FERMILAB-SLIDES-24-0132-CSAID

Drexel I FHIGH Pls: Josh Agart, Javier Duarte2, Amir Gholamis,

UNIVERSITY vnirveErstTY o PRl Harris4, Ryan Kastner2, Michael Mahoneys,
Jennifer Ngadiuba5, Nhan Tran5
1Drexel University, 2UCSD, 3ICSl/Berkeley, 4MIT, °Fermilab,

2% Fermilab

H Bl Massachusetts ]

i .
M ™ siien € UICSanDiego

I NS TI1TUTE

Data Reduction codesign

the extreme edge (XDR)

Abstract

Intelligent ML-based data reduction as close as possible to the data
source promises to vastly accelerate scientific discovery potential. Per
sensor compression and efficient aggregation of information while
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