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Bożejko and Speicher associated a finite von Neumann algebra MT to a self-adjoint
operator T on a complex Hilbert space of the form H⊗H which satisfies the
Yang–Baxter relation and ‖T‖ < 1. We show that if dim(H) � 2, then MT is a
factor when T admits an eigenvector of some special form.

Keywords: Yang–Baxter operator; von Neumann algebras

2010 Mathematics subject classification: Primary 46L10, 46L54
Secondary 46L40, 46L53, 46L54, 46L36,
46C99

1. Introduction

In the nineties, Bożejko and Speicher in [5] constructed von Neumann algebras,
which generalize Voiculescu’s construction of the free group factors in [17]. To be
precise, they associate a von Neumann algebra MT to a Yang–Baxter operator T
(see definition 2.1) on a complex Hilbert space of the form H⊗H, where H is
the complexification of a real Hilbert space. The von Neumann algebra MT acts
on a deformed Fock space and the matrix representation of T with respect to an
appropriately chosen orthonormal basis of H allows one to provide a manifestation
of the generalized deformed commutation relations:

l∗i lj −
∑

r,s∈Λ

tirjslrl
∗
s = δij1, for all i, j ∈ Λ,

where tirjs for i, j, r, s ∈ Λ are scalars. Under suitable conditions (depending on T ),
the von Neumann algebra MT is tracial and acts on the aforesaid (deformed) Fock
space in standard form.
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Voiculescu’s construction of the free group factors, Bożejko-Speicher’s construc-
tion of the q-Gaussian and the mixed q-Gaussian von Neumann algebras are all
subsumed in the above construction. Notably, the Yang–Baxter operator associated
with Voiculescu’s construction is zero, and that associated with the construction of
q-Gaussian von Neumann algebra is qF, where q ∈ (−1, 1) and F is the flip unitary
on H⊗H.

There have been significant efforts to understand the free group factors and q-
Gaussian algebras and their type III counterparts over the last 30 years. The efforts
to understand free group factors gave birth to Free Probability [17], which has
grown to be an independent discipline. Without being encyclopedic, if dim(H) � 2,
then the q-Gaussian von Neumann algebras are known to be non-injective factors
(cf. [14] and [16]), which are strongly solid and have the w∗-completely contractive
approximation property (cf. [1], also see [15] on solidity of free group factors)
and are weakly amenable [8]. For the latest isomorphism theorem on the same
topic, see [13]. This scanty account is by no means justified given the huge existing
literature. However, the class of von Neumann algebras arising out of Yang–Baxter
deformations, in general, have received less attention. The very basic question of
factoriality is still open. We only concentrate on the case when the standard vacuum
state is a trace. In [9], Królak proved that MT is a factor when dim(H) = ℵ0 and
T satisfies certain condition known as the ‘Wick product condition’ (for details
see theorem 4.9). In a later paper [10], factoriality of MT was further investigated
and established depending on the number of self-adjoint generators. Moreover, MT

is non-injective when dim(H) � 2 (see theorem 2, [14]). Beyond this, nothing is
known.

In this paper, we investigate the factoriality of MT . Following the approach in
[2] and [16], in this paper we show that if dim(H) < ∞ and T admits a special
eigenvector of the form ξ0 ⊗ ξ0, where ξ0 corresponds to a self-adjoint generator of
MT , then the aforesaid self-adjoint generator generates a strongly mixing maximal
abelian self-adjoint algebra (masa in the sequel) of MT . Furthermore, MT is a factor.
A similar conclusion holds even in the case dim(H) = ℵ0, but we need to assume
the existence of an appropriate orthonormal basis of H for which Wick product
expansions are tractable.

Thus, our line of investigation is different than that in [9,10]. Using the examples
cited in [9], we show that our assumptions are satisfied in uncountably many exam-
ples. We exploit the fact that under the hypothesis of a special eigenvector of T
as above, the self-adjoint generator associated with ξ0 has properties analogous to
the generator masas of the q-Gaussian von Neumann algebras, which plays out well
when one considers the standard Hilbert space as a bimodule over this generating
abelian algebra.

Now, we discuss the layout of this paper. In § 2, we describe the Bożejko–
Speicher’s construction of von Neumann algebras associated to Yang–Baxter
operators and recall some preliminary material that will be used throughout the
paper. In § 3, we discuss the analytical properties of the generating abelian sub-
algebras associated with special eigenvectors of the Yang–Baxter operator. We
investigate the bimodule structure of the aforesaid abelian subalgebras in theorems
4.11 and 4.13 and conclude that the generating abelian subalgebras associated with
the special eigenvectors of the Yang–Baxter operators are strongly mixing masas.
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In § 5, we establish factoriality of the associated von Neumann algebras under the
assumption of the existence of a special eigenvector of the associated Yang–Baxter
operator (theorem 5.1). Finally, in § 6, we discuss some examples that satisfy our
conditions by borrowing ideas from [9]. This allows constructing new non-injective
II1 factors which generalize mixed q-Gaussian von Neumann algebras.

2. Construction and basic facts

All Hilbert spaces in this paper are assumed to be separable and inner products
are linear in the second variable. Also, all inclusions of subalgebras are assumed to
be unital. Materials in this section are taken from [5].

Let HR be a real Hilbert space and let H = HR ⊗R C be its complexification.
Identify HR in H as HR ⊗ 1. Thus, H = HR + iHR, and, as a real Hilbert space,
the inner product of HR in H is given by R〈·, ·〉H. The norm on H will be denoted
by ‖·‖H.

Definition 2.1. A Yang–Baxter operator T ∈ B(H⊗H) is a self-adjoint contrac-
tion which satisfies the braid relation, i.e.,

(i) T = T ∗;

(ii) ‖T‖ � 1;

(iii) (1 ⊗ T )(T ⊗ 1)(1 ⊗ T ) = (T ⊗ 1)(1 ⊗ T )(T ⊗ 1), where the aforesaid amplifica-
tions are regarded as bounded operators on H⊗H⊗H.

The last relation in definition 2.1 is referred to as the Yang–Baxter equation or the
braid relation and has its origins in statistical mechanics.

Associated to a Yang–Baxter operator T as in definition 2.1 such that ‖T‖ < 1,
Bożejko and Speicher constructed the ‘T -Fock space’ and a family of operators
{li}i∈Λ on the T -Fock space satisfying the generalized T -commutation relations:

l∗i lj −
∑

r,s∈Λ

tirjslrl
∗
s = δij1, for all i, j ∈ Λ, (2.1)

where tirjs, i, j, r, s ∈ Λ, are scalars depending on T . This representation is known
as the generalized Fock representation [5]. The authors also constructed a von
Neumann algebra on the T -Fock space, which we now proceed to describe.

Hereafter, let T ∈ B(H⊗H) be a Yang–Baxter operator such that ‖T‖ = λ < 1.
Define

Ti := 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) times

⊗T acting on H⊗(i+1), i � 1.

Thus, T1 := T . Extend Ti to H⊗n for all n > i + 1 by Ti ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n−i−1

and denote

the extensions again by Ti with slight abuse of notations.
The following observations are immediate.
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Proposition 2.2. The following hold.

(i) Ti = T ∗
i for all i ∈ N;

(ii) ‖Ti‖ = λ < 1 for all i ∈ N;

(iii) TiTj = TjTi when |i − j| � 2 and TiTi+1Ti = Ti+1TiTi+1 for all i ∈ N.

Proof. The proof follows easily from definition 2.1. �

Let Sn denote the symmetric group of n elements. Note that S1 is trivial. For
n � 2 and 1 � i � n − 1, let ςi be the transposition between i and i + 1. It is well
known that {ςi}n−1

i=1 is a generating set of Sn with respect to the following conditions:

ςiςj = ςjςi, whenever |i − j| � 2, and,

ςiςi+1ςi = ςi+1ςiςi+1, for 1 � i � n − 2.

For n � 2 and each 1 	= σ ∈ Sn, the length of σ with respect to the set of
generators {ςi}n−1

i=1 is defined as:

|σ| := min
{
k ∈ N : ∃ ςi(1), . . . , ςi(k) with σ = ςi(1) · · · ςi(k)

}
.

By convention, |1| = 0.
For n ∈ N, let Φ : Sn → B(H⊗n) be the map given by

Φ(σ) = Ti(1) · · ·Ti(k), where σ = ςi(1) · · · ςi(k) with |σ| = k, and, (2.2)

Φ(1) = 1.

In particular, we have

Φ(ςi) = Ti, i = 1, . . . , n − 1.

Also, Φ is quasi-multiplicative, i.e., for all σ1, σ2 ∈ Sn,

Φ(σ1σ2) = Φ(σ1)Φ(σ2), whenever |σ1σ2| = |σ1| + |σ2| .

There is an alternative to calculate the length of permutations which will be
helpful. For σ ∈ Sn, define the inversion of σ as:

Inv(σ) := # {(i, j) : i < j, σ(i) > σ(j)} .

Then, |σ| = Inv(σ) for σ ∈ Sn.

Lemma 2.3. For n � 2, Φ : Sn → B(H⊗n) is well defined.
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Proof. Note that (iii) of proposition 2.2 forces that for 1 � i, j � n − 1 one has

TiTj = TjTi when |i − j| � 2, and, TiTi+1Ti = Ti+1TiTi+1

for 1 � i � n − 2. Similarly, Sn is generated by the set S = {ςi}n−1
i=1 subject to the

conditions:

ςiςj = ςjςi when |i − j| � 2 for 1 � i, j � n − 1, and,

ςiςi+1ςi = ςi+1ςiςi+1, 1 � i � n − 2.

Hence, following the proof of [4, pp. 16, proposition 5], Φ is well defined. �

Let

F(H) :=
∞⊕

n=0

H⊗n,

be the full Fock space of H, where H0 = CΩ and Ω ∈ C is a distinguished unit
vector usually referred to as the vacuum vector.

For n ∈ N, define

P (n) :=
∑

σ∈Sn

Φ(σ) ∈ B(H⊗n), and,

P (0) := 1 ∈ B(H0).

Proposition 2.4. For n ∈ N, the operator P (n) is invertible and strictly positive.

Proof. For the proof, we refer the reader to [5, theorems 2.3, 2.4]. �

Consequently, by the virtue of proposition 2.4, the association

〈ξ, η〉T := δnm〈ξ, P (n)η〉H⊗n , for ξ ∈ H⊗m, η ∈ H⊗n,

defines a definite inner product on F(H) as well as on H⊗k for every k ∈ N. Let
FT (H) be the completion of F(H) with respect to the norm ‖·‖T on F(H) induced
by 〈·, ·〉T . The norm on FT (H) will be denoted by ‖·‖T as well.

For n ∈ N, let H⊗n
T denote the closure of H⊗n with respect to ‖·‖T . Note that

H‖·‖T = H, 〈·, ·〉H = 〈·, ·〉T and ‖·‖H = ‖·‖T on H. Thus, HR embeds in H‖·‖T as a
real Hilbert space.

We define two sets of creation and annihilation operators: one on F(H) and other
on FT (H) as follows.

Definition 2.5. For ξ ∈ H, the canonical creation (denoted by d(ξ)) and annihi-
lation (denoted by d∗(ξ)) operators on F(H) are defined as follows.

(i) d(ξ)Ω = ξ, and,
d(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn, ξi ∈ H, 1 � i � n, for n ∈ N.

(ii) d∗(ξ)Ω = 0, and,
d∗(ξ)(ξ1 ⊗ · · · ⊗ ξn) = 〈ξ, ξ1〉H(ξ2 ⊗ · · · ⊗ ξn), ξi ∈ H, 1 � i � n, for n ∈ N.
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Again, for ξ ∈ H, moving to the T -deformed Fock space FT (H), the T -deformed
creation (resp. T -deformed annihilation) denoted by l(ξ) (resp. l∗(ξ)) is defined as
follows:

(i) l(ξ) := d(ξ);

(ii) l∗(ξ)Ω = 0, and,
l∗(ξ)(ξ1 ⊗ · · · ⊗ ξn) = d∗(ξ)R(n)(ξ1 ⊗ · · · ⊗ ξn), ξi ∈ H, for 1 � i � n and n ∈
N, where R(n) = 1 + T1 + T1T2 + · · · + T1T2 · · ·Tn−1 ∈ B(H⊗n) for all n ∈ N.

Note that the operators defined in definition 2.5 are all densely defined. But the
following holds.

Theorem 2.6. For ξ ∈ H, the operators d(ξ), d∗(ξ) (resp. l(ξ), l∗(ξ)) admit bounded
extensions on F(H) (resp. FT (H)). Further,

(i) (d(ξ))∗ = d∗(ξ) on F(H), and (l(ξ))∗ = l∗(ξ) on FT (H);

(ii) ‖l(ξ)‖ = ‖l∗(ξ)‖ � ‖ξ‖H√
1−λ

.

Proof. The statement regarding the standard creation and annihilation operators
on F(H) is well known [17]. For statements regarding operators on FT (H), we refer
to [5, theorem 3.1]. �

Fix ξ1, ξ2 ∈ H. Note that by definition 2.5, it follows that l(ξ1) − l(ξ2) =
l(ξ1 − ξ2). Thus, taking adjoints l∗(ξ1) − l∗(ξ2) = l∗(ξ1 − ξ2) and hence by theorem
2.6, it follows that

‖l(ξ1) − l(ξ2)‖ � ‖ξ1 − ξ2‖H√
1 − λ

and ‖l∗(ξ1) − l∗(ξ2)‖ � ‖ξ1 − ξ2‖H√
1 − λ

.

For ξ ∈ H, let s(ξ) = l(ξ) + l∗(ξ). Then, s(ξ) is self-adjoint.

Definition 2.7. Let MT = {s(ξ) : ξ ∈ HR}′′. Then, MT is said to be the von Neu-
mann algebra associated to the Yang–Baxter operator T . Further, consider the
vacuum state ϕ on MT defined as

ϕ(x) := 〈Ω, xΩ〉T , for x ∈ MT .

Theorem 2.8. The following hold.

1. The vacuum state ϕ is a trace on MT if and only if

〈ξr ⊗ ξs, T (ξi ⊗ ξj)〉H⊗H = 〈ξs ⊗ ξj , T (ξr ⊗ ξi)〉H⊗H

for all ξi, ξj , ξr, ξs ∈ HR.

2. Ω is cyclic for MT . If ϕ is tracial, then Ω is also separating for MT ; in
particular, ϕ is faithful.

Proof. For the proof, we refer the reader to [5, theorems 4.3 and 4.4]. �
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Remark 2.9.

1. From theorem 2.8, it follows that if ϕ is tracial, then (MT ,FT (H),Ω) is the
GNS triple for the vacuum state ϕ and in this case ϕ will be denoted by τ .
Henceforth, we will assume that ϕ is a trace.

2. An important consequence of theorem 2.8 is the existence of the T -Wick
product map. For ξ ∈ MT Ω, there exists a unique operator W (ξ) ∈ MT such
that W (ξ)Ω = ξ. Following [6], if ξi ∈ HR for 1 � i � n, then W (ξ1 ⊗ · · · ⊗ ξn)
is said to be the T -Wick product of s(ξ1), . . . , s(ξn).

Let J : FT (H) → FT (H) given by extending J(xΩ) = x∗Ω, x ∈ MT , denote the
Tomita’s conjugation operator so that JMT J = M ′

T .

Proposition 2.10. J(ξ1 ⊗ · · · ⊗ ξn) = ξn ⊗ · · · ⊗ ξ1, for ξi ∈ HR, 1 � i � n,
n ∈ N.

Proof. By virtue of definition 2.5, we have

ξ1 ⊗ · · · ⊗ ξn = s(ξ1)s(ξ2) · · · s(ξn)Ω − η, ξi ∈ HR, 1 � i � n, (2.3)

where η ∈⊕n−1
k=0 H⊗k.

Note that JΩ = Ω, H‖·‖T = H and JH = H. Suppose that J(H⊗k
T ) ⊆ ⊕k

j=0H⊗j
T

for 1 � k � n. Then, by definition 2.5 and equation (2.3), it follows that
J(H⊗(n+1)

T ) ⊆ ⊕n+1
j=0H⊗j

T . Thus, by induction J(H⊗n
T ) ⊆ ⊕n

j=0H⊗j
T for all n ∈ N.

Now, we show that J(H⊗n
T ) ⊆ H⊗n

T for all n. Fix n � 2. Indeed,

J
( n⊕

l=0
H⊗l

T

)
⊥ ∞⊕

j=n+1
H⊗j

T

=⇒ J2
( n⊕

l=0
H⊗l

T

)
⊥ J

( ∞⊕
j=n+1

H⊗j
T

)
=⇒ n⊕

l=0
H⊗l

T ⊥ J
( ∞⊕

j=n+1
H⊗j

T

)
, as J2 = 1.

Therefore,

J(H⊗n
T ) ⊥ n−1⊕

l=0
H⊗l

T and J(H⊗n
T ) ⊥ ∞⊕

j=n+1
H⊗j

T .

Consequently, J(H⊗n
T ) ⊆ H⊗n

T for all n ∈ N.
Now applying J to both sides of equation (2.3) and using equation (2.3) in reverse

order again, we get

J(ξ1 ⊗ · · · ⊗ ξn) = s(ξn)s(ξn−1) · · · s(ξ1)Ω − Jη (2.4)

= (ξn ⊗ · · · ⊗ ξ1) + η′ − Jη,

where η′ ∈⊕n−1
k=0 H⊗k.
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From the first part of the argument and from equation (2.4), it follows that

J(ξ1 ⊗ · · · ⊗ ξn) − (ξn ⊗ · · · ⊗ ξ1) = η′ − Jη = 0.

This completes the proof. �

Remark 2.11. Let J : H → H denote the standard complex conjugation, i.e.,
J (ξ1 + iξ2) = ξ1 − iξ2, for ξ1, ξ2 ∈ HR. We will write J ξ = ξ̄ for ξ ∈ H. Then, for
n ∈ N, we have

J(ξ1 ⊗ · · · ⊗ ξn) = ξ̄n ⊗ · · · ⊗ ξ̄1, ξi ∈ H, 1 � i � n. (2.5)

Since MT Ω = M ′
T Ω, we write

Wr(ξ) = JW (Jξ)J, for ξ ∈ MT Ω. (2.6)

Thus, Wr(ξ) ∈ M ′
T .

Now, following [10], we define the T -deformed right creation and annihilation
operators on FT (H) as follows.

Definition 2.12. For ξ ∈ H, the T -deformed right creation operator is defined as
the bounded extension of the following:

r(ξ)Ω = ξ,

r(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ1 ⊗ · · · ⊗ ξn ⊗ ξ, ξ1 ⊗ · · · ⊗ ξn ∈ H	n, n ∈ N.

Note that r(ξ) = Jl(ξ)J .
The T -deformed right annihilation operator is the bounded extension of:

r∗(ξ)Ω := 0,

r∗(ξ) := d∗r(ξ)(1 + Tn−1 + Tn−1Tn−2 + · · · + Tn−1Tn−2 · · ·T1), on H⊗n, n ∈ N,

where d∗r(ξ) is the bounded extension to F(H) of:

d∗r(ξ)Ω = 0,

d∗r(ξ)(ξ1 ⊗ · · · ⊗ ξn) = 〈ξ, ξn〉H(ξ1 ⊗ · · · ⊗ ξn−1), ξ1 ⊗ · · · ⊗ ξn ∈ H	n, n ∈ N.

Note that r∗(ξ) = Jl∗(ξ)J .

Remark 2.13. Note that for ξ ∈ H, one can also define the right creation as
a bounded operator on the full Fock space F(H) analogously following the
construction of free group factors [17]. We denote the same by r0(ξ).

Define sr(ξ) := r(ξ) + r∗(ξ) for ξ ∈ H.

Remark 2.14. From definition 2.12, it follows that Jl(ξ)J = r(ξ) and Jl∗(ξ)J =
r∗(ξ), for every ξ ∈ HR. Thus, Js(ξ)J = r(ξ) + r∗(ξ) = sr(ξ) for all ξ ∈ HR. Hence,
sr(ξ) ∈ M ′

T for all ξ ∈ HR.
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Remark 2.15.

1. Let {ei}i∈Λ be a fixed orthonormal basis of HR. Note that {ei}i∈Λ is also an
orthonormal basis of H. Write

T (ei ⊗ ej) =
∑

r,s∈Λ

trs
ij (er ⊗ es),

for i, j, r, s ∈ Λ and trs
ij ∈ C. Then, the T -deformed creation operators

l(ei), i ∈ Λ, and the annihilation operators l∗(ei), i ∈ Λ, fulfil the relations:

l∗(ei)l(ej) −
∑

r,s∈Λ

tirjsl(er)l∗(es) = δij1, for all i, j ∈ Λ,

as described in equation (2.1).

2. Note that if HR and KR are real Hilbert spaces with complexifications H
and K respectively, T ∈ B(H⊗H), S ∈ B(K ⊗K) are Yang–Baxter operators
with ‖T‖ , ‖S‖ < 1 and U : HR → KR is an orthogonal operator such that
(V ⊗ V )T (V ⊗ V )∗ = S, where V ∈ B(H,K) is the complexification of U ,
then MT and MS are spatially isomorphic via the unitary FT,S(V ), the second
quantization of U .

3. Generating abelian subalgebras

In this section, we study the properties of generating abelian subalgebras of MT

that arise from special eigenvectors of T .

Lemma 3.1. Suppose there exists ξ0 ∈ HR with ‖ξ0‖H = 1 such that T (ξ0 ⊗ ξ0) =
q(ξ0 ⊗ ξ0) for some |q| � λ. Then, the following assertions hold:

(i)

s(ξ0)s(ξ0) · · · s(ξ0)︸ ︷︷ ︸
n times

Ω

=
∑

ν={{i(r),j(r)}1�r�l,{k(p)}1�p�m}
qa(ν)(ξ0 ⊗ · · · ⊗ ξ0︸ ︷︷ ︸

m times

),

where the summation is over all partitions ν = {{i(r), j(r)}1�r�l,
{k(p)}1�p�m} of {1, . . . , n} having blocks of one or two elements such that

l,m � 0, 2l + m = n, i(r) < j(r) for 1 � r � l, k(1) < · · · < k(m),

and a(ν) is given by

a(ν) =#{(r, s) : 1 � r, s � l, i(r) < i(s) < j(r) < j(s)}
+ #{(r, p) : 1 � r � l, 1 � p � m, i(r) < k(p) < j(r)}.
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(ii)

τ((s(ξ0))n) =

⎧⎨⎩0, if n is odd,∑
ν={i(r),j(r)}1�r�n/2

qb(ν), if n is even,

where the summation is over all pair partitions ν = {i(r), j(r)}1�r�n/2 of
{1, . . . , n} with i(r) < j(r) and b(ν) is the number of crossings of ν, i.e.,

b(ν) = #{(r, s) : i(r) < i(s) < j(r) < j(s)}.

Proof. (i) The proof is by induction. The case n = 1 is trivial. Suppose the
formula is true for k = 1, 2, . . . , (n − 1). Therefore, we have

s(ξ0)s(ξ0) · · · s(ξ0)︸ ︷︷ ︸
(n−1) times

Ω (3.1)

=
∑

ν={{i(r),j(r)}1�r�l,{k(p)}1�p�m}
qa(ν)(ξ0 ⊗ · · · ⊗ ξ0︸ ︷︷ ︸

m times

),

where the summation is over all partitions ν = {{i(r), j(r)}1�r�l,
{k(p)}1�p�m} of {1, . . . , (n − 1)} having blocks of one or two elements such
that

l,m � 0, 2l + m = n − 1, i(r) < j(r) for 1 � r � l, k(1) < · · · < k(m).

Now, by applying s(ξ0) on both sides of equation (3.1), one has

s(ξ0)s(ξ0) · · · s(ξ0)︸ ︷︷ ︸
n times

Ω (3.2)

=
∑

ν={{i(r),j(r)}1�r�l,{k(p)}1�p�m}
qa(ν)(ξ0 ⊗ · · · ⊗ ξ0︸ ︷︷ ︸

(m+1) times

)

+
∑

ν={{i(r),j(r)}1�r�l,{k(p)}1�p�m}
qa(ν)(1 + q + · · · + q(m−1))(ξ0 ⊗ · · · ⊗ ξ0︸ ︷︷ ︸

(m−1) times

),

where the index of the summation is the same as that in equation (3.1).
Note that, each partition ν = {{i(r), j(r)}1�r�l, {k(p)}1�p�m} of {1, . . . ,
(n − 1)} in the above corresponds to two partitions of {1, . . . , n} as described
in the lemma as follows:

ν0 := {{i(r), j(r)}1�r�l, {n}, {k(p)}1�p�m},
νu := {{k(u), n}, {i(r), j(r)}1�r�l, {k(p)}1�p�m, p
=u} for 1 � u � m.

It is easy to see that the partitions thus obtained altogether exhausts all
partitions of {1, . . . , n} as described in the lemma. Since n > i(r), j(r) for all
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1 � r � l, one has a(ν0) = a(ν), and, by the choice of νu, one has a(νu) =
a(ν) + m − u for 1 � u � m. Therefore, from equation (3.2), it follows that

s(ξ0)s(ξ0) · · · s(ξ0)︸ ︷︷ ︸
n times

Ω

=
∑
ν0

qa(ν0)(ξ0 ⊗ · · · ⊗ ξ0︸ ︷︷ ︸
(m+1) times

) +
m∑

u=1

∑
νu

qa(νu)(ξ0 ⊗ · · · ⊗ ξ0︸ ︷︷ ︸
(m−1) times

).

This completes the proof.

(ii) The proof follows by an immediate application of (i) with m = 0 in the
constraint. We omit the details.

�

Let ξ0 ∈ HR with ‖ξ0‖H = 1 and T (ξ0 ⊗ ξ0) = q(ξ0 ⊗ ξ0) for some |q| � λ. Let
Mξ0 = vN(s(ξ0)). From part (ii) of lemma 3.1, it follows that the moments of
s(ξ0) satisfy those of the q-semicircular law νq, which is absolutely continuous with
respect to the uniform measure on the interval[

− 2√
1 − q

,
2√

1 − q

]
.

Consequently, the abelian von Neumann algebra Mξ0 is isomorphic to

L∞
([

− 2√
1 − q

,
2√

1 − q

]
, νq

)

and hence Mξ0 is diffuse. Note that the associated orthogonal polynomials for νq

are the q-Hermite polynomials Hq
n, n � 0. For more details about the density of

νq and the recurrence relations defining the q-Hermite polynomials (which we use
below), we refer the reader to [6].

Lemma 3.2. Let Eξ0 =
{
ξ⊗n
0 : n � 0

}
, where ξ⊗0

0 = Ω. Then, Mξ0Ω
‖·‖T =

span Eξ0

‖·‖T .

Proof. First, we claim that Hq
n(s(ξ0))Ω = ξ⊗n

0 for all n ∈ N ∪ {0}. We prove it by
induction.

The claim is obvious for n = 0. Since

Hq
1 (x) = x, x ∈

[
− 2√

1 − q
,

2√
1 − q

]
,

we have Hq
1 (s(ξ0))Ω = ξ0.
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Suppose the claim is true for all natural numbers 1 � n � k. We want to calculate
Hq

k+1(s(ξ0))Ω. By [6, definition 1.9], we have

xHq
k(x) = Hq

k+1(x) + (1 + q + · · · + qk−1)Hq
k−1(x), x ∈

[
− 2√

1 − q
,

2√
1 − q

]
.

Therefore, by functional calculus and definition 2.5, one has

Hq
k+1(s(ξ0))Ω = s(ξ0)H

q
k(s(ξ0))Ω −

(
k−1∑
i=0

qi

)
Hq

k−1(s(ξ0))Ω

= s(ξ0)ξ⊗k
0 −

(
k−1∑
i=0

qi

)
ξ
⊗(k−1)
0

= (l(ξ0) + l∗(ξ0))ξ⊗k
0 −

(
k−1∑
i=0

qi

)
ξ
⊗(k−1)
0

= ξ
⊗(k+1)
0 + d∗(ξ0)(1 + T1 + · · · + T1T2 · · ·Tk−1)ξ⊗k

0

−
(

k−1∑
i=0

qi

)
ξ
⊗(k−1)
0

= ξ
⊗(k+1)
0 + d∗(ξ0)

(
ξ⊗k
0 + T1(ξ⊗k

0 ) + · · · + T1T2 · · ·Tk−1(ξ⊗k
0 )
)

−
(

k−1∑
i=0

qi

)
ξ
⊗(k−1)
0

= ξ
⊗(k+1)
0 + (1 + q + · · · + qk−1) 〈ξ0, ξ0〉H ξ

⊗(k−1)
0

−
(

k−1∑
i=0

qi

)
ξ
⊗(k−1)
0

= ξ
⊗(k+1)
0 .

This establishes the claim.
Hence, it follows that span Eξ0

‖·‖T ⊆ Mξ0Ω
‖·‖T .

To prove the reverse inclusion, note that τ restricted to Mξ0 coincides with
∫ ·dνq

(see (ii) of lemma 3.1). Therefore, Mξ0Ω
‖·‖T can be identified with L2(νq) via a

unitary that maps ξ⊗n
0 to Hq

n for all n � 0. Since Hq
n, n � 0, is an orthogonal basis

of L2(νq), it readily follows that Mξ0Ω
‖·‖T ⊆ span Eξ0

‖·‖T .
This completes the proof. �

4. Singularity of singly generated subalgebra

In this section, we show that if ξ0 ∈ HR is such that ‖ξ0‖H = 1 and T (ξ0 ⊗ ξ0) =
q(ξ0 ⊗ ξ0) for some |q| � λ, then the associated singly generated abelian subalgebra
Mξ0 of MT generated by the operator s(ξ0) is a strongly mixing masa in MT .
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Hence, Mξ0 is singular in MT . However, in the case dim(HR) = ℵ0, we need to
impose a mild hypothesis on existence of appropriate orthonormal basis of HR so
that calculations involving the T -Wick products are tractable.

Let M be a finite von Neumann algebra equipped with a faithful normal tracial
state τ . Let M act in the standard form on the GNS space Hτ := L2(M, τ) via left
multiplication. Let Jτ and Ωτ respectively denote the Tomita’s modular operator
and the standard vacuum vector associated to τ . Further, let ‖·‖2,τ and 〈·, ·〉τ
respectively denote the norm and the inner product of Hτ .

Let A ⊆ M be a diffuse abelian subalgebra and let EA : M → A denote the τ -
preserving faithful normal conditional expectation from M onto A. Let eA denote
the Jones’ projection associated to A.

For x, y ∈ M , consider the densely defined operator

Tx,y : L2(A, τ) → L2(A, τ) defined by Tx,y(aΩτ ) = EA(xay)Ωτ , a ∈ A.

Note that,

‖EA(xay)Ωτ‖2,τ � ‖xayΩτ‖2,τ

� ‖x‖ ‖ayΩτ‖2,τ

� ‖x‖ (〈ayΩτ , ayΩτ 〉τ
) 1

2

= ‖x‖ τ(y∗a∗ay)
1
2

= ‖x‖ τ(ayy∗a∗)
1
2

� ‖x‖ ‖y‖ ‖aΩτ‖2,τ , for all a ∈ A.

Consequently, Tx,y admits a bounded extension to L2(A, τ) which will also be
denoted by Tx,y with a slight abuse of notation.

Definition 4.1. For a masa A of M , the normalizer of A, denoted by NM (A) is
defined as, NM (A) = {u ∈ U(M) : uAu∗ = A}. The subalgebra A is called singular,
if NM (A) = U(A).

Definition 4.2 [7]. A diffuse abelian subalgebra A ⊆ M is said to be strongly
mixing in M , if ‖EA(xany)Ωτ‖2,τ → 0 for all x, y ∈ M with EA(x) = 0 = EA(y),
whenever {an} is a bounded sequence in A that goes to 0 in the w∗-topology.

It is easy to see that a strongly mixing (diffuse) abelian subalgebra is automati-
cally a masa in M . Further, strongly mixing masas are singular [7].

Identify A ∼= L∞(X,μ), where X is a standard Borel space with X being compact
and metrizable, and μ is a non-atomic probability measure on X such that τ�A =∫

X
·dμ. The left–right measure of A is the measure η on X × X (strictly speaking the

measure class of η) obtained from the direct integral decomposition of L2(M, τ) �
L2(A, τ) over X × X, so that (A ∨ JτAJτ )(1 − eA) is the algebra of diagonalizable
operators with respect to the decomposition (see [12] for details).

The following result will be crucial for our purpose.
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Theorem 4.3 [2, theorem 5.2]. Let A ⊆ M be a diffuse abelian algebra such that
the left–right measure of A is absolutely continuous with respect to μ × μ. Then, A
is a strongly mixing masa in M . In particular, A is a singular masa in M .

Again, from the results of [11, § 2] it follows that the left–right measure of A is
absolutely continuous with respect to μ × μ, whenever Tx,y is Hilbert–Schmidt for
x, y varying over a set S ⊆ M such that EA(x) = 0 = EA(y) for all x, y ∈ S, and
the span of SΩτ is dense in L2(M, τ) � L2(A, τ).

Now, we proceed to apply these techniques to the von Neumann algebra MT

constructed in § 2.
For the next lemma we need some facts on permutations.
Let σ be a bijection on the set {1, . . . , n} and let γ : {2, . . . , (n + 1)} → {1, . . . , n}

be the function defined by γ(j) = j − 1, 2 � j � n + 1. Clearly, γ is a bijection and
hence, we get another realization of σ as a bijection σ′ on the set {2, . . . , (n + 1)}
by σ′ = γ−1σγ. We denote σ × Id as a bijection on the set {1, . . . , (n + 1)}, where
(σ × Id)�{1,2,...,n} = σ and σ × Id keeps (n + 1) fixed. In a similar fashion, we can
define Id × σ′.

Now, if ρ = ς1 · · · ςn, where ςi ∈ Sn+1 is the transposition given by (i, i + 1), 1 �
i � n, then note that ρ(σ × Id) = (Id × σ′)ρ. Indeed, when j ∈ {1, . . . , n}, note
that,

ρ(j) = ς1 · · · ςj · · · ςn(j) = j + 1;

⇒ ρ(σ × Id)(j) = ρ(σ(j)) = σ(j) + 1 = σ′(j + 1) = (Id × σ′)ρ(j).

The last equality holds because σ′(j + 1) is an element of the set {2, . . . , (n + 1)}
and hence σ′(j + 1) = (Id × σ′)(j + 1) = (Id × σ′)ρ(j). Also,

ρ(σ × Id)(n + 1) = 1 = (Id × σ′)ρ(n + 1).

Proposition 4.4. Let Hi, i = 1, 2, be Hilbert spaces and let Pi : D(Pi) ⊆ Hi →
Hi be densely defined strictly positive self-adjoint operators for i = 1, 2. Let Bi :
D(Pi) × D(Pi) → C be a sesquilinear form given by Bi(η, ξ) = 〈η, Piξ〉Hi

, ξ ∈ D(Pi)
and η ∈ Hi, for i = 1, 2. Let HPi

denote the Hilbert space completion of D(Pi) with
respect to Bi, i = 1, 2. Let A : H1 → H2 be a bounded operator such that AP1 ⊆
P2A. Then, A admits a unique extension Ã : HP1 → HP2 such that

∥∥∥Ã∥∥∥ = ‖A‖.

Proof. For a proof see [3, proposition A.1]. �

Lemma 4.5. For n � 1 and e, f ∈ HR with ‖e‖H = ‖f‖H = 1, consider the operator
d∗(e)T1T2 · · ·Tnr0(f) ∈ B(H⊗n). Then,

(i) d∗(e)T1T2 · · ·Tnr0(f) has a bounded extension to H⊗n
T .

(ii) Denoting d∗(e)T1T2 · · ·Tnr0(f) to be the extension on H⊗n
T again, for ξ ∈ H⊗n

T ,
one has ∥∥d∗(e)T1T2 · · ·Tnr0(f)(ξ)

∥∥
T

� λn ‖ξ‖T .
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Proof. First of all, note that in the statement we have by abuse of notation taken
the restriction of r0(f) on H⊗n (cf. remark 2.13). Fix σ ∈ Sn. Then,

d∗(e)T1T2 · · ·Tnr0(f)Φ(σ) = d∗(e)Φ(ρ)
(
Φ(σ) ⊗ 1

)
r0(f).

Note that Inv(ρ) = n. Again,

Inv(ρ(σ × Id)) (4.1)

= # {(i, j) : i < j, (ρ(σ × Id))(i) > (ρ(σ × Id))(j)}
= # {(i, n + 1) : i < n + 1, (ρ(σ × Id))(i) > (ρ(σ × Id))(n + 1)}

+ # {(i, j) : i < j 	= n + 1, (ρ(σ × Id))(i) > (ρ(σ × Id))(j)}
= # {(i, n + 1) : i < n + 1, σ(i) + 1 > ρ(n + 1) = 1}

+ # {(i, j) : i < j 	= n + 1, σ(i) + 1 > σ(j) + 1}
= # {(i, n + 1) : i < n + 1, σ(i) � 1}

+ # {(i, j) : i < j 	= n + 1, σ(i) > σ(j)}
= n + Inv(σ)

= Inv(ρ) + Inv(σ × Id).

Since, ρ(σ × Id) = (Id × σ′)ρ (as discussed above), from equation (4.1), we have

Inv((Id × σ′)ρ) = Inv(ρ(σ × Id)) = Inv(ρ) + Inv(σ × Id)

= Inv(ρ) + Inv(σ)

= Inv(ρ) + Inv(σ′)

= Inv(ρ) + Inv(Id × σ′).

As Φ is quasi-multiplicative, we get

Φ(ρ)Φ(σ × Id) = Φ(ρ(σ × Id)) = Φ((Id × σ′)ρ) = Φ(Id × σ′)Φ(ρ). (4.2)

Hence, if ξ ∈ H	n, we have

d∗(e)T1T2 · · ·Tnr0(f)Φ(σ)ξ = d∗(e)Φ(ρ)r0(f)Φ(σ)ξ

= d∗(e)Φ(ρ)(Φ(σ) ⊗ 1)r0(f)ξ (by equation (2.2))

= d∗(e)Φ(ρ)Φ(σ × Id)r0(f)ξ

= d∗(e)Φ(Id × σ′)Φ(ρ)r0(f)ξ (by equation (4.2))

= d∗(e)(1 ⊗ Φ(σ′))Φ(ρ)r0(f)ξ

= Φ(σ′)d∗(e)Φ(ρ)r0(f)ξ

= Φ(σ)d∗(e)Φ(ρ)r0(f)ξ (Φ(σ) = Φ(σ′))

= Φ(σ)d∗(e)T1T2 · · ·Tnr0(f)ξ.

Now by the density of H	n in H⊗n we get, d∗(e)T1T2 · · ·Tnr0(f) commutes with
P (n) =

∑
σ∈Sn

Φ(σ) on H⊗n.
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Note that d∗(e) and r0(f) are contractions on F(H) (see theorem 2.6). The rest is
a direct application of proposition 4.4 and the fact that ‖Ti‖ = λ < 1 for 1 � i � n
(see proposition 2.2). �

Proposition 4.6. Fix n ∈ N ∪ {0} and let e, f ∈ HR with ‖e‖H = ‖f‖H = 1. Let

B
(n)
e,f = (l∗(e)r(f) − r(f)l∗(e))�H⊗n

T
.

Then,
∥∥∥B(n)

e,f

∥∥∥ � λn.

Proof. First, let n = 0. From definition (2.5), it follows that B
(0)
e,f = 〈e, f〉H 1. Hence,∥∥∥B(0)

e,f

∥∥∥ � 1 = λ0.

Now fix n ∈ N. Let ξ1 ⊗ · · · ⊗ ξn ∈ H	n. Then,

l∗(e)r(f)(ξ1 ⊗ · · · ⊗ ξn) = l∗(e)(ξ1 ⊗ · · · ⊗ ξn ⊗ f)

= d∗(e)R(n+1)(ξ1 ⊗ · · · ⊗ ξn ⊗ f) (definition (2.5))

= d∗(e)
(
R(n) ⊗ 1 + T1T2 · · ·Tn

)
(ξ1 ⊗ · · · ⊗ ξn ⊗ f)

= d∗(e)(R(n) ⊗ 1)(ξ1 ⊗ · · · ⊗ ξn ⊗ f)

+ d∗(e)T1T2 · · ·Tnr0(f)(ξ1 ⊗ · · · ⊗ ξn)

= d∗(e)
(
R(n)(ξ1 ⊗ · · · ⊗ ξn) ⊗ f

)
+ d∗(e)T1T2 · · ·Tnr0(f)(ξ1 ⊗ · · · ⊗ ξn).

Also,

r(f)l∗(e)(ξ1 ⊗ · · · ⊗ ξn) = r(f)d∗(e)R(n)(ξ1 ⊗ · · · ⊗ ξn) (definition 2.5)

=
(
d∗(e)R(n)(ξ1 ⊗ · · · ⊗ ξn)

)⊗ f

= d∗(e)
(
R(n)(ξ1 ⊗ · · · ⊗ ξn) ⊗ f

)
.

Consequently,

B
(n)
e,f = d∗(e)T1T2 · · ·Tnr0(f), on H	n.

By the density of H	n in H⊗n
T and by lemma 4.5, one has

B
(n)
e,f = d∗(e)T1T2 · · ·Tnr0(f), on H⊗n

T .

Again by lemma 4.5, it follows that
∥∥∥B(n)

e,f

∥∥∥ � λn. This completes the proof. �

The following lemma from [18] will be useful.

Lemma 4.7 [18, Lemma 3]. Let (Hn)n�1 be a sequence of Hilbert spaces and let
H = ⊕n�1Hn. Let r, s ∈ N and let (ai)1�i�r, (bj)1�j�s be two families of operators
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on H which send each Hn into Hn+1 or Hn−1 (H0 = 0 by convention), such that
there exists 0 < μ < 1 with∥∥∥(aibj − bjai)�Hn

∥∥∥ � μn for all n � 1 and for all i, j.

For n � 1, let Kn ⊆ Hn be a finite dimensional subspace and let K = ⊕n�1Kn.
Suppose that

ai(K) ⊆ K, 1 � i � r − 1, and ar�K = 0.

Then, there exists a constant C > 0 independent of n, such that∥∥∥(ar · · · a1b1 · · · bs)�Kn

∥∥∥ � Cμn for all n � 0.

Next we prove that Mξ0 is a strongly mixing masa in MT . Our analysis is
divided into two theorems depending on dim(HR). Let Eξ0 : MT → Mξ0 denote the
τ -preserving conditional expectation onto Mξ0 . The Jones’ projection associated to
Mξ0 will be denoted by eξ0 .

Definition 4.8. For k � 0, define Uk : spanC {H	m, m � k, m 	= 0} → B(FT (H))
by linearly extending:

Uk(f1 ⊗ · · · ⊗ fm) = l(f1) · · · l(fk)l∗(fk+1) · · · l∗(fm), for m � k,

where, ξ + iη = ξ − iη for ξ, η ∈ HR.

By [14, pp. 23], for k � 0 and m � k, Uk admits a bounded extension to H⊗k ⊗
H⊗(m−k).

Theorem 4.9 [9, theorem 1]. Let {eμ : μ ∈ Λ} be an orthonormal basis of HR and
let T ∈ B(H⊗H) be a Yang–Baxter operator with matrix representation [trs

ij =
〈er ⊗ es, T (ei ⊗ ej)〉H⊗H], i, j, r, s ∈ Λ. Let tirjs = trs

ij for all i, j, r, s ∈ Λ and let the
set {(r, s) : tirjs 	= 0} be finite for every i, j ∈ Λ. Then,

W (ξ1 ⊗ · · · ⊗ ξn) =
n∑

k=0

∑
σ∈Sn/(Sk×Sn−k)

Uk[Φ(σ)(ξ1 ⊗ · · · ⊗ ξn)],

where ξ1, . . . , ξn ∈ HR and n ∈ N.

Theorem 4.10. Let dim(HR) < ∞, and suppose that there exists ξ0 ∈ HR with
‖ξ0‖H = 1 such that T (ξ0 ⊗ ξ0) = q(ξ0 ⊗ ξ0) for some |q| � λ. Let x = W (ξ1 ⊗ · · · ⊗
ξm) and y = W (η1 ⊗ · · · ⊗ ηk) for ξi, ηj ∈ HR, 1 � i � m and 1 � j � k, m, k ∈ N,
be such that Eξ0(x) = 0 = Eξ0(y). Then, Tx,y : L2(Mξ0 , τ) → L2(Mξ0 , τ) defined as

Tx,y(aΩ) = Eξ0(xay)Ω, a ∈ Mξ0 ,

is a Hilbert–Schmidt operator.

Proof. If either x or y is 0, then the result is trivial. Thus, we assume that both x and
y are non-zero. Let vn = W (ξ⊗n

0 ) for all n ∈ N ∪ {0} (ξ⊗0
0 = Ω). From lemma 3.2, we
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note that {vnΩ/‖vnΩ‖T : n ∈ N ∪ {0}} forms an orthonormal basis of L2(Mξ0 , τ).
Therefore, to show Tx,y is Hilbert–Schmidt, it is enough to show that

∑
n�0

‖Tx,y(vnΩ)‖2
T

‖vnΩ‖2
T

< ∞.

Note that for n ∈ N ∪ {0}, we have

Tx,y(vnΩ) = Eξ0(xW (ξ⊗n
0 )y)Ω

= Eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)W (ξ⊗n

0 )W (η1 ⊗ · · · ⊗ ηk)
)
Ω

= eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)W (ξ⊗n

0 )W (η1 ⊗ · · · ⊗ ηk)Ω
)

= eξ0(W (ξ1 ⊗ · · · ⊗ ξm)W (ξ⊗n
0 )(η1 ⊗ · · · ⊗ ηk))

= eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)W (ξ⊗n

0 )J(ηk ⊗ · · · ⊗ η1)
)

(by proposition 2.10)

= eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)W (ξ⊗n

0 )JW (ηk ⊗ · · · ⊗ η1)Ω
)

= eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)W (ξ⊗n

0 )JW (J(η1 ⊗ · · · ⊗ ηk))Ω
)

(by proposition 2.10)

= eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)W (ξ⊗n

0 )JW (J(η1 ⊗ · · · ⊗ ηk))JΩ
)

= eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)W (ξ⊗n

0 )Wr(η1 ⊗ · · · ⊗ ηk)Ω
)

(by equation (2.6))

= eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)Wr(η1 ⊗ · · · ⊗ ηk)W (ξ⊗n

0 )Ω
)

= eξ0

(
W (ξ1 ⊗ · · · ⊗ ξm)Wr(η1 ⊗ · · · ⊗ ηk)ξ⊗n

0

)
.

Since Eξ0(W (ξ1 ⊗ · · · ⊗ ξm)) = 0, we have eξ0(W (ξ1 ⊗ · · · ⊗ ξm)Ω) = 0. By the
T -Wick product formula in theorem 4.9, we have

W (ξ1 ⊗ · · · ⊗ ξm) =
m∑

a=0

Ua

( ∑
σ∈Sm/Sa×Sm−a

[Φ(σ)(ξ1 ⊗ · · · ⊗ ξm)]

)
.

Now, we extend ξ0 to an orthonormal basis {fμ : μ ∈ Λ} of HR. Write FT (Cξ0) :=
L2(Mξ0 , τ) and lμ = l(fμ), rμ = r(fμ), μ ∈ Λ. Note that, Eξ0(x) = 0 implies ξ1 ⊗
· · · ⊗ ξm ∈ FT (Cξ0)⊥. That is,

0 =
〈
ξ1 ⊗ · · · ⊗ ξm, ξ⊗m

0

〉
T

=
∑

σ∈Sm

qInv(σ)
〈
ξ1 ⊗ · · · ⊗ ξm, ξ⊗m

0

〉
H⊗m .

Hence, ξ1 ⊗ · · · ⊗ ξm ∈ H⊗m � Cξ⊗m
0 . Also, we have

H⊗m � Cξ⊗m
0 = spanC{fi1 ⊗ · · · ⊗ fim : ij ∈ Λ, 1 � j � m, at least one fij �= ξ0}‖·‖H⊗m

.
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As HR is finite dimensional (hence H is also finite dimensional), we have

H⊗m � Cξ⊗m
0 = spanC{fi1 ⊗ · · · ⊗ fim

: ij ∈ Λ, 1 � j � m, at least one fij
	= ξ0}.

Let σ ∈ Sm. Note that Φ(σ)(H⊗m) ⊆ H⊗m, Φ(σ)(Cξ⊗m
0 ) = Cξ⊗m

0 and
Φ(σ)(H⊗m � Cξ⊗m

0 ) ⊆ H⊗m � Cξ⊗m
0 . Therefore, we have∑

σ∈Sm/Sa×Sm−a

[Φ(σ)(ξ1 ⊗ · · · ⊗ ξm)]

=
∑

i=(i1,...,ia,...,im)∈F

αi fi1 ⊗ · · · ⊗ fia
⊗ · · · ⊗ fim

,

where, F ⊆ Λm (depending on ξ1, . . . , ξm), αi’s are scalars, and, for each i ∈ F there
exists iα with 1 � α � m such that fiα

	= ξ0. Hence, we have

W (ξ1 ⊗ · · · ⊗ ξm) =
m∑

a=0

∑
i=(i1,...,ia,...,im)∈F

αi li1 · · · lia
l∗ia+1

· · · l∗im
. (4.3)

Also, by the definition of Wr(η1 ⊗ · · · ⊗ ηk), remark 2.14 and a similar argument
as above, we can write

Wr(η1 ⊗ · · · ⊗ ηk) =
k∑

b=0

∑
j=(j1,...,jb,...,jk)∈G

βj rj1 · · · rjb
r∗jb+1

· · · r∗jk
, (4.4)

where G ⊆ Λk (depending on η1, . . . , ηk), βj ’s are scalars, and, for each j ∈ G there
exists jβ with 1 � β � k such that fjβ

	= ξ0.
Fix i ∈ F and j ∈ G. In view of equations (4.3) and (4.4), it is enough to show

that
∑
n�0

‖ζn‖2
T

‖vnΩ‖2
T

< ∞, where

ζn := eξ0(li1 · · · lia
l∗ia+1

· · · l∗im
rj1 · · · rjb

r∗jb+1
· · · r∗jk

ξ⊗n
0 ), n � 0,

and, fiα
	= ξ0 and fiβ

	= ξ0.
Let γ = max{1 � u � m : fiu

	= ξ0}. If γ � a, then there is at least one left cre-
ation amongst {li1 , . . . , lia

} namely liγ
such that fiγ

	= ξ0. In this case, ζn = 0 for
all n � 0 and the argument is complete.

On the other side, let γ � (a + 1). From proposition 4.6, it follows that∥∥∥[l∗μ, rμ′ ]�H⊗n
T

∥∥∥ � λn, for μ, μ′ ∈ Λ and n � 0. Also, note that [l∗μ, r∗μ′ ] = 0 (by
remark 2.14) for all μ, μ′ ∈ Λ, l∗iγ �FT (Cξ0)

= 0, and, l∗it
(FT (Cξ0)) ⊆ FT (Cξ0) for

γ < t � m. Hence, by applying lemma 4.7 to the operators (l∗iγ
, . . . , l∗im

) and
(rj1 , . . . , rjb

, r∗jb+1
, . . . , r∗jk

), Kn := Cξ⊗n
0 , n � 0, and K := FT (Cξ0), we get that

there exists a constant C > 0 such that

‖ζn‖T � Cλn
∥∥ξ⊗n

0

∥∥
T

= Cλn ‖vnΩ‖T , for all n � 0.

Consequently,
∑

n�0
‖ζn‖2

T

‖vnΩ‖2
T

< ∞, as required. This completes the proof. �
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Theorem 4.11. Let 2 � dim(HR) < ∞, and suppose there exists ξ0 ∈ HR with
‖ξ0‖H = 1 such that T (ξ0 ⊗ ξ0) = q(ξ0 ⊗ ξ0) for |q| � λ. Then, Mξ0 ⊆ MT is a
strongly mixing masa in MT whose left–right measure is Lebesgue absolutely
continuous. In particular, Mξ0 is singular in MT .

Proof. Let S = {W (ξ1 ⊗ · · · ⊗ ξm) : ξi ∈ HR, 1 � i � m, and at least one ξi ⊥ ξ0,
m ∈ N}. From lemma 3.2, it follows that Eξ0(x) = 0 for all x ∈ S and spanC SΩ is
dense in L2(MT , τ) � L2(Mξ0 , τ). Further, from theorem 4.10, it follows that Tx,y

is a Hilbert–Schmidt operator for all x, y ∈ S. Therefore, the result follows from
theorem 4.3 and the discussion surrounding it. �

Remark 4.12. Now we turn to the case dim(HR) = ℵ0. Before we proceed, we need
to take a careful look into the T -Wick product, which in the case when HR was
finite dimensional played a crucial role.

Simple calculations show that the operator W (ξ1 ⊗ · · · ⊗ ξn), ξi ∈ HR, 1 � i � n,
depends on T and may not lie inside the ∗-algebra generated by s(ξ), ξ ∈ HR, when
dim(HR) = ℵ0. This poses challenges in the investigation of structural properties
of MT . Further, for n ∈ N and 1 	= σ ∈ Sn, Φ(σ) may not take simple tensors to a
finite linear combination of simple tensors.

In the context of the mixed q-Gaussian von Neumann algebras (which covers the
case of q-Gaussian von Neumann algebras), W (ξ1 ⊗ · · · ⊗ ξn) indeed lies in the ∗-
algebra generated by s(ξ), ξ ∈ HR, regardless of dim(HR), and this fact has bearing
on studying the aforesaid algebras [6,16].

Theorem 4.9 assumes the existence of an orthonormal basis of HR which resolves
the aforesaid hurdles and in that sense theorem 4.9 is mostly valuable when
dim(HR) = ℵ0. Thus, we first assume the existence of such an orthonormal basis of
HR. (Note that MT is tracial.)

The special eigenvector ξ0 in theorem 4.10 (i.e., in the case when dim(HR) < ∞)
enables the construction of a convenient orthonormal basis of HR that behaves well
as long as one considers their interaction with elements of Mξ0 . Such interaction
played a crucial role in [2] as well. Since the analysis of free groups factors, q-
Gaussian von Neumann algebras, mixed q-Gaussian von Neumann algebras and
their type III counterparts rely heavily on Wick product expansion as above [1,2,
6,14,17], in order to exploit this convenient interaction in the case dim(HR) = ℵ0,
we assume the existence of an orthonormal basis {eμ: μ ∈ Λ} of HR, so that the T -
Wick product expansion (as above in theorem 4.9) is valid and there exists μ0 ∈ Λ
such that T (eμ0 ⊗ eμ0) = q(eμ0 ⊗ eμ0) for some |q| � λ.

In § 6, we provide examples for which such hypotheses are naturally satisfied.

Let dim(HR) = ℵ0. Suppose that there exists an orthonormal basis {eμ : μ ∈ Λ} of
HR satisfying the hypothesis of theorem 4.9. Then, we have the following theorem.

Theorem 4.13. Suppose there exists μ0 ∈ Λ such that T (eμ0 ⊗ eμ0) = q(eμ0 ⊗
eμ0) for some |q| � λ. Let x = W (eμ1 ⊗ · · · ⊗ eμm

) and y = W (eν1 ⊗ · · · ⊗ eνk
)

for μi, νj ∈ Λ, 1 � i � m, 1 � j � k, m, k ∈ N, be such that Eeμ0
(x) = 0 = Eeμ0

(y).
Then, Tx,y : L2(Meμ0

, τ) → L2(Meμ0
, τ) defined as

Tx,y(aΩ) = Eeμ0
(xay)Ω, a ∈ Meμ0

,
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is a Hilbert–Schmidt operator. Moreover, Meμ0
⊆ MT is a strongly mixing masa in

MT whose left–right measure is Lebesgue absolutely continuous. In particular, Meμ0

is singular in MT .

Proof. Let vn = W (e⊗n
μ0

) for n ∈ N ∪ {0} (e⊗0
μ0

= Ω). Then, as in the proof of
theorem 4.10, we have

Tx,y(vnΩ) = eeμ0

(
W (eμ1 ⊗ · · · ⊗ eμm

)Wr(eν1 ⊗ · · · ⊗ eνk
)e⊗n

μ0

)
, n � 0.

The hypothesis entails that, for σ ∈ Sm, Φ(σ)(eμ1 ⊗ · · · ⊗ eμm
) splits into a finite

linear sum of simple tensors consisting of elements of {eμ : μ ∈ Λ}. Similar is the
case for Φ(σ′)(eν1 ⊗ · · · ⊗ eνk

) with σ′ ∈ Sk. Therefore, by theorem 4.9, it follows
that W (eμ1 ⊗ · · · ⊗ eμm

) (resp. Wr(eν1 ⊗ · · · ⊗ eνk
)) splits into a finite sum of prod-

ucts of left creation operators followed by left annihilation operators (resp. right
creation operators followed by right annihilation operators). Therefore, proceeding
along the similar lines of calculations in the proof of theorem 4.10, it follows that
Tx,y is a Hilbert–Schmidt operator.

Let S = {W (eμ1 ⊗ · · · ⊗ eμm
) : μi ∈ Λ, 1 � i � m, and at least one eμi

	= eμ0 ,
m ∈ N}. From lemma 3.2, it follows that Eeμ0

(x) = 0 for all x ∈ S and SΩ is dense in
L2(MT , τ) � L2(Meμ0

, τ). Further, Tx,y is Hilbert–Schmidt operator for all x, y ∈ S.
Hence, the result follows from theorem 4.3 and the discussion surrounding it. �

5. Factoriality of MT

In this section, we prove the factoriality of MT under the assumption of the existence
of a special eigenvector of T . This is the main result of this paper.

Theorem 5.1. Suppose 2 � dim(HR) < ∞, and, there exists a non-zero vector ξ0 ∈
HR such that ‖ξ0‖H = 1 and T (ξ0 ⊗ ξ0) = q(ξ0 ⊗ ξ0) for some |q| � λ. Then, MT

is a factor.

Proof. By theorem 4.11, Mξ0 is a masa in MT . Therefore, Z(MT ) ⊆ Mξ0 . Since
dim(HR) � 2, pick ξ1 ∈ HR such that 〈ξ0, ξ1〉H = 0.

Let 0 	= z ∈ Z(MT ). Choose a sequence {zn} of polynomials in s(ξ0) such that
zn → z in the s.o.t. Hence, znΩ → zΩ in ‖·‖T .

Therefore, s(ξ1)znΩ → s(ξ1)zΩ in ‖·‖T . But s(ξ1)znΩ = l(ξ1)znΩ + l∗(ξ1)znΩ.
Note that znΩ ∈ Mξ0Ω ⊆ L2(Mξ0 , τ) and 〈ξ0, ξ1〉H = 0. Therefore, by definition 2.5,
we have l∗(ξ1)znΩ = 0 for all n. Since l(ξ1) is continuous, we have s(ξ1)znΩ =
ξ1 ⊗ znΩ → ξ1 ⊗ zΩ in ‖·‖T .

On the other hand, zns(ξ1)Ω → zs(ξ1)Ω in ‖·‖T . From remark 2.14, it follows
that

zns(ξ1)Ω = znξ1 = znsr(ξ1)Ω = sr(ξ1)znΩ = r(ξ1)znΩ + r∗(ξ1)znΩ.

Since znΩ ∈ L2(Mξ0 , τ) and 〈ξ0, ξ1〉H = 0, so r∗(ξ1)znΩ = 0 (see definition 2.12).
Hence, zns(ξ1)Ω = znΩ ⊗ ξ1 → zΩ ⊗ ξ1 in ‖·‖T , since r(ξ1) is continuous.

Since s(ξ1)zΩ = zs(ξ1)Ω, we must have ξ1 ⊗ zΩ = zΩ ⊗ ξ1. Consequently,
z ∈ C1.

This completes the proof. �
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Remark 5.2.

1. Note that the hypothesis of the existence of special eigenvector is crucially
used in the proof of theorem 5.1. Even if it were true that s(ξ) generates a
masa for some ξ ∈ HR, it is not clear how to conclude factoriality without
such hypothesis.

2. In the case dim(HR) = ℵ0, the factoriality of MT was established in [9,
theorem 3]. However, we can provide a second proof of the same under
appropriate hypotheses.

Suppose that dim(HR) = ℵ0. Let {eμ : μ ∈ Λ} be an orthonormal basis of HR

satisfying the conditions of theorem 4.9 and there exists μ0 ∈ Λ such that
T (eμ0 ⊗ eμ0) = q(eμ0 ⊗ eμ0) for some |q| � λ. Then, MT is a factor. Indeed,
by theorem 4.13, Meμ0

is a masa in MT . Then, the result follows by a similar
argument as in theorem 5.1.

6. Examples

In this section, we construct an uncountable family of Yang–Baxter operators each
of which satisfies the traciality condition in theorem 2.8, the sufficient condition
for T -Wick product expansion in theorem 4.9 and possess a special eigenvector of
the form ξ0 ⊗ ξ0. Examples appearing in this section are not new and are borrowed
from [9], thus we claim no credit for it. Combining with [14, theorem 2], this yields
a new collection of non-injective factors.

Let HR be a real Hilbert space with dim(HR) � 2 and let U be a self-adjoint
orthogonal operator on HR. Let H be the complexification of HR and let Ũ be
the complexification of U on H. Let T : H⊗H → H⊗H be the flip unitary. Fix
λ ∈ (−1, 1). Define Tλ : H⊗H → H⊗H by Tλ = λ(Ũ ⊗ 1)T (Ũ ⊗ 1).

Proposition 6.1. For λ ∈ (−1, 1), the operator Tλ : H⊗H → H⊗H is a Yang–
Baxter operator with ‖Tλ‖ = |λ| < 1. Further, we have the following.

1.

〈ξr ⊗ ξs, Tλ(ξi ⊗ ξj)〉H⊗H = 〈ξs ⊗ ξj , Tλ(ξr ⊗ ξi)〉H⊗H,

for all ξi, ξj , ξr, ξs ∈ HR.

2. Tλ(ξ0 ⊗ ξ0) = λ(ξ0 ⊗ ξ0) whenever Uξ0 = ξ0 for some ξ0 ∈ HR.

3. Let {eμ : μ ∈ Λ} be an orthonormal basis of HR consisting of eigenvectors of
U . Then, {eμ : μ ∈ Λ} satisfies the T -Wick product condition in theorem 4.9.

Proof. Tλ is self-adjoint, since Ũ is self-adjoint. Clearly, ‖Tλ‖ = |λ| < 1. Note that
Tλ(ξ ⊗ η) = λ(Ũη ⊗ Ũξ) for all ξ, η ∈ H. Then, for all ξ1, ξ2, ξ3 ∈ H, one has

(Tλ ⊗ 1)(1 ⊗ Tλ)(Tλ ⊗ 1)(ξ1 ⊗ ξ2 ⊗ ξ3) = λ3(ξ3 ⊗ ξ2 ⊗ ξ1)

= (1 ⊗ Tλ)(Tλ ⊗ 1)(1 ⊗ Tλ)(ξ1 ⊗ ξ2 ⊗ ξ3).

It follows that Tλ satisfies the braid relation.
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(1). Fix ξi, ξj , ξr, ξs ∈ HR. We have,

〈ξr ⊗ ξs, Tλ(ξi ⊗ ξj)〉H⊗H = λ〈ξr ⊗ ξs, Uξj ⊗ Uξi〉H⊗H

= λ〈ξr, Uξj〉H〈ξs, Uξi〉H
= λ〈ξs, Uξi〉H〈Uξr, ξj〉H (since U = U∗)

= λ〈ξs, Uξi〉H〈ξj , Uξr〉H (since ξj , ξr ∈ HR)

= λ〈ξs ⊗ ξj , Uξi ⊗ Uξr〉H⊗H

= 〈ξs ⊗ ξj , Tλ(ξr ⊗ ξi)〉H⊗H.

(2) and (3) are easy consequences of the construction. This completes the proof. �

Now, let dim(HR) � 3. Write HR = R
2 ⊕KR, where KR 	= 0 is a real Hilbert

space. Let ξ = 1 ⊕ 0 ⊕ 0 and η = 0 ⊕ 1 ⊕ 0. Define U on HR as

U :=
(0 1
1 0

)
⊕ 1KR

.

Then, Tλ(ξ ⊗ ξ) = λ(η ⊗ η). Consequently, Tλ is not a scalar multiple of T and
hence MTλ

cannot be canonically isomorphic to the q-Gaussian von Neumann
algebras for all λ ∈ (−1, 1).

Finally, by choosing HR = ⊕i∈I R
2 ⊕KR, where I is a finite or countable index

set and KR 	= 0 (as before), and defining U on HR as

U := ⊕
i∈I

(0 1
1 0

)
⊕ 1KR

,

we obtain many examples of non-injective type II1 factors (as λ and HR vary).
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