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Abstract

We report on a simultaneous measurement of the mass of the top quark with
3.2 fb~! of data using the template method in both the Lepton+Jets and Dilepton
channels. Two-dimensional probability density functions in each channel are derived
using the Kernel Density Estimation. In the Lepton+Jets channel, we use the re-
constructed top quark mass and the dijet mass from the hadronically decaying W to
measure Mtop and to constrain in situ the jet energy scale. In the Dilepton chan-
nel, we introduce a new variable mT9 to the analysis and extract the top quark
mass from the neutrino weighting algorithm and mmq9. The top quark mass is mea-
sured to be Myqp=172.2 T2 (stat + jes.) £ 1.1 (syst.) GeV/c? = 172.2+ 1.9 GeV /c?
in the Lepton+Jets channel, and M,;,=169.3 + 2.7 (stat.) & 3.2 (syst.) GeV/c? =
169.3+4.2 GeV /c? in the Dilepton channel. The combined likelihood from both chan-
nels yields Mop=171.7 12 (stat +jes.) £ 1.1 (syst.) GeV/c? = 171.7 T15 GeV/c2.
With the mg variable alone, we measure the top quark mass in the Dilepton channel
to be Myop=168.0 *1 (stat.) +2.9 (syst.) GeV/c? = 168.0 *2f GeV/c?.

1 Update Since Version 1.2

We fixed CMUP trigger issue which we have one more CMUP event in the lepton jet
channel but, exactly same event in the dilepton channel. We also include p19 data set
which is corresponding to 0.2 fb~! of good silicon data. Because cross section group, both
lepton jet and dilepton, updated the estimated numbers using upto pl9 data, our signal
and background estimation also updated based on their result. With corrected number of
events, we re-calculate estimated error using boostraps both signal and backgrounds. And
then, we can update bias check plots with slightly different error bar. Also, systemaitcs
for MC statistics is updated with new bias check results. The multiple hardron interaction
systematics used same slopes but, we updated number of Z-vertex in the data with upto
p19 data.



2 3 Mg DISTRIBUTION

2 Introduction

We present the combined measurement of the top quark mass in the Lepton+Jets and
Dilepton channels with 3.2 fb=! of data using the template method. The current analysis
method is similar to our earlier result with 2.7 fb~! [1]. The improvements over the previous
analysis include replacing the Hr variable with the mm9 variable in the Dilepton channel,
adding data from Period 18 and Period 19, and estimating background contributions based
on the 2.7 fb™! top-pair cross section analysis in the Dilepton channel [3] and the recent
result of backgrounds with 2.7 fb™! in the Lepton+Jets channel [5]. The current JetUser
package uses the jet energy scale corrections through Period 17, and does not cover Period
18. Using the updated TrigTool [7], we recover the CMUP trigger problem during Period
18 which corresponds 50 pb~! of data.

3 moo Distribution

For the combined measurement of the top quark mass in the Lepton+Jets and Dilepton
channels, until recently we used the neutrino weighting algorithm (NWA) [2] and the total
transverse energy of the event (Hr) for the Dilepton channel. See the Hr distributions for
various top quark masses in Fig.[[l. By adding H7 to NWA, we improved the top quark mass
resolution in the Dilepton channel by 10%. However, since the Hp distribution provides
a rather poor resolution for the top quark mass distribution and is highly correlated with
the NWA mass distribution, we have explored other variables including m 9 as the second
variable in the Dilepton channel.

mT9 was initially introduced to measure the mass of massive particles that decay into
the final states including two invisible particles. [I0] The ¢ system in the Dilepton channel
is one of such cases and this was studied at the LHC. [II] This study reports a statistical
uncertainty of 0.3 GeV on the top quark mass with 10 fb™" using the mpg variable alone.
In this section, we describe the mg variable of a ¢ event in the Dilepton channel.

We consider the transverse mass of a top quark in the leptonic decay t — blv;

my = my +m_, + 2(EYEY — pY. - pY) (3.1)

where my; and p% denote the invariant mass and transverse momentum of the bl system,
and m, and p% are the mass and transverse momentume of the neutrino. The transerve
energies of the bl system and neutrino are defined as

B = I+ miy and B = \[Ipf? + (32

The ¢t system in the Dilepton channel has two transverse masses (top and anti-top), mg)

and m{?, where mé, (i = 1,2) is the transverse mass of t' — bil’s’. The mmy variable is

then defined as

mry = min [max{mg), mg) }] (3.3)



Table 1: Event selection in the Lepton+Jets channel.

1-tag 2-tag
b-tags =1 > 1
Leading 3 jets Er (GeV) > 20 > 20
Missing Er (GeV) > 20 > 20
4th jet Er (GeV) > 20 > 12
Extra jets Ep (GeV) < 20 Any
2 <9 <9
m;°® boundary cut (GeV/c?) | 110 < mi*® < 350 | 110 < m}*° < 350
mj; boundary cut (GeV/c?) | 50 < m,; < 115 50 < mj; < 125

where the minimization is performed over the trial neutrino momenta p;(z) constrainted as

p +p? = ppie. (3.4)

In the quarks and leptons combination, we have combinatoric problem. We calculated
mg variable for all possible combinations, and chose the smallest one as the final m 9.

Figure Bl shows mmq distributions for various top quark masses at CDF. Using pseudo-
experiments we compare the statistical uncertainties of the top quark mass measurement
in the Dilepton channel between Hp and mpg variables. Figure Bl shows the statistical

uncertainties when we use MtNWA (top), Hy (middle), or mTg9 (bottom). Figure Hl shows

the statistical uncertainties when we use MtNWA and Hrp (left), and MtNWA and m9
(right). Figure @ (left) overlays two plots in Fig. B, and Fig. B (right) overlays the RMS
values of reconstructed mass distributions. In conclusion, compared to the top quark mass
measurement with MtN WA and Hr, the measurement with MtN WA and mm9 improves the
statistical uncertainty by approximately 10%.

4 FEvent Selection

The event selection criteria (summarized in Tables Mand B) are the same as what was used in
the previous analysis with 2.7 fb~! except: 1), a slight change in the CMIO muon selection
and the Hr and mp9 requirements in the Dilepton channel. The previous 2.7 fb~! top mass
analysis [I] had one less event than the cross section analysis [3] in the Dilepton channel.
Both analyses required the CMIO fiducial not to be overlaped with muon detectors. The
mass analysis required muontype=0 in addition, resulting one less event. For the current
analysis, we removed the muontype=0 requirement.2),a slight change in the rejection of
photon conversion of ee events in Dilepton channel. Before this change we did not have
conversion event rejection for loose-CEM and tight-PHX events, which results in one more
ee events that cross section in Dilepton channel, then we add this rejection, which eliminates
this extra event. As demonstrated in Fig. @ the effect of the two differences is negligible.
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Figure 1: Hr distributions from MC for non-tagged (top) and tagged (bottom) events.
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Figure 2: mpy distributions from MC for non-tagged (top) and tagged (bottom) events.
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Figure 3: Statistical uncertainties of the top quark mass measurement in the Dilepton
Channel using MtNVVA (top), Hr(middle) and mTqy(bottom).
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Figure 4: Statistical uncertainties of the top quark mass measurement in the Dilepton
channel using MtNVVA and Hrp (left) and MtNVVA and mmo fit (right).
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Figure 5: Statistical uncertainties (left: median, right: RMS) of the top quark mass mea-
surement in the Dilepton channel using MtNWA and Hp, and MtNVVA and mmpy.

Table 2: Event selection in the Dilepton channel.

0-tag Tagged
b-tags =0 >0
Leading 2 jets Ep (GeV) > 15 > 15
Missing Er (GeV) > 25 > 25
Hy (GeV) > 200 > 200
MEWA boundary cut (GeV/c?) | 100 < MNWA < 350 | 100 < MNWA < 350
my boundary cut (GeV/c?) 20 < mpy < 300 20 < mpg < 300
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Figure 6: The reconstructed top mass distribution with NWA (top) and the m o dis-
tribution (bottom) with old photon conversion rejection and the muontype=0 requirement
(black) and new photon conversion rejection but without the muontype=0 requirement(red)
using ttop75 PYTHIA Monte Carlo samples.



Table 3: The number of events observed in the Lepton+Jets channel.

CEM | CMUP | CMX | Total
I-tag —= 4 tight jets 951 | 136 | 72 | 459
2-tag 142 61 35 238
2-tag == 3 tight jets (> 0 loose jets) | 40 23 8 71
9-tag == 4 tight jets 76 2% 16 | 118
2-tag > 4 tight jets 26 12 11 49

As we have done in the previous analysis, we define hard boundary cuts in the tem-
plates to keep the probability density functions normalized within the physical region. The
boundary cuts and the y? cut are the same as 2.7 fb~! analysis except that we remove the
Hy boundary cut and add the mpy boundary cut (20 GeV/c* < mpy < 300 GeV/c?) in
the Dilepton channel.

The total number of events observed in the Lepton+Jets channel in various lepton
categories is summarized in Table Bl The total number of events from our analysis is the
same as that from Method II, but we have one more 2-btag CMUP event and one less CEM
event. This difference was shown in our previous analysis [I] and traced to be a slightly
difference missing energy correction. The effect on the mass measurement is studied and
negligible. Table Bl summarizes the sources and expected numbers of background events
in the Lepton+Jets channel that are obtained by scaling to 3.2 fb=! from the Method II
background analysis [B]. We modify the Method II code to match our event selection as
we do in previous analysis [I] and get the number here [6]. The boundary cut and the
x? cut are applied in the estimation. Table B summarises the number of events observed
in the Dilepton channel in various dilepton categories. Table Bl summarises the sources
and expected numbers of background events in the Dilepton channel that are obtained by
applying the results from the 3.2 fb~! top pair cross section analysis [9]. We have one
more ee event than cross section group. We are closely working with cross section group
to understand this event. The boundary cut is applied in the estimation. Tables [ and
demonstrate effects of the boundary cuts and the x? cut in data for the Lepton+Jets and
Dilepton channel, respectively.

5 Period 18 and Period 19 Data Set

We compare 0.5 fb~! of data from Period 18 and Period 19 to 2.7 fb~! of data from Period 0
to Period 17 using events that pass the selection criteria for the current analysis. As shown
in Fig.s [ and B for the Lepton+Jets channel and Fig.s @ and [0 for the Dilepton channel,
kinematic distributions from Period 18 data agree well with those from Period 0-17 data.
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Table 4: The sources and expected numbers of background events in the Lepton+Jets
channel.

1-tag 2-tag
Whbb 21.40 £ 8.95 5.48 + 2.77
Wee/We 19.95 4+ 8.37 1.52 £ 0.74
W LF 14.11 + 5.14 0.34 £+ 0.16
single top 3.34 £ 0.36 1.27 + 0.23
Diboson 4.13 £+ 0.59 0.41 4+ 0.12
QCD 18.32 + 16.64 1.90 £+ 2.64
Total 81.25 + 27.96 10.91 4+ 4.53
tt 264.35 4+ 37.09 | 131.02 £+ 14.05
Mop=175 GeV/c?
0=06.7pb

Table 5: The sources and expected numbers of background events in the Dilepton channel.

0-tag tagged
WW 10.76 £ 1.85 | 0.39 + 0.07
W7 2.58 £0.41 | 0.05 £ 0.01
77 1.62 + 1.28 | 0.11 + 0.09
Wry 0.26 4+ 0.28 0.0 £0.0
DYrr 8.09 + 1.56 | 0.43 £+ 0.08
DYeepu 23.00 = 3.15 | 1.26 +0.17
Fakes 31.19 + 8.86 | 4.53 +1.29
Total 77.50 £9.80 | 6.77 £ 1.31
tt 68.73 £+ 6.75 | 88.39 & 8.18
Mtop:175 GeV/c?
0=06.7pb

Table 6: The number of events observed in the Dilepton channel.
ee | epn | pp | Total
non-tagged | 35 | 79 | 41 | 155

tagged 14 | 42 | 31 87

total 48 | 121 | 72 | 241
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Figure 7: Kinematic distributions in the Lepton+Jets channel.
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Figure 8: Kinematic distributions in the Lepton+Jets channel.
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Figure 9: Kinematic distributions in the Dilepton channel. Histograms and points represent
Period 0-17 data and Period 18 data, respectively.
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5 PERIOD 18 AND PERIOD 19 DATA SET

Table 7: Observed number of Lepton+Jets candidate events before the y? cut, after the y?

cut, and

after x? and boundary cuts.

Pre-x?, pre-boundary cuts

Post-x?, pre-boundary cuts
Post-x?2, post-boundary cuts

‘ 1-tag ‘ 2-tag
486 | 238
378 156
370 154

Table 8: Observed number of Dilepton candidate events before and after the boundary cuts.
| O-tag | Tagged

Pre-boundary cuts
Post-boundary cuts
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Figure 10: Kinematic distributions in the Dilepton channel. Histograms and points repre-
sent Period 0-17 data and Period 18 data, respectively.
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6 Variables for Top Quark Mass Measurements

This section describes variables used in the top quark mass measurements.

Reconstructed Top Mass in the Lepton+Jets Channel: The reconstructed top quark mass
(M}€C) in the Lepton+Jets channel is the same variable that has been used in the 2.7 fb~*
Mtop measurement. The output of a y? minimization for the overconstrained kinematics

of the tt system, and the kinematic fitter gives one number per event (MI¢©) that is used
as an estimator for Mtop- The fitter also gives a x? that can be used to reject poorly
reconstructed events and events not consistent with ¢¢ production and Lepton+Jets decay.
Distributions of MI®© for 1-tag and 2-tag events are shown in Fig. [l

Diget Mass in the Lepton+Jets Channel: The dijet mass from the hadronically decaying W
in the Lepton+Jets channel is the same variable as used in the 2.7 fb~! analysis. In 2-tag
events, we choose the dijet mass from the 2 nontagged leading jets. In 1-tag events, we
select the dijet mass from among the 3 nontagged leading jets that is closest to the W mass.
Distributions of the mass distribution for 1-tag and 2-tag events are shown in Fig. [[2

Neutrino Weighting Mass in the Dilepton Channel: The NWA algorithm is used to form

an estimator (MtNWA) for the top quark mass in the dilepton channel. This was used for
our 2.7 fb~! analysis. We scan a range of top masses. For a given top mass we sum over
parton to jet assignments and integrate over 7 values for each of the two neutrinos allowing
us to solve for the transverse momenta of the neutrinos. We compare the solutions to the
measured values and pick the top mass which yields highest weight. Algorithm is described
in more detail in [2]. Distributions of the NWA mass for non-tagged and tagged events are
shown in Fig.

m g in the Dilepton Channel: In the current analysis, we replace the Hr variable to the

m9 variable. Figure. B shows the mpg distributions for various top quark mass values.
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Figure 11: Reconstructed mass distributions from MC for 1-tag (top) and 2-tag (bottom)
events in the Lepton+Jets channel.
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Figure 12: Dijet mass distributions for 1-tag (top) and 2-tag (bottom) events in the Lep-
ton+Jets channel. The input mass is 170 GeV /c?.
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Figure 13: Reconstructed NWA top mass distributions for non-tagged (top) and tagged
(bottom) events in the Dilepton channel.
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7 Likelihood

For each subsample we have a likelihood term shown in the following equation:

npg—np)2
e = SR )t
s Py (M, vg; Miop, AJgpg) + P (mi°, v2; AjEg)

. Ng + np
=1

where ng and ny, are signal and background expectations and N is the number of events
in the sample, Pg is the signal probability density function and Py, is the background prob-
ability density function. The variable vy is the dijet mass in case of lepton-+jets samples
and mrs for dilepton samples. The first term in the likelihood is present because this is an
extended maximum likelihood, in which the numbers of signal and background events obey
Poisson statistics. The second term in the product expresses the Gaussian constraints on
the background expectation. We use the a-priori estimate nyy and its uncertainty oy, to
improve sensitivity. Shape information is used in the third term where probability density
functions are used to discern between signal and background events and to extract mass
information. Note that the background probability density function Py, is allowed to vary
as a function of Ajpg. We have four terms like this - one for each subsample - multiplied.
We also impose a unit Gaussian constraint on A jpg.

We applied the local polynomial smoothing method [I3] to every event to obtain the
likelihood value for every M;,, and A JES- This enables us to calculate the likelihood value
from Eq. [LT] with particular measured values as a function of M;,, and Ajpg. We then
take a product of these functions during the minimization of the negative log likelihohod.

8 Signal samples

We use PYTHIA Monte Carlo samples to model the signal events. Kernel Density Esti-
mation [T2] is applied to a grid of MC with Mgy, varying from 120 GeV/ c? and 240 GeV /c?
and A ygpg varying from -3 o¢ to +3 oc. A total of 76 mass points are used, with 29 differ-
ent A jgg values at each mass point, corresponding to 2204 total signal points in the grid.
Figures [ and [[H show the 2d Probability Density Functions (PDFs) for the Lepton+Jets
sample at Mgqp = 172 GeV/c? and Ajpg = Ooc. Figures [[6 and [0 show the 2d PDF's for

the Dilepton sample at Mgy, = 172 GeV/c? and Ajpg = Ooc.
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Figure 14: Two-dimensional Probability Density Functions used for Lepton+Jets 1-tag
events at Mo, = 172 GeV/c? and A jpg = Ooc.
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Figure 15: Two-dimensional Probability Density Functions used for Lepton+Jets 2-tag
events at Mo, = 172 GeV/c? and A jpg = Ooc.
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dilepton, 0-tag Signal probability (Mmp =172.0 GeV/c?)
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Figure 16: Two-dimensional Probability Density Functions used for Dilepton 0-tag events
at Miop = 172 GeV/c? and A jpg = Ooc.
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Figure 17: Two-dimensional Probability Density Functions used for Dilepton tagged events
at Miop = 172 GeV/c? and A jgg = Ooc.
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9 Backgrounds

9.1 Backgrounds in the Lepton+Jets channel

The different Lepton+Jets background samples have density estimates derived indepen-
dently. They are stitched together according to their expected weights. The uncertainties
on the number of events across jet bins and lepton categories are added linearly (being
conservative). We assume 100% correlation across W+jets samples and across the 6% lu-
minosity uncertainty on the MC backgrounds. The uncertainties on the backgrounds are
added in quadrature otherwise. We model QCD by using non-isolated leptons (we anti-
select these leptons by requiring isolation > 0.2). Figures [[§ and [[9 show the combined 2d
PDFs used for background events.
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Figure 18: Two-dimensional Probability Density Functions used for 1-tag Lepton+Jets
background events.

9.2 Backgrounds in the Dilepton channel

The dilepton backgrounds fall into three main categories: Diboson, Drell-Yan, and Fakes
(or QCD). The Diboson background is estimated with the PYTHIA Monte Carlo samples
(itopww, itopwz and itopzz). The Drell-Yan background is estimated with the 'matched’
ALPGEN+PYTHIA Monte Carlo samples. They include full Drell-Yan processes except
for the very low Z mass (8 — 20 GeV/c?). Data samples with the high pr lepton triggers
(the same samples that are used to perform the final fit) are used to obtain the estimate of
number of fake events. Events with one lepton and one or more “fakeables” are selected.
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The fakeable is then interpreted as a lepton. This implies that the missing energy as well
as Fp sum will be corrected if the fakeable is a muon. If the fakeable object concerned
is to be interpreted as an electron, the closest jet within cone of 0.4 is removed from the
jet collection. The dilepton selection is applied to events prepared this way. We sum the
fake rates of the fakeable objects from events passing the dilepton selection to obtain the
estimate of the total number of events entering our dataset. We reconstruct the top mass
with Neutrino Weighting Algorithm to obtain the background shape. Note that a single
event can enter the sum multiple times if more than one fakeable objects are present in the
event. Figures B(J and Il show the 2d Probability Density Functions for backgrounds in the
Dilepton channel.
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Figure 19: Two-dimensional Probability Density Functions used for 2-tag Lepton+Jets
background events.



24 9 BACKGROUNDS

dilepton ,0-tag Background probability |

m’o‘ 00 : 0.16
?3 180 — 0.14
o 160 0.12
E 140 —f 01
120 _f —0.08
100 = —0.06
] —0.04
% _E —lo.02

60

100 120 140 160 180 200 220 240
mieco (GeV/c?)

Figure 20: Two-dimensional PDF used for 0-tag Dilepton background events.
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Figure 21: Two-dimensional PDF used for tagged Dilepton background events.
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10 Blind samples

Results from the blind tests are shown in Fig. B2 for the combine fit, in Fig. B3 for the
Lepton+Jets channel, in Fig. B4 for the Dilepton channel, and in Fig. for the Dilepton
channel with the mmqy variable only. The residuals are consistent with no bias.
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Figure 22: Blind samples: pull widths and residuals for the combined fit.

11 Bias checks

To investigate possible biases in our method, we run checks with various Mtopand AJES
values. For each point, the background pseudodata is drawn with JES having the same value
as the signal pseudodata. The number of background events is obtained by applying the x?2
cut and the boundary cut. The number of signal events is obtained using the theoretical
cross section at Myop=175 GeV/c?, o = 6.7 pb. Uncertainties are given by results from
the bootstrap method, described in Ref. [§]. The A JES values in the plots are given by the
color scheme shown in Fig. We present fit results using Ajpg = 0 only, since fit results
with other A jpg values are highly correlated to these values.

The most important plots are the bias residuals, shown in Fig. The measurements
from the combined fit, the Lepton+Jets channel and the Dilepton channel are consistent
with no bias. However, for the Dilepton channel with mp9 only, we have an average bias
of —0.26 4+ 0.10 GeV/c? and we apply this correction to the Dilepton mass measurement
with mT9 only. The pull widths are shown in Fig. B8 They are defined as the RMS of the
pull distributions, which use asymmetric uncertainties. Pull widths are near to but slightly
larger than unity for the Lepton+Jet fit and the combined fit. We correct the statistical
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Figure 23: Blind samples: pull widths and residuals for the Lepton+Jets fit.
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uncertainty of the top mass measurement by the average pull width. The bias residuals
and pull widths for the jet energy scale are shown in Fig.s and B0, respectively. The
uncertainty on the fitted A jpg value needs a small correction (about 3 %). Figures Bl and
show the expected statistical uncertainties estimated by pseudo experiments.
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Figure 25: Blind samples: pull widths and residuals for the Dilepton fit using m—9 alone.

Figure 26: Color JES legend
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Figure 27: Bias in the fitted top quark mass for Lepton+Jets only fit (top left), Dilepton
only fit (top right), combined fit (bottom left) and Dilepton only fit using mp9 (bottom
right). Lines represents fit to constants using JES = 0.
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Pull widths: Dilepton
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Figure 28: Width of the pull distribution for fitted top quark mass for Lepton+Jets only
fit (top left), Dilepton only fit (top right), combined fit (bottom left) and Dilepton only fit
using m g (bottom right). Lines represents fit to constants using JES = 0.
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Figure 29: Bias in Ajgg for Lepton+Jets only fit (top) and combined fit (bottom). Lines
represent fits to constants using JES = 0.
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Figure 30: Width of the pull distribution for Ajpg for Lepton+Jets only fit (top) and

combined fit (bottom). Lines represent fits to constants using JES = 0.
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Figure 31: Expected statistical uncertainties (RMS) in the top quark mass measurement
for Lepton+Jets only fit (top left), Dilepton only fit (top right), combined fit (bottom left),
and Dilepton only fit using m79 (bottom right).
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Median Uncertainty: Lepton+Jets Median Uncertainty: Dilepton
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Figure 32: Expected statistical uncertainties (median asymmetric errors) in the top quark
mass measurement, for Lepton+Jets only fit (top left), Dilepton only fit (top right), com-
bined fit (bottom left), and Dilepton only fit using m79 (bottom right).
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12 Systematic Uncertainties

We examine a variety of effects that could systematically shift our measurement.

Residual Jet Energy Scale: The method of using the W resonance to calibrate the jet energy
scale depends on two assumptions. First we assume that different effects contribute to the
unknown systematic shift in such a way that jets of different momenta and pseudorapidities
are all shifted by a common fraction of oc. We also assume that shifts are 100% correlated
as a function of the jet pr. That is we assume that all information about the systematic
miscalibration of b quark jets (generaly high in pr) is contained in the shift of the W
daughter jets (at medium and low pr). We test how the measurement behaves when these
assumptions are broken and compute the residual JES uncertainty. We prepare two sets of
pseudodata. In the first set we increase and decrease the size of each jet energy scale effect
up and down by 1 o. This breaks the first assumption as the separate JES contributions
will not have the same effect on jet energies as a function of pr and n as their sum in
quadrature. To account the systematics from fully correlated jet energy scale, we breaked
L7 systematics with five independent eigenvector as described in our previous analysis. We
varied this eigenvector up and down by 1 o.

The residual jet energy scale systematic uncertainty for the combined and Lepton+Jets
only fits is constructed by adding in quadrature half differences of pseudoexperiment results
where the absolute, relative, underlying energy and splash out energy scales as well as the
q; variables have been increased and decreased by 1 o. For the Dilepton-only measurement
which has no in situ JES calibration we use half difference between pseudoexperiment
results where the out-of-cone energy scale has been varied instead of the g; variables. In
all fits the pseudoexperiments generated with increased and decreased pileup energy scale
fit slightly lower than nominal therefore the base pileup uncertainty is taken to be half of
the largest shift from the nominal. The total residual JES uncertainty in the combined fit
is 0.68 GeV/c? in combined fit, 0.66 GeV/c? in Lepton + Jets only fit, 3.04 GeV/c? in the
Dilepton only fit and 2.58 GeV /c? in Dilepton only using mmy fit.

b-jet Energy Scale: We vary the energy of b jets, which have different fragmentation than
light quark jets, as well as semi-leptonic decays and different color flow, resulting in a b-JES
systematic.

Initial and Final State Radiation: Effects due to uncertain modeling of initial-state radi-
ation (ISR) and final-state radiation (FSR) are studied by extrapolating uncertainties in
the pr of Drell-Yan events to the ¢t mass region, resulting in radition (ISR and FSR)
systematics.

Generators: Comparing pseudoexperiments generated with HERWIG and PYTHIA gives
an estimate of the generator systematic. We compare HERWIG (otopls) and PYTHIA
with input values of Mgy, = 175.0 GeV/c?. The differences are 0.72 GeV/c? for the

Lepton+Jets only fit, 0.46 GeV /c? for the Dilepton only fit, 0.74 GeV /c? for the combined
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fit, and 0.22 GeV/¢? for Dilepton only fit using mpy.

Parton Distribution Functions: We evaluate PDF (parton distribution functions) system-
atics by reweighting the ttkt75 sample again. We compare different groups (CTEQS5L
vs MRST72) and take the absolute difference as a systematics. We also compare Agep
(MRST72 vs MRST75) and again take the absolute difference as a systematic. Finally,
we compare the 20 4 /- eigenvectors from CTEQG6M, taking half of the difference between
the +1 o and -1lo shifts for each eigenvector pair. For the Lepton+Jets measurement,
we find systematics of 0.10 GeV /c? for the different groups, 0.06 GeV/c? for the different
QCD scales, and 0.13 GeV/c? for the different eigenvectors, giving a total systematic on
PDFs of 0.17 GeV/c%. For the DIL measurement, the numbers are 0.17 GeV/c? for the
groups, 0.36 GeV/c? for the QCD scales and 0.27 GeV/c? for the eigenvectors, giving a
total PDF systematic of 0.48 GeV/c?>. For the combined measurement, we find system-
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Figure 33: Results from reweighting ttkt75 for PDF systematics for L+J-only PEs (top left),
DIL-only PEs (top right),combined PEs (bottom left) and DIL-only-using-mmg(bottom
right).
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atics of 0.12 GeV/c? for the groups, 0.10 GeV/c? for the QCD scales, and 0.11 GeV/c?
for the different eigenvectors, resulting in a combined systematic of 0.19 GeV/c?. For the
Dilepton only using mpg measurement, we find systematics of 0.21 GeV /c? for the groups,
0.36 GeV/c? for the QCD scales, and 0.22 GeV/c? for the different eigenvectors, resulting
in a combined systematic of 0.47 GeV/c?. Summary plots for the PDF studies are shown
in Figure B3

Gluon fusion (gg): We test the effect of reweighting MC to increase the fraction of ¢ events
initiated by gg (versus qq) from the 6% in the leading order MC to 20%.

Lepton Energy Scales: Systematics due to lepton energy scales are estimated by propagating
1% shifts on electron and muon energy scales.

Background: Background composition systematics are obtained by varying the fraction of
the different types of backgounds in pseudoexperiments. For Lepton+Jets backgrounds,
varying Q2 of background events results in a background shape systematic, and using
a different model for QCD events gives an additional QCD modeling systematic. For
Dilepton backgrounds varying the composition of the Drell-Yan sample between low and
high jet multiplicities gives one systematic effect. We also shift the fake model in ways
expected to maximally correlate with the reconstructed mass.

Monte Carlo Statistics: We quote the uncertainty on our bias checks as a systematic due
to limited statistics of the signal Monte Carlo samples, yielding 0.06 GeV /c? for the Lep-
ton+Jets and combined measurements, 0.09 GeV/c? for the Dilepton measurement, and
0.10 GeV/c? for the Dilepton measurement using mmg. For the background MC statictics,
we use the bootstrap method where only the background samples are bootstrapped. We
have 0.05 GeV/c? for the Lepton+Jets measurement, 0.09 GeV /c? for the combined mea-
surement, 0.31 GeV/c? for the Dilepton measurement and 0.31 GeV/c? for the Dilepton
measurement using.

Pileup: We estimate corrections and systematic uncertainties due to the difference in the
instantaneous luminosity distribution between Monte Carlo samples and data. The estima-
tion is done by studying the dependence of the fitted top quark mass on the number of z
vertices (N) in the Monte Carlo events. We group ttop75 Monte Carlo events based on N,
and extract the top quark mass as a function of V.. As shown in Fig. B4l there is a sizable
N dependence in the Dilepton fit and the Dilepton fit with mT9 only, while there is no such
dependence in the Lepton+Jets and combined fits. The difference in < N, > between data
and ttop75 MC sample corresponds to the mass difference of 0.33 GeV /c? and 0.16 GeV /c?
in the Dilepton fit and the Dilepton fit with m9 only, and we subtract them from our final
fits. No corrections are made for the Lepton+Jet and combined measurements. Systematic
uncertainties come from the ttop75 MC statistical uncertainty and they are 0.24 GeV/c?,
0.34 GeV/c%, 0.19 GeV/c?, and 0.18 GeV/c? for the Lepton+Jets, Dilepton, combined fit,
and the Dilepton fit using mpy. Figure Bd shows the dependence of Ajpg on N, and we
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will use the slope to calculate the final result of A jpg for Lepton+Jets and Combined fits.

Residuals: Lepton+Jets Residuals: Dilepton
176 X7 ndf 0.03778/2 [ 7 ndf 134572
n Prob 0.9813 179 Prob 0.5103
C po 175.1% 0.2897 L po 174.4 ¢ o.43§4
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Figure 34: Dependence of the fitted top mass on the number of z vertices for the Lep-
ton+Jets fit (top left), the Dilepton fit (top right), the combined fit (bottom left), and the
Dilepton fit using mp9 only (bottom right).

Color Reconnection: We accounted the color reconnection effect by comparison between
tune Apro (otop45) and tune ACRpro (otop46) where tune Apro is similar tune with
nominal sample using Pythia v6.4.19 instead of v6.2.16 and tune ACRpro is including
color reconnection. Because of limited statistics of samples, estimated statistical errors
are higher than the difference between two samples for all of measurement. Therefore we
accounted its errors as systematics. We have 0.34 GeV /c?, 0.38 GeV/c?, 0.55 GeV /c?, and
0.68 GeV /c? for the Lepton+Jets, Dilepton, combined fit, and the Dilepton fit using mm9.

Table @ lists Monte Carlo samples used to study systematic uncertainties, and Table
summarizes the systematic uncertainties.
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Figure 35: Dependence of JES on the number of z vertices. L+J-only PEs (top), combined
PEs(bottom).



39

Table 9: Samples used to examine systematic uncertainties. Masses are in units of GeV/c?
and A jgg are in units of oc.

S | LJ LJ DIL Comb | Comb | DIL
ampie Miop | AsES | Miop | Miop | AJES | T2
Mtop
Pythia Mo, =175 175.09 | -0.03 | 175.21 | 175.11 | -0.02 | 174.75
(ttkt75)
Herwig  Miop=175 | 174.37 | 0.34 175.67 | 174.37 | 0.36 174.53
(otopls)
otop03 IFSR 175.19 | 0.16 175.45 | 175.07 | 0.18 174.45
otop04 IFSR 175.05 | 0.02 175.89 | 175.19 | 0.03 175.59
otop44(S0pro) 173.04 | 0.13 174.30 | 173.08 | 0.17 171.89
otop45(Apro) 175.36 | 0.02 175.43 | 175.36 | 0.03 175.19
otop46(ACRpro) 175.08 | 0.07 175.41 | 175.08 | 0.08 174.80
otop47(NOCRpro) 173.23 | 0.32 174.84 | 173.17 | 0.38 172.71
ttkt75 +L1 175.14 | 0.16 175.81 | 175.13 | 0.17 175.18
ttkt75 -L1 175.18 | -0.13 | 174.45 | 175.13 | -0.20 | 174.03
ttkt75 +L5 175.49 | 0.51 177.16 | 175.49 | 0.52 176.62
ttkt75 -L5 174.64 | -0.54 | 173.04 | 174.62 | -0.53 | 172.72
ttkt75 +L7 174.79 | 0.76 177.27 | 174.75 | 0.78 176.17
ttkt75 -L7 175.44 | -0.80 | 173.11 | 175.44 | -0.79 | 173.33
ttkt75 +L4 175.14 | 0.00 175.19 | 175.12 | 0.01 174.71
ttkt75 -L4 175.19 | -0.08 | 175.08 | 175.19 | -0.07 | 174.70
ttkt75 +L6 175.12 | 0.05 175.46 | 175.12 | 0.06 174.95
ttkt75 -1.6 175.22 | -0.14 174.84 | 175.20 | -0.13 174.50
ttkt75 +L8 175.09 | 0.10 175.53 | 175.07 | 0.12 174.93
ttkt75 -L8 175.22 | -0.18 174.74 | 175.20 | -0.16 174.35
ttkt75 +q1 174.80 | 0.70 177.07 | 174.76 | 0.73 176.04
ttkt75 —qq 175.49 | -0.76 | 173.32 | 175.49 | -0.74 | 173.50
ttkt75 +qo 174.87 | -0.11 174.62 | 174.81 | -0.08 | 173.83
ttkt75 —qo 175.46 | 0.04 175.67 | 175.46 | 0.05 175.38
ttkt 75 +qs 175.18 | -0.14 174.73 | 175.14 | -0.12 174.26
ttkt75 —qgs 175.20 | 0.06 175.50 | 175.19 | 0.08 175.12
ttkt75 +q4 175.26 | -0.08 | 175.09 | 175.23 | -0.07 | 174.65
ttkt75 —qqy 175.03 | 0.03 175.22 | 175.02 | 0.04 174.75
ttkt75 +qs 175.28 | -0.02 175.25 | 175.24 | 0.00 174.84
ttkt75 —gs 174.98 | -0.05 | 175.09 | 174.99 | -0.04 | 174.84
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Table 10: Summary of systematic uncertainties. All numbers have units of GeV/c?.
Systematic (GeV/c?) | Combination | LJ | DIL | DIL-mpg only

Residual JES 0.68 0.66 | 3.04 2.58
Generator: 0.74 0.72 | 0.46 0.31
PDFs 0.19 0.17 | 0.48 0.47

b jet energy 0.17 0.18 | 0.21 0.21
Background shape 0.21 0.25 | 0.12 0.36
gg fraction 0.04 0.00 | 0.01 0.32
Radiation 0.13 0.14 | 0.34 0.57

MC statistics 0.10 0.09 | 0.34 0.34
Lepton energy 0.06 0.03 | 0.28 0.56
Multiple Hadron Interactions 0.19 0.24 | 0.34 0.18
Color Reconnection 0.34 0.38 | 0.55 0.68
Total systematic 1.14 1.14 | 3.24 2.92
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13 Fit Results

The likelihood contours for the combined measurement and Lepton+Jets measurement are
shown in Fig.s and B, respectively. The likelihood profiles for the Dilepton measure-
ments with two varialbes (NWA and mT9) and mpg only are shown in Fig.s B and B9,
respectively. The fitted results with statistical uncertainties are

Mop = 171.675155 GeV/c? (Combined)
Ajgg = 0.2670330¢

Mtop = 172242% G'eV/C2 (Lepton+Jets channel)
Ajgs = 0.2555310¢
Mtop = 169.697257 GeV/c? (Dilepton channel)

Miop = 167.93737% GeV/c? (Dilepton channel with mT9 only)

:iCPF." Rrelﬁmilnary$-2il‘b'1 L | -
166 168 170 172 174

L
176
M, (GeV/c?)

Figure 36: Likelihood contours for the combined fit.
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Figure 37: Likelihood contours for the Lepton+Jets fit.
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Figure 38: Likelihood profile for the Dilepton fit.
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14 Cross checks

We run a variety of cross-checks on our measurements. Results are shown in Tables [TT],
2 M3 04 M3 and [[@ Uncertainties are uncorrected for pull widths. As in our previous
LJ measurement, removing the JES prior does not significantly affect our results (the prior
does not play a role in the Dilepton measurement). Removing the background constraint
also does not change the central value significantly, though as in the previous analysis,
the 1-tag Lepton+Jets measurement prefers more background than expected and the 2-
tag Lepton+Jets measurement prefers no background. The Dilepton measurements prefer
slightly less background than expected from the prior. Note that the 0 error indicates that
data shape does not have enough power to constrain the background component within the
physical region, and no background constraints for all of seperated samples.

We examine the p-value of our fits by comparing the measured symmetrized uncertain-
ties with those expected from pseudoexperiments. Results are shown in Fig. B0l We use
Pseudoexperiments with M¢o,= 172 GeV/ ¢® and Ajpg = 0 oc.

Figures B, B2 and B3 show distributions out of the kinematic Lepton+Jets fitter, com-
paring data to the sum of the fitted number of signal and background expectations using
the full background model. There is a wide range of agreement (or disagreement) from the
very good to the very bad, with the py of the tf system and the pr of the b jets having
very poor KS test probablities. The signal model used in these plots is Pythia MC at
Mtop=172 GeV/c.

Figures B4 and B3 show distributions of the Dilepton fit with NWA, comparing data to
the sum of the fitted number of signal and background expectations using the full back-

A -log(L)
w
a0

CDF Il Preliminary 3.2 fb”

N
III|IIII|IIII|IIII|IIII|IIII|IIII|III

56 158 160 162 164 166 168 170 172 174 176 178
(GeV/c)

top

Figure 39: Likelihood profile for the Dilepton fit using m 9 only.
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Table 11: Cross-checks on the data
Mo (GeV/c?) Ajgs (oc)
Comb LJ 1tag ng LJ 2tag n, LJ 1tag n, LJ 2tag n,
DIL Otag ny, DIL tagged ny, DIL Otag n, DIL tagged n,
' LJ Mtop(GeV/Cz) AJES (O’c)
Fit type 1tag ng 2tag ng 1tag ny 2tag ny
DIL Miop(GeV/c?)
Otag n, tagged ng Otag n, tagged n,
DIL(TTLTQ) Mtop (GeV/CZ)
Otag ng tagged ng Otag ny, tagged n,
1717+ 1.4 0.26 7037
Combo 292.9 1339 146.7 T139 77.9 T8 9.2+28
89.0 113 82.1 797 67.7 132 6.44+1.3
L3 1722+ 1.5 0.25 751
Nominal 291.9 *329 146.6 7159 78.7 1118 92428
DIL +141369‘6 2T +9.7 +9.2 -
89.6 t122 82.1 +37 67.3 132 6.4+1.3
DIL(mT?2 only) 167.8 T -
V) 83,0 H146 81.4 97 71.3 193 6.5+ 1.3
171.6 712 0.29 7035
Combo 292.8 7229 146.7 1153 77.9 Tiis 9.24+2.8
89.0 T3 82.1 758 67.7 753 6.4+1.3
L] 172.2 712 0.27 7931
No JES prior 291.8 1359 146.6 7139 78.8 1118 9.2+28
DIL g O or
89.6 t123 +483.1 1 67.3 132 6.4+1.3
167.8 735 -
DILmT2 only) | gq ) +140 81.4 197 71.3 193 6.5+1.3
1715 713 0.25 7050
Combo 297.4 1208 1540 T128 72.6 1223 0.0 730,
128.8 T2 87.0 757 21.2 T183 0.0 5,
L] 1721+ 1.5 0.25 737
No bkgd prior 295.3 T35 +1zi4.o et 74.7 1323 0.0 7%,
DIL +19.1569.7 T ) 4o fs4 +2.4
129.4 155 +4817.0 o 20.6 +184 0.0 24,
167.2 7% -
DIL(mT2 only _ =39 _ . .
( )| 1152 218 87.0 £37 34.8 1223 0.0 9,




Table 12: More cross-checks on the data
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Fit type LJ Mtop(GeV/C2) AJES (O‘C)
1tag ng 2tag ng 1tag n, 2tag ny
DIL Mtop(GeV/c?)
Otag ng tagged ng Otag n,  tagged n,
L 168.7 727 0.78 7080
1-tag LJ 293.9 1359 - 77.0 1143 -
L 174.3 T5; oo 0.05 7033
2-tag LJ - 146.4 +129 - 9.3+28
DIL 161.7 755 -
0-tag DIL 88.6 *14-2 - 68.0 754 -
159.2 753 -
0-tag DIL | DIRMT2 0nly) | g 4145 - 711492 ;
DIL 1713 £33 -
Tagged DIL - 82.1 T3¢ - 6.4+1.3
171.9 713 -
Tagged DIL, | D1LmT2 only) - 81.3 £97 - 6.5+1.3
172.3 139 0.16 *0-35
} LJ 1200 ar () 496 11670 a1
Electron-only LJ 166.2 7195 85.0 g9 44.8 7127 0.0 TZg,
172.0 732 0.31 9%
LJ +18.1 >2 +8.6 +15.3 049 +2.2
Muon-only LJ 129.1 574 69.0 Tgg 299 D05 0.0 25,
173.3 52 0.23 1042
LJ +18.4 >0 +8.6 +15.5 047 +3.8
+ lepton LJ 134.6 7176 69.0 Tgg 344 700 0.0 T2g,
171.0 739 0.23 705
_ LJ 1198 oy () 495 165 W L2
lepton LJ 1610 —~19.0 840 8.8 400 —15.4 00 ——0.0
165.4 707 -
DIL DIL 0.0 =7 1717 373 485185 5941.3
ee Y ——0.0 0 35 D 6.2 : :
166.4 T57 -
mumu DIL bIL 0.0 %6, 257735  5L78D 65413
172.5 732 -
emu DIL DIL 26.4 11058 373150 60.9+9.0 63+1.3
DIL(mT2 only) 158.8 7’ -
ce DIL Y0026, 932 48505 63+1.3
167.6 752 -
mumu DIL | PIROTZ0nly) g 0 vas 70 50 v00 517108 a1
DIL(mT?2 only) 173.5 75 ]
emu DIL Y143t 36209 687791 6.6+1.3
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Table 13: Even more cross-checks on the data

171.6 *17 0.01+0.35
coubo |13 o g a2 0,
oy LEESE I 0052036
First 1.9 fb™! 173.7 T34 100.0 7% 60.3 1138 0.0 122,
- 172.2 730 I
61.6 *128 61051 224 HSL 0.0 22
DIL(mT?2 only) +119§(§.9 =23 +8.1 1206 +3.0
40.7 H190 610 t81 433206 00 39
169.4 757 1.13 759

Combo 125.6+*_‘8}§;g 54.0 %% 10.45162%}0 0.0 $g§0
66.0 *3; 26.0 ¥4 0.0 192 (.0 12
12.1 St 4.8 0.0 U5 0.0
L3 171.7 75§ 1.11 Z576
Last 1.3 fb™! 123.0 7135 540 77T 13.0 2L 0.0 772,
164.6 £ 3.9 -
DIL 66.0 55 2603 0.07*%%, 0.0 *%,
164.8 717 -
DIL(mT2 only) |6 8 260134 00170, 00173,
1745 153 —0.24 T4
Combo 309 3¢ 140 fH 151188 0.0 12,
15.0 *42 140t 00*%, 00720,
O 174.6 737 —0.17 1555
p0 data 308 12t 140fE 152188 0 12,
DIL 172.6 £ 5.8 -
15.0 12 H}il.o o 0.0, 0.0,
173.3 75 -
DIL(mT2 only) | o412 “Plg a1 gp+s1 g+
8.1 4.8 0.0 0.0
171.6 738 0.36 7077
Combo 208 127 21.0F4) 2137132 0.0 5,
5.8 161 9.4 9 112459 (0.6 4]
T 050 70T
pl-p4 data LJ 29.0 +96 910 49 9220 492 00 8
o 161.3 752 i |
6.7 to4 9.0 ¥4 103181 1.0 38,
158.4 T109 -
DIL(mT?2 onl -l
( A B2 100133 17.0 145 0.0 17,




Table 14: Even more cross-checks on the data, one more time

170.4 32 1.03 +570
Combo 30.6 T35 13.0 T35 44750, 0.0 Tl
100%5 20457 00728, 0.0,
+4.4 +0.69
LJ —15’57.;1 T2 139 +61.606 s
DIL +0]§AILED +0.5 +3.5 ) +1.7
0.0 %3, 0.07%%2, 10033 2017
FAILED -
DILT2 only) | g 405 " 00403 10085 2.0 +138
165.5 732 -
Combo 140555 90752 005, 0075,
0.0 T, 5073 4.0 0.0 1%,
+4.4 +0.73
LJ J}g?ﬁ o0 483 +:9.é04 T
p8 data 140 4L 9.0%32 00 *8, 00+
4.5 107 2.7 0 0.0
146.9 717 -
DIL 0.0 715, 32.508 264072 00713,
PILmT2only) g g +05 50428 40428, 0072,
175.7 727 —0.45 0%
Combo 11.1%35; 3.0 %% 8.9;03(;);* 3.0;1;;
90775 5.0 Iul:f)) 0.0 T200 (JJF.U()%__'O.0
p9 data 0.0 %3, 0.0 %2, 200 %% 6.0 *28
173.2 73375 -
DIL 9.0 ¥3, 5025 00 L5 0.0,
FAILED -
DIL(T2 only) | 5 405 =7 g +05 o433 50420
171.6 711 —0.40 T952
Combo 28.0 ¥26 140t 0.0, 00729,
0.0 3, 80732 80%2 007y,
T46 — F0.68
LJ 4}57.(:3[.7 0 +4g53 070
p10 data 28.0 726 14.0 ¥4 0.0 42, 0.0 T2,
172.8 7557 -
bIL 0.0 5, 80 B80T 00T,
160.2 715 -
DIL(mT?2 onl —8.2
( ) | 59 65 8032 41169 00 fL8

47
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Table 15: Even more cross-checks on the data, one more time

165.4 49 —0.12 *97%
Combo 25.0 ¥23 150 *42 0.0 137, 0.0,
11.0 725 8032 002, 0071,
L] 164.6 71 —0.16 7973
pll data 25.0 2% +195(.)0 20038, 0.0t
1730 _1‘1.2 -
bIL 11.0 27 80132 005, 0015,
DIL(mT2 only) 156.8 Ty7" ;
9.0*22 80*32 20*7, 0.07*7,
179.7 779 —0.06 7%
Combo 2.7 50, 807132 1237*81 003,
10.0 725 9.0%32 0.0 %, 001,
L] 174.0 757 0.01 15
p12 data 3.7 7, +879 2011318 0.0 T,
1822 77 -
DIL 10.0 +32 9.0 30,0100, 0.0 14,
DIL(mT2 only) 1903 Tigy i
34756 90133 6675 00109,
1772 738 0.65 T0%3
Combo 11.4 187 94445 146 757 26 37
79732 46125 31745 04 3
0 179.8 7572 0.74 T0.95
pl3 data 10.8 *5) 92 f37 152750 28 %58
168.6 5 -
DIL 10.2 44 5.0 26 089, 0.0 729,
167.0 T3¢ -
DIL(mT2 only) |, o T2 50426 05466 0034,
189.4 T11°8 0.06 775
Combo 72738 0023, 087129, 1.071H,
0.0 F5, FAILED 2.0 1§ FAILED
L FAILED 0.18 700
pl4 data 0.0 *%, 0.0, 80732 1.0}
FAILED -
bIL FAILED FAILED FAILED FAILED
FAILED FAILED

DIL(mT?2 only)

FAILED FAILED

FAILED FAILED



Table 16: Even more cross-checks on the data, one more time
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ground model. Generally, the distribution is well expected by our understanding. However
pr of the tf, invariant mass of dilepton, and number of jets had disagreement.

For the cross check, we make similar distribution with different samples, ISR+FSR more
(Fig.s A6, @7, A8, @9 and B) and less (Fig.s Bl B2, B3, B4 and B3), and also Herwig sample
(Fig.s BB BT B, B9 and Bl). Because we use 175 GeV/c? top mass for this sample, mass
observables are not quite well agree but, we can look better agreement of P, of ¢ using
ISR+FSR more sample and Herwig sample.
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Figure 40: Expected errors and probability to get values equal to or smaller than the
measured errors for the Lepton+Jets fit (top left), the Dilepton fit (top right), the Dilepton
fit using mTq9 only (bottom left) and the combined fit (bottom right).
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Figure 41: Distributions for the Lepton+Jets fit (1), PYTHIA Mo, =172 GeV/ c?
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Figure 44: Distribution of the Dilepton fit (1), PYTHIA Mq,=172 GeV/ c?
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Figure 46: Distributions for the Lepton+Jets fit (1), PYTHIA ISR FSR more
Mtop=175 GeV/c?
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Figure 47: Distributions for the Lepton+Jets fit (2), PYTHIA ISR FSR more

Mtop=175 GeV/c?
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Figure 48: Distributions for the Lepton+Jets fit
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Figure 49: Distribution of the Dilepton fit (1), PYTHIA ISR FSR more Mq,=175 GeV/ ?
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Figure 56: Distributions for the Lepton+Jets fit (1), Herwig Myop=175 GeV/ ?
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Figure 57: Distributions for the Lepton+Jets fit (2), Herwig Myqp,=175 GeV/ ?
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Figure 58: Distributions for the Lepton+Jets fit (3), Herwig Myqp,=175 GeV/ c?



Entries/(16.7 GeV/c?) Entries/(10.0 GeV) Entries/(16.7 GeV/c?)

Entries/(10.0 GeV)

NWA Mass Otag H; Otag

45 CDF Run Il Preliminary (3.0 fb™) s 45F CDF Run Il Preliminary (3.0 fb™)

—e— Data 3 E —e— Data

[ Herwig M, = 175 GeV/c? =] = [ Herwig M, = 175 GeV/c?
o E

B Fake g 35 W Fake

[l Diboson o = [l Diboson
= =

[ Drell Yan E = [ Drell Yan

| T
‘?0 150 200 250 300 350 300 400 500 600 700 800

Mass (GeV/c?) H; (GeV)
Missing Transverse Energy Otag mT2 Mass Otag
E CDF Run Il Preliminary (3.0 |b") “G C CDF Run Il Preliminary (3.0 fb")
F —e— Data S L —e— Data
30— > C
E [ Herwig M, = 175 GeV/c® 8 50: [ Herwig M, = 175 GeVic?
250 B Fake : 40 - I Fake
E [ Diboson g o [l Divoson
20; [ Drell Yan .é 30i [0 Drell Yan
E £ 30p
15 w C
10 - 200
3 100
E & —— b
20 40 60 80 100 120 140 150 200 250 300 g50
MET (GeV) Mass (GeV/c")
NWA Mass 1tag H; 1tag
CDF Run Il Preliminary (3.0 |b") % 25 CDF Run Il Preliminary (3.0 fb")
—e— Data —e— Data
o
[ Herwig M, = 175 GeVic® Q [ Herwig M, = 175 GeVi/c®
B e g 2 Il Fake
[ Diboson .3 [l Divoson
[ Drell Yan E 15 [0 Drell Yan

10

200 250 300 350

3 300 400 500 600 700 800
Mass (GeV/c")

H; (GeV)

Missing Transverse Energy 1tag mT2 Mass 1tag

E CDF Run Il Preliminary (3.0 |b") “G 35 £ CDF Run Il Preliminary (3.0 fb")
18 —e— Data S F —e— Data
16E [ Herwig M, = 175 GeV/c® & 30 [ Herwig M, - 175 GeV/c®
14 - - Fake : 25 = - Fake
12; [ Diboson % E [l Divoson

E [ Drell Yan 2 20 [0 Drell Yan
10 'E E

E I w15

3 10~

E E [ B R

80 100 120 140 200 250 300 g50
MET (GeV) Mass (GeV/c")
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Figure 60: Distribution of the Dilepton fit (2), Herwig Mq,=175 GeV/ ?
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Figures 1] and 62 show the 1d templates in Lepton+Jets data with best fit 1d shapes
overlaid on top. The dilepton data is shown in Figures and B4
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Figure 61: One-dimensional 1tag LJ data templates with PDF's from Mtop: 172.0 GeV/c?
and full background models overlaid. The expected number of events is set to the value
from the combined, constrained L+J fit.
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Figure 62: One-dimensional 2tag Lepton+Jets data templates with PDFs from Mtop:

172.0 GeV/c?* and full background models overlaid. The expected number of events is set
to the value from the combined, constrained Lepton+Jets fit.
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One-dimensional Otag Dilepton data templates with PDFs from Mtop
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set to the value from the combined, constrained Dilepton fit.

Figure 63:
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Figure 64: One-dimensional tagged Dilepton data templates with PDFs from Mtop:

169.0 GeV/c? and full background models overlaid. The expected number of events is
set to the value from the combined, constrained Dilepton fit.
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15 Conclusions

We present the measurements of the top quark mass using 3.2 fb~! of data. They are the
simultaneous measurement in the Lepton+Jets and Dilepton channels, the measurement in
the Lepton+Jets channel, the measurement in the Dilepton channel, and the measurement
in the Dilepton channel using mm9o alone. Mypresults in the Dilepton channel and the
A jpg measurements are corrected for the top mass shift that comes from the difference in
the instantaneous luminosity distribution between the Monte Carlo sample and data. The
statistical uncertainties are scaled up by the pull width for all the measurements.

The top quark mass measurements are:
Miop = 1717 12 (stat 4 jes.) & 1.1 (syst.) GeV/c?

= 171.7 £ 1.0 (stat.) £ 1.5 (syst.) GeV/c?
= 171.7 71§ GeV/c* (Combined)

Miop = 1722 12 (stat 4 jes.) & 1.1 (syst.) GeV/c?
= 17224 1.1 (stat.) & 1.5 (syst.) GeV/c?
= 172.24+ 1.9 GeV/c* (Lepton+Jets Channel)

Miop = 169.3 +2.7 (stat.) + 3.2 (syst.) GeV/c?
= 169.3 +4.2 GeV/c* (Dilepton Channel)

Miop = 168.0 Ti (stat.) £ 2.9 (syst.) GeV/c?
= 168.0 ¥29 GeV/c* (Dilepton Channel with mp9 alone)

The Jet Energy Scale measurements are:

Ajpg = 0.24 T331 (stat. + M, only) o¢ (Combined)

Ajgg = 0.24 1935 (stat. + My, only) oc (Lepton+Jets)
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