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1. Introduction

In the nineties, Bozejko and Speicher in [5] constructed von Neumann algebras,
which generalize Voiculescu’s construction of the free group factors in [17]. To be
precise, they associate a von Neumann algebra Mr to a Yang—Baxter operator T'
(see definition 2.1) on a complex Hilbert space of the form H ® H, where H is
the complexification of a real Hilbert space. The von Neumann algebra My acts
on a deformed Fock space and the matrix representation of 1" with respect to an
appropriately chosen orthonormal basis of H allows one to provide a manifestation
of the generalized deformed commutation relations:

L= > s =61, for all i, j € A,

i
r,sEA

where tﬁ for i,j,7,8 € A are scalars. Under suitable conditions (depending on T'),
the von Neumann algebra Mr is tracial and acts on the aforesaid (deformed) Fock
space in standard form.
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Voiculescu’s construction of the free group factors, Bozejko-Speicher’s construc-
tion of the ¢g-Gaussian and the mixed ¢-Gaussian von Neumann algebras are all
subsumed in the above construction. Notably, the Yang-Baxter operator associated
with Voiculescu’s construction is zero, and that associated with the construction of
¢-Gaussian von Neumann algebra is ¢F, where ¢ € (—1,1) and § is the flip unitary
on H®H.

There have been significant efforts to understand the free group factors and ¢-
Gaussian algebras and their type IIT counterparts over the last 30 years. The efforts
to understand free group factors gave birth to Free Probability [17], which has
grown to be an independent discipline. Without being encyclopedic, if dim(H) > 2,
then the g-Gaussian von Neumann algebras are known to be non-injective factors
(cf. [14] and [16]), which are strongly solid and have the w*-completely contractive
approximation property (cf. [1], also see [15] on solidity of free group factors)
and are weakly amenable [8]. For the latest isomorphism theorem on the same
topic, see [13]. This scanty account is by no means justified given the huge existing
literature. However, the class of von Neumann algebras arising out of Yang—Baxter
deformations, in general, have received less attention. The very basic question of
factoriality is still open. We only concentrate on the case when the standard vacuum
state is a trace. In [9], Krélak proved that Mr is a factor when dim(H) = Xy and
T satisfies certain condition known as the ‘Wick product condition’ (for details
see theorem 4.9). In a later paper [10], factoriality of Mz was further investigated
and established depending on the number of self-adjoint generators. Moreover, Mp
is non-injective when dim(H) > 2 (see theorem 2, [14]). Beyond this, nothing is
known.

In this paper, we investigate the factoriality of M. Following the approach in
[2] and [16], in this paper we show that if dim(H) < co and T admits a special
eigenvector of the form &y ® &y, where &y corresponds to a self-adjoint generator of
My, then the aforesaid self-adjoint generator generates a strongly mixing maximal
abelian self-adjoint algebra (masa in the sequel) of Mp. Furthermore, My is a factor.
A similar conclusion holds even in the case dim(H) = Ng, but we need to assume
the existence of an appropriate orthonormal basis of H for which Wick product
expansions are tractable.

Thus, our line of investigation is different than that in [9, 10]. Using the examples
cited in [9], we show that our assumptions are satisfied in uncountably many exam-
ples. We exploit the fact that under the hypothesis of a special eigenvector of T’
as above, the self-adjoint generator associated with £y has properties analogous to
the generator masas of the g-Gaussian von Neumann algebras, which plays out well
when one considers the standard Hilbert space as a bimodule over this generating
abelian algebra.

Now, we discuss the layout of this paper. In §2, we describe the Bozejko—
Speicher’s construction of von Neumann algebras associated to Yang—Baxter
operators and recall some preliminary material that will be used throughout the
paper. In §3, we discuss the analytical properties of the generating abelian sub-
algebras associated with special eigenvectors of the Yang—Baxter operator. We
investigate the bimodule structure of the aforesaid abelian subalgebras in theorems
4.11 and 4.13 and conclude that the generating abelian subalgebras associated with
the special eigenvectors of the Yang—Baxter operators are strongly mixing masas.
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In § 5, we establish factoriality of the associated von Neumann algebras under the
assumption of the existence of a special eigenvector of the associated Yang—Baxter
operator (theorem 5.1). Finally, in §6, we discuss some examples that satisfy our
conditions by borrowing ideas from [9]. This allows constructing new non-injective
II; factors which generalize mixed ¢-Gaussian von Neumann algebras.

2. Construction and basic facts

All Hilbert spaces in this paper are assumed to be separable and inner products
are linear in the second variable. Also, all inclusions of subalgebras are assumed to
be unital. Materials in this section are taken from [5].

Let Hg be a real Hilbert space and let H = Hg ®r C be its complexification.
Identify Hg in ‘H as Hr ® 1. Thus, H = Hg + iHg, and, as a real Hilbert space,
the inner product of Hg in H is given by (-, -)7. The norm on H will be denoted

by [[-ll3,-

DEFINITION 2.1. A Yang-Baxter operator T' € B(H ® H) is a self-adjoint contrac-
tion which satisfies the braid relation, i.e.,

() T =T

(i) [T <1

(iii) 1T 1)(1eT)=(T®1)(1eT)(T ®1), where the aforesaid amplifica-
tions are regarded as bounded operators on H ® H ® H.

The last relation in definition 2.1 is referred to as the Yang—Baxter equation or the
braid relation and has its origins in statistical mechanics.

Associated to a Yang—Baxter operator 1" as in definition 2.1 such that [|T']] < 1,
Bozejko and Speicher constructed the ‘T-Fock space’ and a family of operators
{li}iea on the T-Fock space satisfying the generalized T-commutation relations:

— Y LI =651, forallid,j € A, (2.1)
r,s€A
where tfs, i,j,7,s € A, are scalars depending on 7. This representation is known

as the generalized Fock representation [5]. The authors also constructed a von
Neumann algebra on the T-Fock space, which we now proceed to describe.

Hereafter, let T € B(H ® H) be a Yang-Baxter operator such that |T]| = A < 1.
Define

T, =1®---®1®T acting on HEOHD >
—_——
(i—1) times

Thus, T} :=T. Extend T; to H®" foralln >i+1by T; ® 1 ®---® 1 and denote
—_——

n—i—1
the extensions again by T; with slight abuse of notations.
The following observations are immediate.
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PROPOSITION 2.2. The following hold.
(1) T, =T7 for alli € N;
(i) Tyl =A< 1 forallieN;
(t4d) T;T; = T;T; when i —j| = 2 and T;T;11T; = T, T;Ti4q for all i € N,
Proof. The proof follows easily from definition 2.1. O
Let S, denote the symmetric group of n elements. Note that S; is trivial. For

n>2and 1 <7< n—1,let ¢; be the transposition between ¢ and ¢ + 1. It is well
known that {g; ?;11 is a generating set of .S,, with respect to the following conditions:

SiSj =$;Si,  whenever |[i — j| > 2, and,

GiSi+1Si = Si+1SiSi+1, for1<i<n—2.

For n > 2 and each 1# o € 5,, the length of o with respect to the set of

enerators {¢;}" ! is defined as:
g i=1

o] :==min{k € N:3 g1y, ..., 5 With o = g1y G | -

By convention, |1] = 0.
For n € N, let ® : S,, — B(H®") be the map given by

®(0) = Ty - - - Tik), where o = G(1) -+ Gx) with |o| = k, and, (2.2)
o(1) =1.
In particular, we have
O(¢)=1T;, i=1,....,n—1.
Also, ® is quasi-multiplicative, i.e., for all 01,09 € Sy,

O(0102) = P(01)P(02), whenever |o102| = |o1| + |o2].

There is an alternative to calculate the length of permutations which will be
helpful. For o € S,,, define the inversion of o as:

Inv(o) = #{(i,j) i < j,o(i) > o(j)}.
Then, |o| = Inv(o) for o € S,,.

LEMMA 2.3. Forn > 2, ®: S, — B(H®") is well defined.
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Proof. Note that (iii) of proposition 2.2 forces that for 1 < 7,7 < n — 1 one has
TiTj = TjT‘Z when |Z — ]| 2 2, and, T2T1+1TZ = T‘i+1T‘iTi+1

for 1 < < n— 2. Similarly, S, is generated by the set S = {g; ?;11 subject to the
condltlons.

Gisj =¢;6 when |[i—j]>2 forl<i,j<n-—1, and,
1<

GiSi+1Si = Si+1SiSi+1, 1 <n—2.
Hence, following the proof of [4, pp. 16, proposition 5], ® is well defined. O
Let
F(H) = PH",
n=0

be the full Fock space of H, where H? = CQ and Q € C is a distinguished unit
vector usually referred to as the vacuum vector.
For n € N, define

P™ = 3" ®(o) € B(H®"), and,
g€eSy,

PO =1 e B(H).
PROPOSITION 2.4. Forn € N, the operator P\ is invertible and strictly positive.
Proof. For the proof, we refer the reader to [5, theorems 2.3, 2.4]. O

Consequently, by the virtue of proposition 2.4, the association
<£777>T = 5nm<£7 P(n)n>’)—(®"7 for g € H®m7 ne H®n7

defines a definite inner product on F(H) as well as on H®* for every k € N. Let
Fr(H) be the completion of F(H) with respect to the norm |||, on F(H) induced
by (-, -)r. The norm on Fr(H) will be denoted by |-|| as well.

For n € N, let H®7 denote the closure of H®" with respect to [|-||;. Note that
= H, (-)yn = ()7 and ||-|l; = ||l on H. Thus, Hgr embeds in T a5 a
real Hilbert space.

We define two sets of creation and annihilation operators: one on F(H) and other
on Fr(H) as follows.

DEFINITION 2.5. For £ € H, the canonical creation (denoted by d(¢)) and annihi-
lation (denoted by d*(&)) operators on F(H) are defined as follows.

(i) d(§)Q=¢, and,

d)(&H ® - ®§n):f®§1®~-®§n,§i€7{,1<i<n,forn€N.
(i) d*(£)2 =0, and,

)& ® - ®@&) =E&)H(E® - ®&), & eH, 1<i<n, forneN.
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Again, for £ € H, moving to the T-deformed Fock space Fr(H), the T-deformed
creation (resp. T-deformed annihilation) denoted by I(£) (resp. I*(€)) is defined as
follows:

(i) 1(&) = d(&);

(if) I*(§)Q =0, and,
FEG® &) =d(ORM(EG @ ®§n) 51 €M, for 1<i<nandne
N, where R =1+ Ty + T\ To + -+ 1Ty --- Ty € B(H®”) for all n € N.

Note that the operators defined in definition 2.5 are all densely defined. But the
following holds.

THEOREM 2.6. For & € H, the operators d(§),d*(€) (resp. 1(£),1*(€)) admit bounded
extensions on F(H) (resp. Fr(H)). Further,

(i) (d(&))" = d*(§) on F(H), and (1(§))" = I"(§) on Fr(H);
(i) 1€ = @l < Le..

Proof. The statement regarding the standard creation and annihilation operators
on F(H) is well known [17]. For statements regarding operators on Fr(H), we refer
to [5, theorem 3.1]. O

Fix &,& € H. Note that by definition 2.5, it follows that (&) — (&) =
1(&1 — &). Thus, taking adjoints I*(&1) — I*(&2) = 1*(&1 — &2) and hence by theorem
2.6, it follows that

i - el < Bl (e - (e < 1L

For £ € H, let s(§) = 1(§) +1*(§). Then, s(§) is self-adjoint.

DEFINITION 2.7. Let My = {s(€) : £ € Hr}"”. Then, My is said to be the von Neu-
mann algebra associated to the Yang-Baxter operator T'. Further, consider the
vacuum state ¢ on Mp defined as

o(x) = (Q,2Q)r, for x € My.
THEOREM 2.8. The following hold.
1. The vacuum state @ is a trace on My if and only if
(& @&, T(& ® &) maon = (€ ® & T (& ® &) nen

fO’F all €i7§ja§7“a§s S HR-

2. Q is cyclic for Mrp. If ¢ is tracial, then  is also separating for Mr; in
particular, ¢ is faithful.

Proof. For the proof, we refer the reader to [5, theorems 4.3 and 4.4]. O
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REMARK 2.9.
1. From theorem 2.8, it follows that if ¢ is tracial, then (Mr, Fr(H), ) is the

GNS triple for the vacuum state ¢ and in this case ¢ will be denoted by 7.
Henceforth, we will assume that ¢ is a trace.

2. An important consequence of theorem 2.8 is the existence of the T-Wick
product map. For £ € M€, there exists a unique operator W(§) € My such
that W (£)Q = . Following [6],if§; € Hrfor 1 < i < n,then W(§ ® -+ ® &)
is said to be the T-Wick product of s(&1),...,s(&n)-

Let J: Fr(H) — Fr(H) given by extending J(zQ) = 2*Q, x € My, denote the
Tomita’s conjugation operator so that JMpJ = M.

PROPOSITION 2.10. J(§1 ® -+ ®&p) =6 ®@ - @&, for & € Hg, 1<i<n,
n € N.

Proof. By virtue of definition 2.5, we have
§® @& =s(8)s(&2) - s(&n)—n, & eHr 1<i<n, (2.3)

where n € @}y HE.

Note that JQ = ©, Hr — 2 and JH = H. Suppose that J(’H®§) C @?ZOH@’JT
for 1<k <n. Then, by definition 2.5 and equation (2.3), it follows that
J(H®T ) C @ IH®T. Thus, by induction J(H®T) C ®7_yH®T for all n € N.

Now, we show that J(H®T) C H®T for all n. Fix n > 2. Indeed,

J( & H®%) L& Mo
=0 j=n+1

— JQ(éO H®’T) 1 J(j:aé:rl?-l@]f)

— & HOr J_J( & H®Jf), as J? = 1.
=0 j=n+1

Therefore,

n n—1 n oo j
JH®T) L@ H®r and J(HEF) L & HOT.
1=0 j=n+1

Consequently, J(H®7) C H®T for all n € N.
Now applying J to both sides of equation (2.3) and using equation (2.3) in reverse
order again, we get

J(gl ®"'®£n) :5(5,1)8({”,1)”'8(51)9—{]77 (2'4)
=@ - @&)+n - Jn,

where ' € EBZ;S HEE.
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From the first part of the argument and from equation (2.4), it follows that
J(§1®"'®fn)—(§n®"'®§1) :n’_Jn:(),
This completes the proof. O

REMARK 2.11. Let J :H — H denote the standard complex conjugation, i.e.,
T (&1 + &) = & — ik, for &, & € Hp. We will write J¢ = £ for € € H. Then, for
n € N, we have

JE® - ®0&) =60 06, &LEH, 1<i<n. (2.5)
Since MrQ = M7, we write
W, (€) = JW(JE)J, for € € M. (2.6)

Thus, W,.(§) € M.
Now, following [10], we define the T-deformed right creation and annihilation
operators on Fr(H) as follows.

DEFINITION 2.12. For £ € 'H, the T-deformed right creation operator is defined as
the bounded extension of the following:

r(€)Q=¢,
TG e ®6) =0 ®EERE O ®E €HO", neN.

Note that (&) = JI(§)J.
The T-deformed right annihilation operator is the bounded extension of:

i =d ()1 +Tp1+ Ty 1Tp o+ -+ Ty 1Ty o-T1), on H®", n €N,
where d(£) is the bounded extension to F(H) of:

269 = 0,

AOE R ®86)=(E&InE® @), G® - ®&eHY, neN.

Note that r*(&) = JI*(&)J.

REMARK 2.13. Note that for £ € H, one can also define the right creation as
a bounded operator on the full Fock space F(H) analogously following the
construction of free group factors [17]. We denote the same by r°(¢).

Define s,(§) :==r(&) +r*(§) for & € H.
REMARK 2.14. From definition 2.12, it follows that JI(§)J = r(&) and JI*(§)J =

r*(&), for every & € Hg. Thus, Js(§)J = (&) + r*(§) = s,-(§) for all £ € Hr. Hence,
sr(§) € My, for all £ € Hp.
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REMARK 2.15.

1. Let {e;}ica be a fixed orthonormal basis of Hg. Note that {e;};ca is also an
orthonormal basis of H. Write

ez®e] g t” er R ey),
r,sEA

for i,j,r,s € A and ti; € C. Then, the T-deformed creation operators
l(e;), © € A, and the annihilation operators [*(e;), i € A, fulfil the relations:

Fle)l(eg) — Y thl(en)l*(es) = 651, for all i, j € A,

r,sEN
as described in equation (2.1).

2. Note that if Hg and g are real Hilbert spaces with complexifications H
and /C respectively, T € B(H ® H), S € B(K ® K) are Yang—Baxter operators
with ||T]],]|S]| <1 and U : Hr — Kg is an orthogonal operator such that
(VoW I'(VeV)* =S8, where V € B(H,K) is the complexification of U,
then My and Mg are spatially isomorphic via the unitary Fp g(V'), the second
quantization of U.

3. Generating abelian subalgebras

In this section, we study the properties of generating abelian subalgebras of My
that arise from special eigenvectors of 7.

LEMMA 3.1. Suppose there exists & € Hr with ||$ol|,, = 1 such that T'(& ® &) =
q(&o ® &o) for some |q] < A. Then, the following assertions hold:

(4)
5(€0)s(80) -+ - 5(80)2

n times
= > (o ® - ® &),
v={{i(r),j(r) }1<r<i:1k(@) }1<p<m} m times

where the summation s over all partitions v ={{i(r),7(r)h<r<is
{k(p)}r<pcm}t of {1,...,n} having blocks of one or two elements such that

Ibm>=0,20+m=nmn, i(r) <j(r) for 1 <r <1, k(1) <--- < k(m),
and a(v) is given by

a(v) =#{(r,s): 1<r,s <1, i(r) <i(s) <j(r) <j(s)}
+#{(rp) s 1<r <l 1<p<m, i(r) <k(p) <j(r)}.
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(i)

0, if mis odd,
7((s(é))") = 3 @™, if nis even,

v={i(r),j (1)} 1<r<ny2

where the summation is over all pair partitions v = {i(r), j(r)}1<r<n/2 Of
{1,...,n} with i(r) < j(r) and b(v) is the number of crossings of v, i.e.,

b(v) = #{(r,s) 1 i(r) <i(s) < j(r) <j(s)}.

Proof. (i) The proof is by induction. The case n =1 is trivial. Suppose the

formula is true for k = 1,2,...,(n — 1). Therefore, we have
5(80)s(&o) -+ 5(€0)2 3.1)
(n—1) times
= Z (& ®- &),
v={{i(r),j (") }r<r<t:{k@) }1<p<m} m times

where the summation is over all partitions v = {{i(r),j(r)h<r<i;
{k(p)}1<p<m} of {1,...,(n — 1)} having blocks of one or two elements such
that

Im=>20,20l+m=n—1, i(r) <j(r) for 1 <r <1, k(1) <--- < k(m).

Now, by applying s(£y) on both sides of equation (3.1), one has

5(£0)s(&o) -+~ s(£0)Q2 (3.2)
n times
i} 2 g o)
v={{i(r),j(r) }r1<r<i:{k(@) }r1<p<m} (m+1) times
+ > ¢V tgt+dm)Ge 9 &),
v={{i(r),J (") }1<r<t:{EP) }1<p<m } (m—1) times

where the index of the summation is the same as that in equation (3.1).
Note that, each partition v = {{i(r), ()} r<r<i, {k(P) }1<p<m} of {1,...,
(n — 1)} in the above corresponds to two partitions of {1,...,n} as described
in the lemma as follows:

vo = {{i(r), (N herrs {n}, k(D) i<pem ),
Vi 1= {{k(u),n}, i), 5 hrcrcts (R 1<pem, pra} for 1 <u<m.

It is easy to see that the partitions thus obtained altogether exhausts all
partitions of {1,...,n} as described in the lemma. Since n > i(r), j(r) for all
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1 <7<, one has a(vy) = a(v), and, by the choice of v, one has a(v,) =
a(v) +m —u for 1 < u < m. Therefore, from equation (3.2), it follows that

5(&0)s(&0) - 5(€0)S2

n times

—Zq“(”’)ﬁ ® - ®&) +ZZq“<”“> (®- &)

u=1 vy

(m+1) times (m 1) times

This completes the proof.

(ii) The proof follows by an immediate application of (i) with m =0 in the
constraint. We omit the details.
U

Let & € Hr with [|§oll;, = 1 and T'(§ @ &o) = q(&o ® &) for some |g| < A. Let
Me, = vN(s(§)). From part (it) of lemma 3.1, it follows that the moments of
5(&o) satisfy those of the g-semicircular law v, which is absolutely continuous with
respect to the uniform measure on the interval

)

Consequently, the abelian von Neumann algebra M, is isomorphic to

(I

and hence My, is diffuse. Note that the associated orthogonal polynomials for v,
are the g-Hermite polynomials H¢, n > 0. For more details about the density of
v, and the recurrence relations defining the ¢-Hermite polynomials (which we use

below), we refer the reader to [6].

LEMMA 3.2, Let E, = {€§" :n >0}, where &&°=Q. Then, MgQ '™ =

-l

span Ee,
Proof. First, we claim that HY(s(&y))Q = 5™ for all n € NU {0}. We prove it by

induction.
The claim is obvious for n = 0. Since

Hi(z)=2z, z¢€ |-

we have H{(s(&))Q = &.
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Suppose the claim is true for all natural numbers 1 < n < k. We want to calculate
H . (5(£0))9. By [6, definition 1.9], we have

cHi(z) = Hl,  (x)+ (1 +q+ - +¢" H{_ (), xe[— T

Therefore, by functional calculus and definition 2.5, one has

k-1
H 1 (5(60))Q = s(&o) H (s( (qu> (£0))22

=0

: (m

= (&) +1"(¢ (Zq> g+

ngg(kﬂ)+d*(§o)(1+T1+"'+T1T2 Ty 1)ESE

k—1 »
_ (Zqz> ?(kfl)
1=0

=&Y+ (60) (& + T + -+ Tl T (657)

k—1
i k—
(o )ae
=0

= 20D L (1 gt g5 (o, G0y E2FTY

k—1
; k-
(e
i=0

_ ¢®(k+1)
=& .

This establishes the claim. " "

Hence, it follows that span &, '~ C Mg, Q" .

To prove the reverse inclusion, note that 7 restricted to Mg, coincides with f -dvg
(see (i) of lemma 3.1). Therefore, MgOQH'”T can be identified with L?(v,) via a
unitary that maps 589" to HI for all n > 0. Since H?, n > 0, is an orthogonal basis

II. |-
of L*(v,), it readily follows that MgOQ‘I Iz C span 5&)" Iz,
This completes the proof. O

4. Singularity of singly generated subalgebra

In this section, we show that if , € Hg is such that ||of,, = 1 and T'({ @ &) =
q(& ® &) for some |g| < A, then the associated singly generated abelian subalgebra
Me, of My generated by the operator s(&p) is a strongly mixing masa in Mryp.
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Hence, M¢, is singular in Mp. However, in the case dim(Hr) = N, we need to
impose a mild hypothesis on existence of appropriate orthonormal basis of Hgr so
that calculations involving the T-Wick products are tractable.

Let M be a finite von Neumann algebra equipped with a faithful normal tracial
state 7. Let M act in the standard form on the GNS space H, := L?(M, ) via left
multiplication. Let J; and €, respectively denote the Tomita’s modular operator
and the standard vacuum vector associated to 7. Further, let |||, . and (-,-),
respectively denote the norm and the inner product of H.. 7

Let A C M be a diffuse abelian subalgebra and let E4 : M — A denote the 7-
preserving faithful normal conditional expectation from M onto A. Let e4 denote
the Jones’ projection associated to A.

For z,y € M, consider the densely defined operator

Tey: L*(A, 1) — L*(A,7) defined by T, ,(aQ,) = E4(zay)Q,, a € A.
Note that,

[Ea(zay)Q-|ly , < [zayQel; -

< 2l layQr |l -

N

< |2l ({ayQ-, ay$,)-)
* %k 1

= ||z|| T(y*a*ay)®

= ||z|| T(ayy*a*)*

< =zl 1yl llaf2l, - for all a € A.

Consequently, T, admits a bounded extension to L?(A,7) which will also be
denoted by T’ , with a slight abuse of notation.

DEFINITION 4.1. For a masa A of M, the normalizer of A, denoted by Ny, (A) is
defined as, Ny (A) = {u € U(M) : uAu* = A}. The subalgebra A is called singular,
if Nas(A) =U(A).

DEFINITION 4.2 [7]. A diffuse abelian subalgebra A C M is said to be strongly
mixing in M, if ||EA(xany)QT||2’T — 0 for all z,y € M with Ex(z) =0=Ea(y),
whenever {a,} is a bounded sequence in A that goes to 0 in the w*-topology.

It is easy to see that a strongly mixing (diffuse) abelian subalgebra is automati-
cally a masa in M. Further, strongly mixing masas are singular [7].

Identify A 2 L*°(X, u), where X is a standard Borel space with X being compact
and metrizable, and p is a non-atomic probability measure on X such that 74 =
fX -dp. The left-right measure of A is the measure n on X x X (strictly speaking the
measure class of 77) obtained from the direct integral decomposition of L?(M,7) ©
L?(A,7) over X x X, so that (AV J.AJ.)(1 — e4) is the algebra of diagonalizable
operators with respect to the decomposition (see [12] for details).

The following result will be crucial for our purpose.
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THEOREM 4.3 [2, theorem 5.2]. Let A C M be a diffuse abelian algebra such that
the left-right measure of A is absolutely continuous with respect to pu X . Then, A
is a strongly mizing masa in M. In particular, A is a singular masa in M.

Again, from the results of [11, § 2] it follows that the left-right measure of A is
absolutely continuous with respect to i x g, whenever T, , is Hilbert—Schmidt for
x,y varying over a set S C M such that E4(x) =0=E4(y) for all z,y € S, and
the span of S(, is dense in L?(M, 1) © L*(A, 7).

Now, we proceed to apply these techniques to the von Neumann algebra My
constructed in § 2.

For the next lemma we need some facts on permutations.

Let o be a bijection on the set {1,...,n} andlety:{2,...,(n+ 1)} = {1,...,n}
be the function defined by v(j) = j — 1, 2 < j < n+ 1. Clearly, + is a bijection and
hence, we get another realization of o as a bijection ¢’ on the set {2,...,(n+ 1)}
by o/ =y 1o7y. We denote o x Id as a bijection on the set {1,...,(n + 1)}, where
(0 x Id)i1,2,...ny = 0 and o x Id keeps (n + 1) fixed. In a similar fashion, we can
define Id x o’.

Now, if p =<1+ -+ ¢y, where ¢; € S, 41 is the transposition given by (i, + 1), 1 <
i < n, then note that p(o x Id) = (Id X o’)p. Indeed, when j € {1,...,n}, note
that,

= plo x Id)(j) = plo(j)) = o(j) + 1 = '(j + 1) = (Id x o")p(3).

The last equality holds because o’(j + 1) is an element of the set {2,...,(n+ 1)}
and hence o'(j + 1) = (Id x o')(j + 1) = (Id x ¢')p(j). Also,

plox Id)(n+1)=1= (Id x o')p(n + 1).

PROPOSITION 4.4. Let H;, i = 1,2, be Hilbert spaces and let P;: ®D(FP;) C H; —
H; be densely defined strictly positive self-adjoint operators for i =1,2. Let B; :
D(P;) x D(P;) — C be a sesquilinear form given by B;(n,€) = (n, Pi{)n,, £ € D(F;)
and n € H;, fori=1,2. Let Hp, denote the Hilbert space completion of D(P;) with
respect to By, 1 =1,2. Let A:Hy — Hso be a bounded operator such that APy, C

PyA. Then, A admits a unique extension A : Hp, — Hp, such that HEH =||A].

Proof. For a proof see [3, proposition A.1]. O

LEMMA 4.5. Forn > 1 ande, f € Hg with |le||,, = || f|l;, = 1, consider the operator
d*(e)TyTy - - T, (f) € B(H®™). Then,

(i) d*(e)TyTy---T,,7°(f) has a bounded extension to H®T.

(ii) Denoting d*(e)TyTy - - - T,,7°(f) to be the extension on HET again, for & € HET,
one has

[d* ()T Ty Tor® () ()| < A™ (18]l -
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Proof. First of all, note that in the statement we have by abuse of notation taken
the restriction of 7°(f) on H®" (cf. remark 2.13). Fix o € S,,. Then,

d* ()T Ty - T (f)@(0) = d*(e)®(p) (P(0) @ 1)7°(f).
Note that Inv(p) = n. Again,
Inv(p(o x Id)) (4.1)
= #{(i,) 20 < J, (plo x Id))(i) > (p(o x 1d))(5)}
=#{(l,n+1):i<n+1, (plo x Id))(i) > (p(o x Id))(n+ 1)}
+#{(0,9) i <j#n+1, (plo x Id))(i) > (p(o x Id))(j)}
=#{(,n+1):i<n+1,06@)+1>pn+1)=1}
+#{(,5)i<j#n+1,00)+1>0()+1}
=#{(,n+1):i<n+1,00)>1}
T#{67) i <j#n+100)>0())}
=n+ Inv(o)
= Inv(p) + Inv(o x Id).
Since, p(o x Id) = (Id x o')p (as discussed above), from equation (4.1), we have
Inv((Id x o")p) = Inv(p(c x Id)) = Inv(p) + Inv(c x Id)
= Inv(p) + Inv(o)
o)

(
(
(
= Inv(p) + Inv(Id x o).

(r)
= Inv(p) + Inv
(P)
As @ is quasi-multiplicative, we get
D(p)®(0 x Id) = ®(p(o x Id)) = ®((Id x d’)p) = ®(Id x a")®(p). (4.2)
Hence, if £ € H®™, we have
d* ()1 Ty - - Tr® (/)®(0)€ = d* (e)®(p)r° (f)@(0)¢
=d"(e)®(p)(®(0) @ 1)r°(f)§  (by equation (2.2))
d(e)(
(

*(e)®(Id x ") ®(p)r°(f)¢  (by equation (4.2))

Now by the density of H®™ in H®" we get, d*(e)T1 Ty - - - T,,7°(f) commutes with
P =% s ®(c) on HO™.
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Note that d*(e) and r°(f) are contractions on F(H) (see theorem 2.6). The rest is
a direct application of proposition 4.4 and the fact that ||T;[| =A< 1for1 <i<n
(see proposition 2.2). O

PROPOSITION 4.6. Fizn € NU{0} and let e, f € Hr with |le]|,, = || f|l;; = 1. Let
B} = (I(e)r(f) = r(DU () 01

Then, ||BU)|| <A™

Proof. First, let n = 0. From definition (2.5), it follows that B( ) = (e, f)4, 1. Hence,
|z < 1=
Now fix n € N. Let & ® -+ - ® &, € HO™. Then,

Fle)r(f)(6 @ @&) = (e)& @ ©& 3 f)
=d*(e) RN @ ®& @ f) (definition (2.5))
= d*(e) ( R™ ®1+T1T2---Tn)(£1®-~-®§n®f)
=d"(RM o6 06O f)
+d* ()T Ty - - - ano(f)(gl Q- ®&)
=d(e)(RM (& ©- ©&)® f)
+d*(e)WTy - T ()1 @ @ &n).
Also,
r(HF(E)(EL® - @&) =r(f)d* (e)R™M (6, @ ---®¢&,) (definition 2.5)
= (@ (RM (G- ©&) e f
= d*(e)(R™ (G @ ®&)® f).
Consequently,
B") = d*(e)I\ Ty - Tor(f), on HO".
By the density of H®" in H®T and by lemma 4.5, one has

B = d* ()T Ty - Tor®(f), on MO

Again by lemma 4.5, it follows that HBS})

< A". This completes the proof. O

The following lemma from [18] will be useful.

LEMMA 4.7 [18, Lemma 3]. Let (Hy,)n>1 be a sequence of Hilbert spaces and let
H = ®p>1H,. Letr,s € N and let (a;)1<i<r, (bj)1<<s be two families of operators
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on H which send each H,, into H,11 or H,—1 (Hy =0 by convention), such that
there exists 0 < p < 1 with

H(aibj — bjai)WHnH <p” forallm =1 and for all i, j.

Forn>1, let K,, C Hy, be a finite dimensional subspace and let K = ®p>1K,.
Suppose that

a;(K)C K, 1<i<r—1, and ayx =0.
Then, there exists a constant C' > 0 independent of n, such that

< Cu™ for allm > 0.

H(‘IT"'albl"'bs)mn

Next we prove that Mg, is a strongly mixing masa in Mz. Our analysis is
divided into two theorems depending on dim(Hg). Let E¢, : My — M, denote the
T-preserving conditional expectation onto Me,. The Jones’ projection associated to
My, will be denoted by eg,.

DEFINITION 4.8. For k > 0, define Uy, : spang {H®™, m > k, m # 0} — B(Fr(H))
by linearly extending:

Uk(fl PR fm) = l(fl) o l(fk)l*(?k-&-l) o 'l*(?'rrn)? for m =k,
where, £ +in = & —in for £, n € Hpg.

By [14, pp. 23], for k> 0 and m > k, Uy admits a bounded extension to H®* @
HR(m—Fk)

THEOREM 4.9 [9, theorem 1]. Let {e, : p € A} be an orthonormal basis of Hr and
let T € B(H®H) be a Yang—Bazter operator with matriz representation [t;j =

(e, ® es,T(e? ® e;)yHeH), 1,7,r, s € A. Let t;rs =1t;7 for alli,j,r,s € A and let the
set {(r,s) : ti; # 0} be finite for everyi,j € A. Then,

WE® @)= Yo U®0)(G e @),

k=00€S,/(SkXSn_k)

where £1,...,&, € Hr and n € N.

THEOREM 4.10. Let dim(Hg) < oo, and suppose that there exists & € Hg with
1€0lly = 1 such that T(§o @ &o) = q(&o ® &o) for some|q| < X. Letx =W (5 ®--- @
Em)andy =W @---@ng) for&, n € Hr, 1 <i<mand1 < j <k, mkeN,
be such that E¢, () = 0 = E¢,(y). Then, Ty, : L>(Mg,,7) — L*(M¢,,T) defined as

Tf%y(aQ) - EEO (a:ay)Q, a € MEm
18 a Hilbert-Schmidt operator.

Proof. If either x or y is 0, then the result is trivial. Thus, we assume that both z and
y are non-zero. Let v, = W (£5™) for alln € NU {0} (£5° = Q). From lemma 3.2, we
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note that {v,, /v, Q|7 : n € NU{0}} forms an orthonormal basis of L?(Mg,,T).
Therefore, to show T}, , is Hilbert—Schmidt, it is enough to show that

Tyy(v
5 [T (0Dl

S0 Q7
Note that for n € NU {0}, we have
Ty (vnf) = Eg, (2 W (65 )y)2
=Ee,(W(1®- - @&En)WETIW (@ - ©mi) ) Q
=g, (W(&1® - @ &) W(EFMW ( ® - ®nx)R)
=e£o(W(§1®-~-®€m)W(€ )( @ nk))

(by proposition 2.10)
=ee,(W(& @+ @ &)W IW (e @ - @ 1))
=ee, (W& @ @&)WET™)IW (T (@ -+ @ 1))
(by proposition 2.10)
= €g (W(fl @ @EIWET)IW(I (M- @ Uk))JQ)
= €& (W<§1 "® gm)W( ®n)Wr(n1 @ ® nk)Q)
(by equation (2.6))
= € (W(gl ‘® gm) (771 ®-® nk)W( ®n)Q)
=ee, W& @+ @)Wl @ - @ mp)E5™).

Since Ee,(W (61 ® -+ @ &r)) =0, we have eg,(W(& ® - ®&,)2) = 0. By the
T-Wick product formula in theorem 4.9, we have

W(§1®-~-®6m)=ZUa< > [<I>(o)(£1®--~®£m)]>-
a=0 0ESm/SaXSm—a

Now, we extend & to an orthonormal basis {f, : p € A} of Hr. Write Fr(C&) :=
L*(Mg,,7) and 1, = I(f.), rp = r(fu), u € A. Note that, E¢,(z) = 0 implies & ®
- ®&m € Fr(C&)*. That is,

0={6® @&, &™) p= > ¢ {G @ @& &™)y 0m -
oESm

Hence, £; @ -+ ® &, € HO™ © CEF™. Also, we have

HE™ © CES™ = spanc{fi, ® @ fi,, 14; € A,1 <j <m, at least one fi; # 50}””7“@"’,
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As Hp is finite dimensional (hence H is also finite dimensional), we have
HO™ o CEE™ = spanc{fi, @+ ® f;,, 1i; € A,1 < j <m, at least one f;, # &}

Let o€ S,,. Note that ®(c)(H®™)C HE®™, &(0)(CEY™) =CEL™  and
P(0)(HE™ © CEF™) C HEO™ © CEF™. Therefore, we have

> [P(0) (&1 @+ @ &m)]

UES’NL/SU. Xs'mfa

= Z o fiy, - fi, @ ® fi,,,

=1, ws8ay-sim ) EF

where, FF C A™ (depending on &1, ..., &), ay's are scalars, and, for each i € F there
exists i, with 1 < o < m such that f; # &. Hence, we have

W(E @ @&m) =) > i Ly el (4.3)

ainz(il7--*7ia7---7i7n)EF

Also, by the definition of W,.(m ® - -- ® ny), remark 2.14 and a similar argument
as above, we can write

k
We(m @ @mn) =Y > B T T T (4.4)
b=0 j=(j1,--sJbs--,dk)EG

where G C AF (depending on 71, ..., 1), B;’s are scalars, and, for each j € G there
exists jg with 1 < 3 < k such that f;, # &.
Fix i € F and j € G. In view of equations (4.3) and (4.4), it is enough to show

2
that 3 lenlly o o, where
n>0

v Q2l7

= P T T o R Sl 3 Ak
Cn T 650(121 lln,lia_,_l limrjl r]brijrl Tjk 0 )7 n>07

and, f;, # o and f;; # &o.

Let y =max{l <u<m: f;, #&}. If v<a, then there is at least one left cre-
ation amongst {l;,,...,l;, } namely l; such that f; # &. In this case, ¢, = 0 for
all n > 0 and the argument is complete.

On the other side, let v > (a+1). From proposition 4.6, it follows that

H[ZZ’T"’LH@%H <A, for p,p' € A and n > 0. Also, note that [I, ] =0 (by

remark 2.14) for all p,u’ € A, I} =0, and, I} (Fr(C¢&)) C Fr(C&) for
"7 1Fr(Céo) v

v <t < m. Hence, by applying lemma 4.7 to the operators (l;‘w, o107 ) and
(Tjrse s Ty Thpyyoe o7, )y K i= CeP™, n >0, and K = Fr(C&), we get that
there exists a constant C' > 0 such that

[Cnllp < CA|EE™ ||, = CA™ [[on€| 1, for all n > 0.

lI¢n 12
nz0 HUHQH%

Consequently, > < 00, as required. This completes the proof. O
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THEOREM 4.11. Let 2 < dim(Hg) < 0o, and suppose there exists & € Hr with
l€ollyy =1 such that T(&o @ &) = q(§o ® &o) for [q] < X. Then, Mg, € My is a
strongly mizing masa in My whose left-right measure is Lebesque absolutely
continuous. In particular, M, is singular in Mr.

Proof. Let S={W( Q@ - ®@&y): & € Hr, 1 <4< m,and at least one &; L &,
m € N}. From lemma 3.2, it follows that E¢,(2) = 0 for all z € S and spang S is
dense in L*(Mr, ) © L?*(Mg,, 7). Further, from theorem 4.10, it follows that T},
is a Hilbert—Schmidt operator for all x,y € S. Therefore, the result follows from
theorem 4.3 and the discussion surrounding it. O

REMARK 4.12. Now we turn to the case dim(Hgr) = Rg. Before we proceed, we need
to take a careful look into the T-Wick product, which in the case when Hy was
finite dimensional played a crucial role.

Simple calculations show that the operator W ({1 ® --- ® &,), & € Hr, 1 < i < n,
depends on T' and may not lie inside the *-algebra generated by s(§), ¢ € Hg, when
dim(Hgr) = Rg. This poses challenges in the investigation of structural properties
of Mr. Further, for n € Nand 1 # o € S,,, ®(0) may not take simple tensors to a
finite linear combination of simple tensors.

In the context of the mixed ¢-Gaussian von Neumann algebras (which covers the
case of g-Gaussian von Neumann algebras), W(& ® -+ ® &,) indeed lies in the -
algebra generated by s(€), £ € Hg, regardless of dim(Hg), and this fact has bearing
on studying the aforesaid algebras [6,16].

Theorem 4.9 assumes the existence of an orthonormal basis of Hr which resolves
the aforesaid hurdles and in that sense theorem 4.9 is mostly valuable when
dim(Hg) = No. Thus, we first assume the existence of such an orthonormal basis of
Hr. (Note that My is tracial.)

The special eigenvector &y in theorem 4.10 (i.e., in the case when dim(Hg) < 00)
enables the construction of a convenient orthonormal basis of Hgr that behaves well
as long as one considers their interaction with elements of Mg,. Such interaction
played a crucial role in [2] as well. Since the analysis of free groups factors, g¢-
Gaussian von Neumann algebras, mixed ¢-Gaussian von Neumann algebras and
their type III counterparts rely heavily on Wick product expansion as above [1, 2,
6,14,17], in order to exploit this convenient interaction in the case dim(Hgr) = Ny,
we assume the existence of an orthonormal basis {e,: u € A} of Hg, so that the 7-
Wick product expansion (as above in theorem 4.9) is valid and there exists pp € A
such that T'(e,, ® e,,) = q(eyu, @ €,,) for some |g| < A.

In §6, we provide examples for which such hypotheses are naturally satisfied.

Let dim(Hr) = Ro. Suppose that there exists an orthonormal basis {e,, : € A} of
‘Hr satisfying the hypothesis of theorem 4.9. Then, we have the following theorem.

THEOREM 4.13. Suppose there exists po € A such that T(ey, @ €,,) = qleu, @
euy) for some |q| <A Let e =Wi(e,, @---®ey,) and y=W(e,, ®@---Qe,,)
for pivi € A1 <i<m,1<j <k, mkéeN, be such that Ec, () =0=E., (y).
Then, Ty : L*(M., ,7) — L*(M,, ,T) defined as

Ty y(aQ) =E., (zay)?, a € M,

€ug no?
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is a Hilbert-Schmidt operator. Moreover, M, C Mr is a strongly mizing masa in
Myt whose left-right measure is Lebesgue absolutely continuous. In particular, M,
s singular in M.

Proof. Let v, = W(e") for n e NU{0} (e5? =€). Then, as in the proof of
theorem 4.10, we have

T%y(’UnQ) = eeuo (W(eul @ ® eum)W’!‘(evl PORRRY el/k)ef?[)n)v n = 0.

The hypothesis entails that, for ¢ € Sp,, ®(0)(ey, @ --- @ e, ) splits into a finite
linear sum of simple tensors consisting of elements of {e, : 4 € A}. Similar is the
case for ®(o’)(e,, ® -+ ® e, ) with o’ € Sy. Therefore, by theorem 4.9, it follows
that Wi(e,, ®---®e,,.) (resp. Wr(e,, ® --- ® ey, )) splits into a finite sum of prod-
ucts of left creation operators followed by left annihilation operators (resp. right
creation operators followed by right annihilation operators). Therefore, proceeding
along the similar lines of calculations in the proof of theorem 4.10, it follows that
T,y is a Hilbert-Schmidt operator.

Let  S={W(eu, ® - -®eu,):mi €A 1<i<m, and at least one ey, # €,,,
m € N}. From lemma 3.2, it follows that E., (z) = 0 for allz € S and SQ is dense in
L?>(Mry,7)© L*(M, ,» 7). Further, T , is Hilbert-Schmidt operator for all z,y € S.

Cu
Hence, the result follows from theorem 4.3 and the discussion surrounding it. [

5. Factoriality of M

In this section, we prove the factoriality of M7 under the assumption of the existence
of a special eigenvector of T'. This is the main result of this paper.

THEOREM 5.1. Suppose 2 < dim(Hg) < 00, and, there exists a non-zero vector §y €
Hr such that ||$oll,, = 1 and T'(& ® &) = q(§o @ &o) for some |q| < A. Then, My
s a factor.

Proof. By theorem 4.11, M, is a masa in Myp. Therefore, Z(Mp) C M,. Since
dim(Hg) > 2, pick {1 € Hg such that (§o, 1), = 0.

Let 0 # z € Z(Mr). Choose a sequence {z,} of polynomials in s(&y) such that
zn — z in the s.o.t. Hence, 2,0 — 2 in ||-|| ..

Therefore, 5(£1)2,2 — 5(£1)2Q2 in ||| But s(£1)2n8 = 1(&1) 20 Q2 + 1*(&1) 2082
Note that 2, € Mg, Q C L?(Mg,,7) and (&0, &1)# = 0. Therefore, by definition 2.5,
we have [*(£1)z,€2 =0 for all n. Since I(&1) is continuous, we have s(&1)z,Q =
§1®2,0 — & @20 in |||

On the other hand, z,s(£1)2 — 2s(£1)Q2 in ||-||p. From remark 2.14, it follows
that

2n8(61)Q = 281 = 250 (§1)2 = 5, (£1) 202 = 7(£1) 22 Q0 + 77 (&) 2,82

Since z,Q € L*(Mg,, ) and (£0,&1)5, = 0, s0 7*(£1) 2,2 = 0 (see definition 2.12).
Hence, 2,5(£1)Q2 = 2,2 ® & — 2Q® & in ||-|| 1, since r(&1) is continuous.

Since $(£1)z02 = 2zs(£1)8), we must have & ® 200 =20 ®¢. Consequently,
z € Cl.

This completes the proof. O
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REMARK 5.2.

1. Note that the hypothesis of the existence of special eigenvector is crucially
used in the proof of theorem 5.1. Even if it were true that s(§) generates a
masa for some ¢ € Hg, it is not clear how to conclude factoriality without
such hypothesis.

2. In the case dim(Hgr) = R, the factoriality of My was established in [9,
theorem 3]. However, we can provide a second proof of the same under
appropriate hypotheses.

Suppose that dim(Hg) = Ng. Let {e,, : 4 € A} be an orthonormal basis of Hg
satisfying the conditions of theorem 4.9 and there exists pug € A such that
T(eu, @ euy) = qleu, @ e,,) for some |g| < A. Then, My is a factor. Indeed,
by theorem 4.13, M., is a masa in Myp. Then, the result follows by a similar
argument as in theorem 5.1.

6. Examples

In this section, we construct an uncountable family of Yang-Baxter operators each
of which satisfies the traciality condition in theorem 2.8, the sufficient condition
for T-Wick product expansion in theorem 4.9 and possess a special eigenvector of
the form £y ® &y. Examples appearing in this section are not new and are borrowed
from [9], thus we claim no credit for it. Combining with [14, theorem 2], this yields
a new collection of non-injective factors.

Let Hg be a real Hilbert space with dim(Hg) > 2 and let U be a self-adjoint
orthogonal operator on Hg. Let H be the complexification of Hr and let U be
the complemﬁcatlon of U on H. Let T: H®H — H ®H be the flip unitary. Fix
A€ (=1,1). Define Th : HOH — H@H by Th = MU @ 1)T(U @ 1).

PROPOSITION 6.1. For A € (—1,1), the operator T\ : HQH — H® H is a Yang-
Baxter operator with || Tx|| = |A| < 1. Further, we have the following.

1.
(& ® &, Ta (& ® &) man = (& ® &, Ta(&r @ &) nen,
fOT all fiv&jvgrvgs € HR-
2. Th(& ® &) = M&o @ &) whenever Uy = & for some & € Hg.

3. Let {e, : € A} be an orthonormal basis of Hr consisting of eigenvectors of
U. Then, {e, : p € A} satisfies the T-Wick product condition in theorem 4.9.

Proof. Ty is self-adjoint, since U is self-adjoint. Clearly, || Ty = |A| < 1. Note that
T\((®n) = (Un ® Uf) for all £,m € H. Then, for all &;,&5,&3 € 'H, one has

(M)A T)(Th©1)(§& ®&E®E) =X (EREERE)
=(1@T\)(The )1 Ty)(§ @& ®&).
It follows that T\ satisfies the braid relation.
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(1) Fix §i7§j7§r7§s € Hgr. We have,

(& &, Th(& ®E))Han = M& @&, UL @UE ) Hen

(
(& U&)1(&s, Ubi)n

(€s: Uiy n(U&r, &) (since U = U™)
(&, U&)n (&, UG )n  (since &5, & € Hr)
(€ ®&,U& @ U& ) nen

s ® &, Th(&r ® &))Han

(2) and (3) are easy consequences of the construction. This completes the proof. [J

Now, let dim(Hg) = 3. Write Hr = R? ® Kg, where Kg # 0 is a real Hilbert
space. Let £=1d0®0and n =0@ 1P 0. Define U on Hg as

v e

Then, T)(§ ® £) = AM(n ® n). Consequently, T is not a scalar multiple of 7' and
hence My, cannot be canonically isomorphic to the ¢-Gaussian von Neumann
algebras for all A € (—1,1).

Finally, by choosing Hgr = @;c; R? @ Kg, where I is a finite or countable index
set and Kr # 0 (as before), and defining U on Hy as

0

1
U= i?[(l O) D 1z

we obtain many examples of non-injective type II; factors (as A and Hg vary).
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