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Abstract. I will discuss the development of inflationary theory and its present status,
including recent progress in describing de Sitter space and inflationary universe in string theory.

1. Brief history of inflation
The first model of inflationary type was proposed by Alexei Starobinsky [1]. It was based on
investigation of conformal anomaly in quantum gravity.

A much simpler inflationary model with a very clear physical motivation was proposed by
Alan Guth [2]. His model, which is now called “old inflation,” was based on the theory of
supercooling in the false vacuum state during the cosmological phase transitions [3]. Unlike the
Starobinsky model, old inflation did not actually work, but nevertheless it played an important
role in the development of inflationary cosmology since it contained a clear explanation how
inflation may solve the major cosmological problems.

The problems of old inflation were resolved with the invention of the new inflationary theory
[4]. In this theory, the inflaton field φ slowly rolls down from the maximum of the effective
potential. The slow motion of the field away from the false vacuum is of crucial importance:
density perturbations produced during the slow-roll inflation are inversely proportional to φ̇
[5, 6, 7]. The key difference between the new inflationary scenario and the old one is that
the useful part of inflation in the new scenario, which is responsible for the homogeneity of our
universe, does not occur in the false vacuum state, where φ̇ = 0. Unfortunately, the new inflation
scenario was plagued by its own problems [8]; no realistic versions of the new inflationary universe
scenario have been proposed so far.

Old and new inflation represented a substantial but incomplete modification of the big bang
theory. It was still assumed that the universe was in a state of thermal equilibrium from the very
beginning, that it was relatively homogeneous and large enough to survive until the beginning
of inflation, and that the stage of inflation was just an intermediate stage of the evolution of the
universe. In the beginning of the 80’s these assumptions seemed most natural and practically
unavoidable. On the basis of all available observations (CMB, abundance of light elements)
everybody believed that the universe was created in a hot big bang. That is why it was so
difficult to overcome a certain psychological barrier and abandon all of these assumptions. This
was done with the invention of the chaotic inflation scenario [9]. This scenario resolved all
problems of old and new inflation. According to this scenario, inflation may occur even in the
theories with simplest potentials such as V (φ) ∼ φn. Inflation may begin even if there was no
thermal equilibrium in the early universe, and it may start even at the Planckian density, in
which case the problem of initial conditions for inflation can be easily resolved [8].
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2. Chaotic Inflation
Consider the simplest model of a scalar field φ with a mass m and with the potential energy
density V (φ) = m2

2 φ2. Since this function has a minimum at φ = 0, one may expect that the
scalar field φ should oscillate near this minimum. This is indeed the case if the universe does
not expand, in which case equation of motion for the scalar field coincides with equation for
harmonic oscillator, φ̈ = −m2φ.

However, because of the expansion of the universe with Hubble constant H = ȧ/a, an
additional term 3Hφ̇ appears in the harmonic oscillator equation:

φ̈ + 3Hφ̇ = −m2φ . (1)

The term 3Hφ̇ can be interpreted as a friction term. The Einstein equation for a homogeneous
universe containing scalar field φ looks as follows:

H2 +
k

a2
=

1
6

(
φ̇2 + m2φ2)

)
. (2)

Here k = −1, 0, 1 for an open, flat or closed universe respectively. We work in units
M−2

p = 8πG = 1.
If the scalar field φ initially was large, the Hubble parameter H was large too, according

to the second equation. This means that the friction term 3Hφ̇ was very large, and therefore
the scalar field was moving very slowly, as a ball in a viscous liquid. Therefore at this stage
the energy density of the scalar field, unlike the density of ordinary matter, remained almost
constant, and expansion of the universe continued with a much greater speed than in the old
cosmological theory. Due to the rapid growth of the scale of the universe and a slow motion of
the field φ, soon after the beginning of this regime one has φ̈ � 3Hφ̇, H2 � k

a2 , φ̇2 � m2φ2, so
the system of equations can be simplified:

H =
ȧ

a
=

mφ√
6

, φ̇ = −m

√
2
3
. (3)

The first equation shows that if the field φ changes slowly, the size of the universe in this regime
grows approximately as eHt, where H = mφ√

6
. This is the stage of inflation, which ends when the

field φ becomes much smaller than Mp = 1. Solution of these equations shows that after a long
stage of inflation the universe initially filled with the field φ = φ0 � 1 grows exponentially [8],
a = a0 eφ2

0/4.
Thus, inflation does not require supercooling and tunnelling from the false vacuum [2], or

rolling from an artificially flat top of the effective potential [4]. It appears in the theories that
can be as simple as a theory of a harmonic oscillator [9].

In realistic versions of inflationary theory the duration of inflation could be as short as 10−35

seconds. When inflation ends, the scalar field φ begins to oscillate near the minimum of V (φ).
As any rapidly oscillating classical field, it looses its energy by creating pairs of elementary
particles. These particles interact with each other and come to a state of thermal equilibrium
with some temperature T [10, 11, 12]. ¿From this time on, the universe can be described by the
usual big bang theory.

The main difference between inflationary theory and the old cosmology becomes clear when
one calculates the size of a typical inflationary domain at the end of inflation. Investigation
of this question shows that even if the initial size of inflationary universe was as small as the
Planck size lP ∼ 10−33 cm, after 10−35 seconds of inflation the universe acquires a huge size
of l ∼ 101012

cm! This number is model-dependent, but in all realistic models the size of the
universe after inflation appears to be many orders of magnitude greater than the size of the
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part of the universe which we can see now, l ∼ 1028 cm. This immediately solves most of the
problems of the old cosmological theory [9, 8].

Our universe is almost exactly homogeneous on large scale because all inhomogeneities
were exponentially stretched during inflation. The density of primordial monopoles and
other undesirable “defects” becomes exponentially diluted by inflation. The universe becomes
enormously large. Even if it was a closed universe of a size ∼ 10−33 cm, after inflation the
distance between its “South” and “North” poles becomes many orders of magnitude greater
than 1028 cm. We see only a tiny part of the huge cosmic balloon. That is why nobody has ever
seen how parallel lines cross. That is why the universe looks so flat.

The first models of chaotic inflation were based on the theories with polynomial potentials,
such as V (φ) = ±m2

2 φ2 + λ
4φ4. But the main idea of this scenario is quite generic. One

should consider any particular potential V (φ), polynomial or not, with or without spontaneous
symmetry breaking, and study all possible initial conditions without assuming that the universe
was in a state of thermal equilibrium, and that the field φ was in the minimum of its effective
potential from the very beginning.

3. Quantum fluctuations and density perturbations
The vacuum structure in the exponentially expanding universe is much more complicated than
in ordinary Minkowski space. The wavelengths of all vacuum fluctuations of the scalar field φ
grow exponentially during inflation. When the wavelength of any particular fluctuation becomes
greater than H−1, this fluctuation stops oscillating, and its amplitude freezes at some nonzero
value δφ(x) because of the large friction term 3Hφ̇ in the equation of motion of the field φ.
The amplitude of this fluctuation then remains almost unchanged for a very long time, whereas
its wavelength grows exponentially. Therefore, the appearance of such a frozen fluctuation is
equivalent to the appearance of a classical field δφ(x) that does not vanish after averaging over
macroscopic intervals of space and time.

Because the vacuum contains fluctuations of all wavelengths, inflation leads to the creation
of more and more new perturbations of the classical field with wavelengths greater than H−1.
The average amplitude of such perturbations generated during a typical time interval H−1 is
given by [13, 14]

|δφ(x)| ≈ H

2π
. (4)

These fluctuations lead to density perturbations that later produce galaxies. The theory of
this effect is very complicated [5, 6], and it was fully understood only in the second part of the
80’s [7]. The main idea can be described as follows:

Fluctuations of the field φ lead to a local delay of the time of the end of inflation,
δt = δφ

φ̇
∼ H

2πφ̇
. Once the usual post-inflationary stage begins, the density of the universe

starts to decrease as ρ = 3H2, where H ∼ t−1. Therefore a local delay of expansion leads to
a local density increase δH such that δH ∼ δρ/ρ ∼ δt/t. Combining these estimates together
yields the famous result [5, 6, 7]

δH ∼ δρ

ρ
∼ H2

2πφ̇
. (5)

This derivation is oversimplified; it does not tell, in particular, whether H should be calculated
during inflation or after it. This issue is of crucial importance for chaotic inflation.

The result of a more detailed investigation [7] shows that H and φ̇ should be calculated
during inflation, at different times for perturbations with different momenta k. For each of these
perturbations the value of H should be taken at the time when the wavelength of the perturbation
becomes of the order of H−1. However, the field φ during inflation changes very slowly, so the

153



quantity H2

2πφ̇
remains almost constant over exponentially large range of wavelengths. This means

that the spectrum of perturbations of metric is flat.
A detailed calculation in our simplest chaotic inflation model the amplitude of perturbations

gives

δH ∼ mφ2

5π
√

6
. (6)

The perturbations on scale of the horizon were produced at φH ∼ 15 [8]. This, together with
COBE normalization δH ∼ 2×10−5 gives m ∼ 3×10−6, in Planck units, which is approximately
equivalent to 7 × 1012 GeV. Exact numbers depend on φH , which in its turn depends slightly
on the subsequent thermal history of the universe.

The magnitude of density perturbations δH in our model depends on the scale l only
logarithmically. Since the observations provide us with an information about a rather limited
range of l, it is possible to parametrize the scale dependence of density perturbations by a simple
power law, δH ∼ l(1−n)/2. An exactly flat spectrum would correspond to n = 1.

4. Eternal inflation
A significant step in the development of inflationary theory was the discovery of the process of
self-reproduction of inflationary universe. This process was known to exist in old inflationary
theory [2] and in the new one [15], but its significance was fully realized only after the discovery of
the regime of eternal inflation in the simplest versions of the chaotic inflation scenario [16, 17].
It appears that in many models large quantum fluctuations produced during inflation which
may locally increase the value of the energy density in some parts of the universe. These regions
expand at a greater rate than their parent domains, and quantum fluctuations inside them lead
to production of new inflationary domains which expand even faster. This leads to an eternal
process of self-reproduction of the universe.

To understand the mechanism of self-reproduction one should remember that the processes
separated by distances l greater than H−1 proceed independently of one another. This is so
because during exponential expansion the distance between any two objects separated by more
than H−1 is growing with a speed exceeding the speed of light. As a result, an observer in the
inflationary universe can see only the processes occurring inside the horizon of the radius H−1.
An important consequence of this general result is that the process of inflation in any spatial
domain of radius H−1 occurs independently of any events outside it. In this sense any inflationary
domain of initial radius exceeding H−1 can be considered as a separate mini-universe.

To investigate the behavior of such a mini-universe, with an account taken of quantum
fluctuations, let us consider an inflationary domain of initial radius H−1 containing sufficiently
homogeneous field with initial value φ � Mp. Equation (3) implies that during a typical time
interval ∆t = H−1 the field inside this domain will be reduced by ∆φ = 2

φ . By comparison this

expression with |δφ(x)| ≈ H
2π = mφ

2π
√

6
one can easily see that if φ is much less than φ∗ ∼ 5√

m
,

then the decrease of the field φ due to its classical motion is much greater than the average
amplitude of the quantum fluctuations δφ generated during the same time. But for φ � φ∗ one
has δφ(x) � ∆φ. Because the typical wavelength of the fluctuations δφ(x) generated during the
time is H−1, the whole domain after ∆t = H−1 effectively becomes divided into e3 ∼ 20 separate
domains (mini-universes) of radius H−1, each containing almost homogeneous field φ−∆φ+δφ.
In almost a half of these domains the field φ grows by |δφ(x)| − ∆φ ≈ |δφ(x)| = H/2π, rather
than decreases. This means that the total volume of the universe containing growing field φ
increases 10 times. During the next time interval ∆t = H−1 the situates repeats. Thus, after
the two time intervals H−1 the total volume of the universe containing the growing scalar field
increases 100 times, etc. The universe enters eternal process of self-reproduction and becomes
immortal.
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During the process of eternal inflation in the simplest versions of the chaotic inflation scenario,
some parts of the universe spend indefinitely long time at the nearly Planckian density, expanding
with the Hubble constant H = O(1), in Planck mass units. In this regime, all scalar fields
persistently experience quantum jumps of the magnitude comparable to the Planck mass. This
forces the fields to browse between all possible vacuum states. As a result, the universe becomes
divided into infinitely many exponentially large domains that have different laws of low-energy
physics [16, 17]. This result may have especially interesting implications in the context of string
theory, which allows exponentially large number of different vacuum states [8, 18, 19].

5. Inflation and observations
Inflation is not just an interesting theory that can resolve many difficult problems of the standard
Big Bang cosmology. This theory made several predictions which can be tested by cosmological
observations. Here are the most important predictions:

1) The universe must be flat. In most models Ωtotal = 1 ± 10−4.
2) Perturbations of metric produced during inflation are adiabatic.
3) Inflationary perturbations have flat spectrum. In most inflationary models the spectral

index n = 1 ± 0.2 (n = 1 means totally flat.)
4) These perturbations are gaussian.
5) Perturbations of metric could be scalar, vector or tensor. Inflation mostly produces scalar

perturbations, but it also produces tensor perturbations with nearly flat spectrum, and it does
not produce vector perturbations. There are certain relations between the properties of scalar
and tensor perturbations produced by inflation.

6) Inflationary perturbations produce specific peaks in the spectrum of CMB radiation.
It is possible to violate each of these predictions if one makes this theory sufficiently

complicated. For example, it is possible to produce vector perturbations of metric in the models
where cosmic strings are produced at the end of inflation. It is possible to have an open or
closed inflationary universe, or even a small periodic inflationary universe, it is possible to have
models with nongaussian isocurvature fluctuations with a non-flat spectrum. However, it is very
difficult to do so, and most of the inflationary models satisfy the simple rules given above.

It is not easy to test all of these predictions. The major breakthrough in this direction
was achieved due to the recent measurements of the CMB anisotropy. The latest results based
on the WMAP experiment, in combination with the Sloan Digital Sky Survey, are consistent
with predictions of the simplest inflationary models with adiabatic gaussian perturbations, with
Ω = 1.01 ± 0.02, and n = 0.98 ± 0.03 [20, 21].

There are still some question marks to be examined, such as the unexpectedly small anisotropy
of CMB at large angles [20]. It is not quite clear whether we deal with a real anomaly here or
with a manifestation of cosmic variance [22], but in any case, it is quite significant that all
proposed resolutions of this problem are based on inflationary cosmology, see e.g. [23].

6. Shift symmetry and chaotic inflation in supergravity
It would be most important to construct realistic inflationary models based on supergravity and
string theory. The effective potential of the complex scalar field Φ in supergravity is given by
the well-known expression (in units Mp = 1):

V = eK
[
K−1

ΦΦ̄
|DΦW |2 − 3|W |2

]
. (7)

Here W (Φ) is the superpotential, Φ denotes the scalar component of the superfield Φ; DΦW =
∂W
∂Φ + ∂K

∂Φ W . The kinetic term of the scalar field is given by KΦΦ̄ ∂µΦ∂µΦ̄. The standard
textbook choice of the Kähler potential corresponding to the canonically normalized fields Φ
and Φ̄ is K = ΦΦ̄, so that KΦΦ̄ = 1.
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This immediately reveals a problem: At Φ > 1 the potential is extremely steep. It blows up as
e|Φ|2 , which makes it very difficult to realize chaotic inflation in supergravity at φ ≡

√
2|Φ| > 1.

Moreover, the problem persists even at small φ. If, for example, one considers the simplest case
when there are many other scalar fields in the theory and the superpotential does not depend
on the inflaton field φ, then Eq. (7) implies that at φ � 1 the effective mass of the inflaton field
is m2

φ = 3H2. This violates the condition m2
φ � H2 required for a successful slow-roll inflation.

It took almost 20 years to find a natural realization of chaotic inflation model in supergravity.
Kawasaki, Yamaguchi and Yanagida suggested to take the Kähler potential K = 1

2(Φ+Φ̄)2+XX̄
of the fields Φ and X, with the superpotential mΦX [24].

The new Kähler potential, just as the old one, leads to canonical kinetic terms for the fields
Φ and X, so it is as simple and legitimate as the standard textbook Kähler potential. However,
instead of the U(1) symmetry with respect to rotation of the field Φ in the complex plane, the
new Kähler potential has a shift symmetry; it does not depend on the imaginary part of the field
Φ. The shift symmetry is broken only by the superpotential.

This leads to a profound change of the potential (7): the dangerous term eK continues
growing exponentially in the direction (Φ+Φ̄), but it remains constant in the direction (Φ− Φ̄).
Decomposing the complex field Φ into two real scalar fields, Φ = 1√

2
(η + iφ), one can find the

resulting potential V (φ, η, X) for η, |X| � 1:

V =
m2

2
φ2(1 + η2) + m2|X|2. (8)

This potential has a deep valley, with a minimum at η = X = 0. Therefore the fields η and X

rapidly fall down towards η = X = 0, after which the potential for the field φ becomes V = m2

2 φ2.
This provides a very simple realization of eternal chaotic inflation scenario in supergravity [24].

It is amazing that for almost 20 years nothing but inertia was keeping us from using the
version of the supergravity which was free from the famous η problem. As we will see shortly,
the situation with inflation in string theory is very similar, and may have a similar resolution.

7. Towards Inflation in String Theory
7.1. de Sitter vacua in string theory
For a long time, it seemed rather difficult to obtain inflation in M/string theory. The main
problem here was the stability of compactification of internal dimensions. For example, ignoring
non-perturbative effects to be discussed below, a typical effective potential of the effective 4d
theory obtained by compactification in string theory of type IIB can be represented in the
following form:

V (σ, ρ, φ) ∼ e
√

2σ−
√

6ρ Ṽ (φ) (9)

Here σ and ρ are canonically normalized fields representing the dilaton field and the volume of
the compactified space; φ stays for all other fields.

If σ and ρ were constant, then the potential Ṽ (φ) could drive inflation. However, this does
not happen because of the steep exponent e

√
2σ−

√
6ρ, which rapidly pushes the dilaton field σ

to −∞, and the volume modulus ρ to +∞. As a result, the radius of compactification becomes
infinite; instead of inflating, 4d space decompactifies and becomes 10d.

Thus in order to describe inflation one should first learn how to stabilize the dilaton and the
volume modulus. The dilaton stabilization was achieved in [25]. The most difficult problem was
to stabilize the volume. The solution of this problem was found in [26] (KKLT construction).
It consists of two steps.

First of all, due to a combination of effects related to warped geometry of the compactified
space and nonperturbative effects calculated directly in 4d (instead of being obtained by
compactification), it was possible to obtain a supersymmetric AdS minimum of the effective
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potential for ρ. This fixed the volume modulus, but in a state with a negative vacuum energy.
Then we added an anti-D3 brane with the positive energy ∼ ρ−2. This addition uplifted the
minimum of the potential to the state with a positive vacuum energy.

Instead of adding an anti-D3 brane, which explicitly breaks supersymmetry, one can add a
D7 brane with fluxes. This results in the appearance of a D-term which has a similar dependence
on ρ, but leads to spontaneous supersymmetry breaking [27]. In either case, one ends up with a
metastable dS state which can decay by tunnelling and formation of bubbles of 10d space with
vanishing vacuum energy density. The decay rate is extremely small [26], so for all practical
purposes, one obtains an exponentially expanding de Sitter space with the stabilized volume of
the internal space.

7.2. Inflation in string theory and shift symmetry
During the last few years there were many suggestions how to obtain hybrid inflation in string
theory by considering motion of branes in the compactified space, see [28, 29] and references
therein. The main problem of all of these models was the absence of stabilization of the
compactified space. Once this problem was solved for dS space [26], one could try to revisit
these models and develop models of brane inflation compatible with the volume stabilization.

The first idea [30] was to consider a pair of D3 and anti-D3 branes in the warped geometry
studied in [26]. The role of the inflaton field could be played by the interbrane separation. A
description of this situation in terms of the effective 4d supergravity involved Kähler potential

K = −3 log(ρ + ρ̄ − k(φ, φ̄)), (10)

where the function k(φ, φ̄) for the inflaton field φ, at small φ, was taken in the simplest form
k(φ, φ̄) = φφ̄. If one makes the simplest assumption that the superpotential does not depend
on φ, then the φ dependence of the potential (7) comes from the term eK = (ρ + ρ̄ − φφ̄)−3.
Expanding this term near the stabilization point ρ = ρ0, one finds that the inflaton field has a
mass m2

φ = 2H2. Just like the similar relation m2
φ = 3H2 in the simplest models of supergravity,

this is not what we want for inflation.
One way to solve this problem is to consider φ-dependent superpotentials. By doing so, one

may fine-tune m2
φ to be O(10−2)H2 in a vicinity of the point where inflation occurs [30]. Whereas

fine-tuning is certainly undesirable, in the context of string cosmology it may not be a serious
drawback. Indeed, if there exist many realizations of string theory [19], then one might argue
that all realizations not leading to inflation can be discarded, because they do not describe a
universe in which we could live. Meanwhile, those non-generic realizations, which lead to eternal
inflation, describe inflationary universes with an indefinitely large and ever-growing volume of
inflationary domains. This makes the issue of fine-tuning less problematic.

Can we avoid fine-tuning altogether? One of the possible ideas is to find theories with some
kind of shift symmetry. Another possibility is to construct something like D-term inflation,
where the flatness of the potential is not spoiled by the term eK . Both of these ideas were
explored in a recent paper [31] based on the model of D3/D7 inflation in string theory [32]. In
this model the Kähler potential is given by

K = −3 log(ρ + ρ̄) − 1
2
(φ − φ̄)2, (11)

and superpotential depends only on ρ. The shift symmetry φ → φ + c in this model is related
to the requirement of unbroken supersymmetry of branes in a BPS state.

The effective potential with respect to the field ρ in this model coincides with the KKLT
potential [26, 27]. In the direction of the real part of the field φ, which can be considered an
inflaton, the potential is exactly flat, until one adds other fields which break this flatness due to
quantum corrections and produce a potential similar to the potential of D-term inflation [31].

157



Shift symmetry may help to obtain inflation in other models as well. For example, one may
explore the possibility of using the Kähler potential K = −3 log(ρ + ρ̄ − 1

2(φ − φ̄)2)) instead of
the potential used in [30]. The modified Kähler potential does not depend on the real part of the
field φ, which can be considered an inflaton. Therefore the dangerous term m2

φ = 2H2 vanishes,
i.e. the main obstacle to the consistent brane inflation in the model of Ref. [30] disappears!

However, for a while it still remained unclear whether shift symmetry is just a condition
which we want to impose on the theory in order to get inflation, or an unavoidable property of
the theory, which remains valid even after the KKLT volume stabilization. The answer to this
question was found only very recently, and it appears to be model-dependent. It was shown in
[33] that in a certain class of models, including D3/D7 models [32, 31], the shift symmetry of
the effective 4d theory is not an assumption but an unambiguous consequence of the underlying
mathematical structure of the theory. This may allow us to obtain a natural realization of
inflation in string theory.

Note, however, that in the inflationary models based on the simplest version of the KKLT
mechanism the Hubble constant during inflation is always smaller than the gravitino mass. This
is a rather strong constraint, which can be avoided by considering models with slightly more
complicated potentials of the racetrack type [34].

8. Eternal inflation and stringy landscape
Even though we are still at the very first stages of implementing inflation in string theory,
it is very tempting to speculate about possible generic features and consequences of such a
construction.

First of all, KKLT construction shows that the vacuum energy after the volume stabilization
is a function of many different parameters in the theory. One may wonder how many different
choices do we actually have. Counting different flux vacua [35, 19] gives the numbers in the range
of 10100 to 101000. Some of these vacuum states with positive vacuum energy can be stabilized
using the KKLT approach. Each of such states will correspond to a metastable vacuum state. It
decays within a cosmologically large time, which is, however, smaller than the ‘recurrence time’
eS(φ), where S(φ) = 24π2

V (φ) is the entropy of dS space with the vacuum energy density V (φ) [26].
But old inflation does not describe our world. In addition to these metastable vacuum states,

there should exist various slow-roll inflationary solutions, where the properties of the system
practically do not change during the cosmological time H−1. It might happen that such states,
corresponding to flat directions in the string theory landscape, exist not only during inflation in
the very early universe, but also at the present stage of the accelerated expansion of the universe.
This would simplify obtaining an anthropic solution of the cosmological constant problem along
the lines of [36, 35].

If the slow-roll condition V ′′ � V is satisfied all the way from one dS minimum of the
effective potential to another, then one can show, using stochastic approach to inflation, that
the probability to find the field φ at any of these minima, or at any given point between them, is
proportional to eS(φ). In other words, the relative probability to find the field taking some value
φ1 as compared to some other value φ0, is proportional to e∆S = eS(φ1)−S(φ0) [37, 26]. One may
argue, using Euclidean approach, that this simple thermodynamic relation should remain valid
for the relative probability to find a given point in any of the metastable dS vacua, even if the
trajectory between them does not satisfy the slow-roll condition m2 � H2 [38, 39, 40, 41].

The resulting picture resembles eternal inflation in the old inflation scenario. However, now
we have an incredibly large number of false vacuum states, plus some states which may allow
slow-roll inflation. Once inflation begins, different parts of the universe start wondering from
one of these vacuum states to another, so that the universe becomes divided into indefinitely
many regions with all possible laws of low-energy physics corresponding to different 4d vacua of
string theory [8].

158



As we already argued, the best inflationary scenario would describe a slow-roll eternal inflation
starting at the maximal possible energy density (minimal dS entropy). It would be almost as
good to have a low-energy slow-roll eternal inflation. Under certain conditions, such regimes
may exist in string theory [30]. However, whereas any of these regimes would make us happy, we
already have something that can make us smile. Multi-level eternal inflation of the old inflation
type, which appears in string theory in the context of the KKLT construction, may be very
useful being combined with the slow-roll inflation, even if the slow-roll inflation by itself is not
eternal. We will give a particular example, which is very similar to the one considered in [42].

Suppose we have two noninteracting scalar fields: field φ with the potential of the old inflation
type, and field χ with the potential which may lead to a slow-roll inflation. Let us assume that
the slow-roll inflation occurs only on low energy scale, and it is not eternal. How can we provide
initial conditions for such a low-scale inflation?

Let us assume that the Hubble constant at the stage of old inflation is much greater than the
curvature of the potential which drives the slow-roll inflation. (This is a natural assumption,
considering huge number of possible dS states, and the presumed smallness of energy scale of
the slow-roll inflation.) In this case large inflationary fluctuations of the field χ will be generated
during eternal old inflation. These fluctuations will give the field χ different values in different
exponentially large parts of the universe. When old inflation ends, there will be many practically
homogeneous parts of the universe where the field χ will take values corresponding to good initial
conditions for a slow-roll inflation. Then the relative fraction of the volume of such parts will
grow exponentially.

Moreover, as it was argued in [17], the probability (per unit time and unit volume) to jump
back to the eternally inflating regime is always finite, even after the field enters the regime
where, naively, one would not expect eternal inflation. Each bubble of a new phase which
appears during the decay of the eternally inflating dS space is an open universe of an infinite
volume. Therefore during the slow-roll inflation there always will be some inflationary domains
jumping back to the original dS space, so some kind of stationary equilibrium will always exist
between various parts of the inflationary universe.

Thus, the existence of many different dS vacua in string theory leads to the regime of eternal
inflation. This regime may help us to solve the problem of initial conditions for the slow-roll
inflation even in the models where the slow-roll inflation by itself is not eternal and would occur
only on a small energy scale.
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