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Methods and Highlights

Collaboration Opportunities

Bring new experimental paradigms and capabilities to many DOE SC 
applications and beyond!

Methods for robust, reliable, efficient ML codesign; 
Programming models for embedded  hardware architectures;

Low-latency scientific applications

Intelligent ML-based data reduction as close as possible to the data 
source promises to vastly accelerate scientific discovery potential. Per 
sensor compression and efficient aggregation of information while 
preserving scientific fidelity can have a huge impact on experiment data 
flow, analysis, ,control, and operation; and ultimately how quickly 
experiments can be performed and hypotheses explored.


We concentrate on powerful, specialized compute hardware at the extreme 
edge such as FPGAs, ASICs, and systems-on-chip — on platforms common 
to many scientific experiments.  We aim to:


• develop performant and reliable AI algorithms for science at the edge

• develop codesign tools to build efficient implementations of those
algorithms in hardware;

• enable rapid exploration for domain scientists and system designers
with an accessible tool flow.

Energy-efficient algorithms with fine-grained Hessian quantization-
aware training and sparsification [2,4,9,10,15]


Particle/nuclear 
physics [1,5,6]

Material 

Science [7,12] 

Qubit 

Readout 

[13]

Plasma Control [11]

Physics-aware architectures for robust parameter extraction [5,7]

Methods for scientific model robustness: fault tolerance, noise, and loss 
landscape  [8,10,14]


Programming models for novel AI hardware and architectures with 
user-driven accessible codesign tool flows [1,6,9]

Grand challenges spark imaginations, benchmarks bring innovation [3]


Neural architecture codesign tools to build custom hardware 
implementations for scientific applications [1,11,12,13]
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