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Chapter 1
Introduction

The identification of the fundamental constituents of matter and the description of in-
teractions between these constituents is the main goal of particle physics. In the 1970s
particle physicists formalized the so-called Standard Model (SM) of particle physics and
ever since predictions made by the SM have been tested in a variety of experiments. So
far, experimental results and theoretical predictions based on the SM show remarkable
agreement. The SM is therefore arguably one of the most if not the most successful
and predictive theory in physics ever created, and its theoretical completion in the 1970s
marked a big step towards a theoretical description of the fundamental constituents of
matter and their interactions.
The constituents of matter included in the SM are grouped into three generations of
spin-1

2
particles, each generation containing two quarks, one neutral lepton-neutrino, and

one charged lepton. These three generations differ only in the masses of the contained
particles but otherwise carry identical quantum numbers. Three out of the four known
forces acting on fermionic matter are incorporated in the SM and are mediated by spin-
1 gauge bosons, where the photon mediates the electromagnetic force, the W± and Z
bosons mediate the weak force, and eight gluons the strong force. The interaction of the
eight gluons with themselves and with the quarks is described by the theory of Quantum
Chromodynamics (QCD). The description of the weak and electromagnetic interactions
mediated by the photon, the W± bosons, and Z boson is unified in the Glashow-Salam-
Weinberg (GSW) model [1–4]. The Higgs boson is introduced as part of the so-called
Higgsmechanism used to produce mass terms for the [5–8] massive W± and Z bosons,
which where observed experimentally in 1982, without breaking the gauge symmetry of
the GSW model. The discovery of a scalar particle with properties of the SM Higgs
boson in 2012 [9, 10] at the Large Hadron Collider (LHC) at CERN completed the ex-
perimental search for particles predicted by the SM. Even though the predictions of the
SM are in remarkable agreement with experimental results, there are some shortcomings
or experimental observations that the SM cannot explain. The most obvious one is the
missing description of the gravitational force. But also the origin of dark matter or the
experimentally observed matter-anti-matter asymmetry in the universe are problems that
cannot be solved by the SM. Therefore, the SM in its current form cannot be the ultimate
description of Nature.

The most prominent experimental facility in high-energy physics used to test theoretical

1



Chapter 1. Introduction

predictions made by the SM and also potential theoretical extensions of it, is the LHC.
The proton–proton collider started its research program in 2010 at a collision energy of 7
TeV. After a shutdown in 2022 it became operational again operating at a collision energy
of 13.6 TeV. Due to its high cross section and clean experimental signature the Drell–Yan-
like production of lepton pairs is among the most important standard-candle processes at
the LHC [11–14] and can be used for both detector calibration and luminosity monitoring.
Moreover, these processes provide the opportunity to gain insight on the mass and width
of W bosons, they allow the search for new gauge bosons in the high-mass range, and
the W charge asymmetry and the rapidity distributions of the Z boson can be used to
constraint fits of the parton distribution functions (PDFs) [15]. Furthermore, Drell–Yan
processes allow for the determination of precision observables in the vicinity of the Z
resonance such as the effective weak mixing angle [16, 17], which can be extracted from
the forward–backward asymmetry, AFB. If we consider the long list of physical insights
that can be gained by studying only DY processes—and of course there are many more
processes that can be used to test different predictions by the SM, e.g. vector-boson-
scattering—it becomes clear that with the discovery of the Higgs boson in 2012 the story
of particle physics and the SM was and still is far from completed. In recent years, the
focus of experimental searches at the LHC partly shifted from a rather broad investigation
of the features predicted by the SM, i.e. findig all predicted particles, towards the strive
for gaining more knowledge on the more subtle predictions by the SM that require more
experimental accuracy, such as the measurement of the mass and width of the W boson
or triple or quartic gauge couplings in multi-boson processes.

In order to perform precision tests of the Standard Model, theoretical predictions have
to match the accuracy of the high-precision measurements mentioned above. This means
that the calculation of higher-order corrections to DY processes is needed. Current state-
of-the-art calculations involve electroweak fixed-order corrections up to next-to-leading
order (NLO) [18–30] and leading higher-order effects from multiple photon emissions or
of universal origin [26, 28, 29, 31, 32]. Fixed-order QCD calculations for inclusive observ-
ables are available up to next-to-next-to-next-to-leading order (N3LO) [33] whereas for
differential observables predictions up to next-to-next-to-leading (NNLO) order [34–41]
were made. These QCD corrections are supplemented by the calculation of threshold
effects studied up to N3LO accuracy [42, 43] and by resuming large logarithms occurring
due to soft-gluon emissions at small transverse momentum [44–53]. It is commonly agreed
that the calculation of O(αsα) corrections is needed in order to achieve the accuracy goal
of minimizing the uncertainty on the W -boson mass to around 8 MeV [54]. This mo-
tivates the effort in recent years of calculating O(αsα) corrections to DY processes. To
reduce the complexity of calculations and avoid at the time unknown two-loop box inte-
grals the so-called pole approximation (PA) was used in [55, 56] to get a handle on these
corrections. Applying the PA it is possible to classify corrections in a gauge-invariant
way into so-called factorizable corrections that include corrections to the production and
decay modes and non-factorizable corrections obtained from contributions including a soft
photon that connects the production and decay of the intermediate W/Z boson. In [55] it
has been shown that the non-factorizable contributions are phenomenologically negligible
and in [56] that factorizable corrections of type “initial–final” lead to a mass shift of the
W -boson mass of O(10 MeV), proving the relevance of O(αsα) corrections in order to
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achieve the targeted accuracy goal mentioned before. Quite recently the first complete
calculations of differential O(αsα) corrections to DY-like off-shell W/Z production were
obtained [57,58].
The only class of gauge-invariant corrections of O(αsα) in the context of the PA that had
not been calculated at the time of [56] are the initial–initial type corrections. It is one
of the subjects of this thesis to complete the PA for the neutral-current DY process by
calculating the remaining initial–initial type corrections and further study their impact
on the forward–backward asymmetry AFB of neutral-current DY processes in the reso-
nance region of the intermediate Z boson. To our best knowledge, this is the first time
that the impact of O(αsα) corrections on the numerically challenging forward–backward
asymmetry has been studied as there are no published results.
We have applied the PA and calculated the previously missing initial–initial type O(αsα)
corrections to the neutral-current DY processes in PA. This gauge-invariant part of the
full set of O(αsα) corrections in PA contains contributions where the corrections are solely
contained in the production mode of the Z boson and include genuine two-loop virtual–
virtual corrections, real–virtual corrections, and double-real O(αsαphot) corrections. Fur-
thermore, we also study the effect of the O(αsα) corrections on the transverse-momentum
and invariant-mass spectrum of the Z boson.

Since physics beyond the SM might also show up in the tails of invariant-mass or transverse-
momentum distributions outside the resonance regions, it is important to provide informa-
tion about the size of O(αsα) corrections beyond the PA. A first step towards a calculation
of the full O(αsα) corrections to off-shell DY processes is the calculation of the gauge-
invariant O(Nfαsα) two-loop corrections to single W/Z-boson production which are en-
hanced by the number of fermion flavoursNf in the SM and result from diagrams including
closed fermion loops and additional gluon exchange or radiation. Besides corrections con-
taining one-particle-irreducible two-loop (sub)diagrams the O(Nfαsα) corrections also
contain reducible contributions which either involve a product of two one-loop subdia-
grams or one-loop subdiagrams with an additional possibly unresolved QCD parton in the
final state. We have evaluated the O(Nfαsα) corrections to single W/Z-boson production
in a fully differential manner and studied their effect on the (transverse) invariant-mass
and transverse-momentum spectra of the W and Z boson, respectively. The calculation of
virtual corrections of O(Nfαsα) involves the issue of extending a gauge-invariant scheme
for treating the W/Z resonance to this order. To solve this problem, we describe the
generalization of the complex-mass scheme [59] (see also Ref. [60]), which is a standard
method for a gauge-invariant treatment of resonances at NLO, for the application to W/Z
resonances at O(αsα).

This thesis is structured as follows:

• We start with an overview over the SM in Section 2.1, and its renormalization is
part of Section 2.2. The renormalization of the electroweak sector defined by the
GSW model using the on-shell scheme, the renormalization of QCD in the so-called
MS scheme, and also different electroweak input-parameter schemes are discussed.
Moreover, Chapter 2 contains a short review of the treatment of unstable particles
in quantum field theory (QFT) and the complexified version of the on-shell scheme.
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Chapter 1. Introduction

• In Chapter 3 we discuss factorization properties of amplitudes in infrared(IR)-singular
limits including corrections up to next-to-next-to-leading order (NNLO). The prop-
erties shown there are the basis for the construction of “antenna subtraction terms”,
which is the content of Chapter 4.

• Chapter 5 is devoted to the calculation of O(Nfαsα) two-loop corrections to DY-
like W/Z-boson production. Before giving an overview over the different O(Nfαsα)
corrections to the squared amplitude we start with a short review of properties of
the DY processes at leading order (LO), followed by a discussion of IR and ultra-
violet (UV) singularities present at O(Nfαsα) and their cancellation using antenna
subtraction, and the extension of the complexified version of the on-shell renormal-
ization scheme to O(αsα).

• In Chapter 6 we begin with the discussion of the PA for processes with a single
resonance and proceed with an overview over the classification of O(αsα) corrections
to DY-like Z production in PA into gauge-invariant parts. This is followed by the
calculation of the various contributions to the initial–initial type corrections and
an extensive discussion of NNLO antenna subtraction terms needed to cancel IR
singularities.

• We conclude with a summary and outlook in Chapter 7.

• In the appendices we summarize some conventions and give auxiliary functions
relevant for Chapter 5 and Chapter 6 in App. D and App. E, respectively. App. B
contains a short overview over the kinematics relevant at hadron colliders.

Note the slightly unconventional ordering of starting with the discussion of the calculation
of the O(Nfαsα) corrections to off-shell DY processes and a subsequent discussion of
O(αsα) initial–initial corrections to DY-like Z production in PA. We organize the thesis
in this way as the O(Nfαsα) corrections contain vertex counterterm contributions which
will also be included in the calculation of the O(αsα) initial–initial corrections.
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Chapter 2
The Standard Model and its
renormalization

2.1 The Standard Model of particle physics

The Standard Model of particle physics (SM) is a relativistic quantum field theory that
describes three out of the four known fundamental forces, namely the strong, the weak,
and the electromagnetic forces. At small distances, or equivalently at large energies, the
gravitational force is extremely small compared to the other three fundamental interac-
tions and therefore negligible, which explains the applicability of the Standard Model
in the description of physics at scales relevant for, e.g., particle colliders. The physics
of strong interactions is described by quantum chromodynamics (QCD) [61–63] based on
the non-abelian gauge group SU(3)C . The Glashow–Salam–Weinberg model (GSW) [1–4],
based on the spontaneously broken gauge group SU(2)W × U(1)Y , provides a unified de-
scription of electromagnetic and weak interactions. This renders the Standard Model a
spontaneously broken non-abelian gauge theory with gauge group,

SU(3)C × SU(2)W × U(1)Y , (2.1)

describing the continuous internal symmetries of the SM. The non-vanishing masses of
the W± and Z gauge bosons of the GSW model are theoretically introduced by employing
the mechanism of spontaneous symmetry breaking (SSB), allowing for the generation of
mass terms without the explicit violation of gauge symmetries. This mechanism breaks
the SU(2)W ×U(1)Y symmetry of the GSW model spontaneously to the electromagnetic
U(1)EM symmetry, so that the photon as the mediator of the electromagnetic force re-
mains massless.
The quantum particle states of the SM are elements of an infinite-dimensional Hilbert
space and are classified according to unitary infinite-dimensional irreducible representa-
tions of the Poincaré group introducing the mass m and the spin s of the particles as
quantum numbers. The corresponding quantum fields belong to finite-dimensional irre-
ducible representations of the Lorentz group. As the SM is formulated as a relativistic
quantum field theory, the quantum fields are the relevant objects for the description of
the dynamics of the SM. The fermionic fields are related to particles making up matter,
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Chapter 2. The Standard Model and its renormalization

generation
1 2 3 Q I3W(ΨL

i ) I3W(ΨR
i ) YW(ΨL

i ) YW(ΨR
i )

charged leptons ΨL e µ τ −1 −1
2

0 −1 −2

neutral leptons Ψν νe νµ ντ 0 +1
2

- −1 -
u-type quarks Ψu u c t +2

3
+1

2
0 +1

3
+4

3

d-type quarks Ψd d s b −1
3

−1
2

0 +1
3

+2
3

Table 2.1: The electroweak quantum numbers of the fermionic matter content of the SM, which
is classified into three generations and a higher generation indicates a higher mass.

and bosonic fields correspond to particles mediating forces between the fermions. The
dynamics of all SM fields follows from the Poincaré-invariant Lagrangian density,

LSM = LYM + LHiggs + Lferm + LYukawa, (2.2)

which receives contributions from terms that describe the dynamics of fermionic (Lferm)
and bosonic (LYM) fields, the breaking of the electroweak symmetry in order to introduce
mass terms for the massive gauge bosons (LHiggs), and the generation of mass terms
for fermions (LYukawa). All of these contributions will be discussed individually in the
following sections.

Fermions, local gauge invariance, and the Yang–Mills Lagrangian

The fermionic spin-1
2

particle content of Standard Model includes three generations of
fermions, where each generation of fermions is an identical copy of the other generations
except for the masses of the fermions, which increase with the generation. In principle
it is not necessary to fix a certain number of fermion generations theoretically. However,
as the flavour sector is the only source of the experimentally observed CP violation, one
needs at least three fermion generations within the SM to incorporate this experimental
observation. The SM fermions, divided into three generations, can be further classified
according to the SU(3)C representation they belong to. The first class of particles trans-
forms in the singlet representation of SU(3)C and are the so-called leptons. They include
three electrically neutral particles, the neutrinos ν, and three electrically charged leptons
l. The second group of particles transforms in the fundamental representation of SU(3)C
and are the so-called quarks. The group of quarks is again subdivided by their electric
charge into up-type u and down-type d quarks. Quarks are not observed as free particles,
but confined into bound states called hadrons. The fermionic particle content of the SM
is shown in Table 2.1.

The fermionic fields are elements of the Dirac representation of the Lorentz group and
can be projected onto their left-chiral (1

2
, 0) and right-chiral (0, 1

2
) parts by using chirality

projectors, ω± = 1
2
(1± γ5) (see App. A for a definition of γ5),

ΨL(x) = ω−Ψ(x) =

(
Ψ̃L(x)

0

)
, ΨR(x) = ω+Ψ(x) =

(
0

Ψ̃R(x)

)
, (2.3)
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Chapter 2. The Standard Model and its renormalization

where the spinor Ψ̃R (Ψ̃L) is an element of the right-chiral (0, 1
2
) (left-chiral (1

2
, 0)) spinor

representation of the Lorentz group (see also App. A for more details on Weyl spinors).
The experimentally observed parity violation is theoretically implemented in the SM by
using different representations of the weak gauge group, SU(2)W , in the left- and the right-
handed components. The left-handed fields transform in the fundamental representation,
whereas the right-handed fields are SU(2)W singlets. Therefore, right-handed fields do
not couple to the gauge bosons of SU(2)W .

The kinetic part of the fermionic Lagrangian is given by

Lferm,kin =
3∑

i=1

(
Ψ̄L

L′
i
/∂ΨL

L′
i
+ l′Ri /∂l′Ri + Ψ̄L

Q′
i
/∂ΨL

Q′
i
+ d′Ri /∂d

′R
i + u′Ri /∂u

′R
i

)
(2.4)

where /∂ is defined in (A.11) and we have introduced weak isospin doublets for the left-
handed fermions,

ΨL
L′
i
=

(
ν ′Li
l′Li

)
, ΨL

Q′
i
=

(
u′Li
d′Li

)
, (2.5)

with i denoting the generation and the primes indicating that the fields are interaction
eigenstates. Mass terms in the Lagrangian for the fermionic matter content will be dis-
cussed below, since a naive introduction of them would violate gauge invariance due to
the different representations of left- and right-chiral fields. The guiding principle when
constructing interaction terms of fermions and bosons is the demand on local gauge in-
variance of the Lagrangian. The kinetic Lagrangian in (2.4) is, however, only invariant
under global gauge transformation of the fermionic fields Ψ(x),

Ψ(x) → U(θC ,θW , θY )Ψ(x) = exp(−igSθaC T̂
a
C + ig2θjW T̂

j
W − ig1θY T̂Y )Ψ(x), (2.6)

but not under the corresponding local gauge transformation where the global gauge pa-
rameters θC of SU(3)C , θW of SU(2)W , and θY of U(1)Y , also depend on x, respectively.
Note that the form of the generators, T̂ a

C , T̂ j
W , and T̂Y , of the Lie algebras depends on

the representation the fields Ψ(x) belong to. Local gauge invariance of the kinetic part
of fermionic Lagrangian is obtained by replacing the ordinary derivative by the covariant
derivative

Dµ = ∂µ + igsGa
µ(x)T̂

a
C − ig2W j

µ(x)T̂
j
W + ig1Bµ(x)T̂Y , (2.7)

where the vector fields Bµ, W j
µ (j = 1, 2, 3), and Ga

µ (a = 1, . . . , 8), introduced in the
covariant derivative, are the gauge fields corresponding to gauge bosons. These fields
have the following behaviour under gauge transformations,

Bµ → Bµ + ∂µθY (x), (2.8)

W j
µT̂

j
W → UW (θW (x))

(
W j

µT̂
j
W +

i
g
∂µ

)
UW (θW (x))†, (2.9)

Ga
µT̂

a
C → UC(θC(x))

(
Ga

µT̂
a
C +

i
gs
∂µ

)
UC(θC(x))

†. (2.10)
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Chapter 2. The Standard Model and its renormalization

The combination of covariant derivative and fermionic field transforms according to

DµΨ(x) → U(θ(x))DµΨ(x). (2.11)

Replacing the ordinary derivative by the covariant derivative in order to obtain a La-
grangian that is invariant under local gauge transformations leads to a Lagrangian which
includes the kinetic part of the fermionic Lagrangian but also interaction terms between
the fermions and the gauge bosons,

Lferm =
3∑

i=1

[
Ψ̄L

L′
i

(
/∂ − ig2 /W

a
τa + ig1

YL
2
/B
)
ΨL

L′
i
+ l′Ri

(
/∂ + ig1

Yl
2
/B
)
l′Ri

+ Ψ̄L
Q′

i

(
/∂ + igs /G

aλa

2
− ig2 /W

a
τa + ig1

YQ
2
/B
)
ΨL

Q′
i
+ (2.12)

+ d′Ri

(
/∂ + igs /G

aλa

2
+ ig1

Yd
2
/B
)
d′Ri + u′Ri

(
/∂ + igs /G

aλa

2
+ ig1

Yu
2
/B
)
u′Ri

]
.

In (2.12) we have replaced the Lie algebra generators according to the representation of
the gauge groups the fermions belong to, which means that T̂ a

C is replaced by the Gell-
Mann matrices λa

2
for quarks, T̂Y by the number YW

2
, where YW is the so-called weak

hypercharge, and T̂ j
W either by normalized Pauli matrices τ j = IjW = σj

2
(for left-handed

fields) or by T̂ j
W = 0 (for right-handed fields). Using the Gell-Mann–Nishijima relation

(which will be motivated in the next section),

Q = I3W +
YW
2
, (2.13)

the weak hypercharges, YW , are chosen such that the fields obtain the correct electric
charges

Ql′i = −1l′i, Qν ′i = 0, Qu′i = +
2

3
u′i, Qd′i = −1

3
d′i. (2.14)

The dynamics of the gauge fields present in the SM, introduced as part of the covariant
derivative, is described by the Yang–Mills Lagrangian,

LYM = −1

4
Ga

µνG
a,µν − 1

4
W i

µνW
i,µν − 1

4
BµνB

µν , (2.15)

where the field-strength tensors are defined as,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν ,

W j
µν = ∂µW

j
ν − ∂νW

j
µ + g2ε

jklW k
µW

l
ν ,

Bµν = ∂µBν − ∂νBµ.

(2.16)

The non-abelian nature of SU(3)C and SU(2)W manifests itself by the non-commutativity
of the corresponding generators of the respective Lie algebra

[
T a, T b

]
= cabc T c, (2.17)
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Chapter 2. The Standard Model and its renormalization

where cabc has to be replaced by the structure constant of the gauge group the generators,
T a, are associated to. The non-abelian structure of SU(3)C and SU(2)W leads to non-
vanishing structure constants. When the corresponding field-strength tensors are squared
in the Yang-Mills Lagrangian, these terms proportional to the structure constants then
result in self-interaction terms of the gauge bosons associated to SU(3)C and SU(2)W .
Due to the abelian nature of the U(1)Y gauge group no such self-interaction terms are
generated in the Yang-Mills Lagrangian.
Using the behaviour of the covariant derivative under gauge transformations given in
Eq. (2.11), and the relation of the field-strength tensors to the commutator of covariant
derivatives,

[Dµ, Dν ] = igsGa
µνT̂

a
C − ig2W j

µνT̂
j
W + ig1Bµν , (2.18)

one obtains the behaviour of the field-strength tensors under gauge transformation which
can be used to verify the gauge invariance of the Lagrangian LYM in (2.15).

Higgs part

The naive introduction of mass terms in the SM Lagrangian is not possible, as they
would spoil gauge invariance. The mechanism of spontaneous symmetry breaking offers
a solution to this problem by introducing a complex scalar colour-neutral weak-isospin
doublet,

Φ(x) =

(
ϕ+(x)

ϕ0(x)

)
, (2.19)

with a non-vanishing vacuum expectation value (vev). Choosing a certain vacuum state
Φ0 breaks the full symmetry group SU(2)W × U(1)Y of the Lagrangian. Expanding the
scalar isospin doublet Φ around the chosen vev Φ(x) = Φ0+φ(x) introduces the Higgs field
and two would-be Goldstone bosons as part of φ(x). By choosing the vev Φ0 properly, the
Lagrangian in terms of the fluctuating field around the vev φ(x) and the vev Φ0 will have
only a residual U(1)EM gauge symmetry instead of the full electroweak gauge symmetry
group. Terms within the Lagrangian that include the vev Φ0 provide the desired mass
terms for the W± and Z boson. It is, however, important to mention that the Lagrangian
in terms of the original scalar isospin doublet Φ(x) still has the full SU(2)W × U(1)Y
gauge symmetry, it is just not obvious when writing the Lagrangian in terms of φ(x).
The generation of mass terms for gauge bosons using spontaneous symmetry breaking,
also known as ”Higgs mechanism“, is discussed in more detail in the following.

Renormalizability and gauge invariance constrain the allowed terms for the Lagrangian
of the scalar isospin doublet Φ, leading to

LHiggs = (DµΦ)
†(DµΦ)− V (Φ), (2.20)

with the potential

V (Φ) = −µ2Φ†Φ +
λ

4

(
Φ†Φ

)2
, µ2, λ > 0. (2.21)

9



Chapter 2. The Standard Model and its renormalization

Higher powers of Φ†Φ are not allowed as they would lead to a coupling with negative mass
dimension and therefore contradict the requirement of renormalizability. The parameters
λ and µ2 are chosen such that the scalar field develops a nonzero vev, Φ0, which is the
minimum of the potential V (Φ) at |Φ| ≠ 0 and is determined by the condition

Φ†0Φ0 =
2µ2

λ
≡ v2

2
. (2.22)

As mentioned above, by choosing the vacuum state properly, one can break the SU(2)W ×
U(1)Y down to a U(1)EM symmetry. As we will see below, a possible choice that leads to
this behaviour is given by

⟨Φ⟩ = Φ0 =

(
0
v√
2

)
. (2.23)

Fluctuations around this ground state can be parametrized by

Φ(x) =

(
0
v√
2

)
+

(
ϕ+(x)

1√
2
(H(x) + iχ(x))

)
= Φ0 + φ(x), (2.24)

where the real field H corresponds to the neutral spin-0 Higgs particle with mass

MH =
√
2µ. (2.25)

The real field χ, the complex field ϕ+, and its adjoint ϕ− correspond to unphysical would-
be Goldstone bosons, which provide the necessary longitudinal degrees of freedom to
render the weak gauge bosons W , Z massive. Inserting the field Φ, expanded around its
vev given in (2.24), into the Lagrangian LHiggs, we obtain the Lagrangian in terms of the
Higgs boson and the would-be Goldstone bosons,

LHiggs =
1

2
(∂µH)(∂µH)− µ2H2 + LMass + “interaction terms”. (2.26)

The mass terms for the massive gauge bosons are produced from contributions that only
include the vev Φ0,

LMass =(DµΦ0)
†(DµΦ0)

=
1

4

v2

2

(
g22

2∑

a=1

W a
µW

a,µ + (g2W
3
µ + g1Bµ)(g2W

3,µ + g1B
µ)

)
.

(2.27)

In order to obtain a diagonal mass matrix we rotate the fields W 3
µ and Bµ into the Aµ

and Zµ fields and additionally define the electromagnetic charge eigenstates W±
µ by,

(
Aµ

Zµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
Bµ

W 3
µ

)
, W±

µ =
1√
2
(W 1

µ ± iW 2
µ), (2.28)

where the weak mixing angle θW is fixed according to

cos θW =
g2√
g22 + g21

. (2.29)

10



Chapter 2. The Standard Model and its renormalization

Using I± = I1W ± iI2W , we are now able to show that the Lagrangian including the mass
terms for the gauge bosons from above does not include a mass term for the photon. We
start by rewriting the covariant derivative in terms of the rotated fields,

Dµ = ∂µ − i
g2√
2

∑

±
W±

µ I
± − i

1√
g21 + g22

Zµ

(
g22I

3
W − g21

YW
2

)
− i

g1g2√
g21 + g22

QAµ, (2.30)

where we have identified the electric charge Q by

Q = I3W +
YW
2
. (2.31)

Note that the last equation motivates the Gell-Mann–Nishijima relation that we already
introduced in (2.13). We now observe that the combination of gauge group generators,
which we identified with the electric charge Q and are multiplied with the field Aµ in the
covariant derivative, vanishes when applied to the vev chosen before,

QΦ0 =

(
I3W +

YW
2

)
Φ0 =

(
1 0

0 0

)(
0
v√
2

)
= 0. (2.32)

Therefore, we conclude that there is no term in (DµΦ0)
†(DµΦ0), that corresponds to

a mass term for the photonic field Aµ and the photon indeed remains massless. As
mentioned above, the fields W±

µ (x) turn out to be eigenstates of the charge operator Q
with eigenvalues ±1. The masses of the gauge bosons are identified in (DµΦ0)

†(DµΦ0) as,

MW = g2
v

2
, MZ =

v

2

√
g21 + g22, MA = 0. (2.33)

Identifying the electric unit charge with the coupling of the photonic field Aµ to charged
fermions, one obtains

e =
g1g2√
g21 + g22

. (2.34)

After choosing the specific ground state Φ0, expanding around this ground state Φ(x) =
Φ0 + φ(x), and rewriting LHiggs in terms of φ(x), the result is invariant under the simul-
taneous gauge transformation

φ(x) → exp
(

ieQθ(x)
)
φ(x)

Aµ(x) →Aµ + ∂µθ(x),

(2.35)

since there is no mass term for the field Aµ. This means that the original SU(2)W ×U(1)Y
symmetry has been broken down to the U(1)EM symmetry.

Fermion masses

The experimentally observed parity violation is implemented in the SM by assigning
different representations of SU(2)W to the left- and right-chiral parts of fermionic fields.

11
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The introduction of a naive mass term would mix left- and right-handed components of
fermionic fields and therefore violate gauge invariance of the Lagrangian. Also in the
fermionic sector the SU(2)W Higgs doublet is the key ingredient in the generation of mass
terms. However, in contrast to the bosonic sector, where the interplay of the non-vanishing
vev of the Higgs doublet with the covariant derivative leads to mass terms for the massive
vector bosons, in the fermionic sector mass terms are generated via the introduction of
Yukawa couplings of the left-handed isospin doublets, the right-handed fermions, and the
Higgs doublet,

LYukawa = −
∑

i,j

(
Gl

ijΨ̄
L
L′
i
Φ l′Rj +Gu

ijΨ̄
L
Q′

i
Φc u′Rj +Gd

ijΨ̄
L
Q′

i
Φ d′Rj + h.c.

)
, (2.36)

where we used the charge conjugate of the Higgs doublet

Φc =

(
(ϕ0)∗

−ϕ−

)
(2.37)

and the Yukawa couplings Gf , f = l, u, d, are complex 3× 3 matrices in generation space.
The mass terms for fermions are obtained by splitting the Higgs doublet into its vev and
the fields fluctuating around the vev (2.24), Φ(x) = Φ0 + φ(x). The terms in (2.36)
including the vev then produce the fermionic mass terms,

LMass,f = −Mf f̄Lf
′
R + h.c. =

1√
2
vf̄ ′LG

ff ′R + h.c., with f ′ = l′, u′, d′. (2.38)

In order to obtain diagonal mass matrices one can use biunitary transformations,

diag(mfi) =
v√
2
UL
f G

fUR†
f . (2.39)

The “physical fermion fields” correspond to mass eigenstates and are obtained by applying
the unitary matrices UL/R

f to the primed fields that correspond to eigenstates of the gauge
interactions

ΨL
fi
=

3∑

k=1

UL
f,ikΨ

L
f ′
k
, fR

i =
3∑

k=1

UR
f,ikf

′R
k . (2.40)

Since neutrinos are assumed to be massless in the SM, we can choose the same unitary
transformation for the neutrinos as for the leptons, UL

ν = UL
l , so that UL

l drops out off the
Lagrangian. In the quark sector the transformation matrices UR/L

u/d drop out in interaction
terms in the Lagrangian that are flavour diagonal. However, in the W±

µ coupling terms,
g2√
2
(ūLW+dL + d̄LW−uL), (2.41)

and also in ϕ+ūd and ϕ−d̄u interaction terms present in (2.36) the transformation matrices
do not cancel and instead introduce the Cabibbo–Kobayashi–Maskawa (CKM) matrix,

VCMK = UL
u U

L†
d . (2.42)

The CKM matrix can be parametrized by four parameters, one complex phase and three
angles. The complex phase used to parametrize the CKM matrix is the only source of CP
violation in the SM.
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Quantization

When using functional integrals to quantize gauge theories one is obliged to introduce a
gauge-fixing prescription to handle divergent contributions to the path integral, originat-
ing from physically equivalent field configurations, which are related by gauge transfor-
mations. The Fadeev–Popov procedure [64] can be used to split off the infinite gauge-
invariant volume of the local gauge group from the functional integral. After normalization
of the path integral this infinite factor drops out.

Using the Fadeev–Popov procedure, the gauge-symmetry-breaking contribution is intro-
duced as an additional term in the Lagrangian, Lfix, which is added to the SM Lagrangian
and allows for the extraction of the infinite gauge-invariant volume of the local gauge
group. The introduction of the additional term, Lfix, is compensated by the Faddeev–
Popov Lagrangian, LFP, which ensures that each representative field configuration of a
“gauge orbit” is taken into account with the correct weight. In total, this leads to an
effective SM Lagrangian of the form

LSM,eff = LSM + Lfix + LFP. (2.43)

The gauge-fixing Lagrangian is given in terms of gauge-fixing functionals,

Lfix = − 1

2ξA
(fA)2 − 1

2ξZ
(fZ)2 − 1

2ξG
(fG,a)2 − 1

ξW
f+f−, (2.44)

which are, in case of the SM, typically chosen as,

fZ = ∂µZµ − iξ′ZMZχ
±, fA = ∂µAµ, (2.45)

f± = ∂µW±
µ ∓ iξ′WMWϕ

±, fG,a = ∂µGa
µ.

By using the ’t Hooft-Feynman gauge, ξ(′ )V = 1 (V = A,Z,W,G), the masses of the
unphysical would-be Nambu–Goldstone bosons reduce to the masses of corresponding
physical bosons, Mϕ± → MW and Mχ → MZ . Moreover, the mixing terms of would-be
Goldstone fields and gauge bosons in the electroweak Lagrangian can be canceled against
terms in the gauge-fixing Lagrangian using the ’t Hooft-Feynman gauge and the gauge-
boson propagators reduce to the form

∆V
µν(p) =

−i gµν
p2 −M2

V + i0
. (2.46)

The Faddeev-Popov Lagrangian LFP is given in terms of so-called ghosts ua and ūa, which
are Grassmann-valued scalar fields and correspond to unphysical states. Explicitly the
Faddeev-Popov Lagrangian reads

LFP = −ūaMabub, (a, b = ±, Z, A). (2.47)

The operator Mab is given by the variation of the gauge-fixing functionals (2.45) with
respect to infinitesimal gauge parameters δθa,

Mab(x)δ(x− y) =
δfa(x)

δθb(y)
. (2.48)
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2.2 Renormalization

A Lagrangian of a given model depends on a certain number of independent input pa-
rameters which have to be determined by experiment. These parameters are usually cho-
sen such that they have a physical meaning directly related to experimental measurable
quantities or because chosing them is theoretically motivated. Precision measurements of
strong and electroweak processes, however, require the calculation of higher-order correc-
tions to tree-level approximations within the SM. Including these corrections in theoretical
predictions changes the relation between parameters of the SM Lagrangian at tree level,
called the “bare” parameters (denoted by a subscript “0”), and observables and therefore
spoils the direct relation between these parameters and physical quantities.
Additionally, higher-order corrections contain loop diagrams that introduce so-called ul-
traviolet (UV) divergent contributions to theoretical predictions, which are a result of re-
gions included in the corresponding loop integrals, where the loop momenta tend towards
infinity. It was shown by ’t Hooft [65] that gauge theories are renormalizable, i.e. that
both for unbroken and spontaneously broken gauge theories it is possible to eliminate
all UV divergences in observable quantities (cross sections or decay widths) in all orders
of perturbation theory by absorbing them into a finite set of renormalization constants,
which are introduced by reparametrizing the bare parameters {g1,0, . . . , gn,0} in terms of
UV-divergent renormalization constants {Zg1 , . . . , Zgn} and finite renormalized parame-
ters {g1, . . . , gn}. We use a multiplicative renormalization, i.e. we reparametrize all bare
parameters, gi,0, in the SM Lagrangian by gi,0 = Zgigi and expand the renormalization
constant, Zgi = 1 + δZgi + O(g2i ), using perturbation theory. Applying this renormal-
ization transformation to the bare parameters of the SM Lagrangian, one can split the
bare Lagrangian, LSM,0, into a part containing only renormalized input parameters, LSM ,
and a counterterm part that contains renormalized input parameters and renormalization
constants, δLSM . In total we have,

LSM,0(g1,0, . . . ) = LSM(g1, . . . ) + δLSM(g1, . . . ), (2.49)

where δLSM is the so-called counterterm Lagrangian containing all renormalization con-
stants δZgi and LSM is obtained by the replacement gi,0 → gi in LSM,0. As input param-
eters of the Lagrangian we choose the electromagnetic and strong couplings, the masses
of the fermions and gauge bosons, and the CKM matrix V0:

e0, gs,0,mf,i,0,MW,0,MZ,0,MH,0,V0. (2.50)

For these input parameters we introduce the following renormalization transformations,

e0 = (1 + δZe)e, M2
H,0 = M2

H + δM2
H ,

M2
W,0 = M2

W + δM2
W , mf,i,0 = mf,i + δmf,i,

M2
Z,0 = M2

Z + δM2
Z , Vij,0 = Vij + δVij.

(2.51)

Renormalizing the parameters of the SM Lagrangian is sufficient to obtain UV-finite S-
matrix elements, but in order to get finite Green’s functions as well, one has to renormalize
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the fields in the same way as described above for the parameters. The field renormalization
transformations read

W±
0 =

√
ZWW

± = (1 +
1

2
δZW )W±,

(
Z0

A0

)
=


 Z

1/2
ZZ Z

1/2
ZA

Z
1/2
AZ Z

1/2
AA



(
Z

A

)
=


 1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA




 Z

A


 ,

H0 =
√
ZHH = (1 +

1

2
δZH)H,

f τ
i,0 =

√
Zf,τ

ij f
τ
j = (δij +

1

2
δZf,τ

ij )f τ
j , τ = R,L.

(2.52)

By demanding that the UV divergences have to cancel in Green’s functions, only the UV
divergent parts of the renormalization constants are fixed, whereas the finite parts of the
renormalization constants have to be fixed by additional constraints, known as “renor-
malization conditions”. Choosing a set of renormalization conditions defines a “renor-
malization scheme”. By using the so-called “on-shell renormalization scheme” [66–69] we
can restore the physical meaning of the renormalized parameters after including higher-
order corrections and relate these parameters to quantities that are directly measurable
in experiments. Before absorbing the UV-divergent contributions into the renormaliza-
tion constants and fixing the finite parts of the renormalization constants by choosing a
renormalization scheme, one needs a regularization procedure which maps the divergences
to finite expressions and reproduces the divergences in some limit. Throughout this work
we use dimensional regularization [70,71] (see App. C for a short recapitulation).

2.2.1 On-shell renormalization scheme

The renormalization conditions in the on-shell scheme are chosen such that the renor-
malized parameters are directly related to physical parameters and external fields are on
their mass shell. As a consequence the renormalized electric charge is equal to the clas-
sical electromagnetic charge occurring in the on-shell γe+e− vertex for vanishing photon
momentum. In addition to the renormalizeation transformations in (2.51) and (2.52), an-
other finite renormalization transformation is introduced to fix the vacuum expectation
value (vev) at the true value by using an additional renormalization constant δt.

By fixing the zeroes of renormalized one-particle two-point vertex functions, Γ̂ab, to be
equal to the physical masses,

ReΓ̂ff (p)uf (p)

∣∣∣∣
p2=m2

f

= 0, (2.53)

ReΓ̂V Ṽ
µν (p)εν(p)

∣∣∣∣
p2=M2

V

= 0, V, Ṽ ∈ {A,W,Z}, (2.54)

one ensures that the propagators as the inverse of two-point vertex functions have their
pole at the location of the physical masses of particles. The spinor u(p) and polarization

15



Chapter 2. The Standard Model and its renormalization

vector εν(p) project onto physical degrees of freedom of on-shell fermions and gauge
bosons, respectively, in the corresponding two-point functions,

Γ̂f
ij(p) =

fj
p

fi (2.55)

= iδij(p/−mi) + i
[
p/ω−Σ̂

f,L
ij (p2) + p/ω+Σ̂

f,R
ij (p2) + (mf,iω− +mf,jω+)Σ̂

f,S
ij (p2)

]
,

Γ̂H(p) = i(p2 −M2
H) + iΣ̂H(p2),

Γ̂WW
µν (p) = −igµν(p2 −M2

W )− i
(
gµν −

pµpν
p2

)
Σ̂WW

T (p2)− i
pµpν
p2

Σ̂WW
L (p2),

Γ̂V Ṽ
µν (p) = −igµν(p2 −M2

V )δV Ṽ − i
(
gµν −

pµpν
p2

)
Σ̂V Ṽ

T (p2)− i
pµpν
p2

Σ̂V Ṽ
L (p2),

where V, Ṽ ∈ {A,Z} and M2
A = 0. Note that we write renormalized quantities with

the superscript ˆ in order to distinguish them from unrenormalized quantities. In the
renormalized fermion two-point functions, Σ̂f,S

ij denotes the scalar and Σ̂f,L
ij , Σ̂f,R

ij the
left- and right-handed vector parts of the fermion self-energies. The longitudinal and
transversal parts of the boson self-energies ΣV Ṽ ′

(V (′ ) = A,Z,W ) are denoted by ΣV Ṽ ′
L

and ΣV Ṽ ′
T , respectively.

To obtain finite Green’s functions we also renormalize wave functions and demand that
on-shell external particles have the canonical normalization as in the free theory and
for this reason force the residues of the renormalized propagators to be 1. This fixes
the finite parts of the wave-function renormalization constants and translates into the
following renormalization conditions,

lim
p2→m2

f

/p+mf

p2 −m2
f

ReΓ̂ff (p)uf (p) = −uf (p), (2.56)

lim
p2→M2

V

1

p2 −M2
V

ReΓ̂V Ṽ
µν (p)εµ(p) = εµ(p), (2.57)

lim
p2→M2

H

1

p2 −M2
H

ReΓ̂H(p) = i. (2.58)

As a consequence of the renormalization conditions for the wave functions no self-energy
diagrams on external legs have to be taken into account when calculating renormalized
amplitudes. Inserting the renormalized two-point functions into the renormalization con-
ditions (2.54) and (2.58), one obtains the following bosonic renormalization constants [72],

δM2
W = R̃eΣW

T (M2
W ), δZW = −Re

∂ΣW
T (k2)

∂k2

∣∣∣∣
k2=M2

W

,
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δM2
Z = ReΣZZ

T (M2
Z), δZZZ = −Re

∂ΣZZ
T (k2)

∂k2

∣∣∣∣
k2=M2

Z

,

δZAZ = −2Re
ΣAZ

T (M2
Z)

M2
Z

, δZZA = 2
ΣAZ

T (0)

M2
Z

, (2.59)

δZAA = −∂Σ
AA
T (k2)

∂k2

∣∣∣∣
k2=0

,

δM2
H = ReΣH(M2

H), δZH = −Re
∂ΣH(k2)

∂k2

∣∣∣∣
k2=M2

H

.

For the fermionic sector the renormalization constants are given by

δmf,i =
mf,i

2
R̃e
(
Σf,L

ii (m2
f,i) + Σf,R

ii (m2
f,i) + 2Σf,S

ii (mf,i
2)
)
,

δZf,L
ij =

2

m2
f,i −m2

f,j

R̃e
[
m2

f,jΣ
f,L
ij (m2

f,j) +mf,imf,jΣ
f,R
ij (m2

f,j)

+(m2
f,i +m2

f,j)Σ
f,S
ij (m2

f,j)
]
, i ̸= j,

δZf,R
ij =

2

m2
f,i −m2

f,j

R̃e
[
m2

f,jΣ
f,R
ij (m2

f,j) +mf,imf,jΣ
f,L
ij (m2

f,j) (2.60)

+2mf,imf,jΣ
f,S
ij (m2

f,j)
]
, i ̸= j,

δZf,L
ii = −R̃eΣf,L

ii (m2
f,i)−m2

f,i

∂

∂p2
R̃e
[
Σf,L

ii (p2) + Σf,R
ii (p2) + 2Σf,S

ii (p2)
]∣∣∣

p2=m2
f,i

,

δZf,R
ii = −R̃eΣf,R

ii (m2
f,i)−m2

f,i

∂

∂p2
R̃e
[
Σf,L

ii (p2) + Σf,R
ii (p2) + 2Σf,S

ii (p2)
]∣∣∣

p2=m2
f,i

.

Note that longitudinal parts of bosonic self-energies do not occur in renormalization con-
stants as the polarization vector εν(p) projects on the transversal degrees of freedom. The
operator R̃e is only applied to quantities that depend on the quark mixing matrix at one
loop. It returns the real part of its argument but does not act on quark mixing matrix
elements appearing in the expression where R̃e is applied to.
The renormalization transformations of the sine and cosine of the weak mixing angle are
given by,

cW,0 = cW + δcW , sW,0 = sW + δsW . (2.61)

As the weak mixing angle is derived from the masses of the massive vector bosons,

c2W = 1− s2W =
M2

W

M2
Z

, (2.62)
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its renormalization constants are related to the W and Z boson self-energies,

δcW
cW

= −s
2
W

c2W

δsW
sW

=
1

2
Re
(
ΣWW

T (M2
W )

M2
W

− ΣZZ
T (M2

Z)

M2
Z

)
. (2.63)

The CKM matrix appears in the quark–W -boson couplings at leading order as a con-
sequence of the transformation of bare weak interaction eigenstates, f ′0, into bare mass
eigenstates, f0 = UL

f,0f
′
0, via the unitary matrices UL

f,0, f = u, d. Due to the renormaliza-
tion transformation at next-to-leading order in the on-shell scheme,

fL
i,0 = (1 +

1

2
δZf,L

ij )fL
j , (2.64)

the higher-order mass eigenstates, fL, are rotated by the anti-Hermitian part δZf,AH =
1
2
(δZf,L − δZf,L†) of δZf,L,

fL = (Zf,L)−
1
2UL

f,0(Z
f,L)

1
2f ′ = UL

f,0

(
1 +

1

2
Zf,L − 1

2
Zf,L†

)
f ′. (2.65)

To obtain mass eigenstates also after the renormalization transformation at next-to-
leading order, this rotation has to be compensated by the introduction of a renormal-
ization constant for the CKM matrix,

δVij =
1

2

(
δZu,AH†

ik V0,kj + V0,ikδZ
d,AH
kj

)
. (2.66)

The renormalization condition for the electric charge e is defined so that the coupling in
a scattering process of a photon on a physical electron with zero momentum transfer of
the photon is given by the classical electric charge, i.e. the renormalized photon-electron
vertex,

Γ̂ffγ
µ (k, p,−p′) =

Aµ

k

f+, p′

f−, p

, (2.67)

gets no higher-order corrections,

ū(p)Γ̂ffγ
µ (k = 0, p,−p)u(p)

∣∣∣
p2=m2

f

= ieū(p)γµu(p). (2.68)

Note that in Γ̂ffγ
µ no external-leg corrections have to be considered due to the choice of

the field renormalization conditions. Applying this renormalization condition leads to [72]

δZe =
1

2

∂ΣAA
T (k2)

∂k2

∣∣∣∣
k2=0

− sW
cW

ΣAZ
T (0)

M2
Z

. (2.69)
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The vev of the Higgs field, v = 2µ√
λ
, leads to a vanishing Higgs tadpole t at leading order

t = v

(
µ2 − λ

4
v2
)

= 0, (2.70)

which is determined from the term in the SM Lagrangian LSM that is linear in the Higgs
field,

Ltadpole = t ·H. (2.71)

If v is the “correct” vacuum, i.e. it fulfills (2.22), t as a function of v has to vanish and
(2.70) can be seen as a definition of the “true” value of the vev v. At next-to-leading order
the Higgs tadpole t gets non-vanishing loop corrections from vector bosons, fermions, and
scalars in the loop. The scalar isospin doublet Φ introduced in (2.19) is renormalized
via Φ0 =

√
ZΦΦ, with ZΦ = ZH . Using (2.24) we see that the vev and the Higgs field

H acquire the same renormalization constant δZΦ = δZH which means that determining
the renormalization constant of the Higgs field renders the vev finite. In order to restore
the renormalized vev as the actual minimum of the effective Higgs potential we introduce
an additional renormalization transformation t = t0 + δt and use the renormalization
condition t !

= 0 leading to

i δt = −i t0 = (−1) · H . (2.72)

In this way we cancel all higher-order contributions to the tadpole, and the finite vev of
the renormalized theory is indeed the actual minimum of the effective Higgs potential.

2.2.2 MS scheme and running of αs

The application of the on-shell scheme for calculations in QCD is not reasonable as quarks
and gluons are confined within hadronic bound states, meaning that the parameters of
the QCD Lagrangian are not directly related to measurable quantities. This motivates
the application of the so-called modified minimal subtraction (MS) scheme in QCD cal-
culations. In this scheme, at the one-loop level one subtracts the 1/ε pole together with a
universal constant, 1

ε
−γE+ln(4π), into the renormalization constants. In the MS scheme

renormalized loop amplitudes depend on the renormalization scale µ (see (C.2) in App. C
for more details on dimensional regularization), since the renormalization constants have
no dependence on µ, and therefore the counterterm diagrams do not cancel the renor-
malization scale in loop amplitudes. In the calculation of a physical quantity this scale
dependence should drop out, which leads to the introduction of a running coupling con-
stant. The dependence of the running coupling on the renormalization scale is dictated by
the fact that the explicit dependence of physical quantities on the renormalization scale
has to cancel. Following Ref. [73], we will now discuss how this running is implemented
in the case of the strong coupling constant αS.
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We consider a dimensionless physical observable R that depends exactly on one energy
scale Q. Assuming the scale Q to be bigger than any other dimensionful parameters
entering the process implies that all involved quark masses can be set to zero. As a
dimensionless quantity, R can only depend on Q2/µ2, where µ is introduced in the process
of the renormalization of R which is necessary due to potential UV divergences present in
higher-order corrections to physical observables. This second mass scale µ is associated
to the point at which the strong coupling is measured. Moreover, as discussed above,
we introduce an implicit dependence of R on µ by the running of the coupling αS(µ

2).
The independence of the physical observable R on the arbitrary renormalization scale is
expressed in the following equation,

µ2 d

dµ2
R(Q2/µ2, αS) =

[
µ2 ∂

∂µ2
+ µ2∂αS

∂µ2

∂

∂αS

]
R = 0. (2.73)

Introducing the so-called β-function,

β(αS) = µ2∂αS

∂µ2
, (2.74)

which describes the rate of variation of the renormalized coupling at a fixed scale µ, i.e.
the running of the coupling, we can can rewrite (2.73) as,

[
− ∂

∂t
+ β(αS)

∂

∂αS

]
R(et, αS) = 0, t = ln

(
Q2

µ2

)
. (2.75)

One solution to the last equation is given by R(1, αS(Q
2)) which implies that the energy

dependence of R is fully determined by the running coupling αS(Q
2). The perturbative

expansion of the QCD β-function has the following form,

β(αS) = −bα2
S(1 + b′αS + b′′α2

S +O(α3
S)). (2.76)

The coefficients in the expansion depend on the number of active quark flavours, nf , and
are given by [74],

b =
33− 2nf

12π
,

b′ =
153− 19nf

2π(33− 2nf )
,

b′′ =
77139− 15099nf + 325n2

f

288π2(33− 2nf )
.

(2.77)

At next-to-leading-order the differential equation (2.76) reads

µ2∂αS

∂µ2
= −bα2

S. (2.78)

The solution of this equation,

1

αS(Q2)
− 1

αS(µ2)
= b ln

(
Q2

µ2

)
⇒ αS(Q

2) =
αS(µ

2)

1 + αS(µ2)b ln(Q2/µ2)
, (2.79)

20



Chapter 2. The Standard Model and its renormalization

describes the running of αS at this order in perturbation theory. Asymptotic freedom,
i.e. the fact the strong coupling constant becomes smaller at large energies or small dis-
tances, is a consequence of the fact that for nf ≤ 16, the coefficient b is larger than zero.
This implies that for larger energy scales Q2 the coupling becomes smaller allowing for
the treatment of QCD in a perturbative way at large energies.

2.3 Electroweak input-parameter scheme

In the previous section the electromagnetic coupling was defined in the Thomson limit,
meaning that all corrections to the photon-electron vertex vanish on-shell and for van-
ishing photon momentum transfer. In this scheme, called the “α(0)-scheme”, theoretical
predictions for electroweak radiative corrections to high-energy cross sections and de-
cay widths (without photons) include logarithms ∼ log(m2

f/s) of light fermion masses,
mf . These logarithms originate from loop corrections to the photon vacuum polarization,
ΠAA(0), and lead to large radiative corrections at the relevant energy scales of high-energy
experiments. By the introduction of a running electromagnetic coupling constant,

α(0) → α(s) =
α(0)

1 + ∆α(s)
, (2.80)

the large logarithms, contained in ∆α(s), can be absorbed into leading-order predictions.
In the “α(MZ)-scheme”, the scale of the running coupling α(s) is chosen to be at the mass
of the Z boson, s =M2

Z ,

α(0) → α(0)

1 + ∆α(M2
Z)
, (2.81)

with the UV-finite quantity,

∆α(MZ) = Πf ̸=t
AA (0)− ReΠf ̸=t

AA (M2
Z). (2.82)

Additionally, one has to modify the charge renormalization constant,

δZα(MZ)
e = δZα(0)

e − 1

2
∆α(MZ), (2.83)

since otherwise, corrections related to ∆α(M2
Z) would be counted twice in electroweak

1-loop corrections.
In the so-called “Gµ-scheme”, the electromagnetic coupling constant is derived from the
Fermi constant Gµ. In this scheme, the leading-order relation between the Fermi constant
and the electromagnetic coupling constant,

Gµ =
πα(0)√
2s2wM

2
W

, (2.84)

is used as a definition of the electromagnetic coupling. The Fermi constant is obtained
from the measurement of the muon lifetime [75] by using the following relation,

1

τµ
=
G2

µm
2
µ

192π3

(
1− 8m2

e

m2
µ

)[
1 +

3

5

m2
µ

m2
W

+
α

2π

(
25

4
− π2

)]
, (2.85)
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where the photonic corrections to the muon lifetime within the Fermi theory are given by
the terms proportional to α. Including higher-order corrections to the muon decay, the
LO relation between Gµ and α(0) in (2.84) is modified to [72,75]

Gµ =
πα(0)√
2s2wM

2
W

(1 + ∆r), (2.86)

where ∆r summarizes higher-order corrections to the muon decay obtained in the Fermi
model except for the photonic corrections which are already contained in the definition
of Gµ in Eq. (2.85). The UV-finite quantity ∆r is given by,

∆r =ΠAA(0)− c2W
s2W

(
ΣZZ

T (M2
Z)

M2
Z

− ΣW
T (M2

W )

M2
W

)
+

ΣW
T (0)− ΣW

T (M2
W )

M2
W

+ 2
cW
sW

ΣAZ
T (0)

M2
Z

+
α

4πs2W

(
6 +

7− 4s2W
2s2W

log c2W

)
,

(2.87)

and leads to a corresponding electromagnetic coupling in the “Gµ-scheme” given by

α(0) −→ αGµ =

√
2GµM

2
W s

2
w

π
= α(0)(1 + ∆r). (2.88)

As in the “α(MZ)-scheme”, the charge renormalization constant has to be modified in the
following way,

δZα(0)
e −→ δZGµ

e = δZα(0)
e − 1

2
∆r. (2.89)

The logarithms of the small fermion masses contained in the charge renormalization con-
stant, δZα(0)

e , are therefore cancelled in δZ
Gµ
e by ΠAA(0) in ∆r. In this way, the large

logarithms are removed from the radiative corrections and absorbed into the coupling
constant, αGµ .

2.4 Treatment of unstable particles in QFT

The lifetime of unstable elementary particles within the SM such as the Higgs or the
W/Z boson are typically to short to be measured directly in detectors and only leave
their imprint as resonances in the measurement of their decay products. The lifetime, τV,
of an unstable particle V can then be obtained by the extraction of the total decay width,
ΓV = 1/τV, from the Breit–Wigner-like resonance in invariant-mass or transverse-mass
spectra of the decay products. As instability effects in the propagation of particles arise in
quantum field theory only as higher-order effects, we need to resum one-particle irreducible
self-energy contributions into the propagators in order to obtain a theoretical description
of the Breit–Wigner-like resonances. This resummation of higher-order effects leads to a
mixing of perturbative orders between corrections of self-energy type, which are resummed
to all orders, and corrections that are not of self-energy type which are due to their
complexity in practice calculated only to a finite order in perturbation theory. However,
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as gauge independence and unitarity hold order-by-order in perturbation theory, this
mixing leads to potentially gauge dependent results of S-matrix elements. In this work,
we will use two different approaches in order to solve these conceptual problems. The
first approach, the so-called complex-mass scheme, is discussed in the next section. The
pole approximation, introduced in Section 6, is another possibility to introduce instability
effects in a gauge-invariant way and leads to simplifications of theoretical calculations by
reducing the number of allowed Feynman diagrams. This is achieved by insisting that the
unstable particle under consideration is produced nearly on-shell, which also guarantees
gauge independence. However, this restriction induced by the pole approximation limits
the predictivity of calculations using the pole approximation to the resonance region of
the unstable particle.

2.4.1 Preliminaries

Before the discussion of methods that circumvent conceptual issues arising from the re-
summation of higher-order effects combined with a truncation of the perturbative series,
we first introduce the idea of a Dyson summation to introduce instability effects in propa-
gators, which also addresses the issue of properly defining the mass and width of unstable
particles. This will eventually also allow us to understand the relation between definitions
of mass and width in different schemes. For simplicity in the following we consider only
the case of the Higgs boson, but the discussion can also be applied to the EW gauge
bosons of the Standard Model. For a more complete discussion of unstable particles and
their theoretical implementation in perturbative calculations we refer to [60].

Dyson resummation of one-particle irreducible self-energy corrections to the Higgs prop-
agator GH(p2) leads to,

GH(p2) = −[ΓH(p,−p)]−1 = i
p2 −M2

H,0

+
i

p2 −M2
H,0

iΣH(p2)
i

p2 −M2
H,0

+ · · ·

=
i

p2 −M2
H,0

∞∑

n=0

(
− ΣH(p2)

p2 −M2
H,0

)n

=
i

p2 −M2
H,0 + ΣH(p2)

, (2.90)

where ΣH is the unrenormalized self-energy of the Higgs boson. In order to eliminate the
bare mass MH,0 of the Higgs boson from the propagator we can use the renormalization
transformation of Higgs mass (2.51),

M2
H,0 = M2

H + δM2
H. (2.91)

The renormalization condition (2.54) in the OS scheme, leads to the renormalization
constant given in (2.59)

δM2
H,OS = ReΣH(M2

H,OS), (2.92)

which implies that in the OS scheme the bare mass and the renormalized mass of the
Higgs boson are related by

M2
H,OS −M2

H,0 + Re{ΣH(M2
H,OS)} = 0. (2.93)
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We can use the last equation to eliminate the bare mass in the the Dyson summed prop-
agator in (2.90) and obtain,

GH(p2) =
i

p2 −M2
H,0 + ΣH(p2)

=
i

p2 − M2
H,OS − Re{ΣH(M2

H,OS)}+ ΣH(p2)

˜p2→M2
H,OS

1

(p2 −M2
H,OS)[1 + Re{ΣH ′(M2

H,OS)}] + iIm{ΣH(M2
H,OS)}+ . . .

. (2.94)

In the resonance region, p2 ≈M2
H,OS, this is equivalent to

GH(p2) =
iROS

p2 −M2
H,OS + iMH,OSΓH,OS

, (2.95)

where we have used the definition,

ROS =
1

1 + Re{ΣH ′(M2
H,OS)}

, ΓH,OS =
ROS Im{ΣH(M2

H,OS)}
MH,OS

. (2.96)

The square of this propagator generates the Breit–Wigner shape of the resonance of the
Higgs boson in the invariant-mass spectrum of its decay products. Therefore, we now have
identified the quantities that define the location and the width of the Breit–Wigner-shaped
resonance as the mass, M2

H,OS, and the width, ΓH,OS, respectively.

If we choose to renormalize also the wave-functions in the OS scheme, we additionally get
the wave-function renormalization constant in the denominator of the propagator (2.94),

GH(p2) =
i

p2 −M2
H,OS − Re{ΣH(M2

H,OS)}+ (p2 −M2
H,OS) δZH,OS + ΣH(p2)

=
i

p2 −M2
H,OS + Σ̂H(p2)

, (2.97)

which then leads to the following behaviour in the vicinity of the resonance,

GH(p2) ˜p2→M2
H,OS

i

(p2 −M2
H,OS)[1 + Re{ΣH ′(M2

H,OS)}+ δZH,OS︸ ︷︷ ︸
=0

] + iIm{ΣH(M2
H,OS)}+ . . .

.

(2.98)

Using (2.59), we see that the residue of the propagator, iROS, simply reduces to the
complex unit, iROS = i, which is a consequence of the renormalization condition (2.58),
off course.

In the next section we will discuss the so-called complex-mass scheme where one deter-
mines the renormalization constant of the mass of the Higgs boson from the full self-energy
instead of just using its real part as in the OS scheme. Instead of (2.93) this leads to an
equation,

µ2
H −M2

H,0 + ΣH(µ2
H) = 0, (2.99)
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which determines the so-called pole mass MH,0 and pole width ΓH,pole, respectively defined
as the real and imaginary part of the complex pole µ2

H of the Dyson summed propagator,

µ2
H =M2

H,pole − iMH,poleΓH,pole. (2.100)

In the pole scheme, the behaviour of the Dyson summed propagator in the resonance
region is then given by

GH(p2) =
1

p2 − µ2
H + ΣH(p2)− ΣH(µ2

H)
p̃2→µ2

H

1

(p2 − µ2
H)[1 + ΣH ′(µ2

H)] + . . .
. (2.101)

When including wave function renormalization, the behaviour of the propagator in the
pole scheme is given by

GH(p2)
p̃2→µ2

H

1

(p2 − µ2
H) + . . .

, (2.102)

in the resonance region.

In the analysis of LEP data measured in the vicinity of the Z- or W -boson resonances
a running-width scheme has been used [60]. In particular, the OS masses of the W and
Z boson were measured in this scheme, where for p2 ∼ M2

V the imaginary part of the
renormalized Dyson-summed self-energy in (2.97) is approximated by

Im{Σ̂V(p2)} = γV p
2θ(p2), γV =

ΓV,OS

MV,OS

, V = W,Z. (2.103)

However, as the pole-scheme leads to a gauge-invariant definition of the pole mass and
width [76–78], we are going to use this scheme within this thesis instead of the running
width scheme. To do this, we need to understand the conversion from the OS masses to
pole masses. By rewriting the denominator of the propagator using the running width
and comparing the result to the denominator in (2.102),

p2 −M2
V,OS + iγVp

2 = p2 + iγVp
2 −M2

V,OS

1− iγV
1− iγV

= (1 + iγV) p
2 − M2

V,OS − iMV,OSΓV,OS

1− iγV

= (1 + iγV)

(
p2 − M2

V,OS

1 + γ2V
− i

MV,OS√
1 + γ2V

ΓV,OS√
1 + γ2V

)

!
= (1 + iγV) (p

2 − µ2
V), (2.104)

we can identify the real and imaginary part of the complex pole of the propagator, µV,
as the mass and width in the pole scheme in terms of the OS quantities [60],

MV =
MV,OS√

1 + Γ2
V,OS/M

2
V,OS

, ΓV =
ΓV,OS√

1 + Γ2
V,OS/M

2
V,OS

. (2.105)
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2.4.2 Complex-mass scheme

In the complex-mass scheme [59, 60, 79, 80] one identifies the mass square of an unstable
particle b with the location of the complex pole,

µ2
b =M2

b − iMbΓb, b = W,Z,H (2.106)

of its resummed propagator in (2.101). In order to preserve gauge invariance, the complex
mass square has to be used not only in the propagator, but also in derived quantities,
such as couplings involving the weak mixing angle θW contained in

c2w = 1− s2w =
µ2
W

µ2
Z

, (2.107)

where we used the abbreviations cw = cos θW and sw = sin θW. The complex-mass scheme
can be seen as an analytic continuation of the masses of the unstable particles in the
Standard Model into the complex plane. Therefore, as the gauge-boson masses are only
modified by an analytic continuation, relations that do not involve complex conjugation
are not affected by the consistent use of complex masses, which leads to the validity of
e.g.Ward and Slavnov–Taylor identities in the complex mass scheme.

In the following, we limit the discussion of the complex-mass scheme to the massive spin-
1 gauge bosons of the Standard Model, even though the complex-mass scheme is also
applicable to obtain a gauge-invariant description of width effects of the Higgs boson or
massive fermions [60].

At NLO, the complex-mass scheme can be obtained by replacing the bare squared mass
of an unstable particle by a complex squared mass and the corresponding renormalization
constant,

M2
V,0 = µ2

V + δµ2
V , V = W,Z. (2.108)

As the bare mass is real the mass renormalization constant also has to be a complex
quantity,

Im{µ2
V } = −Im{δµ2

V }. (2.109)

In principle the imaginary part of the complex squared mass of an unstable particle is
not an independent parameter of the theory, as it follows from the imaginary part of the
corresponding self-energy via the optical theorem,

MV ΓV = Im{ΣV (M
2
V − iMV ΓV )}. (2.110)

However, the imaginary part of the complex squared mass is obtained by adding and
subtracting the imaginary part (2.109) from the Standard Model Lagrangian, where the
added part becomes part of the mass, M2

V,0 → µ2
V , shifting it from the real axis into

the complex plane and the subtracted imaginary part becomes the imaginary part of the
corresponding mass-renormalization constant. Therefore, effectively we do not change the
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Lagrangian and gauge invariance relations remain unchanged independent of the imagi-
nary part that is added and subtracted. As a consequence it is therefore legit to use, e.g.,
also empirical values for the decay width appearing in the imaginary part.

Since the renormalization constants acquire an imaginary part in the complex-mass scheme,
the renormalized self-energies of the electroweak gauge bosons are generalized to take the
following form,

Σ̂W
T (k2) = ΣW

T (k2)− δµ2
W + (k2 − µ2

W)δZW,

Σ̂ZZ
T (k2) = ΣZZ

T (k2)− δµ2
Z + (k2 − µ2

Z)δZZZ,

Σ̂AA
T (k2) = ΣAA

T (k2) + k2δZAA, (2.111)

Σ̂AZ
T (k2) = ΣAZ

T (k2) + k2
1

2
δZAZ + (k2 − µ2

Z)
1

2
δZZA,

where the requirement that the complex masses of unstable particles are identified with
the location of the complex pole of the corresponding resummed propagators—of similar
form as (2.101)—leads to generalized renormalization conditions compared to the on-shell
scheme,

Σ̂W
T (µ2

W) = 0, Σ̂ZZ
T (µ2

Z) = 0, (2.112)

Σ̂AZ
T (0) = 0, Σ̂AZ

T (µ2
Z) = 0,

Σ̂′WT (µ2
W) = 0, Σ̂′ZZT (µ2

Z) = 0, Σ̂′AA
T (0) = 0.

These renormalization conditions lead to renormalization constants that depend on self-
energies evaluated at complex squared masses,

δµ2
W = ΣW

T (µ2
W), δµ2

Z = ΣZZ
T (µ2

Z), (2.113)
δZW = −Σ′WT (µ2

W),

δZZA =
2

µ2
Z

ΣAZ
T (0), δZAZ = − 2

µ2
Z

ΣAZ
T (µ2

Z),

δZZZ = −Σ′ZZ
T (µ2

Z), δZAA = −Σ′AA
T (0). (2.114)

One can show (see Section 6 in [81]) that for sufficiently large squared masses M2
V and

small widths ΓV —as it is the case for unstable particles in the SM—the process of adding
an imaginary part to the real masses, M2

V → µ2
V (i.e. ΓV = 0 → ΓV ̸= 0), leads to a

crossing of the branch cut of two-point functions that appear in the calculation of the
self-energies. Therefore, in general, the two-point functions have to be evaluated on the
second Riemann sheet [81]. However, as the widths of the unstable particles present in the
SM are small compared to their masses, one can circumvent this problem by expanding
the self-energies about the real squared masses [60],

Σ(µ2
V ) = Σ(M2

V ) + (µ2
V −M2

V )Σ
′(M2

V ) + O
(
(µ2

V −M2
V )

2
)

= Σ(M2
V )− iMV ΓVΣ

′(M2
V ) + O

(
(MV ΓV )

2
)
. (2.115)

The complex renormalization constants are modified by the expansion according to,

δµ2
V = Σ(M2

V ) + (µ2
V −M2

V )Σ
′(M2

V ) +O(α3), δZV = −Σ′(M2
V ) +O(α2), (2.116)
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which leads to the following simplified renormalization constant of the SM weak gauge
bosons in the complex mass scheme,

δµ2
W = ΣW

T (M2
W) + (µ2

W −M2
W)Σ′WT (M2

W) + cWT ,
δµ2

Z = ΣZZ
T (M2

Z) + (µ2
Z −M2

Z)Σ
′ZZ
T (M2

Z), (2.117)

δZW = −Σ′WT (M2
W), δZZA =

2

µ2
Z

ΣAZ
T (0),

δZAZ = − 2

M2
Z

ΣAZ
T (M2

Z) +

(
µ2
Z

M2
Z

− 1

)
δZZA,

δZZZ = −Σ′ZZ
T (M2

Z). (2.118)

Note that the wave-function renormalization constants are only expanded up to O(α2),
since they are always multiplied by (k2 − µ2

V ) = O(α), for k2 ≈M2
V , in the renormalized

self-energies (2.111). The additional term in the mass renormalization constant of the W
boson,

cWT =
iα

π
MWΓW =

α

π
(M2

W − µ2
W), (2.119)

is the result of the presence of contributions to the self-energy of the W boson involving
a virtual photon leading to a branch point at k2 = µ2

W .
Since the weak mixing angle is a derived quantity (see (2.107)), also its renormalization
constant is fixed by the renormalization constants of the weak gauge bosons,

δsw
sw

= −c
2
w

s2w

δcw
cw

= − c2w
2s2w

(
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

)
. (2.120)

The charge renormalzation constant is still defined in the Thomson limit and also becomes
complex in the complex-mass scheme,

δZe =
1

2
Σ′AA

T (0)− sw
cw

ΣAZ
T (0)

µ2
Z

. (2.121)

In this work we will apply the complex-mass scheme in the context of calculating O(Nfαsα)
corrections. The extension of the complex-mass scheme to this perturbative order will be
discussed in Section 5.2.3.1.
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Chapter 3
Infrared singularities and factorization
properties of NNLO amplitudes

3.1 Colour ordering, extraction of “abelian gluons”, and
abelianization

In this section we discuss the reduction of general QCD colour factors to products of
SU(3) generators in the fundamental representation, which then allows for the identi-
fication of so-called colour-ordered partial amplitudes. For the specific process γ∗ →
q(p1)q̄(p2)g(p3)g(p4) we specifically construct the colour-ordered partial amplitudes and
use them to calculate the corresponding squared amplitude. This explicit construction
enables us to extract the relevant parts of the squared matrix element of the full NNLO
double real QCD correction, γ∗ → q(p1)q̄(p2)g(p3)g(p4), to the process γ∗ → q(p1)q̄(p2),
in order to get the NNLO QCD×QED correction, i.e. to extract the “abelian gluon” part
of the full QCD×QCD result. Here and in the following an “abelian gluon” denotes a
gluon that couples only to quarks and does not couple to other gluons, i.e. in the abelian
gluon part no gluonic tripple or quartic gauge couplings are include. This knowledge can
then be used to identify the relevant parts of NNLO QCD×QCD antenna functions when
calculating NNLO QCD×QED corrections.

We start our discussion with a general n-parton QCD (tree-level) amplitude

Mc1,...,cn,s1,...,sn
n (p1, . . . , pn), (3.1)

which is a function of the external momenta p1, . . . , pn, the colour indices c1, . . . , cn,
and spin indices s1, . . . , sn. It is possible to decompose general QCD amplitudes into
a sum of products of two functions, one of these functions describing the colour struc-
ture Cm(c1, . . . , cn) in (3.1), and the other containing information about the kinematics
corresponding to the colour structure,

Mc1,...,cn,s1,...,sn
n (p1, . . . , pn) =

∑

m

Cm(c1, . . . , cn)Ms1,...,sn
n,Cm (p1, . . . , pn). (3.2)

The explicit structure of the appearing functions depends on the multiplicity and the
kind of the involved particles in the scattering process described by the matrix element.

29



Chapter 3. Infrared singularities and factorization properties of NNLO amplitudes

q

q̄

γ∗ 1

2

(a) Ma
12

q

q̄

γ∗ 2

1

(b) Ma
21

q

q̄

γ∗ 1

2

(c) Mna

Figure 3.1: Feynman diagrams relevant for the process γ∗ → qq̄gg. The white blob indicates tree
structures including no tripple gluon couplings, i.e. it includes only what we refer to as “abelian
gluons”.

However, by first rewriting the SU(3) structure functions in terms of generators in the
fundamental representation,

fabc = −2iTr([ta, tb]tc), (3.3)

and subsequently applying the Fiertz identity

taijt
a
kl =

1

2
(δilδjk −

1

N
δijδkl), (3.4)

it is possible to reduce amplitudes Mqi1 q̄i2 (n−2)g—the indices denote the external particles
involved in the scattering process that is described by the matrix element—with an ex-
ternal quark–antiquark pair and (n − 2) external gluons to a factorized form, where the
colour functions Cm(c1, . . . , cn) reduce to a simple product of generators in the fundamen-
tal representation,

Mqi1 q̄i2 (n−2)g =
∑

σ∈Sn−2

(taσ1 · · · taσn−2 )i1i2M
sσ1 ,...,sσn
A,(n−2)g,Cσ(pq, pσ1 , . . . , pσn−2 , pq̄), (3.5)

where the open indices i1, i2 of the colour functions are the fundamental colour indices
carried by the quarks. The sum in (3.5) runs over permutations of n − 2 elements,
i.e. permutations σ that are elements of the symmetric group Sn−2, and the amplitudes
MA,(n−2)g,Cσ multiplied with the colour functions in (3.5) are the so-called colour-ordered
partial amplitudes that correspond to a certain colour function Cσ = taσ1 · · · taσn−2 .

We now proceed to explicitly construct the decomposition (3.5) for the process

γ∗ → q(p1)q̄(p2)g(p3)g(p4), (3.6)

which is the process used for the construction of some of the antenna functions relevant
for this work. The following discussion of colour decomposition applied to the specific
process above is similar to a discussion in [82]. We will see in this example how the
abelian gluon part of the squared matrix element, corresponding to the process above and
accordingly also of the corresponding antenna function, can be extracted. The relevant
Feynman diagrams are shown in Fig. 3.1 and include two contributions with no gluon
self-coupling (abelian part) and one contribution including such a coupling (non-abelian
part),

M0
qiq̄jgg

= Ma
12 +Ma

21 +Mna. (3.7)
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Chapter 3. Infrared singularities and factorization properties of NNLO amplitudes

The last term on the right-hand side of (3.7) describes the non-abelian part, which can
be decomposed into a partial amplitude and the colour structure,

Mna = itaijf
aa1a2Mt·f = [(ta1ta2)ij − (ta2ta1)ij]Mt·f , (3.8)

where in the second equality we have used (3.3) and (3.4). For the abelian contributions
to the amplitude the decomposition into colour structures and kinematics leads to,

Ma
12 = (ta1ta2)ijMt1t2 , (3.9)

Ma
21 = (ta2ta1)ijMt2t1 . (3.10)

Having now reduced all colour structures present in (3.7) to a sum of products of SU(3)
generators in the fundamental representation,

M0
qiq̄jgg

= (ta1ta2)ij (Mt1t2 +Mt·f ) + (ta2ta1)ij (Mt2t1 −Mt·f ), (3.11)

we can identify the colour-ordered partial amplitudes

M0
A,qiq̄jgg

(q, 1g, 2g, q̄) ≡ Mt1t2 +Mt·f , (3.12)

M0
A,qiq̄jgg

(q, 2g, 1g, q̄) ≡ Mt2t1 −Mt·f . (3.13)

In terms of the colour-ordered partial amplitudes the colour-summed squared matrix
element is given by

|M0
qiq̄jgg

|2 =1

4
N(N2 − 1)

(
1− 1

N2

) ∑

k,l∈P (1,2)

|M0
A,qiq̄jgg

(q, kg, lg, q̄)|2 (3.14)

− 1

4
N(N2 − 1)

1

N2

{
M0

A,qiq̄jgg
(q, 1g, 2g, q̄)

∗M0
A,qiq̄jgg

(q, 2g, 1g, q̄)

+M0
A,qiq̄jgg

(q, 2g, 1g, q̄)
∗M0

A,qiq̄jgg
(q, 1g, 2g, q̄)

}
,

where the colour-ordered part in the first line of (3.14) has a leading and subleading colour
contribution originating from the prefactor 1− 1

N2 , whereas the part without colour order-
ing, i.e. the part including products of the two different partial amplitudes, is subleading
in colour due to the prefactor 1

N2 . If we collect terms in the last equation that have the
same scaling behaviour in N we obtain,

|M0
qiq̄jgg

|2 =1

4
N(N2 − 1)

{ ∑

k,l∈P (1,2)

|M0
A,qiq̄jgg

(q, kg, lg, q̄)|2 (3.15)

− 1

N2

∣∣M0
A,qiq̄jgg

(q, 1g, 2g, q̄) +M0
A,qiq̄jgg

(q, 2g, 1g, q̄)
∣∣2
}
.

The subleading colour part of (3.15) is given by the sum of the two colour-ordered partial
amplitudes and is therefore symmetric under the exchange of the two gluons, 1g ↔ 2g.
This means that one of the gluons in the subleading colour part effectively behaves QED-
like,

M(q, 1g, 2
γ
g , q̄) ≡ M0

A,qiq̄jgg
(q, 1g, 2g, q̄) +M0

A,qiq̄jgg
(q, 2g, 1g, q̄), (3.16)
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Chapter 3. Infrared singularities and factorization properties of NNLO amplitudes

and no non-abelian QCD couplings are included in this part. The notation 2γg indicates,
that the emission pattern of this gluon is not ordered and therefore behaves like a photon,
while the other gluon still has an orderd emission (which is not relevant for amplitudes
involving only two gluons). The radiating quark–antiquark pair are the only “colour
neighbours” of the photon-like gluon, 2γg , which is not colour connected to the other
gluon, 1g. Therefore, the limits where the photon-like gluon becomes unresolved only lead
to IR singularities if the gluon is unresolved with respect to the quark–antiquark pair.
In the discussion of infrared singularities of colour-ordered amplitudes in the following
Section 3.2 we can implicitly include also the amplitude M(q, 1g, 2

γ
g , q̄) with an abelian

gluon due to its simple singularity structure. This is crucial for the construction of
subtraction terms using antenna subtraction in later chapters.

The squared amplitude (3.15) is an illustrative example of the fact that the subleading
colour part of a NNLO QCD×QCD calculation is sufficient in order to extract the needed
information relevant for NNLO QED×QCD calculations. We will make use of this fact
frequently when constructing subtraction terms relevant for this work.

3.1.1 Abelianization

Based on the previous section we will now derive a simple replacement rule that can be
used to obtain QCD×QED corrections from the subleading colour part of QCD×QCD
corrections. In order to do this, we follow the same steps that we already made in the
last section, but this time for the process,

γ∗ → q(p1)q̄(p2)g(p3)γ(p4).

In this case the colour-ordered amplitude is given by

M0
qiq̄jgγ

= taijQq (Mt1t2 +Mt2t1)
∣∣∣
g2s→egs

, (3.17)

where the colour-ordered subamplitudes, Mtitj , are the same as in the previous section,
but we have to replace one of the QCD coupling factors, tkijgs, by the elementary charge,
Qqe. If we now compare the colour factors of the squared amplitude in the QCD×QED
case,

|M0
qiq̄jgγ

|2 =1

2
N(N − 1

N
)Q2

q |Mt1t2 +Mt2t1|2
∣∣∣
g4s→e2g2s

,

to the colour factors of the subleading colour part of the squared amplitude (3.15) in the
QCD×QCD case,

|M0
qiq̄jgg

|2
∣∣∣
subleading

=− 1

4
(N − 1

N
)|M0

A,qiq̄jgg
(q, 1g, 2g, q̄) +M0

A,qiq̄jgg
(q, 2g, 1g, q̄)|2

=− 1

4
(N − 1

N
)|Mt1t2 +Mt2t1|2,

we can read off the simple conversion rule to obtain the QCD×QED corrections:
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Chapter 3. Infrared singularities and factorization properties of NNLO amplitudes

• To obtain the subleading-colour contribution collect all terms proportional to 1
N2

(with respect to leading colour) of the squared QCD×QCD amplitude, where the
terms in the squared amplitude have to be ordered according to their scaling be-
haviour in N as in (3.15).

• Apply the following replacement to the subleading-colour contribution,

α2
s → (−2N)αsαQ

2
q. (3.18)

This procedure is also known as abelianization.

3.2 Infrared singularities and factorization properties
of colour-ordered amplitudes

Ultraviolet divergences arise in higher-order loop corrections in the limit of infinite loop
momenta and are treated in the course of renormalization of the input parameters and
fields of a given theory. In addition the UV divergences, also the finite-momentum re-
gions of loop integrals can contain singular configurations, depending on the momenta
and masses of the particles involved in the respective integrals. The so-called Landau
equations [83] describe the conditions on the kinematic properties of the involved particle
four-momenta that need to be fulfilled such that an integral develops singularities for
finite loop momenta. The Landau equations depend on the four-momenta and masses
of the external particles and also of virtual particles in the loop. Solutions of the Lan-
dau equations that depend only on the squares of external momenta but not on their
orientation are called infrared (IR) divergences. In the following sections we describe the
relevant configurations that lead to IR singularities at NLO and NNLO. We also discuss
the factorization properties of squared colour-ordered partial amplitudes (as in (3.5)) in
these singular limits. Since this work will mainly deal with the subleading colour parts of
NNLO QCD corrections, it is important to note, as discussed in the previous section, that
the factorization properties of leading-colour contributions to squared amplitudes are also
applicable to the subleading-colour contributions relevant for this work.

Infrared singularities in one-loop amplitudes

One-loop amplitudes can contain two different kinds of IR singularities. In the SM, “soft”
IR singularities are the result of the exchange of a massless virtual boson between two
external on-shell particles. The integration over the region where the loop momentum,
associated to the exchanged massless particle, is much smaller than any relevant scale of
the theory is the origin of soft singularities in loop integrals. An illustration of the config-
uration that leads to a soft singularity is given in the left diagram of Fig. 3.2. The second
kind of IR singularities present in one-loop amplitudes are the so-called “collinear” singu-
larties, which originate from the region of the loop integral where two adjacent massless
virtual particles are collinear to the momentum of their common external massless on-shell
particle, as depicted in right diagram in Fig. 3.2. When using dimensional regularization
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p2n−1 = m2
n−1

mn = 0

p2n+1 = m2
n+1

mn−1

mn+1

mn = 0

p2 = m2 = 0

mn+1 = 0

Figure 3.2: The two configurations in one-loop amplitudes that lead to soft (left diagram) or
collinear (right diagram) IR singularities.

both collinear and soft singularities lead to 1
ϵ

poles. Regions of the loop integration where
soft and collinear singularities overlap lead to 1

ϵ2
poles.

To extract the IR-divergent part of amplitudes we introduce the operators Poles and
Finite. The Poles operator acts on one-loop amplitudes and returns their pole structure
in terms of the colour-ordered two-particle IR singularity operators [84],

I
(1)
qq̄ (ϵ, sqq̄) = − eϵγ

2Γ(1− ϵ)

[
1

ϵ2
+

3

2ϵ

]
(−sqq̄)−ϵ ,

I(1)
qg (ϵ, sqg) = − eϵγ

2Γ(1− ϵ)

[
1

ϵ2
+

5

3ϵ

]
(−sqg)−ϵ ,

I(1)
gg (ϵ, sgg) = − eϵγ

2Γ(1− ϵ)

[
1

ϵ2
+

11

6ϵ

]
(−sgg)−ϵ ,

I
(1)
qq̄,NF

(ϵ, sqq̄) = 0 ,

I
(1)
qg,NF

(ϵ, sqg) =
eϵγ

2Γ(1− ϵ)

1

6ϵ
(−sqg)−ϵ ,

I
(1)
gg,NF

(ϵ, sgg) =
eϵγ

2Γ(1− ϵ)

1

3ϵ
(−sgg)−ϵ . (3.19)

The action of the Finite operator on loop amplitudes is defined by

Finite(X ) = X − Poles(X ). (3.20)

Contrary to what the naming convention of the operator Poles(X ) might suggest, the two-
particle IR singularity operators in (3.19) also contain finite parts of the form ϵn logn(−s),
which result from the expansion of the terms (−s)−ϵ combined with the poles included in
the singularity operators.

For one-loop colour-ordered partial amplitudes the IR pole structure is given by

Poles
(
2Re

{
(M0

n)
∗M1

n

})
=2Re{I(1)

n (ϵ; {pi}ni=1)} · |M0
n({pi}ni=1)|2, (3.21)

where we introduced the notation {pi}ni=1 = {p1, . . . , pn} and the colour-ordered singular-
ity operator, I(1)

n , is the sum of two-particle IR singularity operators of colour-connected
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pairs C,

I(1)
n (ϵ; {pi}ni=1) =

∑

i,j∈C
I
(1)
ij (ϵ, sij), (3.22)

where sij = (pi + pj)
2 and the set of tuples C is defined as

C = {(i, j)|i, j = 1, . . . , n, i ̸= j, and i, j are colour connected}. (3.23)

Single-unresolved limits of tree-level squared amplitudes at NLO

The factorization of squared amplitudes in IR-singular limits into a process-independent
singular factor and a process-dependent reduced squared matrix element is a key in-
gredient in the calculation of perturbative corrections. Different prescriptions, such as
two-cutoff slicing [85, 86] or subtraction schemes, allow for a independent calculation of
real and virtual contributions at NLO and heavily rely on these factorization properties.
In [60], both two-cutoff slicing and subtraction schemes applicable to NLO calculations
are discussed in detail.

In real emission amplitudes M0
n+1 which include the radiation of an additional particle

compared to the leading order process involving n partons, a soft singularity is the result of
the emission of a photon or gluon with momentum pi in the limit of vanishing momentum,
pµi → 0. The behaviour of colour-ordered real emission squared partial amplitudes in this
limit is described by the process-independent eikonal factor, Jijk, and the underlying born
squared matrix element,

|M0
n+1(· · · , pi, pj, pk, · · · )|2 p̃j→0

Jijk|M0
n(· · · , pi, pk, · · · )|2, (3.24)

where the eikonal current is given by,

Jijk =
2sik
sijsjk

. (3.25)

Note that we consider partial amplitudes in (3.24) and as a consequence no colour factors
appear. To parametrize the limit where the momenta pj and pk become collinear we use
the so-called “Sudakov parametrization” and introduce a light-like vector p(jk), p2(jk) = 0,
which denotes the collinear direction, a light-like vector n, and the transverse component
k⊥, such that k⊥p(jk) = k⊥n = 0. In terms of these momenta,

pµj = zpµ(jk) + kµ⊥ − k2⊥
z

nµ

2 p(jk) · n
,

pµk = (1− z)pµ(jk) − kµ⊥ − k2⊥
1− z

nµ

2 p(jk) · n
, (3.26)

the collinear limit of pj and pk is obtained for k⊥ → 0. In case of a collinear (anti-)quark-
gluon pair with momenta pj, pk, respectively, the colour-ordered squared partial matrix
element behaves as,

|M0
n+1(· · · , pj, pk, · · · )|2 p̃j ||pk

1

sjk
Pjk→(jk)|M0

n(· · · , p(jk), · · · )|2, (3.27)
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where Pjk→(jk) are the polarization-averaged splitting functions, known as Altarelli–Parisi
splitting functions [87]. The collinear limit of a quark–antiquark pair of matching flavour
or of two gluons,

|M0
n+1(· · · , pj, pk, · · · )|2 p̃j ||pk

1

sjk
P µν
jk→(jk)|M0

n(· · · , p(jk), · · · )|2µν , (3.28)

does not lead to a fully factorized form, but instead includes spin correlations that lead to
contractions between universal tensorial splitting functions and the colour-ordered squared
born matrix elements. However, it is possible to rewrite the contraction between the
tensorial splitting functions and the squared born matrix elements in terms of the spin-
averaged splitting functions plus additional angular terms,

|M0
n+1(· · · , pj, pk, · · · )|2 p̃j ||pk

1

sjk
P µν
jk→(jk)|M0

n(· · · , p(jk), · · · )|2µν (3.29)

=
1

sjk
Pjk→(jk)|M0

n(· · · , p(jk), · · · )|2 + angular terms. (3.30)

The angular terms vanish when integrating over the azimuthal angle ϕ, which is part of
the phase-space integral and parametrizes the azimuthal angle of k⊥ around the collinear
direction p(jk). Angular terms are also relevant in the construction of subtraction terms
in the context of antenna subtraction and will be discussed in more detail in Section 4.3.
In conventional dimensional regularization, where gluons have d − 2 and fermions two
polarizations, the spin-averaged final-final splitting functions [84] are given by

Pqg→Q =
1 + (1− z)2 − ϵz2

z
,

Pqq̄→G =
z2 + (1− z)2 − ϵ

1− ϵ
,

Pgg→G = 2

(
z

1− z
+

1− z

z
+ z(1− z)

)
. (3.31)

Note that the splitting functions do not include any colour factors as we consider limits
of colour-ordered squared subamplitudes. If one of the particles involved in the collinear
limits is contained in the initial state, say with momentum pi, of a colour-ordered squared
amplituded the following initial–final splitting functions have to be used,

Pgq←Q(z) =
1

1− z

1

1− ϵ
Pqg→Q(1− z),

Pqg←Q(z) =
1

1− z
Pqg→Q(z),

Pqq̄←G(z) =
1− ϵ

1− z
Pqq̄→G(z),

Pgg←G(z) =
1

1− z
Pgg→G(z), (3.32)

where the momentum fraction z now describes the splitting of the initial-state momentum,
pi, into the composite momentum, p(jk) = (1 − z)pi, and the momentum of the second
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particle, pj = zpi, involved in the splitting. The additional factors of 1 − ϵ compared to
the final–finial splitting functions are due to the different averaging factors for gluons and
quarks in the initial state,

#helicitiesgluons

#helicitiesquarks
=
d− 2

2
= 1− ϵ. (3.33)

3.2.1 Factorization properties of colour-ordered amplitudes at
NNLO

In this section we extend the discussion of factorization properties of colour-ordered
squared subamplitudes from NLO to NNLO. At this order of perturbation theory one
has to consider double-real, real–virtual, and double-virtual contributions with (n + 2),
(n + 1), and n partons in the final state compared to the leading-order process, respec-
tively. The real–virtual corrections include, in addition to the real radiation, a one-loop
correction, whereas the double-virtual contribution does not include any real radiation,
but instead two-loop corrections. These new structures in the calculation of squared
amplitudes present at NNLO lead to additional ingredients needed to formulate the fac-
torization properties of amplitudes at this perturbative order.

Infrared singularities in two-loop amplitudes

The two-loop correction to the squared amplitude not only includes the contribution from
the genuine two-loop correction projected onto the born amplitude, but also the squared
one-loop correction,

M2
n({pi}ni=1) = 2Re{M0

n({pi}ni=1)
∗M2

n({pi}ni=1)}+ |M1
n({pi}ni=1)|2. (3.34)

The IR pole structure of one-loop colour-ordered partial amplitudes (3.21),

M1
n({pi}ni=1) = I(1)

n (ϵ; {pi}ni=1)M0
n({pi}ni=1) +M1,fin

n ({pi}ni=1), (3.35)

can be used to obtain the pole structure of the squared one-loop term

Poles |M1
n|2 =Poles

(
(M0

n)
∗I(1) †

n I(1)
n M0

n + 2Re
{
(M1,fin

n )∗I(1)
n M0

n

}
+ |M1,fin

n |2
)

=(M0
n)
∗I(1) †

n I(1)
n M0

n + 2Re
{
(M1,fin

n )∗I(1)
n M0

n

}

=Re
{
2 (M1

n)
∗I(1)

n M0
n − (M0

n)
∗I(1) †

n I(1)
n M0

n

}
. (3.36)

This can be combined with the IR pole structure of the genuine two-loop contribution
projected onto the born matrix element [88],

Poles
(
2Re

{
(M0

n)
∗M2

n

})
=2Re

{
I(1)
n (ϵ; {pi}ni=1)

(
M1

n({pi}ni=1)−
β0
ϵ
M0

n({pi}ni=1)

)

−1

2
I(1)
n (ϵ; {pi}ni=1)

2M0
n({pi}ni=1)
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+e−ϵγ
Γ(1− 2ϵ)

Γ(1− ϵ)

(
β0
ϵ
+K

)
I(1)
n (2ϵ; {pi}ni=1)M

0
n({pi}ni=1)

+H(2)(ϵ)M0
n({pi}ni=1)

}
, (3.37)

to obtain the complete IR pole structure of the two-loop correction to the colour-ordered
squared matrix element,

Poles
(
M2

n({pi}ni=1)
)
= Poles

(
2Re

{
(M0

n)
∗M2

n

})
+ Poles |M1

n|2, (3.38)

where the form of the function H(2)(ϵ) and the constantK in (3.37) depend on the particle
content of the considered process [88].

Single-unresolved limits including one-loop amplitudes

In the soft limit one-loop squared colour-ordered partial matrix elements factorize into
two parts,

M1
n+1(· · · , pi, pj, pk, · · · ) p̃j→0

J0
ijkM

1
n(· · · , pi, pk, · · · ) + J1

ijk|M0
n(· · · , pi, pk, · · · )|2, (3.39)

where the first part includes the leading-order eikonal current multiplied with the colour-
ordered one-loop correction to the squared amplitude,

M1
n({pi}ni=1) = 2Re{M0

n({pi}ni=1)
∗ · M1

n({pi}ni=1)}, (3.40)

whereas the second part in (3.39) contains the one-loop soft radiation function J1
ijk, which

is not present at NLO and its definition can be found in [89]. The collinear limit of
one-loop squared partial matrix elements leads to a similar factorization behavior,

M1
n+1(· · · , pj, pk, · · · ) p̃j ||pk

1

sjk

(
Pjk→(jk)M

1
n(· · · , p(jk), · · · )

+P 1
jk→(jk)|M0

n(· · · , p(jk), · · · )|2
)
, (3.41)

where the first term involves a leading-order splitting function and the second term a
one-loop spin-averaged splitting function P 1

jk→(jk) [89]. These factorization patterns are
relevant for the construction of subtraction terms for real–virtual NNLO corrections.

Double soft unresolved limits

For two soft adjacent gluons in the colour-ordered amplitude with momenta pj, pk, the
squared colour-ordered partial matrix element factorizes into a soft function Jijkl [90],
which is independent of the particle type of the hard radiators i, l, and the underlying
squared born matrix element,

|M0
n+2(· · · , pi, pj, pk, pl, · · · )|2 p̃j ,pk→0

Jijkl|M0
n(· · · , pi, pl, · · · )|2. (3.42)
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If the two soft adjacent particles form a quark-antiquark pair with momenta pj, pk, origi-
nating from a soft gluon, then the factorization is given by,

|M0
n+2(· · · , pi, pj, pk, pl, · · · )|2 p̃j ,pk→0

Jil(pj, pk)|M0
n(· · · , pi, pl, · · · )|2, (3.43)

where the soft functions relevant for both cases can be found in [84]. In other cases,
where the unresolved partons are separated by a hard radiator in the colour-ordered
partial amplitudes, the singular behaviour of amplitudes can be obtained by a twofold
application of the NLO soft factorization equation.

Double collinear unresolved limits

If two adjacent particles in the colour-ordered amplitude with momenta pj, pk become
collinear to a hard radiator which is adjacent to at least one of the two particles j or k
the colour-ordered squared partial matrix element factorizes according to [91],

|M0
n+2(· · · , pi, pj, pk, · · · )|2 p̃i||pj ||pkPijk→(ijk)|M0

n(· · · , p(ijk), · · · )|2. (3.44)

This limit corresponds to a triple collinear limit. There are seven different triple collinear
splitting functions relevant at NNLO, which all can be found in [84,91]. In the case where
the particles j and k are collinear with different hard partons and not with each other, the
limit of this configuration can be obtained by an twofold iteration of the NLO collinear
factorization formula.

Soft-collinear unresolved limits

When two adjacent particles in the colour-ordered partial matrix element become un-
resolved between a common set of hard radiators and one of the unresolved partons is
soft while the other is collinear to one of the hard radiators, one obtains the following
factorization pattern [91],

|M0
n+2(· · · , pi, pj, pk, pl, · · · )|2 ˜pj→0,pk||pl Ji;jkl

1

skl
Pkl→(kl)|M0

n(· · · , pi, p(kl), · · · )|2, (3.45)

where the soft-collinear factor Ji;jkl can be found e.g. in [84] and Pkl→(kl) is a leading-order
splitting function. In other cases, where the unresolved partons are separated by a hard
radiator, the singular behaviour of amplitudes in soft-collinear limits can be obtained by
an application of the NLO soft and collinear factorization formulas.

3.3 The parton model and mass factorization

The elementary particles described by QCD (gluons and quarks) are not observable as
free asymptotic states, but instead are confined within colourless bound states. This fact
prevented us from using an on-shell renormalization scheme in Section 2.2.2 and lead us
to the application the MS renormalization scheme in QCD. This renormalization scheme
applied in QCD calculations eventually leads to the running coupling constant, which,
in turn, leads to the applicability of perturbation theory to QCD calculations at high
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pa = ξ1PA

pb = ξ2PB

a

b

dσ̂ab(pa, pb)

fa/A

fb/B

A(PA)

B(PB)

Figure 3.3: A schematic representation of the hadronic scattering of two hadrons A and B, where
only the two partons a and b take part in the hard scattering process.

energies. However, on the other hand, it also implies the breakdown of any perturbative
QCD calculation at small scales of the order of the confinement scale, ΛQCD. Therefore,
the description of hadrons relies on models, where the so-called “parton model” is amongst
the most prominent ones. As perturbative QCD calculation fail to predict the structure
of models for hadrons, their properties have to be determined from experimental input.

The parton model [92, 93] describes hadrons as composed objects of so-called partons in
an infinite momentum frame, which allows for the neglect of the masses of hadrons and
its constituents. The assumption of an infinite momentum frame limits the applicability
of the parton model to high-energy interactions, but the time dilatation in this frame
also justifies the assumption of a constant number density of partons and frozen inter-
nal interactions within the hadron during the short time span of interactions of hadronic
collisions. One can further assume that at high energies the interaction between hadrons
actually is an interaction between individual partons, as shown in Fig. 3.3, where each
parton a carries a momentum fraction pa = ξ1PA, 0 < ξ1 < 1, of hadron A which carries
momentum PA. The probability to find a parton of type a that carries the longitudinal
momentum fraction ξ1 of parton A is described by the parton distribution function (PDF)
f
(0)
a/A(ξ1). The hard scattering process of the individual partons, characterized by a mo-

mentum transfer much larger than ΛQCD, is assumed to be calculable using perturbation
theory. The hadronic cross section for the scattering of two hadrons A and B is given by
the sum over all partonic cross sections, convoluted with the corresponding PDFs,

σLO(PA, PB) =
∑

a,b

∫ 1

0

dξ1
ξ1

∫ 1

0

dξ2
ξ2

f
(0)
a/A(ξ1)f

(0)
b/B(ξ2) dσ̂

(0)
LO,ab(ξ1PA, ξ2PB). (3.46)

The superscript (0) indicates the bare cross section and PDFs in the context of “renormal-
ized” PDFs, the exact meaning of which will be explained in the following section. Note
that it does not necessarily refer to the leading order cross section, dσ̂LO,ab. We will only
consider proton–proton (i.e.A = B = P in Fig. 3.3) collisions in this work and will there-
fore omit the index identifying the parent parton a PDF belongs to, f (0)

a (ξ1) ≡ f
(0)
a/P (ξ1),

and implicitly assume that in an expression as (3.46) each of the two PDFs correspond to
one of the two colliding protons.
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The QCD-improved parton model up to NNLO

The mechanism leading to the cancellation of IR singularities between real and virtual
corrections to cross section is described by the Kinoshita–Lee–Nauenberg (KLN) theo-
rem and is based on the unitarity of the S-matrix. Therefore, the applicability of the
theorem relies on the level of inclusiveness of all external states that are degenerate in
energy. Collinear initial-state radiation, however, modifies the momentum entering the
hard scattering process and therefore spoils the inclusive treatment of external states.
As the parton model assumes all partons to be massless, these collinear emissions in the
initial state lead to uncancelled singularities (which is why (3.46) has to be restricted to
leading order). As a result, the extension of the naive parton model to NLO and NNLO
perturbative QCD calculations requires the application of a procedure similar to renor-
malization in order to absorb the uncancelled collinear singularities into the PDFs. In the
following we discuss the redefinition of PDFs used to absorb the remaining singularities.
For more information on the matter we refer to [94,95], which we will follow closely.

In order to absorb the collinear divergences that remain in the sum of real and virtual
corrections in NLO and NNLO QCD predictions, we introduce the so-called mass factor-
ization kernels Γab, the inverse of which are the analogue of renormalization constants in
the renormalization procedure applied to absorb UV divergences. The mass factorization
kernel convoluted with the bare PDF, f (0)

a , defines the “physical” or “renormalized” PDF
which will be fitted to data,

fa(ξ, µ
2
F) =

[
f
(0)
b ⊗ Γba

]
(ξ, µ2

F) ≡
∫
dx dy f

(0)
b (x)Γba(y, µ

2
F)δ(ξ − xy). (3.47)

As in renormalization, we assume that the bare PDFs f (0)
a and the mass factorization

kernels Γab are potentially divergent quantities such that the physical PDFs fa are finite.
Furthermore, the so-called factorization scale, µF, is introduced to separate soft long-
distance hadronic from hard short-distance partonic physics. In qualitative terms, partons
radiated in collinear initial-state splittings with transverse momentum greater than the
factorization scale are attributed to the hard scattering process, whereas a transverse
momentum below the factorization scale indicates a splitting within the hadron. For
simplicity, we set the factorization scale equal to the renormalization scale µ introduced
in Section 2.2.2

µF = µ. (3.48)

In this work, the perturbative expansion of mass factorization kernel, Γba, is relevant up
to two-loop order,

Γba(x, µ
2
F) =δbaδ(1− x) +

(
αs(µF)

2π

)
Γ1
ba(x) +

(
αs(µF)

2π

)2

Γ2
ba(x) +O(α3

s). (3.49)

The demand that all remaining collinear IR singularities have to be cancelled by the in-
troduction of the mass factorization kernels only fixes the divergent part of the coefficients
in the expansion of the kernels and there is, in analogy to renormalization, freedom in the
choice of the respective finite terms. Choosing certain finite parts defines a factorization
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scheme. In this work we will use the MS scheme, where the coefficients of the perturbative
series up to two-loop order are given by

Γ
(1)
ba (x) =− 1

ϵ
p0ba(x), (3.50)

Γ
(2)
ba (x) =

1

2ϵ2

[∑

c

[
p0bc ⊗ p0ca

]
(x) + 2β0 p

0
ba(x)

]
− 1

2ϵ
p1ba(x), (3.51)

where the four-dimensional colour ordered splitting kernels p0ab, p1ab can be found in [96].
The coefficient βi of the perturbative expansion of the β-function,

1

2π
β(αs) = −β0

(
αs(µ

2
F)

2π

)2

− β1

(
αs(µ

2
F)

2π

)3

− β2

(
αs(µ

2
F)

2π

)4

+O(αs(µ
2
F)

5) (3.52)

can be obtained from the expansion given in (2.76) and (2.77) by

β0 = 2πb, β1 = 2πb′β0, β2 = (2π)2b′′β0. (3.53)

By inverting (3.47) order by order in perturbation theory one can obtain the bare PDF
in terms of the renormalized PDF as,

f (0)
a (ξ) =

[
fb ⊗ Γ−1ba

]
(ξ) =

∫
dx dy fb(x, µ

2
F)Γ

−1
ba (y, µ

2
F)δ(ξ − xy), (3.54)

where the inverse of the mass factorization kernels is given by,

Γ−1ba (y, µ
2
F) = δbaδ(1− y)−

(
αs(µF)

2π

)
Γ
(1)
ba (y)

−
(
αs(µF)

2π

)2
[
Γ
(2)
ba (y)−

∑

c

[
Γ
(1)
bc ⊗ Γ(1)

ca

]
(y)

]
+O(α3

s), (3.55)

as can be seen by explicit insertion of (3.54) and(3.55) in (3.47). Note that (3.54) is the
analogue of the multiplicative renormalization transformation used to cancel UV diver-
gences.

If we replace the bare PDFs in (3.46) by the physical PDFs using (3.54) we obtain

dσ(PA, PB) =
∑

i,j

∫
dξ1
ξ1

dξ2
ξ2
fi(ξ1, µ

2
F)fj(ξ2, µ

2
F) dσ̂ij(ξ1PA, ξ2PB), (3.56)

where the IR-finite mass-factorized partonic cross section is given by

dσ̂ij(ξ1PA, ξ2PB) =

∫
dx1
x1

∫
dx2
x2

Γ−1ki (x1, µ
2
F)Γ

−1
lj (x2, µ

2
F) dσ̂

(0)
kl (x1ξ1PA, x2ξ2PB). (3.57)

If we expand the bare partonic cross section, dσ̂
(0)
ab , and the inverse mass factorization

kernels, Γ−1ki , in the strong coupling constant and collect terms of the same perturbative
order we obtain,

dσ̂ij,LO(ξ1PA, ξ2PB) = dσ̂
(0)
ij,LO(ξ1PA, ξ2PB), (3.58)
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dσ̂ij,NLO(ξ1PA, ξ2PB) = dσ̂
(0)
ij,NLO(ξ1PA, ξ2PB) + dσ̂MF

ij,NLO(ξ1PA, ξ2PB), (3.59)

dσ̂ij,NNLO(ξ1PA, ξ2PB) = dσ̂
(0)
ij,NNLO(ξ1PA, ξ2PB) + dσ̂MF

ij,NNLO(ξ1PA, ξ2PB). (3.60)

The mass factorization contributions to the cross section at the respective perturbative
order, also known as collinear counterterms, are given by

dσ̂MF
ij,NLO(ξ1PA, ξ2PB) =−

∫
dx1
x1

dx2
x2

Γ
(1)
ij,kl(x1, x2)dσ̂kl,LO(x1ξ1PA, x2ξ2PB) (3.61)

dσ̂MF
ij,NNLO(ξ1PA, ξ2PB) =−

∫
dx1
x1

dx2
x2

Γ
(2)
ij,kl(x1, x2)dσ̂kl,LO(x1ξ1PA, x2ξ2PB)

−
∫

dx1
x1

dx2
x2

Γ
(1)
ij,kl(x1, x2)dσ̂kl,NLO(x1ξ1PA, x2ξ2PB), (3.62)

where we have used the notation,

Γ
(1)
ij,kl(z1, z2) = δ(1− z2)δljΓ

(1)
ki (z1) + δ(1− z1)δkiΓ

(1)
lj (z2), (3.63)

Γ
(2)
ij;kl(z1, z2) = δ(1− z2)δljΓ

(2)
ki (z1) + δ(1− z1)δkiΓ

(2)
lj (z2) + Γ

(1)
ki (z1)Γ

(1)
lj (z2). (3.64)
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Chapter 4
Antenna subtraction

4.1 The subtraction method

The calculation of higher-order corrections in massless gauge theories generally includes
individually IR-divergent contributions. However, for sufficiently inclusive observables the
Kinoshita–Lee–Nauenberg (KLN) theorem [97, 98] and factorization theorems [99] guar-
antee a finite result at a given order of perturbation theory. Applied to a calculation at
next-to-leading order in perturbation theory with respect to a given LO process includ-
ing n partons in the final state these theorems guarantee that all IR divergences cancel
between the real contribution, dσ̂R

NLO, including the radiation of an additional massless
parton, the virtual contribution, dσ̂V

NLO, including 1-loop corrections, and the mass fac-
torization term, dσ̂MF

NLO, introduced in Section 3.3,
∫

dσ̂NLO =

∫

n+1

dσ̂R
NLO +

∫

n

(
dσ̂V

NLO + dσ̂MF
NLO

)
. (4.1)

The definition of specific observables is implicitly included in the three contributions on
the right-hand side of (4.1) and the observables are parametrized by the introduction
of so-called jet functions, J (N)

n , where n is the number of resolved particles (jets) in an
N -parton final state. To make the dependence on observables more apparent we consider
the term corresponding to the real contribution in (4.1) on the level of the corresponding
matrix element MR

n+1,

dσ̂R
NLO = dΦn+1({pi}n+1

i=1 ; pa, pb)|MR
n+1({pi}n+1

i=1 ; pa, pb)|2J (n+1)
n ({pi}n+1

i=1 ), (4.2)

where dΦn is the 2 → n particle phase space and we used the shorthand notation {pi}n+1
i=1 =

{p1, . . . , pn+1} for the set of all momenta. In order to guarantee the cancellation of IR
divergences between real and virtual contributions according to the KLN theorem, the
jet functions have to be chosen from the class of so-called IR-safe observables which are
insensitive to soft emissions and collinear splittings,

J (n+1)
n (. . . , pi, pj, pk, . . . ; pa)

pj→0−−−→ J (n)
n (. . . , pi, pk, . . . ; pa),

pj ·pi→0−−−−→ J (n)
n (. . . , pi + pj, pk, . . . ; pa),

pj→(1−x)pa−−−−−−−→ J (n)
n (. . . , pi, pk, . . . ;xpa).

(4.3)
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The appearance of jet functions in (4.1) make an analytic evaluation of the PS integrals
unfeasible and instead numerical integration is more suitable. However, since the real
and virtual contributions are not integrated over the same phase space and are both
individually IR divergent, a naive integration of the real and virtual part is not possible.
One solution to this problem is the introduction of so-called subtraction terms where one
adds terms of the form

0 = −
∫

n+1

dσ̂S
NLO +

∫

n

∫

1

dσ̂S
NLO (4.4)

to the NLO cross section calculation in (4.1), where the first term in (4.4) is combined
with the real radiation contribution and the second part with the virtual contribution,

∫
dσ̂NLO =

∫

n+1

[
dσ̂R

NLO − dσ̂S
NLO

]
+

∫

n

(
dσ̂V

NLO + dσ̂MF
NLO +

∫

1

dσ̂S
NLO

)
. (4.5)

The subtraction term is constructed in such a way that it has the same asymptotic be-
haviour as the real correction in the limit of soft or collinear partons. The first part in
square brackets in (4.5) is therefore IR finite and can be numerically integrated over the
(n + 1) particle phase space without any further regulator. By factoring the (n + 1)-
particle phase space in (4.4) into an n-particle phase space and the one-particle phase
space of the radiated parton, the virtual correction to the cross section and the subtrac-
tion term integrated over the one-particle phase space can be combined under the same
n-particle phase space integral. Therefore, apart from the correct asymptotic behaviour
in unresolved limits the subtraction term must also be simple enough to be integrated
analytically over the one-particle phase space of the radiated particle. The analytic inte-
gration of the subtraction term over the one-particle phase space leads to the integrated
subtraction term which contains explicit IR poles that cancel against the poles in the
virtual cross section correction and the mass factorization term by virtue of the KLN
theorem and factorization.

Motivated by the factorization properties of amplitudes in single- and double-unresolved
limits shown in Section 3.2 the structure of subtraction terms used in the framework of
antenna subtraction is given by the product of a singular factor and the squared matrix
element of the underlying leading-order process,

dσ̂S
NLO =dΦn+1({pi}n+1

i=1 ; pa, pb)X
0
3 (pi, pj, pk)

× |MLO
n (p1, . . . , pI , pK , . . . , pn+1; pa, pb)|2J (n)

n (. . . , pI , pK , . . . ),
(4.6)

where the function X0
3 (pi, pj, pk) is a so-called antenna function that becomes singular if

parton j becomes unresolved with respect to the partons i and k. We will also use the
notation Xm

i,jk ≡ Xm
3 (pi, pj, pk), where m indicates the number of loops and the indices

before (after) the comma in the subscript indicate the initial-state (final-state) partons
involved in the antenna. The LO matrix element in (4.6) depends on the momenta of the
factorized n-particle phase space obtained after factoring out the one-particle phase space
of the radiated particle from the full (n+1)-particle phase space. The particles that carry
the momenta pi and pk are referred to as radiator partons of the potentially unresolved
parton with momentum pj. In order to obtain a proper factorization of the (n+1)-particle
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phase space so-called antenna mappings are used which have to be constructed such that
the mapped momenta have the correct behaviour in unresolved limits. Furthermore, the
mapped momenta respect momentum conservation and all mass-shell conditions. It is
important to note that the jet function in (4.6) can only depend on the mapped momenta
and not on the momentum of the radiated particle in order to guarantee the analytic
integrability of the subtraction term over the one-particle phase space associated to the
radiated particle.

The NNLO correction to the cross section is obtained by including two additional po-
tentially unresolved radiative particles with respect to the LO process. The nature of
both additional particles can be of real or virtual kind leading to three types of NNLO
corrections. Double real corrections, dσ̂RR

NNLO, involve two additional real particles with an
(n+2)-particle final state and zero loops, real–virtual corrections, dσ̂RV

NNLO, are character-
ized by a final state with (n + 1) particles including an one-loop correction, and double
virtual corrections include two-loop corrections with no real radiation. The full NNLO
correction to the cross section reads∫

dσ̂NNLO =

∫

n+2

dσ̂RR
NNLO +

∫

n+1

(
dσ̂RV

NNLO + dσ̂MF,1
NNLO

)

+

∫

n

(
dσ̂VV

NNLO + dσ̂MF,2
NNLO

)
,

(4.7)

where the mass factorization terms are given in (4.110) and (4.111). Similar to the case at
NLO the individual contributions to the NNLO correction are IR divergent and a naive
numerical integration fails. Also at NNLO it is possible to include subtraction terms
which then have to be added back in an integrated form to a contribution with a different
particle multiplicity of final-state partons. In the antenna method a double real, dσ̂S

NNLO,
and a real–virtual, dσ̂VS

NNLO, subtraction term are introduced to cancel the implicit IR
divergences in the double real and real–virtual contributions, respectively. The integrated
double real subtraction term is split into two parts contributing to both the (n+ 1)- and
the n-particle final-state contribution of the NNLO correction,

∫

n+2

dσ̂S
NNLO =

∫

n+1

∫

1

dσ̂S,1
NNLO +

∫

n

∫

2

dσ̂S,2
NNLO, (4.8)

where the first part, dσ̂S,1
NNLO, integrated over the one-particle phase space, associated

to one of the potentially unresolved partons, is used to cancel the explicit poles in the
real–virtual contribution. The second part, dσ̂S,2

NNLO, integrated over the two-particle phase
space of the radiated particles combined with the integrated real–virtual subtraction term,
dσ̂VS

NNLO, is used to cancel the explicit poles of the double-virtual correction to the cross
section. The subtraction terms are constructed such that the contributions contained in
square brackets are individually free from explicit and implicit IR divergences,

∫
dσ̂NNLO =

∫

n+2

[
dσ̂RR

NNLO − dσ̂S
NNLO

]

+

∫

n+1

[
dσ̂RV

NNLO − dσ̂T
NNLO

]

+

∫

n

[
dσ̂VV

NNLO − dσ̂U
NNLO

]
,

(4.9)

47



Chapter 4. Antenna subtraction

where

dσ̂T
NNLO = dσ̂VS

NNLO −
∫

1

dσ̂S,1
NNLO − dσ̂MF,1

NNLO, (4.10)

dσ̂U
NNLO = −

∫

1

dσ̂VS
NNLO −

∫

2

dσ̂S,2
NNLO − dσ̂MF,2

NNLO. (4.11)

We can summarize the introduced subtraction terms and their integrated counterparts in
the following way,

0 =−
∫

n+2

dσ̂S
NNLO

+

∫

n+1

(
−dσ̂VS

NNLO +

∫

1

dσ̂S,1
NNLO

)

+

∫

n

(∫

1

dσ̂VS
NNLO +

∫

2

dσ̂S,2
NNLO

)
.

(4.12)

4.2 Phase-space factorization and mappings

In the previous section we saw that it is necessary to factorize one- and two-particle phase
spaces from an original (n + 2)-particle phase space in order to construct the integrated
subtraction terms used in antenna subtraction. In this section we discuss mappings that
allow us to write the phase space as a direct product of a phase space of lower dimension
than the original phase space constructed from mapped momenta and an antenna phase
space that only depends on momenta independent of the mapped momenta and is used
in the antenna function.

There are three different scenarios that we have to consider and each of them requires
different mappings. They are determined by the locations of the two radiator partons
emitting the potentially unresolved parton into the final state: The radiating partons are
contained in the final state (final–final case), one radiating parton is in the final and the
other in the initial state (initial–final case), and finally the case where both radiating
partons are initial-state partons (initial–initial case). The mappings used in the three
different scenarios all fulfill general constraints in order to be applicable in the context
of antenna subtraction. Momentum conservation and on-shellness of mapped momenta
are needed in order to be able to combine the integrated subtraction term with virtual
or real–virtual contributions. In order to properly subtract implicit IR singularities from
real corrections it is necessary that the mapped momenta reduce to the original momenta
in singular limits and do not introduce any spurious singularities.

Final–final case

To factorize the (n+ 1)-particle phase space we use a mapping [100] where the momenta
of all particles remain unchanged except for the three momenta pi, pj, and pk involved in
the antenna function X3(i, j, k). In order to obtain the reduced n-particle phase space,
the antenna momenta pi, pj, and pk are mapped to two composite momenta p̃I = (̃ij) and
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p̃K = (̃jk). The two composite momenta

p̃I = xpi + rpj + zpk, p̃K = (1− x)pi + (1− r)pj + (1− z)pk (4.13)

are constructed in terms of the factors x, z, and r which are defined by

x =
1

2(sij + sik)

[
(1 + ρ) sijk − 2 r sjk

]
,

z =
1

2(sjk + sik)

[
(1− ρ) sijk − 2 r sij

]
,

ρ2 =1 +
4 r(1− r) sijsjk

sijksik
,

r =
sjk

sij + sjk
.

(4.14)

The parametrization of the (n + 1)-particle phase space in terms of the new momenta
allows for the factorization of the phase space into a mapped reduced n-particle phase
space and an antenna phase space,

dΦn+1(p1, · · · , pi, pj, pk, · · · , pn+1; pa, pb)

= dΦn(p1, · · · , pI , pK , · · · , pn+1; pa, pb) · dΦXijk
(pi, pj, pk; pI + pK). (4.15)

Using the last equation in the case of n = 2 we see that the three-parton antenna phase
space is proportional to the three-particle phase space,

dΦ3 = P2 dΦXijk
, (4.16)

where we have used that the two-particle phase space is a constant for massless final-state
particles [84],

P2 =

∫
dΦ2 = 2−3+2ϵπ−1+ϵ Γ(1− ϵ)

Γ(2− 2ϵ)
(q2)−ϵ. (4.17)

From the explicit form of the final–final mapping (4.13) and (4.14) it is obvious that
the mapping respects momentum conservation and it can be shown that the constructed
momenta have the desired behaviour in singular limits [82]:

p̃I → pi, p̃K → pk, for j → 0,

p̃I → pi + pj, p̃K → pk, for j||i,
p̃I → pi, p̃K → pj + pk, for j||k.

(4.18)

For two potentially unresolved partons with momenta pj and pk, and two radiator partons
with momenta pi and pl, the NLO final–final mapping can be generalized to an NNLO
mapping [101], where the composite momenta,

p̃I ≡ (̃ijk) , p̃J ≡ (̃jkl) , (4.19)
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are given by
p̃I = x pi + r1 pj + r2 pk + z pl,

p̃J = (1− x) pi + (1− r1) pj + (1− r2) pk + (1− z) pl ,
(4.20)

with

r1 =
sjk + sjl

sij + sjk + sjl
,

r2 =
skl

sik + sjk + skl
,

x =
1

2(sij + sik + sil)

[
(1 + ρ) sijkl − r1 (sjk + 2 sjl)− r2 (sjk + 2 skl)

+ (r1 − r2)
sijskl − siksjl

sil

]
,

z =
1

2(sil + sjl + skl)

[
(1− ρ) sijkl − r1 (sjk + 2 sij)− r2 (sjk + 2 sik) (4.21)

− (r1 − r2)
sijskl − siksjl

sil

]
,

ρ2 = 1 +
(r1 − r2)

2

s2il s
2
ijkl

λ(sij skl, sil sjk, sik sjl)

+
1

sil sijkl

{
2
(
r1 (1− r2) + r2(1− r1)

)(
sijskl + siksjl − sjksil

)

+ 4 r1 (1− r1) sijsjl + 4 r2 (1− r2) sikskl

}
,

λ(u, v, w) = u2 + v2 + w2 − 2(uv + uw + vw) .

In terms of the mapped momenta the (n+2)-particle phase space can be again factorized
into a reduced n-particle phase space including the mapped composite momenta and an
antenna phase space that only depends on the antenna momenta pi, pj, pk, and pl, and
does not depend on the mapped momenta,

dΦn+2(p1, . . . , pi, pj, pk, pl, . . . , pn+2; pa, pb)

= dΦn(p1, . . . , pI , pJ , · · · , pn+2; pa, pb) · dΦXijkl
(pi, pj, pk, pl; pI + pJ). (4.22)

Again, for n = 2 we see that the four-parton antenna phase space is proportional to the
four-particle phase space,

dΦ4 = P2 dΦXijkl
, (4.23)

with P2 given in (4.17). In order to construct subtraction terms it is important to note that
the NNLO finial–final 4 → 2 map reduces to an NLO 3 → 2 map in all single unresolved
limits [102]. This means that single unresolved limits of the four-parton antenna can
be subtracted by terms that are build from products of two three-parton antennae. This
behaviour is essential in order to avoid over-subtraction of singularities when constructing
subtraction terms. We will discuss this in more detail for initial–final and initial–initial
mappings as they are the phase-space mappings that we will use to construct subtraction
terms relevant for this work.

50



Chapter 4. Antenna subtraction

Initial–final case

If one of the radiator partons is in the initial state with momentum pa and the other is a
final state parton with momentum pk the application of a momentum mapping similar to
the one in the final–final case leads to a non-factorizable phase space as it will in general
bend the momentum of the initial-state radiator away from the beam axis [103]. If the
mapping is chosen such that the momentum of the radiator in the initial state is just a
rescaling, the (n + 1)-parton phase space indeed factorizes [103] into an n-parton phase
space convoluted with a two parton phase space. In detail, the momenta pa, pi, and pj

are mapped to ā = p̄a and (̃ij) = pI ,

p̄a = x̂pa, pI = pi + pj − (1− x̂)pa. (4.24)

Momentum conservation of the mapped momenta immediately follows from the definition,
and the constraint of on-shellness of the mapped momenta fixes the free parameter x̂ to

x̂ =
saj + sai − sij
saj + sai

. (4.25)

In terms of the new momenta one obtains the (n+1)-particle phase space as a convolution
of a reduced n-particle phase space and a two-particle phase space,

dΦn+1(p1, · · · , pi, pj, · · · , pn+1; pa, pb)

=
Q2

2π

dx

x
δ(x− x̂)dΦn(p1, · · · , pI , · · · , pn+1;xpa, pb) · dΦ2(pi, pj; pa, q(x)), (4.26)

where

q(x) = pi + pj − pa = pI − p̄a (4.27)

dictates the scale Q2 = −q2, pa is the momentum assigned to the initial-state parton
involved in the initial–final antenna function and the delta distribution including x̂ ensures
the on-shellness of the mapped momentum pI .

It can be shown [103] that the mapping given above has the required behaviour in single
unresolved limits of parton j,

p̄a → pa, pI → pi; for j → 0,

p̄a → pa, pI → pi + pj, for j||i,
p̄a → pa − pj, pI → pi, for j||a.

(4.28)

The generalization of the mapping defined in (4.24) and (4.25) to the case with two
unresolved partons j, k, an initial-state radiator a, and a final-state radiator parton i is
given by

x̂ =
saj + sak + sai − sjk − sji − ski

saj + sak + sai
,

pI = pi + pj + pk − (1− x̂)pa.

(4.29)
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Reparametrizing the phase space in this way one obtains again a factorized phase space,
but this time with an additional convolution,

dΦn+2(p1, · · · , pi, pj, pk, · · · , pn+2; pa, pb)

=
Q2

2π

dx

x
δ(x− x̂)dΦn(p1, · · · , pI , · · · , pn+2;xpa, pb) · dΦ3(pi, pj, pk; pa, q(x)). (4.30)

The NNLO initial–final phase space mapping reduces to NLO phase-space mappings in
all single unresolved limits [103]. As in the finial–final case, this allows for the subtraction
of singularities of the four-parton antenna Xa,jki in single unresolved limits by products
of two three-parton antenna functions [102]. If parton k becomes unresolved the potential
singularities ofXa,jki occur when k is soft or collinear to one of the other final-state partons
i, j. There is no singularity if k becomes collinear to the initial-state radiator a due to the
colour ordering used in the construction of the antenna. To subtract the singularities of
the four-parton antenna in the kinematic regions where only k is unresolved we therefore
need the product of a finial–final and a initial–final antenna Xjki ·Xa,JI . The The NNLO
initial–final phase space mapping also reflects this behaviour and (4.29) reduces to

pk → 0 : x̂→ saj + sai − sij
saj + sai

, pI → pi + pj − (1− x̂)pa,

pk||pj, pj + pk = pK : x̂→ saK + sai − siK
saK + sai

, pI → pi + pK − (1− x̂)pa,

pk||pi, pi + pk = pK : x̂→ saK + saj − sjK
saK + saj

, pI → pj + pK − (1− x̂)pa,

(4.31)

i.e. the NNLO initial–final mapping reduces to an NLO initial–final mapping from (4.24)
and x̂ as in (4.25), where the momenta pi, pj, and pK that appear in the NLO initial–
final mapping are the result of the NLO final–final mapping (4.14) in the limit where k
is unresolved. Therefore, the NNLO initial–final mapping reduces to the product of an
NLO final–final and an NLO initial–final phase space mapping which is in line with the
behaviour we found for the corresponding four-parton initial–final antenna.

On the other hand, if parton j becomes unresolved, Xa,jki becomes singular if j is soft or
collinear to either the initial-state radiator a or the final-state parton k. Again, there is no
singularity if j becomes collinear to i. The appropriate product of three-parton antennae
to subtract single unresolved limits in this case is given by Xa,jk ·Xā,Ki. One can see that
the relevant phase-space mapping for this limit of the NNLO initial–final phase-space
mapping is given by the product of two NLO initial–final mappings similar to the case
with a product of an NLO finial–final and an NLO initial–final mapping discussed above.

Initial–initial case

When both radiator partons a and b are in the initial state we use a phase-space mapping
where the corresponding momenta are rescaled according to

p̄a = x̂apa, p̄b = x̂bpb, (4.32)
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so that the sum of the rescaled radiator momenta,

q̃ = p̄a + p̄b, (4.33)

is parallel to the beam axis, which avoids the introduction of a transverse component
that would spoil any phase-space factorization [103]. In order to maintain momentum
conservation one has to apply a mapping λ to all other momenta, since the sum of the
remaining final-state momenta q = pa + pb − pi is in general not parallel to the beam axis
given by pa − pb. As the remaining mapped momenta are required to stay on their mass
shell, the mapping λ must be a Lorentz transformation. The required limiting behaviour
of the phase-space mapping in unresolved limits of the radiated parton i has to be

p̄a → pa, p̄b → pb, p̃j → pj for i→ 0,

p̄a → pa − pi, p̄b → pb, p̃j → pj for i||a,
p̄a → pa, p̄b → pb − pi, p̃j → pj for i||b,

(4.34)

which means that when q is already parallel to the the beam axis (i.e. pi is unresolved
with respect to parton a or b) the Lorentz transformation λ has to reduce to 1, because
in this case q̃ = q due to (4.34). A possible boost that fulfills this requirement and maps
q onto q̃ is given by

λµν(q, q̃) = gµν −
2(q + q̃)µ(q + q̃)ν

(q + q̃)2
+

2q̃µqν
q2

. (4.35)

It is now possible to obtain the two factors xa and xb from the on shell condition q2 = q̃2

and properties of the chosen boost [103] leading to

x̂a =

(
sab − sbi
sab

sab − sai − sbi
sab − sai

) 1
2

,

x̂b =

(
sab − sai
sab

sab − sai − sbi
sab − sbi

) 1
2

.

(4.36)

The reparametrization of momenta using the mapping described above leads to a phase
space in a factorized form including two convolutions,

dΦn+1({pk}n+1
k=1 ; pa, pb) =dΦn({p̃k}n+1

k=1 \ {p̃i}; p̄a, p̄b)[dpi] dxadxb δ(xa − x̂a)δ(xb − x̂b).
(4.37)

In order to generalize the mapping to NNLO one simply needs to adjust the vector q
to the case of two potentially unresolved partons i and j. Therefore, it now includes pi
and pj, q = pa + pb − pi − pj, instead of just pi. The rescaling factors of the initial-state
momenta are in this case given by

x̂a =

(
sab − sib − sjb

sab

sab − sai − saj − sib − sjb + sij
sab − sia − sja

) 1
2

, (4.38)

x̂b =

(
sab − sia − sja

sab

sab − sai − saj − sib − sjb + sij
sab − sib − sjb

) 1
2

, (4.39)
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and the boost applied to the final-state momenta is the same as the one used for the NLO
mapping. The phase-space factorization generalizes to,

dΦn+2({pk}n+2
k=1 ; pa, pb) =dΦn({p̃k}n+2

k=1 \ {p̃i, p̃j}; p̄a, p̄b)[dpi][dpj] dxadxb δ(xa − x̂a)δ(xb − x̂b).
(4.40)

Also in this case the NNLO initial–initial map reduces to a product of NLO mappings
in single unresolved limits [103], so that single unresolved limits of four-parton antennae
Xab,ij can be subtracted by products of three-parton antennae. If parton i becomes
unresolved with respect to a initial-state radiator a and a final-state radiator j the NNLO
initial–initial map reduces to an NLO initial–initial map as a function of momenta that
are the result of a NLO initial–final map in the limit where i is unresolved. This means
that in order to subtract this single unresolved limit from the four-parton antenna the
proper product of three-parton antennae is given by the product of an initial–final and an
initial–initial antenna, Xa,ijXāb,J . In the case where i becomes unresolved to two initial-
state radiator partons a and b the corresponding subtraction term in order to subtract
this single unresolved limit from the four-parton antenna Xab,ij is given by the product of
two initial–initial three-parton antennae Xab,iXāb̄,j̃.

4.3 Construction of antenna functions

The antenna functions introduced in (4.6) are the key ingredients in the construction of
antenna subtraction terms. They are constructed such that they mimic the asymptotic
behaviour of the real matrix element in all IR-singular limits and are simple enough to be
integrated analytically over all phase-space regions that contain singular configurations of
the real matrix element. At NLO, three-parton colour-ordered tree-level matrix elements
naturally have the correct singular behaviour and are also integrable over the relevant
phase-space regions. The idea of antenna subtraction is to use these physical matrix
elements for the construction of subtraction functions. Hence, the three-parton tree-level
antenna functions are defined as the ratio of the colour-ordered three-parton tree-level
squared matrix element and the squared matrix element of the underlying two-parton
born process,

X0
3 (i, j, k) = Sijk,IK

|M0
ijk|2

|M0
IK |2

, (4.41)

where the symmetry factor S takes identical particles symmetries and degeneracies in the
definition of the antenna into account. At NNLO the construction of antenna functions is
based on renormalized one-loop three-parton and tree-level four-parton matrix elements,
where the tree-level four-parton antenna is defined as

X0
4 (i, j, k, l) = Sijkl,IK

|M0
ijkl|2

|M0
IL|2

, (4.42)

and the one-loop three-parton antenna is given by

X1
3 (i, j, k) = Sijk,IK

|M1
ijk|2

|M0
IK |2

−X0
3 (i, j, k)

|M1
IK |2

|M0
IK |2

. (4.43)
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Figure 4.1: Tree-level and one-loop three-parton antenna functions. White blobs represent tree
structres with one incoming particle being either a photon, a neutralino, or a Higgs boson de-
pending on the respective antenna function. Grey blobs represent tree structures in QCD for
tree-level antennae X0

3 and one-loop QCD corrections for one-loop antenna functions X1
3 . The

partons i and k are the hard radiators, and ĩj and k̃j represent the partons the antenna collapses
to in unresolved limits of parton j.

As we have seen in Section 3.2, one-loop amplitudes behave in implicit singular limits
as (tree×loop)+(loop×tree), where the first factor in the two products describes the
perturbative order of the antenna function (tree or loop level), and the second factor
describes the order of the multiplied squared matrix element. The one-loop three-parton
antenna X1

3 is used to construct the (loop×tree) part and, therefore, the second part on
the right-hand side of (4.43) is used to remove the (tree×loop) part from the definition
of the one-loop three-parton antenna.

Antenna functions can be determined by their external partons and by the radiator par-
tons, which are the partons with corresponding hard momenta in IR-singular limits of the
antenna. In Table 4.1 we show the different antennae, where we classify them according
to their radiator partons leading to three different groups: the quark–antiquark antenna
functions (X = A,B,C), the quark–gluon antenna functions (X = D,E), and the gluon–
gluon antenna functions (X = F,G,H). The physical matrix elements used to calculate
the quark–antiquark antenna functions are obtained from γ∗ → qq̄ + (partons) [104],
quark–gluon antennae from neutralino decays χ̃ → g̃ + (partons) [105] and gluon–gluon
antennae from H → (partons) [106]. All antenna functions are listed in Table 4.1 and
depicted in Figs. 4.1 and 4.2.
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Radiator External partons Antennae

qq̄

qgq̄ A0
3(q, g, q̄), A

1
3(q, g, q̄), Ã

1
3(q, g, q̄), Â

1
3(q, g, q̄)

qggq̄ A0
4(q, g, g, q̄), Ã

0
4(q, g, g, q̄)

qq′q̄′q̄ B0
4(q, q

′, q̄′, q̄)

qqq̄q̄ C0
4(q, q, q̄, q̄)

qg

qgg D0
3(q, g, g), D

1
3(q, g, g), D̂

1
3(q, g, g)

qggg D0
4(q, g, g, g)

qq′q̄′ E0
3(q, q

′, q̄′), E1
3(q, q

′, q̄′), Ẽ1
3(q, q

′, q̄′), Ê1
3(q, q

′, q̄′)

qq′q̄′g E0
4(q, q

′, q̄′, g), Ẽ0
4(q, q

′, q̄′, g)

gg

ggg F 0
3 (g, g, g), F

1
3 (g, g, g), F̂

1
3 (g, g, g)

gggg F 0
4 (g, g, g, g)

gqq̄ G0
3(g, q, q̄), G

1
3(g, q, q̄), G̃

1
3(g, q, q̄), Ĝ

1
3(g, q, q̄)

gqq̄g G0
4(g, q, q̄, g), G̃

0
4(g, q, q̄, g)

qq̄q′q̄′ H0
4 (q, q̄, q

′, q̄′)

Table 4.1: Antenna functions classified according to their radiator partons. Subleading colour
contributions are indicated by a tilde and antennae that include corrections that depend on the
number of fermion flavours are indicated with a hat.

Integration of antennae

The physical processes used to construct antenna functions are chosen such that the an-
tennae defined in the previous section can be integrated over the its singular phase-space
regions analytically. The use of unitarity relations allows the phase-space integrals to be
rewritten in terms of loop integrals with cut propagators [94, 107–109] which were then
reduced to a set of master integrals using integration-by-parts (IBP) relations obtained
with Laporta’s algorithm. The obtained master integrals were then calculated via the
differential-equations technique leading to the analytical results for the integrated anten-
nae presented in [107–110]. Using this procedure, the integrated final–final three-parton
tree-level and one-loop antenna functions are obtained by integrating the corresponding
final–final antennae over the reduced three-particle antenna phase space introduced in
(4.16),

X n
ijk(sijk) =

1

C(ϵ)

∫
dΦXijk

Xn
ijk(i, j, k), n = 0, 1, (4.44)
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Figure 4.2: Tree-level four-parton antenna functions. As in Fig. 4.1, white blobs represent tree
structures with one incoming particle being either a photon, a neutralino, or a Higgs boson
depending on the respective antenna function, and grey blobs represent tree structures in QCD.
The partons i and l are the hard radiators, and ĩjk and j̃kl represent the partons the antenna
collapses to in unresolved limits of partons j and k.

where the factor

C(ϵ) =
(4π)ϵe−γϵ

8π2
(4.45)

is included to account for the normalization of the renormalized strong coupling constant
[84]. Similarly, the integrated final–final four-parton antenna functions are obtained by
integration over the four-parton antenna phase space (4.23),

X 0
ijkl(sijkl) =

1

C(ϵ)2

∫
dΦXijkl

X0
ijkl(i, j, k, l). (4.46)

Considering the different phase-space factorization in the initial–final case (4.26) com-
pared to the final–final case the three-parton initial–final integrated antenna functions
are defined as

X n
a,ij(saij;xa) =

1

C(ϵ)

∫
dΦ2

Q2

2π
δ(xa − x̂a)X

n
a,ij(a, i, j), n = 0, 1. (4.47)
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The four-parton integrated initial–final antennae are obtained via

X 0
a,ijk(saijk;xa) =

1

C(ϵ)2

∫
dΦ3

Q2

2π
δ(xa − x̂a)X

0
a,ijk(a, i, j, k), (4.48)

in line with the phase-space factorization in (4.30). The initial–initial integrated antenna
functions follow from the integration over the reduced phase space given in (4.37),

X n
ab,i(sabi;xa, xb) =

1

C(ϵ)

∫
[dki]xaxbδ(xa − x̂a)δ(xb − x̂b)X

n
ab,i(a, b, i), n = 0, 1, (4.49)

and at NNLO from the integration over the reduced phase space in (4.40),

X 0
ab,ij(sabij;xa, xb) =

1

C(ϵ)2

∫
[dki][dkj]xaxbδ(xa − x̂a)δ(xb − x̂b)X

0
ab,ij(a, b, i, j). (4.50)

Angular terms

In Section 4.2 we saw that NNLO phase-space mappings are constructed such that they
reduce to NLO mappings in single unresolved limits. This allows for the subtraction of
singularities in single unresolved limits of the four-parton antenna functions, e.g.Xab,ij, by
products of two three-parton antenna functions, e.g.Xa,ijXāb,J . This behaviour of antenna
functions is vital to avoid over-subtraction in single unresolved limits when constructing
subtraction terms that approach the full matrix element in all unresolved limits before
any integration (see Section 4.5). However, there are four-parton antenna functions that
do not reduce to a product of unpolarized splitting functions and spin-averaged three-
parton antenna functions in single unresolved limits but instead include spin-dependent
splitting functions P µν and tensorial three-parton antenna functions (X0

3 )µν . The four-
parton antenna functions that show this behaviour are the ones that include collinear
singularities arising from gluon splittings and have the following factorization properties
in the corresponding singular limits:

A0
4(1, 3, 4, 2)

3g ||4g−→ 1

s34
P µν
gg→G(z)(A

0
3)µν(1, (34), 2),

B0
4(1, 3, 4, 2)

3q ||4q̄−→ 1

s34
P µν
qq̄→G(z)(A

0
3)µν(1, (34), 2),

D0
4(1, 3, 4, 5)

3g ||4g−→ 1

s34
P µν
gg→G(z)(D

0
3)µν(1, (34), 5),

D0
4(1, 3, 4, 5)

4g ||5g−→ 1

s45
P µν
gg→G(z)(D

0
3)µν(1, 3, (45)),

E0
4(1, 3, 4, 5)

3q ||4q̄−→ 1

s34
P µν
qq̄→G(z)(D

0
3)µν(1, (34), 5),

F 0
4 (1, 2, 3, 4)

ig ||jg−→ 1

sij
P µν
gg→G(z)(F

0
3 )µν((ij), k, l),

G0
4(1, 3, 4, 2)

1g ||2g−→ 1

s12
P µν
gg→G(z)(G

0
3)µν((12), 3, 4),

G0
4(1, 3, 4, 2)

3q ||4q̄−→ 1

s34
P µν
qq̄→G(z)(F

0
3 )µν(1, (34), 2),
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H0
4 (1, 2, 3, 4)

1q ||2q̄−→ 1

s12
P µν
qq̄→G(z)(G

0
3)µν((12), 3, 4),

H0
4 (1, 2, 3, 4)

3q ||4q̄−→ 1

s34
P µν
qq̄→G(z)(G

0
3)µν((34), 1, 2). (4.51)

As a result of this factorization behaviour it is not possible to subtract single unresolved
limits of the four-parton antennae in (4.51) in the respective collinear limits by a product
of spin-averaged three-parton antennae. There are two ways to construct a fully local
subtraction term and therefore circumvent this problem. The first method modifies the
four-parton antenna functions in (4.51) by a local counterterm,

X0
4 (1, i, j, 2) → X0

4 (1, i, j, 2)−ΘX0
3
(i, j, z, k⊥), (4.52)

that integrates to zero over the unresolved phase space and is constructed such that
the modified antennae have the desired asymptotic behaviour in unresolved limits. The
variables k⊥ and z in (4.52) are used to parametrize the collinear limit of the two po-
tentially collinear partons. In detail, the collinear limit of two partons p1 and p2 can be
parametrized by

pµ1 = zP µ + kµ⊥ − k2⊥
z

nµ

2P · n, (4.53)

pµ2 = (1− z)P µ − kµ⊥ − k2⊥
1− z

nµ

2P · n, (4.54)

where P µ denotes the collinear direction. We can now define the local counterterm as [84]

ΘX0
3
(i, j, z, k⊥) =

1

sij
P µν
ij→(ij)(z, k⊥)(X

0
3 )µν(1, (ij), 2)−

1

sij
Pij→(ij)(z)X

0
3 (1, (ij), 2). (4.55)

That this definition leads to the desired asymptotic behaviour is obvious. Note that the
phase space integral involves an integration over the azimuthal angle ϕ parametrizing the
angle of k⊥ in the perpendicular plane to the collinear direction P . In order to show that
the local counterterm integrates to zero when integrating over the final-state phase space
we now analyze the Lorentz decomposition of a scalar function f(k2⊥) multiplied by kµ⊥k

ν
⊥

integrated over ϕ, starting with the following ansatz for the integral

Iµν ≡ 1

2π

∫ 2π

0

dϕ kµ⊥k
ν
⊥f(k

2
⊥) = A · gµν +B ·Gµν , Gµν = P µnν + P νnµ. (4.56)

Contracting the ansatz with Gµν and the metric tensor fixes the prefactors in the Lorentz
decomposition of Iµν and leads to

Iµν =
k2⊥f(k

2
⊥)

D − 2
· dµν , (4.57)

where

dµν = gµν −
Gµν

P · n. (4.58)
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Using that the spin-dependent splitting functions P µν
ij→(ij) have the structure

P µν
ij→(ij) = Pg · gµν + Pk⊥ · kµ⊥kν⊥, (4.59)

we can now show that the integration over the phase space of the local counterterm (4.55)
reduces to zero,

1

2π

∫ 2π

0

dϕP µν
ij→(ij)(z, k⊥)(X

0
3 )µν(1, (ij), 2) (4.60)

=
1

2π

∫ 2π

0

dϕ

(
(Pg ·

{
gµν − Gµν

P · n︸ ︷︷ ︸
dµν

+
Gµν

P · n
}
+ Pk⊥ · kµ⊥kν⊥

)
(X0

3 )µν(1, (ij), 2)

(4.61)

=

(
Pg + Pk⊥

k2⊥
D − 2

)

︸ ︷︷ ︸
=Pij→(ij)

dµνX0
3,µν(1, (ij), 2) + Pg

GµνX0
3,µν(1, (ij), 2)

P · n︸ ︷︷ ︸
=0

(4.62)

=Pij→(ij)(z, k⊥)(X
0
3 )(1, (ij), 2). (4.63)

In the first step we have applied (4.57) to the tensorial part of the local counterterm in
(4.55) and used that the mapped momenta in the tensorial antenna do not depend on k⊥.
In the second step we have identified the spin-averaged splitting and antenna functions
and used the Ward identity for the radiator gluon,

P µX0
3,µν(1, (ij), 2) = 0. (4.64)

This, indeed, leads us to the conclusion that the local counterterm (4.55) integrated over
ϕ vanishes. The second method is also based on the possibility of constructing a local
counterterm as (4.55), but here two phase-space points at a time are combined so that it
is not necessary to explicitly use local counterterms. In more detail, the collinear limit of
antennae in (4.51) can be written as

X0
4 (1, i, j, 2)

i||j−→ 1

sij
P µν
ij→G(z)(X

0
3 )µν(1, (ij), 2) (4.65)

=
1

sij
Pij→G(z)(X

0
3 )(1, (ij), 2) + ang., (4.66)

where the angular terms “ang.” in the last equation are given by the local counterterm
ΘX0

3
(i, j, z, k⊥) and contain ϕ-dependent terms being proportional to cos(2ϕ + α) [111].

Therefore, by combining two phase-space points that are related by a rotation around the
collinear axis by ∆ϕ = π

2
the angular terms drop out in the sum. In this way one can

avoid the explicit use of the local counterterm when implementing subtraction terms that
include antennae in (4.51).

As we have seen in Section 3.1, the subleading colour part is relevant in order to extract
the part of loop amplitudes with abelian gluons. Therefore, in order to calculate O(αsα)
corrections we only need subleading colour parts of antenna functions. Since only leading
colour antenna functions are present in (4.51) angular terms are not relevant for O(αsα)
corrections.
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4.4 Antenna subtraction at NLO

Here we discuss the construction of real and virtual subtraction terms and their combi-
nation with mass factorization kernels at NLO. We limit our discussion to subtraction
terms relevant for this work. An extensive review of all subtraction terms at NLO can be
found in [82, 96]. In principle, colour ordering of amplitudes is required in order to con-
struct antenna subtraction terms. However, as described in Section 3.1 we can extend the
construction of antenna subtraction terms from leading colour also to subleading colour
by rewriting these contributions in terms of squared matrix elements with abelian gluons
(which is possible for up to five coloured particles [96]). Therefore, antenna subtraction
can also be applied to O(αsα) corrections, keeping in mind that for higher multiplicities
than five coloured particles modifications are needed. In the following, however, we will
restrict the discussion to leading colour contributions and always assume that squared
matrix elements have been reduced to the sum of colour-ordered squared subamplitudes.

4.4.1 Mass factorization term at NLO

As discussed in Section 3.3, at NLO, the mass factorization term is given by

dσ̂MF
ij,NLO = −C(ϵ)

∫
dza
za

dzb
zb

dΦn({pi}ni=1; zapa, zbpb)
1

Sn

× Γ
(1)
ij,kl(za, zb)|M0

n(p1, . . . , pn; zapa, zbpb)|2J (n)
n (p1, . . . , pn), (4.67)

where

Γ
(1)
ij,kl(za, zb) = δ(1− zb)δljΓ

(1)
ki (za) + δ(1− za)δkiΓ

(1)
lj (zb) (4.68)

with Γ
(1)
ij given in (3.50). In antenna subtraction the mass factorization kernels are com-

bined with integrated antenna functions to form antenna strings used to cancel the explicit
poles in the virtual correction included in an NLO calculation. In the next section this is
explained in more detail.

4.4.2 Real and virtual subtraction terms

We are now able to construct subtraction terms dσ̂S
NLO that mimic the real NLO correction,

dσ̂R
NLO, in all single unresolved limits and therefore allow for a numerical integration of

their combination in four space-time dimensions,
∫

n+1

[
dσ̂R

NLO − dσ̂S
NLO

]
. (4.69)

The two basic properties that govern the structure of the subtraction terms are the factor-
ization of the (n+1)-particle phase space and the factorization of squared matrix elements
in unresolved limits. These properties were used in order to construct the phase-space
mappings and antenna functions discussed in the previous sections. On the one hand,
the factorization of squared matrix elements into an antenna function and an underlying
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squared n-parton matrix element is the key ingredient that motivates the shape of the
real subtraction term. On the other hand, the phase-space mappings allow for the fac-
torization of the (n + 1)-parton phase space into a n-particle phase space of composite
momenta and an antenna phase space, which is used to define integrated antennae that
cancel explicit divergences in the virtual NLO correction, dσ̂V

NLO.

We start with the construction of the real subtraction term for the final–final case,

dσ̂S,ff
NLO =NCNR

NLO

∑

j

dΦn+1({pi}n+1
i=1 ; pa, pb)

1

Sn+1

(4.70)

×X0
3 (pi, pj, pk)|M0

n(p1, . . . , pI , pK , . . . , pn; pa, pb)|2J (n)
n (. . . , pI , pK , . . . ),

which reflects the factorization properties of the real squared matrix element. The sum
over j includes all possibly unresolved partons in the final state, and we introduced the
constants,

C̄(ϵ) = (4π)ϵe−ϵγ, (4.71)

NR
NLO =

αs

2π

C̄(ϵ)

C(ϵ)
. (4.72)

with C(ϵ) defined in (4.45). As we have to distinguish between electroweak and QCD
corrections in later chapters we also introduce the notation

NRs
NLO =

αs

2π

C̄(ϵ)

C(ϵ)
, NRew

NLO =
α

2π

C̄(ϵ)

C(ϵ)
. (4.73)

The reduced matrix element M0
n and the jet function J

(n)
n include momenta mapped by

the finial–final phase-space mapping, pI , pK . Furthermore, NC = C NC,ij, ij = qq̄, qg, is
the product of a process dependent colour factor C and an additional channel dependent
factor,

NC,qq̄ = 1, NC,qg =
N

N2 − 1
, (4.74)

which adjusts the colour normalization of the reduced matrix element. In principle, in
d dimensions also the normalization factor for the helicity degrees of freedom has to be
adjusted leading to a ε-dependent factor N ε

C . As IR singularities in integrated subtraction
terms are regularized dimensionally this factor N ε

C has to be used there and is explicitly
given in (4.86). However, in four spacetime dimensions N ε

C = NC + O(ε), since quarks
and gluons have the same number of helicity degrees of freedom for d = 4. For quark–
antiquark-induced processes the normalization of the original and the reduced matrix
element are equal and therefore no adaptation is needed. However, in case of (anti)quark–
gluon-induced processes the reduced matrix element is quark–antiquark induced and has
the corresponding colour normalization. Therefore, the normalization has to be adapted
to be the one of (anti)quark-gluon induced processes by including NC,qg.
In cases with one radiator parton in the initial state and one radiator in the final state
the corresponding subtraction term is given by

dσ̂S,if
NLO =NCNR

NLO

∑

j

∑

i=a,b
l∈{a,b}\i

dΦn+1({pr}n+1
r=1 ; pa, pb)

1

Sn+1

(4.75)
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×X0
i,jk(pi, pj, pk)|M0

n(p1, . . . , pJ , . . . , pn;xipi, pl)|2J (n)
n (. . . , pJ , . . . ),

where the initial–final phase-space mapping is used to construct the composite momenta
that appear in the reduced matrix element and the jet function. In cases where only one
radiating parton is contained in the initial state, say parton a, the sum over i = a, b has
to be replace by the term i = a only.

Similar to the final–final and initial–final cases, the initial–initial subtraction term is given
by

dσ̂S,ii
NLO =NCNR

NLO

∑

j

dΦn+1({pi}n+1
i=1 ; pa, pb)

1

Sn+1

(4.76)

×X0
ab,j(pa, pj, pb)|M0

n(p̃1, . . . , p̃n;xapa, xbpb)|2J (n)
n (p̃1, . . . , p̃n+1).

After reparametrizing the (n+1)-particle phase space in the finial–final, initial–final, and
initial–initial NLO subtraction functions in terms of the corresponding mapped momenta
one can integrate analytically over the factorized antenna phase space, since the reduced
matrix elements and jet functions depend only on the mapped momenta but not on
antenna momenta. This leads to integrated subtraction terms for the finial–final, the
initial–final, and the initial–initial case. Explicitly, integrated finial–final NLO subtraction
terms are given by

dσ̂T,ff
NLO =− NCN V

NLO

Sn+1

∑

i,k

∫
dza
za

dzb
zb

dΦn({pi}ni=1; zapa, zbpb)

×J (1)
2,ff (i, k)|M0

n(p1, . . . , pn; zapa, zbpb)|2 J (n)
n ({pi}ni=1), (4.77)

where

N V
NLO =

αs

2π
C̄(ϵ), N Vs

NLO =
αs

2π
C̄(ϵ), N Vew

NLO =
α

2π
C̄(ϵ), (4.78)

and the integrated final–final antenna string J (1)
2,ff is given by the integrated three-parton

antenna functions (4.44),

J (1)
2,ff (I,K) = δ(1− za)δ(1− zb)X 0

ijk(sIK). (4.79)

Similar, the integrated initial–final NLO subtraction term

dσ̂T,if
NLO =− N ε

C N V
NLO

Sn+1

∑

k

∑

j=a,b
l∈{a,b}\j

∫
dza
za

dzb
zb

dΦn({pr}nr=1; zapa, zbpb)

×J (1)
2,if (j, k; zj, zl)|M0

n(p1, . . . , pn; zapa, zbpb)|2 J (n)
n ({pi}ni=1) (4.80)

depends on NLO initial–final antenna strings J (1)
2,if that include mass factorization kernels

Γ
(1)
ki in order to cancel all explicit IR singularities in the virtual contribution. The only

NLO initial–final antenna string, J (1)
2,if , relevant for this work is given by

J (1)
2,if (ˆ̄aq, Jq̄;xa, xb) = A0

q,gq(sāJ , xa)δ(1− xb)− Γ(1)
qq (xa)δ(1− xb). (4.81)
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This antenna string is relevant for cases with a potentially unresolved gluon radiated from
an initial- and a final-state quark. We have also introduced the factor N ε

C which is given
in (4.86) below. In the initial–final case one of the radiator partons is in the initial state
and therefore one convolution is included in (4.80). In case of two initial-state radiators
the corresponding subtraction term includes two convolutions,

dσ̂T,ii
NLO =− N ε

C N V
NLO

Sn+1

∑

j,k

∫
dza
za

dzb
zb

dΦn({pi}ni=1; zapa, zbpb)

×J (1)
2,ii(j, k, za, zb)|M0

n(p1, . . . , pn; zapa, zbpb)|2 J (n)
n ({pi}ni=1). (4.82)

Again, the integrated antenna strings include mass factorization kernels, and the inte-
grated single unresolved antennae strings, J (1)

2 , relevant for this work are given by

J (1)
2,ii(ˆ̄aq,

ˆ̄bq̄;xa, xb) = A0
qq,g(sāb̄, xa, xb)− Γ(1)

qq (xa)δxb
− Γ(1)

qq (xb)δxa ,

J (1),g→q
2,ii (ˆ̄aq,

ˆ̄bq̄;xa, xb) = A0
qg,q(sāb̄, xa, xb)− Γ(1)

qg (xb)δxa .
(4.83)

If a potentially unresolved gluon is radiated off an initial-state quark pair, then the un-
integrated antenna function corresponding to the first antenna string, J (1)

2,ii , mimics the
singular behaviour in this situation. The second integrated antenna string corresponds to
cases where a quark is radiated off an initial-state quark and an initial-state gluon.

In order to obtain corrections to hadronic cross sections one has to include convolutions
with parton distribution functions. By shifting the convolution over the energy frac-
tion, 1 − zi, of the potentially unresolved particle to the parton distribution functions
(see App. F), the stability of the corresponding numerically evaluated integrals can be
improved. In case of initial–initial corrections to hadronic cross sections one obtains,

dσT,ii
NLO =−N ε

C NR
NLOC̄(ϵ)

∫
dζa
ζa

dζb
ζb

∫ 1

ζa

dza
zb

∫ 1

ζb

dzb
zb

Sn

Sn+1

fa

(
ζa
za

)
fb

(
ζb
zb

)

×
∑

j,k

J (1)
2,ii(j, k, za, zb) dσ̂

LO(ζaPa, ζbPb). (4.84)

For initial–final corrections the corresponding modification leads to

dσT,if
NLO =−N ε

C NR
NLOC̄(ϵ)

∫
dζa
ζa

dζb
ζb

∫ 1

ζa

dza
zb

∫ 1

ζb

dzb
zb

Sn

Sn+1

fa

(
ζa
za

)
fb

(
ζb
zb

)

×
∑

k

∑

j=a,b
l∈{a,b}\j

δ(1− zl)J (1)
2,if (j, k, zj, zl) dσ̂

LO(ζaPa, ζbPb). (4.85)

Finally, we have to discuss the proper inclusion of the factor N ε
C which takes care of the

correct normalization of subtraction terms. For quark–antiquark induced processes this
factor is just 1, but for (anti)quark–gluon-induced processes it is given by

N ε
C,qg = NC,qg

1

Sg→q

, (4.86)
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where

Sg→q =
#helicitiesgluons

#helicitiesquarks
=
d− 2

2
= 1− ε. (4.87)

However, since we use the MS scheme the mass factorization kernels only include a 1/ε
contribution and a generic finite part, but no further finite contributions. This means
that we do not include any finite terms that would be produced when N ε

C,qg is multiplied
with a mass factorization kernel, so that N ε

C,qg has to be used in the following way,

N ε
C,qgJ

(1)
2 = N ε

C,qgX 0
3 +NC,qgΓ(1), (4.88)

and additional finite terms are only produced in the combination of the integrated antenna
function X 0

3 and N ε
C,qg, but not in combination with the mass factorization kernel. This

prescription is equivalent to

N ε
C,qgJ

(1)
2 = NC,qgX 0

3 +NC,qgSg→qΓ
(1), (4.89)

leading to the same additional finite terms as the ones produced in (4.88).

4.5 Antenna subtraction at NNLO

We now proceed by extending the description of the antenna formalism to NNLO cal-
culations. At this perturbative order four-parton tree-level antenna functions and their
integrated counterparts are introduced in order to handle singularities in matrix elements
due to double-soft and triple-collinear configurations. Since the various antenna functions,
needed to construct the NNLO antenna subtraction terms described in the following sec-
tions, are spread over various papers we give a short overview of potential sources without
any claim of completeness. For scenarios with hadronic initial-state radiators at NLO all
needed antennae and in particular the integrated antennae are constructed in [103]. The
relevant antennae for radiator partons of type final–final at NLO and NNLO can be found
in [84]. Antenna functions for the double-real case with hadronic initial states at NNLO
can be obtained via crossing of the antenna functions constructed for the case with two
final–final radiator partons. The integrated versions of them including integrated four-
parton tree antennae, integrated three-parton one loop antenna functions, and integrated
three-parton tree-level antennae including terms in the Laurent expansion in ϵ up to ϵ2
are reported in [108–110,112].

4.5.1 Double-real subtraction term

We again assume that squared matrix elements have been written in terms of a sum of
colour-ordered squared subamplitudes which allows for the identification of four pieces
contributing to the double-real NNLO subtraction term,

dσ̂S
NNLO = dσ̂S,a

NNLO + dσ̂S,b
NNLO + dσ̂S,c

NNLO + dσ̂S,d
NNLO, (4.90)
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i j k l

(a) Partons j and k are colour connected.
i j k l m

(b) Partons j and l are almost colour connected.
i j k n o p

(c) Partons j and o are colour disconnected.

Figure 4.3: Different colour connections relevant for the construction of subtraction terms within
the antenna subtraction method.

categorized according to their colour structure. The first double-real subtraction term,
dσ̂S,a

NNLO, subtracts singular limits where only one parton in the final state becomes unre-
solved. The second, dσ̂S,b

NNLO, is used to cancel singular limits where two colour-connected
partons become unresolved. It can be further split into a part that involves the four-parton
tree-level antenna functions, dσ̂S,b1

NNLO, subtracting the colour-connected limit, and a part
including the product of two three-parton tree-level antennae, dσ̂S,b2

NNLO, that subtracts
spurious singularities of dσ̂S,b1

NNLO in single unresolved limits,

dσ̂S,b
NNLO = dσ̂S,b1

NNLO + dσ̂S,b2
NNLO. (4.91)

The third contribution to the full double-real NNLO subtraction term, dσ̂S,c
NNLO, is used

to cancel oversubtractions caused by dσ̂S,a
NNLO and dσ̂S,b2

NNLO in limits where two almost
colour-connected partons become unresolved, where the different kinds of colour con-
nections between partons are depicted in Fig. 4.3. This subtraction term also receives
contributions from terms that cancel oversubtractions in wide-angle soft gluon radiation
configurations. This subtraction term is only relevant for processes that involve more than
five partons with three resolved jets in the double-real contribution. The last ingredient in
the construction of the double-real subtraction term, dσ̂S,d

NNLO, compensates oversubtrac-
tions caused by dσ̂S,a

NNLO in double-unresolved colour-unconnected limits. For processes
with less than six external partons in the double-real contribution this subtraction term
is not needed.

4.5.1.1 Subtraction term for single-unresolved partons, dσ̂S,a
NNLO

For single-unresolved limits we already constructed an appropriate subtraction term,
dσ̂S

NLO, in the discussion of antenna subtraction at NLO. The subtraction term used
at NLO can be extended to NNLO by a modification of the number of external partons
used by the jet function to form n jets, i.e. J (n)

n → J
(n+1)
n . This leads to the following

NNLO subtraction term,

dσ̂S,a
NNLO =

NCNRR
NNLO

Sn+2

∑

j

dΦn+2({pi}n+2
i=1 ; pa, pb) (4.92)

×X0
3 (pi, pj, pk)|M0

n+1({p̃i}n+2
i=1 \ {p̃j}; p̄a, p̄b)|2J (n+1)

n ({p̃i}n+2
i=1 \ {p̃j}),
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where the mapping used to produce the composite momenta p̃i, p̄a, p̄b depends on the
type of the radiator partons i and k involved in the antenna function. For two-loop QCD
corrections the prefactor NRR

NNLO is given by

NRR
NNLO = (NR

NLO)
2. (4.93)

In the case of NNLO O(αsα) corrections we have

NRsRew
NNLO = NRs

NLO NRew
NLO. (4.94)

After integration over the antenna phase space parametrized by the momenta pi, pj, pk
(the momenta involved in the antenna) the subtraction term for single-unresolved partons
dσ̂S,a

NNLO is reintroduced in the real–virtual part in order to cancel explicit singularities.

4.5.1.2 Subtraction term for two unresolved colour-connected partons, dσ̂S,b
NNLO

The subtraction term for configurations with two colour-connected unresolved partons is
split into two parts,

dσ̂S,b
NNLO = dσ̂S,b1

NNLO + dσ̂S,b2
NNLO, (4.95)

where the first part, dσ̂S,b1
NNLO, contains four-parton tree-level antenna functions which are

genuinely new ingredients at NNLO. This part is subtracting the singularities in double-
unresolved limits. However, it also introduces spurious singularities in single-unresolved
limits leading to the introduction of the second part, dσ̂S,b2

NNLO, in order to cancel them.
In this way, dσ̂S,b

NNLO contains singularities only in double-unresolved limits. Explicitly,
the subtraction term for configurations with colour-connected double-unresolved partons
reads

dσ̂S,b1
NNLO =

NCNRR
NNLO

Sn+2

∑

j,k

dΦn+2({pi}n+2
i=1 ; pa, pb) (4.96)

×X0
4 (pi, pj, pk, pl)|M0

n({p̃i}n+2
i=1 \ {p̃j, p̃k}; p̄a, p̄b)|2J (n)

n ({p̃i}n+2
i=1 \ {p̃j, p̃k}),

where the (n + 2) → n phase-space mapping used to obtain the composite momenta p̃i
has to be adjusted according to the type (initial–initial, initial–final, or finial–final) of the
involved antenna.

In singular unresolved limits four-parton tree-level antennae reduce to a product of two
three-parton tree-level antenna functions. Therefore, spurious singularities in single-
unresolved limits can be removed from dσ̂S,b1

NNLO with

dσ̂S,b2
NNLO =− NCNRR

NNLO

Sn+2

∑

j

dΦn+2({pi}n+2
i=1 ; pa, pb) (4.97)

×X0
3 (pi, pj, pk)X

0
3 (p̃i, p̃k, p̃l)|M0

n({ ˜̃pi}n+2
i=1 \ { ˜̃pj, ˜̃pk}; p̄a, p̄b)|2

× J (n)
n ({ ˜̃pi}n+2

i=1 \ { ˜̃pj, ˜̃pk}).

After integration over the single-unresolved antenna phase space, dσ̂S,b2
NNLO is reintro-

duced in the real–virtual subtraction term in order to remove explicit divergences in
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Figure 4.4: The three emission patterns of the potentially unresolved gluons i and k between
the hard radiators e, j, l, and f that lead to an over-subtraction of singularities in dσ̂S,a

NNLO and
dσ̂S,b2

NNLO.

the loop×tree subtraction term, dσ̂T,b2
NNLO, relevant for the cancellation of implicit singu-

larities of real–virtual amplitudes. In contrast to dσ̂S,b2
NNLO, dσ̂S,b1

NNLO is integrated over the
double-unresolved antenna phase space and reintroduced in the double-virtual subtraction
term.

4.5.1.3 Subtraction term for almost colour-connected partons, dσ̂S,c
NNLO

The subtraction term dσ̂S,c
NNLO for singularities originating from the emission of almost

colour-connected partons is only relevant for processes with more than four external par-
tons. This subtraction term accounts for oversubtracted singularities in dσ̂S,a

NNLO and
dσ̂S,b

NNLO that appear due to unordered emissions of unresolved partons in the subleading
colour contribution. As the unordered emission of partons is only present in the sub-
leading colour contribution dσ̂S,c

NNLO does not contribute to the leading colour part. Even
though processes relevant for this work never reach multiplicities of external partons large
enough to produce spurious singularities associated to dσ̂S,c

NNLO, we still discuss this contri-
bution in the following in order to obtain a full description of all ingredients relevant for
constructing subtraction terms within the framework of antenna subtraction at NNLO.

In case of two almost-colour-connected unresolved partons the subtraction function dσ̂S,a
NNLO

is twice as big as it should be compared to the matrix element. Moreover, at subleading
colour the subtraction term dσ̂S,b

NNLO potentially oversubtracts implicit singularities from
the subleading colour antennae X̃0

4 . The purpose of the subtraction term dσ̂S,c
NNLO is to

correct for both of these over-subtractions originating either from dσ̂S,a
NNLO or dσ̂S,b

NNLO.

We follow [96] and discuss the final–final case; a similar construction is also possible
for the two other cases. The subleading colour subtraction term dσ̂S,b1

NNLO relevant for two
unresolved colour-connected limits involves four-parton antenna functions X̃0

4 , where each
of them leads to a corresponding block in dσ̂S,c

NNLO. Consider two potentially unresolved
partons i, k each emitted between two of the four hard radiators e, j, l, f . First, parton
k is emitted between (e, j), (j, l), or (l, f). Second, the potentially unresolved parton i is
always emitted between the pair (j, l), as depicted in Fig. 4.4. We also have to include
the reversed order where first parton i is emitted and then parton k.

We first consider the subtraction function dσ̂S,a
NNLO which includes contributions of the

form

Sa
eij ≡ X0

3,eij|M0
n+1(. . . , p̃e, p̃j, . . . )|2,

Sa
ekj ≡ X0

3,ekj|M0
n+1(. . . , p̃e, p̃j, . . . )|2
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leading to over-subtraction of singular limits where both partons i and k become unre-
solved. The corresponding block in dσ̂S,c

NNLO to cancel half of Sa
eij and Sa

ekj in the limit
where i and k are unresolved is of the form

−1

2

∑

s=i,k
s′∈{i,k}\s

X0
3 (e, s, j) X

0
3 ((̃js), s

′, l) |M0
n(. . . , (̃es),

˜((js)s′), (̃s′l), f, . . .)|2,

and a similar contribution for the emission pattern that corresponds to the terms Sa
lif

and Sa
lkf . Additionally, also dσ̂S,b2

NNLO leads to over-subtractions in limits where partons i, k
become unresolved with respect to parton j due to terms like

−X0
3 (j, i, k)X

0
3 ((̃ij), (̃ik), l)−X0

3 (j, k, i)X
0
3 ((̃jk), (̃ki), l) (4.98)

i||k||j∼−2X0
3 (j, i, k)X

0
3 (j, k, l),

present in dσ̂S,b2
NNLO. The same applies to situations where partons i and k become un-

resolved with respect to parton l. The term in dσ̂S,c
NNLO that cures this potential over-

subtraction for i and k becoming unresolved with respect to j is schematically given
by

∑

s=i,k
s′∈{i,k}\s

1

2
X0

3 (j, s, l) X
0
3 ((̃js), s

′, (̃sl)) |M0
n(. . . , e,

˜((js)s′), ˜(s′(sl)), f, . . . )|2. (4.99)

Therefore, the subtraction term dσ̂S,c
NNLO consists of blocks of the following form,

dσ̂S,c
NNLO =

NCNRR
NNLO

Sn+2

∑

s,s′

dΦn+2({pi}n+2
i=1 ; pa, pb) (4.100)

×
{1
2
X0

3 (j, s, l) X
0
3 ((̃js), s

′, (̃sl))
[
|M0

n|2J (n)
n

]
(. . . , e, ˜((js)s′), ˜(s′(sl)), f, . . . )

− 1

2
X0

3 (e, s, j) X
0
3 ((̃js), s

′, l)
[
|M0

n|2J (n)
n

]
(. . . , (̃es), ˜((js)s′), (̃s′l), f, . . .)

− 1

2
X0

3 (l, s, f) X
0
3 (j, s

′, (̃ls))
[
|M0

n|2J (n)
n

]
(. . . , e, (̃js′), (̃s′(ls), (̃fs), . . .)

}
.

In [113] it has been first noticed that the sum of the differential cross section dσ̂
(0)
5 used to

calculate three-jet observables in e+e− collisions and the double-real NNLO subtraction
term dσ̂S

NNLO,

dσ̂
(0)
5 − dσ̂S,a

NNLO − dσ̂S,b
NNLO − dσ̂S,c

NNLO − dσ̂S,d
NNLO, (4.101)

still contains soft poles noticeable as a logarithmic dependence on a slicing parameter
that corresponds to a cut in the corresponding soft phase-space region. These soft poles
were attributed to phase-space regions where the soft parton is emitted with a large polar
angle with respect to one of the hard radiators in the center-of-mass frame of the reduced
momenta (i.e. the momenta obtained after the application of a final-state phase-space
mapping) of the two hard radiator partons. Therefore, an additional subtraction term
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dσ̂soft has to be introduced in order to cancel this large-angle soft radiation. It can be
shown [96] that the large-angle soft terms corresponding to the three constituents included
in dσ̂S,c

NNLO in (4.100) can be chosen as

−1

2

[
Sαsβ − SASB

]
·X0

3 ((̃sj), s
′, (̃sl)) |M0

n(. . . , e,
˜((sj)s′), ˜(s′(sl)), f, . . .)|2, (4.102)

with

(α, β) =
{(
e, (̃sj)

)
,
(
(̃sj), (̃sl)

)
,
(
(̃sl), f

)}
,

(A,B) =
{(
e, ˜((sj)s′)

)
,
( ˜((sj)s′), (̃s′(il))

)
,
( ˜(s′(sl)), f

)}
. (4.103)

The complete subtraction term dσ̂S,c
NNLO, taking care of the over-subtractions due to the

dσ̂S,a
NNLO and dσ̂S,b2

NNLO and including also the large-angle soft subtraction term dσ̂soft, is now
given by

dσ̂S,c
NNLO =

NCNRR
NNLO

Sn+2

∑

s,s′

dΦn+2({pi}n+2
i=1 ; pa, pb) (4.104)

×
{
1

2
X0

3 (j, s, l) X
0
3 ((̃js), s

′, (̃sl))
[
|M0

n|2J (n)
n

]
(. . . , e, ˜((js)s′), ˜(s′(sl)), f, . . . )

− 1

2
X0

3 (e, s, j) X
0
3 ((̃js), s

′, l)
[
|M0

n|2J (n)
n

]
(. . . , (̃es), ˜((js)s′), (̃s′l), f, . . .)

− 1

2
X0

3 (l, s, f) X
0
3 (j, s

′, (̃ls))
[
|M0

n|2J (n)
n

]
(. . . , e, (̃js′), (̃s′(ls), (̃fs) . . .)

+
1

2

[(
S
(̃sj),s,(̃sl)

− S ˜((sj)s′)s ˜(s′(sl))

)
−
(
S
es(̃sj)

− S
es ˜((sj)s′)

)
−
(
S
fs(̃sl)

− S
fs ˜((sl)s′)

)]

X0
3 ((̃sj), s

′, (̃sl))
[
|M0

n|2J (n)
n

]
(. . . , e, ˜((sj)s′), ˜(s′(sl)), f, . . .)

}
.

4.5.1.4 Colour-disconnected subtraction term, dσ̂S,d
NNLO

Colour-disconnected double-unresolved singularities occur in configurations where two
unresolved partons are separated by more than one hard radiator and therefore are only
present in processes with more than five coloured particles. The subtraction term for
single-unresolved limits, dσ̂S,a

NNLO, over-subtracts singularities in colour disconnected lim-
its. The reason for this over-subtraciton is that for each term in dσ̂S,a

NNLO where a parton
j is part of the antenna and parton m is part of the reduced matrix element there is also
a subtraction term in dσ̂S,a

NNLO where j and m change their role. Both of these configura-
tions lead, however, to the same singular limit in double-unresolved colour-disconnected
configurations leading to twice the result needed to cancel the singularities present in the
double-real matrix element. The over-subtraction can be fixed by introducing subtraction
terms like

dσ̂S,d
NNLO =

NCNRR
NNLO

Sn+2

∑

j,m

dΦn+2({pi}n+2
i=1 ; pa, pb) (4.105)
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×X0
3 (pi, pj, pk)X

0
3 (pl, pm, pn)|M0

n({p̃i}n+2
i=1 \ {p̃j, p̃m}; p̄a, p̄b)|2

× J (n)
n ({p̃i}n+2

i=1 \ {p̃j, p̃m}).

As the two unresolved partons are colour disconnected it is possible to integrate dσ̂S,d
NNLO

analytically over the two corresponding disconnected three-parton antenna phase spaces.
The integrated subtraction term is reintroduced in the double-virtual subtraction term.

4.5.2 Real–virtual subtraction term

Real–virtual corrections to squared matrix elements include one-loop corrections and the
radiation of one potentially unresolved parton. Both characteristics lead to singularities of
different kind that have to be accounted for in the corresponding real–virtual subtraction
terms. Loop corrections lead to explicit poles originating from the one-loop integration
whereas the radiated, potentially unresolved parton leads to implicit divergences when
integrating over the phase space. The subtraction term used to cancel these singularities
also reflects these two characteristic properties of real–virtual corrections by being split
into different parts,

dσ̂T
NNLO = dσ̂T,a

NNLO + dσ̂T,b
NNLO + dσ̂T,c

NNLO, (4.106)

where each of the first two contributions to dσ̂T
NNLO is used for the cancellation of one of

the different kinds of singularity types, respectively. dσ̂T,a
NNLO contains terms proportional

to integrated antennae X 0
3 used to cancel explicit poles and is the integrated counterpart

to dσ̂S,a
NNLO, whereas dσ̂T,b

NNLO is constructed such that it cancels the implicit singularities
of the potentially unresolved parton in real–virtual corrections. This contribution is split
further into three parts,

dσ̂T,b
NNLO = dσ̂T,b1

NNLO + dσ̂T,b2
NNLO + dσ̂T,b3

NNLO, (4.107)

where the first two contributions are motivated by the behaviour of one-loop matrix
elements in implicit IR-singular limits and the third contribution is needed to adapt
the renormalization scale used in the renormalization of one-loop antenna functions to
the renormalization scale of other contributions within a certain calculation. The last
contribution to the real–virtual subtraction term, dσ̂T,c

NNLO, is the integrated version of the
almost colour-connected subtraction term dσ̂S,c

NNLO introduced in the previous section and
contains contributions of the form X 0

3X
0
3 .

4.5.2.1 Mass factorization terms at NNLO: Real–virtual contribution

In Section 3.3 we discussed mass factorization kernels needed to cancel all explicit IR
singularities that remain after adding all virtual and real corrections because of the lack
of inclusiveness with respect to initial-state partons in NNLO calculations and classified
them according to the number of final-state partons involved in the appearing matrix
elements. We can use the definition of the NLO correction to the cross section within the
framework of antenna subtraction,
∫

n+1

dσ̂ij,NLO =

∫

n+1

(
dσ̂R

ij,NLO − dσ̂S
ij,NLO

)
+

∫

n

(∫

1

dσ̂S
ij,NLO + dσ̂V

ij,NLO + dσ̂MF
ij,NLO

)
,

(4.108)
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in order to rewrite the NNLO mass factorization kernel in (3.62) as a sum of two contri-
butions,

dσ̂MF
ij,NNLO(ξ1PA, ξ2PB) = dσ̂MF,1

ij,NNLO(ξ1PA, ξ2PB) + dσ̂MF,2
ij,NNLO(ξ1PA, ξ2PB), (4.109)

where

dσ̂MF,1
ij,NNLO(ξ1PA, ξ2PB) = −

∫
dz1
z1

dz2
z2

× αsN

2π
C̄(ϵ) Γ

(1)
ij;kl(z1, z2)

(
dσ̂R

kl,NLO − dσ̂S
kl,NLO

)
(z1ξ1PA, z2ξ2PB), (4.110)

dσ̂MF,2
ij,NNLO(ξ1PA, ξ2PB) = −

∫
dz1
z1

dz2
z2

{

(
αsN

2π

)2

C̄(ϵ)2 Γ
(2)
ij;kl(z1, z2)dσ̂kl,LO(z1ξ1PA, z2ξ2PB) (4.111)

+
αsN

2π
C̄(ϵ) Γ

(1)
ij;kl(z1, z2)

(
dσ̂V

kl,NLO − dσ̂T
kl,NLO + dσ̂MF

kl,NLO

)
(z1ξ1PA, z2ξ2PB)

}
,

and

Γ
(2)
ij;kl(z1, z2) = δ(1− z2)δljΓ

(2)
ki (z1) + δ(1− z1)δkiΓ

(2)
lj (z2) + Γ

(1)
ki (z1)Γ

(1)
lj (z2). (4.112)

The second mass factorization term in (4.109) will be used to cancel collinear singularities
in the double-virtual contribution while the NNLO mass factorization term in (4.110)
involving (n+1) final-state partons is used to cancel collinear singularities in real–virtual
contributions and can be further split into two pieces,

dσ̂MF,1
ij,NNLO = dσ̂MF,1,a

ij,NNLO + dσ̂MF,1,b
ij,NNLO. (4.113)

The first part contains the NLO real cross section,

dσ̂MF,1,a
ij,NNLO(ξaPa, ξbPb) =−

∫
dza
za

dzb
zb

(4.114)

× αsN

2π
C̄(ϵ) Γ

(1)
ij;kl(za, zb) dσ̂

R
kl,NLO(zaξaPa, zbξbPb),

and the second part includes the corresponding real NLO subtraction term,

dσ̂MF,1,b
ij,NNLO(ξaPa, ξbPb) =

∫
dza
za

dzb
zb

(4.115)

× αsN

2π
C̄(ϵ) Γ

(1)
ij;kl(za, zb) dσ̂

S
kl,NLO(zaξaPa, zbξbPb).

In order to connect to the different parts of the subtraction term in (4.107) the mass
factorization terms including the NLO subtraction term is rewritten as

dσ̂MF,1,b
ij,NNLO = dσ̂MF,1,b1

ij,NNLO + dσ̂MF,1,b2
ij,NNLO + dσ̂MF,1,b3

ij,NNLO, (4.116)
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where

dσ̂MF,1,b2
ij,NNLO(ξaPa, ξbP2) =dσ̂MF,1,b

ij,NNLO(ξaPa, ξbPb), (4.117)

dσ̂MF,1,b1
ij,NNLO(ξaPa, ξbPb) =

∫
dza
za

dzb
zb

(4.118)

× αsN

2π
C̄(ϵ) Γ

(1)
cd;cd(za, zb) dσ̂

S
ij,NLO(zaξaPa, zbξbPb),

=− dσ̂MF,1,b3
ij,NNLO(ξaPa, ξbPb). (4.119)

Note that c and d in the last equation are given by c = i and d = j for processes where
unresolved limits do not change the initial-state partons. Otherwise, they are given by
the species of the initial-state partons involved in the reduced matrix element in the NLO
real subtraction term. For further details and a specific example see [96].

The NNLO real–virtual mass factorization contribution including the NLO real cross
section, dσ̂MF,1,a

ij,NNLO, is part of the integrated antenna string used in dσ̂T,a
NNLO. The mass

factorization contribution dσ̂MF,b1
ij,NNLO is included in dσ̂T,b1

NNLO. The remaining real–virtual
mass factorization contributions are part of antenna strings included in dσ̂T,b2

NNLO.

4.5.2.2 Subtraction terms to cancel explicit poles, dσ̂T,a
NNLO

At NLO the real subtraction term, dσ̂S
NLO, discussed in Section 4.4 canceled all implicit

IR singularities of real n + 1 parton squared matrix elements. Integrated over the one-
parton unresolved antenna phase space dσ̂S

NLO was sufficient to cancel all explicit poles
in the one-loop correction to n parton squared matrix elements (when including mass
factorization kernels). To cancel single unresolved singularities at NNLO we generalized
dσ̂S

NLO from (n+1) to (n+2) final state partons and obtained dσ̂S,a
NNLO. Therefore, dσ̂S,a

NNLO,
being the generalization of dσ̂S

NLO to NNLO, integrated over the unresolved one-parton
antenna phase space will now subtract all explicit poles from the one-loop correction to
(n+ 1) parton squared amplitudes when including proper mass factorization kernels.

The integrated version of the subtraction term dσ̂S,a
NNLO and also the mass factorization

cross section, dσ̂MF,1,a
ij,NNLO, involve (n+1)-parton tree squared matrix elements. The sum of

the integrated subtraction term and the mass factorization contribution leads to exactly
the same integrated antenna string as the ones that we already encountered at NLO in
(4.82) and (4.83),

dσ̂T,a
NNLO =−

∫

1

dσ̂S,a
NNLO − dσ̂MF,1,a

ij,NNLO

=− N ε
C NRV

NNLO

Sn+1

∑

j,k

∫
dza
za

dzb
zb

dΦn+1({pi}n+1
i=1 ; zapa, zbpb) (4.120)

×J (1)
2 (j, k, za, zb)|M0

n+1({pi}n+1
i=1 ; zapa, zbpb)|2 J (n+1)

n ({pi}n+1
i=1 ),

with the prefactor

NRV
NNLO = C(ϵ)NRR

NNLO, (4.121)

relevant for real–virtual corrections.
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4.5.2.3 Subtraction term to cancel implicit poles, dσ̂T,b
NNLO

To construct a subtraction term for implicit singularities in real–virtual corrections it is
useful to introduce two terms,

dσ̂T,b
NNLO = dσ̂T,b1

NNLO + dσ̂T,b2
NNLO, (4.122)

where each of them mimics one of the structures that are present in the factorization
behaviour of one-loop amplitudes in single unresolved limits [96] that we observed in
(3.39),

1-loop → (tree × loop)︸ ︷︷ ︸
dσ̂

T,b1
NNLO

+ (loop × tree)︸ ︷︷ ︸
dσ̂

T,b2
NNLO

.

The first part of the subtraction term, dσ̂T,b1
NNLO, includes a tree-level three-parton antenna

function multiplied with an n-parton one-loop reduced matrix element whereas the second
part, dσ̂T,b2

NNLO, involves a one-loop three-parton antenna function multiplied with a tree-
level n-parton reduced matrix element. However, as both contributions contain explicit
poles and to avoid the introduction of them as spurious explicit IR poles—the explicit poles
of the real–virtual squared matrix element are already canceled by dσ̂T,a

NNLO—additional
terms have to be included in both contributions. The explicit poles in dσ̂T,b1

NNLO are present
in the one-loop matrix element and can be removed by an integrated antenna string
familiar already from NLO. This leads to the first part of the subtraction term,

dσ̂T,b1
NNLO =

N ε
C NRV

NNLO

Sn+1

∫
dza
za

dzb
zb

dΦn+1({pi}n+1
i=1 ; zapa, zbpb) (4.123)

×
∑

j

X0
3 (i, j, k)

{
δ(1− za)δ(1− zb) M

1
n({p̃i}n+1

i=1 \ {p̃j}; zapa, zbpb)

+ cJJ (1)
n ({p̃i}n+1

i=1 \ {p̃j})|M0
n({p̃i}n+1

i=1 \ {p̃j}; zapa, zbpb)|2
}
J (n)
n ({p̃i}n+1

i=1 \ {p̃j}),

where we abbreviate the sum of antenna strings by

J (1)
n (ˆ̄1q, ig, jg, · · · , kg, lg, ˆ̄2q̄) = J (1)

2 (ˆ̄1q, ig) +J (1)
2 (ig, jg) + · · ·

+J (1)
2 (kg, lg) +J (1)

2 (ˆ̄2q, lg), (4.124)

and write the contribution of the one-loop matrix element to the squared matrix element
as,

M1
n = 2Re{(M0

n)
∗M1

n}. (4.125)

The constant cJ equals one in all cases relevant for this thesis but is in general given by

cJ =

{
2 n = 2 and all particles are gluons,
1 otherwise.

(4.126)
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Integrated over the unresolved antenna phase space, dσ̂T,b1
NNLO reappears as part of the

double-virtual subtraction term.

The (loop×tree) contribution to the subtraction term also includes explicit IR poles that
need to be canceled by adding additional terms. Including the additional terms needed
to cancel all spurious explicit poles the complete subtraction term is given by,

dσ̂T,b2
NNLO =

N ε
C NRV

NNLO

Sn+1

∫
dza
za

dzb
zb

dΦn+1({pi}n+1
i=1 ; zapa, zbpb)

×
∑

j

[
X1

3 (i, j, k)δ(1− za)δ(1− zb) +J (1)
X (i, j, k)X0

3 (i, j, k)

−MXX
0
3 (i, j, k)J

(1)
2 (p̃i, p̃k)

]

× |M0
n({p̃i}n+1

i=1 \ {p̃j}; zapa, zbpb)|2J (n)
n ({p̃i}n+1

i=1 \ {p̃j}), (4.127)

where

J (1)
X =

NX∑

(i,j)=1

J (1)
2 (i, j). (4.128)

The constants NX is the number of colour-connected parton pairs (i, j) within X1
3 and

both NX and MX are equal to 1 in all cases relevant for this work. However, in general
they differ from one [96] and have to be adapted depending on the type of one-loop
antenna X1

3 in (4.127). The structure of the additional terms in (4.127) used to remove
explicit poles is determined by X1

3 defined in (4.43),

X1
3 (i, j, k) = Sijk,IK

|M1
ijk|2

|M0
IK |2

−X0
3 (i, j, k)

|M1
IK |2

|M0
IK |2

. (4.129)

The part proportional to J (1)
X X0

3 cancels the poles of the one-loop three-parton contribu-
tion to X1

3 , while the part including X0
3J

(1)
2 cancels the explicit poles in the two-parton

one-loop contribution.

The integrated version of the two terms that include X1
3 and X0

3J
(1)
2 are reintroduced in

the double-virtual subtraction term, whereas the term including J (1)
X X0

3 is the integrated
version of the double-real subtraction term dσ̂S,b2

NNLO.

4.5.2.4 Renormalization subtraction term, dσ̂T,b3

NNLO

In the calculation of one-loop three-parton antenna functions the renormalization scale
is fixed to sijk. However, to ensure a cancellation of explicit IR poles it is necessary to
change the renormalization scale of the one-loop antennae to different values dictated by
the renormalization scale choice used in other one-loop quantities present in the calculation
such as M1

n in (4.123). The renormalization scale used in the one-loop antennae (4.43)
can be adapted by using the transformation rule

X1
3,ijk → X1

3,ijk +
β0
ϵ
X0

3,ijk

(
|sijk|−ϵ − (µ2)−ϵ

)
. (4.130)
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The coefficient in the QCD β function β0 is given by

β0 = b0N + b0,FNF , (4.131)

where b0 = 11/6 and b0,F = −1/3. In order to understand this structure we split the
discussion into antennae constructed from photons and the Higgs boson, and antennae
constructed from neutralino decays. In cases where the processes photon → qq̄ and
Higgs → partons are used to construct the corresponding antennae the tree-level 1 → 2
matrix elements included in X1

3,ijk involve no strong coupling constant and are therefore
not affected by QCD renormalization transformations if we choose to renormalize only
the coupling of the theory. The respective 1 → 3 tree-level processes, however, are
proportional to the strong coupling constant and therefore lead to a counterterm diagram
that is proportional to the renormalization constant δZαs of the strong coupling constant.
As this counterterm diagram is sufficient to cancel all UV poles of the one-loop correction
to the 1 → 3 processes included in (4.43), this allows us to identify the UV pole structure
of the one-loop three-parton antennae calculated from photon and Higgs decays

X1
3,ijk

∣∣∣
UV-Poles

= Sijk,IK

|M1
ijk|2

|M0
IK |2

∣∣∣
UV-Poles

= δZαs X
0
3,ijk, (4.132)

where we used that the one-loop 1 → 2 part is free of UV poles (or to be more precise,
they cancel against IR poles with the opposite sign), as argued above. In case of the
neutralino decay the 1 → 2 decay matrix element is proportional to the effective coupling
η which is affected by QCD renormalization transformations and therefore also the 1 → 2
part in (4.43) contributes to the UV pole structure (see [105] for the Feynman rules of
the relevant neutralino decays),

X1
3,ijk

∣∣∣
UV-Poles

= Sijk,IK

|M1
ijk|2

|M0
IK |2

∣∣∣
UV-Poles

−X0
3,ijk

|M1
IK |2

|M0
IK |2

∣∣∣
UV-Poles

= (δZαs + δZη)X
0
3,ijk − δZηX

0
3,ijk (4.133)

Therefore, for all antennae independent of their specific type we obtain

X1
3,ijk

∣∣∣
UV-Poles

= δZαs X
0
3,ijk = µ2ϵβ0

ϵ

αs

2π
X0

3,ijk, (4.134)

leading to the result in (4.130). Note that in (4.130) the factor αs/(2π) is not included as
it is part of NRV

NNLO included in the complete subtraction term,

dσ̂T,b3
NNLO =

N ε
C NRV

NNLO

Sn+1

∫
dza
za

dzb
zb

dΦn+1({pi}n+1
i=1 ; zapa, zbpb)

×
∑

j

β0
ϵ

((
µ2

|sijk|

)ϵ

− 1

)
X0

3 (i, j, k)δ(1− za)δ(1− zb)

× |M0
n({p̃i}n+1

i=1 \ {p̃j}; zapa, zbpb)|2J (n)
n ({p̃i}n+1

i=1 \ {p̃j}), (4.135)

which adjusts the renormalization scale used to calculate the one-loop three-parton an-
tennae to the one used in a calculation where antenna subtraction is applied. The colour
decomposition of β0 in (4.131) allows for the identification of terms that are needed in a
certain part of a calculation organized by colour decomposition. More explicitly, we can
read off that there is no subleading colour contribution to the antenna subtraction term
dσ̂T,b3

NNLO.

76



Chapter 4. Antenna subtraction

4.5.2.5 Real–virtual almost-colour-connected subtraction term, dσ̂T,c
NNLO

The last ingredient of the real–virtual subtraction term is obtained by integrating the
double-real subtraction term for almost-colour-connected configurations, dσ̂S,c

NNLO, over
the single unresolved antenna phase space,

dσ̂T,c
NNLO =− N ε

C NRV
NNLO

Sn+1

∫
dza
za

dzb
zb

dΦn+1({pi}n+1
i=1 ; zapa, zbpb) (4.136)

×
{
1

2

∑

j

[ (
X 0

3 (sik)−X 0
3 (s(ij)(jk))

)

−
(
X 0

3 (sai)−X 0
3 (sa(ij))

)
−
(
X 0

3 (skb)−X 0
3 (s(kj)b)

)

−
((

S(sik, sik, 1)− S(s(ij)(jk), sik, x(ij)(jk),ik)
)

−
(
S(sai, sik, xai,ik)− S(sa(ij), sik, xa(ij),ik)

)

−
(
S(skb, sik, xkb,ik)− S(s(jk)b, sik, x(jk)b,ik)

))
δ(1− za)δ(1− zb)

]}

×X0
3 (i, j, k)|M0

n({p̃i}n+1
i=1 \ {p̃j}; zapa, zbpb)|2J (n)

n ({p̃i}n+1
i=1 \ {p̃j}),

where

S(sac, sIK , xac,IK) =
1

C(ϵ)

∫
dΦXijk

Sajc. (4.137)

The terms in (4.136) involving integrated antenna functions with mapped momenta,
X 0

3 (s(ij)(jk)), X 0
3 (sa(ij)), and X 0

3 (s(kj)b), are introduced in order to ensure IR finiteness
of the subtraction term. They have to be canceled in the double-virtual subtraction term.
The result for the soft functions S is given by [95],

S(sac, sik, xac,ik) =
(
sik
µ2

)−ϵ [
1

ϵ2
− 1

ϵ
ln (xac,ik)− Li2

(
−1− xac,ik

xac,ik

)
− 7π2

12
+O(ϵ)

]
,

(4.138)

and xac,ik is defined as

xac,ik =
sacsik

(sai + sak)(sci + sck)
. (4.139)

4.5.3 Double-virtual subtraction term

In the double-virtual subtraction term no new subtraction terms can be introduced and
only integrated versions of contributions present in the double-real or real–virtual subtrac-
tion terms that have not yet been canceled are included. However, according to the KLN
theorem this has to be sufficient to cancel all explicit IR singularities present in double-
virtual corrections to underlying tree-level squared matrix elements when including mass
factorization kernels to account for hadronic collinear singularities. The double-virtual
subtraction term dσ̂U

NNLO receives contributions that contain a product of a integrated
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three-parton antenna function and a one-loop n-parton matrix element, dσ̂U,A
NNLO, contri-

butions that include a convolution of two integrated three-parton antennae, dσ̂U,B
NNLO, and

a last ingredient, dσ̂U,C
NNLO, that contains integrated four-parton antenna functions,

dσ̂U
NNLO = dσ̂U,A

NNLO + dσ̂U,B
NNLO + dσ̂U,C

NNLO. (4.140)

All of the three contributions include parts of the NLO mass factorization kernel rele-
vant for double-virtual corrections (4.111). The distribution of different contributions to
the mass factorization kernel amongst the ingredients of the double-virtual subtraction
function is subject of the next section.

4.5.3.1 Mass factorization term for double virtual corrections, dσ̂MF,2
NNLO

We introduced the NNLO mass factorization contribution relevant for the NNLO double-
virtual correction in (4.111). It is again useful to split dσ̂MF,2

ij,NNLO into three parts,

dσ̂MF,2
ij,NNLO = dσ̂MF,2,A

ij,NNLO + dσ̂MF,2,B
ij,NNLO + dσ̂MF,C

ij,NNLO, (4.141)

where each of the terms dσ̂MF,2,i
ij,NNLO is combined with dσ̂U,i

NNLO in the construction of the
double-virtual subtraction terms. Explicitly, the individual contributions of the mass
factorization terms to the subtraction terms read,

dσ̂MF,2,A
ij,NNLO =−

∫
dza
za

dzb
zb

(
αsN

2π

)
C̄(ϵ) Γ

(1)
ij;kl

(
dσ̂V

kl,NLO − β0
ϵ
dσ̂kl,LO

)
, (4.142)

dσ̂MF,2,B
ij,NNLO =+

∫
dza
za

dzb
zb

(
αsN

2π

)
C̄(ϵ) Γ

(1)
ij;kldσ̂

T
kl,NLO

−
∫

dza
za

dzb
zb

(
αsN

2π

)2

C̄(ϵ)2
1

2

[
Γ
(1)
ij;ab ⊗ Γ

(1)
ab;kl

]
dσ̂kl,LO, (4.143)

dσ̂MF,2,C
ij,NNLO =−

∫
dza
za

dzb
zb

(
αsN

2π

)2

C̄(ϵ)2 Γ
(2)

ij;kl dσ̂kl,LO, (4.144)

where we have introduced the convolution of two functions f(xa, xb) and g(xa, xb),

[
f ⊗ g

]
(z1, z2) ≡

∫
dx1dx2dy1dy2f(x1, x2)g(y1, y2)δ(z1 − x1y1)δ(z2 − x2y2). (4.145)

We also used the decomposition of the genuine NNLO mass factorization kernel,

Γ
(2)
ij;kl(z1, z2) = Γ

(2)

ij;kl(z1, z2)−
β0
ϵ
Γ
(1)
ij;kl(z1, z2) +

1

2

[
Γ
(1)
ij;ab ⊗ Γ

(1)
ab;kl

]
(z1, z2), (4.146)

where Γ
(2)

ij;kl fulfills the relation

Γ
(2)

ij;kl(z1, z2) = Γ
(2)

ik (z1)δjlδ(1− z2) + Γ
(2)

jl (z2)δikδ(1− z1) (4.147)

and is given by,

Γ
(2)

ij (z) = − 1

2ϵ

(
p1ij(z) +

β0
ϵ
p0ij(z)

)
. (4.148)
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Note that in (4.143) we have two different contributions, one including a convolution and
another including just a normal product of a mass factorization kernel and the integrated
NLO subtraction term. In order to combine both contributions with the NNLO sub-
traction term dσ̂U,B

NNLO, which is proportional to convolutions of integrated three-parton
antennae, it is useful to write (4.143) purely in terms of convolutions as well. We can
achieve this by inserting the explicit expression for dσ̂T

kl,NLO (not including potential mass
factorization kernels present at NLO) which schematically leads to

dσ̂MF,2,B
ij,NNLO =−

(
αsN

2π

)2

C̄(ϵ)2
∫

dza
za

dzb
zb

∫
dxa
xa

dxb
xb

× Γ
(1)
ij;kl(za, zb)X 0

3 (xa, xb) dσ̂kl,LO(p1, . . . , pn;xazapa, xbzbpb)

−
∫

dza
za

dzb
zb

(
αsN

2π

)2

C̄(ϵ)2
1

2

[
Γ
(1)
ij;ab ⊗ Γ

(1)
ab;kl

]
dσ̂kl,LO.

If we now insert two additional integrals 1 =
∏

i=a,b

∫
dyi δ(yi−xizi) we obtain the desired

form of dσ̂MF,2,B
ij,NNLO purely in terms of convolutions using (4.145),

dσ̂MF,2,B
ij,NNLO =−

∫
dza
za

dzb
zb

(
αsN

2π

)2

C̄(ϵ)2 (4.149)

×
{[

Γ
(1)
ij;kl ⊗X 0

3

]
+

1

2

[
Γ
(1)
ij;ab ⊗ Γ

(1)
ab;kl

]}
dσ̂kl,LO.

4.5.3.2 Double-virtual subtraction term, dσ̂U,A
NNLO

The double-virtual subtraction term dσ̂U,A
NNLO receives contributions from parts of real–

virtual subtraction terms integrated over the single unresolved antenna phase space and
one part of the NNLO mass factorization contribution,

dσ̂U,A
ij,NNLO =

∫

1

dσ̂T,b1
ij,NNLO

∣∣∣∣
∝M(1)

n

+

∫

1

dσ̂T,b3
ij,NNLO

∣∣∣∣
µ2=0

+ dσ̂MF,2,A
ij,NNLO, (4.150)

where the first part is the integrated version of the (tree×loop) real–virtual subtraction
term, dσ̂T,b1

ij,NNLO, including only the part proportional to the one-loop n-parton matrix
element and not the one proportional to the integrated three-parton antenna string. The
second contribution is given by the real–virtual one-loop renormalization subtraction term
(4.135) including only the contribution that is not proportional to (µ2/|sijk|)ϵ integrated
over the single-unresolved antenna phase space. The complete subtraction term can be
written as

dσ̂U,A
ij,NNLO =− N ε

C N V V
NNLO

Sn

∫
dza
za

dzb
zb

dΦn({pi}ni=1; zapa, zbpb)

×J (1)
n ({pi}ni=1; zapa, zbpb)

([
M1

n J
(n)
n

]
({pi}ni=1; zapa, zbpb)

− β0
ϵ

[
|M0

n|2 J (n)
n

]
({pi}ni=1; zapa, zbpb)

)
, (4.151)

79



Chapter 4. Antenna subtraction

where we have introduced

N V V
NNLO = C(ϵ)NRV

NNLO. (4.152)

Note that the term proportional to β0 does not give any contribution at subleading colour
which can be seen by considering the colour decomposition of β0 in (4.131).

4.5.3.3 Double-virtual subtraction term, dσ̂U,B
NNLO

This subtraction term is generated by the integrated version of the remaining part of
dσ̂T,b1

ij,NNLO which has not been included in dσ̂U,A
NNLO, some of the terms additionally intro-

duced in dσ̂T,c
ij,NNLO integrated over the single-unresolved antenna phase space, the integral

of dσ̂T,d
ij,NNLO, and the corresponding mass factorization term. In terms of convolutions of

integrated antenna strings the complete subtraction term reads

dσ̂U,B
ij,NNLO =− N ε

C N V V
NNLO

Sn

∫
dza
za

dzb
zb

dΦn({pi}ni=1; zapa, zbpb)

× 1

2

[
J (1)

n (1, . . . , n)⊗J (1)
n (1, . . . , n)

]
(za, zb)

×
[
|M0

n|2 J (n)
n

]
({pi}ni=1; zapa, zbpb). (4.153)

To our best knowledge, not all of the needed convolutions of integrated antenna strings
are publicly available, in particular not the ones that are needed for this work. The
analytic calculation of these convolutions is part of this work and details of this calculation
are given when they become first relevant in Section 6. Partial analytic results for the
convolutions are given in App. E. For completeness we mention that in [114] the relevant
convolutions for gluon scattering at NNLO are explicitly given in the appendices.

4.5.3.4 Double-virtual subtraction term, dσ̂U,C
NNLO

The last double-virtual subtraction term is generated by all contributions from the double-
real and real–virtual subtraction term that so far have no integrated counterparts and the
appropriate double-virtual mass factorization term. In terms of the NNLO antenna string
J (2)

2 it is given by

dσ̂U,C
NNLO =− N ε

C N V V
NNLO

Sn

∑

i,j

∫
dza
za

dzb
zb

dΦn({pi}ni=1; zapa, zbpb)

×J (2)
2 (i, j)

[
|M0

n|2 J (n)
n

]
({pi}ni=1; zapa, zbpb). (4.154)

The initial–initial antenna string is given by

J (2)
2 (p̄a, p̄b) =c

II
1 X 0

4 (sāb̄) + cII2 X̃ 0
4 (sāb̄) + cII3 X 1

3 (sāb̄) +
β0
ϵ

( |sāb̄|
µ2

)−ϵ
cII4 X 0

3 (sāb̄)

+ cII5 X 0
3 (sāb̄)⊗X 0

3 (sāb̄)− Γ
(2)

ij;kl(za, zb), (4.155)

including also the mass factorization contribution where the labels i, j specify the initial
state partons of the cross section whereas k, l denote the initial state partons of the matrix
element. Note that similar terms can be constructed for the final–final and initial–final
case and are given in [96].
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QCD×electroweak O(Nfαsα)

corrections to single-W/Z production

Physics beyond the SM might show up in the tails of invariant-mass or transverse-
momentum distributions outside the resonance regions of the DY-like produced inter-
mediate W/Z bosons. Therefore, it is important to provide information about the size
of O(αsα) corrections in off-shell regions of phase space. This chapter is devoted to the
description of O(Nfαsα) corrections to DY-like W/Z-boson production and their fully
differential calculation in the complete phase space. As the number of fermion flavours,
Nf , is a free paramter of the theory they form a gauge-invariant part of the full set of
O(αsα) corrections. The restriction to NNLO QCD×electroweak corrections that are
enhanced by the number of fermion families demands that all relevant diagrams include
closed fermionic loops and therefore reduces the relevant diagrams describing O(αsα)
corrections considerably.

We start by establishing some basic facts about DY processes at leading order and pro-
ceed by describing the relevant ingredients contributing to O(Nfαsα) corrections to the
squared matrix element in Section 5.2.1. Radiative corrections introduce IR and UV
divergences, which in principle require the use of complicated subtraction schemes at
NNLO. However, the restriction to corrections that are Nf enhanced reduces not only
the number of relevant diagrams but also the complexity of IR singularities. As there are
no double-real Nf enhanced corrections, NLO antenna subtraction terms are sufficient
to cancel all IR singularities at O(Nfαsα) (relevant subtraction terms are discussed in
Section 5.2.2). The renormalization procedure used to cancel local UV divergences and
also UV subdivergences is discussed in Section 5.2.3. In this context we also discuss the
extension of the complex-mass scheme to O(Nfαsα) enabling us to treat the W/Z reso-
nances in a gauge-invariant way. Finally, in Section 5.3 we study the effect of O(Nfαsα)
corrections on the (transverse) invariant-mass and transverse-momentum spectra of the
W and Z boson, respectively. The results discussed in this chapter have been published
in [115].
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V
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p

p
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l̄2

γ

γ

p
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Figure 5.1: LO Feynman diagrams of DY processes, where V = γ, Z,W±. The first diagram
contributes to both the NC and the CC DY processes, whereas the second and third diagram
only contributes to the NC DY processes.

5.1 The leading-order DY cross section

The DY-like pp scattering processes can be classified by the charge of the intermediate
vector bosons,

pp → W± → ℓ+νℓ/ν̄ℓℓ
− +X, (5.1)

pp → γ/Z → ℓ+ℓ− +X, (5.2)

where the former is the so-called charged-current (CC) process involving the charged in-
termediateW boson, and the latter the neutral-current (NC) process including the neutral
intermediate photon or Z boson. The charged leptons ℓ± in the final state are either e±

or µ±. While the CC process at leading order receives contributions solely from qq̄′ an-
nihilation, the NC process includes the production via qq̄ annihilation and γγ scattering.
As has been shown in [26, 28–30, 116], the γγ channel delivers only a small fraction to
the NC cross section. Furthermore, it does not develop a Z-boson resonance due to the
t-channel structure depicted in Fig. 5.1. In our calculation of O(Nfαsα) corrections we
do not include the γγ channel in the following and restrict our calculation to qq̄(′) anni-
hilation. This procedure is justified by the fact that already at NLO the EW corrections
to the γγ channel turn out to be phenomenologically negligible [29].

In our calculations we use the five-flavour scheme with q = u, d, c, s, b as potential massless
incoming quarks. However, in the following sections in the context of the calculation of
O(Nfαsα) corrections, when the bottom quark shows up as virtual particle in closed
fermionic loops we might also assign a non-vanishing mass to it while keeping all external
fermions (including external bottom quarks) massless.

In terms of the Mandelstam variables

ŝ = (pa + pb)
2, t̂ = (pa − pℓ1)

2, û = (pa − pℓ2)
2, (5.3)

we can write the LO matrix element of the polarized generic amplitude, which describes
the partonic scattering process involved in the hadronic processes (5.1) and (5.2), as

iMq̄aqb→ℓ1ℓ̄2
LO,V,τqτℓ

=
ie2

ŝ− µ2
V

C
τq
V q̄aqb

Cτl
V ℓ̄1ℓ2

Aτqτl
LO . (5.4)

Due to the simple kinematics of the LO process the so-called strandard matrix elements
Aτqτl

LO reduce to

A±±LO = 2û, A±∓LO = 2t̂. (5.5)
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The chiral couplings in (5.4) are given by

C+
Zf̄f

=
sw
cw
C±

γf̄f
= g+f = −sw

cw
Qf = g−f −

I3w,f

swcw
, C−

Zf̄f
= g−f ,

C−W+uidj
=Vij C

−
W+ν̄ll

= Vij C
−
W− l̄νl

=
Vij√
2sw

, C−W−diuj
=

V ∗ji√
2sw

.

(5.6)

By the sign τf appearing in the chiral coupling Cτf
V f̄f

we can determine the helicity of an
incoming (anti-)fermion to be +τf/2 (−τf/2) and for an outgoing (anti-)fermion −τf/2
(+τf/2). Therefore, only the helicity configurations σqb = −σqa = τq/2 and σl2 = −σl1 =
τq/2 are non vanishing. The spin- and colour-averaged amplitude is obtained as

⟨|Mq̄aqb→ℓ1ℓ̄2
LO,V |2⟩ = 1

N2
C

1

22

NC∑

Ca,Cb=1

∑

τq ,τℓ=±
δCaCb|Mq̄aqb→ℓ1ℓ̄2

LO,V,τqτℓ
|2, (5.7)

which is needed in order to calculate the 2 → 2 partonic cross section given in (A.37).
The hadronic cross section (3.56) is calculated by convoluting the partonic cross section
of partons a and b with the respective parton distribution functions,

σLO(PA, PB) =
∑

a,b

∫ 1

0

dξ1
ξ1

∫ 1

0

dξ2
ξ2

fa(ξ1, µ
2
F )fb(ξ2, µ

2
F ) dσ̂

LO
ab (ξ1PA, ξ2PB), (5.8)

where dσ̂LO
ab is normalized to the hadronic flux factor. Using (B.12), this equation can

also be rewritten in terms of the Mandelstam variable ŝ and the rapidity y,

σLO(PA, PB) =
∑

a,b

∫ 1

0

dŝ

∫ 1

0

dy
fa(ξ1(ŝ, y), µ

2
F )

ξ1(ŝ, y)

fb(ξ2(ŝ, y), µ
2
F )

ξ2(ŝ, y)

× ∂(ξ1, ξ2)

∂(y, ŝ)
dσ̂LO

ab (ξ1(ŝ, y)PA, ξ2(ŝ, y)PB). (5.9)

This shows that differential rapidity distributions

dσLO

dy
(y) =

∑

a,b

∫ 1

0

dŝ
fa(ξ1(ŝ, y), µ

2
F )

ξ1(ŝ, y)

fb(ξ2(ŝ, y), µ
2
F )

ξ2(ŝ, y)

× ∂(ξ1, ξ2)

∂(y, ŝ)
dσ̂LO

ab (ξ1(ŝ, y)PA, ξ2(ŝ, y)PB) (5.10)

are dominated by the resonance region of the intermediate vector boson V = W/Z, as
the dominant contribution from the partonic cross section dσ̂LO

ab to the integral over ŝ is
coming from exactly this region.

5.2 Corrections of O(Nfαsα) to single-W/Z produc-
tion

5.2.1 Corrections of O(Nfαsα) to the squared amplitude

A complete off-shell calculation of O(αsα) corrections to DY processes is a very challenging
task. To tackle the problem and proceed towards a full off-shell calculation one can select
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V Nfαsα
1PI

V ′ VNfαsα
1PI

V Nfαsα
1PI

Figure 5.2: One-particle-irreducible virtual–virtual (vv-1PI) two-loop contributions to DY-like
processes at O(Nfαsα). In the first diagram the two-loop O(Nfαsα) self-energy insertions are
shown, whereas the second and third diagrams represent the finite gauge-boson–fermion coun-
terterms described in Section 5.2.3.1.

gauge-invariant pieces and calculate them individually. In the following we choose the
set of O(αsα) corrections that is enhanced by the number of fermion flavours Nf in the
SM. The enhancement factor Nf requires the contributing diagrams to include a closed
fermion loop and therefore restricts the set of diagrams describing O(αsα) corrections to
DY-like W/Z production that have to be considered.

Due to colour conservation there are no genuine O(Nfαsα) vertex corrections by closed
fermion loops. As these closed fermionic loops are required for the Nf enhancement,
genuine two-loop O(Nfαsα) corrections show up in gauge-boson self-energies only. The
possible double-virtual one-particle-irreducible (vv-1PI) diagrams are depicted in Fig. 5.2,
where the shown vertex corrections are solely due to vertex counterterms that we will dis-
cuss below. The vv-1PI self-energy insertions can only be produced by closed quarks loops
at O(Nfαsα), as a gluon has to couple the fermions running in the loop.
Apart from the vv-1PI O(Nfαsα) corrections there are also reducible double-virtual cor-
rections (vv-red) of the form (one-loop)×(one-loop), which combine the insertion of the
closed fermion loops in the EW gauge-boson propagators with the NLO QCD loop dia-
grams in all possible ways. The relevant diagrams of this kind are depicted in Fig. 5.3.
In contrast to the vv-1PI corrections in the vv-red corrections the closed fermion loops
can be produced by quarks and leptons as the involved gluon of the QCD correction is
contained in a separate loop.
As shown in Fig. 5.4, similar to the vv-red contributions the real–virtual (rv) corrections
combine NLO real QCD corrections with closed quark and lepton loops in the EW gauge-
boson propagators. Note that we do not depict the qg induced scattering processes for
brevity.
In general, radiative corrections at NNLO also include double-real corrections. At O(Nfαsα)
these corrections to the squared amplitude arise from interference contributions of ampli-
tudes of the process q̄aqb → Z/γ/W + q̄′q′ once with a intermediate photon and once with
a gluon (see Fig. 6.2a and Fig. 6.3 for a pictorial representation of such amplitudes with
qa = qb = q′). Therefore, there are no double-real contributions that have to be consid-
ered in case of O(Nfαsα) NNLO corrections as they combine a g → qq̄ and γ/Z → ff̄
splitting within a single spinor chain, and therefore vanish due to colour conservation. If
we considered O(Nfα

2
s ) or O(Nfα

2) corrections, such double-real corrections would lead
to a non-vanishing contribution.

As discussed above, the only relevant vv-1PI two-loop building blocks at O(Nfαsα) are
given by the EW gauge-boson self-energies. For the relation between the two-point vertex
functions ΓV ′V and the self-energies ΣV ′V in the ’t Hooft-Feynman we use the conventions
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V
αs Nfα

V ′ V
αs Nfα

VNfαsα
red.

(a) Reducible virtual–virtual contributions within one diagram

V
αs

V
Nfα

V ′ V
αs

V ′
Nfα

V
αs

V ′
Nfα

(b) Interference diagrams of type reducible virtual–virtual

Figure 5.3: Different types of reducible virtual–virtual (vv-red) diagrams contributing at
O(Nfαsα) to DY-like processes, where the relative orders of the loop corrections are indicated
in the vertex blobs.

g

V
Nfα

g

V
Nfα

V ′
g

V
Nfα

Figure 5.4: Different types of real–virtual (rv) diagrams contributing at O(Nfαsα) to DY-like
processes, where the relative orders of the loop corrections are indicated in the vertex blobs.

introduced before in (2.56) (identifying ΣWW ≡ ΣW ),

ΓV ′V
µν (−k, k) = −igµν(k2 −M2

V )δV ′V − iΣV ′V
µν (k2), (5.11)

with

ΣV ′V
µν (k2) =

(
gµν −

kµkν
k2

)
ΣV ′V

T (k2) +
kµkν
k2

ΣV ′V
L (k2), (5.12)

where V ′V = γγ, γZ,ZZ,WW, and k2 denotes the virtuality of the gauge bosons V, V ′. In-
cluding the O(Nfαsα) EW gauge-boson self-energy contribution ΣV ′V

T,(αsα)
in the amplitude

of the leading-order DY process we obtain

iMqaq̄b→ℓ1ℓ̄2
Σαsα,V V ′,τqτl

=

qa

q̄b

V

p

V ′

p

ℓ1

ℓ̄2

= −
Cτl

V ′ℓ1ℓ̄2

Cτl
V ℓ̄1ℓ2

ΣV ′V
T,(αsα)

(p2)

p2 − µ2
V ′

iMqaq̄b→ℓ1ℓ̄2
LO,V,τqτℓ

, (5.13)

where the expression for the LO amplitude is given in (5.4). The longitudinal part of
the self-energy drops out in (5.13), as the momenta contained in its prefactors in (5.12)
are contracted with the V qaq̄b- or V ′ℓ1ℓ̄2-vector current, which, using the Dirac equation
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for massless fermions, /pau(pa) = v̄(pb)/pb = 0, leads to zero. Therefore, we only have
to consider the transverse self-energy parts ΣV ′V

T in the following. Equation (5.13) is
obtained by dressing the gauge-boson self-energy diagram with a propagator on each side
and reducing the expression to the tree-level expression of the propagator,

igµν

p2 − µ2
V

ΣV ′V
νρ (p2)

igρη

p2 − µ2
V ′

= −ΣV ′V
T (p2)

p2 − µ2
V ′

igµη

p2 − µ2
V︸ ︷︷ ︸

→Mqaq̄b→ℓ1 ℓ̄2
LO,V

+ . . . , (5.14)

where the remaining terms that are not explicitly shown on the r.h.s. of the last equation
vanish when contracted with the initial- or final-state vector current, as argued before.

Apart from the insertion of the gauge-boson self-energy we also need the counterterm
contributions at the respective order in perturbation theory, as illustrated in Fig. 5.2. By
the replacement

Cσ
V f̄f → Cσ

V f̄fδ
ct,σ

V f̄f,(αsα)
(5.15)

to one of the vertices in Mqaq̄b→ℓ1ℓ̄2
LO,V,τqτℓ

we obtain double-virtual vv-1PI diagrams including
O(Nfαsα) vertex counterterms. The double-virtual matrix elements including O(Nfαsα)
vertex counterterms are given by

iMq̄aqb→ℓ1ℓ̄2
δct
(αsα)

,V,τqτl
= i
(
δ
ct,τq
V q̄aqb,(αsα)

+ δct,τℓ
V ℓ̄1ℓ2,(αsα)

)
Mqaq̄b→ℓ1ℓ̄2

LO,V,τqτℓ
. (5.16)

The relevant vertex counterterms δct,σ
V f̄f,(αsα)

are given in (5.49), (5.50), and (5.51). To
calculate contributions to the squared matrix element we first add the matrix elements in
(5.13) and (5.16),

iMq̄aqb→ℓ1ℓ̄2
vv-1PI,V V ′,τqτl

≡ iMqaq̄b→ℓ1ℓ̄2
Σαsα,V V ′,τqτl

+ i δV V ′Mq̄aqb→ℓ1ℓ̄2
δct
(αsα)

,V,τqτl
. (5.17)

The contribution of the double-virtual 1PI amplitudes to the squared amplitude at order
O(Nfαsα) is then obtained by projecting onto the LO amplitude and summing all relevant
contributions,

M qaq̄b→ℓ1ℓ̄2
vv-1PI,τqτℓ ≡





∑
V,V ′,Ṽ=γ,Z 2Re

[(
Mqaq̄b→ℓ1ℓ̄2

LO,Ṽ ,τqτℓ

)∗Mqaq̄b→ℓ1ℓ̄2
vv-1PI,V V ′,τqτl

]
, for NC,

2Re
[(
Mqaq̄b→ℓ1ℓ̄2

LO,WW,τqτℓ

)∗Mqaq̄b→ℓ1ℓ̄2
vv-1PI,WW,τqτl

]
, for CC.

(5.18)

To calculate reducible diagrams, which contain a one-loop QCD vertex correction and a
O(Nfα) correction as shown in Fig. 5.3a, we use that the virtual QCD correction, given
by

δZq̄q
Vs

(sab) =
αs

2π
CF

[
2 I

(1)
qq̄

(
ϵ,
sab
µ2

)
− 4

]
, (5.19)
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factorizes from the matrix element. Therefore, all amplitudes of this form can be obtained
by changing the perturbative order of the gauge-boson self-energies and vertex counter-
terms in (5.17) from O(Nfαsα) to O(Nfα) and multiplying by δZq̄q

Vs
. In the last equation

we used the I(1)qq̄ operator, which was introduced in (3.19). The needed O(Nfα) vertex
counterterms can be found in e.g. [60] by taking only fermionic corrections to gauge-boson
self-energies into account. The contribution of corrections that combine a virtual QCD
correction with a O(Nfα) correction within one diagram to the squared matrix element,
can be combined with the interference contribution to the squared amplitude, obtained
from an amplitude including a one-loop QCD correction combined with an amplitude that
includes a O(Nfα) correction. This leads to the following contribution to the squared
amplitude,

2Re
[(
δV V ′Mq̄aqb→ℓ1ℓ̄2

Vs⊗δct(α)
,V,τqτl

+ Mqaq̄b→ℓ1ℓ̄2
Vs⊗Σα,V V ′,τqτl

)∗ · Mqaq̄b→ℓ1ℓ̄2
LO,Ṽ ,τqτℓ

+
(
δV V ′Mq̄aqb→ℓ1ℓ̄2

δct
(α)

,V,τqτl
+ Mqaq̄b→ℓ1ℓ̄2

Σα,V V ′,τqτl

)∗ · Mq̄aqb→ℓ1ℓ̄2g
Vs,V,τqτl

]

=2Re
[(
δZq̄q
Vs

+
(
δZq̄q
Vs

)∗) ·
(
δV V ′Mq̄aqb→ℓ1ℓ̄2

δct
(α)

,V,τqτl
+ Mqaq̄b→ℓ1ℓ̄2

Σα,V V ′,τqτl

)∗ · Mqaq̄b→ℓ1ℓ̄2
LO,Ṽ ,τqτℓ

]

=4Re
(
δZq̄q
Vs

)
Re
((
δV V ′Mq̄aqb→ℓ1ℓ̄2

δct
(α)

,V,τqτl
+ Mqaq̄b→ℓ1ℓ̄2

Σα,V V ′,τqτl

)∗ · Mqaq̄b→ℓ1ℓ̄2
LO,Ṽ ,τqτℓ

)
. (5.20)

The amplitudes corresponding to the rv contribution at O(Nfαsα) are slight modifications
of the real NLO QCD corrections. Therefore, it is instructive to first discuss the real
QCD corrections and afterwards modify them to obtain the rv O(Nfαsα) corrections.
The amplitudes corresponding to the NLO real QCD corrections are

iMq̄aqb→ℓ1ℓ̄2g
Rs,V,τqτlλg

= 2
√
2 ie2gsC

τq
V q̄aqb

Cτl
V ℓ̄1ℓ2

Mτqτlλg

Rs
({kg, a}, {pi, ci}i∈S), (5.21)

where S = {a, b, ℓ1, ℓ2} and the first entry of a tuple {p, c} describes the momentum and
the second the colour of a particle. Due to the symmetries of the partial amplitudes,

M−τqτlλg

Rs
({kg, a}, {pi, ci}i∈S) =Mτqτlλg

Rs
({kg, a}, {pi, ci}i∈S)

∣∣∣∣
{pa,ca}↔{pb,cb}

,

Mτq−τlλg

Rs
({kg, a}, {pi, ci}i∈S) =Mτqτlλg

Rs
({kg, a}, {pi, ci}i∈S)

∣∣∣∣
{pℓ1}↔{pℓ2}

, (5.22)

Mτqτl−λg

Rs
({kg, a}, {pi, ci}i∈S) =

[
M−τq−τlλg

Rs
({kg, a}, {pi, ci}i∈S)

]∗
,

it is sufficient to calculate only one helicity configuration, where we choose

M−−−Rs
({kg, a}, {pi, ci}i∈S) = tacacb

⟨pℓ1 |pℓ2⟩ (⟨pa |pℓ2⟩∗)2
⟨pa |kg⟩∗ ⟨pb |kg⟩∗ (p2V − µ2

V )
. (5.23)

Diagrams of type rv including O(Nfα) vertex counterterms, depicted in Fig. 5.4, are
obtained by the application of the following replacement,

Cσ
V f̄f → Cσ

V f̄fδ
ct,σ

V f̄f,(α)
, (5.24)
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to one of the vertices in M−τqτlλg

Rs
leading to

iMq̄aqb→ℓ1ℓ̄2g
Rs⊗δct(α)

,V,τqτlλg
= i
(
δ
ct,τq
V q̄aqb,(α)

+ δct,τℓ
V ℓ̄1ℓ2,(α)

)
Mq̄aqb→ℓ1ℓ̄2g

Rs,V,τqτlλg
(5.25)

for the rv matrix elements including O(Nfα) vertex counterterms. The rv contribution
in Fig. 5.4 that we have not yet discussed is the one that receives a one-loop O(Nfα)
gauge-boson self-energy correction. The amplitude for this kind of rv correction is given
by,

iMq̄aqb→ℓ1ℓ̄2g
Rs⊗Σα,V V ′,τqτlλg

= −
Cτl

V ′ℓ1ℓ̄2

Cτl
V ℓ̄1ℓ2

ΣV ′V
T (p2)

p2 − µ2
V ′

iMq̄aqb→ℓ1ℓ̄2g
Rs,V,τqτlλg

, (5.26)

which follows from the same arguments we used to motivate (5.13). By projecting onto
the matrix element of the real QCD correction, (5.21), we obtain the contribution to
the squared matrix element, similar to the case of the genuine two-loop gauge-boson
self-energy insertion described in (5.18).

5.2.2 IR singularities and antenna subtraction terms

In this section we list the antenna subtraction terms needed to cancel all implicit and
explicit IR divergences present in O(Nfαsα) corrections to single W/Z-production. The
only source of explicit IR divergences is found in vv-red contributions to the squared ma-
trix element given in (5.20). Accordingly, only the rv-red contributions to squared matrix
element contain implicit IR divergences. In combination with the fact that there are no
double-real contributions and that the vv-1PI corrections do not involve IR singularities
this means that the subtraction terms relevant for the cancellation of IR divergences in
O(Nfαsα) are of NLO complexity. Therefore, NLO antenna subtraction terms, discussed
in detail in Section 4.4, are sufficient to cancel all IR divergences and we only list the
explicit real and virtual subtraction terms in the following.

Quark–antiquark initial state:

The real–virtual antenna subtraction term of NLO complexity for the qq̄ induced partonic
channel is given by

dσ̂S,ii,qq̄
NNLO =2CF NC,qq̄NR

NLO dΦ3({pi}3i=1; pa, pb)

× A0
3(pa, p3, pb)⟨M qaq̄b→ℓ1ℓ̄2

v-1PI (p̃1, p̃2;xapa, xbpb)⟩J (2)
2 (p̃1, p̃2), (5.27)

where the one-loop correction to the squared amplitude, M qaq̄b→ℓ1ℓ̄2
v-1PI , can be calculated in

the same way asM qaq̄b→ℓ1ℓ̄2
vv-1PI in (5.18), but taking into account only one-loop O(Nfα) gauge-

boson self-energy corrections instead of O(Nfαsα) corrections. As in (5.7), the brackets
⟨.⟩ indicate spin and colour averaging. The factors NC,qq̄ and NR

NLO were introduced in
(4.74) and (4.72). The corresponding integrated subtraction term, which is combined
with the vv-red contribution to the squared matrix element (5.20), is given by

dσ̂T,ii,qq̄
NNLO =− 2CF N ε

C,qq̄ N V
NLO

∫
dza
za

dzb
zb

dΦ2({pi}2i=1; zapa, zbpb)
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×J (1)
2,ii(a, b, za, zb)⟨M qaq̄b→ℓ1ℓ̄2

v-1PI (p1, p2; zapa, zbpb)⟩ J (2)
2 (p1, p2), (5.28)

with N V
NLO given in (4.78).

Quark–gluon initial state:

The real–virtual antenna subtraction term and its integrated counterpart for the qg in-
duced partonic channel (and similar for the q̄g channel) are given by

dσ̂S,ii,qg
NNLO =2CF NC,qgNR

NLO dΦ3({pi}3i=1; pa, pb)

× A0
3,qg→qq(pg, pa, pb)⟨M qaq̄b→ℓ1ℓ̄2

v-1PI (p̃1, p̃2;xapa, xbpb)⟩J (2)
2 (p̃1, p̃2) (5.29)

and

dσ̂T,ii,qg
NNLO =− 2CF N ε

C,qg N V
NLO

∫
dza
za

dzb
zb

dΦ2({pi}2i=1; zapa, zbpb)

×J (1),g→q
2,ii (a, b, za, zb)⟨M qaq̄b→ℓ1ℓ̄2

v-1PI (p1, p2; zapa, zbpb)⟩ J (2)
2 (p1, p2). (5.30)

5.2.3 Renormalization at O(Nfαsα)

In this section we discuss the renormalization procedure that we apply at O(Nfαsα). The
renormalization of vv-red and rv contributions is of NLO complexity as they only involve
one-loop subdiagrams. However, the renormalization of the vv-1PI gauge-boson self-
energy insertions requires an extension of the renormalization prescription to O(Nfαsα).
In addition, the renormalization constants determined in the process of extending the
NLO prescription to NNLO also lead to vertex counterterms of the gauge-boson–fermion
vertices at O(Nfαsα).
The extension of multiplicative renormalization transformations in the electroweak sector
to all orders in perturbation theory is discussed in [117]. The beginning of this section es-
sentially follows the line of thought presented there, as we apply some of the results of [117]
to the case of O(Nfαsα) corrections. Further, we apply the “parameter-renormalized tad-
pole scheme” (PRTS) as defined in Refs. [60,69]. Therefore, our results for ΣV ′V

T do not
include tadpole contributions. In the following we only discuss the renormalization of the
photon/Z-boson sector. However, the results can also be extended to the renormalization
of processes that involve the W boson by removing terms that originate from the photon-
Z mixing and by replacing the mass of the Z boson by the mass of the W boson.
To expand our renormalization prescription to NNLO we start by considering the renor-
malized two-point functions Γ̂V′V

µν . Their relation to the unrenormalized two-point func-
tions ΓV1V2

µν is given by

Γ̂V′V
µν (−k, k) =

∑

V1,V2=A,Z

Z
1/2
V1V′Z

1/2
V2V

ΓV1V2
µν (−k, k). (5.31)

As the OS renormalization conditions in (2.54) and (2.58) involve projections onto the
physical degrees of freedom using the polarization vectors, only the transversal parts of
Γ̂VA
µν are relevant for the renormalization procedure and the longitudinal parts drop out.
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To make the structure of renormalized two-point functions and their dependence on renor-
malization constants explicit, we again rewrite them in terms of self-energy contributions,

Γ̂V′V
T (k2) = − δV′V (k2 − δVZM

2
Z)− Σ̂V′V

T (k2, {ci}). (5.32)

The introduction of the renormalized parameters {ci} in the self-energies is used to keep
track of their parameter dependence which will become relevant later in Section 5.2.3.2.
The bare parameters ci,0 are labeled with an additional subscript to distinguish them from
the renormalized parameters {ci}. By the application of multiplicative renormalization
transformations to the fields in the free Lagrangian and the mass of the Z boson one can
also obtain

Γ̂V′V
T (k2) = − Z

1/2
AV′Z

1/2
AV k

2 − Z
1/2
ZV′Z

1/2
ZV (k2 −M2

Z − δM2
Z)− ΣV′V

SR,T(k
2, {ci}), (5.33)

where the subgraph-renormalized (SR) self-energies ΣV′V
SR,T include all diagrams with loops

and counterterm insertions in loops, but no counterterm diagrams without loop parts, as
these parts are already part of the two-loop Z factors. The inclusion of diagrams with one-
loop counterterms in loops ensures that all UV subdivergences, i.e. UV divergences that
are proportional to non-polynomial functions in k2, are cancelled in ΣV′V

SR,T, even though
local UV divergences that are proportional to k2 and cancel against genuine counterterm
diagrams, might be still contained in ΣV′V

SR,T. We can combine (5.32) and (5.33) to obtain
the renormalized self-energies in terms of SR self-energies and renormalization constants,

Σ̂V′V
T (k2, {ci}) = ΣV′V

SR,T(k
2, {ci}) +

(
Z

1/2
AV′Z

1/2
AV + Z

1/2
ZV′Z

1/2
ZV − δV′V

)
k2

−
(
Z

1/2
ZV′Z

1/2
ZV − δV′Z δVZ

)
M2

Z − Z
1/2
ZV′Z

1/2
ZV δM2

Z. (5.34)

A perturbative expansion of products of renormalization constants present in the last
equation up to O(αsα) contains in principle also products of one-loop wave-function renor-
malization constants such as

Z
1/2
AV′Z

1/2
AV =δAV ′δAV +

δAV ′δZ
(α)
AV

2
+
δAV δZ

(α)
AV′

2
(5.35)

+
δAV ′δZ

(αs)
AV

2
+
δAV δZ

(αs)
AV′

2
+
δAV ′δZ

(αsα)
AV

2
+
δAV δZ

(αsα)
AV′

2

− δAV ′δZ
(α)
AV δZ

(αs)
AV

4
+
δZ

(α)
AV δZ

(αs)
AV′

4
+
δZ

(αs)
AV δZ

(α)
AV′

4
− δAV δZ

(α)
AV′δZ

(αs)
AV′

4
.

However, as there are no one-loop QCD contributions to ZV V ′ , i.e. δZ(αs)
AV = 0, the last

expression simplifies to

Z
1/2
AV′Z

1/2
AV =δAV ′δAV +

δAV ′δZ
(α)
AV

2
+
δAV δZ

(α)
AV′

2
+
δAV ′δZ

(αsα)
AV

2
+
δAV δZ

(αsα)
AV′

2
, (5.36)

where the superscript dressing the renormalization constants in the last equation indicates
the perturbative order. Therefore, for the renormalized self-energies (5.34) in terms of
the SR self-energies at order O(αsα) we obtain

Σ̂V′V
T,(αsα)(k

2, {ci}) = ΣV′V
SR,T,(αsα)(k

2, {ci})
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+
1

2

(
δAV′δZ

(αsα)
AV + δAVδZ

(αsα)
AV′ + δZV′δZ

(αsα)
ZV + δZVδZ

(αsα)
ZV′

)
k2

− 1

2

(
δZV′δZ

(αsα)
ZV + δZVδZ

(αsα)
ZV′

)
M2

Z − δZV′δZV δM
2
Z,(αsα). (5.37)

This equation has the same structure as the corresponding ones at NLO O(α), given in
(2.111). The only difference is that at O(αsα) the SR self-energy appears, whereas at NLO
the unrenormalized self-energy appears (which is, actually, equal to the SR self-energy
at NLO). We therefore conclude that if we apply the same renormalization conditions
to Σ̂V′V

T,(αsα)
(k2, {ci}) as we applied to Σ̂V′V

T,(α)(k
2, {ci}) at NLO in (2.112), we will obtain

the same relation between the O(αsα) SR self-energy and the O(αsα) renormalization
constants as we have in (5.42) between the NLO unrenormalized self-energy and the NLO
renormalization constants.

Using, (2.52) and (5.31), the SR self-energies are related to unrenormalized self-energies
according to

ΣV′V
SR,T(k

2, {ci}) =
∑

V1,V2=A,Z

Z
1/2
V1V′Z

1/2
V2V

ΣV1V2
T (k2, {ci,0}), (5.38)

which, in case of O(αsα) corrections, reduces to

ΣV′V
SR,T,(αsα)(k

2, {ci}) =
∑

V1,V2=A,Z

δV1V′δV2V ΣV1V2

T,(αsα)
(k2, {ci,0}) = ΣV′V

T,(αsα)(k
2, {ci,0}), (5.39)

as there is no NLO O(αs) contribution to the self-energy ΣV1V2
T , and therefore also not to

the renormalization constants ZVV′ . This means that at O(αsα) the SR self-energies are
given by the unrenormalized self-energies that depend on the bare parameters. However,
it is important to note the SR self-energies contain one-loop renormalization constants
δci so that all UV subdivergences are cancelled in ΣV′V

SR,T,(αsα)
,

ΣV′V
SR,T,(αsα)(k

2, {ci}) = ΣV′V
T,(αsα)(k

2, {ci,0}) = ΣV′V
T,(αsα)(k

2, {ci}) + δci-terms. (5.40)

In the following sections we denote the SR self-energies by

ΣV′V
T,(αsα)(k

2) ≡ ΣV′V
T,(αsα)(k

2, {ci,0}) ≡ ΣV′V
SR,T,(αsα)(k

2, {ci}), (5.41)

suppressing the parameters {ci} when not explicitly needed, keeping in mind that the SR
self-energies and therefore also ΣV′V

T,(αsα)
(k2) contain one-loop renormalization constants to

cancel UV subdivergences as in (5.40).

5.2.3.1 Complex-mass scheme at O(Nfαsα)

We now proceed to discuss the extension of the complex-mass scheme introduced in Sec-
tion 2.4.2 to O(αsα). As absorptive parts ofW/Z propagators must contain closed fermion
loops at this order of perturbation theory, O(Nfαsα) corrections are already sufficient to
fully describe the extension to O(αsα). As we have seen in the last section, the com-
plex renormalization constants at O(Nfαsα) can be obtained in the same way as at NLO
replacing only the unrenormalized self-energies by the SR self-energies,

δµ2
W,(αsα) = ΣW

T,(αsα)(µ
2
W), δµ2

Z,(αsα) = ΣZZ
T,(αsα)(µ

2
Z), (5.42)
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δZW,(αsα) = −Σ′WT,(αsα)(µ
2
W),

δZZA,(αsα) =
2

µ2
Z

ΣAZ
T,(αsα)(0), δZAZ,(αsα) = − 2

µ2
Z

ΣAZ
T,(αsα)(µ

2
Z),

δZZZ,(αsα) = −Σ′ZZ
T,(αsα)(µ

2
Z), δZAA,(αsα) = −Σ′AA

T,(αsα)(0), (5.43)

where Σ′V
′V (k2) ≡ (∂ΣV ′V /∂k2)(k2). Note that we write (αsα) as subscript when there is

no distinction between between O(Nfαsα) and O(αsα) corrections to certain quantities.

In Section 2.4.2 we already discussed that the evaluation of the self-energies with complex
k2 on the second Riemann sheet can be circumvented by expanding them about the real
part M2

V of µ2
V up to the relevant order. This leads to

δµ2
W,(αsα) = ΣW

T,(αsα)
(M2

W) + (µ2
W −M2

W)Σ′WT,(αsα)
(M2

W),

δµ2
Z,(αsα) = ΣZZ

T,(αsα)
(M2

Z) + (µ2
Z −M2

Z)Σ
′ZZ
T,(αsα)

(M2
Z), (5.44)

δZW,(αsα) = −Σ′WT,(αsα)(M
2
W), δZZA,(αsα) =

2

µ2
Z

ΣAZ
T,(αsα)(0),

δZAZ,(αsα) = − 2

M2
Z

ΣAZ
T,(αsα)(M

2
Z) +

(
µ2
Z

M2
Z

− 1

)
δZZA,(αsα),

δZZZ,(αsα) = −Σ′ZZ
T,(αsα)(M

2
Z). (5.45)

As at NLO the expansion of the wave-function renormalization constants is truncated at
(µ2

V −M2
V )

0, since they are always multiplied by (k2 − µ2
V ) = O(α), for k2 ≈ M2

V , in
the renormalized self-energies (5.34). In comparison to (2.117) we do not need to include
a term like cWT —which originates from diagrams including photon exchange in W -boson
self-energies leading to a branch point at k2 = M2

W—as the self-energies ΣV ′V
T,(αsα)

do not
involve IR singularities and are therefore analytic at k2 = µ2

W. We also used the fact that
there are no O(αs) corrections to ΣV ′V

T at NLO, which means that no further terms have
to be considered above.

The renormalization constants corresponding to the cosine and sine of the weak mixing
angle, δcw and δsw, and also the result for the charge renormalization constant δZe are
determined analogously to the NLO case described in (2.120) and (2.121). However, as a
consequence of Slavnov–Taylor (ST) identities we have

ΣAZ
T,(αsα)(0) ≡ 0, (5.46)

which simplifies the expression of the charge renormalization constant to

δZe,(αsα) =
1

2
Σ′AA

T,(αsα)(0). (5.47)

The renormalization constants defined above are not only part of the renormalized gauge-
boson self-energies

Σ̂V ′V
T,(αsα)(k

2) = ΣV ′V
T,(αsα)(k

2) +
1

2
(k2 − µ2

V )δZV V ′,(αsα) +
1

2
(k2 − µ2

V ′)δZV ′V,(αsα)

− δV ′V δµ
2
V,(αsα), (5.48)
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V ′
Nfαsα
1PI

V
=

V ′ V
g +

V ′ V
g +

V ′ V
g

V ′
Nfαsα
δm

V
= V ′ Vδmq

+
V ′ V

δmq

Figure 5.5: Diagrams contributing to the EW gauge-boson self-energies ΣV ′V
T at O(Nfαsα),

which all involve closed quark loops. In the first line the contributions to ΣV ′V
T,1PI and in the

second line the contributions to ΣV ′V
T,δm are shown.

with µA = 0, but also contribute to the vertex counterterms

δct,σ
W f̄f ′,(Nfαsα)

= δZe,(αsα) −
δsw,(αsα)

sw
+

1

2
δZW,(αsα), (5.49)

δct,σ
Zf̄f,(Nfαsα)

=
δCσ

Zf̄f,(αsα)

Cσ
Zf̄f

+
1

2
δZZZ,(αsα) −

Qf

2Cσ
Zf̄f

δZAZ,(αsα), (5.50)

δct,σ
Af̄f,(Nfαsα)

= δZe,(αsα) +
1

2
δZAA,(αsα) −

Cσ
Zf̄f

2Qf

δZZA,(αsα), (5.51)

which lead to the UV-finite vertex corrections, described in (5.16), by modifying the LO
coupling factors as in (5.15). In the last expressions the renormalization constants of the
LO couplings (5.6) are given by

δCσ
Zf̄f,(αsα)

= Cσ
Zf̄f

(
δZe,(αsα) +

1

c2w

δsw,(αsα)

sw

)
−

2I3w,f

swcw

δsw,(αsα)

sw
δσ−. (5.52)

5.2.3.2 Cancellation of UV subdivergences

We have seen in (5.39) that at O(αsα) the SR self-energies are given by the unrenormalized
self-energies

ΣV′V
SR,T(k

2, {ci}) = ΣV′V
T (k2, {ci,0}), (5.53)

To obtain the diagrams needed to cancel subdivergences present in the EW gauge-boson
self-energies at O(Nfαsα) we apply parameter renormalization in the unrenormalized
O(Nfαsα) self-energies. This means, that we replace the bare parameters ci,0 appearing
as arguments on the r.h.s. of the last equation by

ci,0 = ci + δci. (5.54)

We split the contributions to the unrenormalized self-energy ΣV′V
T (k2, {ci,0}) into the

part ΣV′V
T (k2, {ci}), where the ci,0 are simply renamed into ci, and a remainder part

ΣV′V
T,δc(k

2, {ci}) that absorbs all effects of the renormalization constants δci,

ΣV′V
T (k2, {ci,0}) = ΣV′V

T,1PI(k
2, {ci}) + ΣV′V

T,δc(k
2, {ci}). (5.55)
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In principle also tadpole contributions have to be considered in the last equation. However,
in the PRTS they are always exactly cancelled by tadpole counterterms. Furthermore, for
the class of gauge-boson self-energy diagrams at this perturbative order, the only relevant
parameter renormalization transformation is given by

mq,0 = mq + δm(αs)
q , (5.56)

so that (5.55) reduces to

ΣV ′V
T,(αsα)(k

2) = ΣV ′V
T,(αsα),1PI(k

2) + ΣV ′V
T,(αsα),δm(k

2), (5.57)

where ΣV ′V
T,(αsα),1PI

comprises all one-particle irreducible (1PI) two-loop diagrams, as shown
in Fig. 5.5, and ΣV ′V

T,(αsα),δm
represents all fermion loops with insertions of the QCD quark-

mass counterterms. In principle, also the quark-field renormalization constants of O(αs)
have to be considered. However, their contributions to ΣV ′V

T,(αsα)
fully cancels. This is

equivalent to showing

V ′
δZq

V
+ V ′ V

= V ′ Vδmq , (5.58)

V ′
δZq

V
+

V ′ V
=

V ′ V

δmq

, (5.59)

which can be easily seen by simply writing down the corresponding loop integrals,

V ′
µ Vν = −

∫
ddq

(2π)d
Tr
[
g±ω

±γµ
(/q +m)

q2 −m2

(
(/q −m)δZ(αs)

q + δm(αs)
q

)
(5.60)

· (/q +m)

q2 −m2
g±ω

±γν
(/p− /q +m)

(p− q)2 −m2

]
,

and

V ′
µ

δZq

Vν =

∫
ddq

(2π)d
Tr
[
g±ω

±γµδZ
(αs)
q

(/q +m)

q2 −m2
g±ω

±γν
(/p− /q +m)

(p− q)2 −m2

]
. (5.61)

By expanding the bracket containing the one-loop renormalization constants and using
(/q +m)(/q −m) = q2 −m2 in (5.60) one obtains (5.58). The cancellation of the one-loop
wave function renormalization constant of the quark in (5.59) follows analogously.

By definition the SR self-energies are free of UV subdivergences such that the UV diver-
gences present in the combination of ΣV ′V

T,(αsα),1PI
and ΣV ′V

T,(αsα),δm
are of polynomial structure

and can be removed by a local counterterm of the form

V1,µ, p V2,ν = igµν [c1 p2 δZ
(αsα)
V1V2

+ c2 δZ
(αsα)
V1V2

+ c3 δZ
(αsα)

M2
Vi

].

Therefore, the combination of ΣV ′V
T,(αsα),1PI

, ΣV ′V
T,(αsα),δm

, and a local counterterm is a UV-
finite quantity,

Σ̂V ′V
(αsα) =

V ′
Nfαsα
1PI

V
+

V ′
Nfαsα
δm

V
+ V ′ V
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=
V ′ V

g +
V ′ V

g +
V ′ V

g

+
V ′ Vδmq

+
V ′ V

δmq

+ V ′ V . (5.62)

In the on-shell scheme using dimensional regularization the mass renormalization con-
stants δmq = δm

(αs)
q (see Fig. 5.5) is given by [118]

δm(αs)
q = −mq

CFαs

4π

3− 2ϵ

1− 2ϵ

(
4πµ2

m2
q

)ϵ
Γ(1 + ϵ)

ϵ
, (5.63)

where CF = 4
3

denotes the quadratic Casimir factor of the fundamental representation of
colour SU(3). The diagrams involving δmq contribute to ΣV ′V

T,δm and their calculation can
be simplified using the following relation [118],

δmqa

∂

∂mqa

V ′
µ Vν

mqa

mqb

= − V ′
µ Vν

δmqa

mqb

. (5.64)

By applying the derivative with respect to mqa on the one-loop V V ′ self-energy we obtain,

δmqa

∂

∂mqa

V ′
µ Vν

mqa

mqb

= δmqa

∫
ddq

(2π)d
Tr
[
g±ω

±γµ
q2 −m2

qa + 2mqa(/q +mqa)

(q2 −m2
qa)

2
g±ω

±γν
(/p− /q +mqb)

(p− q)2 −m2
qb

]

=

∫
ddq

(2π)d
Tr
[
g±ω

±γµ
(/q +mqa)

(q2 −m2
qa)
δmqa

(/q +mqa)

(q2 −m2
qa)
g±ω

±γν
(/p− /q +mqb)

(p− q)2 −m2
qb

]
,

which is equivalent to (5.60) with δZ
(αs)
q set to zero. In the last step we have used

q2 −m2
qa + 2mqa(/q +mqa) = (/q +mqa)

2. With this short calculation we have checked the
validity of relation (5.64) for the case mqb ̸= mqa , where a generalization to mqb = mqa

is straight-forward and leads to an additional mixed loop-counterterm diagram on the
right-hand side of (5.64), with a counterterm on the fermionic line corresponding to mqb .

5.2.4 Results for electroweak gauge-boson self-energies at O(αsα)

In the following we discuss our results [115] for the electroweak gauge-boson self-energies
at O(αsα). As we have seen in the previous sections, the longitudinal parts of self-energies
are not relevant for our calculation and we only consider the transverse part of self-energies

ΣAA
T,(αsα),1PI(s) =

αsα

π2

N2
c − 1

2

∑

q

Q2
q s f1(s,m

2
q), (5.65)

95



Chapter 5. QCD×electroweak O(Nfαsα) corrections to single-W/Z production

ΣAZ
T,(αsα),1PI(s) =

αsα

π2

N2
c − 1

2

∑

q

(−Qq)vq s f1(s,m
2
q), (5.66)

ΣZZ
T,(αsα),1PI(s) =

αsα

π2

N2
c − 1

2

∑

q

[
(v2q + a2q) s f1(s,m

2
q) + a2q m

2
q f2(s,m

2
q)
]
, (5.67)

ΣAA
T,(αsα),δm(s) =

αsα

π2

N2
c − 1

2

∑

q

Q2
q m

2
q f3(s,m

2
q), (5.68)

ΣAZ
T,(αsα),δm(s) =

αsα

π2

N2
c − 1

2

∑

q

(−Qq)vqm
2
q f3(s,m

2
q), (5.69)

ΣZZ
T,(αsα),δm(s) =

αsα

π2

N2
c − 1

2

∑

q

m2
q

[
(v2q + a2q) f3(s,m

2
q) + a2q f4(s,m

2
q)
]
, (5.70)

where (N2
c − 1)/2 = NcCF = 4 originates from the SU(Nc) colour algebra with Nc = 3

and the sums
∑

q extend over all quark flavours q ∈ {u, d, c, s, t, b} with corresponding
electric charges Qq and third components I3w,q = ±1

2
of the weak isospin. In terms of the

couplings defined in (5.6) the vector and axial-vector couplings of quark q to the Z boson
are given by,

vq =
1

2
(C−Zq̄q + C+

Zq̄q), aq =
1

2
(C−Zq̄q − C+

Zq̄q). (5.71)

The explicit form of the auxiliary functions fi(s,m2
q) (i = 1, . . . , 8) is given in App. D

and depends on a set of 2-loop master integrals defined in (D.1). The explicit analytical
results of these master integrals which can be found in [115], are expressed in terms of
Goncharov Polylogarithms (GPLs) [119,120] up to weight three. To produce the numerical
results presented in Section 5.3 the GPLs contained in the genuine two-loop O(Nfαsα)
corrections were evaluated using the C++ library GiNaC [121] and in a second inde-
pendent calculation [115] using CHAPLIN [122]. Apart from the O(αsα) corrections to
gauge-boson self-energies present in the NC-DY process we also need the corresponding
corrections in case of the CC process,

ΣW
T,(αsα),1PI(s) =

αsα

2π2s2w

N2
c − 1

2

3∑

j=1

[
sf5(s,m

2
dj
,m2

uj
) + (mdj ↔ muj

)
]
, (5.72)

ΣW
T,(αsα),δm(s) =

αsα

2π2s2w

N2
c − 1

2

3∑

j=1

[
m2

uj
f6(s,m

2
dj
,m2

uj
) + (mdj ↔ muj

)
]
, (5.73)

where the sums
∑

j extend over the three generations of up-type and down-type quarks
uj and dj, respectively.

In the Gµ input-parameter scheme discussed in the following section we need the W -
boson self-energy at zero-momentum transfer. The limit s → 0 to obtain ΣW

T,(αsα)
(0)

requires some care as can be seen by looking at the explicit expressions for the auxiliary
functions f5(s,m2

dj
,m2

uj
) given in (D.7). The master integrals contained in this auxiliary

function contain coefficients proportional to 1
s2

such that the combination sf5(s,m2
dj
,m2

uj
)
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in (5.72) contains master integrals multiplied by 1
s
. Therefore, the limit s → 0 leads

to derivatives with respect to s taken of master integrals in f5(s,m
2
dj
,m2

uj
), that have

prefactors proportional to 1
s2

.
To calculate the derivatives of the master integrals S10110, S11101, S01102, S00220, and SS00202

(see (D.1) for the definition of the two-point two-loop integrals Sabcde) we first relate the
genuine two-loop master integrals S10110, S11110, and S11101, given in [115], to the dotted
sunset integral with two different masses, S10220, S20120, and S20210, via a change of basis
using the reduction program KIRA [123,124]. The vector of integrals

F⃗ = (S00220, S10220, S20120, S20210) (5.74)

fulfills the differential equation

∂

∂s
F⃗ (s) = −A−sF⃗ (s). (5.75)

The matrix A−s can be found in the appendix of [125] and its entries have at most simple
poles in s such that

(A−s)ij s̃→0

Bij

s
+ Cij, (5.76)

where Bij and Cij are constants which can also be zero for some combinations of i and j.
The derivative at s = 0 is therefore given by,

∂

∂s
Fi(s = 0)

(5.75)
= −

∑

i,j

lim
s→0

(A−s)ijFj(s)

(5.76)
= −

∑

i,j

lim
s→0

(Bij

s
+ Cij

)
Fj(s)

=−
∑

i,j

lim
s→0

Bij

Fj(0) + F ′j(0)s+O(s2)

s
−
∑

i,j

CijFj(0)

=−
∑

i,j

lim
s→0

Bij
Fj(0)

s
−
∑

i,j

BijF
′
j(0)−

∑

i,j

CijFj(0). (5.77)

By explicit calculation, using the specific form of A−s, we obtain BF⃗ (0) = 0. This leads
to

d

ds
Fi(s = 0) =−

∑

i,j

Bij
dFj

ds
(0)−

∑

i,j

CijFj(0), (5.78)

which is a system of linear equations in the derivatives of the master integrals contained
in the vector F⃗ . By solving this system we obtain the derivative of F⃗ with respect to s
at s = 0.
Some of the master integrals are the square of one-loop two-point functions (e.g. S01111)
and their derivatives with respect to s are given by

d

ds
(I

(1)
2p (s))

2 = 2I
(1)
2p (s)

d

ds
I
(1)
2p (s). (5.79)
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There are also master integrals which are the product of a one-loop two-point function
and a one-loop tadpole (e.g. S01102) with derivative

d

ds
(I

(1)
1p I

(1)
2p (s)) = I

(1)
1p

d

ds
I
(1)
2p (s). (5.80)

Using the corresponding differential equation for the one-loop integrals, the calculation
of the derivative at s = 0 of the appearing one-loop two-point functions follows along the
same lines as for the two-loop sunset integrals described above.

The limit s→ 0 of the master integrals was used as boundary condition in the calculation
of the masters and, therefore, the corresponding integrals in this limit are known. The
knowledge about the derivative with respect to s of the master integrals in f5(s,m2

dj
,m2

uj
)

at s = 0 and about the boundary condition fulfilled by the masters at s = 0 allows us
now to calculate the limit s → 0 of the transverse part of the W -boson self-energy. The
result of the procedure leads to,

ΣW
T,(αsα),1PI(0) =

αsα

2π2s2w

N2
c − 1

2

3∑

j=1

[
f7(m

2
dj
,m2

uj
) + (mdj ↔ muj

)
]
, (5.81)

ΣW
T,(αsα),δm(0) =

αsα

2π2s2w

N2
c − 1

2

3∑

j=1

[
m2

uj
f8(m

2
dj
,m2

uj
) + (mdj ↔ muj

)
]
. (5.82)

The O(Nfαsα) corrections to the EW gauge-boson self-energies had already been cal-
culated some time ago in Refs. [118,126–130]. We have compared our results with the
ones given in Ref. [118] and find full analytical agreement in the case of vanishing quark
masses. For non-vanishing quark masses we find numerical agreement for ΣV ′V

T,(αsα)
(k2)

with those results after fixing a mistake in the results of Ref. [118]1.

5.2.5 Electroweak input-parameter scheme at O(αsα)

In the following, we work in the Gµ-scheme which was introduced in Section 2.3 for NLO
calculations. Formally, we derive the following value for α from Gµ,

αGµ =

√
2GµM

2
W

π

(
1− M2

W

M2
Z

)
, (5.83)

i.e. we take αGµ as a real quantity which deserves some justification. In principle, the
imaginary part of the renormalized coupling e is given by the imaginary part of the

1For s < 0, our results agree with the ones in Ref. [118] without modification. In order to get numerical
agreement also in the region s > 0 we had to modify the functions F (x) and G(x) in Eq. (4.5) of Ref. [118]
when evaluating them with squared arguments F (xaxb), G(xaxb) in Eq. (4.3) and likewise F (x2), G(x2)
in Eq. (5.1). The modifications leading to a correct analytic continuation of the results in Ref. [118] to
the region s > 0 explicitly read

F (xaxb) = 6Li3(xaxb)− 4Li2(xaxb) [ln(xa) + ln(xb)]− [ln(xa) + ln(xb)]
2 ln(1− xaxb),

G(xaxb) = 2Li2(xaxb) + 2[ln(xa) + ln(xb)] ln(1− xaxb) +
xaxb

1− xaxb
[ln(xa) + ln(xb)]

2.
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charge renormalization constant, which in turn, is a consequence of the application of
the CMS. The charge renormalization constant is determined only from self-energies at
zero momentum transfer, which means, that it does not develop imaginary parts for real
internal masses, as these only build up if internal particles running inside the loop of the
self-energies could be produced on-shell, i.e. at the threshold (and zero momentum transfer
is obviously not at the threshold of any massive particle). Therefore, the imaginary parts
of the coupling e are only spurious terms, that are of formal two-loop order O(α2) and
therefore not relevant at O(αsα). This can be seen by a Taylor expansion of the complex
masses appearing in self-energies that contribute to the charge renormalization constant
around the real masses,

ΣAA
T (k2 = 0, {µW, . . . }) = ΣAA

T (k2 = 0, {MW, . . . })
+ (µ2

W −M2
W)︸ ︷︷ ︸

O(α)

Σ′AA
T (k2 = 0, {MW, . . . })︸ ︷︷ ︸

=O(α)

+O(α3) +O(αsα
2),

(5.84)

where we made the dependence of the self-energy on complex masses explicit and used
that there are no one-loop QCD corrections to the electroweak gauge-boson self-energies,
similar to the case in (2.115) and (5.44).

As at NLO we also need to adapt the charge renormalization constant when changing to
the Gµ-scheme,

δZe,(αsα)

∣∣
Gµ

= δZe,(αsα) −
1

2
∆r(αsα). (5.85)

To obtain the expression of ∆r at O(αsα) we note that for its calculation only closed
fermion-loop contributions to the gauge-boson self-energies are relevant at this perturba-
tive order. Thus, we can obtain the expression for ∆r(αsα) from the O(α) result for ∆r
(2.87) by substituting the NLO self-energies with the corresponding O(αsα) quantities,

∆r(αsα) = Σ′AA
T,(αsα)(0)−

c2w
s2w

(
ΣZZ

T,(αsα)
(M2

Z)

M2
Z

−
ΣW

T,(αsα)
(M2

W)

M2
W

)

+
ΣW

T,(αsα)
(0)− ΣW

T,(αsα)
(M2

W)

M2
W

, (5.86)

where we have used (5.46).

99



Chapter 5. QCD×electroweak O(Nfαsα) corrections to single-W/Z production

5.3 Numerical results

5.3.1 Input parameters and event selection

The setup for the calculation is taken over from our publication [115] containing the results
presented in the following sections. We choose the input parameters as [131],

MW,OS = 80.385GeV, ΓW,OS = 2.085GeV,

MZ,OS = 91.1876GeV, ΓZ,OS = 2.4952GeV,

MH = 125.9GeV, mt = 173.07GeV,

Gµ = 1.1663787× 10−5GeV−2, mb = 4.78GeV.

(5.87)

For the widths of the W - and Z-boson we use experimental values as input parameters
instead of determining them by calculating their decay widths at the relevant order, which
is a valid procedure in the complex-mass scheme as discussed in Section 2.4.2. The on-
shell masses and widths of the vector bosons are converted to the corresponding pole
masses according to (2.105). The masses of the light quark flavours (u,d,c,s) and of the
leptons are neglected throughout. The masses for the top and bottom quark in (5.87) are
their respective pole masses. The CKM matrix is chosen diagonal in the third generation,
and the mixing between the first two generations is parametrized by the following values
for the entries of the quark-mixing matrix,

|Vud| = |Vcs| = 0.974, |Vcd| = |Vus| = 0.227. (5.88)

While b-quarks appearing in closed fermion loops have the mass mb given in Eq. (5.87),
external b-quarks are taken as massless. The electromagnetic coupling constant is deter-
mined in the Gµ scheme, as described in the previous section.

In the OS scheme diagrams that contain the gauge-boson–fermion renormalization con-
stants in Tab. 5.1 dictate the size of the vv-1PI O(Nfαsα) corrections close to the res-
onance of the amplitude. Therefore, to estimate the size of corrections in the resonance
region, in Tab. 5.1 we give numerical values for the gauge-boson–fermion renormalization
constants δct,σ

V f̄f ′,(αsα)
defined in Eqs. (5.49) and (5.50) for V = W,Z. Due the smallness

of δct,σ
V f̄f ′,(αsα)

, the size of the vv-1PI O(Nfαsα) corrections is at the permille level in the
resonance regions.
Since in DY-like photon production the intermediate photon is off its mass shell in the
region of the W/Z resonance, the photon–fermion renormalization constants do not enter
the corrections to the resonant parts of the cross sections and we do not give values for
the photon–fermion renormalization constants δct,σ

Af̄f,(αsα)
. Moreover, light quarks are run-

ning in the closed fermionic loop leading to collinear singularities as the configuration for
the photon-photon self-energy including these loops at zero momentum transfer (which
is part of δct,σ

Af̄f,(αsα)
in the Gµ-scheme) fulfills the Landau equations depicted in Fig. 3.2.

Even though present at intermediate steps, in the complete calculation those IR singular-
ities cancel against the photon wave function renormalization constant contained in the
photon self-energy correction, when the O(Nfαsα) vertex corrections are combined with
the corrections of the gauge-boson self-energy insertion, as e.g. in (5.17).
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σ − +

δct,σ
Wd̄u,(αsα)

/10−3 0.0843967704 + 0.0026086585 i

δct,σWν̄ℓℓ,(αsα)
/10−3 0.0843967704 + 0.0026086585 i

δct,σZūu,(αsα)
/10−3 1.3246636238− 0.2506548513 i −4.4427625269 + 0.552219570 i

δct,σ
Zd̄d,(αsα)

/10−3 0.3190294259− 0.1046758916 i −4.4427625269 + 0.552219570 i

δct,σ
Zℓ̄ℓ,(αsα)

/10−3 2.8687295153− 0.4797272589 i −4.4427625269 + 0.552219570 i

Table 5.1: Numerical values for gauge-boson–fermion renormalization constants for the input
values of Eq. (5.87) and αs = 0.119.

The numerical values are calculated using the complex-mass scheme and the Gµ input-
parameter scheme, as described above, using the input values of Eq. (5.87) and αs = 0.119.
For the PDFs we consistently use the NNPDF2.3 set [132], i.e. the NLO and NNLO QCD–
EW corrections are evaluated using the NNPDF31_nlo_as_0118_luxqed set [133], which
also includes O(α) corrections. The value of the strong coupling αs(MZ) = 0.118, which
is used in the evaluation of the pp cross section, is dictated by the choice of these PDF
sets. The renormalization and factorization scales are both set to a fixed value given by
the respective gauge-boson mass,

µR = µF = MV , (5.89)

with V = W,Z for W and Z production, respectively.

Phase-space cuts

For the experimental identification of the DY process we impose the following transverse
momentum and rapidity cuts on the charged leptons,

pT,ℓ± > 25GeV, |yℓ±| < 2.5, (5.90)

and, in case of the charged-current process, also an additional cut on the missing transverse
energy (see (B.13) for a definition),

Emiss
T > 25GeV. (5.91)

For the neutral-current process, we require a cut on the invariant mass Mℓℓ of the lepton
pair,

Mℓℓ =
√
(pℓ1 + pℓ2)

2 > 50GeV, (5.92)

in order to avoid the photon pole at Mℓℓ → 0.

Since there is no photon emission involved in corrections of O(Nfαsα), the issue of dressed
leptons and photon recombination is of minor importance for the calculated corrections.
The photon-recombination algorithm used in the calculation of O(αsα) corrections to the
neutral-current Drell–Yan process in PA is discussed later in Section 6.4.
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5.3.2 Corrections to differential distributions

In the following, we present numerical results for corrections to the neutral- and charged-
current Drell–Yan process at the LHC for a centre-of-mass energy of 14 TeV, in particular
corrections of O(Nfαsα). In case of W production the observables we consider are the
transverse momentum of the positively charged lepton, the rapidity distribution of the W
boson, and the transverse mass distribution, which is defined as (see also (B.15))

MT,ℓν =
√

2pT,ℓET,miss(1− cosϕℓν). (5.93)

For Z/γ production we study the transverse-momentum distribution of the positively
charged lepton, the rapidity distribution of the final-state lepton-system, and the invariant-
mass distribution of the leptons.

For on-shell DY-like W/Z production, in the rest frame of the intermediate on-shell W/Z
bosons the final-state leptons are produced back-to-back with each of them having the
energy MV /2. This leads to the well-known Jacobian peak at kT,ℓ =MV /2 clearly visible
in the black graph in the upper plots of Fig. 5.6, representing the transverse-momentum
distribution of the positively charge lepton for the LO cross section. Apart from the
LO result Fig. 5.6 also shows the sum of the LO distribution and the NLO QCD dσ(αs)

corrections

dσNLOQCD = dσLO + dσ(αs). (5.94)

Furthermore, the sum of LO, NLO QCD corrections, and O(Nfαsα) corrections

dσNNLO = dσLO + dσ(αs) + dσ(Nfαsα) (5.95)

is depicted. Due to jet-recoil effects (see Section B.2 for more information), where the
intermediate W/Z boson recoils against initial-state QCD radiation, corrections to the
transverse-momentum sprectrum can become very large, even larger than the LO contri-
bution itself, which can be seen in Fig. 5.6. In this case, the LO prediction is obviously
not a good approximation for observables that are sensitive to these jet-recoil effects. This
is why we do not only consider relative O(Nfαsα) corrections normalized to LO,

δ =
dσ(Nfαsα)

dσLO
, (5.96)

but also a second variant where we normalize to the sum of LO and NLO QCD,

δ′ =
dσ(Nfαsα)

dσNLOQCD

. (5.97)

The ratio δ′ quantifies the size of EW O(Nfα) corrections to the cross section corrected
at NLO QCD. As NLO EW corrections are relatively small compared to the NLO QCD
corrections we do not include them in the second normalization version of relative cor-
rections. However, we note in passing that due to final-state photon radiation they still
lead to significant distortions of distributions and shifts therein. They can e.g. be found

102



Chapter 5. QCD×electroweak O(Nfαsα) corrections to single-W/Z production

0

100

200

300

400

500

600

30 35 40 45 50 55 60

pp → W+ → νℓℓ
+ +X

√
s = 14TeV

pp → W+ → νℓℓ
+ +X

√
s = 14TeVd

σ
/d

p
T
,µ

+
[p
b
/G

eV
]

kT,ℓ[GeV]

NLO QCD + O(Nfαsα)
NLO QCD

LO

0

10

20

30

40

50

60

70

80

90

30 35 40 45 50 55 60

pp → Z/γ → ℓ−ℓ+ +X√
s = 14TeV

pp → Z/γ → ℓ−ℓ+ +X√
s = 14TeV

d
σ
/d

p
T
,µ

+
[p
b
/G

eV
]

kT,ℓ[GeV]

NLO QCD + O(Nfαsα)
NLO QCD

LO

0

50

100

150

200

250

300

350

60 65 70 75 80 85 90 95 100

pp → W+ → νℓℓ
+ +X

√
s = 14TeV

pp → W+ → νℓℓ
+ +X

√
s = 14TeV

d
σ
/d

M
T
,ν
ℓ[
p
b
/G

eV
]

MT,νℓ[GeV]

NLO QCD + O(Nfαsα)
NLO QCD

LO

0

20

40

60

80

100

120

140

160

180

60 65 70 75 80 85 90 95 100

pp → Z/γ → ℓ−ℓ+ +X√
s = 14TeV

pp → Z/γ → ℓ−ℓ+ +X√
s = 14TeV

d
σ
/d

M
ℓℓ
[p
b
/G

eV
]

Mℓℓ[GeV]

NLO QCD + O(Nfαsα)
NLO QCD

LO

Figure 5.6: In the upper plots we show absolute distributions in the transverse-lepton-momentum
for W production (left) and Z/γ production (right), whereas the lower plots show the transverse
invariant-mass distribution for W production (left) and the invariant-mass distribution for Z/γ
production (right).

in [21,29]. In Fig. 5.6 we show the regions of low and high transverse momentum, as well
as the region of low and high Mℓℓ and MT,ℓν individually. As we do not include longitu-
dinal components of four-momenta in the calculation of the transverse mass (B.15), the
W boson can still be on shell for MT,ℓν < MW by having a non-vanishing longitudinal
component in the four-momentum. Therefore, in the charged-current case the absolute
distribution in the low-mass plot is dominated by on-shell W bosons for MT,ℓν ≲ MW.
In the neutral-current case the resonance of the Z boson only shows up for Mℓℓ ∼ MZ,
visible in the lower plots of Fig. 5.6. The same reasoning also applies to the transverse-
momentum distributions (as discussed in detail in Section B.1), i.e. as in the case of the
transverse-mass distribution of the W boson, the W/Z boson can still be on shell when
the kT of the positively charged lepton is smaller than MV (V = W/Z), and therefore,
this region is dominated by the on-shell W/Z boson. This explains why the upper two
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distribution and the lower one on the left in Fig. 5.6 are still relatively large below the
resonance region, whereas the invariant-mass distribution of the two leptons is large only
in the vicinity of the Z resonance.

In Fig. 5.7 we show the relative correction δ of O(Nfαsα) to the distributions in the
transverse mass of the final-state leptons νℓℓ+ (ℓ = e, µ) for the charged-current process
and in the invariant mass of ℓ+ℓ− for the neutral-current process. To get a better under-
standing of the size of individual contributions to the full O(Nfαsα) and to probe possible
approximations we do not only show the full O(Nfαsα) (red curves) corrections but also
corrections that include only the first two fermion generations (blue curves), neglecting
the third generation that contains the in our setup massive top and bottom quarks. Fur-
thermore, the corrections induced by reducible diagrams only (green curves) are depicted.
As discussed above, the region MT,ℓν ≲MW is dominated by the on-shell W boson, and

as the absolute distribution peaks in the resonance region, the size of corrections in the
low-mass plot in the charged-current case for MT,ℓν ≲MW is fully dictated by the size of
the corrections in the region of on-shell W bosons. The size of corrections in the region of
on-shell W bosons, in turn, can already be estimated from the renormalization constants
given in Tab. 5.1, leading to the permille corrections in the low-mass plots.
In regions above the resonances, depicted in the high-mass plots on the r.h.s., the cor-
rections grow up to 2% making them relevant in searches for new physics such as effects
of W ′ or Z ′ bosons. The reducible contributions contribute the bulk of the corrections
in the high-mass region, depicted on the r.h.s. of Fig. 5.7 in the green curve. However,
it is also important to note that the effect of the irreducible corrections, given by the
difference of the red and the green curves, is not negligible compared to the reducible
corrections. Furthermore, we can clearly see that the contribution of the third fermion
generation including the massive quarks is not suppressed compared to the impact of the
first two generations. Comparing the red and the blue curves we can conclude that neither
setting the masses of the quarks in the third generation to zero nor neglecting the third
generation is a good approximation of the full O(Nfαsα) corrections. As can be seen in
the lower plots of Fig. 5.6, the NLO QCD corrections to the (transverse) invariant-mass
distributions are of the order of 10%. Therefore, using the NLO QCD corrections in
the normalization of the relative corrections instead of the LO distribution does not lead
to large changes of the relative corrections. Qualitatively, the relative corrections δ′ in
Fig. 5.8 therefore show the same behaviour as the relative corrections δ normalized to LO.
We note that in the lower right plots of Fig. 5.7 and Fig. 5.8 the tt̄ threshold is visible
at Mℓℓ ∼ 2mt ≈ 346 GeV in the full O(Nfαsα) corrections (red curve) and the reducible
part (green curve).

In Fig. 5.9 we show relative O(Nfαsα) correction δ to the transverse-momentum dis-
tribution of the positively charged lepton in the low- (left) and high-kT (right) region.
As we have already discussed above, jet-recoil effects lead to the enhancement of NLO
QCD corrections in the region above the resonance of the W/Z boson. The real initial-
state radiation of a gluon or (anti)quark, the W/Z boson recoils against, is also present in
O(Nfαsα) corrections. Therefore, they are also enhanced above the resonance of the W/Z
boson and grow up to 15%. As the real radiation is only present in the reducible but not
in the irreducible O(Nfαsα) corrections, the reducible corrections completely dominate in
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Figure 5.7: Relative O(Nfαsα) corrections δ (normalized to the LO cross section) to distributions
in the transverse invariant mass of the W bosons (upper plots) and in the invariant mass of the Z
boson (lower plots), where the complete O(Nfαsα) corrections are compared to the contribution
originating from reducible graphs and to the contribution delivered by the first two fermion
generations.

contrast to the situation already observed in the (transverse) invariant mass spectra. In
Fig. 5.10 we show the corrections δ′ to the transverse-momentum distributions normalized
to the NLO QCD correction. In these distributions we find the expected size of O(αsα)
corrections as the enhancing recoil effects are now present not only in the numerator but
also in the denominator of the relative correction and therefore cancel out.
The fact that the corrections δ′ reach several percent on the resonance at kT,ℓ ∼MV /2 is
in fact induced by the choice of normalization. As can be seen in Fig. 5.6, the NLO QCD
corrections dσ(αs) are large and negative in the vicinity of the resonance in the chosen
setup leading to a local minimum of the denominator dσNLOQCD in (5.97) and therefore
enhancing δ′ in this region.

Figure 5.11 shows the relative correction δ of O(Nfαsα) to the rapidity distribution of
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Figure 5.8: Relative O(Nfαsα) corrections δ′ (normalized to the NLO QCD cross section) to
distributions in the transverse invariant mass of the W bosons (upper plots) and in the invariant
mass of the Z boson (lower plots), where the complete O(Nfαsα) corrections are compared to
the contribution originating from reducible graphs and to the contribution delivered by the first
two fermion generations.

the final-state leptons νℓℓ+ in the charged-current process and ℓ+ℓ− in the neutral-current
process. Equation (5.10) in the beginning of this chapter led us to the conclusion that
corrections to rapidity distributions are dominated by the size of the corrections in the
resonance region. As discussed above, O(Nfαsα) corrections are at the permille level in
the vicinity of the resonance setting also the size of corrections to rapidity distributions
to this magnitude, which is clearly visible in Fig. 5.11.
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Figure 5.9: Relative O(Nfαsα) corrections δ (normalized to the LO cross section) to transverse-
momentum distributions for W -boson (upper plots) and Z-boson production (lower plots), again
with a comparison of full O(Nfαsα) corrections to its reducible parts and to the contribution of
the first two fermion generations.
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Figure 5.10: Relative O(Nfαsα) corrections δ′ (normalized to the NLO QCD cross section) to
transverse-momentum distributions for W -boson (upper plots) and Z-boson production (lower
plots), again with a comparison of full O(Nfαsα) corrections to its reducible parts and to the
contribution of the first two fermion generations.
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Figure 5.11: Relative O(Nfαsα) corrections δ (normalized to the LO cross section) to distribu-
tions in rapidity distribution of the W bosons (left) and the Z boson (right), where the complete
O(Nfαsα) corrections are compared to the contribution originating from reducible graphs and
to the contribution delivered by the first two fermion generations.
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Chapter 6
QCD×electroweak corrections to single-
Z production in pole approximation

In this section we describe the calculation of O(αsα) corrections to the neutral-current
Drell–Yan process in pole approximation (PA). We start by introducing the pole scheme
for processes with a single resonance and use this as the starting point for the definition
of the PA. The PA for the DY-like Z production is obtained by neglecting non-resonant
parts and taking into account only the leading term of amplitudes in the expansion around
the resonance of the Z boson. The neglect of non-resonant terms leads to an intrinsic
uncertainty of the PA given by the width of the Z boson over its mass. The NLO contri-
butions are therefore calculated without any approximation as the intrinsic uncertainty
of the PA at NLO is of the same order as O(ΓZ/MZ) · O(α) = O(α2), which is roughly
of the order of the NNLO corrections we are going to calculate (ignoring that αs is larger
than α for this estimate).

The application of the PA to corrections of O(αsα) to DY-like Z production gives rise
to separately gauge-invariant building blocks, which are discussed in Section 6.2. Cor-
rections of “initial–initial” (II) type—i.e. corrections of O(αsα) with both a QCD and a
EW correction to the production of the Z boson—are the last missing piece to complete
the calculation of O(αsα) corrections to DY-like Z boson production in PA presented
in [55,56]; their calculation is discussed in Sect. 6.3. The results of this chapter are going
to be published in [134].

6.1 Pole approximation for DY processes

We start with the observation that we can schematically write the transition amplitude
for a process with a single resonance in the following form,

M =
W (p2V )

p2V −M2
V + Σ̂(p2V )

+N(p2V ), (6.1)

where instability effects of the massive gauge boson V are included using the Dyson-
summed propagator (2.97). The function W (p2V ) describes resonant, and N(p2V ) non-
resonant parts that arise, e.g., by the connection of the initial and final state only by a

111



Chapter 6. QCD×electroweak corrections to single-Z production in pole approximation

photon, i.e. V = γ. Using the gauge-invariant location of the propagator pole [76,78,135]
given in (2.100) as the expansion point to rewrite the denominator,

p2V −M2
V + Σ̂(p2V ) = (p2V − µ2

V )
(
1 + Σ̂′(µ2

V )
)
+O

(
(p2V − µ2

V )
2
)
, (6.2)

one can isolate the resonant part of the amplitude in the following way [55,56,60],

M =
W (µ2

V )

p2V − µ2
V

1

1 + Σ̂′(µ2
V )︸ ︷︷ ︸

“factorizable”

+

[
W (p2V )

p2V −M2
V + Σ̂(p2V )

− W (µ2
V )

p2V − µ2
V

1

1 + Σ̂′(µ2
V )

]

︸ ︷︷ ︸
“non-factorizable”

+ N(p2V )︸ ︷︷ ︸
neglected in PA

.

(6.3)

The last equation defines the so-called pole scheme which has been applied to e.g. Z
production in [29]. The PA [77, 136, 137] is obtained from the pole scheme by neglecting
the non-resonant parts N(p2V ), and performing an expansion in p2V around p2V = µ2

V of
the term in the square brackets and keeping only the leading term of the expansion.
The first term on the r.h.s. defines the so-called factorizable corrections which include
the corrections to on-shell production and decay of the boson V connected by an off-
shell propagator. The resonant contributions originating from the second term on the
r.h.s. define the non-factorizable corrections which include contributions where the on-
shell production and decay of the vector boson V is connected by a soft photon in addition
to the connection by the vector boson V itself. It can be shown by power counting [138]
that the combination of an on-shell V boson and a soft photon results in a single pole,
i.e. a resonance enhancement. Therefore, these contributions have to be included in a
resonance expansion.

Note that if we use the real OS renormalization scheme the derivative of the renormalized
self-energy evaluated at M2

V is purely imaginary, and therefore the relevant part of the
correction factor for the residue reduces to 1. To see this we first expand the correction
factor for the residue

1

1 + Σ̂′(µ2
V )

=
1

1 + Σ̂′(M2
V )︸ ︷︷ ︸

=i Im
(

d
dp2

Σ̂(p2)

∣∣
p2=M2

V

)
=O(ΓV /MV )

+O (MV ΓV · α)
= 1 + iO

(
ΓV

MV

)
, (6.4)

where we used that the renormalized self-energy Σ̂(p2) scales as iMV ΓV for p2 ≈M2
V and

that d
dp2

scales as 1
M2

V
to obtain the right-hand side of (6.4). Further, we note that the

contribution of (6.3) to the squared amplitude is obtained by interfering M with the LO
amplitude and afterwards taking the real part which eliminates the imaginary part on
the right-hand side of (6.4). Therefore, the relevant part of the correction factor for the
residue to obtain the contribution to the squared amplitude is just 1.
For corrections of O(αsα) in the resonance region, the replacement of the complex masses
µ2
V by M2

V in the numerator of the factorizable part in (6.3) also leads to an error of the
same size as the intrinsic uncertainty O(αsα/π

2 × ΓV /MV ) of the PA. Therefore, we can
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avoid the evaluation with complex masses and replace them by their real part. This result
can be obtained with a similar expansion as in (6.4)

M(µ2
V ) = M(M2

V ) + (µ2
V −M2

V )M′(M2
V ) +O((µ2

V −M2
V )

2)

= M(M2
V )

(
1 + iΓVMV

M′(M2
V )

M(M2
V )︸ ︷︷ ︸

=O(1/M2
V )

+O
(

Γ2
V

M2
V

))

= M(M2
V ) +O

(
ΓV

MV

)
O
(
M(M2

V )
)

︸ ︷︷ ︸
=O(αsα

π2 )

= M(M2
V ) +O

(αsα

π2
× ΓV

MV

)
. (6.5)

The on-shell evaluation of the numerator is accomplished by the application of an on-shell
projection of the kinematics. The definition of the projection involves some freedom and
the difference of results obtained from different projections is again of the order of the
intrinsic uncertainty of the PA at the respective order in perturbation theory if the PA is
only applied to the “highest” perturbative order considered in the calculation.

6.2 Survey of O(αsα) corrections to single-Z produc-
tion in pole approximation

The application of the PA to neutral-current Drell–Yan processes [21, 55, 56, 77, 86, 139]
allows the identification and classification of corrections to DY processes into separately
gauge-invariant parts that are enhanced in the vicinity of the resonance of the interme-
diate Z boson. At NLO different versions of the PA have been compared to full NLO
calculations. For kinematic distributions dominated by the resonance region agreement
was found at the permil level between the PA and the full calculations in the resonance
region [21,55,86,140]. In the context of O(αsα) corrections the PA has been first applied
in [55] where the classification of the corrections into four different parts has been worked
out. In [55, 56] it has been shown that the factorizable corrections of type “final–final”
and in particular corrections of type “initial–final”—i.e. corrections of O(αsα) where either
both QCD and EW corrections are combined in the Z-boson decay, or the QCD correc-
tions are contained in the production and the EW corrections in the Z-boson decay—are
numerically dominant compared to the phenomenologically negligible non-factorizable
corrections where production and decay of the intermediate Z boson are linked by a soft
photon. The four types of corrections can be further classified into double-real, real–
virtual, and double-virtual corrections. We show the separation of corrections into the
four types in the case of double-virtual corrections in Fig. 6.1.

The expansion of the full NNLO O(αsα) correction around the resonance pole at p2Z ≈M2
Z

leads to the following four types of corrections:

• The factorizable initial–initial O(αsα) corrections to on-shell Z production receive
contributions from genuine two-loop O(αsα) diagrams, from one-loop real–virtual
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and tree-level double-real diagrams. In order to stay closer to a calculation without
any approximations we split the factorizable initial–initial O(αsα) corrections into
the separately gauge-invariant QCD×weak O(αsαw) and QCD×photonic O(Q2

qαs-
αphot) corrections and calculate the QCD×photonic part without on-shell approxi-
mation for the Z boson whereas in case of the QCD×weak O(αsαw) corrections we
have to use the PA in order to preserve gauge invariance. The calculation of these
corrections of type initial–initial completes the effort [55, 56] of calculating the full
set of O(αsα) corrections to Z boson production in PA.

• Factorizable initial–final O(αsα) corrections are given by contributions that include
the O(αs) correction to Z production combined with the O(α) correction to the
leptonic Z decay. It has been shown in [56] that this class of corrections captures
the dominant effects of O(αsα) corrections in PA due to the large corrections of
real final-state photon radiation.

• The factorizable final–final corrections include only O(αsα) counterterm contribu-
tions to the lepton–Z-vertices and contain no contributions from real radiation dia-
grams. In [56] an explicit calculation of these corrections showed that their impact
on distributions is phenomenologically negligible.

• Non-factorizable corrections include QCD O(αs) corrections to the Z-boson produc-
tion, combined with a soft-photon exchange between the initial-state quarks and the
final-state leptons. Individually the real and virtual non-factorizable corrections for
different partonic channels lead to sizeable corrections to the (transverse) invariant
mass and transverse-momentum spectra of the intermediate W/Z boson. However,
due to cancellation between real and virtual corrections the numerical impact of
these corrections is of the sub-permil level [55] and is therefore of no relevance for
phenomenology.

The details of our calculation of the corrections of type “initial–initial” are presented in
the next section, where the calculation of “initial–final” and “final–final” type corrections
is discussed in [56].

We only apply the PA to weak×QCD O(αsα) initial–initial corrections and in particular
not at LO, as the application of the PA at LO would lead to an uncertainty O(ΓV /MV ) =
O(α) which is larger than the typical order of the NNLO corrections we are interested
in. Also NLO corrections are calculated without the application of the PA. The details of
the OS mappings that have to be applied to the kinematics in the PA are discussed when
they become first relevant below. In contrast to the weak×QCD initial–initial corrections,
which are gauge-invariant only when applying a PA, the photonic×QCD O(αsα) initial–
initial corrections are gauge invariant even without a PA as they are proportional to the
charge factors QqaQqb of the initial state quarks, and we choose to evaluate them without
on-shell approximation for the Z boson to stay closer to the full calculation of the O(αsα)
corrections.
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Figure 6.1: The four different contributions to the mixed QCD×EW corrections in PA, where
simple circles represent tree structures, double circles one-loop corrections, and triple circles two-
loop contributions. The pictures have been taken from [56].

6.3 Calculation of the factorizable initial–initial correc-
tions

In this section we describe the calculation of the factorizable initial–initial corrections of
O(αsα) in detail. A pictorial representation of these corrections is shown in Fig. 6.2. As
described in the last section we separate the full O(αsα) “initial–initial” corrections into
QCD×photonic O(Q2

qαsαp) and QCD×weak O(αsαw) corrections. In order to stay closer
to the full calculation of the O(αsα) corrections we apply the PA only to the QCD×weak
O(αsαw) part. The IR pole structure of QCD×weak initial–initial corrections is of one-
loop complexity, so that one-loop subtraction schemes are sufficient to handle the IR poles.
Concerning the double-real O(Q2

qαsαp) initial–initial corrections there are two potentially
unresolved particles in the final state demanding a proper two-loop subtraction scheme and
we applied antenna subtraction. In order to construct antenna subtraction functions at
O(Q2

qαsαp) one can use the subleading colour parts of the known O(α2
s ) antenna functions

for the initial–final [108] and initial–initial [109, 112] cases. Apart from the subtraction
terms obtained in this way we also discuss the calculation of the amplitudes relevant for
O(Q2

qαsαp) initial–initial corrections in the following sections. In Section 6.4 we present
the corresponding numerical results.

6.3.1 Double-virtual corrections

Here we describe the calculation of the double-virtual QCD×weak O(αsαw) and the
QCD×phot O(Q2

qαsαp) initial–initial corrections to the squared qq̄ → ℓℓ̄ matrix element,
where the starting point of our calculation of the O(αsαw) corrections is the two-loop
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(c) Double-virtual O(Q2
qαsαp) initial–initial and factorizable O(αsαw) initial–initial diagrams

Figure 6.2: Various contributions to the gauge-invariant set of O(Q2
qαsαp) and the factorizable

initial–initial O(αsαw) corrections, where V, V ′ = Z, γ. Double circles indicate one-loop correc-
tions, simple circles indicate relevant tree structures, and simple circles with a “γ” (“g”) inside
represent all possible connected tree-level diagrams of the process qaqa → qaqa + V with an
intermediate photon (gluon). An additional particle attached to a “one-loop blob”, as e.g. in
Fig. 6.2c, means that the particle has to be inserted into the corresponding one-loop diagram in
all possible ways.
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formfactor for light quarks,

FZq̄q
µ (q2) = ieγµ

(
1 + γ5

2
FZq̄q

R (q2) +
1− γ5

2
FZq̄q

L (q2)

)
. (6.6)

The unrenormalized reducible (red) part of O(αwαs) contribution to the formfactor is
defined as the product of the known one-loop QCD and weak corrections to the form
factor,

FZq̄q,red
Vs⊗Vw,τ (q

2) = δZq̄q
Vs

(q2) FZq̄q
Vw,τ (q

2), (6.7)

where the expressions for the NLO weak correction factor can be found, e.g., in [29,55] and
δZq̄q
Vs

(q2) is defined in (5.19). We define the unrenormalized irreducible (irred) contribution
as the difference between the full O(αwαs) formfactor and the reducible contribution,

FZq̄q,irred
Vs⊗Vw,τ (q

2) = FZq̄q
Vs⊗Vw,τ (q

2)− FZq̄q,red
Vs⊗Vw,τ (q

2), (6.8)

which can be written in terms of two auxiliary functions ϕA and ϕNA,

FZq̄q,irred
Vs⊗Vw,R(q

2) = CF
αs

4π

α

4π
g3R ϕA(q

2/m2
Z),

FZq̄q,irred
Vs⊗Vw,L(q

2) = CF
αs

4π

α

4π

(
g3LϕA(q

2/m2
Z) +

gL
2s2w

ϕA(q
2/m2

W ) + cW
I3
2s3w

ϕNA(q
2/m2

W )

)
,

(6.9)
where

gR = −Qsw
cw

, gL =
I3w −Qs2w
cwsw

. (6.10)

Results for the two formfactor functions ϕA and ϕNA can be found in Ref. [141]. To
evaluate the two functions ϕA and ϕNA numerically we use the Fortran library handyG
[142].

The irreducible part of the O(αsαw) formfactor FZq̄q,irred
Vs⊗Vw,τ is UV- and IR-finite and is not

affected by the choice of a specific renormalization scheme. Therefore, in order to obtain
the renormalized form factor for massless quarks F̂Zq̄q

Vs⊗Vw,τ it is sufficient to add the Z-
boson–fermion vertex counterterm to the unrenormalized weak formfactor in the reducible
part of the full O(αsαw) formfactor,

F̂Zq̄q
Vs⊗Vw,τ (q

2) = F̂Zq̄q,irred
Vs⊗Vw,τ (q

2) + δZq̄q
Vs

(q2)(FZq̄q
Vw,τ (q

2) + δct,τ
Zq̄q,weak), (6.11)

where we indicate renormalized quantities by the superscript ˆ and the explicit form of
the one-loop vertex counterterms in the on-shell scheme can be found in Eq. (A.44) of
Ref. [60]. Note that δZq̄q

Vs
as defined in (5.19) is a UV-finite quantity and all remaining di-

vergences in δZq̄q
Vs

are of IR origin, i.e. δ̂Zq̄q
Vs

= δZq̄q
Vs

. This is because the quark wave-function
renormalization constant δZ(αs)

q vanishes for massless quarks (δZ(αs)
q is determined from

a scaleless integral and therefore vanishes in dimensional regularization) and no other
renormalization constants contribute to δZq̄q

Vs
.
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The O(αwαs) correction to the squared qq̄ → ℓℓ̄ amplitude is obtained from the interfer-
ence between the genuine two-loop O(αwαs) matrix element and the LO matrix element

M qq̄→ℓℓ̄
Vs⊗Vw,II,PA = 2Re

{
Mqq̄→ℓℓ̄

Vs⊗Vw,II,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }

+ 2Re
{
Mqq̄→ℓℓ̄

Vs,I,PA

(
Mqq̄→ℓℓ̄

Vw,I,PA

)∗ }

+ 2Re
{
Mq̄q→ℓℓ̄

δct
(αsα)

,Z

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }
(6.12)

where the second line also includes the contribution from the interference of two one-loop
matrix elements, one with a O(αs) and the other with O(αw) initial-state correction. The
third line includes the vertex counterterm that receives contributions from genuine two-
loop O(Nfαsα) corrections which we obtain from (5.16) by neglecting the counterterm
contributions to the Z–lepton vertex (which are part of the final–final contribution) to
obtain the initial–initial part. The formfactors relevant for the calculation of the weak
one-loop vertex corrections can be found in Appendix C of [143] or in [29]. In PA, the
individual matrix elements in the last equation are obtained by inserting the respective
on-shell form factor, FZq̄q

i (q2 =M2
Z), into

Mqq̄→ℓℓ̄
i,στ,PA = e2

F̂Zq̄q
i,σ (M2

Z)C
τ
Zℓ̄1ℓ2

q2 − µ2
Z

Aστ , i = LO,Vs,Vw,Vs ⊗ Vw (6.13)

where µ2
Z is the gauge-invariant location of the propagator pole, the LO formfactor, Cτ

Zℓ̄1ℓ2
,

is given in (5.6), and

A±± = 2u, A±∓ = 2t. (6.14)

The evaluation of the amplitudes present in Eq. (6.12) with on-shell formfactors ensures
the gauge invariance of O(αsαw) initial–initial corrections. In principle, products of weak
and QCD one-loop corrections contained in (6.12) require the evaluation of the weak
one-loop factor to order O(ϵ2) to catch all finite terms. However, after the combination
with integrated antenna subtraction terms, which are discussed in the next section for the
double-virtual case, the additional finite terms, produced in the combination of the higher-
order ϵ-terms of the weak correction with the poles of the one-loop QCD correction, drop
out. This is because in the relevant terms in both the subtraction term and (6.12) there is
a weak one-loop correction factor, which can be factored out when combining (6.12) with
the corresponding integrated antenna subtraction term. The weak one-loop correction,
after factoring it out, is multiplied with the sum of the one-loop QCD correction factor
δZq̄q
Vs

and a integrated antenna, which is free of IR poles.

The O(Q2
qαsαp) initial–initial corrections form a gauge-invariant subset of the full class

of O(ααs) corrections. Therefore, we calculate them for off-shell Z-boson production not
applying the PA. As for the double-virtual O(αwαs) corrections the double-virtual QCD×
photonic corrections contribute to the squared amplitude via an interference between two
one-loop amplitudes with initial state corrections and the interference of the genuine two-
loop O(αphotαs) initial–initial correction to the qq̄ → ℓℓ̄ amplitude and the LO amplitude,

M qq̄→ℓℓ̄
Vs⊗Vphot,II = 2Re

{
Mqq̄→ℓℓ̄

Vs⊗Vphot,II

(
Mqq̄→ℓℓ̄

LO,Z/γ

)∗ }

+ 2Re
{
Mqq̄→ℓℓ̄

Vs,I

(
Mqq̄→ℓℓ̄

Vphot,I

)∗ }
.

(6.15)
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The O(αsαp) correction has been calculated a long time ago and can be factorized off
from the LO amplitude

Mqq̄→ℓℓ̄
Vs⊗Vphot,II = δ

Zq̄q,[2×0]
Vs⊗Vphot

Mqq̄→ℓℓ̄
LO,Z/γ, (6.16)

Mqq̄→ℓℓ̄
Vs,I

(
Mqq̄→ℓℓ̄

Vphot,I

)∗
= δ

Zq̄q,[1×1]
Vs⊗Vphot

Mqq̄→ℓℓ̄
LO,Z/γ. (6.17)

The explicit expressions for the factorized correction factors can be extracted from the
subleading colour contribution of the O(α2

s ) correction to the qq̄ → ℓℓ̄ amplitude [104]1
using the method presented in Section 3.1.1. We obtain

δ
Zq̄q,[2×0]
Vs⊗Vphot

(s) =2Q2
qCF

ααs

π2
C2
ϵ

(
µ2

s

)2ϵ
[

1

4ϵ4
+

3

4ϵ3
+

1

ϵ2

(
41

16
− 13π2

24

)

+
1

ϵ

(
221

32
− 3π2

2
− 8

3
ζ3

)
+

(
1151

64
− 475π2

96
− 29

4
ζ3 +

59π4

288

)
+O(ϵ)

]
,

δ
Zq̄q,[1×1]
Vs⊗Vphot

(s) =2Q2
qCF

ααs

π2
C2
ϵ

(
µ2

s

)2ϵ
[

1

4ϵ4
+

3

4ϵ3
+

1

ϵ2

(
41

16
− π2

24

)

+
1

ϵ

(
7− π2

8
− 7

6
ζ3

)
+

(
18− 41π2

96
− 7

2
ζ3 −

7π4

480

)
+O(ϵ)

]
,

(6.18)
where Cϵ = (4π)ϵe−ϵγ.

6.3.1.1 Double-virtual antenna subtraction terms

We now present the subtraction terms needed to cancel the explicit IR poles in the double-
virtual contribution. The double-virtual QCD×photonic corrections in (6.18) contain
overlapping IR singularities of the virtual photon and gluon leading to poles in ϵ up to
order four. NLO subtraction schemes therefore fail to cancel the singularities in these
contributions enforcing the use of a NNLO scheme, where our method of choice is the
NNLO antenna subtraction scheme. In Section 4.5.3 we presented the subtraction func-
tions relevant for the double-virtual term,

dσ̂U,ii,qq̄
NNLO =− 2CF N ε

C,qq̄ N Vs
NLO

∫
dza
za

dzb
zb

dΦ2({pi}2i=1; zapa, zbpb)

×
[
J (1)

2,ii(za, zb) 2Re
{
Mqq̄→ℓℓ̄

Vphot,I

(
Mqq̄→ℓℓ̄

LO,Z/γ

)∗}

+
2Qq N Vew

NLO

2

[
J (1)

2,ii ⊗J (1)
2,ii

]
(za, zb) |Mqq̄→ℓℓ̄

LO,Z/γ|2

+
2Qq N Vew

NLO

2
J̃ (2)

2,ii(za, zb) |Mqq̄→ℓℓ̄
LO,Z/γ|2

]
J
(2)
2 (p1, p2)

1Note that the coefficient of the ϵ−1 contribution to δ
Zq̄q,[1×1]
Vs⊗Vphot

in [104] differs from our result by a sign
change of the term proportional to ζ3.
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+ (Vs ↔ Vphot), (6.19)

where we have suppressed the arguments zapa, zbpb, p1, p2 of the appearing matrix ele-
ments and the NLO factors have been defined in Section 4.4.2. Due to symmetries of the
amplitudes and prefactors in the last equation, the exchange of factors resulting from the
virtual QCD and factors originating from the virtual photonic correction, indicated in the
last line, basically only leads to an additional factor of two on the r.h.s. in the very first
line of the last equation. The genuine two-loop antenna string is given by

J̃ (2)
2,ii(za, zb) =

1

2
Ã0

4,qq̄ + Ã1
3,qq̄ + 2C0

4,qq̄ + 2C0
4,q̄q + δa

˜̄̃
Γ(2)
qq (zb) + δb

˜̄̃
Γ(2)
qq (za)−

1

2

[
A0

3,qq̄ ⊗A0
3,qq̄

]
,

(6.20)

where the relevant mass factorization kernels ˜̄̃
Γ
(2)
qq can be found in Appendix A of [96].

The qg-channel has no double-virtual contribution to the amplitude but instead receives
only contributions from subtraction terms that are introduced in the double-real and
real–virtual part. The subtraction term in this case is therefore IR finite on its own and
reads

dσ̂U,ii,qg
NNLO =− 2CF N ε

C,qg N Vs
NLO

∫
dza
za

dzb
zb

dΦ2({pi}2i=1; zapa, zbpb)

×
[
J (1),g→q

2,ii (za, zb) 2Re
{
Mqq̄→ℓℓ̄

Vphot,I

(
Mqq̄→ℓℓ̄

LO,Z/γ

)∗}

+
2Qq N Vew

NLO

2

[
J (1)

2,ii ⊗J (1),g→q
2,ii

]
(za, zb) |Mqq̄→ℓℓ̄

LO,Z/γ|2

+
2Qq N Vew

NLO

2
J̃ (2),g→q

2,ii (za, zb) |Mqq̄→ℓℓ̄
LO,Z/γ|2

]
J
(2)
2 (p1, p2), (6.21)

where

N ε
C,qg J̃

(2),g→q
2,ii (za, zb) = −NC,qg

{
Ã0

4,qg + Ã1
3,qg + δaSg→q

˜̄Γ(2)
qg (zb) +

[
A0

3,qq̄ ⊗A0
3,qg

]

−
[
δaΓ

(1)
qq (zb)⊗

(
A0

3,qg +
1

2
δaSg→qΓ

(1)
qg (zb)

)]}
. (6.22)

As in the qg-channel also the qq-channel receives only contributions from integrated sub-
traction terms

dσ̂U,ii,qq
NNLO =− 4CF Qq N Vew

NLO N Vs
NLO

∫
dza
za

dzb
zb

dΦ2({pi}2i=1; zapa, zbpb) (6.23)

×
[(

C0
4,qq(za, zb) +

˜̄Γ
(2)
qq̄ (zb)

)
|Mqq̄→ℓℓ̄

LO,Z/γ(zapa, zbpb, p1, p2)|2 + (a↔ b)

]
J
(2)
2 (p1, p2).

Due to the non-vanishing mass of the weak gauge bosons the IR pole structure of weak×
QCD double-virtual contributions to the matrix element are only of NLO complexity
leading to simpler subtraction terms compared to the case involving photons and gluons.
Using NLO antennae the subtraction term for the qq̄ induced channel reads

dσ̂U,ii,qq̄
NNLO

∣∣
αsαw

=−N ε
C,qq̄ N V

NLO

∫
dza
za

dzb
zb

dΦ2({pi}2i=1; zapa, zbpb)
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×J (1)
2,ii(za, zb) 2Re

{
Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }
J
(2)
2 (p1, p2). (6.24)

The subtraction term for the qg-channel is given by

dσ̂U,ii,qg
NNLO

∣∣
αsαw

=−N ε
C,qg N V

NLO

∫
dza
za

dzb
zb

dΦ2({pi}2i=1; zapa, zbpb)

×J (1),g→q
2,ii (za, zb) 2Re

{
Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }
J
(2)
2 (p1, p2). (6.25)

6.3.1.2 Convolutions of integrated three-parton antennae

The convolution of integrated antenna strings relevant for the construction of the double-
virtual subtraction term dσ̂U,B

NNLO in (4.153) are (to our best knowledge) only partially
available in the literature [114]. In particular, the convolution of the qqb- and qg-antenna
strings presented in the subtraction terms in the last section

[
J (1)

2,ii ⊗J (1)
2,ii

]
(s, s′; za, zb) =

∫
dx1dx2 dy1dy2J (1)

2,ii(s, x1, x2)J
(1)
2,ii(s

′, y1, y2)

× δ(za − x1y1)δ(zb − x2y2), (6.26)

are not publicly available and we discuss their calculation in the following. Similar ex-
pression for

[
J (1)

2,ii ⊗ J (1),g→q
2,ii

]
(s, s′; za, zb) are also relevant, where the antenna strings

are defined in (4.83). It is important to note that the contributions given by the con-
volution of integrated three-parton antennae of the form [X 0

3 ⊗X 0
3 ] (s, s

′; z1, z2) ,with
X 0

3 = A0
qq,g,A0

qg,q, actually drop out in the sum of dσ̂U,B
NNLO and dσ̂U,C

NNLO in (6.19) and
(6.21). Therefore, it is not necessary to calculate these terms, which drastically simplifies
the calculation. The remaining contributions to (6.26) that have to be calculated are
convolutions of integrated antennae and mass-factorization kernels or convolutions of two
mass-factorization kernels,

[
Γ
(1)
ki ⊗X 0

3

]
1
(s; z1, z2) =

∫
dx1 dy1 Γ

(1)
ki (x1)X 0

3 (s, y1, z2)δ(z1 − x1y1) , (6.27)

[
Γ
(1)
ki ⊗X 0

3

]
2
(s; z1, z2) =

∫
dx2 dy2 Γ

(1)
ki (x2)X 0

3 (s; z1, y2)δ(z2 − x2y2) , (6.28)

[
Γ
(1)
kl ⊗ Γ

(1)
li

]
1
(z1, z2) =

∫
dx1 dy1 Γ

(1)
kl (x1) Γ

(1)
li (y1)δ(z1 − x1y1)δ(1− z2) , (6.29)

[
Γ
(1)
kl ⊗ Γ

(1)
li

]
2
(z1, z2) =

∫
dx2 dy2 Γ

(1)
kl (x2) Γ

(1)
li (y2)δ(z2 − x2y2)δ(1− z1). (6.30)

Note that the last contribution has the symmetry
[
Γ
(1)
kl ⊗ Γ

(1)
li

]
2
(z1, z2) =

[
Γ
(1)
kl ⊗ Γ

(1)
li

]
1
(z2, z1) . (6.31)

In App. E we give explicit results for the relevant convolutions. In the calculation of
the results presented in App. E we use that the convolutions of mass-factorization ker-
nels and integrated antennae can be reduced to convolutions of simple functions, functions
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combined with plus distributions, and convolutions involving only plus distributions. Con-
volutions that only involve plus distributions

[Dn ⊗Dm] (z) =

∫
dx dy

(
lnn(1− x)

1− x

)

+

(
lnn(1− y)

1− y

)

+

δ(z − xy) (6.32)

can be reduced to harmonic polylogarithms [144] (see App. A.4 for a definition) and
read [114,145]

[D0 ⊗D0] (z) = −ζ2δ(1− z) + 2D1(z)−
H(0, z)

1− z
, (6.33)

[D1 ⊗D0] (z) = ζ3δ(1− z)− ζ2D0(z) +
3

2
D2(z) +

H(0, 1, z)

1− z
+

H(1, 0, z)

1− z
, (6.34)

[D2 ⊗D0] (z) = −2ζ4δ(1− z) + 2ζ3D0(z)− 2ζ2D1(z) +
4

3
D3(z)−

2H(0, 1, 1, z)

1− z

−2H(1, 0, 1, z)

1− z
− 2H(1, 1, 0, z)

1− z
, (6.35)

[D1 ⊗D1] (z) = −ζ4
4
δ(1− z) + 2ζ3D0(z)− 2ζ2D1(z) +D3(z)−

2ζ3
1− z

− H(0, 1, 0, z)

1− z

−2H(0, 1, 1, z)

1− z
− 2H(1, 0, 1, z)

1− z
− 2H(1, 1, 0, z)

1− z
. (6.36)

Analytic results of convolutions of functions f(x, y) and h(x, y) can be obtained using

[f ⊗ h] (za, zb) =

∫ 1

0

dx1dx2 dy1dy2 f(x1, x2)h(y1, y2)δ(za − x1y1)δ(zb − x2y2),

=

∫ 1

za

dx1

∫ 1

zb

dx2 f(x1, x2)h

(
za
x1
,
zb
x2

)
. (6.37)

Similarly, convolutions of a function g(z) and a plus distribution can be obtained by using

[Dn ⊗ g] (z) =

∫ 1

z

dx
logn(1− x)

1− x

[
1

x
g
(z
x

)
− g(z)

]
+
g(z) logn+1(1− z)

n+ 1
. (6.38)

In App. E we prove (6.37) and (6.38) explicitly.

6.3.2 Real–virtual corrections

The factorizable real–virtual initial–initial O(αsα) corrections receive contributions from
various partonic channels of Z+jet production,

q̄a(pa) + qb(pb) → Z(pZ) + g(kg), (6.39)
q̄a(pa) + qb(pb) → Z(pZ) + γ(kγ), (6.40)
g(pg) + qb(pb) → Z(pZ) + qa(ka), (6.41)
g(pg) + q̄a(pa) → Z(pZ) + q̄b(kb), (6.42)

122



Chapter 6. QCD×electroweak corrections to single-Z production in pole approximation

and can be split into three different types of interference diagrams. The first type is given
by a interference of diagrams where one diagram contains a virtual photonic and a real
QCD correction to Z production. The second contribution is given by the interference of
a virtual weak and a real QCD correction, and the last type is obtained by a virtual QCD
combined with a photonic real correction as shown in Fig. 6.2b. As described before, the
corrections including real or virtual photonic corrections are calculated without on-shell
approximation of the Z boson including also off-shell photon production whereas for the
part with a virtual weak correction the PA is needed. The corresponding amplitude for
the quark-induced channels including a virtual weak and real QCD correction is given by

Mq̄aqb→ℓ1ℓ̄2,PA
Vw⊗Rs,Z,prod×prod =

∑

λZ

Mq̄aqb→gZ
Vw⊗Rs,PA

(λZ) MZ→ℓ1ℓ̄2
0,PA (λZ)

p2Z − µ2
Z

. (6.43)

The one-loop matrix elements needed for the calculation of the real–virtual corrections
were generated using FeynArts [146,147], calculated with FormCalc [148] and Collier
[149–152], and modified to match the right-hand side of Eq. (6.43).

In detail we apply the following procedure to obtain OS kinematics in the production
matrix element Mq̄aqb→gZ

Vw⊗Rs,PA
(λZ) of the Z boson. We start with a rescaling of all external

momenta

pi → p̂i = pi
MZ√
2pℓpℓ̄

, i = a, b, ℓ, ℓ̄, g, (6.44)

where, due to the simple structure of the mapping, we preserve on-shellness of all (lightlike)
momenta and momentum conservation, and achieve

p̂2Z = 2 p̂ℓp̂ℓ̄ =M2
Z . (6.45)

In (6.13) we fixed the PA for 2 → 2 processes by inserting the on-shell form factors for
a given correction and keeping the Dirac structures Aστ off-shell. As the functions Aστ

scale under (6.44) like

Aστ → Âστ = Aστ
M2

Z

2pℓpℓ̄
, (6.46)

the choice for the OS projection described in (6.13) for 2 → 2 processes can be schemati-
cally summarized in the following way,

M2→2
Z,PA(pa, pb, pℓ, pℓ̄) =

[
M2→2

Z · (p2Z − µ2
Z)
]∣∣

pi→p̂i

p2Z − µ2
Z

· 2 pℓpℓ̄
M2

Z

. (6.47)

The last factor on the r.h.s is used to compensate the scaling behaviour of the Aστ in
(6.46). The double-virtual corrections involve implicit IR singularities which have to
be cancelled by subtraction terms that include 2 → 2 amplitudes as well. Therefore, the
choice we made in (6.47) concering the OS mapping also determines the scaling of double-
virtual subtraction terms for the QCD×weak corrections. These subtraction terms, how-
ever, are the integrated counterparts of the real–virtual subtraction terms. Therefore, to
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have a consistent calculation we need to make sure that the OS mapping applied in the
real–virtual subtraction terms is in line with the mapping in the integrated subtraction
terms, which are part of the double-virtual correction and are fixed by (6.47). This can
be used to fix the PA of the real–virtual contribution to the squared matrix element. We
start with an ansatz for the PA, which is schematically of the form

|M2→3
Z,PA(pa, pb, pℓ, pℓ̄, pg)|2 =

∣∣∣∣

[
M2→3

Z · (p2Z − µ2
Z)
]∣∣

pi→p̂i

p2Z − µ2
Z

∣∣∣∣
2

·
(
2 pℓpℓ̄
M2

Z

)n

≡ |M̂2→3
Z (p̂a, p̂b, p̂ℓ, p̂ℓ̄, p̂g)|2

(
2 pℓpℓ̄
M2

Z

)n

, (6.48)

where the exponent n has to be fixed by the comparison to the real–virtual subtrac-
tion term, whose PA is already fixed by the double virtual subtraction terms for the
QCD×weak corrections, as argued before. The real–virtual subtraction terms for the
QCD×weak correction in PA are given by the product of a three-parton antenna and a
reduced squared matrix element in PA, which can be schematically written as (c.f. (4.76))

A0
3(pa, pg, pb) |M2→2

Z,PA(xapa, xbpb, p̃ℓ, p̃ℓ̄)|2

= A0
3(pa, pg, pb)

∣∣∣∣∣

[
M2→2

Z · (p2Z − µ2
Z)
]∣∣

pi→p̂i

p2Z − µ2
Z

∣∣∣∣∣

2

·
(
2 p̃ℓp̃ℓ̄
M2

Z

)2

= A0
3(p̂a, p̂g, p̂b)

∣∣∣∣∣

[
M2→2

Z · (p2Z − µ2
Z)
]∣∣

pi→p̂i

p2Z − µ2
Z

∣∣∣∣∣

2

︸ ︷︷ ︸
subtraction function for |M̂2→3

Z (p̂a,p̂b,p̂ℓ,p̂ℓ̄,p̂g)|2

·2 p̃ℓp̃ℓ̄
M2

Z

(6.49)

where we have used the explicit scaling behaviour of the three-parton antenna [84] in the
last line to absorb a factor of 2 p̃ℓp̃ℓ̄/M2

Z into the antenna function. The exponent n in
(6.48) can now be determined to be n = 1 by comparing (6.49) to (6.48), keeping in mind
that implicit IR divergences in (6.48) have to cancel the ones in (6.49).

The procedure to obtain OS kinematics in the 2 → 3 contributions can be summarized as
follows

Mq̄aqb→ℓ1ℓ̄2,PA
Vw⊗Rs,Z,prod×prod =

[
Mq̄aqb→ℓ1ℓ̄2

Vw⊗Rs,Z,prod×prod · (p2Z − µ2
Z)
]∣∣

pi→p̂i

p2Z − µ2
Z

·
√

2 pℓpℓ̄
M2

Z

. (6.50)

Note that the choice we made for the OS projection is not unique and different choices
are possible, e.g. we could have chosen to keep also the Dirac structures in (6.47) on-shell.
Different versions for the OS projection lead to results that differ at the order of the
intrinsic uncertainty of the PA in the vicinity of the Z resonance. The guiding principle
that we used to construct the on-shell projection was self-consistency, i.e. once we fixed
the OS projection for 2 → 2 processes we were able to determine also the OS projection of
all 2 → 3 processes that enter our calculation. In principle, it is possible to deviate from
this strategy and choose an OS projection where the projections applied to the 2 → 2
and 2 → 3 contributions are not related by self-consistency arguments. Even though such
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choices lead to results that differ from our strategy at the order of the intrinsic uncertainty
in the vicinity of the resonance of the Z boson, it is important to note that a procedure
that does not apply OS projections to 2 → 2 and 2 → 3 contributions in a consistent
way might lead to large artificial effects in the off-shell region of distributions (such as the
invariant-mass distribution of the Z boson).

6.3.2.1 Real–virtual antenna subtraction terms

We now present the real–virtual subtraction terms for both the QCD×weak and QCD ×
photonic corrections, where the former involve only NLO complexity as already discussed
when constructing the double-virtual subtraction terms. The real–virtual antenna sub-
traction term for the qq̄-induced channel in the QCD×photonic case reads

dσ̂T,ii,qq̄
NNLO =N ε

C,qq̄

∫
dza
za

dzb
zb

dΦ3({pi}3i=1; p̄a, p̄b) (6.51)

×
[
− 2Qq N Vew

NLO J (1)
2,ii(sab)

∣∣∣Mqq̄→ℓℓ̄g
Rs,Z/γ

({Φ3})
∣∣∣
2

J
(3)
2 (p1, p2, p3)

+ 2CF NRs
NLOA

0
3(p̄a, p3, p̄b)

(
2Re

{
Mqq̄→ℓℓ̄

Vphot,I

(
Mqq̄→ℓℓ̄

LO,Z/γ

)∗ }(
{Φ̃3}ii

)
δzaδzb

− 2Qq NRew
NLOJ

(1)
2,ii(sab)

∣∣∣Mqq̄→ℓℓ̄
LO,Z/γ

(
{Φ̃3}ii

)∣∣∣
2
)
J
(2)
2 (p̃1, p̃2)

+ 4CF Qq NRs
NLO NRew

NLO

(
Ã1

3(p̄a, p3, p̄b)δzaδzb

+
(
J (1)

2,ii(sab)−J (1)
2,ii(sab)

)
A0

3(p̄a, p3, p̄b)

) ∣∣∣Mqq̄→ℓℓ̄
LO,Z/γ

(
{Φ̃3}ii

)∣∣∣
2

J
(2)
2 (p̃1, p̃2)

]

+ (Rs → Rphot, Vphot → Vs),

where the real emission amplitude is given in (5.21) and we used δzi = δ(1− zi). We also
introduced the shorthand notation {Φn} = {p̄a, p̄b, {pi}ni=1}, {Φ̃n}ii = { ¯̄pa, ¯̄pb, {p̃i}n−1i=1 },
where the subscript in the second set of momenta indicates the applied initial–initial
phase-space mapping

p̄a = zapa, p̄b = zbpb, sab = (p̄a + p̄b)
2, p̃i = λ(q, q̃)pi, i = 1, 2,

¯̄pa = xazapa, ¯̄pb = xbzbpb, sab = (¯̄pa + ¯̄pb)
2. (6.52)

The Lorentz transformation λ(q, q̃) is given in (4.35). Similarly, the cancellation of implicit
and explicit divergences in the real–virtual correction to the squared matrix element for
the qg-channel can be cancelled by the subtraction term

dσ̂T,ii,qg
NNLO =N ε

C,qg

∫
dza
za

dzb
zb

dΦ3({pi}3i=1; p̄a, p̄b) (6.53)

×
[
− 2Qq N Vew

NLO J (1),g→q
2,ii (sab)

∣∣∣Mqq̄→ℓℓ̄g
Rs,Z/γ

({Φ3})
∣∣∣
2

J
(3)
2 (p1, p2, p3)

− 2Qq N Vew
NLO J (1)

2,if (sa3)
∣∣∣Mqg→ℓℓ̄q

Rs,Z/γ
({Φ3})

∣∣∣
2

J
(3)
2 (p1, p2, p3)
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− 2CF NRs
NLOA

0
3,g→q(p̄a, p̄b, p3)

(
2Re

{
Mqq̄→ℓℓ̄

Vphot,I

(
Mqq̄→ℓℓ̄

LO,Z/γ

)∗ }(
{Φ̃3}ii

)
δzaδzb

− 2Qq NRew
NLOJ

(1)
2,ii(sab)

∣∣∣Mqq̄→ℓℓ̄
LO,Z/γ

(
{Φ̃3}ii

)∣∣∣
2
)
J
(2)
2 (p̃1, p̃2)

− 4CF Qq NRs
NLO NRew

NLO J (1),g→q
2,ii (sab)A

0
3(p̄a, p3, p̄b)

×
∣∣∣Mqq̄→ℓℓ̄

LO,Z/γ

(
{Φ̃3}ii

)∣∣∣
2

J
(2)
2 (p̃1, p̃2)

− 4CF Qq NRs
NLO NRew

NLO

(
Ã1

3,g→q(p̄a, p̄b, p3)δzaδzb

+
(
J (1)

2,if (sa3)−J (1)
2,ii(sab)

)
A0

3,g→q(p̄a, p̄b, p3)

)

×
∣∣∣Mqq̄→ℓℓ̄

LO,Z/γ

(
{Φ̃3}ii

)∣∣∣
2

J
(2)
2 (p̃1, p̃2)

]
.

The subtraction terms for the weak×QCD real–virtual corrections read

dσ̂S,ii,qq̄
NNLO =2CF NC,qq̄NR

NLO dΦ3({pi}3i=1; pa, pb) (6.54)

× A0
3(pa, p3, pb) 2Re

{
Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }
(p̃1, p̃2;xapa, xbpb) J

(2)
2 (p̃1, p̃2),

and

dσ̂S,ii,qg
NNLO =2CF NC,qgNR

NLO dΦ3({pi}3i=1; pa, pb) (6.55)

× A0
3,qg→qq(p3, pa, pb) 2Re

{
Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }
(p̃1, p̃2;xapa, xbpb) J

(2)
2 (p̃1, p̃2).

In line with (6.13) and (6.47) the pole approximation of the reduced matrix element
multiplying the antenna function and including the virtual weak correction is obtained
by evaluating the weak form factor for an on-shell Z boson, neglecting photon production
and evaluating everything else (i.e. the remaining Dirac structures in (6.14)) with off-shell
kinematics.

6.3.3 Double-real corrections

The double-real corrections arise only from diagrams including corrections of O(Q2
qαsαphot),

and the QCD×weak corrections do not contribute here. The channels that have to be
considered are

q̄a(pa) + qb(pb) → Z(pZ) + g(kg) + γ(pγ), (6.56)
g(pg) + qb(pb) → Z(pZ) + qa(ka) + γ(pγ), (6.57)
g(pg) + q̄a(pa) → Z(pZ) + q̄b(kb) + γ(pγ), (6.58)
qb(pa) + qb(pb) → Z(pZ) + qb(ka) + qb(kb), (6.59)
q̄a(pa) + q̄a(pb) → Z(pZ) + q̄a(ka) + q̄a(kb), (6.60)
q̄a(pa) + qa(pb) → Z(pZ) + q̄a(ka) + qa(kb), (6.61)
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and are illustrated in Fig. 6.2a. The helicity amplitudes corresponding to the different
partonic channels were calculated using the spinor-helicity formalism [153] and checked
against helicity amplitudes calculated using FeynArts/FormCalc. Note that in Fig. 6.2a
in the double-real cross-interference term of four identical quark amplitudes, once with
photon and once with gluon exchange, only the contributions with one closed quark line
contribute and the ones with two closed quark lines vanish owing to colour conservation.

The amplitudes corresponding to the double-real contribution can be calculated using the
spinor-helicity formalism and are given by

iMq̄q→ℓℓ̄gγ
RsRphot,Z,τqτlλgλγ

= 4ie3gsC
τq
Zq̄qC

τl
Zℓ̄ℓ

Mτqτlλgλγ

RsRphot
(kγ, {kg, a}, {pi, ci}i∈S), (6.62)

where S = {a, b, ℓ1, ℓ2}. Due to the symmetries of the partial amplitude,

M−τqτlλgλγ

RsRphot
(kγ, {kg, a}, {pi, ci}i∈S) = Mτqτlλgλγ

RsRphot
(kγ, {kg, a}, {pi, ci}i∈S)

∣∣∣∣
{pa,ca,Qa}↔{pb,cb,−Qb}

,

Mτq−τlλgλγ

RsRphot
(kγ, {kg, a}, {pi, ci}i∈S) = Mτqτlλgλγ

RsRphot
(kγ, {kg, a}, {pi, ci}i∈S)

∣∣∣∣
{pℓ1}↔{pℓ2}

,

Mτqτl−λg−λγ

RsRphot
(kγ, {kg, a}, {pi, ci}i∈S) =

[
M−τq−τlλgλγ

RsRphot
(kγ, {kg, a}, {pi, ci}i∈S)

]∗
, (6.63)

it is sufficient to calculate only two helicity configurations, where we choose

M−−++
RsRphot

({Φ4, C}) =
tacacbQq

(kg + kγ − pa)2(p2Z − µ2
Z) ⟨kg |pa⟩ ⟨kγ |pa⟩ ⟨pb |kg⟩ ⟨pb |kγ⟩

×
((

⟨pℓ̄ |kg⟩∗ ⟨pb |kg⟩+ ⟨pℓ̄ |kγ⟩∗ ⟨pb |kγ⟩ − ⟨pℓ̄ |pa⟩∗ ⟨pb |pa⟩
)

× ⟨pb |pℓ⟩∗
(
⟨kg |pa⟩

(
⟨kg |kγ⟩∗ ⟨pb |kγ⟩ − ⟨kg |pa⟩∗ ⟨pb |pa⟩

)

+ ⟨kγ |pa⟩
(
⟨kγ |kg⟩∗ ⟨pb |kg⟩ − ⟨kγ |pa⟩∗ ⟨pb |pa⟩

)))
, (6.64)

M−−+−RsRphot
({Φ4, C}) =

tacacbQq

⟨pa |kγ⟩∗ (p2Z − µ2
Z) ⟨pb |kg⟩

×
[
⟨pa |kγ⟩∗ ⟨pa |pℓ̄⟩∗ ⟨pb |kγ⟩
⟨kγ |pb⟩∗ (kg + kγ − pb)2

(
⟨kg |kγ⟩∗ ⟨pℓ |kγ⟩∗ − ⟨kg |pb⟩∗ ⟨pℓ |pb⟩

)

+
1

⟨kg |pa⟩

(⟨pa |kg⟩∗ ⟨pb |kg⟩ ⟨pb |pℓ⟩∗
(kg + kγ − pa)2

(
⟨pℓ̄ |kg⟩∗ ⟨kγ |kg⟩ − ⟨pℓ̄ |pa⟩∗ ⟨kγ |pa⟩

)

+
1

⟨kγ |pb⟩∗
((

⟨pℓ̄ |pa⟩∗ ⟨pb |pa⟩ − ⟨pℓ̄ |kg⟩∗ ⟨pb |kg⟩
)

×
(
⟨pa |kγ⟩∗ ⟨pℓ |kγ⟩∗ − ⟨p1 |pb⟩ ⟨pℓ |pb⟩

)))
]
, (6.65)

where {Φ4, C} = {kγ, {kg, a}, {pi, ci}i∈S}, pZ = pℓ + pℓ̄, and the spinor product ⟨p|k⟩ of
two Weyl spinors p, k is defined in (A.20). The contribution to the squared amplitude
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V
ℓ1(pℓ)

ℓ̄2(pℓ̄)

γ/g

q(k1)

q̄(k4)

q(k3)

q̄(k2)

(a) M1
V,γ/g

V
ℓ1(pℓ)

ℓ̄2(pℓ̄)

γ/g

q(k3)

q̄(k4)

q(k1)

q̄(k2)

(b) M2
V,γ/g

V
ℓ1(pℓ)

ℓ̄2(pℓ̄)

γ/g

q(k1)

q̄(k2)

q(k3)

q̄(k4)

(c) M3
V,γ/g

V
ℓ1(pℓ)

ℓ̄2(pℓ̄)

γ/g

q(k3)

q̄(k2)

q(k1)

q̄(k4)

(d) M4
V,γ/g

Figure 6.3: The different amplitudes that contribute to the process ℓ(pℓ)ℓ̄(pℓ̄) → V (pV ) →
q(k1)q̄(k2)q(k3)q̄(k4) at tree level in PA, where V = Z. There are also contributions where
the inner quark–anti-quark pair attached to the photon/gluon is radiated from the lower leg,
which are not depicted. The corresponding O(αsα) correction to the squared matrix element is
obtained by summing all possible interference diagrams, e.g. 2Re{(M1

V,γ)
∗ · M2

V,g}.

is obtained by squaring of (6.62), averaging over the initial-state helicities, and summing
the final state helicities.

We now proceed with the calculation of the amplitudes for the process

ℓ(pℓ)ℓ̄(pℓ̄) → Z(pZ) → q(k1)q̄(k2)q(k3)q̄(k4), (6.66)

once involving a quark–gluon and once a quark–photon splitting, see Fig. 6.3. The am-
plitudes (6.59) to (6.61) can be obtained from the ones describing the process (6.66) by
crossing the leptons to the final and two of the four quarks to the initial state, where
it depends on the desired amplitude which final-state quarks have to be crossed to the
initial state. The interference of two amplitudes describing the process (6.66), one of the
amplitudes involving a quark-gluon and the other a quark-photon splitting, is an O(αsα)
correction to the process

ℓℓ̄→ Z → qq̄. (6.67)

Therefore, the crossed versions (with the leptons in the final state and (anti-)quarks in the
initial state) of such interference contributions is a correction of O(αsα) to the neutral-
current DY process.

As there are identical particles in the final state of (6.66) we can assign the momenta in
four different ways to the quark and anti-quark pairs which lead to different contributions
to the complete amplitude. Note that the four different contributions to (6.66) are related
by an exchange of momenta between (anti-)quark, (anti-)quark pairs but never between
a quark and an anti-quark. We define the amplitude M1

Z,γ/g as the sum of the diagram
on the top left of Fig. 6.3 plus the diagram with the same momentum assignment but the
photon/gluon radiated from the anti-quark that carries momentum k4. Similarly M2

Z,γ/g
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is defined from the contribution on the top right, M3
Z,γ/g from the lower left, and M4

Z,γ/g

from the contribution on the lower right. The full amplitude is obtained as the sum of
these four contributions

Mℓℓ̄→qq̄q̄
Z,γ/g =

4∑

i=1

Mi
Z,γ/g. (6.68)

The amplitude M1
Z,γ/g is given by

iM1
Z,γ/g,σℓσℓ̄σ1σ2σ3σ4

(pℓ, pℓ̄, k1, . . . , k4) =4 i e2g tq1,γ/g t
q
2,γ/g δσℓ,−σℓ̄

δσ1,−σ4 δσ3,−σ2

×
C

τq
Zq̄qC

τl
Zℓ̄ℓ

Mσℓσ1σ3

Z,1 (pℓ, pℓ̄, k1, . . . , k4)

(k1 + k2)2 (p2Z − µ2
Z)

, (6.69)

where tq1,γ/g and tq2,γ/g are both either Gell-Mann matrices tq1,g = tacacb and tq2,g = tacccd or are
given by the charge of the quarks tq1,γ = tq2,γ = Qq, respectively. The other contributions
to the amplitude can be obtained via the following symmetries,

M2
Z,γ/g,σℓσℓ̄σ1σ2σ3σ4

(pℓ, pℓ̄, k1, . . . , k4) = −M1
Z,γ/g,σℓσℓ̄σ3σ2σ1σ4

(pℓ, pℓ̄, k3, k2, k1, k4),

M3
Z,γ/g,σℓσℓ̄σ1σ2σ3σ4

(pℓ, pℓ̄, k1, . . . , k4) = −M1
Z,γ/g,σℓσℓ̄σ1σ4σ3σ2

(pℓ, pℓ̄, k1, k4, k3, k2),

M4
Z,γ/g,σℓσℓ̄σ1σ2σ3σ4

(pℓ, pℓ̄, k1, . . . , k4) = M1
Z,γ/g,σℓσℓ̄σ3σ4σ1σ2

(pℓ, pℓ̄, k3, k4, k1, k2), (6.70)

where the additional sign appears when one has to interchange an odd number of pairs
of fermionic fields in M1

Z,γ/g to obtain Mi
Z,γ/g, i = 2, 3, 4, e.g. to obtain the first line of

(6.70) we have to interchange k1 and k3 leading to an additional sign. For the different
helicity configurations the partial amplitude Mσℓσ1σ3

Z,γ/g,1 is given by

M−−−Z,1 (pℓ, pℓ̄, k1, . . . , k4) =− ⟨k4 |k2⟩∗ (⟨pℓ |k2⟩∗ ⟨k3 |k2⟩+ ⟨pℓ |k4⟩∗ ⟨k3 |k4⟩) ⟨pℓ̄ |k1⟩
(k2 + k3 + k4)2

+
⟨pℓ |k4⟩∗ ⟨k1 |k3⟩ (⟨k2 |k1⟩∗ ⟨pℓ̄ |k1⟩+ ⟨k2 |k3⟩∗ ⟨pℓ̄ |k3⟩)

(k1 + k2 + k3)2
, (6.71)

M+−−
Z,1 (pℓ, pℓ̄, k1, . . . , k4) =− ⟨k4 |k2⟩∗ (⟨pℓ̄ |k2⟩∗ ⟨k3 |k2⟩+ ⟨pℓ̄ |k4⟩∗ ⟨k3 |k4⟩) ⟨pℓ |k1⟩

(k2 + k3 + k4)2

+
⟨pℓ̄ |k4⟩∗ ⟨k1 |k3⟩ (⟨k2 |k1⟩∗ ⟨pℓ |k1⟩+ ⟨k2 |k3⟩∗ ⟨pℓ |k3⟩)

(k1 + k2 + k3)2
, (6.72)

M−+−Z,1 (pℓ, pℓ̄, k1, . . . , k4) = +
⟨k1 |k2⟩∗ (⟨pℓ |k1⟩∗ ⟨k3 |k1⟩+ ⟨pℓ |k2⟩∗ ⟨k3 |k2⟩) ⟨pℓ̄ |k4⟩

(k1 + k2 + k3)2

− ⟨pℓ |k1⟩∗ ⟨k4 |k3⟩ (⟨k2 |k3⟩∗ ⟨pℓ̄ |k3⟩+ ⟨k2 |k4⟩∗ ⟨pℓ̄ |k4⟩)
(k2 + k3 + k4)2

, (6.73)

M++−
Z,1 (pℓ, pℓ̄, k1, . . . , k4) = +

⟨k1 |k2⟩∗ (⟨pℓ̄ |k1⟩∗ ⟨k3 |k1⟩+ ⟨pℓ̄ |k2⟩∗ ⟨k3 |k2⟩) ⟨pℓ |k4⟩
(k1 + k2 + k3)2

− ⟨pℓ̄ |k1⟩∗ ⟨k4 |k3⟩ (⟨k2 |k3⟩∗ ⟨pℓ |k3⟩+ ⟨k2 |k4⟩∗ ⟨pℓ |k4⟩)
(k2 + k3 + k4)2

, (6.74)

M−−+Z,1 (pℓ, pℓ̄, k1, . . . , k4) =− ⟨k4 |k3⟩∗ (⟨pℓ |k3⟩∗ ⟨k2 |k3⟩+ ⟨pℓ |k4⟩∗ ⟨k2 |k4⟩) ⟨pℓ̄ |k1⟩
(k2 + k3 + k4)2
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+
⟨pℓ |k4⟩∗ ⟨k1 |k2⟩ (⟨k3 |k1⟩∗ ⟨pℓ̄ |k1⟩+ ⟨k3 |k2⟩∗ ⟨pℓ̄ |k2⟩)

(k1 + k2 + k3)2
, (6.75)

M+−+
Z,1 (pℓ, pℓ̄, k1, . . . , k4) =− ⟨k4 |k3⟩∗ (⟨pℓ̄ |k3⟩∗ ⟨k2 |k3⟩+ ⟨pℓ̄ |k4⟩∗ ⟨k2 |k4⟩) ⟨pℓ |k1⟩

(k2 + k3 + k4)2

+
⟨pℓ̄ |k4⟩∗ ⟨k1 |k2⟩ (⟨k3 |k1⟩∗ ⟨pℓ |k1⟩+ ⟨k3 |k2⟩∗ ⟨pℓ |k2⟩)

(k1 + k2 + k3)2
, (6.76)

M−++
Z,1 (pℓ, pℓ̄, k1, . . . , k4) = +

⟨k1 |k3⟩∗ (⟨pℓ |k1⟩∗ ⟨k2 |k1⟩+ ⟨pℓ |k3⟩∗ ⟨k2 |k3⟩) ⟨pℓ̄ |k4⟩
(k1 + k2 + k3)2

− ⟨pℓ |k1⟩∗ ⟨k4 |k2⟩ (⟨k3 |k2⟩∗ ⟨pℓ̄ |k2⟩+ ⟨k3 |k4⟩∗ ⟨pℓ̄ |k4⟩)
(k2 + k3 + k4)2

, (6.77)

M+++
Z,1 (pℓ, pℓ̄, k1, . . . , k4) = +

⟨k1 |k3⟩∗ (⟨pℓ̄ |k1⟩∗ ⟨k2 |k1⟩+ ⟨pℓ̄ |k3⟩∗ ⟨k2 |k3⟩) ⟨pℓ |k4⟩
(k1 + k2 + k3)2

− ⟨pℓ̄ |k1⟩∗ ⟨k4 |k2⟩ (⟨k3 |k2⟩∗ ⟨pℓ |k2⟩+ ⟨k3 |k4⟩∗ ⟨pℓ |k4⟩)
(k2 + k3 + k4)2

. (6.78)

The O(αsα) correction to the squared amplitude is obtained as

2Re
{(

Mℓℓ̄→qq̄q̄
Z,γ

)∗
Mℓℓ̄→qq̄q̄

Z,g

}
=

4∑

i,j=1
i ̸=j

2Re
{(

Mi
Z,γ

)∗Mj
Z,g

}
, (6.79)

where we have suppressed the summation/averaging over the helicities on the r.h.s. and
used that

(
Mi

Z,γ

)∗Mi
Z,g = 0, which holds due to colour conservation. Note that there are

more tuples of (i, j) such that
(
Mi

Z,γ

)∗Mj
Z,g = 0 as a consequence of colour conservation.

Therefore, (6.79) could be simplified even further. For completeness we mention that
these combinations are (i, j) ∈ {(1, 4), (2, 3)}, where the order of i and j in the tuple is
not relevant.

6.3.3.1 Double-real antenna subtraction terms

In this section we present the subtraction terms corresponding to the double-real QCD×
photonic corrections to the squared amplitude. As there are no double-real weak×QCD
corrections we only have to consider the photonic×QCD corrections which again lead
to overlapping soft and collinear singularities due to the real emission of a gluon and a
photon. The subtraction term that cancels these singularities in the qq̄-induced channel
is given by

dσ̂S,ii,qq̄
NNLO =NC,qq̄ dΦ4({pi}4i=1; pa, pb) (6.80)

×
[
+ 2Qq NRew

NLO A
0
3(pa, p3, pb)

∣∣∣Mqq̄→ℓℓ̄g
Rs,Z/γ

(
{Φ̃4}ii

)∣∣∣
2

J
(3)
2 (p̃1, p̃2, p̃4)

+ 2CF NRs
NLOA

0
3(pa, p4, pb)

∣∣∣Mqq̄→ℓℓ̄γ
Rphot,Z/γ

(
{Φ̃4}ii

)∣∣∣
2

J
(3)
2 (p̃1, p̃2, p̃3)

+ 4Qq CF NRs
NLO NRew

NLO Ã
0
4(pa, p3, p4, pb)

∣∣∣Mqq̄→ℓℓ̄
LO,Z/γ

(
{Φ̃NNLO

4 }ii
)∣∣∣

2

J
(2)
2 (˜̃p1, ˜̃p2)
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− 4Qq CF NRs
NLO NRew

NLO

∣∣∣∣M
qq̄→ℓℓ̄
LO,Z/γ

(
{˜̃Φ4}ii,ii

)∣∣∣∣
2

×
(
A0

3(pa, p3, pb)A
0
3(p̄a, p̃4, p̄b) + A0

3(pa, p4, pb)A
0
3(p̄a, p̃3, p̄b)

)
J
(2)
2 (˜̃p1, ˜̃p2)

]
,

using the notation {Φ̃n}ii = {p̄a, p̄b, {p̃i}n−1i=1 }, {
˜̃
Φn}ii,ii = { ¯̄pa, ¯̄pb, { ˜̃pi}n−2i=1 }, where the mo-

menta are obtained by the application of the one-fold or two-fold application of the NLO
initial–initial phase-space mapping

p̄a = zapa, p̄b = zbpb, p̃i = λ(q, q̃)pi, i = 1, 2,

¯̄pa = xazapa, ¯̄pb = xbzbpb, ˜̃pi = λ(q̃, ˜̃q)p̃i, i = 1, 2. (6.81)

By contrast, the momenta in {Φ̃NNLO
n }ii = {p̄a, p̄b, {p̃i}n−2i=1 } are obtained by the application

of the NNLO initial–initial mapping.

The subtraction term for the qg-induced channel is given by

dσ̂S,ii,qg
NNLO =NC,qg dΦ4({pi}4i=1; pa, pb) (6.82)

×
[
+ 2Qq NRew

NLO A
0
3(pa, p3, p4)

∣∣∣Mqg→ℓℓ̄q
Rs,Z/γ

(
{Φ̃4}if

)∣∣∣
2

J
(3)
2 (p1, p2, (̃p3p4))

− 2CF NRs
NLOA

0
3,g→q(pa, pb, p4)

∣∣∣Mqq̄→ℓℓ̄γ
Rphot,Z/γ

(
{Φ̃4}ii

)∣∣∣
2

J
(3)
2 (p̃1, p̃2, p̃3)

+ 4Qq CF NRs
NLO NRew

NLO J
(2)
2 (˜̃p1, ˜̃p2)

×
(
− Ã0

4(pa, pb, p3, p4)
∣∣∣Mqq̄→ℓℓ̄

LO,Z/γ

(
{Φ̃NNLO

4 }ii
)∣∣∣

2

+ A0
3(pa, p3, p4)A

0
3,g→q(p̄a, pb, (̃p3p4))

∣∣∣∣M
qq̄→ℓℓ̄
LO,Z/γ

(
{˜̃Φ4}if,ii

)∣∣∣∣
2

+ A0
3,g→q(pa, pb, p4)A

0
3(p̄a, p̃3, p̄b)

∣∣∣∣M
qq̄→ℓℓ̄
LO,Z/γ

(
{˜̃Φ4}ii,ii

)∣∣∣∣
2)]

.

Note that the first line takes care of the case where the photon becomes unresolved with
respect to the quark in the initial or final state (leading to an initial–final NLO mapping),
whereas the second line subtracts singularities of the configuration where the quark in
the final state becomes unresolved (consequently, a initial–initial NLO mapping is used).
Finally, the subtraction term for the qq-channel reads

dσ̂S,ii,qq
NNLO =NC,qq̄ dΦ4({pi}4i=1; pa, pb) (6.83)

× 4Qq CF NRs
NLO NRew

NLO J
(2)
2 (p̃1, p̃2)

×
(
C0

4(pa, pb, p3, p4)
∣∣∣Mqq̄→ℓℓ̄

LO,Z/γ

(
{Φ̃NNLO

4 }ii
)∣∣∣

2

+ (a↔ b, 3 ↔ 4)

)
,

and for the qq̄- (four quark contribution) and q̄q̄-channel we have

dσ̂S,ii,qq̄qq̄
NNLO =NC,qq̄ dΦ4({pi}4i=1; pa, pb) (6.84)
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× 4Qq CF NRs
NLO NRew

NLO J
(2)
2 (p̃1, p̃2)

×
(
C0

4(pa, p3, p4, pb) + C0
4(pb, p4, pa, p3)

) ∣∣∣Mqq̄→ℓℓ̄
LO,Z/γ

(
{Φ̃NNLO

4 }ii
)∣∣∣

2

,

dσ̂S,ii,q̄q̄
NNLO =NC,qq̄ dΦ4({pi}4i=1; pa, pb) (6.85)

× 4Qq CF NRs
NLO NRew

NLO J
(2)
2 (p̃1, p̃2)

×
(
C0

4(pb, pa, p3, p4)
∣∣∣Mqq̄→ℓℓ̄

LO,Z/γ

(
{Φ̃NNLO

4 }ii
)∣∣∣

2

+ (a↔ b, 3 ↔ 4)

)
.

6.4 Numerical results

6.4.1 Input parameters and event selection

The numerical results presented in the following sections are produced using the same
setup as in Section 5.3.1. In line with the calculation of the initial–final O(αsα) corrections
presented in [55,56] we apply a photon recombination procedure identical to the one used
in Refs. [21,29] in order to be able to add the results calculated in this work to the results
of Refs. [21,29] consistently.

In detail, we apply the following photon recombination algorithm:

1. Photons close to the beam with a rapidity |ηγ| > 3 are treated as beam remnants
and are not considered in the event selection any further.

2. For the photons that pass the first step, the angular distances to the charged leptons
Rℓ±γ =

√
(ηℓ± − ηγ)2 + (ϕℓ± − ϕγ)2 are computed, where ϕ denotes the azimuthal

angle in the transverse plane. If the smaller distance of Rℓ±γ between the photon
and the closest lepton is smaller than 0.1, the photon is recombined with the lepton
by adding the respective four-momenta, ℓ±(ki) + γ(k) → ℓ±(ki + k).

3. Finally, the event selection cuts from Eqs. (5.90)–(5.92) are applied to the resulting
event kinematics.

6.4.2 Corrections to differential distributions

In Fig. 6.4 we show the relative corrections δ (normalized to LO) of type initial–initial
O(αsα) to distributions in the invariant mass (left plot) and in the transverse momentum
(right plot) of the final-state leptons for the neutral-current DY process. We depict the
individually gauge-invariant weak×QCD (red curve) and photonic×QCD (green curve)
corrections separately, as the weak × QCD corrections are calculated using the PA while
the photonic × QCD corrections are calculated without approximation and are therefore
valid beyond the resonance region. The photonic × QCD corrections are shown both for
bare and dressed leptons (DL) where the latter are obtained using a recombination of the
bare leptons and the radiated photon.
The corrections to the invariant-mass spectrum are of the permil or subpermil level and
are therefore phenomenologically not relevant. In the resonance region, corrections to the
transverse-momentum distribution are of the level of a few percent for both the photonic×
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Figure 6.4: Relative initial–initial O(αsα) corrections (normalized to the LO cross section) to
distributions in the invariant mass of the Z boson (left) and in the transverse-lepton momentum
(right). Depicted are QCD × weak O(αsαw) corrections (red curve) and corrections of type
QCD × phot O(αsαp) without (green curve) and with (blue curve) photon recombination.

QCD and the weak×QCD corrections. Above the resonance, photonic×QCD corrections
to the transverse-momentum distributions grow up to 2% and in case of weak × QCD
up to 7%. However, we have to keep in mind that the weak × QCD corrections are
calculated using the PA and it is therefore not reasonable to use them as an estimate
of the full weak × QCD corrections far beyond the resonance region. Furthermore, we
have normalized the corrections to the distributions to LO and as NLO QCD corrections
to the transverse-momentum distribution of the final-state leptons induce corrections to
the LO prediction of the order of 600% in the phase space region above the resonance
(see e.g. Fig. 4.2 in [143]) a normalization to the NLO QCD correction (as we did for the
O(Nfαsα) corrections in Section 5.3.2) would reduce the corrections also in the off-shell
region to the level of 1 percent.
In the class of considered corrections the photon present in the real–virtual and double-real
photonic×QCD corrections is radiated off the initial state. Therefore, there is no collinear
enhancement when the emitted photon is collinear to the final-state leptons leading to
a small effect of photon recombination, i.e. we observe only a small difference between
dressed and bare leptons in Fig. 6.4 and likewise in all distributions considered below.

The photonic×QCD double-real contributions involve diagrams with a gluon and a pho-
ton radiated off the initial state and the Z boson can recoil against both of these radiated
particles leading to potentially large corrections also in the off-shell regions of transverse-
momentum distributions. In contrast, in weak×QCD corrections the Z boson can recoil
only against photonic initial-state radiation in the RV contribution. Therefore, naively
one would expect the photonic × QCD corrections to dominate over the weak × QCD
corrections. As shown in Fig. 6.4 this intuition is not reflected by the results as the cor-
rections to the invariant-mass spectra (which are not sensitive to recoil effects) are actually
dominated by the photonic×QCD corrections whereas the corrections to the transverse-
momentum distributions of both the weak×QCD and the the photonic×QCD corrections
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Figure 6.5: Relative initial–initial O(αsα) corrections (normalized to the LO cross section) of
type QCD × phot O(αsαp) to distributions in the invariant mass of the Z boson (left) and
transverse-lepton momentum (right), split up into the three partonic initial states qq/qq̄/qg
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Figure 6.6: Relative initial–initial O(αsα) corrections (normalized to the LO cross section) to the
rapidity distribution of the lepton pair ℓ+ℓ− with bare leptons represented by the green curve
and dressed leptons (DL) in blue.

turn out to be of similar size above and in the vicinity of the resonance. In Fig. 6.5 we
show the results for the photonic × QCD corrections broken down into the quark–gluon,
the quark–antiquark, and the quark–quark-induced channels. We observe that the quark–
quark-induced contribution is negligible compared to the quark–gluon or quark–antiquark
induced channels. Furthermore, the quark–antiquark-induced channel contributes correc-
tions to the invariant-mass distribution as well as the transverse-momentum distribution
that are slightly larger than the the quark–gluon channel.
The relative corrections δ of type initial–initial O(αsα) to the rapidity distribution of
the final-state lepton pair ℓ+ℓ− are depicted in Fig. 6.6. The corrections to the rapidity
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distribution are of the subpermil level and are therefore phenomenologically negligible.

6.4.3 Corrections to the forward–backward asymmetry

The forward–backward asymmetry for ℓ+ℓ− production at the LHC is defined as [18,20]

AFB(Mℓℓ) =
σF (Mℓℓ)− σB(Mℓℓ)

σF (Mℓℓ) + σB(Mℓℓ)
(6.86)

with

σF (Mℓℓ) =

∫ 1

0

d cos θ∗
dσ

d cos θ∗
, σB(Mℓℓ) =

∫ 0

−1
d cos θ∗

dσ
d cos θ∗

. (6.87)

The angle θ∗ is the so-called Collins–Soper (CS) angle, which is defined as [18,154]

cos θ∗ =
|pz,ℓℓ|
pz,ℓℓ

2

Mℓℓ

√
M2

ℓℓ + p2T,ℓℓ

(
p+(ℓ−)p−(ℓ+)− p+(ℓ+)p−(ℓ−)

)
, (6.88)

where

p± =
1√
2
(E ± pz) (6.89)

and all four-momenta are given in the LAB frame. Apart from Eq. (6.88) used to calculate
the CS angle we also implemented an explicit Lorentz transformation to get the momenta
of the incoming partons and the outgoing leptons in the CS frame and calculated the CS
angle directly in this frame to check the results obtained with (6.88). For further details
on the CS frame see App. G.

In Fig. 6.7 the LO prediction for the forward–backward asymmetry AFB is compared to
predictions for the forward–backward asymmetry including initial–initial O(αsα) correc-
tions, where

AX
FB =

σLO
F − σLO

B + σX
F − σX

B

σLO
F + σLO

B + σX
F + σX

B

. (6.90)

As shown in Fig. 6.7 the impact of initial–initial O(αsα) corrections is quite small and
therefore we mainly discuss the quantity

∆AX
FB = AX

FB − ALO
FB, (6.91)

which directly shows the impact of corrections on the forward–backward asymmetry.

Figure 6.8 shows the corrections to the forward–backward asymmetry induced by QCD×
photonic initial–initial corrections (∆AIsIphot

FB in red) and corrections including QCD×weak
initial–initial corrections (∆AIsIw

FB in green). For invariant masses below the Z resonance
the QCD × photonic corrections reach the percent level relative to the LO prediction for
the forward–backward asymmetry whereas the QCD × weak corrections are at the level
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of a few permil over the full invariant-mass range of the final-state leptons. Recall that
the QCD × photonic corrections are valid in the full invariant-mass range as the PA was
only applied to the QCD × weak initial–initial corrections.
The left plot of Fig. 6.9 shows that there are cancellations between the qq̄-induced double-
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virtual, real–virtual, and double-real corrections using antenna subtraction whereas in
the qg channel the double-real and double-virtual corrections amplify. Therefore, the qg
channel is dominating the initial–initial O(αsα) correction as shown in the right plot in
Fig. 6.8.

Even though the corrections to the forward–backward asymmetry induced by initial–
initial O(αsα) corrections are rather small we have to keep in mind that for combined
(e+e− and µ+µ−) AFB measurements the absolute experimental uncertainties are of the
order ∆Aℓ,exp

FB ≈ 10−4 in the bin containing the Z resonance for certain rapidity cuts (see
Table 2 in [155]). Furthermore, with the upcoming high luminosity (HL) LHC it will be
possible to measure the forward–backward asymmetry AFB even more precise and reduce
the experimental uncertainty even further as the current total experimental error on AFB is
dominated by the statistical error [155]. Therefore, even though the initial–initial O(αsα)
corrections to the forward–backward asymmetry are in the range ∆AII

FB ≈ 10−5 to 10−4

they are still relevant for analyses at the upcoming HL LHC as already LHC data at√
s = 8TeV reaches the mentioned accuracy of ∆Aℓ,exp

FB ≈ 10−4, which will certainly
improve at the HL LHC.
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Chapter 7
Summary

The Drell–Yan-like production of lepton pairs is one of the most important standard-
candle processes at the LHC. Among others, these processes provide the opportunity to
gain insight on the mass and width of W bosons or allow for the search for new gauge
bosons in the high invariant-mass range of the final-state leptons. Precision tests of the
Standard Model using Drell–Yan processes are, however, only possible if the accuracy
of theoretical predictions matches or even surpasses the precision of measurements. As
searches of physics beyond the SM are performed in off-shell regions such as the tails of
invariant-mass or transverse-momentum distributions the understanding of higher-order
corrections in these regions of phase space is essential. Therefore, O(αsα) corrections to
Drell–Yan-like W/Z production have to be calculated not only in the resonance region
of the intermediate massive vector bosons but also in off-shell regions where a PA is not
applicable anymore.

This work consists of two main parts: We started with the discussion of the calculation of
O(Nfαsα) corrections to off-shell Drell–Yan processes as the first main part of this thesis.
The second part was devoted to a discussion of O(αsα) initial–initial corrections to Drell–
Yan-like Z production in PA. The idea behind the slightly unconventional ordering of the
two main parts is that the O(Nfαsα) corrections contain vertex counterterm contributions
which also have to be included in the calculation of the O(αsα) initial–initial corrections.

As a first step towards a calculation of the complete set of O(αsα) corrections to off-
shell Drell–Yan processes the first part of this thesis was devoted to the calculation of the
gauge-invariant O(Nfαsα) two-loop corrections to singleW/Z-boson production which are
enhanced by the number of fermion flavours Nf in the SM. These corrections comprise
all diagrams of O(αsα) including closed fermion loops and additional gluon exchange or
radiation. As O(Nfαsα) corrections do not involve photon emission, the IR singularities
are of one-loop complexity and therefore no two-loop subtraction schemes were needed to
obtain predictions for differential distributions. However, to obtain a gauge-invariant de-
scription of the W/Z resonances in the vicinity of the resonance as well as in the off-shell
regions we had to extend the complex-mass scheme to O(αsα).
We evaluated corrections to single W/Z-boson production of O(Nfαsα) in a differen-
tial manner and studied their effect on the (transverse) invariant-mass and transverse-
momentum spectra of the W and Z boson, respectively. We observed that O(Nfαsα)
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corrections to the integrated cross sections or rapidity distributions, which are dominated
by resonant W/Z bosons, are at the permille level and thus phenomenologically negligible.
The off-shell regions above the Jacobian peak of (transverse) invariant-mass distributions
or the transverse-momentum distributions normalized to the LO prediction, however, re-
ceive corrections that grow up to 2% or up to 15%, respectively. As the LO prediction
underestimates these distributions—higher-order corrections include initial-state radia-
tion leading to recoil effects not present at LO, as discussed in Section 5.3.2—the size
of those corrections reduces to a few percent when normalizing the distributions to full
predictions. It is important to note that the impact of O(αsα) corrections without Nf en-
hancement on the differential distributions are not smaller than corrections of O(Nfαsα)
as can be seen in [57,58]. At high energies NLO EW corrections are enhanced by Sudakov
logarithms leading to large corrections of O(αsα) without Nf enhancement also at NNLO.

In the vicinity of the resonance of a Drell–Yan-like produced Z boson it is possible to
extract precision observables such as the effective weak mixing angle from the forward–
backward asymmetry AFB motivating the effort of calculating higher-order corrections
valid in this region of phase space. In the second part of this thesis we have calculated
O(αsα) corrections of initial–initial type adding the final part to the previously calculated
initial–final, final–final, and non-factorizable contributions [55,56] and therefore complet-
ing the PA at O(αsα) for the neutral-current Drell–Yan process. We studied the impact
of initial–initial O(αsα) corrections on the forward–backward asymmetry AFB in the res-
onance region of the Drell–Yan-like produced Z boson. To our best knowledge, there
are no published results that study the effect of O(αsα) corrections on the numerically
challenging forward–backward asymmetry.
The so far missing gauge-invariant initial–initial O(αsα) corrections in PA comprise con-
tributions where the corrections are solely contained in the production mode of the Z
boson and include genuine two-loop virtual–virtual corrections, real–virtual corrections,
and double-real O(αsαphot) corrections. The PA was only applied to the weak × QCD
O(αsαw) corrections as these are only gauge invariant for on-shell Z bosons while the
photonic × QCD O(αsαphot) corrections are gauge invariant on their own without PA
due to their proportionality to the charge of the initial-state quarks. The impact of the
O(αsαphot) corrections on the forward–backward asymmetry AFB turned out to be of the
order of one percent in the region below the resonance of the Z boson while corrections
of O(αsαw) are of the level of a few permille over the whole invariant-mass range of the
final-state leptons. Therefore, at least below the resonance of the Z boson the total
O(αsα) initial–initial correction to the forward–backward asymmetry is dominated by
the O(αsαphot) corrections. In the resonance region and above, the O(αsα) initial–initial
corrections to the forward–backward asymmetry are of the permille level.
As the photons are radiated off the initial state no collinear enhancement occurs when
the emitted photon is collinear to the final-state leptons. Accordingly, we observed that
the effect of photon recombination on the size of O(αsα) initial–initial corrections to the
various distributions we considered was negligible.
Apart from corrections to the forward–backward asymmetry we have studied the effect
of the initial–initial O(αsα) corrections on the transverse-momentum, the invariant-mass,
and rapidity spectrum of the Z boson. While the corrections to the invariant mass and ra-
pidity distribution of the Z boson are of the sub-permille level the O(αsαphot) corrections
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to transverse-lepton momentum distributions grow up to 2% above the resonance of the Z
boson. In principle, we observed the O(αsαw) corrections to transverse-lepton momentum
distributions to be even larger reaching up to 7%. However, as we used the PA to obtain
a gauge-invariant prediction for the O(αsαw) initial–initial corrections, these predictions
are not reliable far beyond the resonance region. In the vicinity of the resonance also the
O(αsαw) initial–initial corrections to transverse-lepton momentum distributions were on
the level of a few percent.

The numerical results presented in the previous chapters were obtained using a flexible
Monte Carlo program that was fully developed in the scope of this work. It allows the
calculation of corrections to arbitrary distributions induced by the discussed O(αsα) cor-
rections, by selected O(α) corrections, and by the full NLO QCD O(αs) corrections. In
particular the Monte Carlo program allows the prediction of corrections to the numer-
ically challenging forward–backward asymmetry and also predictions for corrections to
total cross sections.
In the future also the initial–initial O(αsα) corrections to the charged-current Drell–Yan
process should be calculated. It is expected that the impact of these corrections on
the transverse-mass distribution of the W boson (and therefore also on the extraction
of the W mass) is small compared to the impact of initial–final corrections. Neverthe-
less, this has to be checked in a dedicated calculation of the initial–initial corrections to
charged-current processes. As O(αsαphot) corrections to charged-current Drell–Yan pro-
cesses involve diagrams including radiation of photons off W bosons an extension of the
antenna subtraction formalism is needed.
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Appendix A
Conventions

A.1 Four-vectors

We write three-vectors in bold font (e.g. p), four-vectors in italic font (e.g. p), and use the
metric tensor

(gµν) = (gµν) = diag(+1,−1,−1,−1). (A.1)

Contravariant four-vectors are denoted with upper greek indices,

pµ = (p0,p), (A.2)

whereas covariant four-vectors are denoted by lower indices

pµ = gµνp
ν . (A.3)

The four-momentum of a particle with three-momentum p

p = (p1, p2, p3)T (A.4)

and mass m is given by

pµ = (p0,p)T . (A.5)

The zero component of the four-momentum pµ is given by the energy of the particle and
for a real particle fulfils the on-shell condition p2 = m2, with

p0 =
√

p2 +m2 > 0, (A.6)

where we introduced the scalar product between two four-vectors

p · q = gµνp
µqν = pνq

ν = p0q0 − pq, (A.7)

so that p2 = pµp
µ. A four-vector p is called time-like if p2 > 0, space-like if p2 < 0, and

light-like if p2 = 0.
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A.2 Dirac algebra in four dimensions

The defining relation of the Dirac algebra is given by,

{γµ, γν} = γµγν + γνγµ = 2gµν , (A.8)

and the gamma matrices are the generators of the Dirac algebra. In the chiral represen-
tation the gamma matrices are given by

γµ =

(
0 σ̄µ

σµ 0

)
, σµ = (σ0,σ), σ̄µ = (σ0,−σ), (A.9)

where σ = (σ1, σ2, σ3) is the vector of Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.10)

and σ0 is the unit matrix. Moreover, we use the slashed notation for the contraction of
gamma matrices with four-vectors,

/k = kνγ
ν . (A.11)

Furthermore, one can define a matrix which anti-commutes with all other gamma matrices
given by,

γ5 = − i
4!
εµνηργ

µγνγηγρ = iγ0γ1γ2γ3, (A.12)

which is used to define the left- and right-handed chirality projectors,

ω± =
1

2

(
1 ± γ5

)
. (A.13)

In the chiral representation of the gamma matrices, γ5 and the chiral projectors are given
by

γ5 =

(
1 0

0 −1

)
, ω+ =

(
1 0

0 0

)
, ω− =

(
0 0

0 1

)
. (A.14)

A.3 The Weyl–van-der-Waerden formalism

All amplitudes in Chapter 5 and the real emission amplitudes in Chapter 6 were calculated
using the Weyl–van-der-Waerden (WvdW) spinor formalism. In this section we therefore
give a short overview over some basic ideas and definitions that are needed to calculate
amplitudes involving massless external particles using the WvdW formalism. For a more
complete presentation of the subject we refer to [153]. In the WvdW formalism all objects
that belong to higher-dimensional representations of the Lorentz group are expressed in
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terms of objects in the two-dimensional irreducible representations D(1
2
, 0) and D(0, 1

2
).

The decomposition of all Lorentz structures into two-dimensional spinor objects allows
the direct calculation of helicity amplitudes, i.e. the decomposition allows the numerical
evaluation of helicity amplitudes. Therefore, also the squaring to obtain squared ampli-
tudes can then be performed numerically. This is a clear advantage compared to the
Dirac formalism where to obtain a expression for the squared amplitudes suitable for the
implementation in a computer completeness relations for the external polarisation vectors
and Dirac spinors have to be used.

The spinors that belong to the two fundamental two-dimensional representations D(1
2
, 0)

and D(0, 1
2
) of the Lorentz group are denoted ψA and ψȦ, respectively. The connection

between the two representations is given by complex conjugation

ψȦ = (ψA)
∗, ψȦ = (ψA)∗, (A.15)

and lowering and raising of indices

ψA = ψBϵBA = (ψḂ)∗ϵBA, ψȦ = ϵȦḂψḂ = ϵȦḂ(ψB)
∗, (A.16)

is achieved by contraction with the totally anti-symmetric tensor

ϵAB = ϵȦḂ = ϵAB = ϵȦḂ =

(
0 1

−1 0

)
. (A.17)

The anti-symmetric tensor ϵ also allows the definition of a Lorentz-invariant spinor product

⟨ϕψ⟩ = ϕAψ
A = ϕAϵ

ABψB = ϕ1ψ2 − ϕ2ψ1 = −⟨ψϕ⟩, (A.18)

⟨ϕψ⟩∗ = ϕȦψ
Ȧ = ϕȦϵ

ȦḂψḂ = (ϕ1ψ2 − ϕ2ψ1)
∗ = −⟨ψϕ⟩∗. (A.19)

For the spinor product we also use the notation

⟨ϕ|ψ⟩ ≡ ⟨ϕψ⟩. (A.20)

Four-vectors and massless spin-1 particles

As four-vectors belong to the representation D(1
2
, 0) ⊗ D(0, 1

2
), they are represented by

objects with two spinor indices in the WvdW formalism

KȦB = kµσµ,ȦB =

(
k0 + k3 k1 + ik2

k1 − ik2 k0 − k3

)
, 2kµp

µ = KȦBP
ȦB, (A.21)

where the transition matrices, used to obtain the representation of four-vectors in the
spinor formalism, are given by the four-dimensional Pauli matrices

σµ,ȦB = (σ0,σ), σµ

AḂ
= (σ0,−σ). (A.22)
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In case of massless particles, the matrix KȦB factorizes into a product of so-called mo-
mentum spinors

KȦB = kȦkB, kA =
√
2k0

(
e−iϕ cos θ

2

sin θ
2

)
, (A.23)

where we have used polar coordinates to express the momentum spinors

k = |k|



cosϕ sin θ

sinϕ sin θ

cos θ


 . (A.24)

Moreover, in case the momenta are light-like, the contraction in (A.21) further simplifies
to

2kµp
µ = |⟨pk⟩|2, (A.25)

where in terms of polar coordinates the spinor product (A.18) of the momentum spinors
is given by

⟨pk⟩ = 2
√
p0k0

(
e−iϕp cos

θp
2
sin

θk
2

− e−iϕk cos
θk
2
sin

θp
2

)
. (A.26)

As polarisation vectors ε±µ (k) for massless particles are also four-vectors their representa-
tion in the WvdW formalism is also given by objects with two spinor indices

ε+,ȦB(k) =

√
2g+,ȦkB

⟨g+k⟩∗
, ε−,ȦB(k) =

√
2kȦg−,B
⟨g−k⟩

, (A.27)

ε∗
+,ȦB

(k) =

√
2kȦg+,B

⟨g+k⟩
, ε∗−,ȦB

(k) =

√
2g−,ȦkB

⟨g−k⟩∗
, (A.28)

where the appearance of gauge spinors g± is the manifestation of the missing longitudinal
polarisation in the case of massless vector bosons. Apart from the condition ⟨g±k⟩ ≠
0, the gauge spinors are arbitrary and can be chosen differently for different helicity
configurations within the same amplitudes.

Spin-1
2

particles

Dirac spinors Ψ are elements of the direct sum of D(1
2
, 0) and D(0, 1

2
), and can therefore

be written in terms of two WvdW spinors as

Ψ =

(
ϕA

ψȦ

)
. (A.29)

Inserting the plane-wave ansatz Ψ(x) = exp(∓ikx)Ψ(∓)(k) into the Dirac equation for
massless fermions i/∂Ψ(x) = 0 leads to

KAḂψ
(±),Ḃ(k) = 0, KȦBϕ

(±)
B (k) = 0. (A.30)
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Helicity Outgoing fermion Incoming fermion

σ = − Ψ
+

k,− =
(
kA 0

)
Ψ+

k,− =

(
0

kȦ

)

σ = + Ψ
+

k,+ =
(
0 kȦ

)
Ψ+

k,+ =

(
kA

0

)

Helicity Outgoing antifermion Incoming antifermion

σ = − Ψ−k,− =

(
kA

0

)
Ψ
−
k,− =

(
0 kȦ

)

σ = + Ψ−k,+ =

(
0

kȦ

)
Ψ
−
k,+ =

(
kA 0

)

Table A.1: Helicity eigentstates for massless Dirac fermions.

The solutions to these equations are shown in Tab. A.1.

In the calculation of helicity amplitudes discrete symmetries like parity or the CP sym-
metry can be used to reduce the number of different helicity configurations that have to
be calculated explicitly, as these symmetries relate different helicity configurations of the
same process. Moreover, starting from a helicity amplitude where all helicity configura-
tions are known, so-called crossing symmetries, which transform incoming into outgoing
particles and vice versa, can be used to obtain helicity amplitudes of different processes.
A summary and guideline of how these symmetries are to be used in an actual calculation
can be found in [153].

A.4 Harmonic polylogarithms

In this section we give the definition of harmonic polylogarithms H(m1, ...,mw; y), mj =
0,±1 using the notation of [144]. The harmonic polylogarithms H(m; y) of lowest-weight
(w = 1) are defined as

H(0; y) = ln y , H(±1; y) = ∓ ln(1∓ y) . (A.31)

Harmonic polylogarithms of higher-weight (w ≥ 2) are recursively defined as

H(m1, ...,mw; y) =





1

w!
lnw y , if m1, ...,mw = 0

∫ y

0

dz fm1(z)H(m2, ...,mw; z) , otherwise

(A.32)

with
f0(y) =

1

y
, f±1(y) =

1

1∓ y
. (A.33)
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A.5 Scattering matrix, perturbation theory, and cross
sections

A scattering process in quantum mechanics is described by the so-called “S-matrix”, which
transforms incoming states |i⟩ entering a particle scattering into outgoing states |f⟩.
Technically the scattering is assumed to happen in a finite time interval. In the limit
t→ ∞ the S-matrix coincides with the time evolution operator UI(t,−t) in the interaction
picture. In cases where the interaction Hamiltonian density Hint, contained in the time
evolution operator UI(t,−t), is free of derivatives acting on fields one can write the S-
matrix as

S = T

[
exp

(
i
∫

d4xLI

)]
, (A.34)

where T is the time ordering operator and we introduced the interaction Lagrangian LI

(in the interaction picture) obtained by decomposing the total Lagrangian into a free part
L0, containing only bilinear terms of the fields, and the interaction Lagrangian LI ,

L = L0 + LI . (A.35)

The Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [156] relates S-matrix el-
ements for scattering processes with n external particles and n-point correlation functions
(Green functions), which can be evaluated perturbatively. The elements of the pertur-
bative expansion of a Green function have a pictorial representation known as Feynman
diagrams that are built from so-called “propagators” and “vertices”. Propagators are
represented by lines in Feynman diagrams and are derived from L0, whereas vertices,
represented by dots joining three or more propagators, are derived from LI . The analytic
expressions corresponding to propagators and vertices are the so-called “Feynman rules”.

S-matrix elements can be decomposed into a sum of a part ⟨f |i⟩ describing the situation
where no scattering occurs and the so-called “transition matrix element” (or equivalent
“amplitude”) Mfi,

⟨f |S|i⟩ = ⟨f |i⟩+ i(2π)3δ4(pi − pf )Mfi. (A.36)

The differential cross section of two unpolarized incoming particles with momenta q1, q2
and masses mq1 ,mq2 and n particles in the final state with momenta p1, . . . , pn is given in
terms of transition matrix elements by

dσ(q1, q2, p1, . . . , pn) =
1

S

1

F (q1, q2)
dΦn(q1, q2, p1, . . . , pn)⟨|Mab→f (q1, q2, p1, . . . , pn)|2⟩,

(A.37)

where we denote the squared amplitude of the process summed over all possible he-
licity states of particles in the final state and spin averaged over the initial states by
⟨|Mab→f (q1, q2, p1, . . . , pn)|2⟩. To avoid double counting due to identical particles of type
f in the final state the symmetry factor

S = nf ! (A.38)
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is introduced for each particle species f and the Lorentz-invariant flux factor is given by

F (q1, q2) =
√
(q1q2)2 − (mq1mq2)

2. (A.39)

For processes including two incoming particles with momenta q1, q2 and n particles in the
final state with momenta p1, . . . , pn the differential phase space dΦn f is given by

dΦn(q1, q2, p1, . . . , pn) = (2π)4δ(4)
(
q1 + q2 −

n∑

i=1

pi

) n∏

j=1

d4pj
(2π)4

δ(p2j −m2
j)θ(p

0
j). (A.40)

In situations with only one incoming particle (i.e. in case of a particle decay) Eq. (A.37)
simplifies to

dΓX→f =
1

S

1

2mx

dΦn(Q, p1, . . . , pn)⟨|MX→f |2⟩, (A.41)

where Q is the momentum of the decaying particle and dΓX→f denotes the differential
decay width.
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Appendix B
Hadron collider kinematics

We define the hadronic momenta with respect to the beam axis in the laboratory (lab)
frame as

PA =

√
s

2




1

0

0

1


 , PB =

√
s

2




1

0

0

−1


 , (B.1)

where
√
s is the hadronic centre-of-mass (CM) energy. If parton a carries the momen-

tum fraction xa of the momentum of hadron A and b analogously the fraction xb of the
momentum of B, the momenta of the partons are given by

pa = xa

√
s

2




1

0

0

1


 , pb = xb

√
s

2




1

0

0

−1


 . (B.2)

The Lorentz transformation that relates the momenta in the lab frame with the momenta
in the partonic CM system reads




p̂0i
p̂1i
p̂2i
p̂3i


 =




γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ







p0i
p1i
p2i
p3i


 (B.3)

where i = a, b and the boost factor β, describing the relative velocity of the two colliding
partons, is given by

β =
|pab|
Eab

=
|xaPA + xbPB|
xaP 0

A + xbP 0
B

=
xa − xb
xa + xb

(B.4)

and

γ =
1√

1− β2
. (B.5)
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By defining the rapidity y via γ = cosh(y) and using β = − tanh(y) we can rewrite (B.3)
as




p̂0

p̂1

p̂2

p̂3


 =




cosh y 0 0 sinh y

0 1 0 0

0 0 1 0

sinh y 0 0 cosh y




︸ ︷︷ ︸
≡B(y)




p0

p1

p2

p3


 . (B.6)

If we consider the four momentum pµ = (m, 0, 0, 0)T of some massive particle with mass
m in its rest frame and apply a boost in the longitudinal direction we obtain

p̂µ = (m cosh y, 0, 0,m sinh y)T = B(y)µν p
ν , (B.7)

which can be used to write the rapidity in the more familiar form [157]

y =
1

2
log

ey

e−y
=

1

2
log

cosh y + sinh y

cosh y − sinh y
=

1

2
log

p̂0 + p̂3

p̂0 − p̂3
. (B.8)

We now show that the two parameters xa, xb can be obtained from the rapidity and the
partonic center-of-mass energy ŝ = xaxbs, which has been used to obtain (5.9). Starting
from β = − tanh(y), using sinh(y)2 = cosh(y)2 − 1, and (B.4) we obtain

cosh(y)2 − 1

cosh(y)2
= β2 =

(xa − xb)
2

(xa + xb)2
. (B.9)

Solving this equation for cosh(y) we arrive at

cosh y =
xa + xb
2
√
xaxb

=
1

2

(√
xa
xb

+

√
xb
xa

)
. (B.10)

If we now use cosh y = 1
2
(ey + e−y) we find

ey =

√
xa
xb
, (B.11)

which, in combination with ŝ = xaxbs, leads us to

xa =

√
ŝ

s
ey, xb =

√
ŝ

s
e−y. (B.12)

Further, we define the transverse energy of a particle with mass m, four-momentum p,
and transverse momentum pT as

E2
T = m2 + (pT)

2. (B.13)

The transverse mass of the two particles ℓ and ν is then given by

M2
T,ℓν = (ET,ℓ + ET,ν)

2 − (pT,ℓ + pT,ν)
2. (B.14)
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If we consider that neutrinos only show up as missing transverse energy in a measurement
at the LHC, i.e. ET,ν = ET,miss, and assuming massless leptons this reduces to

MT,ℓν =
√

2(pT,ℓET,miss − pT,ℓ · pT,miss)

=
√

2pT,ℓET,miss(1− cosϕℓν), (B.15)

where ϕℓν is the angle between the missing momentum in the transverse plane and the
lepton ℓ.

B.1 Kinematics of the Drell–Yan process at leading or-
der

In this section we will discuss some rather simple kinematics of the LO Drell–Yan process
that are, however, quite useful when it comes to understanding distributions of observ-
ables, e.g. in Section 5.3.2. In particular, we focus on the transverse-momentum distri-
bution and try to find out what we know about the momentum of the intermediate W/Z
boson if we measure a certain transverse momentum of the positively charged lepton. In
the following we only consider the NC Drell–Yan process, but the discussion is completely
analogous in the CC case.

Lets start by just writing down the equation implied by four-momentum conservation in
the Lab-frame

plab
a + plab

b = plab
Z = plab

ℓ− + plab
ℓ+ . (B.16)

From momentum conservation combined with (B.2) it immediately follows that p lab
T,ℓ+ =

−p lab
T,ℓ− . We split our discussion in three different cases, where in the first case we assume

that we measured plab
T,ℓ+ > MZ/2, in the second plab

T,ℓ+ = MZ/2, and in the last case
plab
T,ℓ+ < MZ/2.

plab
T,ℓ+ > MZ/2 :

According to (B.16) and (B.2) the rest frame (RF) and the Lab frame are connected by
a simple boost in the longitudinal (beam) direction (B.3), as p lab

T,Z = 0. This means that
transverse components of four-momenta are invariant under boosts between the RF of the
Z boson and the Lab frame, i.e.

pRF
T,ℓ± = plab

T,ℓ± >
MZ

2
. (B.17)

Therefore, for the positively charged lepton—which we assume to be massless—in the RF
of the Z boson we have

0 = (pRF
ℓ± )2 = (pRF

ℓ±,0)
2 − (p RF

T,ℓ±)
2

︸ ︷︷ ︸
>M2

Z/4

−(pRF
ℓ±,3)

2 < (pRF
ℓ±,0)

2 −M2
Z/4, (B.18)
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which implies

pRF
ℓ±,0 > MZ/2. (B.19)

Combined with energy conservation in the RF of the Z boson one obtains

pRF
Z,0 = pRF

ℓ+,0 + pRF
ℓ−,0 > MZ, (B.20)

which leads to the conclusion that the Z boson must be off-shell for plab
T,ℓ+ > MZ/2

(pRF
Z )2 = (pRF

Z,0)
2 > M2

Z. (B.21)

plab
T,ℓ+ =MZ/2 :

As discussed before, the boost between Lab and rest frame does not change transversal
components, i.e. pRF

T,ℓ± =MZ/2. On-shellness of the leptons implies

0 = (pRF
ℓ± )2 = (pRF

ℓ±,0)
2 −M2

Z/4− (pRF
ℓ±,3)

2. (B.22)

Solving for the energy of the leptons

pRF
ℓ±,0 =

√
M2

Z

4
+ (pRF

ℓ±,3)
2 (B.23)

we obtain that, given we have plab
T,ℓ+ =MZ/2, then

(pRF
Z,0)

2 = (pRF
ℓ+,0 + pRF

ℓ−,0)
2 =M2

Z iff pRF
ℓ±,3 = 0. (B.24)

Therefore, the Z boson can be on-shell if the longitudinal components of the four-momenta
of the leptons vanishes in the RF of the Z boson.

plab
T,ℓ+ < MZ/2 :

Following the same strategy as before, leads to

0 = (pRF
ℓ± )2 > (pRF

ℓ±,0)
2 −M2

Z/4− (pRF
ℓ±,3)

2, (B.25)

which implies

pRF
ℓ±,0 <

√
M2

Z

4
+ (pRF

ℓ±,3)
2. (B.26)

This means, that the Z boson can still be on-shell for some non-vanishing pRF
ℓ±,3, since

(pRF
Z )2 = (pRF

Z,0)
2 = (pRF

ℓ+,0 + pRF
ℓ−,0)

2 !
=M2

Z (B.27)

has to be fulfilled for the Z boson to be on-shell.
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B.2 Jet recoil effects in initial-state radiation processes

In the discussion in the last section we saw that the region plab
T,ℓ+ ≤ MZ/2 allows for on-

shell Z bosons, but plab
T,ℓ+ > MZ/2 does not include on-shell kinematics. This changes

when we consider the DY process at NLO and include contributions with initial-state
radiation of photons or jets, e.g. the diagrams depicted in Fig. 5.4. Lets assume again that
we have measured the momentum of some positively charged lepton with plab

T,ℓ+ > MZ/2.
Including for instance an additional gluon with momentum kg radiated in the initial state,
momentum conservation is now given by

plab
a + plab

b = plab
Z + kg = plab

ℓ− + plab
ℓ+ + kg. (B.28)

At LO we had p lab
T,ℓ+ = −p lab

T,ℓ− , which is not valid anymore if we include initial-state
radiation. According to the last equation and (B.2) the transverse component of the
four-momentum of the gluon and the Z boson have to cancel in the lab frame. This
means, that for a non-vanishing transverse momentum of the gluon in the lab frame, a
simple boost in longitudinal directions is not sufficient to get from the lab frame to the
RF of the Z boson, as in the RF we should have pRF

T,Z = 0 but in the lab frame plab
T,Z ̸= 0.

Therefore, the Lorentz transformation that connects the RF of the Z boson and the lab
frame Blab→RF contains a boost in the transverse direction.

Let now p RF
T,ℓ+ be the transverse component of the four-momentum of the positively

charged lepton in the RF of the Z boson,

p RF
T,ℓ+ = Blab→RF p

lab
T,ℓ+ ̸= p lab

T,ℓ+ . (B.29)

Even though plab
T,ℓ+ > MZ/2 the energy of the lepton

pRF
ℓ±,0 =

√
(p RF

T,ℓ±)
2 + (pRF

ℓ±,3)
2 (B.30)

can still fulfill the condition (B.27) for the on-shellness of the Z boson in its RF, as
boosting from the lab frame to the RF of the Z boson might reduce the size of the
transverse components of the leptons four-momenta such that pRV

T,ℓ+ ≤MZ/2.

157



Appendix B. Hadron collider kinematics

158



Appendix C
Dimensional regularization

Dimensional regularization [70, 71] is a procedure which relates divergences in loop in-
tegrals to finite expressions by analytic continuation in the dimension of space-time to
d ̸= 4 dimensions,

∫
d4k

(2π)4
→
∫

ddk

(2π)d
, (C.1)

where the limit d → 4 reproduces the original divergences. After the application of
this regularization procedure, loop integrals become meromorphic functions of d. In this
work we use the conventional dimensional regurlarization (CDR) scheme [158], where all
momenta, four-vectors, and Lorentz covariants that appear in a divergent integral are
analytically continued to d dimensions. In order to keep coupling constants dimensionless
an arbitrary mass scale µ is introduced,

gs → µ
4−d
2 gs, e→ µ

4−d
2 e. (C.2)

In d dimensions the four Dirac matrices are replaced by d generators of the Dirac algebra of
dimensionality 2

d
2 . The naive continuation of the vanishing anticommutator of γ-matrices

and γ5 in four dimensions,

{γµ, γ5} = 0, (C.3)

to d dimensions and also maintaining cyclicity of the trace would lead to [159,160]

Tr(γµγνγργσγ5) = 0, (C.4)

where the trace function is defined in such a way that the application to the unit matrix
in d dimensions is still four as in 4 dimensions, i.e. in d dimensions we have

gµν = diag(1,−1, . . . ,−1), {γµ, γν} = 2gµν1d, Tr(1d) = 4. (C.5)

Equation (C.4) is inconsistent with the relation in four dimension

Tr(γµγνγργσγ5) = 4iεµνρσ, (C.6)

159



Appendix C. Dimensional regularization

which is the reason why the treatment of γ5 in dimensional regularization is quite compli-
cated and several different schemes differing in the properties of γ5 and the trace operator
in d dimensions are proposed in the literature [70, 160–163]. For an overview of the dif-
ferent schemes see e.g. [60].

As we use the FeynArts/FormCalc packages to calculated one-loop amplitudes we mention
for completeness that FeynArts/FormCalc uses the so-called naive scheme [163] where γ5
is assumed to be anticommuting with all γµ in d dimensions,

{γ5, γµ} = 0, µ = 0, 1, . . . , d− 1. (C.7)

This scheme is consistent at the one-loop level [60].

C.1 Traces and γ5 in initial–initial O(αsαw) corrections

We start the discussion by considering first only corrections of O(Nfαsα). As discussed in
Section 5.2.1 these corrections always involve closed fermionic loops that show up only in
gauge-boson self-energies. Typically, projectors are used to reduce the calculation of the
self-energies to the calculation of their longitudinal and transversal parts [118]. Due to the
simple Lorentz structure of these self-energies the projectors only contain terms that are
proportional to the metric tensor gµ1,µ2 , µi ∈ {µ, ν, ρ, σ}, or to pµ1pµ2 , where pµ denotes the
external momentum that flows in and out of the self-energy diagram. Therefore, traces
of the form Tr(γµγνγργσγ5)—that might show up in the calculation of the self-energy
diagrams—are always contracted either with the metric tensor gµ1,µ2 , µi ∈ {µ, ν, ρ, σ}, or
with pµ1pµ2 . Both the contraction between the problematic trace term and the metric
tensor gµ1,µ2 and also the contraction of the traces with pµ1pµ2 vanish. Therefore, traces
of the form Tr(γµγνγργσγ5) do not contribute to the calculation of O(Nfαsα) corrections
as there are not enough external momenta to produce non-vanishing contributions.

Throughout this work the guiding principle in the treatment of γ5 was to combine UV- or
IR-divergent terms in such a way that their combination is free of UV or IR divergences be-
fore calculating traces that include γ5. If we now consider O(αsαw) corrections that do not
involve closed fermionic loops in gauge-boson self-energies (these contributions have been
discussed above), then there are no sources for traces of the form Tr(γµγνγργσγ5) on the
amplitude level. Therefore, in O(αsαw) corrections these traces are typically coming from
closed fermionic loops that are produced in the interference of amplitudes contributing
to squared matrix elements. By constructing combinations which are free of divergences
before evaluating problematic traces we are able to evaluate these combinations in four
dimensions. In four dimensions we can use all the usual properties of the trace (cyclicity
and (C.6)) and the problem of continuing the definition of the trace to d dimensions is
avoided. As an example we now show how we can rearrange terms in the calculation
of the double-virtual initial–initial QCD × weak O(αsαw) corrections to obtain IR- and
UV-finite combinations. The individual contributions to this set of O(αsαw) corrections
and their calculation is discussed in Section 6.3.1. A similar procedure can be applied to
the real–virtual O(αsαw) corrections discussed in Section 6.3.2.

In the calculation of the O(αsαw) correction to the qq̄ → ℓℓ̄ squared amplitude (6.12) we
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used the renormalized O(αsαw) formfactor (6.11). The correction to the squared ampli-
tude M qq̄→ℓℓ̄

Vs⊗Vw,II,PA is therefore free of UV divergences and only contains IR divergences.
In order to isolate these IR divergences we write M qq̄→ℓℓ̄

Vs⊗Vw,II,PA as

M qq̄→ℓℓ̄
Vs⊗Vw,II,PA

∣∣∣∣
IR div.

= 2Re
{
Mqq̄→ℓℓ̄

Vs⊗Vw,II,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }∣∣∣∣
IR div.

(C.8)

+ 2Re
{
Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

Vs,I,PA

)∗ }∣∣∣∣
IR div.

+ IR- and UV-finite terms

= 2Re{δZq̄q
Vs

(q2)} × 2Re
{
Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }

︸ ︷︷ ︸
IR and UV finite

+ IR- and UV-finite terms.

It is important to note that interference products as Mqq̄→ℓℓ̄
Vs,I,PA

(
Mqq̄→ℓℓ̄

Vw,I,PA

)∗
already contain

closed fermionic loops that lead to problematic traces including γ5. Therefore, we do not
evaluate these traces as long as we haven’t canceled all IR divergences and are still in
d ̸= 4 dimensions to regularize these divergences. If we do not evaluate these traces we
also do not need a prescription of how to evaluate them in d ̸= 4 dimensions.
The IR divergences in (C.8) are canceled by the integrated subtraction term (6.24), where
the sum is schematically given by

M qq̄→ℓℓ̄
Vs⊗Vw,II,PA

∣∣∣∣
IR div.

−J (1)
2,ii(za, zb) 2Re

{
Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }
(C.9)

=

(
2Re{δZq̄q

Vs
(q2)} −J (1)

2,ii(za, zb)

)

︸ ︷︷ ︸
IR and UV finite

× 2Re
{
Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗ }

︸ ︷︷ ︸
IR and UV finite

+ IR- and UV-finite terms.

We have now combined terms so that all UV and IR divergences are canceled. There-
fore, at this point we can omit dimensional regularization and set d = 4 such that the
problematic trace contained in Mqq̄→ℓℓ̄

Vw,I,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗
can now safely be evaluated in d = 4

dimensions.
It is important that we were able to factorize the IR-divergent QCD corrections from
the amplitude and that Mqq̄→ℓℓ̄

Vw,I,PA is a renormalized amplitude and therefore free of UV
divergences. Due to the factorization of QCD corrections and renormalization we were
able to combine terms in such a way that the dimensional regulator is not needed any
more and traces can be evaluated in d = 4.

161



Appendix C. Dimensional regularization

162



Appendix D
Explicit form of the gauge-boson self-
energies at O(αsα)

The auxiliary functions used to express the gauge-boson self-energies in Section 5.2.4
depend on two-loop two-point integrals of the form

Sabcde(p
2,m2

1,m
2
2) =

(
(2πµ)2ϵ

iπ2

)2 ∫
dDq1

∫
dDq2

1

(q21)
a (q22 −m2

1)
b

× 1

[(q2 + p)2 −m2
2]

c [(q1 + q2)2 −m2
1]

d [(q1 + q2 + p)2 −m2
2]

e
, (D.1)

where a graphical representation of these integrals is shown in Fig. D.1. The prefactor of
the integrals is chosen such that reducible integrals contained in the integral family Sabcde

decompose into the product of the standard one-loop integrals as defined in Refs. [60].
In the W -boson self-energy at zero-momentum transfer used in the application of the Gµ

input-parameter scheme one additionally needs the two-mass two-loop tadpole integrals
Tabc, defined by

Tabc(m
2
1,m

2
2) =

(
(2πµ)2ϵ

iπ2

)2 ∫
dDq1

∫
dDq2

1

(q21)
a (q22 −m2

1)
b[(q1 + q2)2 −m2

2]
c
. (D.2)

One can choose a set of master integrals such that the auxiliary functions fk (k = 1, . . . , 4)
can be expressed in terms of these master integrals [115],

f1(s,m
2) =

1− ϵ

2s
S10110 +

1− ϵ

2(3− 2ϵ)ϵ

[
2− 3ϵ+ 2ϵ2 + 4(1− ϵ)(1 + 2ϵ)

m2

s

]
S11110

q1

q2 + p q1 + q2 + p

q2 q1 + q2

p p

Figure D.1: Two-loop sunset topology, corresponding to the self-energy integral Sabcde defined in
Eq. (D.1).
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+
1

4ϵ

[
−(1− ϵ)(2− ϵ+ 2ϵ2)

3− 2ϵ
− 2m2

(3− 2ϵ)s
+

2(1− 2ϵ)m2

4m2 − s

]
S01111

+
m2

ϵs

[
2− 6ϵ+ 7ϵ2 − 2ϵ3

3− 2ϵ
− 2(2− 3ϵ+ 2ϵ2)m2

4m2 − s

]
S01120

+
m2

2ϵs

[
− 2− 3ϵ+ 2ϵ2

(1− 2ϵ)(3− 2ϵ)
+

4(1− ϵ)m2

4m2 − s

]
S02020, (D.3)

f2(s,m
2) =

(1− 2ϵ)

(3− 2ϵ)s
S10110 +

1

3− 2ϵ

[
−6− 9ϵ+ 2ϵ2

ϵ
+

4(1− 2ϵ)m2

s

]
S11110

+
1

ϵ

[
(1− ϵ)(3− 3ϵ+ 2ϵ2)

3− 2ϵ
− 2(1− 2ϵ)m2

4m2 − s

]
S01111

− 2m2

[
2

(3− 2ϵ)s
− 2− 3ϵ+ 2ϵ2

ϵ(4m2 − s)

]
S01120

+m2

[
1

(3− 2ϵ)(1− ϵ)s
− 2(1− ϵ)

ϵ(4m2 − s)

]
S02020, (D.4)

f3(s,m
2) = − (3− 2ϵ)

[
ϵ

1− 2ϵ
+

2m2

4m2 − s

]
S01120 +

2(3− 2ϵ)m2

(1− 2ϵ)(4m2 − s)
S02020, (D.5)

f4(s,m
2) = (3− 2ϵ)

[
1

1− 2ϵ
+

2m2

4m2 − s

]
S01120 −

2(3− 2ϵ)m2

(1− 2ϵ)(4m2 − s)
S02020, (D.6)

with suppressed arguments of the integral functions Sabcde(s,m
2,m2). Analytic expres-

sions for all master integrals in the last expressions and also the ones in the following
expressions can be found in [115]. The auxiliary function fk (k = 5, 6) are given by

f5(s,m
2
1,m

2
2) =

[
1− ϵ+

(1− 2ϵ)(m2
1 +m2

2)

2(3− 2ϵ)s

]
S10110

8s

+
1

16(3− 2ϵ)ϵ

[
(2− 3ϵ+ 2ϵ2)

(
2(1− ϵ)− (1− 2ϵ)

m2
1

s
− m4

1

s2

)

− (2− 3ϵ)(1− 2ϵ)2
m2

2

s
+ 4(1− 2ϵ2)

m2
1m

2
2

s2
− (2− 5ϵ+ 6ϵ2)

m4
2

s2

]
S11101

− 1

16ϵ

[
(1− ϵ)(2− ϵ+ 2ϵ2)

3− 2ϵ
+

(1− 2ϵ)(1− ϵ2)

3− 2ϵ

m2
1 +m2

2

s

+ 4(1− 2ϵ)
m2

1m
2
2

λ

]
S01111

+
m2

2

8ϵs

[
2(2− 6ϵ+ 7ϵ2 − 2ϵ3)

3− 2ϵ
− (2− 3ϵ+ 2ϵ2)m2

1

(3− 2ϵ)s
+

(2− 7ϵ+ 2ϵ2)m2
2

(3− 2ϵ)s

− 2(2− 3ϵ+ 2ϵ2)m2
1(m

2
1 −m2

2 − s)

λ

]
S01102

+
m2

1m
2
2

8ϵs2

[
(1− 2ϵ)(2− ϵ)

(3− 2ϵ)(1− ϵ)
+

2(1− ϵ)s(m2
1 +m2

2 − s)

λ

]
S00220

− m2
2

16ϵs

[
(2− 17ϵ+ 26ϵ2 − 8ϵ3)m2

2 + (2− 3ϵ+ 2ϵ2)(m2
1 + 2(1− ϵ)s)

(1− 2ϵ)(3− 2ϵ)(1− ϵ)s
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+
8(1− ϵ)m2

1m
2
2

λ

]
S00202, (D.7)

f6(s,m
2
1,m

2
2) =

3− 2ϵ

4

{[
(1− 2ϵ)s−m2

1 +m2
2

2(1− 2ϵ)s
+
m2

1(s−m2
1 +m2

2)

λ

]
S01102

+
m2

1

1− 2ϵ

[
1

2(1− ϵ)s
+
m2

1 +m2
2 − s

λ

]
S00220

− m2
2

1− 2ϵ

[
1

2(1− ϵ)s
+

2m2
1

λ

]
S00202

}
(D.8)

with the Källen function

λ = (s−m2
1 −m2

2)
2 − 4m2

1m
2
2 (D.9)

and the arguments of the integral functions given by Sabcde(s,m
2
1,m

2
2). Note that the

interchange (mdj ↔ muj
) of the up- and down-type quark masses in (5.72) and (5.73)

also concerns the arguments of the integral functions; this change of arguments can,
however, be achieved by rearranging labels in Sabcde using the symmetries of the two-loop
two-point integral family

Sabcde(p
2,m2

1,m
2
2) = Sadebc(p

2,m2
1,m

2
2) = Sacbed(p

2,m2
2,m

2
1) = Saedcb(p

2,m2
2,m

2
1). (D.10)

For massless fermions, we only need the functions f1 and f5,

f1(s, 0) = 4f5(s, 0, 0) =

(
4πµ2

−s− i0

)2ϵ

Γ(1 + ϵ)2
[
1

8ϵ
+

55

48
− ζ3 +O(ϵ)

]
. (D.11)

The auxiliary functions fk (k = 7, 8) are given by

f7(m
2
1,m

2
2) =

m4
2

4(2− ϵ)

[
m2

2

(1− ϵ)λ0
+

(3− 2ϵ)(1− ϵ)

(1− 2ϵ)(m2
1 −m2

2)

]
S00202

− m2
1m

4
2

4(2− ϵ)(1− ϵ)λ0
S00220 +

1− ϵ

8(2− ϵ)
T111(m

2
1,m

2
2), (D.12)

f8(m
2
1,m

2
2) =

(3− 2ϵ)m2
2

4(2− ϵ)(1− 2ϵ)λ0

{[
(1− ϵ)m2

2 − (2− ϵ)m2
1

]
S00202 +m2

1 S00220

}
, (D.13)

where λ0 is obtained by evaluating λ in (D.9) at s = 0,

λ0 = (m2
1 −m2

2)
2, (D.14)

and the integrals Sabcde have the arguments Sabcde(0,m
2
1,m

2
2).
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Appendix E
Results for convolutions of integrated an-
tennas

This appendix contains results for the convolutions of integrated three-parton antennas
and mass-factorization kernels. Before stating the explicit results we start by proofing the
two identities relevant for the evaluation of convolutions of functions f(x, y), h(x, y), g(x)
and plus distribution given in (6.37) and (6.38). We begin with the proof of (6.37),

[f ⊗ h] (za, zb) =

∫ 1

z1

dx1

∫ 1

z2

dx2 f(x1, x2)h

(
z1
x1
,
z2
x2

)
, (E.1)

which can be derived in the following way

[f ⊗ h] (z1, z2) =

∫ 1

0

dx1dx2 dy1dy2 f(x1, x2)h(y1, y2)δ(z1 − x1y1)δ(z2 − x2y2)

=
2∏

i=1

(∫ 1

0

dxi

∫ xi

0

dvi
xi
δ(zi − vi)

)
f(x1, x2)h

(
v1
x1
,
v2
x2

)

=
2∏

i=1

(∫ zi

0

dxi

∫ xi

0

dvi
xi
δ(zi − vi)

︸ ︷︷ ︸
vi<xi<zi⇒δ(zi−vi)=0

+

∫ 1

zi

dxi

∫ xi

0

dvi
xi
δ(zi − vi)

)

× f(x1, x2)h

(
v1
x1
,
v2
x2

)

=

∫ 1

z1

dx1

∫ 1

z2

dx2 f(x1, x2)h

(
z1
x1
,
z2
x2

)
. (E.2)

Similarly, the proof of (6.38),

[Dn ⊗ g] (z) =

∫ 1

z

dx
logn(1− x)

1− x

[
1

x
g
(z
x

)
− g(z)

]
+
g(z) logn+1(1− z)

n+ 1
(E.3)

reads

[Dn ⊗ g] (z) =

∫ 1

0

dx dyDn(x)g(y)δ(z − xy) (E.4)
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=

∫ 1

0

dx dy
logn(1− x)

1− x
g(y) [δ(z − xy)− δ(z − y)]

=

∫ z

0

dx

∫ x

0

dv

x

logn(1− x)

1− x
g
(v
x

)
δ(z − v)

︸ ︷︷ ︸
v<x<z⇒δ(z−v)=0

+

∫ 1

z

dx

∫ x

0

dv

x

logn(1− x)

1− x
g
(v
x

)
δ(z − v)− g(z)

∫ 1

0

dx
logn(1− x)

1− x

=

∫ 1

z

dx
logn(1− x)

1− x

[
1

x
g
(z
x

)
− g(z)

]
− g(z)

∫ z

0

dx
logn(1− x)

1− x

=

∫ 1

z

dx
logn(1− x)

1− x

[
1

x
g
(z
x

)
− g(z)

]
+
g(z) logn+1(1− z)

n+ 1
.

Note that (6.38) can also be rewritten as

[Dn ⊗ g] (z) =

∫ 1

z

dx
logn(1− z

x
)

1− z
x

[
1

x
g (x)− z

x2
g(z)

]
+
g(z) logn+1(1− z)

n+ 1
. (E.5)

Especially if the function g convoluted with the plus-distribution Dn is rather complicated
using this form instead of (6.38) sometimes leads to more compact results of the integrals
as we have shifted the fraction z/x from the function g to the logarithm in the last
equation.

E.1 Results for convolutions

The convolutions of integrated antennae and mass-factorization kernels or convolutions
of two mass-factorization kernels in (6.27) to (6.30) can be expanded in ϵ = 4−d

2
, e.g.

[
Γ
(1)
ki ⊗A0

qq,g

]
1
(s; z1, z2) =

(
s

µ

)−ϵ([Γ(1)
ki ⊗A0

qq,g

]−4
1

ϵ4
+

[
Γ
(1)
ki ⊗A0

qq,g

]−3
1

ϵ3

+

[
Γ
(1)
ki ⊗A0

qq,g

]−2
1

ϵ2
+

[
Γ
(1)
ki ⊗A0

qq,g

]−1
1

ϵ1

+
[
Γ
(1)
ki ⊗A0

qq,g

]0
1
+O(ϵ1)

)
. (E.6)

We note that due to the symmetry of the integrated three-parton antenna A0
qq,g(x1, x2) =

A0
qq,g(x2, x1) we have

[
Γ
(1)
ki ⊗A0

qq,g

]
2
(s; z1, z2) =

[
Γ
(1)
ki ⊗A0

qq,g

]
1
(s; z2, z1), (E.7)

which reduces the number of convolutions that have to be calculated explicitly. As the
results for the coefficients are rather lengthy we present them only in terms of master
integrals that can be evaluated with (6.33) to (6.36), (6.37), and (6.38):
[
Γ(1)
qq ⊗A0

qq,g

]−4
1

=0, (E.8)
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[
Γ(1)
qq ⊗A0

qq,g

]−3
1

=
1

4

(
− 3 δ(1− z1)− 4D0(1− z1) + 2z1 + 2

)
δ(1− z2), (E.9)

[
Γ(1)
qq ⊗A0

qq,g

]−2
1

= δ(1− z2)[h1 ⊗ h1](z1)− 2 δ(1− z2)[D0 ⊗ h1](z1) (E.10)

+
1

8
(8[D0 ⊗D0](z1) δ(1− z2)− 3z1 δ(1− z2)− 3z2 δ(1− z1)

+ D0(1− z2)(6 δ(1− z1)− 4z1 − 4)

+ D0(1− z1)(6 δ(1− z2) + 8D0(1− z2)− 4z2 − 4)

− 3 δ(1− z1)− 3 δ(1− z2) + 2z1z2 + 2z1 + 2z2 + 2),
[
Γ(1)
qq ⊗A0

qq,g

]−1
1

=
1

48
(−48[D0 ⊗D1](z1) δ(1− z2) +

1

z1 − 1

{
18(log(2)z21 + log(2) (E.11)

+ z21 + (z21 − 1) log(1− z1)− (z21 + 1) log(z1 + 1)− 2z1 + 1)δ(1− z2)
}

+
1

z2 − 1

{
18(log(2)z22 + log(2) + z22 + (z22 − 1) log(1− z2)

− (z22 + 1) log(z2 + 1)− 2z2 + 1)δ(1− z1)
}
− 36 D1(1− z2)δ(1− z1)

− 2π2(z1 + 1)δ(1− z2) + 4π 2D0(1− z1)δ(1− z2)

− 36D1(1− z1) δ(1− z2) + 3π2δ(1− z1)δ(1− z2)

− 48[D0 ⊗D0](z1)D0(1− z2) +
1

z2 − 1

{
24D0(1− z1) (log(2)z

2
2

+ log(2) + z22 + (z22 − 1) log(1− z2)− (z22 + 1) log (z2 + 1)− 2z2 + 1)
}

+ 18(z2 + 1)D0(1− z1) + 18(z1 + 1) D0(1− z2)

− 36D0(1− z1)D0(1− z2) + 24(z1 + 1) D1(1− z2)

− 48D0(1− z1)D1(1− z2) + 24[D0 ⊗D0](z1)(z2 + 1)

− 1

z2 − 1

{
12(z1 + 1)(log(2) z22 + log(2) + z22

+ (z22 − 1) log(1− z2)− (z22 + 1) log(z2 + 1)− 2 z2 + 1)
}

− 1

(z1 + 1)(z2 + 1)(z1 + z2)2
{
18(z41(2z

2
2 + 2z2 + 1)

+ 2z31(z
2
2 + 3 z2 + 1)

+ 2z21(z
4
2 + z32 + z22 + z2 + 1)

+ 2z1z
2
2(z

2
2 + 3 z2 + 1) + z22(z

2
2 + 2z2 + 2))

}
)

− δ(1− z2)[D0 ⊗ h2](z1) + δ(1− z2)[ D1 ⊗ h1](z1)

+ δ(1− z2)[h1 ⊗ h2](z1) + 2 D0(1− z2)[D0 ⊗ h1](z1)

− [(D0 ⊗ h3(z2, x1)](z1, z2))−D0(1− z2)[h1 ⊗ h1](z1)

+ [h1 ⊗ h3(z2, x1)](z1, z2)− h1(z2)[D0 ⊗ h1](z1),

[
Γ(1)
qq ⊗A0

qq,g

]0
1
=

1

48

(
− 24[D0 ⊗D1](z1)(z2 + 1)− 18 D1(1− z1)(z2 + 1) (E.12)

+ 48[D0 ⊗D1](z1) D0(1− z2)− 4π2D0(1− z1)D0(1− z2)

+ 36 D0(1− z2)D1(1− z1) + 48[D0 ⊗D0](z1)D1(1− z2)

− 18(z1 + 1)D1(1− z2) + 36 D0(1− z1)D1(1− z2)
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+ 24D0(1− z1)D2(1− z2)

− 3π2D0(1− z2)δ(1− z1) + 18 D2(1− z2)δ(1− z1)

+ 24[D0 ⊗D2](z1)δ(1− z2)− 8(z1 + 1)ζ3δ(1− z2)

+ 16ζ3D0(1− z1)δ(1− z2)− 3π2 D0(1− z1)δ(1− z2)

+ 18D2(1− z1)δ(1− z2) + 12 ζ3δ(1− z1)δ(1− z2)

− 4[D0 ⊗D0](z1)π
2δ(1− z2)

− 1

z1 − 1

{
18D0(1− z2) (log(2)z

2
1 + z21 − 2z1

+ log(2) + (z21 − 1) log (1− z1)− (z21 + 1) log(z1 + 1) + 1)
}

− 1

z2 − 1

{
18 D0(1− z1)(log(2)z

2
2 + z22 − 2z2 + log(2)

+ (z22 − 1) log (1− z2)− (z22 + 1) log(z2 + 1) + 1)
}

− 1

z2 − 1

{
24[D0 ⊗D0](z1)(log(2)z

2
2 + z22 − 2 z2 + log(2)

+ (z22 − 1) log(1− z2)− (z22 + 1) log (z2 + 1) + 1)
}

− 1

(z1 − 1)(z1 + 1)(z2 − 1)(z1 + z2)2(z2 + 1)

×
{
18(−2z32z

5
1 + log(2)z51 + log(2) z2z

5
1 + z2z

5
1 − 2z32 log(1− z2)z

5
1

+ z2 log(1− z2) z
5
1 + log(1− z2)z

5
1 − 2z32 log(z2 + 1)z51

+ 4z32 log (z1 + z2)z
5
1 + z51 − 4z42z

4
1 + 2 log(2)z22z

4
1 + 4z22 z

4
1 + log(2)z41

+ 3 log(2)z2z
4
1 + z2z

4
1 − 4z22 log (1− z2)z

4
1 + 3z2 log(1− z2)z

4
1

+ log(1− z2)z
4
1 − 6z22 log(z2 + 1)z41 + 12z22 log(z1 + z2)z

4
1 − z41

− 2z52z
3
1 + 2 log(2)z32z

3
1 + 6z32z

3
1 + 4 log(2)z22z

3
1 − 2 z22z

3
1

+ 2 log(2)z31 + 4 log(2)z2z
3
1 − 2z2z

3
1 − 2z52 log(1− z2)z

3
1

+ 2z32 log(1− z2)z
3
1 + 4z22 log(1− z2) z

3
1 − 4z2 log(1− z2)z

3
1

− 2z52 log(z2 + 1)z31 − z32 log(z2 + 1)z31 − z22 log(z2 + 1)z31
− 7z2 log(z2 + 1) z31 − log(z2 + 1)z31 + 4z52 log(z1 + z2)z

3
1

+ 12z2 log (z1 + z2)z
3
1 + 2 log(2)z42z

2
1 + 4z42z

2
1

+ 4 log(2)z32 z
2
1 − 2z32z

2
1 + 6 log(2)z22z

2
1 − 2z22z

2
1

+ 2 log(2) z21 + 6 log(2)z2z
2
1 − 4z42 log(1− z2)z

2
1 + 4z32 log (1− z2)z

2
1

+ 2z22 log(1− z2)z
2
1 − 2 log(1− z2)z

2
1 − 8 z42 log(z2 + 1)z21

− 3z32 log(z2 + 1)z21 − 3z22 log (z2 + 1)z21
− 3z2 log(z2 + 1)z21 − 3 log(z2 + 1)z21 + 12 z42 log(z1 + z2)z

2
1

+ 4 log(z1 + z2)z
2
1 + log(2)z52 z1 + z52z1 + 3 log(2)z42z1

+ z42z1 + 4 log(2)z32z1 − 2 z32z1 + 6 log(2)z22z1

+ 4 log(2)z2z1 + z52 log(1− z2) z1 + 3z42 log(1− z2)z1

− 4z32 log(1− z2)z1 − z52 log (z2 + 1)z1 − 3z42 log(z2 + 1)z1

− 9z32 log(z2 + 1)z1 − 3 z22 log(z2 + 1)z1 − 2z2 log(z2 + 1)z1
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+ 12z32 log (z1 + z2)z1 + log(2)z52 + z52 + log(2)z42 − z42
+ 2 log(2) z32 + 2 log(2)z22 − (z2 − 1)

×
(
(2z22 + 2z2 + 1)z51 + (4z2 + 1) z41 + 2z2(z

3
2 + z22 − 2)z31

+ (4z32 − 2z2 − 2)z21 − z32 (z2 + 4)z1 − z22(z
2
2 + 2z2 + 2)

)
log(1− z1)

− ((2z32 + z2 + 1) z51 + (8z22 + 3z2 + 1)z41
+ (2z52 + z32 + 3z22 + 9z2 + 1) z31 + (6z42 + z32 + 3z22 + 3z2 + 3)z21
+ z2(7z

2
2 + 3z2 + 2) z1 + z22(z2 + 3)) log(z1 + 1) + z52 log(1− z2)

+ z42 log (1− z2)− 2z22 log(1− z2)− z52 log(z2 + 1)

− z42 log (z2 + 1)− z32 log(z2 + 1)

− 3z22 log(z2 + 1) + 4z22 log (z1 + z2))

})

+
1

12
π2δ(1− z2)[D0 ⊗ h1](z1)− δ(1− z2)[D0 ⊗ h4](z1)

− 1

2
δ(1− z2)[D2 ⊗ h1](z1) + δ(1− z2) [h1 ⊗ h4](z1)

− 3

4
h4(z1)δ(1− z2)

− 3

4
h4(z2)δ(1− z1)− 2 D1(1− z2)[D0 ⊗ h1](z1)

+D0(1− z2)[D0 ⊗ h2](z1)

− [(D0 ⊗ h5(y1, z2)](z1, z2))− D0(1− z2)[D1 ⊗ h1](z1)

+D1(1− z2) [h1 ⊗ h1](z1)

−D0(1− z2)[h1 ⊗ h2](z1) +
1

12
π2h1(z1)D0(1− z2)

− 1

2
h1(z1)D2(1− z2)− h4(z2) D0(1− z1)

+ [h1 ⊗ h5(y1, z2)](z1, z2)− h2(z2)[D0 ⊗ h1](z1)

+ h1(z2)[D1 ⊗ h1](z1) + h1(z1)h4(z2).

[
Γ(1)
qg ⊗A0

qq,g

]−4
2

=0, (E.13)
[
Γ(1)
qg ⊗A0

qq,g

]−3
2

= − hqg
1 (z2)δ(1− z1), (E.14)

[
Γ(1)
qg ⊗A0

qq,g

]−2
2

= − 1

2
hqg
1 (z2)(−2D0(1− z1) + z1 + 1) (E.15)

+ δ(1− z1)([D0 ⊗ hqg
1 ](z2)− [hqg

1 ⊗ h1](z2)),
[
Γ(1)
qg ⊗A0

qq,g

]−1
2

=
1

12
hqg
1 (z2)(π

2δ(1− z1)− 12 D1(1− z1) (E.16)

+
1

z1 − 1

{
6(log(2)z21 + log(2) + z21

+ (z21 − 1) log (1− z1)− (z21 + 1) log(z1 + 1)− 2z1 + 1)
}
)
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+−δ(1− z1)[D1 ⊗ hqg
1 ](z2)− δ(1− z1)[h

qg
1 ⊗ h2](z2)

+ (h1(z1)−D0(1− z1)) [D0 ⊗ hqg
1 ](z2) +D0(1− z1) [h

qg
1 ⊗ h1](z2)

− ([hqg
1 ⊗ h5(x2, z1)](z1, z2)),

[
Γ(1)
qg ⊗A0

qq,g

]0
2
= − 1

12
π2δ(1− z1)[D0 ⊗ hqg

1 ](z2) +
1

2
δ(1− z1)[D2 ⊗ hqg

1 ](z2) (E.17)

+
1

3
ζ3h

qg
1 (z2) δ(1− z1)− δ(1− z1)[h

qg
1 ⊗ h4](z2)

+D1(1− z1)[D0 ⊗ hqg
1 ](z2) + (D0(1− z1)− h1(z1))[D1 ⊗ hqg

1 ](z2)

− 1

12
π2hqg

1 (z2) D0(1− z1) +
1

2
hqg
1 (z2) D2(1− z1)

−D1(1− z1)[h
qg
1 ⊗ h1](z2) +D0(1− z1)[h

qg
1 ⊗ h2](z2)

− [hqg
1 ⊗ h5]2(z1, z2) + h2(z1)[D0 ⊗ hqg

1 ](z2)− hqg
1 (z2)h4(z1),

[
Γ(1)
qq ⊗A0

gq,g

]−4
1

=0, (E.18)
[
Γ(1)
qq ⊗A0

gq,g

]−3
1

=0, (E.19)
[
Γ(1)
qq ⊗A0

gq,g

]−2
1

= − 1

4
hqg
1 (z2)(3δ(1− z1) + 4D0(1− z1)− 4h1(z1)), (E.20)

[
Γ(1)
qq ⊗A0

gq,g

]−1
1

= − [D0 ⊗ hqg
3 (x1, z2)](z1, z2) + [hqg

3 (y1, z2)⊗ h1](z1, z2) (E.21)

− hqg
1 (z2)[D0 ⊗ h1](z1) +

1

4
(hqg

2 (z2)(−3δ(1− z1)

− 4D0(1− z1) + 4h1(z1)) + hqg
1 (z2)(3D0(1− z1)

+ 4[D0 ⊗D0](z1))− 3hqg
3 (z1, z2)),

[
Γ(1)
qq ⊗A0

gq,g

]0
1
=

1

4
(−3hqg

5 (z2) δ(1− z1) + hqg
2 (z2)(3D0(1− z1) (E.22)

+ 4[D0 ⊗D0](z1))− (hqg
1 (z2)(3 D1(1− z1)

+ 4[D0 ⊗D1](z1)))− 4 hqg
5 (z2)D0(1− z1)− 3 hqg

5 (z1, z2)

+ 4h1(z1)h
qg
5 (z1, z2))− [D0 ⊗ hqg

5 (y1, z2)](z1, z2)

+ [h1 ⊗ hqg
5 ](y1, z2)(z1, z2)− hqg

2 (z2)[D0 ⊗ h1](z1)

+ hqg
1 (z2)[D1 ⊗ h1](z1).

[
Γ(1)
qq ⊗A0

gq,g

]−4
2

=0, (E.23)
[
Γ(1)
qq ⊗A0

gq,g

]−3
2

=0, (E.24)
[
Γ(1)
qq ⊗A0

gq,g

]−2
2

= − 1

4
δ(1− z1)(4[D0 ⊗ hqg

1 ](z2) + 3hqg
1 (z2)− 4[hqg

1 ⊗ h1](z2)), (E.25)
[
Γ(1)
qq ⊗A0

gq,g

]−1
2

= − δ(1− z1)[D0 ⊗ hqg
2 ](z2)− [D0 ⊗ hqg

3 (z1, x2)](z1, z2) (E.26)
+ δ(1− z1)[h

qg
2 ⊗ h1](z2) +D0(1− z1)[D0 ⊗ hqg

1 ](z2)
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−D0(1− z1)[h
qg
1 ⊗ h1](z2) + [hqg

3 (z1, y2)⊗ h1](z1, z2)

− 3

4
(hqg

2 (z2)δ(1− z1)− hqg
1 (z2)D0(1− z1) + hqg

3 (z1, z2)),
[
Γ(1)
qq ⊗A0

gq,g

]0
2
= − δ(1− z1)[D0 ⊗ hqg

4 ](z2) + δ(1− z1)[h1 ⊗ hqg
4 ](z2) (E.27)

− [D0 ⊗ hqg
5 ](z1, y2)](z1, z2)−D1(1− z1)[D0 ⊗ hqg

1 ](z2)

+D0(1− z1)[D0 ⊗ hqg
2 ](z2) +D1(1− z1)[h

qg
1 ⊗ h1](z2)

−D0(1− z1)[h
qg
2 ⊗ h1](z2) + [h1 ⊗ hqg

5 (z1, y2)](z1, z2)

− 3

4
(hqg

5 (z2) δ(1− z1) + hqg
1 (z2) D1(1− z1)

− hqg
2 (z2) D0(1− z1) + hqg

5 (z1, z2)).

[
Γ(1)
qg ⊗A0

gq,g

]−4
1

=0, (E.28)
[
Γ(1)
qg ⊗A0

gq,g

]−3
1

=0, (E.29)
[
Γ(1)
qg ⊗A0

gq,g

]−2
1

= δ(1− z1)(−([hqg
1 ⊗ hqg

1 ](z2))), (E.30)
[
Γ(1)
qg ⊗A0

gq,g

]−1
1

= − δ(1− z1)[h
qg
2 ⊗ hqg

1 ](z2) +D0(1− z1)[h
qg
1 ⊗ hqg

1 ](z2) (E.31)
− ([hqg

3 (z1, x2)⊗ hqg
1 ](z1, z2)),[

Γ(1)
qq ⊗A0

gq,g

]0
1
= − δ(1− z1)[h

qg
4 ⊗ hqg

1 ](z2)−D1(1− z1)[h
qg
1 ⊗ hqg

1 ](z2) (E.32)
+ D0(1− z1)[h

qg
2 ⊗ hqg

1 ](z2)− ([hqg
5 ⊗ hqg

1 ](z1, z2))

[
Γ(1)
qq ⊗ Γ(1)

qq

]−4
1

=0, (E.33)
[
Γ(1)
qq ⊗ Γ(1)

qq

]−3
1

=0, (E.34)
[
Γ(1)
qq ⊗ Γ(1)

qq

]−2
1

= δ(1− z2)([h1 ⊗ h1](z1)− 2[D0 ⊗ h1](z1)) (E.35)

+
1

16
δ(1− z2)(9δ(1− z1) + 24 D0(1− z1)

+ 16[D0 ⊗D0](z1)− 24h1(z1)),[
Γ(1)
qq ⊗ Γ(1)

qq

]−1
1

=0, (E.36)
[
Γ(1)
qq ⊗ Γ(1)

qq

]0
1
=0. (E.37)

[
Γ(1)
qq ⊗ Γ(1)

qq

]−4
2

=0, (E.38)
[
Γ(1)
qq ⊗ Γ(1)

qq

]−3
2

=0, (E.39)
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[
Γ(1)
qq ⊗ Γ(1)

qq

]−2
2

= δ(1− z1)([h1 ⊗ h1](z2)− 2 [D0 ⊗ h1](z2)) (E.40)

+
1

16
δ(1− z1)(9δ(1− z2) + 24 D0(1− z2)

+ 16[D0 ⊗D0](z2)− 24h1(z2)),[
Γ(1)
qq ⊗ Γ(1)

qq

]−1
2

=0, (E.41)
[
Γ(1)
qq ⊗ Γ(1)

qq

]0
2
=0. (E.42)

[
Γ(1)
qq ⊗ Γ(1)

qq

]−4
2

=0, (E.43)
[
Γ(1)
qq ⊗ Γ(1)

qq

]−3
2

=0, (E.44)
[
Γ(1)
qq ⊗ Γ(1)

qq

]−2
2

=
3

4
hqg
1 (z2)δ(1− z1) + δ(1− z1)([D0 ⊗ hqg

1 ](z2)− [hqg
1 ⊗ h1](z2)), (E.45)

[
Γ(1)
qq ⊗ Γ(1)

qq

]−1
2

=0, (E.46)
[
Γ(1)
qq ⊗ Γ(1)

qq

]0
2
=0. (E.47)

h1(x) =
1 + x

2
, (E.48)

hqg
1 (x) =x2 − x+

1

2
, (E.49)

h2(x) =− 1

2(x− 1)

(
log(2)x2 + log(2) + x2 (E.50)

+ (x2 − 1) log(1− x)− (x2 + 1) log (x+ 1)− 2x+ 1
)
,

hqg
2 (x) =

1

2
(−2 log(2)x2 + 2 log(2)x− log(2) + (−2x2 + 2x− 1) log(1− x)

(E.51)
+ (2x2 − 2x+ 1) log(x+ 1)− 1),

h3(x, y) =
1

2(x+ 1)(y + 1)(x+ y)2
(E.52)

×
{
x4(2y2 + 2y + 1) + 2x3(y2 + 3y + 1) + 2x2(y4 + y3 + y2 + y + 1)

+ 2 xy2(y2 + 3y + 1) + y2(y2 + 2y + 2)
}
,

hqg
3 (x, y) =

1

2(x+ 1)(x+ y)3
{
2x5y3 + 2x4y2(2y2 + y − 1) (E.53)

+ x3(4y5 + 4y4 − 2y3 − 4 y2 − 1)

+ x2y(4y4 + 8y3 − 8y2 − 4y − 1)

+ xy2(4y3 + 2y2 − 4y − 1) + y3 (2y2 − 2y + 1)
}
,
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h4(x) =
1

24(x− 1)
{6 log(2)2x2 + 6 log(2)2 + 12 log(2)x2 (E.54)

− 12(log(2) (x2 + 1) + (x− 1)2) log(x+ 1)

+ 12 log(1− x)(log(2)(x2 + 1)

− (x2 + 1) log(x+ 1) + (x− 1)2)− 24 log(2)x

+ 12 log(2)− π2x2 + 6(x2 − 1) log2(1− x)

+ 6(x2 + 1) log2(x+ 1) + π2},

hqg
4 (x) =

1

24
(12 log(2)2x2 − 12 log(2)2x+ 6 log(2)2 − 12(2 log(2)x2 (E.55)

− 2 log(2)x+ log(2) + 1) log(x+ 1)

+ 12 log(1− x)(2 log(2)x2 − 2 log(2)x+ log(2)

+ (−2x2 + 2x− 1) log(x+ 1) + 1) + 12 log(2)

− 2π2x2 + 6(2x2 − 2x+ 1) log2(1− x)

+ 6(2x2 − 2x+ 1) log2(x+ 1) + 2π2x− π2),

h5(x, y) =
1

2(x− 1)(x+ 1)(y − 1)(y + 1)(x+ y)2
(E.56)

×
{
− 2y3x5 + log(2)x5 + log(2)yx5 + yx5 − 2y3 log (1− y)x5

+ y log(1− y)x5 + log(1− y)x5

− 2y3 log(y + 1)x5 + 4 y3 log(x+ y)x5

+ x5 − 4y4x4 + 2 log(2)y2x4 + 4y2 x4 + log(2)x4 + 3 log(2)yx4

+ yx4 − 4y2 log(1− y)x4 + 3y log(1− y)x4

+ log(1− y)x4 − 6y2 log(y + 1)x4

+ 12y2 log (x+ y)x4 − x4 − 2y5x3 + 2 log(2)y3x3 + 6y3x3

+ 4 log(2)y2 x3 − 2y2x3 + 2 log(2)x3

+ 4 log(2)yx3 − 2yx3 − 2y5 log (1− y)x3

+ 2y3 log(1− y)x3 + 4y2 log(1− y)x3

− 4y log(1− y) x3 − 2y5 log(y + 1)x3

− y3 log(y + 1)x3 − y2 log(y + 1)x3 − 7y log(y + 1)x3

− log(y + 1)x3 + 4y5 log(x+ y)x3

+ 12y log (x+ y)x3 + 2 log(2)y4x2 + 4y4x2 + 4 log(2)y3x2

− 2y3x2 + 6 log(2)y2x2 − 2y2x2 + 2 log(2)x2

+ 6 log(2)yx2 − 4y4 log(1− y)x2 + 4y3 log(1− y)x2

+ 2y2 log(1− y)x2 − 2 log (1− y)x2 − 8y4 log(y + 1)x2

− 3y3 log(y + 1)x2 − 3y2 log (y + 1)x2

− 3y log(y + 1)x2 − 3 log(y + 1)x2

+ 12y4 log(x+ y) x2 + 4 log(x+ y)x2

+ log(2)y5x+ y5x+ 3 log(2)y4x

+ y4x+ 4 log(2)y3x− 2y3x+ 6 log(2)y2x+ 4 log(2)yx
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+ y5 log (1− y)x+ 3y4 log(1− y)x− 4y3 log(1− y)x

− y5 log(y + 1)x− 3 y4 log(y + 1)x− 9y3 log(y + 1)x

− 3y2 log(y + 1)x

− 2y log (y + 1)x+ 12y3 log(x+ y)x+ log(2)y5 + y5 + log(2)y4

− y4 + 2 log(2)y3 + 2 log(2)y2 − (y − 1)((2y2 + 2y + 1)x5

+ (4y + 1)x4 + 2y (y3 + y2 − 2)x3

+ (4y3 − 2y − 2)x2 − y3(y + 4)x

− y2(y2 + 2y + 2)) log (1− x)− ((2y3 + y + 1)x5

+ (8y2 + 3y + 1)x4 + (2y5 + y3 + 3y2 + 9y + 1) x3

+ (6y4 + y3 + 3y2 + 3y + 3)x2 + y(7y2 + 3y + 2)x

+ y2(y + 3)) log (x+ 1)

+ y5 log(1− y) + y4 log(1− y)− 2y2 log(1− y)

− y5 log (y + 1)− y4 log(y + 1)− y3 log(y + 1)

− 3y2 log(y + 1) + 4y2 log (x+ y)
}
,

hqg
5 (x, y) =

1

2(x2 − 1)(x+ y)3
{
− 2y3x6 − 2y3 log(1− y)x6 (E.57)

− 2y3 log(y + 1)x6 + 4y3 log(x+ y)x6 − 6y2x5

− 4y4 log(1− y)x5 + 2y2 log(1− y) x5 − 4y4 log(y + 1)x5

+ 2y2 log(y + 1)x5 + 8y4 log(x+ y) x5 − 4y2 log(x+ y)x5

+ 2 log(2)y2x4 + log(2)x4 − 2 log(2) yx4 − 6yx4 − 4y5 log(1− y)x4

+ 4y3 log(1− y)x4 + 2y2 log (1− y)x4

+ log(1− y)x4 − 4y5 log(y + 1)x4

+ 4y3 log(y + 1) x4 − 2y2 log(y + 1)x4

+ 4y log(y + 1)x4 − log(y + 1)x4

+ 8y5 log(x+ y)x4

− 8y3 log(x+ y)x4 − 4y log(x+ y)x4

+ x4 + 6 log(2)y3x3 − 4 log(2)y2x3 + log(2)x3 + log(2)yx3

+ 3y x3 − 4y4 log(1− y)x3 + 6y3 log(1− y)x3 + y log(1− y) x3

− log(1− y)x3 − 4y4 log(y + 1)x3

− 6y3 log(y + 1)x3 + 8y2 log(y + 1)x3

− y log(y + 1)x3 − 3 log(y + 1)x3

+ 8y4 log(x+ y) x3 − 8y2 log(x+ y)x3

+ 4 log(x+ y)x3 − x3 + 6 log(2)y4x2 − 3 log(2)y2x2

+ 3y2x2 + 3 log(2)yx2 + 3yx2

+ 6y4 log(1− y) x2 − 4y3 log(1− y)x2 − 3y2 log(1− y)x2

− y log(1− y)x2 − 6 y4 log(y + 1)x2

− 4y3 log(y + 1)x2 + 3y2 log(y + 1)x2

− 7y log(y + 1)x2 + 8y3 log(x+ y)x2
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+ 8y log(x+ y)x2 + 2 log(2) y5x+ 4 log(2)y4x

− 5 log(2)y3x+ y3x+ 3 log(2)y2x

+ 3y2 x− 2(y3x5 + y2(2y2 − 1)x4

+ y(2y4 − 2y2 − 1)x3 + (2y4 − 2y2 + 1) x2

+ 2(y3 + y)x+ 2y2) log(x+ 1)x

+ 2y5 log(1− y)x+ 4y4 log (1− y)x− 5y3 log(1− y)x

− y2 log(1− y)x− 2y5 log(y + 1)x− 4 y4 log(y + 1)x

+ 5y3 log(y + 1)x− 7y2 log(y + 1)x+ 8y2 log (x+ y)x

+ 2 log(2)y5 − 2 log(2)y4 + log(2)y3 + y3

+ (−2y3x6 + (2 y2 − 4y4)x5 + (−4y5 + 4y3 + 2y2 + 1)x4

+ (−4y4 + 6y3 + y − 1)x3

+ y(6 y3 − 4y2 − 3y − 1)x2 + y2(2y3 + 4y2 − 5y − 1)x

+ y3(2y2 − 2y + 1)) log(1− x) + 2y5 log(1− y)− 2y4 log(1− y)

+ y3 log(1− y)− 2y5 log(y + 1) + 2y4 log(y + 1)− y3 log(y + 1)
}
.
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Appendix F
Convolutions in integrated subtraction
terms

In this appendix we show that the convolution over za and zb between the integrated
antenna string J (1)

2 and the partonic cross section, as in (4.82), can be shifted to become
a convolution between the antenna string and the PDFs, i.e. we prove (4.84). This leads
to a more stable numerical evaluation of the occurring convolution integrals than (4.82),
where the integrated antenna string is convoluted with the partonic cross section. Starting
from (4.82) one can obtain (4.84) just as the result of a change of variables (use ui = ζi zi,
and subsequently renaming ui → ζi, i = a, b),
∫ 1

0

dζa
ζa

dζb
ζb

∫ 1

0

dza
za

dzb
zb
fa (ζa) fb (ζb)J (1)

2 (Q2, za, zb) dσ̂
LO(zaζaPa, zbζbPb)

(F.2)
=

∫ 1

0

dζa
ζa

dζb
ζb

∫ 1

ζa

dza
za

∫ 1

ζb

dzb
zb
fa

(
ζa
za

)
fb

(
ζb
zb

)
J (1)

2 (Q̃2, za, zb) dσ̂
LO(ζaPa, ζbPb), (F.1)

where Q̃2 = 2 ζaζb PaPb and Q2 = zazb Q̃
2. However, when applying a change of variables

to an integrand that contains “+”-distributions care has to be taken. The following result
shows that (F.1) is still valid even though the integrated antenna string might contain
“+”-distributions,
∫ 1

0

dζa
ζa

∫ 1

0

dza
za
fa (ζa) (Q

2)−ϵDn(1− za)f(zaζa)

=

∫ 1

0

dζa
ζa

∫ 1

0

dzafa (ζa)
logn(1− za)

1− za

(
(Q2)−ϵf(zaζa)

za
− (ζaQ

2
b)
−ϵf(ζa)

)

=

∫ 1

0

dza
logn(1− za)

1− za

(
1

za

∫ 1

0

dζa
ζa
fa (ζa) (Q

2)−ϵf(zaζa)

︸ ︷︷ ︸
use ua=ζaza

−
∫ 1

0

dζa
ζa
fa (ζa) (ζaQ

2
b)
−ϵf(ζa)

)

=

∫ 1

0

dza
logn(1− za)

1− za

(
1

za

∫ za

0

dua
ua

fa

(
ua
za

)
(uaQ

2
b)
−ϵf(ua)−

∫ 1

0

dζa
ζa
fa (ζa) (ζaQ

2
b)
−ϵf(ζa)

)

=

∫ 1

0

dza
za

Dn(1− za)

∫ za

0

dζa
ζa︸ ︷︷ ︸

=
∫ 1
0

dζa
ζa

θ(za−ζa)

fa

(
ζa
za

)
(ζaQ

2
b)
−ϵf(ζa)
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=

∫ 1

0

dza
za

dζa
ζa

Dn(1− za)θ(za − ζa)fa

(
ζa
za

)
(ζaQ

2
b)
−ϵf(ζa)

=

∫ 1

0

dζa
ζa

∫ 1

ζa

dza
za

Dn(1− za)fa

(
ζa
za

)
(ζaQ

2
b)
−ϵf(ζa), (F.2)

where we use Q2
b =

Q2

zaζa
and f(x) is some function (e.g. the partonic cross section). This

rather lengthy calculation can now be extended (getting even a bit more lengthy) to the
case including also the integration over zb and ζb, which then completes the proof of (F.1)
for terms in the antenna string J (1)

2 which are proportional to “+”-distributions.

Integrated antenna strings can contain regular functions, δ-distributions, and “+”-distribu-
tions of za, zb. The δ- and “+”-distributions are defined on integrals over the unit interval
so that we have to understand how to evaluate these on subsets (u, 1) of the interval (0, 1)
in order to evaluate (F.1) numerically. For regular functions the (numerical) evaluation
of the integral is trivial, where for δ- and “+”-distributions we make use of

∫ 1

u

dx δ(1− x)f(x) =

∫ 1

0

dx δ(1− x)f(x)−
∫ u

0

dx δ(1− x)f(x)

︸ ︷︷ ︸
=0, since u<1

=

∫ 1

0

dx δ(1− x)f(x), (F.3)
∫ 1

u

dx g(x)

[
f(x)

1− x

]

+

=

∫ 1

0

dx g(x)

[
f(x)

1− x

]

+

−
∫ u

0

dx g(x)

[
f(x)

1− x

]

+

=

∫ 1

0

dx g(x)

[
f(x)

1− x

]

+

−
∫ u

0

dx g(x)
f(x)

1− x
, (F.4)

where one needs
∫ u

0

dx g(x)

[
f(x)

1− x

]

+

=

∫ 1

0

dx θ(x)θ(u− x)g(x)

[
f(x)

1− x

]

+

=

∫ 1

0

dx f(x)
θ(x)θ(u− x)g(x)− θ(1)

=0, since u<1︷ ︸︸ ︷
θ(u− 1) g(1)

1− x

=

∫ u

0

dx
f(x)g(x)

1− x
(F.5)

in the last step. Using (F.3) and (F.4) we can rewrite (4.84) to obtain a form that is
suitable for numerical evaluation
∫ 1

0

dζa
ζa

dζb
ζb

∫ 1

ζa

dza
za

∫ 1

ζb

dzb
zb
fa

(
ζa
za

)
fb

(
ζb
zb

)
J (1)

2 (Q̃2, za, zb) dσ̂
LO(ζaPa, ζbPb)

=

∫ 1

0

dζa
ζa

dζb
ζb

[ ∫ 1

0

dza
za

∫ 1

0

dzb
zb
fa

(
ζa
za

)
fb

(
ζb
zb

)
J (1)

2 (Q̃2, za, zb) dσ̂
LO(ζaPa, ζbPb)

−
∫ ζa

0

dza
za

∫ ζb

0

dzb
zb
fa

(
ζa
za

)
fb

(
ζb
zb

)

︸ ︷︷ ︸
=0

J̃ (1)
2 (Q̃2, za, zb) dσ̂

LO(ζaPa, ζbPb)

]
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=

∫ 1

0

dζa
ζa

dζb
ζb

dza
za

dzb
zb
fa

(
ζa
za

)
fb

(
ζb
zb

)
1ζa/za<11ζb/zb<1J (1)

2 (Q̃2, za, zb) dσ̂
LO(ζaPa, ζbPb),

(F.6)

where the contribution in the third line vanishes because ζi/zi > 1, i = a, b, and therefore
fi(ζi/zi) = 0, as the probability of a parton to have a larger momentum than its mother
hadron is zero. The functions 1ζa/za<11ζb/zb<1 in the last line ensure that fa(ζa/za) =
fb(ζb/zb) = 0 when ζi/zi > 1, i = a, b, to prevent the evaluation of the integrand in
regions where the PDFs are undefined. Even though J̃ (1)

2 does not contribute in the final
result, for completeness we mention that it is given by

J̃ (1)
2 (Q̃2, za, zb) = J (1)

2 (Q̃2, za, zb)
∣∣∣
δ(1−zi)→0, Dn(1−zi)→ logn(1−zi)

1−zi

. (F.7)
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Appendix G
Collins–Soper frame and the forward–
backward asymmetry

In the partonic centre-of-mass (CM) frame the angle θ̂ between the quark and the lepton
ℓ− can be used to define the partonic forward and backward direction, the forward and
backward cross section

σ̂F (Mℓℓ) =

∫ 1

0

d cos θ̂
dσ

d cos θ̂
σ̂B(Mℓℓ) =

∫ 0

−1
d cos θ̂

dσ
d cos θ̂

, (G.1)

and the corresponding partonic forward–backward asymmetry ÂFB in analogy to (6.86).
If we consider DY-like Z-boson production at LO the partonic CM frame is also the RF
of the Z boson such that the angle θ̂ is actually measured in the RF of the Z boson. At
a hadron collider we do not have information about the exact partonic initial state and
therefore can not determine the angle of a lepton with respect to a incoming quark in the
partonic CM frame.

To tackle the problem of defining an angle θ∗—our definition below follows the proposal
by Collins and Soper and we define θ∗ as the so-called Collins–Soper angle—suitable
to define a forward–backward asymmetry at hadron colliders, it is desirable to find a
reference frame that has as many similarities as possible to the partonic CM where we
defined θ̂, i.e. we search for a rest frame of the Z boson where at LO the definition of θ̂
and the angle θ∗ agree. The commonly used choice is the so-called Collins–Soper (CS)
frame, and the Collins–Soper angle as given in (6.88) is actually the polar angle in exactly
this frame. The Collins–Soper frame is a rest frame of the final-state lepton system (or
equivalently the intermediate Z boson) with the property that the z-axis is chosen so
that it bisects the angle between the incoming partonic momentum pCS

a and the negative
of the second incoming momentum −pCS

b . Without real radiation (i.e. pT,ℓℓ = 0) the
leptonic rest-frame is also the partonic rest-frame and therefore the definition of θ̂ and
θ∗ agree, such that the CS frame fulfills the requirements that we formulated above in
this situation. For an illustration of the CS frame and the CS angle θ∗ see Fig. G.1.
The remaining complication at hadron colliders is the missing information whether pa is
actually the momentum associated to a initial-state quark. Considering the shape of the
PDFs, at large x it is more likely that a quark obtains a higher momentum fraction of the
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p
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z
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^
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Figure G.1: Schematic illustration of the Collins–Soper frame and the Collins–Soper angle θ∗ =
θCS. The picture has been taken from [164].

parent proton than the anti-quark. Therefore, at the LHC one extracts the direction of
the inital-state quark from the boost direction of the ℓ+ℓ− pair.

We now proceed with the construction of the Lorentz transformation from the LAB frame
to the CS frame [47]. We start with a rotation which transforms the three-momentum
of the Z boson qLAB

Z = pLAB
ℓ− + pLAB

ℓ+ such that it has only components in the x–z plane,
i.e. we rotate around the z axis with

Λµ
LAB→long,ν =




1 0 0 0

0 cosϕZ sinϕZ 0

0 − sinϕZ cosϕZ 0

0 0 0 1


 . (G.2)

To calculate the angle ϕZ we need the decomposition into longitudinal and transverse
components

qµZ = qµL + qµT =




q0Z
0

0

q3Z


+




0

q1Z
q2Z
0


 , QT =

√
qµT qT,µ, (G.3)

and obtain

ϕZ =

{
arccos

qT,1

QT
, QT > 0 and qT,2 ≥ 0

− arccos
qT,1

QT
, QT > 0 and qT,2 < 0.

(G.4)

After the application of the rotation ΛLAB→long to qLAB
Z we obtain a four-vector that is an

element of the t-x-z space in the “longitudinal” frame. We now want to construct a boost
Λlong→RF from the longitudinal frame to a rest frame of the Z boson, which we obtain
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from a general Lorentz boost in direction v = qlong
Z /qlong

Z,0 by

Λµ
long→RF,ν =

(
γ −vγ

−vγ 13 +
v·vT

|v|2 (γ − 1)

)

=
1

QZ




qZ,0 −QT 0 −qZ,3
−QT QZ + QT

qZ,0+QZ
0

QTqZ,3

qZ,0+QZ

0 0 QZ 0

−qZ,3 QTqZ,3

qZ,0+QZ
0 QZ + QT

qZ,0+QZ




(G.5)

with QZ =
√
q2Z , γ = qlong

Z,0 /QZ , and all entries in the last matrix have to be understood in
the longitudinal frame. The last step is to rotate from the RF of the Z boson to the CS
frame, where the z-axis bisects the momenta of the incoming partons pCS

a and −pCS
b . After

the application of the first rotation and ΛLAB→long and the subsequent boost Λlong→RF to
a RF of the Z boson we obtain momenta of the form

qRF,µ
Z =




qRF,0
Z

0

0

0


 , pRF,µ

ℓ± =




pRF,0
ℓ±

pRF,1
ℓ±

0

pRF,3
ℓ±


 , (G.6)

with no non-vanishing components in the y-direction in the RF. Note that pRF
a + pRF

b

coincides with qRF
Z without IS radiation. It is therefore reasonable to rotate around the

y-axis by an angle α to get to the CS frame,

Λµ
RF→CS,ν =




1 0 0 0

0 cosα 0 sinα

0 0 1 0

0 − sinα 0 cosα


 , (G.7)

where we have to choose α such that the z-axis bisects the momenta pCS
a and pCS

b . This
leads to the condition

pCS
a eCS

3

|pCS
a | = cos

(
∠(pCS

a , eCS
3 )
) !
= cos

(
∠(pCS

b , eCS
3 )
)
=

−pCS
b eCS

3

|pCS
b | . (G.8)

By writing the last equation in terms of momenta in the RF of the Z boson constructed
above

Λ3
RF→CS,µ p

RF,µ
a

|pRF
a |

!
=

−Λ3
RF→CS,µ p

RF,µ
b

|pRF
b | (G.9)

we can obtain a quadratic equation in x = cosα

x · ca,1 −
√
1− x2 · ca,2 !

= −x · cb,1 +
√
1− x2 · cb,2 (G.10)
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with the coefficients (i = a, b)

ci,1 =
pRF,3
i

|pRF
i | , (G.11)

ci,2 =
pRF,1
i

|pRF
i | .

(G.12)

By solving (G.10) we can determine the required rotation angle α. The complete trans-
formation from the LAB frame to the CS frame is now given by

Λµ
LAB→CS,ν = Λµ

RF→CS,σ Λ
σ
long→RF,η Λ

η
LAB→long,ν . (G.13)

As the CS frame is a special RF of the Z boson, the lepton momenta in the FS (without
real radiation) have to be back to back and both get an equal share of the energy of the
intermediate Z boson. Considering that the momenta in (G.6) are only rotated around
the y-axis to get to the CS frame we have

pCS,µ
ℓ± =

Mℓℓ

2




1

± sin θ∗

0

± cos θ∗


 . (G.14)

Therefore, the CS angle θ∗ can be determined from the FS lepton momenta in the CS
frame by

cos θ∗ =
pCS,3
ℓ−

Mℓℓ/2
. (G.15)

The last equation can be used to numerically check the validity of (6.88).
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German Abstract

Der Drell-Yan-Prozess ist einer der wichtigsten Streuprozesse am LHC und erlaubt unter
anderem die genaue Vermessung der Masse und Zerfallsbreite desW -Bosons und die Suche
nach neuen Teilchen, wie z.B. Z ′ Bosonen, in der Region großer (transversaler) invarianter
Massen der Leptonen im Endzustand. Um die Präzisionsmessungen am LHC sinnvoll mit
Theorievorhersagen vergleichen zu können, müssen die theoretischen und experimentellen
Unsicherheiten von einer ähnlichen Größenordnung sein. Auf theoretischer Seite waren
die bis vor wenigen Jahren nicht vorhandenen Vorhersagen für Korrekturen der Ordnung
O(αsα) die größte Quelle für theoretische Unsicherheiten in Vorhersagen von Verteilungen
für Drell-Yan-artig produzierte Leptonen.

In [55,56] wurden mit Hilfe der so genannten Polapproximation (PA), bei der die Amplitu-
den der Drell-Yan-Prozesse um die Resonanz der W/Z Bosonen entwickelt und die nicht
resonanten Terme vernachlässigt werden, die dominanten Beiträge in der Resonanzre-
gion berechnet. In Rahmen dieser Arbeit wurden die Ergebnisse in [55, 56] durch die
bisher noch fehlenden “initial–initial” Korrekturen der Ordnung O(αsα) zur Drell-Yan-
artigen Z-Produktion komplettiert. Die Klasse der “initial–initial” Korrekturen enthalten
dabei sowohl eine QCD als auch eine elektroschwache (EW) Korrektur in der Produktion
des W/Z-Bosons. Die Korrekturen lassen sich weiter in eichinvariante QCD × schwache
O(αsαw) und QCD× photonische O(Q2

qαsαphot) Korrekturen aufspalten, wobei sich Kor-
rekturen vom Typ QCD × photonisch aufgrund ihrer Proportionalität zur Ladung der
Quarks im Eingangszustand der Drell-Yan-Prozesse ohne PA berechnen lassen. Das
Auftreten von Infrarotdivergenzen erfordert die Anwendung einer geeigneten Subtraktions-
methode, wobei im Rahmen dieser Arbeit die Antennen-Subtraktionsmethode verwendet
wurde.
Neben der Berechnung von Vorhersagen für “initial–initial” O(αsα) Korrekturen zu inva-
rianten Masse- und Transversalimpuls-Verteilungen der Leptonen im Endzustand wurden
Korrekturen derselben Ordnung zur numerisch herausfordernden Vorwärts-Rückwärts-
Asymmetrie berechnet. Während die Korrekturen zu invarianten Masse- und Transversal-
impuls-Verteilungen der Leptonen im Endzustand phänomenologisch vernachlässigbar
sind, erreichen die Korrekturen zur Vorwärts-Rückwärts-Asymmetrie für kleine invari-
ante Massen des Z-Bosons eine Größe von etwa 1% und sind damit insbesondere für
den kommenden HL-LHC phänomenologisch relevant. Außerdem wurde der Effekt von
Photonrekombination auf die Vorhersagen für die Korrekturen zur Vorwärts-Rückwärts-
Asymmetrie untersucht und ein vernachlässigbarer Unterschied zu den Resultaten ohne
Rekombination festgestellt.
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Da sich Drell-Yan-Prozesse auch zur Suche neuer Teilchen eignen und diese insbeson-
dere in der Region weit oberhalb der Resonanzen der W/Z Boson zu erwarten sind, ist
es notwendig Korrekturen der Ordnung O(αsα) auch jenseits der Resonanzregion und
damit auch ohne die Anwendung einer PA zu berechnen. Als Schritt in Richtung einer
vollen O(αsα) Rechnung ohne Anwendung einer Approximation wurden im ersten Teil
der Arbeit O(Nfαsα) Korrekturen zum Drell-Yan-Prozess berechnet. Diese Klasse eich-
invarianter O(αsα) Zwei-Schleifen-Korrekturen zeichnet sich durch ihre Proportionalität
zur Zahl Nf der Fermionfamilien im Standardmodell der Teilchenphysik aus. Die zu den
Korrekturen der Ordnung O(Nfαsα) beitragenden Diagramme erhalten ihre Proportiona-
lität zu Nf durch das Vorhandensein von geschlossenen Fermion-Schleifen. Diese Ein-
schränkung reduziert die Komplexität der zu berücksichtigenden Diagramme und erlaubt
beispielsweise die Behandlung der auftretenden Infrarotdivergenzen mit Ein-Schleifen-
Subtraktions-Methoden, obwohl O(Nfαsα) Korrekturen Zwei-Schleifen-Diagramme ent-
halten. Außerdem wurde das in Ein-Schleifen-Rechnungen zur eichinvarianten Behand-
lung von W/Z-Resonanzen genutzte “Complex-Mass-scheme” zur Ordnung O(αsα) ver-
allgemeinert.
Die O(Nfαsα) Korrekturen zum integrierten totalen Wirkungsquerschnitt oder zu Rapid-
itätsverteilungen der Leptonen im Endzustand stellen sich als phänomenologisch vernach-
lässigbar heraus, da diese Observablen durch resonante W/Z-Bosonen dominiert werden
und O(Nfαsα) Korrekturen in dieser Region vernachlässigbar klein sind. Die Korrekturen
der Ordnung O(Nfαsα) zu (transversalen) invarianten Masse- und Transversalimpuls-
Verteilungen der Leptonen im Endzustand hingegen wachsen im Bereich großer (transver-
saler) invarianter Massen bzw. transversaler Impulse auf bis zu 2% respektive 15%.
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