IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 December 2024, accepted 5 January 2025, date of publication 20 January 2025, date of current version 27 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3531391

== RESEARCH ARTICLE

Performance of Quantum Annealing Machine
Learning Classification Models on ADMET
Datasets

HADI SALLOUM 123, KAMIL SABBAGH"'1-3, VLADISLAV SAVCHUK', RUSLAN LUKIN',
OSAMA ORABI“2-3, MARAT ISANGULOV', AND MANUEL MAZZARA"“2

IResearch Center of the Artificial Intelligence Institute, Innopolis University, 420500 Innopolis, Russia
2Department of Computer Science and Engineering, Innopolis University, 420500 Innopolis, Russia
3Q Deep, 420502 Innopolis, Russia

Corresponding author: Hadi Salloum (h.salloum@innopolis.ru)

All authors were supported by the Research Center of the Artificial Intelligence Institute of Innopolis University.

ABSTRACT The Quantum Annealer built by D-Wave, known as Advantage, is currently the largest quantum
computer in the world, featuring a topology called ‘“Pegasus.” This groundbreaking system opens new
possibilities for solving highly complex problems. The advancement of quantum annealers has spurred
experimental demonstrations and intensified research interest, particularly in quantum machine learning.
However, the application of quantum annealing in machine learning remains limited due to the lack of
conclusive performance evaluations on real-world datasets. There is still no clear consensus on the efficacy
of these models in practical scenarios. This work focuses on experimentally evaluating quantum annealing
machine learning (QAML) classification methods, specifically Quantum Support Vector Machines (QSVM)
and QBoost, on ADMET datasets—one of the most important datasets in the drug discovery domain.
We compare QAML with classical machine learning to evaluate their relative performance. This study
seeks to address this gap by rigorously comparing the performance of QBoost and QSVM models using
ADMET datasets, employing D-Wave’s Quantum Annealer. This work provides a comprehensive analysis
of the potential and limitations of quantum annealers in quantum machine learning, with a focus on their
application to real-world data in the ADMET domain. The findings offer critical insights into the nuanced
advantages and challenges of quantum annealers in advancing machine learning methodologies.

INDEX TERMS Quantum computing, quantum annealing, Pegasus topology, quantum support vector

machines (QSVM), QBoost, ADMET datasets, drug discovery, classical machine learning, real-world data.

I. INTRODUCTION Richard Feynman, a well-known physicist, laid down the

Quantum Computing (QC) stands at the forefront of techno-
logical advancements, promising Innovative capabilities that
could redefine computational power across various domains.
Rooted in the foundational principles of quantum mechanics,
QC utilizes concepts specifically quantum superposition
and entanglement to enable computations that surpass the
capabilities of classical computers [1], [2].
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conceptual groundwork for the development of quantum
computing in his 1959 lecture [3]. In a series of foundational
papers [4], [5], [6], Feynman imagined how a quantum
computer might work and how quantum algorithms could
be successfully designed, while pointing out their potential
in simulating physical systems. Although Feynman did
not explicitly formulate important notions for quantum
computing such as qubits or gates, his seminal insights
influenced subsequent developments in the field. Building
on Feynman’s insights and earlier works by Poplavskii [7]
and Ingarden [8], Paul Benioff [9], [10] described the first
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quantum mechanical model of a computer in the early ’80s.
This was further expanded upon by Deutsch at Oxford [11],
who became the first researcher in 1985 to formally propose
the concept of a quantum Turing machine, thus laying the
foundation for a universal quantum computer.

The development of quantum computing has been
marked by significant milestones over the years. Igeta and
Yamamoto [12] made a pivotal contribution by describing
the first physical realization of a quantum computer, while
Ekert [13] introduced the first entanglement-based secure
communication protocol. However, it was not until the late
1990s that the term ‘“‘qubit” was formally coined [14],
marking a watershed moment in the field. This period
also witnessed the first experimental demonstration of
a quantum algorithm [15], as well as the establishment
of The Quantum Information Science and Technology
Roadmapping Project in 2002, followed by the creation
of the first operational pure-state NMR quantum computer
in 2004 [16], [17].

Since then, the field of gate-based quantum computing has
advanced at a rapid pace, with various physical systems being
employed to represent qubits. These systems manipulate
qubits by applying quantum gates, which enable increasingly
complex computations. Over the past two decades, numerous
technological paradigms have emerged, each contributing
uniquely to the progress of quantum computing:

o Superconducting Qubits: This architecture uses super-
conducting circuits to represent and manipulate qubits.
IBM’s Quantum systems [18] and Google’s quantum
computing initiatives [19] are at the forefront of
developments in this area.

o Trapped Ion Quantum Computers: In this system,
individual ions trapped in electromagnetic fields serve
as qubits. Companies like IonQ [20] and Honeywell [21]
are advancing this approach, with notable progress in
scalability and error correction.

« Topological Quantum Computers: This approach
leverages topological qubits, which offer robustness
against certain types of errors. Microsoft’s StationQ
project [22] is actively researching this promising
technology.

o Photonic Quantum Computers: Using photons,
or light particles, to represent qubits, photonic quantum
computing offers potential advantages in terms of
speed and fault tolerance. Companies like Xanadu and
PsiQuantum are at the leading edge of research in this
domain [23], [24].

o Spin Qubits in Semiconductors: By using the spin
state of electrons in semiconductor materials to represent
qubits, this approach is being pioneered by companies
such as Intel and QuTech [25], [26], [27].

o Neutral Atom Qubits: Neutral atoms trapped by lasers
serve as qubits in this emerging technology. ColdQuanta
and Atom Computing are spearheading efforts in neutral
atom qubit research [28], [29], [30].
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« Nitrogen-Vacancy (NV) Centers in Diamond: Defects
in diamond structures are used to store and process
quantum information in this type of quantum computing,
with research being conducted at leading institutions
such as Harvard and MIT [31], [32], [33].

e Quantum Dots: These quantum computers employ
quantum dots—nanoscale semiconductor structures—to
confine electrons and represent qubits. Toshiba and IBM
are among the organizations advancing research in this
field [34], [35], [36].

While gate-based quantum computing has seen remarkable
advancements across diverse technological architectures,
quantum annealers represent a different approach. Quantum
annealers are designed to solve combinatorial optimization
problems by executing the quantum annealing process,
as highlighted by Heng [37]. This form of quantum
computing is distinct from gate-based systems, as it focuses
on specific problem-solving techniques rather than general-
purpose computation. As such, quantum annealers have
found applications in areas requiring highly specialized opti-
mization techniques, complementing the broader progress in
quantum computing research.

Quantum annealing is a heuristic approach to solving
problems in combinatorial optimization, initially developed
for implementation on classical machines [38], [39], [40].
It can be viewed as a variant of the well-known simulated
annealing (SA) metaheuristic [41]. The concept of integrating
a model of quantum annealing into a heuristic optimization
framework has been independently proposed by several
researchers, including Apolloni [42], Ray et al. [43], and Kad-
owaki and Nishimori [44]. Tadashi Kadowaki and Hidetoshi
Nishimori first proposed quantum annealing [44]. They
introduced quantum fluctuations into the simulated annealing
process for optimization problems, intending to achieve
faster convergence to the optimal state. Quantum fluctuations
induce transitions between states, playing a role analogous
to thermal fluctuations in conventional approaches. This
idea was tested using the transverse Ising model, where the
transverse field varies over time, similar to how temperature
changes in classical simulated annealing.

The objective is to find the ground state of the diagonal part
of the Hamiltonian with high accuracy as quickly as possible.
The time-dependent Schrodinger equation was numerically
solved for small systems with various exchange interactions.
A comparison with the results from classical thermal methods
reveals that quantum annealing leads to the ground state with
a much higher probability in almost all cases, assuming the
same annealing schedule is followed, as shown in Fig. 1.

Quantum annealing operates on the principle of quantum
tunneling, driven by quantum fluctuations, which facilitates
state transitions toward the system’s ground state. The final
ground state is reached through the controlled application
of quantum fluctuations. Initially, large quantum fluctuations
are applied, which are then progressively reduced, allowing
the system to evolve into the ground state. Figure 2 presents a
schematic illustration of the quantum annealing process [45].
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FIGURE 1. Time dependence of the overlaps of the ferromagnetic model. The quantum method clearly gives
better convergence to the ground state, while the classical counterpart gets stuck in a local minimum with a

non-negligible probability. Adapted from [44].

Mathematically, quantum annealing aims to find the mini-
mum of a cost function, often represented by a Hamiltonian:

H=> wo+ ZJ,-,-ofa; , (1)
i i<j

where o7 and o} are Pauli matrices representing the spins of
qubits, w; are biases, and J;; are couplings between qubits.
The ground state of this Hamiltonian corresponds to the
solution of the optimization problem.

In quantum annealing, the system’s evolution is governed
by the time-dependent Schrodinger equation:

a
ih— 1Y (1) = HDO)Y 0) @

where | (#)) is the state of the quantum system at time
t, and H(¢) is the time-dependent Hamiltonian. During the
annealing process, the Hamiltonian is gradually changed
from an initial Hamiltonian Hj, whose ground state is easy to
prepare, to the final problem Hamiltonian Hr, whose ground
state encodes the solution to the optimization problem. The
time-dependent Hamiltonian is often expressed as:

H(r) = (1 = s(t)Ho + s(t)HF 3

where s(¢) is a schedule function that varies from O to
1 throughout the annealing process. A common choice for
the schedule function is a linear ramp, i.e., s(t) = t/T, where
T is the total annealing time.

Quantum entanglement is a fundamental phenomenon that
significantly influences the evolution of qubit systems during
the quantum annealing process. As demonstrated in the
work cited in [46], both two-qubit and eight-qubit systems
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exhibit a gradual transition of the ground state as the system
parameters are varied. The system is initialized in the ground
state of Hp, which is typically a simple Hamiltonian with
a known ground state. As the annealing progresses (s(t)
increases), the system evolves towards the ground state of
HFr, ideally finding the optimal solution to the optimization
problem encoded in Hr.

Initially, when the parameter s is small, the system
manifests a superposition, wherein each qubit has an equal
probability of being in the “up” or “down” state. As s
increases, the energy gap between the ground and excited
states diminishes, leading to the formation of entangled states
that represent a superposition of all qubits being “up” or
all being “down.” Eventually, as the energy gap becomes
smaller than the thermal energy, the system transitions into
a mixed state, resulting in a loss of entanglement. Upon the
completion of the quantum annealing process (when s = 1),
the system stabilizes into two localized configurations, where
all qubits align in the same direction—either all ““up” or all
“down.” This entire process is illustrated in Figure 3.

Quantum annealing algorithms can be analyzed using
various techniques, including adiabatic theorem analysis,
quantum Monte Carlo simulations, and theoretical investiga-
tions of the system’s energy landscape. These analyses help
understand the behavior of quantum annealing algorithms
and their effectiveness in solving optimization problems.
Additionally, it’s important to note that the optimization
problem can be formulated as a Quadratic Unconstrained
Binary Optimization (QUBO) problem, allowing for the
conversion of classical optimization problems into a form
suitable for quantum annealing. The QUBO formulation is
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FIGURE 2. Schematic of the system of quantum annealing. Adapted from [45].

typically represented as:
minimize f(x) = x? Qx 4)

where x is a binary vector representing the variables of the
optimization problem, and Q is the QUBO matrix encoding
the problem’s objective function and constraints.

These systems are offered by companies such as D-Wave
Systems with their D-Wave Quantum Annealers [47]. Private
companies have also played a significant role, directing
efforts toward fully connected quantum computers, software
libraries, and leveraging quantum computing for enhancing
security services [48], [49], [50], [51], [52].

In recent years, researchers have increasingly recognized
the transformative potential of quantum computing in advanc-
ing machine learning. This growing interest is reflected
in numerous studies highlighting the promise of quantum
algorithms in enhancing both the performance and efficiency
of learning models [53], [54], [55], [56]. Building upon
this foundation, our research delves into the capabilities
of D-Wave’s Advantage Quantum Annealer—the largest
quantum computer in existence, boasting 5000 qubits [57].
The core objective of this paper is to assess the quantum
advantages of this annealer model when applied to machine
learning classification tasks across diverse datasets. Through
a thorough and methodical analysis, we aim to uncover the
potential impacts of quantum annealing in shaping the future
of machine learning.

A. AIM AND NOVELTY

The principal aim of this work is to rigorously evaluate
the performance of quantum annealing machine learning
(QAML) methods, with a particular focus on Quantum
Support Vector Machines (QSVM) and QBoost, using
ADMET datasets. It is important to emphasize that this study
is solely concerned with quantum annealing approaches,
which differ significantly from gate-based quantum methods.
ADMET datasets, which are crucial in drug discovery,
provide an ideal test case for assessing the practical appli-
cability of quantum annealing machine learning techniques.
By comparing the performance of QAML models against
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classical machine learning methods, this study aims to fill
the gap in performance evaluations of quantum annealing in
real-world applications, focusing exclusively on its potential
within this domain.

The novelty of this research is multi-faceted, as outlined
below:

1) Comprehensive Experimental Comparison: This
study provides an in-depth experimental comparison
between quantum annealing-based machine learning
models (QBoost and QSVM) and traditional models.
By employing real-world datasets, we offer a meaning-
ful analysis of the strengths and weaknesses of each
approach.

2) Exploration of ADMET Datasets: The application
of QAML methods to ADMET datasets, which are
pivotal in the drug discovery process, represents a novel
contribution to the field of quantum machine learning.
This area remains largely unexplored, making this work
particularly innovative.

3) Advanced Quantum Hardware Integration: Uti-
lizing D-Wave’s Hybrid Quantum Processing Unit
(HQPU) and the Fast Anneal feature, this study not
only evaluates the potential of quantum annealers
but also provides critical insights into their limita-
tions, offering a nuanced understanding of how these
technologies may be harnessed to advance machine
learning.

B. PAPER STRUCTURE
The paper is organized as follows:

First, the foundational concepts of D-Wave Quantum
Processing Units (QPUs) are examined, focusing on their
architecture and fast annealing capabilities. This includes
a detailed overview of the hybrid quantum-classical solver
(HQPU) and its role in quantum computing. Next, the
research problem is defined, emphasizing the complexities of
processing SMILES representations from ADMET datasets
and the challenge of feature extraction for machine learning
applications.

VOLUME 13, 2025
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FIGURE 3. Entanglement between two qubits during quantum annealing with h; = 0 and J < 0. Adapted

from [46].

Following this, the methodology for standardizing
SMILES strings and performing feature extraction is
described, which forms the basis for both classical and
quantum machine learning models. Subsequently, a classical
machine learning model, LightAutoML, is implemented
as a baseline, and its performance is evaluated using the
preprocessed ADMET datasets. The paper then explores
quantum machine learning approaches, specifically Quantum
Support Vector Machines (QSVM) and QBoost, which
utilize the quantum annealing capabilities of D-Wave
systems. These methods are applied to benchmarking
datasets, providing a comparison to classical techniques.
An experimental section presents the setup and outcomes,
highlighting the performance metrics used to evaluate both
classical and quantum approaches. The advantages and
limitations of each method are analyzed.

This is followed by a discussion of the results, exploring
the broader implications of quantum computing for machine
learning, along with potential future research directions.
The paper concludes by summarizing the key findings and
reflecting on the performance of the D-Wave Advantage
2 system, particularly its impact on advancing machine
learning methodologies through quantum annealing.

Il. D-WAVE QUANTUM MACHINES

The development of D-Wave quantum computers repre-
sents a series of groundbreaking advancements in quantum
computing architecture, with key milestones marking the
evolution of their systems. The first commercially produced
D-Wave processor was a programmable, superconducting
integrated circuit consisting of up to 128 pair-wise coupled
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superconducting flux qubits [58], [59]. Figure 4 illustrates
the architecture of superconducting flux qubits, which
allowed for the superposition of quantum states, laying
the foundation for subsequent developments in quantum
annealing technology.

The conceptual foundations of D-Wave’s approach are
rooted in pioneering experiments in condensed matter
physics, specifically in the study of quantum annealing in
magnetic systems. This line of research, led by Gabriel
Aeppli, Thomas Felix Rosenbaum, and their collaborators,
provided a crucial basis for later developments in quantum
computation [61]. These early insights were further refined
and applied to quantum computing by physicists Edward
Farhi, Seth Lloyd, Terry Orlando, and Bill Kaminsky at the
Massachusetts Institute of Technology (MIT). Their work
ultimately culminated in the design of D-Wave’s quantum
annealing architecture, which is built around superconducting
flux qubits [62], [63], [64], [65].

In 2007, D-Wave publicly demonstrated its Orion proto-
type, the first quantum computer unveiled to the public [66].
The subsequent release of the D-Wave One, equipped with a
128-qubit processor, represented a significant leap forward in
quantum computational capabilities. Despite early skepticism
and debates regarding the practical realization of quantum
speedup, collaborations with key partners, such as Lockheed
Martin, and research breakthroughs, such as applications in
protein structure determination, demonstrated the practical
potential of D-Wave’s quantum processors [67].

The launch of the D-Wave Two in 2013, featuring a 512-
qubit processor, further cemented D-Wave’s place in the
quantum computing landscape. Comparative studies between
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FIGURE 5. Evolution of D-Wave Quantum Computers: Number of Qubits Over Time.

D-Wave’s technology and classical algorithms revealed
significant performance improvements in solving complex
optimization problems. Additionally, collaborations with
institutions like NASA and Google underscored the practical
applications of D-Wave’s quantum solutions, especially in
fields such as machine learning and large-scale optimiza-
tion [68], [69], [70].

In 2015, D-Wave introduced the D-Wave 2X system,
which featured a 1000-qubit processor based on the Chimera
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graph architecture [71]. The Chimera qubits within this
architecture are defined by a nominal length of 4, where
each qubit is connected to four orthogonal qubits via internal
couplers, and a degree of 6, indicating that each qubit is
coupled to six distinct qubits [72], [73]. Figure 6 illustrates
this Chimera graph structure. The D-Wave 2X system
achieved notable performance improvements, particularly
constant-factor gains over classical hardware, highlighting
the advantages of D-Wave’s quantum annealing methodology
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for specific computational challenges. In 2017, D-Wave
advanced this design further with the release of the D-Wave
2000Q system, maintaining the Chimera graph architecture
while expanding the qubit count to 2048 and enhancing its
quantum annealing capabilities [74], [75].

FIGURE 6. Chimera Topology in D-Wave Quantum Annealers. Adapted
from [76].

D-Wave’s most advanced architecture, the Advantage
system, features over 5000 qubits and marks a transition
to the Pegasus graph topology. Figure 5 illustrates the
historical growth in the number of qubits in D-Wave
quantum processors, with projections indicating that the
forthcoming Advantage 2, anticipated for release in 2025,
will feature more than 7000 qubits [77]. The Pegasus
graph topology, introduced with the Advantage architecture,
represents a major innovation in quantum hardware design.
Unlike its predecessor, Chimera, which exhibited limitations
in qubit connectivity and subgraph structures, the Pegasus
topology offers superior connectivity and more intricate
native subgraphs, making it better suited to a broader range
of optimization and machine learning problems.

A key feature of the Pegasus topology is its enhanced con-
nectivity compared to the Chimera topology [79]. In Chimera,
qubits were organized into unit cells with limited intercon-
nections [80]. Pegasus improves on this by adding extra
couplers, facilitating more complex interactions between
qubits (see Figures 7 and 8). This increased connectivity
allows Pegasus-based quantum processors to tackle larger
and more intricate problem sets. A notable aspect of the
Pegasus topology is its native subgraphs, particularly the
K4 and Kg g structures. The K4 subgraph represents a fully
connected cluster of four qubits, while the K¢ ¢ subgraph
corresponds to a fully connected set of twelve qubits. These
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FIGURE 7. A P3-sized Pegasus(0) processor, showing internal couplers
(blue curved lines), external couplers (long red lines), and odd couplers
(short red lines).

FIGURE 8. Pegasus unit cells in a P4 graph, with qubits represented as
green dots and couplers as gray lines. Adapted from [78].

subgraphs are advantageous for algorithms that can exploit
such configurations, boosting computational performance.
The Pegasus topology introduced by D-Wave represents a
significant advancement in quantum computing architecture.
One of its key innovations is the introduction of ‘“odd
couplers,” which connect similarly aligned qubits, adding a
new dimension of flexibility to quantum processing. These
odd couplers enhance the system’s capacity to perform
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more sophisticated calculations and optimizations, thereby
enabling quantum processors to tackle a wider range of
complex optimization problems with greater efficiency.
The transition to the Pegasus graph topology, with its
increased connectivity and advanced native subgraphs, marks
a critical leap in D-Wave’s quantum computing capabilities,
significantly pushing the boundaries of performance and
computational efficiency.

In conjunction with the Pegasus topology, D-Wave has also
introduced fast annealing, a critical feature that has further
expanded the scope of quantum annealing. Fast annealing has
played a pivotal role in D-Wave’s research achievements [57],
[81]. These publications highlight the advantages of quantum
annealing over classical algorithms, particularly in solving
complex optimization problems. Fast annealing refers to
the reduction of annealing time scales to a point where
thermal excitations are rendered negligible. This ensures that
the quantum system remains in a coherent state throughout
the process, enhancing the precision and accuracy of the
solutions obtained.

As illustrated in Figure 9, fast annealing provides more
granular control over quantum systems by extending the
duration over which quantum coherence is maintained. This,
in turn, prevents interference from thermal dynamics and
allows quantum processors to maintain a higher degree
of accuracy during computations. Such advancements are
essential for achieving quantum supremacy, where quantum
devices decisively outperform classical computing systems
on specific tasks.

The combination of the Pegasus topology’s enhanced qubit
connectivity and odd couplers, alongside the integration of
fast annealing, represents a monumental step forward in the
trajectory of quantum computing innovation. Together, these
features not only improve the performance and efficiency of
D-Wave’s quantum processors but also enable the exploration
of new frontiers in quantum optimization, simulation, and
supremacy.

A. KEY BENEFITS OF FAST ANNEALING

o Negligible Thermal Excitation: The fast annealing
process operates within time scales that minimize
thermal effects, thereby making thermal excitations
negligible. This improvement allows the system to stay
closer to its ground state, ensuring more accurate results
in solving complex optimization problems.

o Quantum Supremacy Applications: Fast annealing
enhances the performance of quantum systems, provid-
ing users the capability to build applications that lever-
age quantum supremacy. Quantum supremacy refers to
solving specific problems that are infeasible for classical
computers.

o Enhanced Quantum Simulations: The introduction of
fast annealing allows researchers to develop increasingly
sophisticated quantum simulations. These simulations
can address more intricate problems in fields such as
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materials science, cryptography, and artificial intelli-
gence.

« Exploration of Coherent Dynamics: The improved
time scales provided by fast annealing also enable
the exploration of coherent quantum dynamics in core
performance, which plays a crucial role in the future
scalability of quantum systems.

This development marks a significant leap in quantum
computing technology, providing users with the tools nec-
essary to advance their research in quantum supremacy and
quantum dynamics.

Ill. PROBLEM STATEMENT
In drug development and research, a critical task is the
prediction of drug permeability and activity across various
biological barriers and systems, such as PAMPA (parallel
artificial membrane permeability assay), the blood-brain
barrier (BBB), and human intestinal absorption (HIA).
Additionally, predicting drug interactions with proteins like
P-glycoprotein (Pgp) and various cytochrome P450 enzymes
(CYP2C9, CYP3A4, etc.) is essential for evaluating drug
safety, efficacy, and potential toxicological effects.

This project aims to address several binary classification
tasks:

o Predicting the permeability of compounds in the
PAMPA assay.

« Determining the activity of drugs against the blood-brain
barrier.

o Predicting human intestinal absorption based on chemi-
cal structure.

« Identifying P-glycoprotein inhibition and interactions
with cytochrome P450 enzymes (CYP2C9, CYP3A4).

o Assessing the mutagenicity, carcinogenicity, and liver
injury potential of drugs.

These classification tasks involve a wide variety of
datasets, each with specific biological or chemical endpoints,
and accurate models are needed to predict these properties
from chemical descriptors such as SMILES strings.

We will solve all these classification tasks using classical
and quantum annealing machine learning methods. The
datasets considered include: PAMPA NCATS, HIA Hou,
Pgp Broccatelli, Bioavailability Ma, BBB Martins, CYP2C9
Substrate CarbonMangels, CYP3A4 Substrate CarbonMan-
gels, hERG, DILI, and Carcinogens Lagunin. For detailed
information on each dataset, refer to A.

IV. STANDARDIZATION AND FEATURE EXTRACTION OF
SMILES IN ADMET DATASETS

In cheminformatics, rigorous preprocessing and standard-
ization of molecular representations are indispensable for
ensuring the integrity and robustness of computational analy-
ses. This study systematically addresses the standardization
and feature extraction of SMILES (Simplified Molecular
Input Line Entry System) strings derived from ADMET
datasets [82], [83], [84]. Advanced chemical informatics
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H. Salloum et al.: Performance of QAML Classification Models on ADMET Datasets

IEEE Access

O

Kink density n

10°°

<]
X 4 <J <
x % %
(] o) & 5
L=512
T=30 mK
v T=24mK
4 T=18 mK
x T=12 mK
+ T=10 mK
] ’.:7: e
I\HH[ T \I]IIH\ T IIHHI| I'IIIII\I|; IQI[IHHI T T
10' 10° 10° 10* 10°

Annealing time £, (ns)

FIGURE 9. Advancements in fast annealing within quantum computing, highlighting its effectiveness in
suppressing thermal excitations and its role in enhancing capabilities towards achieving quantum

supremacy. Adapted from [81].

tools and mathematical frameworks were employed to
enhance the representational accuracy and feature richness of
the molecular data.

A. SMILES STANDARDIZATION

The standardization of SMILES strings involves transforming
the raw molecular data into a canonical form that is
both chemically valid and structurally consistent across the
dataset. This process was carried out using the datamol
and RDKit libraries, which provide a suite of functions for
correcting and sanitizing SMILES strings [85], [86], [87].

1) Error Correction: For each molecule M; represented
by a SMILES string S(M;), we define an error
correction function E SM;)) — S'(M;), where
S’'(M;) is the corrected SMILES string. This function
detects and resolves syntactical and chemical errors by
enforcing chemical valence rules and correcting atom
and bond annotations.

2) Salt Removal: SMILES may contain cations or anions
that do not contribute to the chemical structure of the
molecule, but increase molecular weight and therefore
need to be stripped. The salt removal process involves
decomposing a molecule M; into its constituent frag-
ments {Fj, Fip, ..., Fi,} and isolating the primary
fragment F;, that represents the core neutral molecule.
This is formalized by a function R : S(M;) — S(Fjp),
where R removes extraneous fragments based on their
molecular weight and charge distribution.
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3) Sanitization: Sanitization is the process of trans-
forming each molecule M; into a chemically valid
form Mlt“a“itized by applying a series of rules S =
{s1, $2, ..., s} that ensure correct valence and stereo-
chemistry, try to catch potential aromaticity errors, fix
aromatic nitrogen and remove dummy atoms. This can
be mathematically represented as:

m
Misanitized =SM,) = Hsj M; 3)
J=1

where H]m=1 s; denotes the sequential application of
sanitization rules.

4) Standardization: To ensure a unique representation,
each molecule M; is mapped to a canonical form
C(M;) through a canonicalization function C : M; —
C(M;). The canonical form C(M;) is invariant under
isomorphisms of the molecular graph G(M;), thus
eliminating redundancy in molecular representations.
It consists of disconnecting metals from non-metals,
correcting functional groups, recombining charges,
neutralizing the molecule to ensure the net charge of
0 and adding stereochemical information.

B. FEATURE EXTRACTION

Following the standardization, molecular features were
extracted using a comprehensive array of algorithms from
the molfeat library. The extracted features encompass
both classical molecular descriptors and advanced graph-
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based embeddings, enabling a thorough characterization of
molecular structures. The feature extraction process involves
mapping each molecule M; to a high-dimensional feature
space R¥, where k is the dimensionality of the feature vector.

o desc2D: The 2D molecular descriptors are computed by
mapping each molecule M; to a vector Dop(M;) € R”,
where n represents the number of calculated descriptors.
Each descriptor D2p j(M;) is a function of the molecular
graph G(M;) and is defined as:

Dap,j(M;) = f{(G(M))) (6)

where f; is a descriptor function corresponding to
properties such as molecular weight or topological
indices [88].

e GIN (Graph Isomorphism Network) Supervised
Models:

— ContextPred: This model extracts features by
maximizing a contextual prediction objective. For
each node v; in the molecular graph G(M;), the
feature hgk) at layer k is updated by an aggregation
function:

WO =g (w® > nV @) )
JEN @)

where N (i) denotes the neighbors of node v;, w®
and b® are trainable parameters, and o is an
activation function [89].

— EdgePred: The edge prediction task involves
estimating the probability P(E(v;, v;)) = 1|G(M;))
for an edge E(v;, v;) between nodes v; and v; [90].
The extracted features are optimized to maximize
the log-likelihood:

Legge = Y log P(E(vi,vj) = 1)

(i, vj)EE

+ > log(1—P(EW.v) =1) (8)

i, v))¢E

— Infomax: The Infomax [91] model extracts features
by maximizing the mutual information I(G; H)
between global graph-level representations H and
local node-level representations %;. This is achieved
by optimizing the contrastive loss:

" exp((hi, H))
Ein 0o — — 1 7
! ; % 2.1 €xp(¢(hy, H))

©))

where ¢(h;, H) is a scoring function measuring the
agreement between /; and H.

— Masking: In this model, random nodes or edges
in the graph G(M;) are masked, and the model
is trained to reconstruct the masked components.
The loss function L,k penalizes incorrect recon-
structions, promoting features that capture the
underlying graph structure [89].
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o Mordred: The Mordred descriptors span a wide range of
molecular properties, represented by a high-dimensional
vector Fyiordred(M;) € R™, where m is the number of
descriptors. Each descriptor is a functional f; applied to
the graph G(M;):

FMordred, k(M) = fi(G(M;)) (10

o pcqmd4mv2_graphormer_base: This model lever-
ages a transformer architecture with graph-specific
encodings. The attention mechanism computes pair-
wise dependencies between nodes, and the features
FGraphormer(M;) are derived from the attention-weighted
sum of node embeddings:

n
FGraphormer(Mi) = Z ah; (1D
i=1
where «; are attention coefficients, and h; are node
embeddings [92].

« RDKit: Traditional molecular descriptors from RDKit
map each molecule M; to a feature vector Frpkii(M;).
These descriptors are defined by explicit chemical rules
and function g;:

Frokitj(M;) = gi(G(M;)) (12)

o« SECFP (Self-Attention Contextualized Finger-
prints): SECFP features are derived by applying
a self-attention mechanism A to molecular finger-
prints [93]. The attention mechanism dynamically
weights substructure contributions, resulting in a
contextually enriched feature vector Fsgcpp(M;):

Fsgcrp(M;) = A(fingerprint(M;)) (13)

These feature extraction techniques, grounded in both
classical and contemporary mathematical models, provide
a robust and high-dimensional representation of molecular
structures. The combination of standardized SMILES and
advanced feature extraction enables the development of
predictive models that are both accurate and computationally
efficient, facilitating the exploration of ADMET properties.

V. CLASSICAL APPROACH: LIGHTAUTOML

The classical machine learning approach utilizes
LightAutoML [94], [95], [96], an automated machine
learning (AutoML) framework designed to handle model
training, tuning, and blending systematically and efficiently.
The process begins with a k-fold cross-validation scheme,
where the dataset D = {(x1,y1),..., (xn, yn)}, with n
samples, is partitioned into k disjoint subsets, denoted as

{D1, Dy, ..., Dy}, such that:
k
D=|JDi DinDj=ffori#j (14)

i=1
For each fold i, the model is trained on the training set
Duain = D \ D; and validated on the holdout set D;. Let
M., represent the m-th model in the ensemble. Each model
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M, minimizes a loss function L,,(y, y), which depends on
the task (e.g., L, (y, y) = % >0 — yi)? for regression or
cross-entropy loss for classification).

A. MODEL BLENDING AND ENSEMBLE FORMATION
The blending process involves combining predictions from a
set of models {M, ..., My }. Let 37" = M,y (x;) denote the
out-of-fold prediction of the m-th model on the i-th sample
from fold D;. The final blended prediction y; is computed as
a weighted sum of the individual models’ predictions:

M
Si= D wadl" (15)
m=1

where w,, > 0 is the weight assigned to the m-th model, with

the constraint:

M
Zwm =1 (16)
m=1

These weights w,, are typically determined by minimizing
the out-of-fold validation error across all models. The
optimization problem can be formulated as:

1 n M
min — ZL( Win Mo (x0), yi) (17
1

{wm} n 4
i=1 m=

subject to the constraints:

M
Zwm=1 and wy, >0 (18)

m=1

This forms a convex optimization problem, which ensures
that the blended model minimizes the expected loss across
the validation folds.

B. MODEL STACKING WITH META-LEARNERS

In more advanced settings, Light Aut oML may also employ
model stacking, where the predictions 3" from each base
model M,, are used as inputs to a meta-learner model M eta.
The meta-learner’s task is to learn the optimal combination
of the base models’ outputs. Let y; = [511-1, 511-2, .. ,57?”] be the
vector of predictions from the base models for sample x;. The
meta-learner M e, makes the final prediction as:

j’i = Mmeta(yi) (19)

The meta-learner is trained by minimizing a loss function
Lmeta On the out-of-fold predictions of the base models:

R )
min. -~ szeta(Mmeta(Yi), vi) (20)
=1

meta 1 i

This meta-learning process allows for a non-linear combi-
nation of the base models’ predictions, potentially capturing
more complex interactions between models and improving
overall performance.
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C. REGULARIZATION AND OVERFITTING PREVENTION

To prevent overfitting, LightAutoML typically incorpo-
rates regularization into the model blending or stacking
process. A common approach is to apply L, regularization
on the model weights:

n

M M
o1

{quﬁ}:L(E mem(x»,yi)HE wh, (2D
m . m=1 m=1

i=1

where A > 0 is a regularization parameter that controls the
tradeoff between minimizing the loss and keeping the model
weights small, thereby avoiding overfitting to the validation
folds.

This method allows LightAutoML to construct a
flexible, powerful, and robust model ensemble, leveraging
the strengths of various algorithms such as linear models,
CatBoost, and LightGBM, and optimizing them for
superior performance across a wide range of datasets.

D. RATIONALE FOR CHOOSING LIGHTAUTOML

The decision to use LightAutoML in this project is moti-
vated by several key factors. First, Light Aut oML excels in
automating the entire machine learning pipeline, including
data preprocessing, model selection, hyperparameter tuning,
and model evaluation [94]. This automation reduces the
need for manual intervention, thereby accelerating the model
development process and ensuring a streamlined workflow.
For large-scale datasets, this framework’s efficient handling
of both computational resources and time is invaluable [97].

Additionally, one of the major strengths of
LightAutoML is its ability to create highly robust model
ensembles. By employing advanced techniques like model
blending and stacking, as described in the previous sections,
the framework is capable of capturing complex relationships
in the data and producing superior predictive performance
compared to single models. The regularization techniques
incorporated in the blending process further mitigate
overfitting, ensuring that the resulting models generalize well
to unseen data [98].

LightAutoML also seamlessly integrates a wide variety
of machine learning algorithms, including linear models,
tree-based models (such as CatBoost and LightGBM),
and neural networks. This flexibility allows the framework to
tailor its solutions to the nature of the problem and dataset,
ensuring that the most appropriate and performant models
are selected. Another significant advantage is the scalabil-
ity of LightAutoML, which is essential when working
with large datasets or complex models. The framework’s
ability to parallelize operations across multiple folds of
cross-validation, as well as its efficient use of computing
resources, makes it an ideal choice for tasks requiring high
computational power. Moreover, by utilizing k-fold cross-
validation, Light Aut oML ensures that model performance
is rigorously evaluated across multiple splits of the data.
This prevents the model from being overly dependent on
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any particular portion of the dataset, thus providing a more
reliable estimate of its generalization capabilities.

Finally, the modularity of LightAutoML allows it
to be easily integrated with existing workflows, enabling
researchers and practitioners to leverage its capabilities
without having to overhaul their entire system. This flexibility
makes it a highly practical choice for a variety of machine
learning tasks, particularly in environments where multiple
models and configurations need to be tested efficiently.

In conclusion, LightAut oML was chosen for this project
due to its comprehensive, automated approach to machine
learning, robust performance through ensemble methods,
flexibility in model selection, and scalable architecture. These
characteristics make it a powerful tool for addressing the
challenges posed by complex datasets while minimizing
manual effort and computational overhead.

VI. QUANTUM ANNEALING APPROACHES: QUANTUM
SUPPORT VECTOR MACHINES (QSVM) AND QBOOST

A. QSvm

The optimization process for Support Vector Machines
(SVM) commences with the primary objective of maximizing
the margin between classes [99], [100], [101]. Given a set
of input vectors x, and corresponding class labels #, for
n = 1,2,...,N, the goal is to identify a hyperplane that
effectively separates the data while maximizing the margin.
The equation of the hyperplane in a linear SVM is expressed
as:

W-x+b=0 (22)

Here, w represents the weight vector, x is the input vector,
and b is the bias term.

The margin (y) is defined as the perpendicular distance
from the hyperplane to the nearest data point. Mathematically,
the margin is given by:

1
Y= (23)
[Iwll
The primary objective is to maximize this margin (y).

To achieve this, the problem is formulated as a constrained
optimization problem, where the margin is maximized under
the constraint that all data points are correctly classified.
This is expressed as the minimization of %||w||2 under the
constraint:

th(W-Xy +b)>1 forn=1,2,....N 24)

To convert the inequality constraints into equality constraints,
Lagrange multipliers «, > 0 are introduced for each data
point:

N
L(w,b, ) = %nwn2 — D alta(W X, +5) =11 (25)

n=1

Here, oo = [, 0t2, ..., ayn].
For the stationarity conditions, the partial derivatives of L
with respect to w and b are set to zero to find the optimal
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values:
N

aL
— =W > atyX, =0 (26)
ow p—

N
aL
— == oty =0 (27)
ab P

By solving for w and b in terms of the Lagrange multipliers
o, and substituting the optimal values back into L, the dual
form is obtained:

N N N
1
L(a) = E op — 5 E E Attt K Xy, Xpy) (28)
n=1 n=1m=1

If the data is not linearly separable, a kernel function
K(x;, X;;) is introduced to compute dot products in a
higher-dimensional space. Mercer’s theorem substantiates
the validity of this transformation, asserting that K (x,,, X,,) =
¢(x,) - d(X), where ¢(x) signifies the transformation
function. This obviates the need for explicit computation of
transformations, thereby enhancing computational efficiency.

Integral to the SVM optimization process is the inherent
convexity of the objective function and constraints. The dual
representation of the SVM problem is cast as a convex
optimization problem. The objective function L(«) is concave
concerning the Lagrange multipliers, while the constraints
form convex sets. This ensures the existence of a unique and
globally optimal solution for the SVM model.

The dual problem arises from maximizing the Lagrangian:

N N N
.. 1
Maximize L(a) = Zan 3 Z Z O ptntin K (Xp, X))
n=1 n=1 m=1
(29)
Subject to:
N
0<a,<C and D oty =0 (30)
n=1

The optimality conditions, guided by the Karush-Kuhn-
Tucker (KKT) framework, include:

1) Stationarity of the gradient:

N
VL(@) =t — D atuK Xy, Xp) = 0. 31)

m=1

2) Complementary slackness:
oy (t,,(w “X, +b) — 1) =0. (32)
These conditions guide the numerical optimization pro-
cess.
The dual form of the SVM problem is cast as a Quadratic
Programming (QP) problem:
o 1 7 T
Minimize E = Ea Oa—1" « (33)
Subject to:

0<a,<C and T'a=0 (34)
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Here, 1 is a vector of ones, and Q is the matrix of kernel
evaluations.

The optimization process for Support Vector Machines
(SVM) involves formulating a quadratic programming (QP)
problem to find the optimal Lagrange multipliers o =
[ar, 2, ..., an] that maximize the objective function.
However, traditional optimization methods yield real-valued
solutions for «, which is incompatible with the discrete,
binary nature of solutions produced by quantum annealers,
which operate on QUBO problems.

1) QUBO FORMULATION OF SVM

The transformation of the Support Vector Machine (SVM)
optimization problem into a QUBO framework involves a
meticulous process of encoding continuous variables into
binary representations and integrating the original constraints
into an unconstrained objective function. This section formal-
izes this transformation, presenting key results that establish
the theoretical foundation for the QUBO formulation of
SVM [102], [103], [104], [105].

a: LEMMA AND THEOREM ON BINARY ENCODING AND
QUBO TRANSFORMATION

Lemma 1 (Binary Encoding Lemma): Let o, be a contin-
uous variable constrained by «, € [0, C], where C is a
constant. There exists a binary encoding a, € {0, 1}X such
that:

K—-1

oy = 22"%,(, with a,; €{0,1}, ne{l,...,N},
k=0

(35)

where K is the number of binary digits required to
approximate «;, within a desired precision, which increases
exponentially with K.

Proof: Given the bounded variable o, € [0, C], it can
be decomposed into a finite sum based on its binary repre-
sentation. The binary vector a, = (an,0.an.1,--.,anK—1)
represents the binary coefficients corresponding to the
powers of 2 in the sum, allowing the reconstruction of «;, with
a precision governed by the choice of K. The maximum error
of this representation is bounded by ZQK, which diminishes as
K increases. Hence, the lemma holds. [ |

Theorem 1 (QUBO Formulation Theorem): Consider the
SVM primal optimization problem, subject to the constraints
>N aay = 0and 0 < &, < C. The equivalent QUBO
formulation is given by:

N N K-1K-1

H‘é‘in L(a) = % Z Z Z Z Bietj an.k@m.j ynYmK (Xn, Xm)

n=1m=1 k=0 j=0
2

N K-1 N K-1
- Z Z Bray k4§ (Z Z Bkan,kyn) s

n=1 k=0 n=1 k=0
(36)
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where a € {0, 1}VK represents the binary encoding of the
SVM dual variables «;,, and £ > 01is a penalty factor ensuring
the enforcement of the constraint 221:1 Yo, = 0.

Proof: The proof begins by encoding each continuous
variable «,, into its binary representation a, as described
in Lemma 1. The constraint an=1 ypoty, = 0 is then
incorporated into the objective function using a quadratic
penalty term weighted by &. The resulting objective function
L(a) is a quadratic expression in the binary variables a, with
terms corresponding to the interaction of encoded variables
and the kernel function K (x;,, x;,;). The resulting formulation
adheres to the structure of a QUBO problem, confirming the
theorem. [ ]

Corollary 1 (Optimality Condition Corollary): If a* €
{0, 1}¥€ is a global minimizer of the QUBO objective
function L£(a), then the corresponding o = sz;Ol Zka:’ x
provides the optimal solution to the original SVM problem,
satisfying the primal constraints.

Proof: Given that a* minimizes L(a), the quadratic
penalty term ensures that the original constraint >, _ | y,on, =
0 is satisfied by the binary-encoded solution a*. The
reconstructed o lies within the interval [0, C], thereby
respecting the original box constraints on «,. Thus, o is a
valid and optimal solution for the original SVM optimization
problem, establishing the corollary. [ ]

The formulation of the SVM problem as a QUBO problem
is not only a theoretical exercise but also has practical
implications for optimization techniques, especially in the
emerging field of quantum computing. By transforming
the SVM problem into a QUBO form, we enable its
solution using quantum annealing and other quantum-
inspired methods, which are particularly well-suited for
high-dimensional optimization problems characterized by
complex, non-linear interactions. This transformation also
underscores the versatility of SVMs and their ability to
adapt to different computational paradigms, providing a
bridge between classical machine learning and cutting-edge
quantum technologies. The rigorous formulation presented
in this section provides a foundation for future research
and development in the optimization of SVMs using QUBO
frameworks, potentially leading to more efficient algorithms
and deeper insights into machine learning models.

This symmetric matrix Q is transformed into the
upper-triangular Q matrix Q, ensuring compatibility with the
QUBO formulation required for quantum annealing.

The final step involves the embedding procedure to map
the QUBO problem onto the Advantage quantum annealer.
This process combines physical qubits to form logical qubits,
enhancing the connectivity between qubits and enabling the
solution of larger problems on the quantum annealer.

The QSVM construction involves hyperparameters such as
the encoding base B, the number of qubits per coefficient
K, the multiplier &, and the kernel parameter y. This for-
mulation, denoted as gSVM (B, K, &, y), leverages quantum
annealing to solve SVM optimization problems efficiently
and effectively.
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Algorithm 1 Quantum Annealing Support Vector Machine
(SVM)
1: Input:
2:  B: Base coefficient for binary variables
3:  K:Number of binary variables per Lagrange multiplier
o

4:  C:Regularization parameter

5. y: Kernel coefficient

6:  &: Offset for kernel function

7:  N:Number of training data points
8:  data: Training data set

9:  t: Target labels
10: Output:

11:  o: Optimized Lagrange multipliers
12:  b: Bias term

13: Function §(i, j):

14:  Return 1ifi = jelseO

15: Function kernel(x,y, y):

16:  if y = —1 then

17: Return (x, y) {Linear kernel}
18:  else
19: Return exp(—y||x — y|I?) {Radial Basis Function

(RBF) kernel }
20: Function predict_class(x_test,a, b, data, t,y):
21: f <« b+zjr>7:_01 a[n]-t[n]-kernel(dataln], x_test, y)

22:  Return sign(f) {Predicted class}

23: Function train_SVM(B, K, C, y, &, N, data, t):
24:  Initialize Q matrix of size (K - N, K - N)

25: forn=0to N — 1 do

26: form=0toN — 1do

27: fork =0to K — 1do

28: forj=0to K — 1do

29: OIK -n+k, K -m+j] < 0.5-(B*)-t[n]-t[m]

30: -(kernel(dataln], datalm),y) +
£) — (8(n,m) - 8(k, j) - BY)

31: end for

32: end for

33:  end for

34: end for

35:  Optimize o and b using D-Wave’s quantum annealer
36:  Return o and b

B. QBOOST
QBoost [106], [107], [108] operates through an iterative
process that combines quantum selection and classical adap-
tation to refine the ensemble of weak classifiers into a robust
strong classifier. This algorithmic framework represents a
significant advancement in machine learning methodologies,
offering improved performance and efficiency in constructing
accurate classifiers.

The algorithm begins by initializing an ensemble of weak
classifiers and a labeled training dataset. In the quantum
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selection phase, Adiabatic Quantum Optimization (AQO)
[109] facilitates efficient exploration of the classifier space
by leveraging quantum tunneling effects, allowing QBoost
to focus on configurations that offer the most significant
performance improvements compared to classical selection
methods. This quantum-inspired approach allows for efficient
exploration of the classifier space, focusing on configurations
that offer the most significant performance improvements.
The quantum selection process involves encoding the weak
classifiers and training data into a quantum representation
suitable for optimization. By leveraging quantum annealing
or other quantum-inspired techniques, QBoost explores
different combinations of weak classifiers to identify those
that contribute most effectively to the strong classifier’s
accuracy. This phase emphasizes the algorithm’s ability
to leverage quantum computing principles for efficient
selection and optimization, contributing to its overall
effectiveness.

Following the quantum selection phase, QBoost adapts
its dictionary of weak classifiers based on the errors
identified by the strong classifier constructed in the previous
step. This adaptation process is crucial for fine-tuning
the ensemble, incorporating new classifiers that address
specific error patterns and enhance overall classification
accuracy.

Metrics such as error rates, validation accuracy, and
convergence criteria guide the adaptation process, ensuring
that weak classifiers contributing positively to error reduction
are given higher importance while those causing significant
errors are downgraded or replaced. Weak classifiers that
contribute positively to reducing errors are given higher
importance, while those causing significant errors are
downgraded or replaced. This adaptive dictionary ensures
that the ensemble evolves dynamically, optimizing its
composition to handle complex classification tasks effec-
tively. The inner loop of QBoost involves the dynamic
refinement of the strong classifier. Through iterative
training and evaluation, the algorithm continuously assesses
and updates the composition of the strong classifier
based on error analysis and convergence criteria. This
dynamic approach ensures that the final classifier achieves
optimal performance while minimizing computational
overhead.

During the refinement process, QBoost evaluates the
performance of the strong classifier on both training and
validation datasets. It monitors changes in error rates,
convergence of optimization objectives, and the stability of
the classifier’s predictions. If the validation error decreases
or converges within predefined thresholds, the algorithm
updates the strong classifier with new weak classifiers
or modified weights. Conversely, if the validation error
stagnates or increases, indicating potential overfitting or lack
of improvement, the algorithm adjusts its strategies, such
as freezing the current classifier and exploring alternative
configurations. The dynamic refinement phase of QBoost
ensures that the strong classifier evolves iteratively, adapting
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Algorithm 2 QBoost Algorithm

Require: Training and validation data, dictionary of weak
classifiers, QO (maximum number of weak classifiers
optimized in one step), T (total number of weak

classifiers)
Ensure: Strong classifier H (x)
1: Initialize weight distribution d(s) = % for all samples
s=1,...,8
2: Set Tstrong = 0, c(x) =0,and K = ¢
3: repeat
4: i Tsgong < T then
5: Selecta set K of min(Q, T —Tsyrong) Weak classifiers
from the dictionary based on the current weights
d(s)
end if
for each regularization parameter A from A t0 Amax
do
8: Solve for w():
s 1 2
w(h) = argmin > (c(xo + g 2 i) - y)
s=1 tek
+ Awp
9: Update Tyew(X) = w(A)
10: Construct the classifier H(x; 1):
H(x; ) = sign (c(x) + Zwt(k)h,(x))
tek
11: Compute validation error Errory,(A) for H(x; A) on
the validation set
12:  end for

13:  Select A* = arg miny, Errory,;(1)

14: Update Tstrong = Tstrong + Tnew()\*)

15:  Update c(x) = c(x) + D, cx wi(X ") (x)
16:  Update sample weights:

2
1
d(s) = (ng IEZthtm) —~ ys)

17:  Normalize the weights:

d(s)
>3 1des)

18: until Validation error Errory, stops decreasing

d(s) =

to changing data patterns, minimizing errors, and improv-
ing generalization capabilities. The following pseudocode
outlines the core steps of QBoost algorithm, highlighting
its quantum-inspired selection, dictionary adaptation, and
dynamic refinement processes.

This structured pseudocode encapsulates the QBoost,
showcasing its quantum-inspired selection mechanisms,
adaptive dictionary refinement, and dynamic training
regimen.
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VII. EXPERIMENT AND RESULTS

Upon extracting all relevant features, we employed the
Quantum Advantage Annealer 4.1, utilizing the advanced
Pragsus architecture, to carry out quantum annealing. Due
to the problem’s complexity and the high dimensionality
of the matrices—exceeding the 177-variable limit [110]—
we opted for the hybrid quantum solver. This approach
leverages the solver’s ability to partition the overall problem
into smaller, more tractable subproblems using state-of-the-
art graph partitioning algorithms. These subproblems are then
embedded into the quantum hardware for execution, enabling
the simultaneous exploitation of both quantum and classical
computational resources. This hybrid technique effectively
handles large-scale optimization problems, ensuring efficient
and scalable solutions refer to B.

A. METRICS SELECTION: WHY USE AUC-ROC?
The primary metric chosen for evaluating the models’ per-
formance is the Area Under the Curve - Receiver Operating
Characteristic (AUC-ROC). AUC-ROC was selected due
to its robustness in assessing the overall performance of
classification models, particularly in imbalanced datasets.
It offers several advantages over other metrics such as
accuracy, precision, or recall, which can be misleading
when dealing with imbalanced data distributions. AUC-
ROC evaluates a model’s ability to distinguish between
classes across all possible thresholds, making it ideal for
applications where the costs of false positives and false
negatives differ. It is also worth noting that AUC-ROC is
widely regarded as a standard and effective measure for
the performance of classification models in tasks such as
those involving ADMET datasets. Given that AUC-ROC
is a well-established and commonly used metric in these
types of evaluations, we believe that it sufficiently captures
the relevant performance aspects for the quantum annealing
machine learning methods presented in our work.
Mathematically, the AUC-ROC is computed by plotting the
true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. The TPR, also known as recall
or sensitivity, is defined as:

True Positives

TPR = — - (37
True Positives + False Negatives
Similarly, the FPR is defined as:
False Positives
FPR (38)

~ False Positives + True Negatives

The ROC curve plots TPR against FPR, and the area
under this curve (AUC) provides a single scalar value that
summarizes the model’s ability to discriminate between
positive and negative classes across all thresholds. A perfect
model would achieve an AUC of 1, while a model with no
discriminative ability would score an AUC of 0.5. By using
the AUC-ROC, we can evaluate the trade-off between
sensitivity and specificity, ensuring that models are assessed
across a wide range of decision boundaries, providing a more
holistic performance analysis.
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B. PERFORMANCE EVALUATION

To systematically evaluate the performance of quantum
annealing-based machine learning methods—specifically
Quantum Boosting (QBoost) and Quantum Support Vector
Machines (QSVM)—we conducted a series of rigorous
experiments utilizing various ADMET datasets. The evalu-
ation metrics employed AUC-ROC, which serves as a robust
indicator of a model’s discriminative capability between
positive and negative instances.

Both quantum annealing-based methods, QBoost and
QSVM, were comprehensively assessed against classical
machine learning methodologies, utilizing LightAutoML as a
benchmark. The AUC-ROC scores for the evaluated datasets
are summarized in Table 1. The empirical results indicate
that classical machine learning models generally surpassed
their quantum counterparts in performance. Notably, QBoost
achieved the highest AUC-ROC score of 0.8614 on the
Carcinogens_Lagunin dataset, illustrating the potential of
quantum annealing techniques to enhance model efficacy.
Although QSVM did not consistently outperform classical
algorithms, it did demonstrate competitive performance
relative to QBoost in specific instances, suggesting that both
models warrant further investigation and development within
the domain of quantum machine learning.

In addition to performance metrics, we provide an
overview of dataset characteristics in Table 2, which includes
critical information such as the number of training examples,
positive cases, negative cases, and discrepancies in case
distributions. This contextual information is essential for
understanding the dynamics of the model evaluations.

The results reveal that classical machine learning models,
as represented by LightAutoML, generally achieved superior
performance compared to quantum methodologies across
the evaluated datasets. The dataset Carcinogens_Lagunin
exhibited the highest AUC-ROC score for QBoost (0.8614),
providing compelling evidence of quantum annealing’s
capacity to yield performance enhancements in specific
contexts. Although QSVM did not consistently exceed
classical models, it occasionally surpassed QBoost in
select datasets, thereby suggesting that both QBoost and
QSVM exhibit considerable potential for advancing quantum
machine learning techniques.

For example, in the dataset BBB_Martins, QSVM achieved
an AUC-ROC score of 0.7939, which outperformed QBoost’s
score of 0.5826. This variability underscores the notion
that while quantum approaches may not universally surpass
classical methodologies, they can perform competitively
under particular circumstances.

In conclusion, these findings provide valuable insights into
the performance dynamics of quantum annealing techniques
within the machine learning paradigm, particularly concern-
ing their effectiveness on real-world ADMET datasets. The
results emphasize the necessity for continued exploration into
the potential applications of quantum annealing in machine
learning, particularly as advancements in quantum computing
technology continue to progress. The subsequent analysis
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delineates the performance of each method across datasets of
varying sizes (see figures 10, 11 12, 13, and 14):

1) LIGHTAUTOML

- Observation: The LightAutoML method consistently
achieved high AUC-ROC scores across datasets of varying
sizes, although exhibiting the highest variance in perfor-
mancefor compared to the other methods used. - Key Insight:
The consistent AUC-ROC values indicate that Light AutoML
effectively balances the trade-off between true positive and
false positive rates, regardless of dataset size. - Conclusion:
The robustness of this method signifies its reliability for
general-purpose classification tasks, with a commendable
ability to adapt to variations in training data size.

2) QBOOST

- Observation: QBoost exhibited commendable performance
on smaller datasets, such as HIA_Hou, its AUC-ROC scores
declined significantly for medium-sized, and large-sized
datasets, exemplified by Pgp_Broccatelli and BBB_Martins.
- Key Insight: The decrease in AUC-ROC scores for larger
datasets suggests that QBoost may face challenges in scaling,
necessitating further optimization or parameter tuning when
applied to complex problems. - Conclusion: While QBoost
shows potential for strong performance in smaller datasets,
its generalizability to larger datasets remains limited without
additional refinement.

3) QUANTUM SUPPORT VECTOR MACHINE (QSVM)

- Observation: QSVM recorded lower AUC-ROC scores
compared to the other methodologies, but the performance
was slightly more stable compared to the other methods.
Notably, a trend emerged where QSVM'’s performance
improved with larger datasets, such as BBB_Martins. - Key
Insight: QSVM appears to benefit from the availability of
larger datasets, as they provide more robust learning oppor-
tunities, consequently leading to enhanced classification
performance. - Conclusion: QSVM seems to perform well
regardless of the size of the datasets, showing competitive
results in both small and large sized datasets. But it’s
consistency even in the large-sized datasets provide potential
for scalability.

The findings substantiate the need for ongoing research
into the practical applications of quantum annealing in
machine learning, particularly as the field of quantum
computing continues to evolve.

VIil. DISCUSSION AND FUTURE WORK

In this section, we discuss the key aspects of our research,
beginning with the question of whether quantum computing
is suitable for this particular task.

Quantum computing, especially through the use of quan-
tum annealers, presents considerable potential for addressing
optimization problems. Our results demonstrate the promise
of leveraging quantum-classical hybrid approaches. In many
cases, quantum annealers can outperform classical methods,
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TABLE 1. Summary of AUC-ROC scores.

Dataset Name AUC-ROC (LightAutoML) AUC-ROC (QBoost) AUC-ROC (QSVM)
PAMPA_NCATS 0.8463 0.7102 0.6316
HIA_Hou 0.9962 0.8323 0.8123
Pgp_Broccatelli 0.9446 0.7638 0.6102
Bioavailability_Ma 0.7599 0.6254 0.5713
BBB_Martins 0.9310 0.5826 0.7939
CYP2C9_Substrate_CarbonMangels | 0.6975 0.6048 0.5347
CYP3A4_Substrate_CarbonMangels | 0.6442 0.5554 0.5204
hERG 0.8185 0.6155 0.6382
DILI 0.9113 0.7103 0.6689
Carcinogens_Lagunin 0.8258 0.8614 0.7306

TABLE 2. Summary of dataset characteristics.

Dataset Training Examples Positive Cases Negative Cases
PAMPA_NCATS 1424 1225 199
HIA_Hou 404 351 53
Pgp_Broccatelli 852 461 391
Bioavailability_Ma 448 351 97
BBB_Martins 1421 1096 325
CYP2C9_Substrate_CarbonMangels | 468 97 371
CYP3A4_Substrate_CarbonMangels | 469 249 220
hERG 458 310 148
DILI 332 161 171
Carcinogens_Lagunin 196 42 154
1.0

0.8

o
o

Average AUC-ROC
o
~

0.2

0.0

AUC-ROC LightAutoML

AUC-ROC Qboost AUC-ROC QSVM

FIGURE 10. Mean AUC-ROC Score Comparison Across Methods.

particularly when dealing with complex combinatorial opti-
mization problems that are computationally challenging for
classical algorithms alone.

The theoretical framework behind our results is rooted
in the principles of quantum annealing and optimization.
Specifically, the performance of quantum annealers can
be evaluated by examining the energy landscape of the
optimization problem. For problems with complex energy
surfaces, quantum annealing provides a nontrivial advantage
over classical methods, especially when the problem’s energy
barrier Epgprier is large. The probability P, of reaching the
global minimum is given by:

Epos
Poin exp (_ barrler) (39)

anneal
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where Tanneal represents the annealing time. This implies that
quantum annealers can more effectively escape local minima
and explore broader solution spaces than classical algorithms
in specific scenarios.

0.014
0.012

0.010

=]
[=]
o
0

o
=3
(=3
o

Average Variance

0.004

0.002

0.000

AUC-ROC LightAutoML AUC-ROC Qboost AUC-ROC QSVM

FIGURE 11. Variance in AUC-ROC Scores Compatrison Across Methods.

However, it is important to recognize that current quantum
hardware has limitations in terms of scalability, precision,
and the necessity for problem-specific tuning. Our use of
the Quantum Advantage Annealer 4.1 demonstrated notable
advancements in solving optimization tasks. Despite these
advancements, the performance gap between quantum and
classical methods remains variable, depending largely on the
size and structure of the problem. As the field progresses,
improvements in hardware and refinements in algorithms will
likely address these limitations.

One significant advantage we observed was the speed of
quantum annealing for specific tasks. For example, during the
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FIGURE 13. AUC-ROC Score vs Dataset Size (Qboost).

training phase, a single iteration using the quantum annealer
took approximately 3 seconds, in contrast to the significantly
longer training times required by classical methods. This
highlights quantum annealing’s potential in providing faster
solutions for complex optimization problems, particularly
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efficiency.

where classical methods may struggle with computational

Looking ahead, the upcoming Zypher quantum annealing
hardware represents a significant step forward in quan-
tum computing capabilities. Zypher is expected to greatly
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FIGURE 15. Structure of a hybrid solver in D-Wave's hybrid solver service. Adapted from [113].

expand problem-size capacity, allowing for the execution of
optimization tasks on much larger datasets with increased
precision and efficiency. Unlike its predecessors, Zypher
will feature improved qubit coherence, faster annealing
cycles, and more effective integration between quantum and
classical resources. These enhancements are anticipated to
unlock the full potential of quantum computing for real-
world applications, particularly in fields requiring large-scale
optimization, machine learning, and artificial intelligence.
By incorporating the Zypher hardware into future exper-
iments, we expect to observe substantial improvements in
scalability and solution quality. This will enable us to
tackle more complex optimization problems, potentially
surpassing the limitations of current classical methods.
Additionally, with its fast annealing capabilities, Zypher
holds the potential to significantly enhance quantum machine

VOLUME 13, 2025

learning, positioning it as a crucial tool for advancing both
research and industrial applications.

A. GENERAL OBSERVATIONS AND RECOMMENDATIONS

- AUC-ROC Stability: The benchmark method demon-
strated the highest stability across datasets of varying sizes.
The consistently high AUC-ROC scores suggest that this
method provides reliable performance across a range of
data complexities, making it a strong candidate for tasks
that prioritize model robustness. - QBoost Scalability:
The fluctuation in QBoost’s performance indicates potential
scalability issues, particularly as dataset size increases. For
larger datasets, QBoost may require more sophisticated
tuning to achieve competitive results. - QSVM Sensitivity:
QSVM’s sensitivity to dataset size highlights its dependency
on large training sets to achieve optimal performance.
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This suggests that QSVM is better suited for applications
with abundant data and may underperform in data-scarce
environments.

In conclusion, while quantum computing is still in its
developmental stages, it demonstrates considerable promise,
particularly with the emergence of new hardware such
as Zypher. The future of quantum computing is likely
to witness a reduction in the performance gap between
quantum and classical methods. With ongoing advancements
in hardware, quantum computing is poised to become a
viable solution for solving complex optimization problems
and improving machine learning techniques. Zypher’s fast
annealing capabilities, in particular, offer the potential to
make significant contributions to the field of Quantum
Machine Learning (QML), opening new opportunities for
innovation and research.

IX. CONCLUSION

This study provides a detailed comparative analysis of
quantum annealing machine learning methods, specifically
Quantum Support Vector Machines (QSVM) and QBoost,
applied to ADMET datasets. By leveraging D-Wave’s
Hybrid Quantum Processing Unit (HQPU) and its Fast
Anneal feature, we assessed the performance of these
quantum approaches against classical machine learning
models, highlighting both their strengths and limitations.
The results indicate that while QAML demonstrates potential
in specific contexts, particularly with smaller datasets,
challenges related to scalability, tuning, and dataset sen-
sitivity remain evident. Quantum computing, particularly
through quantum annealers, presents exciting possibilities
for solving complex combinatorial optimization problems
that are often intractable for classical algorithms. However,
the current generation of quantum hardware, including the
Quantum Advantage Annealer 4.1, still exhibits limitations
in precision and scalability. These limitations suggest that
the performance benefits of quantum computing are, for the
moment, problem-dependent and subject to improvement as
hardware continues to evolve.

Looking to the future, next-generation quantum hardware,
such as the forthcoming Zypher, holds significant promise
for overcoming these challenges. With enhanced qubit
coherence, faster annealing cycles, and improved integration
of quantum and classical resources, Zypher is expected to
bring about meaningful advancements in the applicability of
quantum computing, particularly in the domains of machine
learning, optimization, and artificial intelligence. As these
technologies mature, we anticipate a more widespread
adoption of quantum-classical hybrid models in both research
and industry, with quantum computing poised to play a
pivotal role in addressing increasingly complex real-world
problems.

The findings of this study emphasize the need for contin-
ued exploration into the optimization of quantum algorithms,
as well as further refinement of quantum hardware to fully
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realize the potential of quantum computing in practical
machine learning applications.

APPENDIX A

DETAILED DESCRIPTION OF ADMET DATASETS

In this study, we evaluate predictive models using a diverse set
of datasets from the ADMET Benchmark Group. ADMET
properties—Absorption, Distribution, Metabolism, Excre-
tion, and Toxicity—are pivotal in assessing the pharmacoki-
netics and safety of drugs. Below, we describe each dataset
in detail, incorporating advanced mathematical formulations
where applicable [111], [112].

A. ABSORPTION DATASETS
The absorption datasets quantify the extent to which a drug is
absorbed into the systemic circulation.

PAMPA_NCATS assesses the permeability of compounds
through an artificial membrane, simulating intestinal absorp-
tion. The permeability coefficient (Ppampa) is derived from
Fick’s first law of diffusion, which is expressed as:

P 74 40

PAMPA = = (40)

where J is the steady-state flux of the drug through

the membrane, A is the membrane area, C is the con-

centration of the drug in the donor chamber, and ¢ is

the time for which the flux is measured. For a more

detailed model considering membrane resistance (Rpem), the
permeability can be refined as:

Dapp (41)

Rmem
where Dy, is the apparent diffusion coefficient.
The HIA_Hou dataset measures human intestinal absorp-
tion (HIA) using the ratio of AUC values. The HIA can be
described by:

Ppampa =

AUCoral
iv
where AUC, is the area under the plasma concentration-
time curve after oral administration and AUGC;y is the AUC
following intravenous administration.

Pgp_Broccatelli evaluates the interaction of drugs with
P-glycoprotein (Pgp), an efflux transporter. The effect of
Pgp on drug absorption can be modeled using the following
differential equation for the drug concentration C(¢) in the
presence of Pgp:

LY — hetnn - ) 43)
dt

where kefriyx 1S the rate constant for the Pgp-mediated efflux.
The Bioavailability_ Ma dataset quantifies overall
bioavailability (F) of a drug, which is the fraction of the dose

that reaches systemic circulation. It can be computed using:
- AUCoral - Dyy
AUCyy - Doral
where Djy and D, are the doses administered intravenously

and orally, respectively.

HIA = x 100 (42)

(44)
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B. DISTRIBUTION DATASETS
Distribution datasets provide insights into drug dispersion
and its ability to cross biological barriers.

BBB_Martins measures the permeability of drugs across
the blood-brain barrier (BBB). The permeability coefficient
(PeBB) can be modeled using the following equation:

Dggp

Pgpp = 45)

Lppp
where Dggp is the diffusion coefficient across the BBB, and
Lppp is the thickness of the barrier. To account for drug-
binding effects, the apparent permeability can be expressed
as:

Dggs - (1 — fbind)
app
Pes = ~ Lpes (46)

where fping represents the fraction of the drug bound to plasma
proteins.

C. METABOLISM DATASETS
Metabolism datasets evaluate the biochemical modification
of drugs by enzymes.

CYP2C19 Veith, CYP2D6 Veith, CYP3A4 Veith,
CYP1A2 Veith, and CYP2C9 Veith measure enzyme
inhibition. The inhibition of these cytochrome P450 enzymes
can be described using the following competitive inhibition
model:

v = Vmax : [S] (47)

Km'(1+%)+[51

where v is the reaction velocity, Viax is the maximum reaction
rate, [S] is the substrate concentration, Ky, is the Michaelis-
Menten constant, [/] is the inhibitor concentration, and Kj is
the inhibition constant.

CYP2C9 Substrate CarbonMangels, CYP2D6 Sub-
strate CarbonMangels, and CYP3A4 Substrate Carbon-
Mangels identify substrates for specific cytochrome P450
enzymes. The substrate affinity can be modeled using the
Langmuir adsorption isotherm:

o KaI51 (48)
Kq + [S]
where 6 is the fraction of enzyme sites occupied by the
substrate, and Kj is the dissociation constant.

D. TOXICITY DATASETS
Toxicity datasets assess the potential for harmful effects of
drugs.

hERG evaluates the inhibition of the hERG potassium
channel, which is linked to cardiac toxicity. The inhibition
can be modeled using the following equation:

1
IhgrG = ————7 (49)

1

b+ (ICSO)

where ILgrg is the inhibition, [/] is the inhibitor concentra-
tion, ICs is the concentration required for 50% inhibition,
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and n is the Hill coefficient, which characterizes the steepness
of the inhibition curve.

hERG_Karim comprises molecular structures labeled as
hERG (< 10uM) and non-hERG (> 10 uM) blockers,
encoded as SMILES strings. The dataset integrates data
from several sources: DeepHIT, which utilizes advanced
neural network architectures to predict hERG inhibition and
estimate /Cs( values; BindingDB, which provides empirical
binding affinity data; ChEMBL, which offers comprehensive
bioactivity data; and additional literature, which contributes
further chemical diversity.

AMES assesses mutagenicity using the Ames test. The
mutagenicity score (M) is calculated as:

Number of Positive Tests

(50
Total Number of Tests

indicating the proportion of tests showing mutagenic effects.
A more detailed analysis involves the calculation of the
mutagenicity index, which incorporates both positive and
negative controls.

DILI measures drug-induced liver injury, quantifying
hepatotoxicity through biomarkers and enzyme activity
alterations.

Additional datasets such as Skin Reaction, Carcino-
gens_Lagunin, and ClinTox provide comprehensive assess-
ments of various toxicity aspects, including allergic reactions,
carcinogenic potential, and clinical toxicity profiles.

This detailed exploration of the ADMET datasets under-
scores their significance in evaluating drug properties and
highlights the advanced mathematical models used to inter-
pret the data, enhancing the precision and relevance of
predictive modeling in drug discovery.

APPENDIX B

HYBRID SOLVER ARCHITECTURE

The hybrid solver, as depicted in Figure 15, integrates
classical heuristic methods with D-Wave’s quantum annealer
to tackle complex problem-solving tasks efficiently under
specific time constraints. The architecture consists of several
interconnected components that coordinate to enhance com-
putational performance [113].

At the core of the system is the front-end solver, which
receives the problem input and optional time limit 7 from
the user. This solver is responsible for launching multiple
heuristic solvers that operate on classical CPUs and GPUs.
These heuristic solvers employ traditional algorithms to
search for good-quality solutions within the designated
solution space. Each heuristic solver embeds a quantum
module (QM), which formulates queries for the D-Wave
Quantum Processing Unit (QPU).

The hybrid architecture is designed to leverage the unique
strengths of both classical and quantum computing. The
quantum modules interface with the QPU, where quantum
annealing techniques are employed to explore complex
solution landscapes. These quantum computations provide
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insights and potential solutions that complement the heuristic
search efforts.

As the heuristic solvers continue their search, the solutions
are refined through iterative feedback from the QPU.
The solver’s portfolio management component ensures that
the solutions are deduplicated, with only a subset of

high-

time

quality solutions being presented to the user before the
limit 7 is reached. The integration of classical and

quantum methods, alongside continuous interaction between
the heuristic solvers and the QPU, results in an efficient

and

robust approach to solving complex computational

problems.

CODE AND DATA AVAILABILITY

The

code and data for this project are available at the

following links: GitHub Repository and Data.
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