
λ2 = 10−4 −0.035± 0.41 0.003± 0.099 1.049± 0.047 0.948± 0.032 13.05%

λ2 = 2× 10−4 −0.007± 0.375 −0.004± 0.087 1.04± 0.044 0.95± 0.04 10.91%
λ1 = 10−4 0.012± 0.358 −0.003± 0.092 1.003± 0.043 0.947± 0.036 6.81%

λ1 = 2× 10−4 0.01± 0.399 0.002± 0.096 1.041± 0.043 0.948± 0.032 11.94%

5× 10−4

– −0.195± 1.807 0.003± 0.099 2.068± 0.157 0.948± 0.022 178.17%
λ2 = 10−4 0.021± 0.427 0.003± 0.096 1.041± 0.042 0.949± 0.026 13.01%

λ2 = 2× 10−4 −0.027± 0.388 0.009± 0.099 1.038± 0.053 0.953± 0.035 11.19%
λ1 = 10−4 0.026± 0.328 0.001± 0.091 1.018± 0.051 0.948± 0.026 7.3%

λ1 = 2× 10−4 0.015± 0.361 −0.002± 0.087 1.022± 0.043 0.951± 0.032 8.73%

10−3

– 0.593± 1.892 0.001± 0.101 2.078± 0.172 0.951± 0.022 184.82%
λ2 = 10−4 0.01± 0.413 0.01± 0.088 1.052± 0.044 0.949± 0.034 13.42%

λ2 = 2× 10−4 0.003± 0.413 0.001± 0.084 1.038± 0.04 0.947± 0.036 12.13%
λ1 = 10−4 0.021± 0.322 −0.0± 0.087 1.012± 0.054 0.943± 0.036 6.45%

λ1 = 2× 10−4 −0.01± 0.362 0.01± 0.101 1.03± 0.053 0.95± 0.041 9.59%

Table 4.6.1: Means and standard deviations for the biases bH0,q0 , posterior-width ratios fH0,q0 and per-
centage increase in H0 uncertainty for all combinations of batchsize, learning rate and regular-
ization in the no-selection case, using [ntrain, nval] = [5000, 2000].
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NO SELECTION CASE
nbatch α regularizer bH0 [km s−1Mpc−1] bq0 fH0

σ f q0
σ %σ̂H0

incr

TRAINING and VALIDATION parameters: [ntrain, nval] = [500000, 100000]

100

10−4

– −0.063± 0.253 0.016± 0.065 0.969± 0.042 0.945± 0.038 0.3%
λ2 = 10−4 −0.053± 0.193 0.018± 0.065 0.981± 0.047 0.951± 0.042 0.11%

λ2 = 2× 10−4 −0.073± 0.193 0.015± 0.061 0.979± 0.042 0.945± 0.038 −0.05%
λ1 = 10−4 −0.073± 0.243 0.023± 0.062 0.97± 0.044 0.944± 0.038 0.13%

λ1 = 2× 10−4 −0.075± 0.254 0.006± 0.064 0.975± 0.038 0.943± 0.034 0.93%

5× 10−4

– −0.061± 0.218 0.014± 0.071 0.978± 0.048 0.948± 0.04 0.35%
λ2 = 10−4 −0.058± 0.222 0.015± 0.063 0.972± 0.045 0.945± 0.041 −0.18%

λ2 = 2× 10−4 −0.044± 0.224 0.016± 0.058 0.981± 0.049 0.945± 0.037 0.79%
λ1 = 10−4 −0.032± 0.267 0.009± 0.067 0.968± 0.045 0.94± 0.041 0.57%

λ1 = 2× 10−4 −0.072± 0.293 0.024± 0.062 0.973± 0.043 0.947± 0.04 1.89%

10−3

– −0.058± 0.21 0.02± 0.058 0.973± 0.042 0.945± 0.04 −0.35%
λ2 = 10−4 −0.066± 0.224 0.024± 0.063 0.979± 0.044 0.944± 0.035 0.54%

λ2 = 2× 10−4 −0.039± 0.252 0.022± 0.063 0.979± 0.047 0.946± 0.039 1.23%
λ1 = 10−4 −0.074± 0.281 0.021± 0.062 0.98± 0.044 0.947± 0.038 2.14%

λ1 = 2× 10−4 −0.057± 0.3 0.014± 0.062 0.974± 0.044 0.946± 0.039 2.12%

500

10−4

– −0.034± 0.264 0.017± 0.065 0.974± 0.044 0.948± 0.042 1.15%
λ2 = 10−4 −0.043± 0.193 0.017± 0.066 0.972± 0.041 0.944± 0.039 −0.77%

λ2 = 2× 10−4 −0.047± 0.196 0.016± 0.059 0.976± 0.044 0.945± 0.034 −0.37%
λ1 = 10−4 −0.064± 0.225 0.012± 0.061 0.969± 0.041 0.947± 0.038 −0.41%

λ1 = 2× 10−4 −0.069± 0.246 0.022± 0.064 0.976± 0.044 0.945± 0.041 0.88%

5× 10−4

– −0.052± 0.243 0.008± 0.06 0.974± 0.042 0.946± 0.04 0.54%
λ2 = 10−4 −0.064± 0.208 0.016± 0.057 0.969± 0.04 0.942± 0.037 −0.79%

λ2 = 2× 10−4 −0.053± 0.208 0.015± 0.061 0.975± 0.046 0.944± 0.037 −0.15%
λ1 = 10−4 −0.056± 0.249 0.022± 0.065 0.967± 0.039 0.944± 0.034 0.0%

λ1 = 2× 10−4 −0.057± 0.273 0.022± 0.07 0.974± 0.043 0.946± 0.038 1.37%

10−3

– −0.056± 0.227 0.019± 0.056 0.975± 0.054 0.944± 0.04 0.3%
λ2 = 10−4 −0.062± 0.189 0.012± 0.06 0.979± 0.048 0.946± 0.035 −0.22%

λ2 = 2× 10−4 −0.044± 0.229 0.015± 0.066 0.982± 0.045 0.946± 0.04 0.96%
λ1 = 10−4 −0.076± 0.27 0.014± 0.063 0.97± 0.04 0.946± 0.033 0.88%

λ1 = 2× 10−4 −0.078± 0.285 0.011± 0.064 0.974± 0.041 0.947± 0.037 1.73%

Table 4.6.2: Means and standard deviations for the biases bH0,q0 , posterior-width ratios fH0,q0 and per-
centage increase in H0 uncertainty for all combinations of batchsize, learning rate and regu-
larization in the no-selection case, using [ntrain, nval] = [500000, 100000].
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SELECTION CASE
nbatch α regularizer bH0 [km s−1Mpc−1] bq0 fH0

σ f q0
σ %σ̂H0

incr

TRAINING and VALIDATION parameters: [ntrain, nval] = [5000, 2000]

100

10−4

– −0.153± 1.714 0.014± 0.136 1.77± 0.139 1.019± 0.076 144.02%
λ2 = 10−4 0.043± 0.403 0.02± 0.123 1.059± 0.044 1.012± 0.04 13.05%

λ2 = 2× 10−4 0.021± 0.426 0.016± 0.114 1.047± 0.037 1.013± 0.044 12.74%
λ1 = 10−4 −0.015± 0.338 0.014± 0.115 1.013± 0.039 1.005± 0.044 6.53%

λ1 = 2× 10−4 −0.029± 0.365 0.008± 0.119 1.029± 0.038 1.008± 0.044 8.97%

5× 10−4

– −0.309± 1.657 0.007± 0.126 1.838± 0.153 1.013± 0.032 145.28%
λ2 = 10−4 0.059± 0.423 0.009± 0.116 1.018± 0.043 1.007± 0.057 9.95%

λ2 = 2× 10−4 −0.015± 0.4 0.022± 0.118 1.033± 0.041 1.009± 0.044 10.47%
λ1 = 10−4 −0.02± 0.313 −0.001± 0.122 1.014± 0.041 1.005± 0.058 5.9%

λ1 = 2× 10−4 0.0± 0.393 0.003± 0.115 1.036± 0.038 1.009± 0.042 10.5%

10−3

– −0.006± 0.526 0.011± 0.132 1.055± 0.055 1.015± 0.089 17.38%
λ2 = 10−4 −0.03± 0.408 0.011± 0.114 1.013± 0.044 1.005± 0.056 8.93%

λ2 = 2× 10−4 0.017± 0.387 0.02± 0.121 1.023± 0.046 1.009± 0.063 9.09%
λ1 = 10−4 0.014± 0.357 0.008± 0.119 1.018± 0.042 1.006± 0.051 7.67%

λ1 = 2× 10−4 −0.003± 0.476 0.0± 0.12 1.055± 0.048 1.011± 0.056 15.32%

500

10−4

– 0.022± 1.961 0.005± 0.136 2.028± 0.176 1.005± 0.028 179.37%
λ2 = 10−4 0.011± 0.455 0.016± 0.119 1.044± 0.035 1.009± 0.051 13.52%

λ2 = 2× 10−4 −0.009± 0.417 0.011± 0.114 1.056± 0.04 1.008± 0.048 13.25%
λ1 = 10−4 −0.002± 0.334 0.019± 0.116 1.025± 0.04 1.01± 0.049 7.63%

λ1 = 2× 10−4 −0.018± 0.377 0.013± 0.125 1.033± 0.037 1.016± 0.03 9.66%

5× 10−4

– 0.189± 2.115 0.027± 0.127 1.97± 0.134 1.017± 0.042 185.92%
λ2 = 10−4 −0.039± 0.453 0.02± 0.12 1.048± 0.039 1.012± 0.056 13.75%

λ2 = 2× 10−4 0.011± 0.408 0.015± 0.119 1.039± 0.035 1.01± 0.046 11.34%
λ1 = 10−4 0.001± 0.313 0.012± 0.128 1.025± 0.038 1.013± 0.036 6.99%

λ1 = 2× 10−4 −0.037± 0.359 0.014± 0.12 1.038± 0.044 1.01± 0.058 9.62%

10−3

– −0.082± 1.972 0.016± 0.117 2.027± 0.173 1.012± 0.031 180.05%
λ2 = 10−4 −0.006± 0.451 0.011± 0.119 1.046± 0.036 1.005± 0.062 13.57%

λ2 = 2× 10−4 −0.027± 0.371 0.017± 0.124 1.046± 0.042 1.005± 0.058 10.71%
λ1 = 10−4 0.051± 0.329 0.011± 0.137 1.019± 0.053 1.011± 0.058 6.91%

λ1 = 2× 10−4 0.004± 0.348 0.011± 0.113 1.027± 0.038 1.003± 0.05 8.2%

Table 4.6.3: Means and standard deviations for the biases bH0,q0 , posterior-width ratios fH0,q0 and per-
centage increase in H0 uncertainty for all combinations of batchsize, learning rate and regu-
larization in the selection case, using [ntrain, nval] = [5000, 2000].
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4.6 Appendix: Full tables

SELECTION CASE
nbatch α regularizer bH0 [km s−1Mpc−1] bq0 fH0

σ f q0
σ %σ̂H0

incr

TRAINING and VALIDATION parameters: [ntrain, nval] = [500000, 100000]

100

10−4

– −0.033± 0.278 0.023± 0.082 0.97± 0.037 0.999± 0.045 0.78%
λ2 = 10−4 −0.032± 0.184 0.022± 0.092 0.976± 0.031 1.006± 0.036 −0.73%

λ2 = 2× 10−4 −0.019± 0.195 0.017± 0.085 0.981± 0.036 1.002± 0.037 −0.04%
λ1 = 10−4 −0.025± 0.186 0.021± 0.085 0.978± 0.033 1.003± 0.039 −0.55%

λ1 = 2× 10−4 −0.044± 0.214 0.018± 0.087 0.984± 0.036 1.005± 0.042 0.57%

5× 10−4

– 0.01± 0.207 0.02± 0.087 0.968± 0.038 1.001± 0.04 −1.12%
λ2 = 10−4 −0.033± 0.177 0.02± 0.092 0.979± 0.039 1.003± 0.043 −0.56%

λ2 = 2× 10−4 −0.026± 0.199 0.015± 0.088 0.979± 0.037 1.002± 0.04 −0.21%
λ1 = 10−4 −0.028± 0.198 0.019± 0.081 0.988± 0.037 1.001± 0.042 0.64%

λ1 = 2× 10−4 −0.047± 0.269 0.018± 0.084 0.989± 0.034 1.0± 0.045 2.37%

10−3

– 0.0± 0.183 0.026± 0.091 0.965± 0.03 1.004± 0.038 −1.88%
λ2 = 10−4 −0.007± 0.184 0.014± 0.088 0.98± 0.034 1.005± 0.044 −0.35%

λ2 = 2× 10−4 −0.015± 0.193 0.015± 0.093 0.982± 0.037 1.004± 0.044 −0.0%
λ1 = 10−4 −0.053± 0.242 0.015± 0.087 0.996± 0.033 1.001± 0.045 2.39%

λ1 = 2× 10−4 −0.031± 0.263 0.015± 0.095 0.991± 0.036 1.001± 0.048 2.44%

500

10−4

– −0.037± 0.267 0.022± 0.084 0.98± 0.041 0.998± 0.036 1.42%
λ2 = 10−4 −0.038± 0.199 0.028± 0.109 0.976± 0.034 1.01± 0.035 −0.51%

λ2 = 2× 10−4 −0.02± 0.194 0.021± 0.095 0.971± 0.034 1.005± 0.036 −1.05%
λ1 = 10−4 −0.022± 0.178 0.015± 0.093 0.978± 0.036 1.003± 0.039 −0.7%

λ1 = 2× 10−4 −0.025± 0.186 0.012± 0.089 0.979± 0.036 1.002± 0.035 −0.47%

5× 10−4

– −0.045± 0.277 0.019± 0.09 0.982± 0.039 1.002± 0.037 1.83%
λ2 = 10−4 −0.013± 0.18 0.019± 0.086 0.977± 0.035 1.006± 0.038 −0.68%

λ2 = 2× 10−4 −0.02± 0.182 0.014± 0.087 0.981± 0.032 1.005± 0.039 −0.32%
λ1 = 10−4 −0.03± 0.196 0.018± 0.079 0.982± 0.032 1.001± 0.036 0.04%

λ1 = 2× 10−4 −0.047± 0.233 0.012± 0.089 0.987± 0.038 1.004± 0.036 1.33%

10−3

– −0.013± 0.22 0.021± 0.089 0.962± 0.042 1.003± 0.044 −1.43%
λ2 = 10−4 −0.006± 0.201 0.015± 0.086 0.98± 0.033 1.004± 0.041 −0.07%

λ2 = 2× 10−4 −0.01± 0.199 0.021± 0.083 0.979± 0.043 1.003± 0.042 −0.18%
λ1 = 10−4 −0.026± 0.212 0.015± 0.084 0.986± 0.037 1.0± 0.044 0.77%

λ1 = 2× 10−4 −0.036± 0.25 0.012± 0.09 0.993± 0.037 1.005± 0.043 2.28%

Table 4.6.4: Means and standard deviations for the biases bH0,q0 , posterior-width ratios fH0,q0 and per-
centage increase in H0 uncertainty for all combinations of batchsize, learning rate and regu-
larization in the selection case, using [ntrain, nval] = [500000, 100000].
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4 Unbiased likelihood-free inference of H0 from light standard sirens
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Figure 4.6.1: This plot shows how the LFI (blue) and traditional Bayesian sampling (red) posterior con-
tours compare for ten random BNS catalogues (ten subplots) generated with GW selection
applied. In particular, for each subplot the x-axis and y-axis are the Hubble constant H0 and
the deceleration parameter q0 respectively. These ten catalogues are part of the hundred used
to build the statistical analysis presented in Sect. 4.4.2 and their contour plots are examples of
the excellent agreement between the LFI and traditional frameworks on a statistical level.
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5 Direct cosmological inference

from 3D Lyman-α correlations

When performing cosmological inference, standard analyses of the Lyman-α (Lyα)

three-dimensional correlation functions only consider the information carried by the distinct peak

produced by baryon acoustic oscillations (BAO). In this work, we address whether this compres-

sion is sufficient to capture all the relevant cosmological information carried by these functions.

We do this by performing a direct fit to the full shape, including all physical scales without com-

pression, of synthetic Lyα auto-correlation functions and cross-correlations with quasars at effec-

tive redshift zeff = 2.3, assuming a DESI-like survey, and providing a comparison to the classic

method applied to the same dataset. Our approach leads to a 3.5% constraint on the matter den-

sity ΩM, which is about three to four times better than what BAO alone can probe. The growth

term fσ8(zeff) is constrained to the 10% level, and the spectral index ns to ∼ 3 − 4%. We

demonstrate that the extra information resulting from our ‘direct fit’ approach, except for the ns

constraint, can be traced back to the Alcock-Paczyński effect and redshift space distortion infor-

mation.

The work presented in this chapter has been published, see Gerardi et al. (2022)

5.1 Introduction

Over the last couple of decades, after the discovery of the accelerated expansion of the Universe

(Riess et al., 1998; Perlmutter et al., 1999), cosmology has focused on investigating the properties

of dark energy. Among the multiple probes used to place a contraint on the parameters of the

current ΛCDM model, there is the baryon acoustic oscillation (BAO) scale over different tracers1

1For a BAO distance ladder plot https://www.sdss.org/science/cosmology-results-from-eboss/.
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5 Direct cosmological inference from 3D Lyman-α correlations

of the matter density field (Eisenstein et al., 2005; Cole et al., 2005). Measurements of this stan-

dard ruler over a range of redshifts place a constraint on the expansion history (Seo and Eisenstein,

2003).

Complementary to low-redshift galaxies (z ≲ 1), the Lyman-α (Lyα) forest is a tracer of the

intergalactic medium (IGM) that probes the cosmic expansion via BAO at higher redshifts, as

first proposed by McDonald and Eisenstein (2007). The Lyα forest is a sequence of absorption

lines in high-redshift quasar (QSO) spectra, caused by the neutral hydrogen distributed along the

line of sight, between the quasar and the observer. The first BAO detection from the Lyα auto-

correlation function and from its cross-correlation with QSOs was in the Baryon Oscillation Spec-

troscopic Survey (BOSS) DR9 data (Busca et al., 2013; Slosar et al., 2013; Kirkby et al., 2013) and

DR11 data (Font-Ribera et al., 2014), respectively.

BAO produce a distinct feature in the correlation functions, which we wish to measure and

use to probe cosmology, in a robust and model-independent way. When performing cosmological

inference, a standard method, as applied in BOSS and eBOSS (du Mas des Bourboux et al., 2020)

analyses of the Lyα three-dimensional correlation functions, relies on splitting them into a peak

and a smooth component and only considers the information carried by the BAO feature.

Recently, Cuceu et al. (2021) (C21 hereafter) demonstrated that further cosmological infor-

mation can be obtained from the broadband component using the Alcock-Paczyński (AP) effect

(Alcock and Paczynski, 1979). When computing the 3D correlation functions from observations,

as a standard approach, we change from angular and redshift separations to comoving coordinates,

based on the assumption of a fiducial cosmological model. In particular, if the latter differs from

the true underlying cosmology, then the AP effect will appear as an apparent anisotropy in the

correlation functions. Another source of anisotropy is redshift space distortions (RSD), which

are induced by peculiar velocities and hence carry extra information. However, measuring red-

shift space distortions for the Lyα auto-correlation alone is not informative about the growth rate

of structure because of its degeneracy with an unknown velocity divergence bias (Seljak, 2012).
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5.1 Introduction

For this reason, C21 jointly employed the Lyα auto- and cross-correlation with quasars to explore

the potential of measuring the linear growth of structure.

All physical scales of the 3D Lyα correlation functions, beyond the BAO peak, carry infor-

mation about the underlying cosmology. Throughout this work we will refer to the sum of all

of these scales, with no compression, as the full shape of these functions. Both the Lyα×Lyα

auto- and Lyα×QSO cross-correlation functions can be directly used to perform cosmological

inference. The work of C21 motivates a further investigation, assessing whether or not the com-

pressed analysis based on BAO, AP and RSD successfully captures all cosmological information

from the correlation functions of interest.

The same point is relevant also in the field of galaxy clustering, where the compressed standard

approach extracts cosmological information from BAO, AP and RSD (Alam et al., 2017, 2021).

Over the past few years, advancements in perturbation theory computations boosted the interest

in fitting the observed two-point statistics and directly inferring cosmological parameters with-

out compression (Tröster et al., 2020; Ivanov et al., 2020; d'Amico et al., 2020). In particular,

Brieden et al. (2021) carried out such an investigation, identifying from where in the data vec-

tor additional information originates and extending the classic approach by introducing an extra

physical parameter.

In this work, we aim to address whether or not compression is a suitable approach in the field

of Lyα forest cosmology, by performing a direct fit to the full shape of synthetic Lyα×Lyα auto-

and Lyα×QSO cross-correlation functions, and by subsequently comparing the constraints with

those obtained using the standard approach. In real data, Lyα correlations have contaminants

that affect the amount of cosmological information extractable from a given scale. We discuss

here an optimistic scenario without contaminants, and leave for future work a detailed study of

their impact on the cosmological constraints.

The paper is structured as follows. We start in Sect. 5.2 by outlining the methodology and

explaining the inference framework we use. We proceed to apply this method to noiseless synthetic
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5 Direct cosmological inference from 3D Lyman-α correlations

Parameter Fiducial Prior 68% limits
H0[km/(s×Mpc)] 67.31 U(40, 100) 67.69+5.5

−3.16

ΩM 0.3144 U(0.01, 0.99) 0.318± 0.011

ΩBh
2 0.02222 U(0.01, 0.05) 0.0229+0.0064

−0.0038

As 2.196 · 10−9 Ulog(1010As)(0.5, 6)
(
2.06+0.42

−0.46

)
· 10−9

ns 0.9655 U(0.8, 1.2) 0.958+0.025
−0.035

bLyα −0.117 Ulog(−bLyα)(−2, 0) −0.111+0.011
−0.012

βLyα 1.67 U(0, 5) 1.67± 0.03

bQSO 3.8 Ulog(bQSO)(−2, 1.3) 3.61+0.47
−0.32

σv(Mpc/h) 6.86 U(0, 15) 6.75+0.64
−0.55

Table 5.2.1: Full set of sampled parameters, alongside with the fiducial values used to compute the synthetic
correlations and the uniform (U ) priors adopted for the sampling procedure. When sampling
in logarithmic space we add a ‘log’ subscript to U . In the last column, we provide the one-
dimensional marginals (68% c.l.) for all the parameters sampled, where for any asymmetric
posteriors we report the posterior maximum with lower and upper 68% limits.

correlation functions and present the forecasts in Sect. 5.3. We finally compare our main results

to the compressed analyses in Sect. 5.4 and draw our conclusions in Sect. 5.5.

5.2 Method

We use the full shape of the 3D Lyα correlation functions to directly infer cosmological param-

eters, without the usual compression methods. Based on the modelling of C21 and with the aid

of camb (Lewis et al., 2000; Howlett et al., 2012), we construct a likelihood for the cobaya

framework (Torrado and Lewis, 2021; Torrado and Lewis, 2019), and we perform Markov chain

Monte Carlo (MCMC) sampling (Lewis and Bridle, 2002; Neal, 2005; Lewis, 2013) using the

Lyα×Lyα auto- and Lyα×QSO cross-correlations.

In this section we outline the key features of the method. In Sect. 5.2.1 we describe how the

synthetic correlation data was generated, and focus on the modelling in Sect. 5.2.2. In particular,

throughout the analysis, we use the code vega2 (Cuceu et al., 2020), which is based on the code

used in eBOSS DR16 (du Mas des Bourboux et al., 2020) for fitting and modelling the Lyα corre-

lation functions. We finally motivate the choice of the sampled parameter space and describe the

likelihood in Sect. 5.2.3.
2https://github.com/andreicuceu/vega
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5.2 Method

5.2.1 Synthetic data vector and covariance

In this work, we focus on idealised 3D Lyα synthetic correlations in flat ΛCDM, without con-

taminants. However, we do include the distortion due to quasar continuum fitting. The latter

filters out information and ‘distorts’ the true correlation function (Bautista et al., 2017; du Mas

des Bourboux et al., 2017). Our synthetic data was generated using the framework of C21, and is

given by an uncontaminated model based on the best fit of eBOSS DR16 (see Tab. 5.2.1). We did

not add noise to the data vector, as we are only interested in forecasting. We used covariance matri-

ces based on DESI mocks similar to those used in Youles et al. (2022). These mocks were created

with the CoLoRe (Ramírez-Pérez et al., 2022) and LyaCoLoRe (Farr et al., 2020) packages, cover-

ing 14000 sq. degrees with a target density of∼ 50 QSOs / sq. degree (DESI Collaboration et al.,

2016). The covariance was computed using the community package picca (du Mas des Bourboux

et al., 2020). In this analysis, we limit ourselves to linear scales, assuming rmin = 30h−1Mpc, up

to rmax = 180h−1Mpc. The effective redshift of the correlation functions is zeff = 2.3.

5.2.2 Modelling

To infer cosmology from these synthetic correlations, we first need a theory to model the data

given any cosmology pC. The theoretical 3D Lyα correlation functions are computed from the

isotropic matter power spectrumP (k) and then compared against data to evaluate the likelihood.

When modelling and fitting Lyα correlations, we must match the coordinate grid for the theo-

retical correlation ξ with the grid of the data. When measuring the 3D Lyα correlation functions

from observations, we change from angular ∆θ and redshift ∆z separations to a set of comov-

ing coordinates (r∥, r⊥), respectively defined along and across the line of sight. This is motivated

by the fact that both the radial comoving distance DC(z) = c
∫ z
0 dz/H(z) and the comoving

angular diameter distance DM(z) are redshift dependent, where c is the speed of light and H(z)

the Hubble parameter. For this reason, we wish to refer instead to a set of comoving coordinates.

Given two locations at redshift zi and zj separated by an angle ∆θ, these are defined as
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5 Direct cosmological inference from 3D Lyman-α correlations

r∥ = [DC,fid(zi)−DC,fid(zj)] cos
∆θ

2
; (5.1)

r⊥ = [DM,fid(zi) +DM,fid(zj)] sin
∆θ

2
, (5.2)

where both DC and DM are computed using an assumed fiducial cosmology (fid subscript). In

our case, the fiducial cosmology coincides with the cosmological model that was used to generate

the data vector. Given that the sampled cosmology that generated the theoretical ξ can be differ-

ent from the fiducial one, we need to match coordinate grids of data and ξ by rescaling at each

sampling step the coordinates of the correlation via

q∥ = DH(zeff)/D
fid
H (zeff) ; (5.3)

q⊥ = DM(zeff)/D
fid
M (zeff) , (5.4)

where DH(z) = c/H(z), such that r′

∥,⊥ = q∥,⊥r∥,⊥.

In modelling the Lyα correlation functions of interest we follow Eq. (27) of du Mas des Bour-

boux et al. (2020), adopting the prescriptions of C21. For any cosmology pC, the power spectra

of the tracers are computed from the isotropic linear matter power spectrum P (k, z) as

PLyα(k, µk, z) =b2Lyα
(
1 + βLyαµ

2
k

)2
F 2
nl,Lyα(k, µk)P (k, z) ; (5.5)

P×(k, µk, z) =bLyα
(
1 + βLyαµ

2
k

)
×
(
bQSO + f(z)µ2

k

)
Fnl,QSO(k∥)P (k, z) , (5.6)

with f(z) = d ln D
d ln a being the logarithmic growth rate and µk = k∥/k, where k and k∥ are the

modulus of the wave vector and its projection along the line of sight respectively. Focusing first

on the Lyα×Lyα power spectrum in Eq. (5.5), we identify the Lyα forest linear bias, bLyα, and

its RSD term, βLyα =
bη,Lyαf(z)

bLyα
, where bη,Lyα is an extra unknown bias, the velocity divergence
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5.2 Method

bias. The choice of usingβLyα in the RSD term comes from the fact that bη,Lyα is fully degenerate

with the growth rate f(z). We treat both bLyα and βLyα as nuisance parameters and marginal-

ize over them. The Fnl,Lyα term encodes the non-linear corrections according to the model of

Arinyo-i-Prats et al. (2015). The parameters involved in this model are kept constant for simplic-

ity, but in principle they should also be varied. However, this should not have a major impact in

our analysis, as we are restricting the analysis to linear scales (rmin = 30h−1Mpc). Moving on to

the Lyα×QSO power spectrum P× in Eq. (5.6), bQSO is the quasar linear bias, another nuisance

parameter. In contrast to the Lyα RSD term, the QSO RSD term is instead simply f(z) as by

definition bη,QSO = 1. Following du Mas des Bourboux et al. (2020), we model the impact of

redshift errors and non-linear peculiar velocities of quasars with a damping term Fnl,QSO(k∥).

We use a Lorentzian function

Fnl,QSO(k∥) =

√[
1 +

(
k∥σv

)2]−1
, (5.7)

with a free parameter σv, which represents the velocity dispersion and is an extra nuisance param-

eter.

At each sampling step then, theoretical correlation functions ξ are computed in vega. At its

core, vega decomposes the power spectrum into multipoles, transforms them into correlation

function multipoles using the FFTLog algorithm (Hamilton, 2000) and finally reconstructs the

two-dimensional correlation function.

5.2.3 Parameter space and likelihood

The BAO feature is able to constrain α∥ = DH(z)r
fid
d /Dfid

H (z)rd along the line of sight and

α⊥ = DM(z)rfidd /Dfid
M rd in the transverse direction, where rd is the sound horizon at the drag

epoch. Since in flat ΛCDM, at low redshifts, the Hubble parameter H(z) can be expressed as a

function of H0 and ΩM, α∥ and α⊥ will ultimately place a constraint on {H0rd,ΩM}. Addi-

tionally, rd can be numerically approximated as a function of Ωνh
2, ΩMh2 and ΩBh

2 (Aubourg

et al., 2015), which are the neutrino, matter and baryon densities respectively, all evaluated at red-
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5 Direct cosmological inference from 3D Lyman-α correlations

shift z = 0by definition. This further motivates the choice of sampling{H0,ΩM,ΩBh
2}, where

Ωνh
2 is constant for a given choice of the neutrino mass. Extra information on ΩM also comes

from the AP effect (Alcock and Paczynski, 1979)

FAP =
a⊥
a∥

=
DM(zeff)/D

fid
M (zeff)

DH(zeff)/D
fid
H (zeff)

=
[DM(zeff)H(zeff)]

[DM(zeff)H(zeff)]fid
, (5.8)

which is an apparent anisotropy present if the sampled cosmology differs from the fiducial one.

For the same assumptions as before, the AP parameter will only be a function ofΩM. As we fit the

full shape of the correlation functions directly and the amplitude of primordial fluctuations As

and their spectral indexns affect the functional form of ξ, we will sample the full set of parameters

pC = {H0,ΩM,ΩBh
2, As, ns}. On the other hand, {bLyα, bQSO, βLyα, σv} are treated as

nuisance parameters pA to marginalize over.

For all these parameters we choose uniform priors, which are listed in Tab. 5.2.1. As is common,

As is sampled in logarithmic space, and we made the choice of doing the same with the two linear

biases because they are degenerate with As and span over several orders of magnitude.

In this work, we assume a Gaussian likelihood, which is also computed using vega. A likeli-

hood evaluation, via camb, first computes the comoving distances, to calculate q∥ and q⊥, and

then the isotropic linear matter power spectrum, along with rd, the growth rate at zeff and

fσ8(zeff). Then, vega computes the correlation functions, based on the modelling description

in Sect. 5.2.2, and the χ2 value.

5.3 Results

In this section we present the forecasts produced using the method outlined in Sect. 5.2 on 3D

Lyα×Lyα and Lyα×QSO simplified synthetic correlation functions. We sample over the cosmo-

logical parameters pC = {H0,ΩM,ΩBh
2, As, ns}, marginalizing over the astrophysical model

parameters pA = {bLyα, bQSO, βLyα, σv}. The fiducial values of these parameters, along with

the priors, are listed in Tab. 5.2.1.
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Figure 5.3.1: Triangle plot of the cosmological parameters of interest {H0,ΩM,ΩBh
2, As, ns}, marginal-

izing over the nuisance parameters pA. The blue contours refer to the results obtained per-
forming the inference using the method outlined in Sect. 5.2, which we denote as ‘direct fit’.
The grey dashed lines mark the fiducial values used to generate data.
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Figure 5.3.2: Correlations among the nuisance parameters {bLyα, βLyα, bQSO} and As, where ‘direct fit’
refers to the inference method described in Sect. 5.2. The grey dashed lines mark the fiducial
values used to generate the data.

In Fig. 5.3.1 we show the results for {H0,ΩM,ΩBh
2, As, ns} using the noiseless mock data

vector. In the last column of Tab. 5.2.1 we list the one-dimensional marginal constraints for the

full set of sampled parameters.

From Fig. 5.3.1, it can be seen that we do recover the true values (shown in grey dashed lines) of

cosmological parameters pC well within 1σ (Tab. 5.2.1). The analysis provides a 3.5% constraint

on the matter density ΩM. Clear degeneracies are present between H0 and ΩBh
2. As previously

mentioned, the baryon acoustic oscillation peak measures the product H0rd, which can be ex-

pressed as a function of H0, ΩBh
2 and ΩM. Given that we have a good measurement of ΩM

from the AP information, the remaining degeneracy is between H0 and ΩBh
2: if there were no

other information on either one of them, these two parameters would be fully degenerate. The

fact that both H0 and ΩBh
2 are strongly correlated with the spectral index ns could hint that

the turnover of the power spectrum is the feature partially breaking the degeneracy. Despite this

correlation, we are able to place a constraint on the spectral index, namely ns = 0.958+0.025
−0.035. We
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obtain a 21% constraint on the amplitude of fluctuationsAs, with a corresponding constraint on

the amplitude of linear matter fluctuations in spheres of 8h−1Mpc ofσ8(zeff) = 0.317±0.032.

We will further analyze the constraining power of our analysis against the state-of-the-art results

later in Sect. 5.4.1.

In Fig. 5.3.2 we show the strong correlation among the linear biases, bLyα and bQSO, and As,

which is expected given the functional form of Eqs. (5.5-5.6). The Lyα auto-correlation alone

would not be able to place a constraint onAs since, forµ = 0, we would measure the combination

Asb
2
Lyα only, whereas its anisotropy would provide a measurement of βLyα. On the other hand,

the transverse mode of the cross-power spectrum (Eq. 5.6), combined with the auto-correlation,

measures the combination of Asb
2
Lyα and bQSO/bLyα, while through the RSD term we are able

to constrain As (or fσ8 in compressed analyses).

5.4 Discussion

In Sect. 5.4.1 we provide a direct comparison of the forecasts presented in Sect. 5.3 and the lit-

erature. In particular, we will focus on a comparison with the results on the same synthetic data

obtained using the standard BOSS and eBOSS analysis first, as well as the C21 approach. Our

goal is to understand whether the compressed analyses successfully capture the cosmological in-

formation carried by the 3D Lyα correlation functions and discuss which components of the data

are the most informative. In Sect. 5.4.2 we discuss how results change when marginalizing over

the growth of structure. This is instructive to further understand from where extra information

originates.

5.4.1 Cosmological information

As mentioned above, in flat ΛCDM the BAO scale, along and across the line of sight, identifies

a banana-shaped degeneracy in the [H0rd,ΩM] plane. This justifies that any comparison among

methods which have the BAO as a primary feature should necessarily happen in this plane. On

the other hand, the Lyα-QSO cross-correlation can in principle measure fσ8(zeff) because of the
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5 Direct cosmological inference from 3D Lyman-α correlations

Parameter BAO BAO+AP+RSD direct fit
ΩM 12% 4% 3.5 %
H0rd/c 4.5% 1.65% 1.43 %
fσ8(zeff) − 12.5% 10.4%

Table 5.4.1: Constraining power of our method (‘direct fit’) on the listed parameters, against those from
the standard analysis (BAO) and the one of C21 (BAO+AP+RSD).
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Figure 5.4.1: Two-dimensional contour plots of {H0rd/c,ΩM}, comparing our method (‘direct
fit’) in blue against standard BOSS and eBOSS analysis (‘BAO’) in orange and C21
(‘BAO+AP+RSD’) in green. On the right, there is a zoom-in to further highlight the dif-
ferences among the ‘direct fit’ and ‘BAO+AP+RSD’ methods.

functional form of Eq. (5.6). However, because of the degeneracy with the linear biases, the com-

bination with the Lyα auto-correlation is needed. In what follows we will focus on a comparison

based on the derived parameters pd = {H0rd/c, fσ8(zeff)} and ΩM. In particular, in Fig. 5.4.1

we plot the two-dimensional contours of {H0rd/c,ΩM} and in Fig. 5.4.2 the one-dimensional

marginal of fσ8(zeff) for the methods we want to compare.

As discussed above, standard BOSS and eBOSS analyses focus on the peak component of the

3D Lyα correlation functions only. For this reason, we will refer to this approach as ‘BAO’ for

simplicity. We run this analysis using our noiseless mock data, and the most important result is

shown in Fig. 5.4.1. This approach provides ΩM = 0.32± 0.04, H0rd/c = 0.0329± 0.0015,

with a constraining power on H0rd/c of 4.5%, a factor of three worse compared to our direct fit

(summary in Tab. 5.4.1).
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Figure 5.4.2: Posterior plot for fσ8(zeff), comparing our method (‘direct fit’) in blue against C21
(‘BAO+AP+RSD’) in green.

Such an improvement was already found by C21, who demonstrated that considering the AP

effect from the smooth component in addition to the peak provides significantly tighter constraints.

We present results using their method with the additional RSD information, and we will refer to it

as ‘BAO+AP+RSD’. By running their analysis over our noiseless data, we find that ‘BAO+AP+

RSD’ is able to place a constraint on H0rd/c of 1.65%, which is of the same order as for our

analysis (Tab. 5.4.1). Indeed, as it can be seen in Fig. 5.4.1, the green and the blue contours are

both significantly tighter than the yellow one by almost the same amount and a consistent cor-

relation coefficient of ∼ 0.95 between the two parameters is found. Despite both approaches

being significantly more informative than the ‘BAO’ only analysis, a difference of about 16% and

17% is found in H0rd and ΩM respectively. However, given that the ultimate goal is to demon-

strate the difference between the ‘direct fit’ and the ‘BAO’ only approaches, investigating the less

marked difference between the blue and green contours was outside the interest of this work. Our

method constrains the growth of structure (Eq. 5.5-5.6) as well. For this reason, we also com-

pare the RSD information of C21 with ours. The fσ8(zeff) one-dimensional marginals for both

methods are plotted in Fig. 5.4.2 and the constraining power is given for completion in Tab. 5.4.1.

Overall, as already highlighted above, our method provides tighter constraints with respect to the
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5 Direct cosmological inference from 3D Lyman-α correlations

‘BAO+AP+RSD’ analysis. This is also the case for fσ8(zeff), for which the constraint get tighter

by about 18%.

5.4.2 Direct fit analysis without RSD

In order to further investigate where some of the information in the ‘direct fit’ alone is coming

from, we repeat the same analysis, marginalizing over the growth of structure. We refer to this case

as ‘direct fit without RSD’. If we use the quasar RSD parameter defined as βQSO = f(z)/bQSO,

Eq. (5.6) can be rewritten as

P×(k, µk, z) =bLyα
(
1 + βLyαµ

2
k

)
(5.9)

× bQSO

(
1 + βQSOµ

2
k

)
Fnl,QSOP (k, z) ,

where βQSO is now an extra nuisance parameter.

The implications of this choice can be directly seen in Fig. 5.4.3. In the no-RSD case (red in

Figure), the degeneracy among As and the two linear biases extends up to the prior limits, while

the information on the other cosmological parameters is preserved. Marginalizing over the growth

of structure washes out any constraining power on the linear biases and As, while RSD are not

constraining any other parameter.

5.5 Conclusions

Given that baryon acoustic oscillations (BAO) produce a distinct feature in 3D Lyα correlation

functions, and its properties are well understood, BOSS and eBOSS analyses so far considered

only the peak for cosmological inference (‘BAO’ analysis). A previous analysis conducted by

Cuceu et al. (2021) (C21 throughout the paper) highlighted the importance of also considering

the broadband component, as it significantly contributes to the overall cosmological information

via the Alcock-Paczyński (AP) effect (‘BAO+AP’ analysis − ‘BAO+AP+RSD’ if redshift space
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Figure 5.4.3: Triangle plot comparing the constraints on {ΩM, H0rd/c,As, ns} and the two linear bi-
ases {bLyα, bQSO} using our ‘direct fit’ approach in blue against the same fitting method but
marginalizing over the growth of structure (‘direct fit without RSD’) in red. A further expla-
nation of the second approach can be found in Sect. 5.4.2.
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distortions (RSD) are included). Given these premises, in this paper we addressed the question

about whether or not the compressed analyses based on BAO, AP and RSD parameters are able

to capture all the cosmological information brought by the Lyα correlation functions. We per-

formed a full shape analysis without any of the above parameters and instead directly inferred

cosmology (‘direct fit’ analysis).

The inference framework we used is cobaya, for which we implemented an ad-hoc gaussian

likelihood based on the vega package, as extensively described in Sect. 5.2.

We performed ‘BAO’, ‘BAO+AP+RSD’ and ‘direct fit’ analyses on the same set of synthetic

Lyα×Lyα auto- and Lyα×QSO cross-correlations, which include distortion effects due to con-

tinuum fitting, but no other contaminants, and ran the inference over pC = {H0,ΩM,ΩBh
2,

As, ns}. We also marginalized over the nuisance astrophysical parameters pA = {bLyα, bQSO,

βLyα, σv}, which are the Lyα and quasars linear biases, the Lyα RSD term and the velocity dis-

persion of quasars respectively.

We were able to measure the matter density parameter ΩM and the amplitude of primordial

fluctuations As with a precision of 3.5% and 21%, respectively, and fσ8(zeff) at 10.4%, which

is a noteworthy result given the few measurements of this parameter at z > 2. For these pa-

rameters we do not obtain a significant improvement in constraining power with respect to the

‘BAO+AP+RSD’ approach. However, we obtain a constraint of the spectral index ns at the

∼ 3 − 4% level. Similarly to the findings and solutions put forward in Brieden et al. (2021), we

could account for this extra information by adding a slope parameter to the compressed analysis.

The robustness of the ‘direct fit’ method against systematics must be tested. In forthcoming

work, it would be interesting to investigate whether the compressed analysis is more robust, given

it measures specific physical effects that are well understood. A further natural next step should

be including contaminants to the analysis. The constraining power in the spectral index that we

achieve could be affected in particular by Damped Lyα System (DLA) contamination (McQuinn

and White, 2011; Font-Ribera et al., 2012) and fluctuations in the UV background (Pontzen and

Governato, 2014; Gontcho et al., 2014), which would change the correlation function in a way

92



5.5 Conclusions

that could mimic ns. Further improvements to the analysis could come from varying rmin and

rmax, and also checking how effects of continuum distortion consequently behave.

We conclude by recalling that soon DESI will provide even better measurements of Lyα cor-

relations. Therefore this kind of study is key to finding the optimal approach to infer cosmology

from the data.

The code is publicly available at https://github.com/frgerardi/LyA_directfit.
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6 Optimal data compression for

Lyman-α forest cosmology

The Lyman-α (Lyα) three-dimensional correlation functions have been widely used to perform

cosmological inference using the baryon acoustic oscillation (BAO) scale. While the traditional in-

ference approach employs a data vector with several thousand data points, we apply near-maximal

score compression down to tens of compressed data elements. We show that carefully constructed

additional data beyond those linked to each inferred model parameter are required to preserve

meaningful goodness-of-fit tests that guard against unknown systematics, and to avoid informa-

tion loss due to non-linear parameter dependencies. We demonstrate, on suites of realistic mocks

and DR16 data from the Extended Baryon Oscillation Spectroscopic Survey, that our compres-

sion approach is lossless and unbiased, yielding a posterior that is indistinguishable from that of

the traditional analysis. As an early application, we investigate the impact of a covariance matrix

estimated from a limited number of mocks, which is only well-conditioned in compressed space.

The work presented in this chapter has been published, see Gerardi et al. (2023).

6.1 Introduction

In recent decades, the Lyman-α (Lyα) forest gained popularity as a probe of the distribution of

matter at redshifts z > 2. The forest consists of a sequence of absorption lines in high-redshift

quasar (QSO) spectra, caused by neutral hydrogen placed along the line-of-sight, and hence it is a

tracer of the intergalactic medium (IGM). Therefore, it contains cosmological information, and

in particular Lyman-α clustering shows the distinct baryon acoustic oscillations (BAO) feature.

This feature was first detected in the Lyα auto-correlation function using the Baryon Oscillation

Spectroscopic Survey (BOSS) DR9 data (Busca et al., 2013; Slosar et al., 2013; Kirkby et al., 2013),
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6 Optimal data compression for Lyman-α forest cosmology

and subsequently extracted from the Lyα cross-correlation with QSOs using DR11 data (Font-

Ribera et al., 2014).

The Lyα forest auto-correlation and its cross-correlation with quasars have been widely used to

place constraints on the cosmological model (e.g., Aubourg et al., 2015; Alam et al., 2017; Cuceu

et al., 2019; Alam et al., 2021; Cuceu et al., 2023). These two correlation functions are typically

computed on a 2D grid in comoving coordinates along and across the line-of-sight, resulting in

high dimensional data vectors, usually 2500 long for the auto-correlation and 5000 for the cross-

correlation. However, standard BOSS and eBOSS (du Mas des Bourboux et al. 2020; hereafter

dMdB20) Lyα forest analyses have so far focused on extracting cosmological information from

the BAO peak, which is well localized to a smaller subset of bins. This means that the vector can

be reduced to a smaller dimensionality, encoding the information we wish to capture. Hence,

in this context, applying a data compression scheme could be useful to optimize the inference.

In addition, the accuracy of the parameter estimates is tightly linked to the covariance matrix of

the data vector, under the assumption of a Gaussian likelihood. As the true covariance Σ of the

correlation function is inaccessible, standard analyses usually estimate it either from large set of

mocks or analytically from models of the covariance matrix (Kitaura et al., 2016; Wadekar et al.,

2020). In Lyα analyses, producing mocks can be a highly computationally-expensive process,

therefore only a limited number is available, 100 in the case of dMdB20. However, if the number

of samples is significantly lower than the number of data points, the estimate of the covariance

is singular and has no inverse (Hartlap et al., 2007; Dodelson and Schneider, 2013; Taylor and

Joachimi, 2014; Sellentin and Heavens, 2015; Percival et al., 2021).

In the eBOSS DR16 analysis, the covariance matrixC is computed via the sub-sampling method,

which, given some dataset, consists of computing the covariance of correlation functions obtained

in individual subsamples of the sky. Despite being larger (∼ 800) than the number of mocks

(100), the number of subsamples is still lower than the number of data points (2500-5000); hence,

the covariance matrix must be tested. Alternatively, in the same analysis, the authors computed

a Gaussian covariance matrix using the Wick approximation (Delubac et al., 2015) and used it to
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benchmark the covariance computed from the sub-sampling method. The accuracy of the co-

variance matrix would increase by alleviating the mismatch between the number of bins and the

number of mocks. This can be done by applying a data compression algorithm and evaluating

the (compressed) data covariance matrix in a new space characterized by a lower dimensional-

ity. In particular, given the available set of a hundred mocks, we reduce each of them to a set of

compressed data vectors and compute a newly defined mock sample covariance, which is a good

estimator of the true covariance, given that the length of the compressed data vector is now much

smaller than the number of mocks. Then, a comparison between the covariance matrix of the

data, mapped into the compressed space, and the mock sample covariance, obtained from the

compressed vector, can clarify whether there has been an underestimation or overestimation of

the contours in the standard analyses. Moreover, we are interested in obtaining a more sensitive

goodness of fit test. The length of Lyα correlation data vectors is of the order ofO(103), which

could easily hide any bad fit in a subset of the data. By reducing the dimensionality of the data

vector through compression, we wish to obtain a test that would highlight when a few important

points are off.

Driven by these optimization problems, we perform the inference analysis on realistic Lyα×Lyα

auto- and Lyα×QSO cross-correlation functions in a data compression framework. The com-

pression algorithm we use is score compression (Alsing and Wandelt, 2018), under the hypothesis

of a Gaussian likelihood (and hence analogous to the MOPED scheme; see Heavens et al. 2000).

By construction, the dimensionality of the compressed data vector will be equal to the number of

parameters we wish to keep information of, namelyO(10).

The paper is structured as follows. We start in Sect. 6.2 by outlining the method, explaining

the computation of the covariance matrix, and introducing the modelling and the basic idea be-

hind score compression. We proceed in Sect. 6.3 by testing the compression algorithm against

loss of information, comparing the inferred posterior distribution for our sampled parameters in

the traditional and compressed frameworks. In Sect. 6.4, we compare the constraining power

of the original estimated covariance matrix against the mock-to-mock covariance. We then per-
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form goodness of fit tests in the compressed framework in Sect. 6.5. Throughout the analysis a

tight prior on the BAO parameters is imposed to overcome the problem of the non-linear relation

between these and their corresponding summary statistics components. We relax the prior con-

straint, and hence made the analysis more generalizable, by extending the framework as described

in Sect. 6.6. An application of our new framework to eBOSS DR16 data is presented in Sect. 6.7.

Conclusions are drawn in Sect. 6.8.

Making sure the analysis is both optimized and reliable is key to interpret the vast amount of

Lyα forest data which will become available from the Dark Energy Spectroscopic Instrument

(DESI).

6.2 Method

Generically referring to the Lyα auto- and cross-correlations as the data vectors, the goal of this

work is to study data compression in the context of Lyα forest 3D analyses. In particular, this

means compressing the data down to a set of summary statistics t, which will encode into a shorter

vector the information we are interested in. As we have just seen, this also benefits the computa-

tion of the covariance matrix. The new ‘compressed’ framework is tested against the traditional

analysis while performing parameter inference. To evaluate posterior distributions we use the

nested sampler Polychord (Handley et al., 2015a,b).

We start in Sect. 6.2.1 by introducing the mocks used in this analysis, with a focus on the com-

putation of the covariance matrix. We then describe the modelling of the Lyα×Lyα and the cross

Lyα×QSO power spectra in Sect. 6.2.2, as implemented in vega1 (Cuceu et al., 2023), and the

set of randomly generated Monte Carlo realizations of the correlation function in Sect. 6.2.3. In

Sect. 6.2.4 we finally outline the compression method used, namely score compression.

1https://github.com/andreicuceu/vega
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6.2 Method

6.2.1 Synthetic data vector and covariance

In this work we use a set of 100 realistic Lyα mocks, with and without contaminants, which were

produced for the Lyα eBOSS DR16 analysis (du Mas des Bourboux et al., 2020). The synthetic

Lyα transmitted fluxes are produced using the CoLoRe (Ramírez-Pérez et al., 2022) and Ly-

aCoLoRe (Farr et al., 2020) packages, from the same cosmology for all the mocks. Synthetic

quasar spectra are then generated given some astrophysical and instrumental prescriptions, and

contaminants are added if requested. Then the mocks run through the same analysis pipeline

(picca2) as the real data, resulting in measured auto- and cross-correlation functions (dMdB20).

These are derived from computing the correlation function in each HEALPix3 (Górski et al.,

2005) pixel — about 880 pixels (subsamples) for the eBOSS footprint (NSIDE=16) — and eval-

uating the mean and covariance over the full set of pixels of the mock, to be then assigned to the

entire survey. In this way, for every i-th mock, there will be a measurement of both the correlation

function and the covariance matrix Ci, which will be only an estimate of the true covariance Σ

as mentioned above. In each subsample, the correlation has a size of either 2500 (ξauto) or 5000

(ξcross) bins, hence the number of subsamples (880 pixels) is significantly lower than the number

of data points (2500 or 5000). This means that the covariance should be singular, however off-

diagonal elements of the correlation matrix are smoothed to make it positive definite (dMdB20).

Finally, given the same hundred mocks, it is possible to define a stack of them. In particular, the

correlation function for the stack of mocks is obtained by collecting all the subsamples (for all the

hundred mocks), and computing the mean and covariance of the correlation functions computed

in each of them, effectively reducing the noise. We will refer to the contaminated auto- and cross-

mock correlations of the stack as stacked correlations.

In this analysis, we use the same scale cuts as in eBOSS DR16 (du Mas des Bourboux et al.,

2020), assuming rmin = 10h−1Mpc, up to rmax = 180h−1Mpc. The effective redshift of the

correlation functions is zeff = 2.3.

2https://github.com/igmhub/picca
3https://healpix.sourceforge.io
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Testing the framework (stacked) Testing the covariance (single mock)

Parameter Fiducial Prior Traditional Compression Original cov. Mock-to-mock cov.
α∥ 1.00 U(0.88, 1.14) 1.000± 0.002 1.000± 0.002 1.003± 0.019 1.003± 0.019

α⊥ 1.01 U(0.88, 1.14) 1.004± 0.003 1.004± 0.003 1.002± 0.027 1.004+0.029
−0.032

bLyα −0.14 U(−2, 0) −0.135± 0.001 −0.135± 0.001 −0.125± 0.004 −0.124± 0.006

βLyα 1.41 U(0, 5) 1.47± 0.01 1.47± 0.01 1.67+0.07
−0.08 1.68+0.09

−0.10

bQSO 3.81 U(0, 10) 3.80± 0.01 3.80± 0.01 3.82± 0.08 3.81± 0.07

βQSO 0.25 U(0, 5) 0.25± 0.01 0.25± 0.01 0.27± 0.04 0.27+0.03
−0.04

σv(Mpc/h) 2.87 U(0, 15) 2.82± 0.04 2.82± 0.04 3.22+0.32
−0.28 3.24± 0.26

σ∥,sm 2.05 U(0, 10) 2.08± 0.01 2.08± 0.01 2.10± 0.09 2.10+0.09
−0.08

σ⊥,sm 2.35 U(0, 10) 2.33± 0.01 2.33± 0.01 2.23± 0.11 2.21± 0.11

bHCD[×10−2] −1.70 U(−20, 0) −2.12± 0.08 −2.13± 0.07 −2.98± 0.54 −3.06± 0.68
βHCD 1.57 N (0.5, 0.09) 0.86± 0.06 0.86± 0.06 0.50± 0.09 0.50± 0.09
bη,SiII(1260)[×10−3] −0.58 U(−50, 50) −0.59± 0.04 −0.59± 0.04 −0.83± 0.33 −0.88± 0.37

bη,SiII(1193)[×10−3] −1.12 U(−50, 50) −1.09± 0.03 −1.09± 0.03 −0.83± 0.27 −0.84± 0.28

bη,SiIII(1207)[×10−3] −1.75 U(−50, 50) −1.64± 0.03 −1.63± 0.03 −1.54± 0.31 −1.52± 0.30

bη,SiII(1190)[×10−3] −1.00 U(−50, 50) −1.00± 0.03 −1.00± 0.03 −0.75± 0.27 −0.75± 0.29

Table 6.2.1: Full set of sampled parameters, alongside with the fiducial values used to compute the summary
statistics (see Eq. 6.8), priors and the 1-D marginals (68% c.l.). Uniform (U ) priors adopted for
the sampling procedure, while we assign a Gaussian prior on βHCD, where by notation the
Gaussian distribution N (µ, σ) has mean µ and standard deviation σ. Results are split into
‘Testing the framework (stacked)’ and ‘Testing the covariance (single mock)’, which respec-
tively refer to the setup in Sect. 6.3 and Sect. 6.4. The former set of results shows the com-
parison between the traditional and the compressed inference pipelines using the stacked auto-
and cross-correlation mocks, while the second between the compressed method using either
the original covariance C (which is mapped into the compressed space) or the mock-to-mock
covariance Ct, for a single mock.
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6.2.2 Modelling and parameter space

To model the Lyα correlation functions we follow Eq. (27) of du Mas des Bourboux et al. (2020),

while applying the same prescriptions as in Gerardi et al. (2022) (see Chapter 5). Given a certain

cosmological model and a corresponding isotropic linear matter power spectrum P (k, z), the

Lyα auto and Lyα-QSO cross power spectra are computed as

PLyα(k, µk, z) =b2Lyα
(
1 + βLyαµ

2
k

)2
F 2
nl,Lyα(k, µk)P (k, z) ; (6.1)

P×(k, µk, z) =bLyα
(
1 + βLyαµ

2
k

)
× bQSO

(
1 + βQSOµ

2
k

)
Fnl,QSO(k∥)P (k, z) , (6.2)

where µk = k∥/k, with k and k∥ the wave vector modulus and its line-of-sight component,

respectively. On one hand, the Lyα×Lyα power spectrum in Eq. (6.1) depends on the Lyα forest

linear bias bLyα and RSD parameter βLyα =
bη,Lyαf(z)

bLyα
, where bη,Lyα is an extra unknown bias,

the velocity divergence bias, and f(z) the logarithmic growth rate. TheFnl,Lyα term accounts for

non-linear corrections (Arinyo-i-Prats et al., 2015). On the other hand, the quasar parameters that

contribute to the Lyα×QSO power spectrum in Eq. (6.2) are the quasar linear bias bQSO and the

redshift-space distortions (RSD) term βQSO = f(z)/bQSO. Finally, we model non-linear effects

of quasars and redshift errors following du Mas des Bourboux et al. (2020), using a Lorentzian

function

Fnl,QSO(k∥) =
[
1 +

(
k∥σv

)2]−1/2
, (6.3)

where σv is the velocity dispersion.

The power spectra in Eqs. (6.1-6.2) only account for Lyα flux and in reality this is also con-

taminated by absorption lines due to heavy elements, generally referred to as metals, and high

column density (HCD) systems (Bautista et al., 2017; Font-Ribera et al., 2012). Let us first focus
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6 Optimal data compression for Lyman-α forest cosmology

on the modelling of the HCDs. Font-Ribera et al. (2012) showed their broadening effect along

the line-of-sight can be modeled at the level of new effective Lyα bias and RSD parameters

b
′
Lyα = bLyα + bHCDFHCD(k∥) , (6.4)

b
′
Lyαβ

′
Lyα = bLyαβLyα + bHCDβHCDFHCD(k∥) , (6.5)

with bHCD and βHCD being the linear bias and RSD parameters. FHCD(k∥) is a function of

the line-of-sight wavenumber, and it is modeled following dMdB20. On the other hand, metals

contribute to the final auto- and cross-correlation functions as per

ξ
′
auto = ξLyα×Lyα +

∑
m

ξLyα×m +
∑

m1,m2

ξm1×m2 , (6.6)

ξ
′
cross = ξLyα×QSO +

∑
m

ξQSO×m , (6.7)

where m generically refer to a metal and the sums are performed over all possible metals consid-

ered. The modelling of the cross-correlation of a metal with other metals (ξm1×m2) and with Lyα

(ξLyα×m) and QSO (ξQSO×m) follows the modelling of the auto- and cross-correlations of the

Lyα, and each metal line has a linear bias bm and RSD parameterβm = bη,mf(z)/bm. Following

dMdB20, we fix all βm = 0.5, and sample the metal biases.

Based on this modelling, we use the code vega to compute the two-dimensional correlation

functions ξ. This same code computes both the BAO feature parameters {α∥, α⊥}, which shift

the peak along and across the line-of-sight, and the Gaussian smoothing (Farr et al., 2020), which

accounts for the low resolution of the mocks and is parameterized by {σ∥, σ⊥} smoothing pa-

rameters.

At the inference level, the set of sampled parameters is ps = {α∥, α⊥, bLyα, βLyα, bQSO,

βQSO, σv, σ∥, σ⊥}, which is extended to include also {bη,m, bHCD, βHCD}when also fitting for

contaminants. In this notation, bη,m is the velocity divergence bias for the metal m — here we

consider SiII(1260), SiII(1193), SiIII(1207) and SiII(1190).
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For all these parameters we choose uniform priors, which are listed in Tab. 6.2.1. The only

exception is given by βHCD, for which, following the previous eBOSS DR16 analysis, we impose

an informative Gaussian prior.

6.2.3 Monte Carlo realizations

We here introduce a different kind of simulated data, which we will later use, defined as Monte

Carlo realizations. They are correlation functions obtained by adding noise on top of the model,

as defined in Sect. 6.2.2. The noise is given by a covariance matrix from one of the hundred mocks

correlation that have been seen so far. What this means is that we can imagine every data point to

be generated from a normal distributionN (ξ,C), where ξ is the model correlation function and

C is given by the covariance of the first realistic mock. Using Monte Carlo simulations comes with

two advantages. First, it is possible to generate as many as needed to build any statistics. Secondly,

we have control over the model and there will be clear knowledge of the underlying physics.

6.2.4 Score compression

To reduce the dimensionality of our datasets we use score compression (Alsing and Wandelt,

2018). Given a known form for the log-likelihood functionL, this method corresponds to linear

transformations of the data, based on the idea of compressing them down to the score function

s = ∇L∗. The components of the compressed vector are the derivatives of the log-likelihood

function, evaluated at some fiducial set of parameters θ∗, with respect to the parameters of inter-

est θ. Under the assumptions that the likelihood function is Gaussian and the covariance C does

not depend on parameters, from the data d the compressed data vector is obtained as

t = ∇µT
∗ C

−1(d− µ∗) , (6.8)

where µ∗ is the fiducial model. Under these assumptions the compression is identical to the

widely used MOPED scheme (Heavens et al., 2000) apart from a bijective linear transformation.
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6 Optimal data compression for Lyman-α forest cosmology

In our case the model corresponds to the correlation function ξ, described earlier in Sect. 6.2.2.

The corresponding likelihood distribution in compressed space will be then given by

P (t|θ) = 1

(2π)
n
2 |F |

1
2

exp

[
−1

2
[t− µt(θ)]

TF−1[t− µt(θ)]

]
, (6.9)

where n is the length of t, µt(θ) is the compressed model µ evaluated at θ, namely µt(θ) =

∇µT
∗ C

−1[µ(θ)− µ∗], and

F = [∇µ∗]
TC−1[∇Tµ∗] (6.10)

is the Fisher matrix.

When considering both the auto- and cross-correlations, some parameters will be in common;

for this reason, there is the need to build a joint summary statistic. If we define independently the

Lyα auto- and cross- data vectors, characterized by the covariances Cauto and Ccross respectively,

and given they do not correlate with each other, in the joint analysis the full covariance matrix will

be given by

C =

Cauto 0

0 Ccross

 . (6.11)

Then the resulting summary statistics vector and Fisher matrix will be respectively obtained as

t = tauto + tcross and F = F auto + F cross.

This compression method is dependent on the choice of the fiducial set of parameters θ∗,

which might not be known a priori. However, Alsing and Wandelt (2018) suggest iterating over

the Fisher scoring method for maximum-likelihood estimation

θk+1 = θk + F−1
k ∇Lk , (6.12)

until convergence of the full set of parameters. How this is done in our particular case is described

at the beginning of Sect. 6.3. An important note is that this iterative procedure does not take
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Figure 6.2.1: This plot shows the behaviour of the summary component tα∥ as a function of α∥, which is
the parameter it is related to as per Eq. (6.8), against the value of tα∥ evaluated using α∥ =
1.00 (see Tab. 6.2.1), denoted as ‘data’. The remainder of the parameters are set to the fiducial
values listed in Tab 6.2.1. This figure highlights a non-monotonic relationship between the
two parameters, which would lead to multiple peaks in the posterior if a tight prior is not
imposed.

into account parameters priors, which means it can potentially lead to unusual values for those

parameters which are not well constrained by the data.

In computing the score compression components over the parameters {α∥, α⊥}, we realized

their relation with their corresponding summary statistics components, namely {tα∥ , tα⊥}, was

not monotonic, as per Fig. 6.2.1. This is problematic as this means the posterior can have more

than one peak (Graff et al., 2011) if we sample over the full [0.01, 1.99] interval. We overcame this

complexity by imposing a tighter prior on {α∥, α⊥} at the sampling step. This prior is designed

to allow for α∥ values in between the minimum and maximum of tα∥(α∥). The same prior is

imposed on α⊥. This tightening does not affect the inference when performed on the correlation

function of the stacked mock, in which case posteriors are well within this prior, but it reveals to

be quite important when evaluating the posteriors on the individual mocks. For this reason, we

make sure we provide example results for those mocks whose contours are within the prior range.

Later, in Sect. 6.6 we will see how we can remove the tight prior constraint by evaluating the

summary statistics components associated to {α∥, α⊥} at multiple fiducial values of the BAO

parameters, effectively enlarging the compressed vector.
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Figure 6.2.2: Triangle plots of the parameters of interest for the stack of correlation functions
computed from a set of 100 mocks. Results are split, for presentation purposes
only, into the set of standard parameters {α∥, α⊥, bLyα, βLyα, bQSO, βQSO, σv,
σ∥, σ⊥} (lower left panel) and contaminants parameters {bη,SiII(1260), bη,SiII(1193),
bη,SiIII(1207), bη,SiII(1190), bHCD, βHCD} (upper right panel). The green contours refer
to the results obtained performing the inference using the full uncompressed data vector,
which we denote as ‘Traditional analysis’, while the blue dashed refer to the compressed
analysis results, denoted as ‘Score compression analysis’.
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6.3 Compression performance

In this Section we apply the score compression algorithm, outlined in Sect 6.2.4, to Lyα auto-

and cross-correlations measured from contaminated mocks. The pipeline starts by choosing a

fiducial set of parameters for computing the score compressed vector, as per Eq. (6.8). The fiducial

is obtained by iterating over Eq. (6.12), with θ0 given by the best fit of the stacked correlation

functions. Given this initial guess, we then iterated assigning to θk+1 the median of the θ values

over the hundred mocks at the k-th step.

The likelihood is assumed to be Gaussian, which has a major impact on the final form of the

compressed vector, given that the latter is computed as the gradient of the log-likelihood. Based

on previous analyses, we assume the data are normally distributed and this assumption of Gaus-

sianity will also be inherited in the compressed space. In general, when mapping in a compressed

space, this property might not be preserved, but given that score compression is a linear transfor-

mation, that is the case. We make a consistency check by running the Henze-Zirkler test (Henze

and Zirkler, 1990) for multivariate normality in the compressed space. Intuitively, this test mea-

sures the distance between the measured and target (multivariate) distribution, and it was shown

to perform well in high-dimensional problems. We found that the summary statistics, computed

for the hundred mocks at the end of the iterative process, follows a multivariate normal distribu-

tion.

Provided the fiducial model and the Gaussianity checks, we first test the compression method

on the stack of the mocks, with results presented in this Section, and later, in Sect. 6.4, we compute

the covariance matrix for the summary statistics over the set of hundred mocks and compare it to

the Fisher matrix as defined in Eq. (6.10). It is important to keep in mind that, when referring to

the Fisher matrix, we are simply referring to the mapping of the data covariance matrixC into the

compressed space.

To test the score compression algorithm against the traditional approach, for simplicity, we

employ both the contaminated auto- and cross- stacked correlations, which are almost noise-free.

This choice is motivated by the fact that we imposed a tight prior on the {α∥, α⊥} parameters to
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6 Optimal data compression for Lyman-α forest cosmology

overcome the challenges coming from the non-monotonic relationship between these parameters

and their corresponding summary statistics components (see Fig. 6.2.1). Thus, experimenting

over less noisy mock data facilitates running the test in a case where it is granted that posteriors

will not hit the priors.

For both the traditional (uncompressed data) and the compressed frameworks we run thePoly-

chordsampler for the auto- and cross- stacked correlations, while sampling the full set of 15 model

parameters {α∥, α⊥, bLyα, βLyα, bQSO, βQSO, σv, σ∥, σ⊥, bη,SiII(1260), bη,SiII(1193),

bη,SiIII(1207), bη,SiII(1190), bHCD, βHCD} and results are presented in Fig. 6.2.2. The two meth-

ods agree well with each other, leading to almost identical results. The numerical values of the

peaks and 1σ confidence intervals of the 1d marginals are presented in Tab. 6.2.1 as part of the

‘Testing the framework (stacked)’ set of columns. From the table, it can be noticed that in some

cases the fiducial parameters used to compute the compression are not within the 3σ confidence

interval. Despite the fiducial being a first guess, and not necessarily accurate, the contours of the

two methods agree well with each other.

We just demonstrated that the score compression inference pipeline leads to the same results as

the standard approach. This shows the linearity of the parameters in the model to a good approx-

imation. However, it is important to bear in mind that, in this case, this only holds locally around

the fiducial, because of the non-linearity of the components that relate to α∥ and α⊥, on which

we imposed a tight prior.

6.4 Testing the covariance matrix

An interesting application of the compression algorithm consists of evaluating the accuracy of

the covariance matrix C by comparing it to the mock-to-mock covariance Ct, which is the co-

variance matrix of the summary statistics vectors of the set of hundred mocks. We now showcase

this application using a single mock.

We recall that the computation of the standard data covariance happens in a setup where the

length of the data vector is larger than the number of samples, which is sub-optimal. The covari-
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6.4 Testing the covariance matrix

ance should be singular; however, the off-diagonal elements of the correlation matrix are smoothed

to make it positive definite (du Mas des Bourboux et al., 2020). Reducing the dimensionality of

the data vector via score compression allows us to compute a new covariance matrix Ct, which

has a dimensionality significantly lower than the number of samples used to compute it, given

that the new data vector will be∼ O(10) long. The fact that now the number of mock samples is

larger than the number of compressed data points, means that we are now in a framework where

the estimated Ct is in principle a better estimator of the true covariance Σ in compressed space

than F , which is obtained by mapping the covariance C into this space.

We now repeat the same experiment as in Sect. 6.3 over a single mock and evaluate the posterior

using Polychord for the full set of parameters {α∥, α⊥, bLyα, βLyα, bQSO, βQSO, σv, σ∥, σ⊥,

bη,SiII(1260), bη,SiII(1193), bη,SiIII(1207), bη,SiII(1190), bHCD, βHCD}. This is either done using the

original covariance C matrix (mapped into the compressed space, to the Fisher matrix) in the

Gaussian likelihood in Eq. (6.9) or instead using the mock-to-mock covariance Ct adopting a t-

distribution as a likelihood function, as proposed in Sellentin and Heavens (2015). The latter is

of the form of

P (t|θ) = c̄P |Ct|−1/2

1 + [t−µt(θ)]
TCt

−1[t−µt(θ)]
ns−1

(6.13)

with

c̄P =
Γ
(ns

2

)
[π(ns − 1)]nt/2Γ

(
ns − nt

2

) ; (6.14)

where ns is the number of mocks, nt is the length of the compressed data vector and Γ is the

Gamma function. Once again the choice of the tight prior on both {α∥, α⊥} affected the choice

of the set of mocks in order to run this second experiment. However, the goal of this second

experiment is to provide an example case of testing the accuracy of the subsampling estimation

of the covariance matrix. If the method is demonstrated to effectively work over some subset of

mocks, it is expected that will also be the case for the others.
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Figure 6.4.1: Triangle plots of the BAO parameters of interest {α∥, α⊥} and the Lyα parameters
{bLyα, βLyα} for one set of the Lyα auto- and cross- mock correlations. The blue filled con-
tours refer to the results obtained performing the inference using the original covariance ma-
trixC (mapped into the compressed space) in the likelihood function, and hence are denoted
as ‘Original covariance’. On the other hand, the red dashed results, denoted as ’Mock-to-mock
covariance’, refer to the case in which the mock-to-mock covariance matrix is used instead,
while adopting a t-distribution likelihood.
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The results for the BAO parameters{α∥, α⊥} and the Lyαparameters{bLyα, βLyα} are shown

in Fig. 6.4.1, while the full set is presented in Sect. 6.9 and listed in Tab. 6.2.1 (‘Testing the covari-

ance (single mock)’ columns). While the blue contours refer to the results obtained using the

original covariance matrix C, the dashed red ones are achieved adopting a t-distribution likeli-

hood combined with the mock-to-mock covarianceCt. In this test case, using the mock-to-mock

covariance results in a small enlargement of the posterior for the α⊥ parameter: while using the

original covariance matrix provides α⊥ = 1.002 ± 0.027, the mock-to-mock covariance results

in α⊥ = 1.0040.029−0.032. On the other hand, the Lyα linear bias and RSD parameter absolute er-

rors increase by 50% and ∼ 25% respectively, with final relative error of about 5 − 6%. The

uncertainty of the vast majority of the other parameters agree remarkably well.

We end this discussion on covariance matrix estimation by noting that the test presented here is

meant as a showcase of the usefulness of compressing Lyα forest correlation functions. However,

proper testing of the Lyα forest covariance matrices would require a more comprehensive anal-

ysis using a larger sample of mocks4, and comparison with other estimation methods (see e.g.,

du Mas des Bourboux et al., 2020).

6.5 Goodness of fit test

In this section, we make a step forward with respect to the original aim of the work, by considering

goodness of fit tests. For Lyα correlation functions, the length of the data vector can go from

2500, considering only the auto-, to 7500 if considering also the cross-correlation. In a context

where only ∼ O(10) parameters are sampled, any bad fit for noisy data can be hard to detect.

Reducing the dimensionality of the data via score compression, we investigate whether it would

be easier for any bad fit to be spotted. Hence, given the results presented in Sect. 6.3, we test

the robustness of the method against unmodelled effects in the correlation functions, via the χ2

statistics.

4Note also that this kind of analysis heavily relies on mocks being consistent with each other (both in terms of mock
production, and in terms of analysis), in order to avoid introducing extra variance.
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Figure 6.4.2: This wedge plot, for |µ| = |r∥/r| between 0.95 and 1.0, shows the effect of adding metals
(in orange) to the correlation model ξ without metals (in blue) along the line-of-sight. For
simplicity in the χ2 analysis we do not include contamination coming from HCD, so these
features are only the effects of metal lines. Also, in this example, in order to better visualize
the difference between the two, we have been generating noise from the covariance matrix of
the stacked auto-correlation mock.

To this end we test the goodness of fit on contaminated data when metals are not modelled. For

simplicity, here we restrict to the Lyα auto-correlation alone and without considering contamina-

tion from HCD. The sampled parameters will only be {α∥, α⊥, bLyα, βLyα, σ∥, σ⊥}. Tests are

run by constructing the χ2 distributions over a set of 300 Monte Carlo realizations of the auto-

correlation, introduced in Sect. 6.2.3: for each realization we run a minimizer and evaluate theχ2

at the best fit.

We considered two main Monte Carlo populations: with and without metal contamination.

The difference between the two is shown in the wedge plot of Fig. 6.4.2, which is built by aver-

aging over the values of the correlation function in the ‘wedge’ of the space {r∥, r⊥} identified

by values of |µ| = |r∥/r| between 0.95 and 1.0. To generate them we used the best fit values of

{α∥, α⊥, bLyα, βLyα, σ∥, σ⊥, bη,SiII(1260), bη,SiII(1193), bη,SiIII(1207), bη,SiII(1190)} for the con-

taminated stacked Lyα mock auto-correlation, where depending on the population (contami-

nated or uncontaminated) the metals’ parameters were either included or not.
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Figure 6.5.1: χ2 histograms (left panel) for the maximal compression and corresponding best fit val-
ues histograms for the Lyα parameters (right panels), where blue refers to the uncontami-
nated case and orange to contaminated. In the maximal compression setup t = tmax =
{tα∥ , tα⊥ , tbLyα

, tβLyα
, tσ∥ , tσ⊥}. The black dashed lines in the two panels on the right cor-

respond to the true values used to generate the Monte Carlo realisations.

113



6 Optimal data compression for Lyman-α forest cosmology

6.5.1 Maximal compression

For both the contaminated and uncontaminated mock data, we apply a compression down to the

same number of sampled parameters without including contamination in the modelling, with

the summary statistics thus given by tmax = {tα∥ , tα⊥ , tbLyα
, tβLyα

, tσ∥ , tσ⊥}. This is defined

as maximal compression. In what follows we are interested in learning about the χ2 distribution

for the two Monte Carlo populations.

We found that for both contaminated and uncontaminated data, the χ2 distributions are sim-

ilar, with values of the order ofO(10−10 − 10−3) (left panel of Fig. 6.5.1). However, comparing

the fits to the contaminated and uncontaminated data, the best-fit parameter values are system-

atically shifted for some parameters. The distributions of the best-fit values for bLyα and βLyα

are shown in the right panels of Fig. 6.5.1: for the fits to contaminated data, 80% and 90% of the

best-fit values respectively for each parameter are below the true value.

The χ2 values remain very small for the fits to contaminated data, which indicates that in the

compressed space, the model without contaminants still has enough flexibility to perfectly fit the

data: the system has zero degrees of freedom, given that we are sampling six parameters, and the

compressed data vector has six components. Instead of the mismatch between the model without

contaminants and the contaminated data being visible in the form of largeχ2 values, it is manifest

through a systematic shift in the recovered parameter values from the truth, which in a realistic

data fitting scenario could not be detected. This is linked to the fact that we are very close to a

linear model scenario, meaning that in the compressed space the model still has enough flexibility

to fit the data. This motivated a deeper testing of the framework, extending it to extra degrees of

freedom as follows.

6.5.2 Non-maximal compression

Given the problem highlighted in the maximal framework, we tested the pipeline in a non-maximal

compression case, where the extra degrees of freedom are given by the metals contaminating the

data. Namely, the maximal summary statistics is now extended to include textra = {tbη,SiII(1260) ,
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Figure 6.5.2: Normalized χ2 histograms for the three non-maximal compression cases presented in Sect.
6.5.2: starting from the left, all four metals, SiII(1260) and SiII(1190) were used to build extra
degrees of freedom. In blue the histograms andχ2 distributions for the uncontaminated data,
orange for contaminated. The corresponding χ2 distributions (dashed lines) are generated
assuming as number of degrees of freedom the mean of the histogram distributions. The
first set of histograms, that relates to all four extra degrees of freedom, present a strong shift
between the orange and the blue distributions: their corresponding means are 3.89 and 67.51.
In the SiII(1260) case, both distributions have a mean of∼ 1.1, while in the SiII(1190), the
mean for the contaminated case is 1.01, against 10.04 in the contaminated case.
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tbη,SiII(1193) , tbη,SiIII(1207) , tbη,SiII(1190)}. Still, metals will not be included in the likelihood mod-

elling. This means that if the quantities of reference here are the compressed data vector

t = ∇µT
∗ C

−1(d− µ∗) , (6.15)

the compressed model

µt = ∇µT
∗ C

−1(µ(θ)− µ∗) , (6.16)

and they enter the χ2 as per

χ2(θ) = [t− µt(θ)]
TF−1[t− µt(θ)] , (6.17)

the fiducial model µ∗ and its gradient will now include contaminants, whereas µ(θ) will not

and d will either be contaminanted or uncontaminated data depending on the population used

to build the χ2 statistics. Now t = {tmax, textra}. The length of the compressed data vector is

ten, where the first six components refer to the sampled parameters, with a remainder of four com-

ponents, which are fixed and constitute our extra degrees of freedom. Under the approximation

that the mean of aχ2 distribution indicates the number of degrees of freedom of the problem, we

would expect that mean to be at least equal to the number of extra degrees of freedom we added.

In our case, we expect that for the uncontaminated case, for which we know the modelling is

good, the mean will be close to 4 (four metals). We want to test whether in this case a bad fit to

the contaminated data is apparent as a mean χ2 significantly larger than 4.

The χ2 histograms are shown in the left panel of Fig. 6.5.2: the mean values for the uncontam-

inated and contaminated cases are respectively 3.89 and 67.51. Considering a χ2 with number of

degrees of freedom equal to 4, the p-values for the two means are respectively 0.4 and 10−14: the

bad fit in the contaminated case has emerged.

We further experimented over the addition of metals and we considered adding a single extra

degree of freedom at a time, associated to either one of the following metals: the SiII(1260) and the
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6.5 Goodness of fit test

SiIII(1190). The resulting χ2 histograms are shown in the middle and right panels of Fig. 6.5.2,

respectively. These two metal lines were chosen because of how differently they affect the data:

while the SiII(1260) contamination happens around the BAO scale along the line-of-sight, the

SiII(1190) contributes to the peak at ∼ 60Mpc/h. We run the same exact experiment and find

that the addition of tbη,SiII(1190) does bring out the bad fit, while the other does not. Specifically,

the two χ2 distributions when the extra degree of freedom is given by bη,SiII(1260) have a mean

of∼ 1, again equal to the number of degrees of freedom, but they cannot be distinguished. The

p-values for both distributions, assuming one degree of freedom, are all above a threshold of 0.01.

Both distributions are indicative of an acceptable fit. On the contrary, adding the extra compressed

component related to SiII(1190) results in having a mean χ2 of 1.01 in the uncontaminated case

and 10.04 in the contaminated one, with corresponding p-values of 0.3 and 10−3 if we consider

a target χ2 distribution of one degree of freedom. This perhaps is indicative about the fact that

in order to capture a bad fit, adding extra degrees of freedom is not enough: these extra degrees

of freedom must be informative about features not captured by the core set of parameters. The

SiII(1260) affects the model at scales of the correlation function which are on top of the BAO

peak, which we model for, whereas SiII(1190) effectively adds information on a feature which is

completely unmodelled.

In light of this, a possible solution is to add some extra degrees of freedom to the maximal

compression vector, which are designed to be orthogonal to the already known components in

the compressed space. This would allow the extra flexibility, that is not captured in the model,

to highlight for a bad fit in the compressed framework. This is an interesting problem which is

left for future work. However, a similar solution has already been implemented in the context of

MOPED (Heavens et al., 2020), specifically to allow new physics to be discovered.

Not modelling the SiII(1260) line in the uncompressed traditional framework does not result in

any bad fit, which makes this an example of systematics hidden in the large original data vector. At

the same time, the fact that the SiII(1260) test in the compressed framework fails to show a bad fit

at the level of theχ2 is quite problematic, given this metal line is one of the primary contaminants
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6 Optimal data compression for Lyman-α forest cosmology

we have to be careful of in BAO measurement, affecting the peak’s scale. The worry is then that,

despite constructing an extended framework, there is a chance that some systematics hiding in

the signal could be missed. This effectively means that in order to apply data compression, the

underlying physics must be already well known to a good extent. Because some systematics could

be either hard to model or to detect, in this example, we deliberately assumed we had no knowledge

about known systematics, where in principle we could have also marginalized over them (Alsing

and Wandelt, 2019b).

6.6 Robustness to parameter non-linearities

Each component of the score-compressed data vector relates to a specific model parameter, as per

Eq. (6.8), via the gradient. Throughout the analysis, the BAO parameters proved to be a source

of non-linearities in relation to their summary statistics components (see Fig. 6.2.1), sometimes

resulting in a multi-peaked posterior distribution. With the intent of mitigating this effect, we

were forced to impose a tight prior on both {α∥, α⊥}, which reduces the generalizability of the

approach.

Based on the work of Protopapas et al. (2005), we explore extensions to the algorithm by con-

sidering an ensemble of fiducial values of the BAO parameters to compute the score-compressed

vector components related to {α∥, α⊥}. For any extra set of BAO parameters {αextra
∥ , αextra

⊥ },

we introduce two extra summary statistics components:

textraα∥
= ∇α∥µ

T
extraC

−1(d− µextra) , (6.18)

textraα⊥
= ∇α⊥µ

T
extraC

−1(d− µextra) , (6.19)

where µextra is the model evaluated at {αextra
∥ ,αextra

⊥ }, keeping the previously defined fidu-

cial values for the other parameters. As these extra components effectively represent an exten-

sion of the compressed dataset, the Fisher matrix in Eq. (6.10) will also be expanded to include

[∇α∥,⊥µextra]
TC−1[∇T

α∥,⊥
µextra]. We test this extension on the same mock that was used to
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Figure 6.6.1: Triangle plots of the BAO parameters of interest {α∥, α⊥} for one set of the Lyα auto- and
cross- mock correlations, with relaxed priors. The green contours refer to the results obtained
performing the inference using the full uncompressed data vector, which we denote as ‘Tra-
ditional analysis’, while the blue dashed refer to the compressed analysis results, denoted as
‘Score compression analysis’. The framework of the latter is extended here to the assump-
tion of multiple fiducial values for {α∥, α⊥} when performing the compression, namely
[{α∥ = 1.00, α⊥ = 1.01}, {α∥ = 0.8, α⊥ = 1.2}, {α∥ = 1.2, α⊥ = 0.8}, {α∥ =
1.3, α⊥ = 0.7}, {α∥ = 0.9, α⊥ = 1.1}].

test the subsampling covariance matrix in Sect. 6.4, and results are presented in Fig. 6.6.1, im-

posing a physically motivated uniform prior [0.65, 1.35] for both α∥ and α⊥. The ensemble of

extra fiducials is given by the set [{α∥ = 0.8, α⊥ = 1.2}, {α∥ = 1.2, α⊥ = 0.8}, {α∥ =

1.3, α⊥ = 0.7}, {α∥ = 0.9, α⊥ = 1.1}], in addition to the original {α∥ = 1.00, α⊥ = 1.01}

(see Tab. 6.2.1). From Fig. 6.6.1 it can be seen that the constraining power on the BAO parameters

between the traditional and compressed methods match. This same result is also true for the other

parameters, not shown here.

We tested the extension in terms of generalizability by progressively adding extra points to the

ensemble, with reasonable spread, and found that with an ensemble of three to four extra fidu-

cial sets of BAO parameters the algorithm is able to effectively get rid of the secondary posterior

peaks and increase the accuracy of the measurement. Hence, the assumption of multiple fiducials
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6 Optimal data compression for Lyman-α forest cosmology

for the BAO parameters, for which we had to impose a tight prior, enables us to relax the prior

constraints.

6.7 Application to real data

The score compression framework has so far been tested on realistic mocks, hence it is straightfor-

ward to apply this same algorithm to real eBOSS DR16 Lyα data, for which we refer to du Mas des

Bourboux et al. (2020). The set of nuisance parameters is now extended to also include the con-

tamination from carbon absorbers, the systematic quasar redshift error∆r∥, the quasar radiation

strength ξTP
0 and the sky-subtraction parameters Asky,Lyα and σsky,Lyα. The results presented

in Sect. 6.6 motivate a direct test of the whole extended framework, which gets rid of the tight

prior, to the real data. The ensemble of BAO parameter fiducial values is given by the set of

{α∥ = 1.05, α⊥ = 0.96}— which are the best fit values obtained through the traditional anal-

ysis — and [{α∥ = 0.8, α⊥ = 1.2}, {α∥ = 1.2, α⊥ = 0.8}, {α∥ = 1.3, α⊥ = 0.7}, {α∥ =

0.9, α⊥ = 1.1}], which were found to be effective in Sect. 6.6. The fiducial values of the other

parameters are set to the best fit found with the standard uncompressed analysis. In Fig. 6.7.1, we

present the agreement of the extended framework against the traditional approach at the level of

{α∥, α⊥, bη,Lyα, βLyα,∆r∥, βQSO, σv}. The nuisance parameters are also found to be in excel-

lent agreement.

6.8 Conclusions

Standard analyses of the Lyman-α (Lyα) forest correlation functions focus on a well localized

region, which corresponds to the baryon acoustic oscillations (BAO) peak. However, these corre-

lation functions usually have dimensions of 2500 or 5000, which means the cosmological signal

is extracted from a small subset of bins. This means that reducing the dimensionality of the data

vector, while retaining the information we care about, could be a step forward in optimizing the

analysis. At the same time, as extensively explained in Sect. 6.2, the covariance matrix C used
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Figure 6.7.1: Triangle plot for fits to the real eBOSS DR16 data Lyα auto- and cross- correlations, using the
traditional approach (green) and the score compression framework (dashed blue) extended
to include extra fiducial values of the BAO parameters at [{α∥ = 0.8, α⊥ = 1.2}, {α∥ =
1.2, α⊥ = 0.8}, {α∥ = 1.3, α⊥ = 0.7}, {α∥ = 0.9, α⊥ = 1.1}]. The results shown here
are for the standard parameters {α∥, α⊥, bη,Lyα, βLyα,∆r∥, βQSO, σv}.
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for Lyα correlations analyses is estimated via sub-sampling. However, the dimensionality of the

correlation functions is much larger than the number of data samples used to estimate the covari-

ance. Reducing the dimensionality of the data vector to O(10) allows for a reliable estimate of

the covariance matrix. Given these premises, the goal of this work is to apply and explore a data

compression algorithm for realistic Lyα auto- and cross-correlation functions.

We reduced the dimensionality of the data vector to a set of summary statistics t using score

compression. We assume a Gaussian likelihood, test for its validity, and show that this assumption

is preserved in the compressed space as well, as the compression is a linear transformation. In the

compressed space the covariance can be either given by the mapped traditional covariance or by a

covariance estimated directly in such a space.

We tested the compressed framework against the traditional approach at the posterior level,

when using the original covariance C, and found the two of them agree, and no bias is intro-

duced. We then showcased a test example of covariance matrix evaluation in the compressed space,

which is a key benefit of the approach, enabling a comparison to the covariance matrix obtained

in the traditional sub-optimal framework. Because of non-linear relationship between the BAO

parameters and their summary statistics components, throughout the analysis we adopted a tight

prior on {α∥, α⊥}. Later in the analysis, with the aim of increasing the generalizability of the

approach, while relaxing the prior constraint, we successfully tested extensions to the framework

by assuming an ensemble of fiducial values for these problematic parameters.

We then further examined the compressed framework, by testing the inference against unmod-

elled effects and we find that if any information about the unmodelled features in the correlation

function is not captured by the compressed data vector t, this can potentially lead to biases, which

do not emerge at the level of theχ2 goodness of fit test. Hence, we advise against performing good-

ness of fit tests in compressed space, unless the compressed vector is extended to include extra de-

grees of freedom, analogous to what is done in Heavens et al. (2020). Extending the framework

in this sense is left for future work.

122



6.9 Appendix: Full results for the mock to mock covariance test

We applied our extended compression framework to DR16 data from the Extended Baryon

Oscillation Spectroscopic Survey and demonstrated that the posterior constraints are accurately

recovered without loss of information. A step change in constraining power, and thus accuracy

requirements, is expected for forthcoming Lyα cosmology analyses by the on-going DESI experi-

ment (see e.g., Gordon et al., 2023), which will observe up to 1 million high-redshift quasars with

z > 2. Optimal data compression as proposed in this work will facilitate these analyses through

inference that is complementary to the traditional approach and through additional consistency

and validation tests.

6.9 Appendix: Full results for the mock to mock

covariance test

We here present in Fig. 6.9.1 the full set of results from the mock-to-mock covariance test, pre-

sented in Sect. 6.4, against the contours obtained using the original covariance in the compressed

framework. Numerical values are reported in Tab. 6.2.1. The contours agree well with each other.

The most striking enlargements of the posteriors are visible for the parameters {α⊥, bLyα, βLyα,

bHCD}. Because the ‘Original covariance’ setup has been shown to agree with the standard anal-

ysis in Sect. 6.3, this comparison automatically becomes a comparison to the standard approach.
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Figure 6.9.1: Triangle plots of the parameters of interest for one set of the Lyα auto- and cross- correla-
tion mocks. Results are split, for presentation purposes only, into the set of standard parame-
ters{α∥, α⊥, bLyα, βLyα, bQSO, βQSO, σv, σ∥, σ⊥} (lower left panel) and contaminants pa-
rameters {bη,SiII(1260), bη,SiII(1193), bη,SiIII(1207), bη,SiII(1190), bHCD, βHCD} (upper right
panel). The blue contours refer to the results obtained performing the inference using the
original covariance matrix C mapped into the compressed space (the Fisher matrix) in the
likelihood function, and hence are denoted as ‘Original covariance’. On the other hand, the
red dashed results, denoted as ’Mock-to-mock covariance’, refer to the case in which the mock-
to-mock covariance matrix is used instead, while adopting a t-distribution likelihood.
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7 Conclusions and outlook

The base assumptions of the standard model have been proven to be robust over a broad range of

observables, however there is still no clarity over the nature of some constituents of the Universe,

such as dark energy. At the same time, our current belief of what this component should be is

challenged by arising tensions, the most famous one being related to the rate of expansion at the

present time, H0 (Di Valentino et al., 2021). Increasing the variety, accuracy and size of available

probes should shed light on what is driving this tension, whether that is systematics or deviations

from our current model.

In light of this, inferring cosmological parameters is becoming incredibly challenging: not only

the size of the datasets is increasing, but the modelling is becoming more and more complex. This

means that the joint space of data and parameters is becoming unfeasible to explore with tradi-

tional methods. It is then crucial to explore more efficient approaches, that involve data compres-

sion and forward-modelling.

This thesis work explored some applications of these methods, in the field of gravitational waves

(GW) and Lyman-α (Lyα) forest.

7.1 Simulation-based inference in GW analyses

The last decade marked the beginning of a series of successful observing runs for the LIGO-Virgo-

KAGRA (LVK) Collaboration, which just started the fourth one in May 2023. The upgrades to

the facilities are leading to the observation of further and fainter systems (Abbott et al., 2020).

Such advancements challenges data pipelines, both from the detection and parameter inference

perspectives. Rapidly identifying the sources of gravitational waves to allow for efficient multi-

messenger astronomy is as important as building faster, yet reliable, inference frameworks. With

this in mind, the last couple of years have seen the effort, among the GW community, in develop-
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ing inference tools based on forward-modelling (Green and Gair, 2021; Dax et al., 2021; Bhardwaj

et al., 2023).

7.1.1 Summary: unbiased inference

Motivated by numerical challenges of traditional analyses and by the interest in the Hubble con-

stant, in Chapter 4 we tested the reliability of such a simulation-based framework against the

Malmquist bias, due to selection effects, while performing population level inference of H0 from

standard sirens. The main advantage of using forward-modelling in the inference pipeline is that

selection is naturally built into the simulations. By constructing a hierarchical toy model, we were

able to run both simulation-based inference (SBI) and Markov chain Monte Carlo (MCMC)

frameworks, finally comparing the precision and accuracy achievable using this alternative method

in the presence of GW selection effects alone. We used the pydelfi and pystan tools respectively

for the two approaches. As we have seen in Chapter 3, the inputs to the neural density estimators

(NDE), used within SBI, must be a set of low-dimensional summary statistics, which then requires

the choice of a compression scheme to be applied to the binary neutron star mergers catalogue.

To solve this task we used a simple regression neural network. As a general note, this means that

not only does the performance of the SBI framework largely depend on the modelling, but also

on the ability of the compression method to preserve fundamental information we wish to infer.

In this proof-of-concept work, we demonstrated that the SBI framework does not introduce any

bias in the presence of GW selection effects, being as precise as the full Bayesian hierarchical model

sampling. Marginalising over the knowledge of the ground truth increases the H0 uncertainty by

only 6% for training sets of the regression neural network consisting of O(104) populations. In-

terestingly, by augmenting the size of the training set, the uncertainty increase drops.

7.1.2 Extended population inference pipelines

The first natural extension to the framework we have presented here is the addition of EM selec-

tion effects. As the goal of the work was indeed to test Hubble constant estimation against the
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Malmquist bias, only the GW selection effect was taken into account. However, to reach a direct

estimate of the redshift of the source, an EM counterpart must be observed, and that signal is sub-

ject to selection effects too. The work by Gagnon-Hartman et al. (2023) represents an extension

to our analysis in this sense.

We have been testing simulation-based inference at a population-level, while performing cos-

mological parameter estimation, with a particular focus on the Hubble constant. However, the in-

terest over gravitational waves signal is not limited to what we can learn about cosmology. Indeed,

these phenomena are also informative about the physics of binary neutron star systems themselves,

in regards to the mass distributions and their equation of state. Soon after the publication of this

work, there was an effort on this side in works such as those of Veske et al. (2021) and Golomb

and Talbot (2022).

Extensions to the simulation-based frameworks, to model the complexity of the studied sys-

tems and systematics, are crucial to make sure that our pipelines will be reliable by the time third-

generation GW detectors such as Einstein Telescope (Sathyaprakash et al., 2012) and Cosmic Ex-

plorer (Abbott et al., 2017) come online.

7.2 Encoding and extracting information from Lyα

correlation functions

The scale of the baryon acoustic oscillation (BAO) is a well established probe for cosmology: it

probes the matter density field over a wide range of redshifts, successfully constraining the expan-

sion history (Seo and Eisenstein, 2003). This same feature is also detected in Lyα forest correlation

functions, being the absorption lines tracer of matter along the line of sight, and it probes redshifts

between 2 and∼ 4.

When performing cosmological inference, standard analyses of Lyα correlation functions only

consider the information carried by this distinct peak, neglecting the information coming from
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the broader range of scales. In May 2021, the Dark Energy Spectroscopic Instrument (DESI)

completed the Survey Validation and recently published EDR results (DESI Collaboration et al.,

2023). As data from the DESI Main Survey will become available, it is essential to test and under-

stand whether:

• this peak encodes all the relevant cosmological information ;

• this same information can be compressed down to optimise the inference pipeline.

7.2.1 Summary: inferring cosmology

Following up the work of Cuceu et al. (2021), which highlights the importance of considering

the broadband components, we are motivated in performing a direct fit to the full shape, in order

to address the first point. This work has been presented in Chapter 5. We extended the vega

framework to allow for cosmological parameters sampling through cobaya, for which we imple-

mented an ad-hoc Gaussian likelihood. We tested the framework on synthetic idealised Lyα cor-

relation functions and provided a comparison to the classic method, while sampling {H0,ΩM,

ΩBh
2, As, ns} and marginalising over Lyα and quasar model parameters. We obtain better con-

straints on cosmological parameters, and, by extending the comparison to the analysis of Cuceu

et al. (2021), we find that most of the extra information can be traced back to the Alcock-Paczyński

effect and redshift space distortions.

7.2.2 Summary: data compression

Two-dimensional Lyα correlation functions have a few thousand data points, whereas the BAO

peak is only limited to a small region. If BAO is the only feature from which we wish to extract

cosmological information, the analysis could be largely optimised by compressing the data down,

preserving the information for which we care. In Chapter 6 we applied score compression to real-

istic Lyα auto- and cross- correlation functions, under the assumption of a Gaussian likelihood,
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which we test for. Compressing the data vector comes with an additional advantage. The con-

straining power on sampled parameters is tightly linked to the covariance matrix of the correlation

functions, which however can only be estimated from data. While in standard analyses this is not

true, in the compressed framework the length of the data vector is lower than the number of sam-

ples used to estimate the covariance matrix, which means the latter can be reliably computed. This

means that the secondary advantage of this framework is that it gives us the opportunity to test

the accuracy of the covariance as computed in standard analyses. At the posterior level, we com-

pare the results obtained using the traditional approach against the compressed one, finding that

no bias is introduced and the original estimate of the covariance matrix through the subsampling

method is good enough.

7.2.3 Extensions to the frameworks

Both the works presented in Chapter 5 and Chapter 6 extended current Lyα forest frameworks, to

either understand what information can be extracted from the correlation functions or if that can

be compressed down to a set of summary statistics. The fact that these two works are complemen-

tary means that a natural extension of both would be computing the score-compressed vector by

directly encoding the cosmological information. This would effectively mean computing deriva-

tives of the log-likelihood with respect to the parameters {H0,ΩM,ΩBh
2, As, ns} sampled in

the first analysis and build a new summary statistics still based on score compression.

However, to reach such a goal, the framework built in Chapter 5 should be tested against sys-

tematics, while including more realistic features in the data, such as the effects of contaminants,

which were instead included in the compressed analysis.

In light of this, future work could then perform cosmological inference with the aid of score

compression on DESI data, which are now starting to become available. At the same time, real

data analyses might reflect physics not included in the current modelling and, as we have seen in

Chapter 6, the current score compression algorithm does not deal well with model mismatch at

the level of the χ2. For this reason, before doing such a step, it is necessary to extend the mapping
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to the compressed space as in Heavens et al. (2020). This would mean extending the summary

statistics to orthogonal components which are informative about unknown effects.

This concludes the research I carried out during my PhD. This work is set in the context of

testing novel techniques for data compression and simulation-based inference, with the scope of

optimising cosmological analyses, yet making sure results are reliable. Over the last few years,

with the help of Machine Learning, there has been a boost in the development and usage of these

approaches, which will be key to perform inference in the upcoming years, given that the data

sample size and the model complexity are increasing.
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et al. “The Challenges Ahead for Multimessenger Analyses of Gravitational Waves and Kilo-

nova: A Case Study on GW190425”. ApJ, 922(2):269, December 2021. doi:10.3847/1538-

4357/ac222d.

César Ramírez-Pérez, Javier Sanchez, David Alonso, and Andreu Font-Ribera. “CoLoRe: fast

cosmological realisations over large volumes with multiple tracers”. JCAP, 2022(05):002, May

2022. doi:10.1088/1475-7516/2022/05/002.

César Ramírez-Pérez, Ignasi Pérez-Ràfols, Andreu Font-Ribera, M. Abdul Karim, E. Armen-

gaud, J. Bautista, S. F. Beltran, L. Cabayol-Garcia, Z. Cai, S. Chabanier, et al. “The Lyman-

α forest catalog from the Dark Energy Spectroscopic Instrument Early Data Release”, 2023.

arXiv:2306.06312 [astro-ph.CO].

153

https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1038/nature12953
https://doi.org/10.3847/1538-3881/ab9644
https://doi.org/10.1111/j.1365-2966.2005.09305.x
https://doi.org/10.1111/j.1365-2966.2005.09305.x
https://doi.org/10.3847/1538-4357/ac222d
https://doi.org/10.3847/1538-4357/ac222d
https://doi.org/10.1088/1475-7516/2022/05/002
https://arxiv.org/abs/2306.06312


Bibliography

Adam G. Riess, Alexei V. Filippenko, Peter Challis, Alejandro Clocchiatti, Alan Diercks, Peter M.

Garnavich, Ron L. Gilliland, Craig J. Hogan, Saurabh Jha, Robert P. Kirshner, et al. “Observa-

tional Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”.

The Astronomical Journal, 116(3):1009–1038, September 1998. doi:10.1086/300499.

Adam G. Riess, Lucas M. Macri, Samantha L. Hoffmann, Dan Scolnic, Stefano Casertano,

Alexei V. Filippenko, Brad E. Tucker, Mark J. Reid, David O. Jones, Jeffrey M. Silverman,

et al. “A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CON-

STANT”. 826(1):56, July 2016. doi:10.3847/0004-637x/826/1/56.

Adam G. Riess, Stefano Casertano, Wenlong Yuan, J. Bradley Bowers, Lucas Macri, Joel C. Zinn,

and Dan Scolnic. “Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes

and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with

ΛCDM”. ApJL, 908(1):L6, 2021. doi:10.3847/2041-8213/abdbaf.

Adam G. Riess, Wenlong Yuan, Lucas M. Macri, Dan Scolnic, Dillon Brout, Stefano Casertano,

David O. Jones, Yukei Murakami, Gagandeep S. Anand, Louise Breuval, et al. “A Comprehen-

sive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncer-

tainty from the Hubble Space Telescope and the SH0ES Team”. ApJL, 934(1):L7, July 2022.

doi:10.3847/2041-8213/ac5c5b.

M. Rigault, G. Aldering, M. Kowalski, Y. Copin, P. Antilogus, C. Aragon, S. Bailey, C. Baltay,

D. Baugh, S. Bongard, et al. “CONFIRMATION OF A STAR FORMATION BIAS IN

TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT

OF THE HUBBLE CONSTANT”. ApJ, 802(1):20, March 2015. doi:10.1088/0004-

637x/802/1/20.

M. Rigault, V. Brinnel, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, K. Barbary,

S. Bongard, K. Boone, et al. “Strong dependence of Type Ia supernova standardization on

154

https://doi.org/10.1086/300499
https://doi.org/10.3847/0004-637x/826/1/56
https://doi.org/10.3847/2041-8213/abdbaf
https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/10.1088/0004-637x/802/1/20
https://doi.org/10.1088/0004-637x/802/1/20


Bibliography

the local specific star formation rate”. A&A, 644:A176, December 2020. doi:10.1051/0004-

6361/201730404.

K. Riles. “Gravitational waves: Sources, detectors and searches”. Progress in Particle and Nuclear

Physics, 68:1–54, 2013. ISSN 0146-6410. doi:10.1016/j.ppnp.2012.08.001.

S. Rosswog, U. Feindt, O. Korobkin, M. R. Wu, J. Sollerman, A. Goobar, and G. Martinez-

Pinedo. “Detectability of compact binary merger macronovae”. Class. Quantum Grav., 34

(10):104001, May 2017. doi:10.1088/1361-6382/aa68a9.

Donald B. Rubin. “Bayesianly Justifiable and Relevant Frequency Calculations for the Applied

Statistician”. The Annals of Statistics, 12(4):1151–1172, 1984. ISSN 00905364, 21688966.

URL http://www.jstor.org/stable/2240995.

Vera C. Rubin and Jr. Ford, W. Kent. “Rotation of the Andromeda Nebula from a Spectroscopic

Survey of Emission Regions”. ApJ, 159:379, February 1970. doi:10.1086/150317.

B Sathyaprakash, M Abernathy, F Acernese, P Ajith, B Allen, P Amaro-Seoane, N Andersson,

S Aoudia, K Arun, P Astone, et al. “Scientific objectives of Einstein Telescope”. Class. Quan-

tum Grav., 29(12):124013, June 2012. doi:10.1088/0264-9381/29/12/124013.

B. S. Sathyaprakash and Bernard F. Schutz. “Physics, Astrophysics and Cosmology with Gravita-

tional Waves”. Living Reviews in Relativity, 12(1), March 2009. doi:10.12942/lrr-2009-2.

P. A. G. Scheuer. “A Sensitive Test for the Presence of Atomic Hydrogen in Intergalactic Space”.

Nature, 207(5000):963, August 1965. doi:10.1038/207963a0.

Maarten Schmidt. “Large Redshifts of Five Quasi-Stellar Sources”. ApJ, 141:1295, April 1965.

doi:10.1086/148217.

B. F. Schutz. “Determining the Hubble constant from gravitational wave observations”. Nature,

323(6086):310–311, September 1986. doi:10.1038/323310a0.

155

https://doi.org/10.1051/0004-6361/201730404
https://doi.org/10.1051/0004-6361/201730404
https://doi.org/10.1016/j.ppnp.2012.08.001
https://doi.org/10.1088/1361-6382/aa68a9
http://www.jstor.org/stable/2240995
https://doi.org/10.1086/150317
https://doi.org/10.1088/0264-9381/29/12/124013
https://doi.org/10.12942/lrr-2009-2
https://doi.org/10.1038/207963a0
https://doi.org/10.1086/148217
https://doi.org/10.1038/323310a0


Bibliography

D. Scolnic, R. Kessler, D. Brout, P. S. Cowperthwaite, M. Soares-Santos, J. Annis, K. Herner, H.-

Y. Chen, M. Sako, Z. Doctor, et al. “How Many Kilonovae Can Be Found in Past, Present, and

Future Survey Data Sets?”. ApJ, 852(1):L3, December 2017. doi:10.3847/2041-8213/aa9d82.

Uroš Seljak. “Bias, redshift space distortions and primordial nongaussianity of nonlinear

transformations: application to Ly-α forest”. JCAP, 2012(03):004–004, March 2012.

doi:10.1088/1475-7516/2012/03/004.

Elena Sellentin and Alan F. Heavens. “Parameter inference with estimated covariance

matrices”. MNRAS: Letters, 456(1):L132–L136, December 2015. ISSN 1745-3925.

doi:10.1093/mnrasl/slv190.

Hee-Jong Seo and Daniel J. Eisenstein. “Probing Dark Energy with Baryonic Acoustic Oscilla-

tions from Future Large Galaxy Redshift Surveys”. ApJ, 598(2):720–740, December 2003.

doi:10.1086/379122.

Naoki Seto and Koutarou Kyutoku. “Prospects of the local Hubble parameter measurement

using gravitational waves from double neutron stars”. MNRAS, 475(3):4133–4139, 01 2018.

ISSN 0035-8711. doi:10.1093/mnras/sty090.

Christian N Setzer, Rahul Biswas, Hiranya V Peiris, Stephan Rosswog, Oleg Korobkin, and Ryan

T Wollaeger and. “Serendipitous discoveries of kilonovae in the LSST main survey: maximizing

detections of sub-threshold gravitational wave events”. MNRAS, 485(3):4260–4273, Febru-

ary 2019. doi:10.1093/mnras/stz506.

Hongyu Shen, E A Huerta, Eamonn O’Shea, Prayush Kumar, and Zhizhen Zhao. “Statistically-

informed deep learning for gravitational wave parameter estimation”. Machine Learning: Sci-

ence and Technology, 3(1):015007, November 2021. doi:10.1088/2632-2153/ac3843.

Ravi K. Sheth and Giuseppe Tormen. “Large-scale bias and the peak background split”. MNRAS,

308(1):119–126, 09 1999. ISSN 0035-8711. doi:10.1046/j.1365-8711.1999.02692.x.

156

https://doi.org/10.3847/2041-8213/aa9d82
https://doi.org/10.1088/1475-7516/2012/03/004
https://doi.org/10.1093/mnrasl/slv190
https://doi.org/10.1086/379122
https://doi.org/10.1093/mnras/sty090
https://doi.org/10.1093/mnras/stz506
https://doi.org/10.1088/2632-2153/ac3843
https://doi.org/10.1046/j.1365-8711.1999.02692.x


Bibliography

Scott A Sisson, Yanan Fan, and Mark A Beaumont. “Overview of ABC”. In Handbook of approx-

imate Bayesian computation, pages 3–54. Chapman and Hall/CRC, 2018. arXiv:1802.09720

[stat.CO].

Devinderjit Sivia and John Skilling. Data analysis: a Bayesian tutorial. OUP Oxford, 2006.

John Skilling. “Nested Sampling”. AIP Conference Proceedings, 735(1):395–405, 2004.

doi:10.1063/1.1835238.

John Skilling. “Nested sampling for general Bayesian computation”. Bayesian Analysis, 1(4):833

– 859, 2006. doi:10.1214/06-BA127.

Anže Slosar, Andreu Font-Ribera, Matthew M Pieri, James Rich, Jean-Marc Le Goff, Éric

Aubourg, Jon Brinkmann, Nicolas Busca, Bill Carithers, Romain Charlassier, et al. “The

Lyman-α forest in three dimensions: measurements of large scale flux correlations from

BOSS 1st-year data”. JCAP, 2011(09):001–001, September 2011. doi:10.1088/1475-

7516/2011/09/001.

Anže Slosar, Vid Iršič, David Kirkby, Stephen Bailey, Nicolás G Busca, Timothée Delubac, James

Rich, Éric Aubourg, Julian E Bautista, Vaishali Bhardwaj, et al. “Measurement of baryon acous-

tic oscillations in the Lyman-α forest fluctuations in BOSS data release 9”. JCAP, 2013(04):

026–026, April 2013. doi:10.1088/1475-7516/2013/04/026.

Stan Development Team. “PyStan: the Python interface to Stan, Version 2.17.1.0.”, 2018. URL

http://mc-stan.org.

A.A. Starobinsky. “A new type of isotropic cosmological models without singularity”.

Physics Letters B, 91(1):99–102, 1980. ISSN 0370-2693. doi:https://doi.org/10.1016/0370-

2693(80)90670-X.

Ling Sun, Evan Goetz, Jeffrey S Kissel, Joseph Betzwieser, Sudarshan Karki, Aaron Viets, Made-

line Wade, Dripta Bhattacharjee, Vladimir Bossilkov, Pep B Covas, et al. “Characterization

157

https://arxiv.org/abs/1802.09720
https://arxiv.org/abs/1802.09720
https://doi.org/10.1063/1.1835238
https://doi.org/10.1214/06-BA127
https://doi.org/10.1088/1475-7516/2011/09/001
https://doi.org/10.1088/1475-7516/2011/09/001
https://doi.org/10.1088/1475-7516/2013/04/026
http://mc-stan.org
https://doi.org/https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/https://doi.org/10.1016/0370-2693(80)90670-X


Bibliography

of systematic error in Advanced LIGO calibration”. Class. Quantum Grav., 37(22):225008,

October 2020. doi:10.1088/1361-6382/abb14e.

Colm Talbot and Eric Thrane. “Fast, flexible, and accurate evaluation of Malmquist bias with ma-

chine learning: Preparing for the pending flood of gravitational-wave detections”, December

2020. arXiv:2012.01317 [gr-qc].

Andy Taylor and Benjamin Joachimi. “Estimating cosmological parameter covariance”. MN-

RAS, 442(3):2728–2738, June 2014. ISSN 0035-8711. doi:10.1093/mnras/stu996.

Stephen R. Taylor, Jonathan R. Gair, and Ilya Mandel. “Cosmology using ad-

vanced gravitational-wave detectors alone”. Phys. Rev. D, 85:023535, January 2012.

doi:10.1103/PhysRevD.85.023535.

The LIGO Scientific Collaboration, the Virgo Collaboration, R. Abbott, T. D. Abbott, S. Abra-

ham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt,

et al. “Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-

Wave Transient Catalog”. ApJL, 913(1):L7, May 2021. doi:10.3847/2041-8213/abe949.

Vaibhav Tiwari. “Estimation of the sensitive volume for gravitational-wave source populations

using weighted Monte Carlo integration”. Class. Quantum Grav., 35(14):145009, June 2018.

doi:10.1088/1361-6382/aac89d.

Jesús Torrado and Antony Lewis. “Cobaya: Bayesian analysis in cosmology”. Astrophysics Source

Code Library, record ascl:1910.019, October 2019. ascl:1910.019.

Jesús Torrado and Antony Lewis. “Cobaya: code for Bayesian analysis of hierarchical physical

models”. JCAP, 2021(05):057, May 2021. doi:10.1088/1475-7516/2021/05/057.

Tilman Tröster, Ariel. G. Sánchez, Marika Asgari, Chris Blake, Martín Crocce, Catherine Hey-

mans, Hendrik Hildebrandt, Benjamin Joachimi, Shahab Joudaki, Arun Kannawadi, Chieh-

An Lin, and Angus Wright. “Cosmology from large-scale structure: Constraining ΛCDM

with BOSS”. A&A, 633:L10, January 2020. doi:10.1051/0004-6361/201936772.

158

https://doi.org/10.1088/1361-6382/abb14e
https://arxiv.org/abs/2012.01317v1
https://doi.org/10.1093/mnras/stu996
https://doi.org/10.1103/PhysRevD.85.023535
https://doi.org/10.3847/2041-8213/abe949
https://doi.org/10.1088/1361-6382/aac89d
http://ascl.net/1910.019
https://doi.org/10.1088/1475-7516/2021/05/057
https://doi.org/10.1051/0004-6361/201936772


Bibliography

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. “Neu-

ral autoregressive distribution estimation”. The Journal of Machine Learning Research, 17(1):

7184–7220, 2016. arXiv:1605.02226 [cs.LG].

Licia Verde, Tommaso Treu, and Adam G. Riess. “Tensions between the early and late Universe”.

Nature Astronomy, 3(10):891–895, September 2019. doi:10.1038/s41550-019-0902-0.

Doğa Veske, Imre Bartos, Zsuzsa Márka, and Szabolcs Márka. “Characterizing the Observation

Bias in Gravitational-wave Detections and Finding Structured Population Properties”. ApJ,

922(2):258, December 2021. doi:10.3847/1538-4357/ac27ac.

Matt Visser. “Jerk, snap and the cosmological equation of state”. Class. Quantum Grav., 21(11):

2603–2615, April 2004. doi:10.1088/0264-9381/21/11/006.

Salvatore Vitale and Hsin-Yu Chen. “Measuring the Hubble Constant with Neutron Star Black

Hole Mergers”. Phys. Rev. Lett., 121:021303, July 2018. doi:10.1103/PhysRevLett.121.021303.

Salvatore Vitale, Davide Gerosa, Will M. Farr, and Stephen R. Taylor. “Inferring the Proper-

ties of a Population of Compact Binaries in Presence of Selection Effects”. In Handbook of

Gravitational Wave Astronomy, pages 1–60. Springer Singapore, 2021. doi:10.1007/978-981-

15-4702-7_45-1.

Digvijay Wadekar, Mikhail M. Ivanov, and Roman Scoccimarro. “Cosmological con-

straints from BOSS with analytic covariance matrices”. Phys. Rev. D, 102:123521, 2020.

doi:10.1103/PhysRevD.102.123521.

Kenneth C Wong, Sherry H Suyu, Geoff C-F Chen, Cristian E Rusu, Martin Millon, Dominique

Sluse, Vivien Bonvin, Christopher D Fassnacht, Stefan Taubenberger, Matthew W Auger,

et al. “H0LiCOW – XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension

between early- and late-Universe probes”. MNRAS, 498(1):1420–1439, September 2019.

doi:10.1093/mnras/stz3094.

159

https://arxiv.org/abs/1605.02226
https://doi.org/10.1038/s41550-019-0902-0
https://doi.org/10.3847/1538-4357/ac27ac
https://doi.org/10.1088/0264-9381/21/11/006
https://doi.org/10.1103/PhysRevLett.121.021303
https://doi.org/10.1007/978-981-15-4702-7_45-1
https://doi.org/10.1007/978-981-15-4702-7_45-1
https://doi.org/10.1103/PhysRevD.102.123521
https://doi.org/10.1093/mnras/stz3094


Bibliography

Samantha Youles, Julian E. Bautista, Andreu Font-Ribera, David Bacon, James Rich, David

Brooks, Tamara M. Davis, Kyle Dawson, Govinda Dhungana, Peter Doel, et al. “The effect

of quasar redshift errors on Lyman-α forest correlation functions”, 2022. arXiv:2205.06648

[astro-ph.CO].

160

https://doi.org/10.48550/ARXIV.2205.06648
https://doi.org/10.48550/ARXIV.2205.06648

	Introduction
	The standard model of cosmology
	The homogeneous Universe
	General Relativity framework
	Background dynamics
	Distances
	Energy content

	Inhomogeneities
	Scalar perturbations
	The effect of peculiar velocities
	Beyond the linear regime


	Cosmological observables
	Gravitational waves
	Lyman- forest

	Data analysis techniques
	Bayesian Inference
	Monte Carlo approaches

	Extensions to the standard framework
	Data compression
	Simulation-based Inference



	Simulation-based inference and data compression applied to cosmology
	Unbiased likelihood-free inference of H0 from light standard sirens
	Introduction
	Simulations
	Method
	Traditional Inference
	Likelihood-Free Inference

	Results
	No-Selection Case
	Selection Case

	Conclusions
	Appendix: Full tables

	Direct cosmological inference from 3D Lyman- correlations
	Introduction
	Method
	Synthetic data vector and covariance
	Modelling
	Parameter space and likelihood

	Results
	Discussion
	Cosmological information
	Direct fit analysis without RSD

	Conclusions

	Optimal data compression for Lyman- forest cosmology
	Introduction
	Method
	Synthetic data vector and covariance
	Modelling and parameter space
	Monte Carlo realizations
	Score compression

	Compression performance
	Testing the covariance matrix
	Goodness of fit test
	Maximal compression
	Non-maximal compression

	Robustness to parameter non-linearities
	Application to real data
	Conclusions
	Appendix: Full results for the mock to mock covariance test


	Conclusions
	Conclusions and outlook
	Simulation-based inference in GW analyses
	Summary: unbiased inference
	Extended population inference pipelines

	Encoding and extracting information from Ly correlation functions
	Summary: inferring cosmology
	Summary: data compression
	Extensions to the frameworks



	Bibliography

