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Abstract. Applying directly the Noether theorem in the framework of the Teleparallel
Equivalent of General Relativity (TEGR), we construct conserved quantities, currents and
superpotentials. They are covariant both under coordinate transformations and under local
Lorentz rotations, unlike earlier approaches. This advantage is achieved by a presence in
expressions of conservation laws of a displacement vector that can be interpreted as a Killing
vector, as a proper vector of an observer, etc. We introduce, as well, a principle for a definition
of an inertial spin connection that is an undetermined quantity in TEGR in the original
formulation. The new expressions for conserved quantities and the introduced principle are
applied to calculate mass for the Schwarzschild black hole and energy density for an observer
freely falling in spatially flat Friedmann world.

1. Introduction

Last decades, Teleparallel Equivalent of General Relativity (TEGR) and its numerous
modifications, like f(T) theories, are developed very intensively, see [1] and references there
in. Dynamic variables in teleparallel gravity are components of the tetrad field instead of metric
coefficients. Each of field theories requires a construction conservation laws and conserved
quantities. Moller [2] was maybe first who suggested to use tetrad GR for constructing covariant
energy-momentum tensor for gravitational field instead of traditional energy-momentum
pseudotensors in metric formulation of GR. However, both Moller’s Lagrangian and Moller’s
energy-momentum tensor are not covariant with respect to local Lorentz rotations, although
the field equations are left Lorentz covariant. Later, in the frame of TEGR, preserving
coordinate covariance of Moller’s tetrad GR, it was restored covariance with respect to local
Lorentz rotations [1]. This nice property is achieved due to introducing a pure inertial Lorentz
special spin connection with zero curvature. In spite of that conservation laws in TEGR in
the traditional interpretation [1] have a set of problems, for the recent discussion see [3]. For
example, if one constructs Lorentz covariant conserved currents, then one cannot construct
conserved charges by an acceptable way [3], and conversely.

The goal of our study is to construct conservation laws and conserved quantities in TEGR
resolving problems remarked in [3]. Applying directly Noether’s theorem, we obtain conserved
currents that are expressed through divergences of superpotentials (antisymmetric tensor
densities). Currents describe local quantities, like energy density, whereas superpotentials permit
to construct global quantities (charges) in the form of well defined (mathematically acceptable)
surface integrals. Essential property of conservation law expressions is a presence of an arbitrary
displacement vector. Namely it permits to resolve problems noted in [3] that is to construct
local and global conserved quantities trusting a covariance of both the kinds. In the case, if a
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displacement vector is a timelike Killing vector, for example, one can interpret a charge as a
mass of a system; in the case of a proper vector of observer one can interpret components of a
current as related densities; etc.

Of course, the Noether theorems have been applied in teleparallel gravity. Let us list some of
previous results: in [4], it was used the diffeomorphism invariance of the Lagrangian, however,
the final results have been simplified to expressions with excluding a displacement vector, and
conservation laws acquire the form of them in [1] with their problems; in [5,6], it was used an
invariance to a specific group to make an appropriate choice among potential variants of modified
teleparallel gravities only; etc. Unlike of the above, applying the Noether theorem, we give well
structured expressions for conserved quantities with a clear and standard interpretation, which
are ready to examine concrete models.

To apply and check our results we calculate in the framework of TEGR, first, mass of the
Schwarzschild black hole, second, the energy density in the frame of a freely falling observer in
the spatially flat Friedmann world. To obtain an acceptable result it is necessary to choose a
spin connection in a correct way. Our principle for such a choice is quite natural, namely, when
one “switches off” the gravity conserved quantities must vanish. As a result, we obtain, first,
the standard and acceptable mass for the Schwarzschild black hole; second, the freely falling
observer in a non-perturbed spatially flat Friedmann world measures a zero energy density that,
at least, coincides with some of previous results, see [4].

2. The main notions in TEGR

2.1. Lagrangian and field equations

Here, we rewrite the main expressions related to TEGR given in the book [1] following its
notations. Dynamic variables in the frame of TEGR are components of the tetrad h®,, which
are connected with the metric g,, of the metric GR by the relation:

9po = nabhaphbo (1)
with the Minkowski metric n4,. The Lagrangian of TEGR is

. h ].. ° 1. ° o L4
L = % (4 Tp;u/ Tpm/ =+ 5 Tpuu TVMP - TP#P TV“”) ’ (2)

where h is a determinant of h%,, and the torsion tensor
*T? 0 =he” (0,0, — O "y + A% hty — A% h°,) =
hap (%,uhaz/ - %z/ha,u + .Aacuhcu - .Aacuhcu> (3)

(o]
with the covariant derivative V, compatible with the metric g,,. The pure inertial Lorentz
connection
*AY, = Aad(x)auAcd(x) (4)

with the local Lorentz matrix A% (z), preserving coordinate invariance, makes the torsion (3)
Lorentz invariant. Thus, the Lagrangian (2) is coordinate and Lorentz covariant as well. Because
all the components of the inertial spin connection (4) can be suppressed by corresponding local
rotations a related curvature ®*R%,,, has to be zero. Indeed, one can easily show by a direct
substitution that

.Rabuu — a,u.Aabu _ ayoAabu + .Aacu.Acbu _ .Aacy.Acbu 0.
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Lagrangian (2) transforms to the Moller Lagrangian [2] when the connection (4) is equalized
to zero:

*Lar = *L|(s a)=0- (5)

Both Lagrangians (2) and (5) are equivalent to the usual Hilbert Lagrangian up to a divergence.
Thus, both of them give the equations, which are equivalent to the Einstein equations in the
usual form. Then, it turns out that:

*L="Ly + 0af*(h,*A). (6)

Thus, equations of motion do not depend on the connection (4) in whole, that is they are
invariant to its choice.
To obtain the equations of motion let us vary (2) with respect to dynamical variables h®:

0°L 0°L o°L
She, = o, " <8hp> =0 @

The expression on the left hand side is the Lagrangian derivative and is covariant in the two
senses.

2.2. The standard form of conservation laws in TEGR
Following [1], let us denote items of the expression (7) in the form:

14°L ha” 1 1
xTp— - __Ya e 1 me g Bperc e c e pB.
P h5hap 3 L+ ﬂha S.rreT gr + - A aB S (8)
° o_ K o°L 10 g e o [ Yo gle" o
5= <8h> =5 T T — 2T Vad ©)

Then the equations of motion (7) is rewritten in the form of the conservation law:
R Ja? = 05 (h*8.77) = Vs (h*S.77) . (10)
Indeed, this relation has a sense of a conservation law because the current *J,” is conserved,
0, (W JaP) =V, (B Ja”) = 0 (11)

that takes a place due to antisymmetry of the superpotential (9).

We note that all the expressions in (8) — (11) are spacetime covariant, whereas the current
(8), being spacetime covariant, is not covariant with respect to local Lorentz rotations. In spite
of that, we have a possibility to construct conserved charges on hypersurfaces z° = const — ¥
after integrating (10) and (11) by the standard method

P, = / dz® (W J,") =
%

The Lorentz covariant expressions can be constructed with introducing Lorentz covariant
derivatives, *D,, see [1] and related references therein. For example, for the covariant tetrad
vector V, one defines *D,V, = 0,V, — *A°%,V.. Thus, one constructs Lorentz and spacetime
covariant current

1
K

/ ds; (h*S,"). (12)
1)

1 ha” 1
*Jf ="Jf — E.Acaﬁ.scpﬁ = _T.L + Ehaﬂ.ScBP.TCBW; (13)
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that permits to rewrite the conservation law (10) in both Lorentz and spacetime covariant form:
kh*J.” = *Dy (h‘Sap'B) . (14)

However, with this presentation it is not possible to construct conserved charges, like (12). This
problem is remarked in [1], in more details it is discussed in [3]. In the next section, we resolve
it.

3. Lorentz and spacetime covariant conservation laws in TEGR
Because Lagrangian (2) is a scalar density we can derive the main Noether’s identity:

£8L = —0, (£7°L), (15)

where £¢ is the Lie derivative (with the opposite sign only). The Lagrangian *L depends on
geometrical objects, h*, and A%,,, variations of which (Lie derivatives ) are

6hap _ ££hap — _éavahap _ hdangay
(16)
5.Aabu — "Ef.AabM — _é-ozvaoAabM _ .Aabav,u,ga-

Then, after standard identical transformations, see books [7,8], the identity (15) can be rewritten
in the form of conservation law for the current *7¢(&):

0. 14(&) =V I7(€) = 0. (17)
For the Lagrangian (2) the current is presented as

o°L
O0h%

1 o 1 o
I8 = Lh‘Sﬁf’ (VJ h“p+‘A“bghbp) —*L§g + ho| €7+ —hS.hte V, &7, (18)

With making the use of the Klein-Noether identities, that follow from the identity [17], the
current (18) can be expressed through the superpotential *1%5(¢);

1°(¢) = 95° 1P (€) = v 1P (©), (19)

where )
"19%(¢) =t S, e (20)

Let us discuss (17) and (19). They are identities only, they do not bring a physical content
because up to now the field equations have not been used. Already vacuum equations have
been derived (7), for a more generality we include the matter sources with the matter energy-
momentum tensor *0,”, see book [1]:

0°L 0°L < 0°L

= -0y | =—— | = h*O,". 21
She, ~ Ohe, aha,,,o> © (1)

After using this equation the current (18) becomes physically sensible and is rewritten as

1 o
.[a(g) — h [Oeo_a + 060_01] 50’ + Ehosaaphao_ vp 50’7 (22)
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where the energy-momentum tensor for the gravitational (tetrad) field is

1 o 1
0" = =5, (vg he, + ’A“b(,hbp) - 5 LG (23)
K
Thus, for the current (22) and superpotential (20) the identity (19) acquires quite physical sense.
Both, the current (18), the same (22), and the superpotential (20) are spacetime covariant and
invariant under local Lorentz rotations. Thus, the conservation law (19) has the same property.
However, unlike the conservation law (14), the equality (19) can be integrated to obtain sensible
charges:

P(€) = /E 4z 10(¢) = /a _dstIE) (24)

It is important to accent the following. Let us define the other useful quantity, GR spin
connection,

OAaba = _hbp%Jhap (25)
that reflects the presence of gravitational field, unlike inertial spin connection ®A%,, that can
be suppressed by appropriate Lorentz rotations. Then, the torsion (3) can be rewritten in the
form:

.Tpuu — hap (hcu(oAacu . .Aacu) _ hcy(oAacu o .Aacu)) . (26)
Thus, we conclude that the Lagrangian *L in (2) and the superpotential *S,”? in (9) depend
essentially on the difference *K%., = *A%., — °A%,, that is the contortion tensor, see [1]. Thus,

the current (18), the same (22), depends essentially on *K%., as well. We derive explicitly the
expression for the superpotential (20):

*1°0(¢) = %(014“6# = CA% ) [2ha" (03 R — 6R) — K (ha AP — ho he®) | £°. (27)

Thus, here, we have constructed all the expressions both coordinate and Lorentz covariant.

Due to (5) and (6) the field equations (7) or (21) do not depend on the inertial spin connection
* A%, at all, whereas the current and superpotential depend on ®*A°, essentially. The question
arises: How can one to choose ®*A%, for a concrete tetrad and GR spin connection defined in
(25)?7 Our recipe is simple: in the case when the gravity is “switched off”, the current *I%(&)
and the superpotential ’I“B(f) have to be zeroth, as well as all tensor quantities *7¢,,, *K%.,,
*S.P? responsible for gravity. From the above it is clear that this criterion plays, if and only
if °A%., = *A%,. The main property of *A“., is that the related curvature defined by the
Riemannian tensor is zero. Thus, for a concrete solution, one has to construct Riemannian
tensor with the use of °A%., and equalize it zero. By this operation, one finds conditions for the
“switch off” gravity for parameters of a solution under consideration. Namely these conditions
transform components of °A%., to components of *A%.,.

4. Applications
4.1. Mass of the Schwarzschild black hole
Consider black hole Schwarzschild metric in spherical coordinates:

2M oM\ !
ds®> = — <1 - > dt* + (1 - ) dr? + 1% (d6* + sin®0d¢?) . (28)
r r
In this case, following (1), it is convenient to choose a tetrad components in the form:
(1— 28)1/2 0 0 0
—1/2

he, = 0 (1-2%) 0 0 . (29)

0 0 r 0

0 0 0 rsiné
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Then, for (28) and (29) we calculate components of the GR spin connection (25), the non-zero
ones of which are

. : M, . 20\ Y2
A%y = Aloozﬁ; Alyy = — A212=—<1—> ;

(30)

Following the principle suggested at the end of previous section, to construct the inertial Lorentz
connection * A%, we “switch off” the gravity in the solution (28) by the simple equalizing M = 0.
Then, indeed, (28) becomes a metric of a flat spacetime, and from (30) we have

.Algg = —.A212 = —1; .A133 = —.A313 = —sin 9; .A233 = —.A323 = — COS 9 (31)

The difference of (31) and (30) gives non-zero components of the contortion,

M 20\ /2
'K010=°K100=—72; *Kloy=—"K*;= (1—T> -1

1/2
*Klys = —*K33 =sinf [(1 - 2M) - 1] .

r

The components (29) and (32) permit to present non-zero spacetime components of the torsion
tensor (26) which is antisymmetric in lower indexes:

. M oM\ 7!, . 1 20\ V2
T% = = (1 - T) P 0T =T 3 = - [1 - (1 - ,,,) (33)

and the same with opposite sign for swapped lower indexes. Then, one easily finds non-zero
spacetime components of the superpotential (9) which is antisymmetric in upper indexes:

1/2 1/2
05001:2[1_<1_2M> ]_4M.05212:Os313:_1 [1_(1_W> M
T

— (34
r r2’ r r +T‘2 ()

and the same with opposite sign for swapped upper indexes.
Now we can to calculate the total mass/energy of the Schwarzschild black hole. We choose a
displacement vector in (24) as the timelike Killing vector £* = (—1,0,0,0), and obtain

1
E=—lim [ dz?h*Sy"e® =M (35)

K r—00 ax

where it was used x = 87, h = r?sinf and the components (34). All the tensors: torsion,
*T“,., contortion, *K“,,, superpotential, *S,”?, do not depend on local Lorentz rotations by
the construction. Integrating the same superpotential in (35) we get the same mass £ = M
after arbitrary Lorentz rotations. Of course, spin connection, like (30) and (31) will change, for
example, *A%,, in (4) can be equalized to zero *A%., = 0. Such a gauge fixation is called as the
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Weitzenbdck gauge. In the case of the tetrad (29) and spin connection (31) the related Lorentz
rotations are described by the matrix

1 0 0 0

0 sinfcos¢ cosfcos¢p —sing
0 sinflsing cosfsing cos¢
0 cos —siné 0

A% = (36)

Then, the inertial spin connection components (31), indeed, vanish, whereas the tetrad
components (29) become

(1— 212 0 0 0
he, = 0 sin 6 cos ¢(1 — 27)711/2 rcosfcos¢ —rsinfsin ¢ ' (37)
0 sinfsin¢(1 — 24)" /2 rcosfsing rsinf cos¢
0 cosf(1 — %)71/2 —rsinf 0

Such a tetrad is called usually as a proper one. Arbitrary coordinate transformations leave the
condition *A%, = 0, whereas the components of the proper tetrad (37) are changed as the
components of covariant vector leaving the proper tetrad.

4.2. Energy density in spatially flat FLRW world for a free-falling observer
Let derive the metric of the spatially flat FLRW world in the form:

ds? = —dt* + a*(t) (dr? + % (d6? + sin®0d¢?)) . (38)

A more convenient choice of the tetrad is

1 0 0 0
e |0 a O 0
W= 0 0 ar 0 (39)
0 0 0 arsiné

Setting in (38) a(t) = 1 one evidently “switches off” the gravity. Then one easily calculates that
components of the inertial spin connection are the same as in (31).
Non-zero components of the contortion tensor calculated for *K%,, are

‘Kl =K% =K% =°K% =°*K3%;3 =°"K'3 = -H (40)

where H is the standard Hubble constant. The related non-zero components of the torsion
tensor *7T“g,, (antisymmetric in lower indexes) are

Tl ="°T%0 =°T%0 = —H (41)

and the same with opposite sign for swapped lower indexes. Related non-zero components of
the antisymmetric in upper indexes superpotential *S,”’ are

05110:05220:05330:_2}[ <42)

and with opposite sign for swapped upper indexes. The same as in the black hole case, after
the rotations (36) all non-zero components of inertial spin connection, (they are again (31)) are
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suppressed. And the tetrad becomes as a proper tetrad but in quite a cumbersome form. Then
after transformation from the spherical coordinates to Cartesian ones the proper tetrad becomes

1 0 0O
e _ |0 a 00
W= 0 0 a O (43)
0 0 0 a
with the related metric:
ds® = —dt* + a*(t) (da® + dy® + d2?) . (44)

For a gauge (43) and (44) one easily finds that components (40)-(42) are the same.

Now we will calculate the energy density for a freely falling observer with the proper vector
¢* = (—1,0,0,0) - now it is not a Killing vector. This energy density is a zero component
of the current (22). Thus, we need calculate 00-components of *6,% and *©,% that gives
(*00° +°0¢") €° = 6x71H? for the first term in (22). Calculation of the last term in (22)
gives the same quantity with the opposite sign. Thus, finally *I° (¢) = 0 that means that the
freely falling observer measures a zeroth energy density; at least, this result coincides with some
of previous ones, see [4]. The same result is valid for the case of k = —1.

5. Discussion

Let us analyze the conservation law (19) with the current (18) and superpotential (20). Open
a divergence on the right-hand side of (19) and suppress the items with the derivative of £* on
the left and right sides. Next, use the vacuum equations (7) and save only the coefficients at
£, removing £“ itself. At last, contracting the final expression with hy° one obtains exactly
the conservation law in the form (10). Thus, we conclude that the success of constructing the
conservation law (19) with the current and the superpotential covariant in the both senses is
trusted by the presence of the displacement vector £ incorporated into the Noether theorem
from the start.

The other advantage of using £ is that it can be interpreted as a Killing vector, as a proper
vector of an observer, etc. It is natural because a definite physical sense can be labeled to related
conserved quantities. Frequently, in works where the displacement vector £ is not used, authors
identify an observer with a proper vector of tetrad, see, for example [9,10]. Formally it is quite
permissible. However, from the point of the observer role, it is an external object created for
testing a physical (geometrical) model. On the other hand, any tetrad vector components are
dynamical objects and cannot be interpreted as an external structure.

It was noted already that the equations of motion in TEGR [1], the same in the Moller
tetrad theory [2] do not depend on the inertial spin connection at all. Thus, solutions to these
equations do not depend on a choice of the inertial spin connection at all, as well. However,
we have stated that a choice of the inertial spin connection is quite important for calculating
conserved quantities, and we suggest a related criterion. In modifications of TEGR, like f(T")
theories, fixation of the inertial spin connection becomes crucial for a consistence of the system
of equations of motion. In [11-13] the criterion connected with popular symmetries of known
solution is suggested. Ideas and results given in the present paper have been presented at
the conference PIRT2019 [14] and developed significantly in our recent paper [15] where, in
particular, we provide a detail comparison with the results of [11-13].
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