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ABSTRACT

The study of neutrino oscillation physics is a major research goal of the worldwide particle

physics program over the upcoming decade. Many new experiments are being built to study

the properties of neutrinos and to answer questions about the phenomenon of neutrino

oscillation. These experiments need precise theoretical cross sections in order to access

fundamental neutrino properties. Neutrino oscillation experiments often use large atomic

nuclei as scattering targets, which are challenging for theorists to model. Nuclear models

rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering

experiments with large nuclear targets that rely on the very same nuclear models. The work

in this dissertation is the first step of a new initiative to isolate and compute elementary

amplitudes with theoretical calculations to support the neutrino oscillation experimental

program.

Here, the effort focuses on computing the axial form factor, which is the largest contrib-

utor of systematic error in the primary signal measurement process for neutrino oscillation

studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data

on a deuterium target are reanalyzed with a model-independent parametrization of the axial

form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncer-

tainties on the free-nucleon cross section are found to be underestimated by about an order

of magnitude compared to the ubiquitous dipole model parametrization.

The second approach uses lattice QCD to perform a first-principles computation of the

nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed

for both valence and sea quarks. The results presented in this dissertation are computed at

physical pion mass for one lattice spacing. This work presents a computation of the axial

form factor at zero momentum transfer, and forms the basis for a computation of the axial

form factor momentum dependence with an extrapolation to the continuum limit and a full

systematic error budget.
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CHAPTER 1

INTRODUCTION

The nonzero mass of the neutrinos, a consequence of neutrino flavor oscillation, is one of

the few instances of physics beyond the Standard Model. This discovery has sparked a

worldwide interest in neutrino oscillation physics and the creation of many new neutrino

oscillation experiments. Several accelerator-based neutrino oscillation experiments are being

built or are ongoing in Europe, Japan, and the US. These experiments seek to make precision

measurements of neutrino oscillation parameters and to definitively determine the few re-

maining unknowns, including the neutrino mass ordering and the possibility of charge-parity

violation in the lepton sector. To back up the experimental precision goals, a corresponding

improvement in the theoretical precision is needed.

One of the difficulties facing precision measurements in neutrino oscillation experiments

is that the target consists of large atomic nuclei, which must be modeled before fundamental

physics can be extracted. Currently, nuclear models are subject to a certain redundancy

from their construction. Nuclear models are built from free-nucleon amplitude inputs. The

free nucleon amplitudes are often determined from data taken on large nuclear targets, which

in turn have been extracted assuming some form for the nuclear model. Free-nucleon targets

in neutrino beams, on the other hand, often have too few statistics to constrain the nucleon

amplitudes. This circularity is difficult to break, since neutrino interaction experiments have

traditionally been the only way to access certain hadronic matrix elements.

Lattice QCD is a tool that has been successful in computing the baryon spectrum and

a wide range of matrix elements in the mesonic sector. Lattice QCD computations use

first principles to determine the physical quantities from a numerical solution to the path

integral. Precision calculations of some hadron masses and hadronic matrix elements are

reaching the sub-percent level. Computations for baryonic physics are now at the point that

mesonic physics was a decade ago. This means that lattice QCD is a tool that may be used

to determine physics involving free nucleons, which is difficult to determine experimentally.
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The goal of this thesis is driven by these considerations. The work presented here seeks to

determine the nucleon axial form factor from theoretically clean data. The first approach is

to fit to the cleanest data from experiment available, deuterium bubble chamber data, using

a new model-independent parametrization. This parametrization helps to understand the

true systematic errors on the free-nucleon amplitudes used in nuclear models. The second

approach is to use lattice QCD to perform a first-principles calculation of the axial form

factor at zero momentum transfer. This calculation is free from nuclear corrections and can

be used as an input to nuclear models used to constrain oscillation data. Later extensions

of this work will seek to determine the full momentum dependence of the axial form factor

from first principles.

The chapters of this dissertation are organized as follows. The remainder of the first chap-

ter is an introduction to both neutrino physics and to lattice QCD. This chapter is meant

to give the background for the work presented in the rest of this dissertation. Chapter 2

deals with fits to deuterium bubble chamber data using the z expansion framework, a model-

independent parametrization meant to replace the dipole form factor model parametrization.

Chapter 3 describes the group theory necessary to explain the computational results pre-

sented in the following chapters. Chapter 4 details the computation of the mass spectrum of

the baryon sector using staggered lattice QCD. A blinded computation of the axial charge,

the value of the axial form factor at zero momentum transfer, is presented in Chapter 5.

Chapter 6 contains remarks about the results of this thesis and discusses how work com-

pleted here will be extended in the future.

1.1 Neutrino Oscillation

1.1.1 Physics of Neutrino Oscillations

The neutrino flavor eigenstates are defined according to the leptons that they produce when

interacting with matter. For quasielastic scattering, a simple neutrino interaction with a

2



nucleon, the reaction proceeds according to its flavor eigenstate,

ν` + n→ `− + p , (1.1)

where ` represents by any of the three neutrino flavors, e, µ, or τ . Similarly for antineutrino

beams, the characteristic process is ν̄`p→ `+n.

The flavor eigenstates are distinct from the mass eigenstates, which are the states that

propagate through spacetime via Hamiltonian time evolution. The mass eigenstates are a

linear combination of the flavor eigenstates described by the change of basis

|να〉 =
∑
i

U∗αi |νi〉 , (1.2)

where α is a flavor index, i is a mass eigenstate index, and U is known as the PMNS

(Pontecorvo-Maki-Nakagawa-Sakata) matrix. It is usually parametrized as [1]

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
+iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
+iδ c12c23 − s12s23s13e

+iδ s23c13

s12s23 − c12c23s13e
+iδ −c12s23 − s12c23s13e

+iδ c23c13

 (1.3)

with cij ≡ cos θij , sij ≡ sin θij , and δ ≡ δCP a phase that violates charge-parity (CP )

symmetry. The θij are the neutrino mixing angles that govern the amplitude for the change

from the produced flavor to the detected one, a phenomenon known as neutrino oscillation.

Computing the oscillation probability is an exercise in quantum mechanics. The propa-

3



gation of neutrinos proceeds as a plane wave solution

|νi(~x, t)〉 = e−ip·x |νi〉 = e−iEit+i~p·~x |νi〉 = e−iEite+i|p|L |νi〉 , (1.4)

where ~ = c = 1. In the limit where Ei � mi, the momentum is approximately

p = Ei

√
1−

m2
i

E2
i

≈ E − 1

2

m2
i

E
, (1.5)

which gives

|νi(t)〉 ≈ e−iE(t−L)e−im
2
iL/2E |νi〉 . (1.6)

In the limit where E � mi, one has t ≈ L, so the first exponential is unity and only the

second is relevant. The oscillation probability is then the square of the matrix element

connecting the two flavor eigenstates,

Mαβ(L/E) =
∣∣ 〈νβ(t)|να(0)〉

∣∣2 =

∣∣∣∣∑
i

UβiU
∗
αie
−im2

iL/2E
∣∣∣∣2

=
∑
i

UαiU
∗
αiUβiU

∗
βi +

∑
i>j

UβiU
∗
αiU
∗
βjUαje

−i(m2
i−m

2
j )L/2E

+
∑
i>j

U∗βiUαiUβjU
∗
αje

+i(m2
i−m

2
j )L/2E . (1.7)

Using the relation (from the form of the PMNS matrix, Eq. (1.3)),

∑
i

UαiU
∗
αiUβiU

∗
βi = δαβ −

∑
i>j

(
UβiU

∗
αiU
∗
βjUαj + U∗βiUαiUβjU

∗
αj

)
(1.8)

4



the matrix element may be rewritten

Mαβ(L/E) = δαβ − 4
∑
i>j

Re
[
UβiU

∗
αiU
∗
βjUαj

]
sin2

(
∆m2

ijL/4E
)

+ 2
∑
i>j

Im
[
UβiU

∗
αiU
∗
βjUαj

]
sin
(

∆m2
ijL/2E

)
, (1.9)

where ∆m2
ij ≡ m2

i −m
2
j .

To understand neutrino oscillations in detail, including the prospect of CP violation, it

is necessary to know the parameters of the PMNS matrix as precisely as possible. Experi-

ments measure the mass-squared splittings via the E dependence in the sine functions and

the PMNS matrix elements, or equivalently, the mixing angles via the size of the oscillatory

behavior. These parameters are determined by measuring neutrino survival, disappearance,

or appearance probabilities and comparing them to an assumed set of PMNS matrix param-

eter values. The primary channels that are used to study neutrino oscillations are through

electron antineutrinos (which are produced as a byproduct of nuclear reactors) or muon

neutrinos (which are created in accelerator experiments through a decay chain). These in-

teraction channels give experimental constraints on only a few elements of the PMNS matrix,

although the goal is to eventually test unitarity of the PMNS matrix by constraining all of

the matrix entries. A violation of unitarity would indicate the existence of some unknown

particle that mixed with the neutrinos to produce a larger unitary matrix of which the 3× 3

PMNS matrix is a non-unitary submatrix.

1.1.2 Neutrino Flux and Quasi-Elastic Cross Section

For accelerator neutrino oscillation experiments, measuring oscillation parameters requires

knowledge of the neutrino beam flux. The beam creation process makes this determination

quite difficult to do because of how the beam is constructed [2]. In these experiments, an

initial beam of protons is launched at a target, which emits a stream of particles including

5



pions. These pions are focused by a magnetic horn, which also acts as a filter that selects

particles based on their charge. The focused pions are sent down a decay pipe, where the

pions decay into muons and muon neutrinos. The muons are stopped by the rock between

the decay pipe and the detector, so the non-neutrino particles are filtered out before reaching

the detector.

Other particle decays may generate neutrinos, making it impossible to discern which

particle decays generated each neutrino. Contamination from antineutrinos or from other

flavors of neutrinos from different decay channels are a concern and, if not properly handled,

may fake a neutrino oscillation signal. Furthermore, the energy spectrum of the neutrino

beam is not well controlled as, for example, an electron beam. This is an effect of the decay

chain employed to create the beam. These factors force neutrino experiments to measure the

flux at both a near and far detector. The near detector serves to measure the unoscillated

neutrino energy spectrum, which is then compared to the oscillated neutrino spectrum at

the far detector.

Measurements of the flux at the near and far detector are not simple. The typical strategy

is to measure the flux on some large nuclear target. The nuclear model used to compute

the interaction topology can change the prediction for the interaction cross section, leading

to estimates of the flux that are substantially different. One of the theoretically cleanest

interaction channels that is used for measuring the flux is quasielastic scattering, where an

incident neutrino is converted to a charged lepton by interaction with a single nucleon. In the

absence of re-interactions of the nucleon as it leaves the nucleus and assuming the hit nucleon

was at rest initially, the energy of the neutrino is entirely determined by the momentum of

the outgoing charged lepton via

E
QE
ν =

2 (Mn − EB)Eµ −
(

(EB −Mn)2 −M2
p +m2

µ

)
2
(
Mn − EB − Eµ + |pµ| cos θµ

) , (1.10)

where EB is the binding energy of the nucleon within the nucleus, Mn and Mp are the
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A

νµ

A′

p

µ−

Figure 1.1: Feynman diagram for quasielastic scattering. The neutrino interacts with a
nuclear target by imparting momentum to a single nucleon, leaving the rest of the nucleus
intact. During the process, the neutrino is converted to a charged lepton via emission of a
W boson.

neutron and proton mass, and Eµ, pµ, and θµ are the energy, momentum, and angle of the

outgoing charged lepton, respectively. Other event topologies can fake a signal by emitting

some other particle in the initial neutrino interaction that is reabsorbed by the nucleus before

it can escape. These events will also look like quasielastic scattering events, yet they will

have the wrong kinematical distribution for the outgoing lepton.

For neutrino energy Eν and a spacelike four-momentum transfer Q2, the quasielastic

cross section for a free-nucleon target is [3]

dσCCQE

dQ2
∝ 1

E2
ν

A(Q2)∓

(
s− u
M2
N

)
B(Q2) +

(
s− u
M2
N

)2

C(Q2)

 , (1.11)

where MN is the nucleon mass and

s− u = 4MNEν −Q2 −m2
` . (1.12)
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Defining η ≡ Q2

4M2
N

, the factors A, B, and C are

A(Q2) =
m2
` +Q2

M2
N

×[
(1 + η)F 2

A − (1− η)(F 2
1 + ηF 2

2 ) + 4ηF1F2

−
m2
`

4M2
N

(
(F1 + F2)2 + (FA + 2FP )2 − 4(1 + η)F 2

P

)]
, (1.13)

B(Q2) = 4ηFA (F1 + F2) , (1.14)

and

C(Q2) =
1

4

(
F 2
A + F 2

1 + ηF 2
2

)
. (1.15)

The quasielastic cross section depends on four form factors: the vector form factors F1 and

F2, the axial form factor FA, and the pseudoscalar form factor FP . The vector form factors

are known from high-statistics, mono-energetic scattering data of electrons on a free nucleon

target, and are precisely determined compared to the other form factors. The effects of the

pseudoscalar form factor are suppressed by the lepton mass and are related to the axial form

factor through the axial Ward identity,

∂µAaµ(x) = 2m̂P a(x) (1.16)

where m̂ is the bare quark mass. For these reasons, the axial form factor is the most

important systematic contribution to the free-nucleon cross section. This will be discussed

in detail in Chapter 2.

1.1.3 Progress and Goals in Neutrino Oscillation

In recent years, the first measurements of neutrino oscillation parameters were completed.

The mass-squared splittings and mixing angles have been determined by oscillation experi-
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ments measuring a variety of channels, including both neutrino appearance and disappear-

ance probabilities. The values of the mass-squared differences and mixing angles were mea-

sured by experiments to determine their values. To date, the values of ∆m2
21, ∆m2

32, and all

of the mixing angles have been measured by experiments. The last mixing angle, θ13, was

only recently established to be nonzero at the Daya Bay experiment in Ref. [4]. This result

ensures that a nonzero CP violation in the lepton sector is possible if δCP is nonzero. There

is still more to do, with the CP violation and neutrino mass ordering still unknown.

In the following years, neutrino experiments will transition from discovery-based mea-

surements of oscillation parameters to high-precision measurements of oscillation physics,

filling in the two remaining unknowns. One of the flagship experiments is the Deep Un-

derground Neutrino Experiment (DUNE) [5], which aims to unambiguously determine CP

violation parameter δCP and the neutrino mass ordering by determining the sign of the

mass-squared splitting ∆m2
13. To do this, DUNE will measure both the survival probability

for νµ and the oscillation probability for νµ → νe, as well as the antineutrino counterpart

to these probabilities. For neutrinos propagating through matter and to leading order, the

effect has the form [6]

P (
(−)
ν µ →

(−)
ν e) = sin2 θ23 sin2 2θ13

sin2 (∆31 ∓ aL)

(∆31 ∓ aL)2
∆2

31

+ sin 2θ23 sin 2θ13 sin 2θ12
sin (∆31 ∓ aL)

(∆31 ∓ aL)2
∆31

sin(aL)

aL
∆21 cos(∆31 ± δ)

+ cos2 θ23 sin2 2θ12
sin2(aL)

(aL)2
∆2

21 , (1.17)

where the upper sign is for the neutrino probability, ∆ij =
∆m2

ijL

4E and a = GFNe/
√

2,

proportional to the Fermi constant GF and the number density of electrons in the Earth,

Ne. Since the effects of both the matter contribution and the CP violation change sign when

changing from neutrinos to antineutrinos, the asymmetry between the two measurements

gives a measurement of δCP and of the sign of ∆m2
31, which is necessary to determine the
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δ = 0 δ = π/2 δ = π δ = 3π/2 observed
νe 24.2 19.6 24.1 28.7 32
νe 6.9 7.7 6.8 6.0 4

Table 1.1: Expected versus observed number of electron neutrino CC events in a recent T2K
measurement, for a few values of δCP in the normal ordering. Reproduced from Ref. [8].

mass ordering. The effect becomes enhanced for large L, so the long baseline design for

DUNE will be able to resolve these effects well.

To reach the precision goals set by DUNE, an equivalent improvement of the theory

predictions of neutrino cross sections in nuclear matter is necessary. DUNE plans to use a

40-kiloton liquid argon time projection chamber to detect neutrino interaction events. The

argon nucleus is not a small nuclear target and will have considerable nuclear effects. Without

control of these nuclear effects, it will be challenging to precisely predict the expected number

of events, complicating the extraction of PMNS oscillation parameters. This is apparent in

a recent global fit to neutrino oscillation data in Ref. [7], that shows a hint that the CP

violation in the lepton sector may be nonzero and maximal. This conclusion is mostly

driven by the T2K measurement of νe appearance, which is summarized by Table 1.1. In

this measurement, the number of νe appearance events observed is more than the number

of events predicted by theory for all values of δCP . Taken at face value, one concludes that

the data favor δCP = 3π
2 . If the predictions continue to underestimate the number of events

as the statistics are increased, this could indicate that the neutrino cross section has been

underestimated. An enhancement of the neutrino cross section could bring the observed

number of events into agreement with δCP = 0, meaning that the original conclusion of

δCP = 3π
2 was incorrect. Therefore, accurate predictions of the neutrino cross section are of

the utmost importance for constraining δCP in the lepton sector.
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1.2 Lattice QCD

1.2.1 Formalism

The quark action of QCD in the continuum is

S =

∫
d4xL =

∫
d4xψ(x)

(
i /D −m

)
ψ(x) . (1.18)

The action is combined with a background field to create a generating functional,

Z[η, η] =

∫
DψDψ ei

∫
d4x (L+ηψ+ψη) . (1.19)

Expectation values are then computed from applying derivatives to the generating functional

〈ψ(x)ψ(y)〉 = Z[η, η]−1
(
−i δ

δη(x)

)(
−i δ

δη(y)

)
Z[η, η] , (1.20)

which is reminiscent of a partition function from statistical mechanics. Feynman showed

that the Green’s functions in quantum field theory may be recast into a partition function

of a Euclidean action by applying a Wick rotation t→ −ix4. The action is transformed into

its Euclidean equivalent

iSE = i

∫
d4xLE = i

∫
d4xψ(x)

(
/D +m

)
ψ(x) . (1.21)

The degrees of freedom of the theory must be made finite to compute correlation functions

of observables on the lattice. This is done by discretizing spacetime and defining the quark

fields on the sites of a lattice with lattice spacing a and confining the theory to a box of size

L = N · a. To preserve gauge invariance, this requires that the gauge fields be defined on

the links between sites, defined by Wilson lines in the form

Uµ(x) = eig
∑
b λ

b
∫ x+aµ̂
x Abµ(y)dy , (1.22)
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where g is the bare coupling constant of the strong force, λb are the generators of the SU(3)

color symmetry, and Abµ(y) is the gluon field. The links Uµ take the form of SU(3) matrices

in lattice QCD calculations. Then gauge transformations on the quark and gluon fields may

be written as

ψ(x)→ V (x)ψ(x) (1.23)

and

Uµ(x)→ V (x)Uµ(x)V †(x+ aµ̂) (1.24)

for an SU(3) gauge transformation matrix V . Gauge invariant quantities may be constructed

by constructing loops from links, or by capping chains of gauge links with quark and anti-

quark fields.

The derivative in the action of Eq. (1.21) must also be discretized to make the action

amenable to lattice QCD. The first guess would be to use the finite difference

d

dxµ
ψ(x)→ 1

a
[ψ(x+ aµ̂)− ψ(x)] . (1.25)

This operator does not preserve the Hermiticity of the derivative operator though. Instead,

one must define a lattice derivative

i
d

dxµ
ψ(x)→ i

2a
[ψ(x+ aµ̂)− ψ(x− aµ̂)] , (1.26)

involving a finite difference in both directions about site x. To make this derivative covariant

under gauge transformations, the gauge links must be added to form the operator

iDµψ(x)→ i

2a

[
Uµ(x)ψ(x+ aµ̂)− U†µ(x− aµ̂)ψ(x− aµ̂)

]
. (1.27)

These fixes are enough to construct the lattice QCD action for the quark fields. After
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replacing the integral over Euclidean spacetime with a sum, the action becomes

iSE =ia4
∑
x

[
1

2a

∑
µ

ψ(x)γµ

[
Uµ(x)ψ(x+ aµ̂)− U†µ(x− aµ̂)ψ(x− aµ̂)

]
+ mψ(x)ψ(x)

]
. (1.28)

The lattice spacing still shows up in this expression. To make the action fully dimensionless,

the spacing a is absorbed into the definitions of the quark fields,

a3/2ψ(x)→ ψ(x) . (1.29)

Then the action is fully reduced to the naive lattice action, of the form

iSlat =i
∑
x

[
1

2

∑
µ

ψ(x)γµ

[
Uµ(x)ψ(x+ µ̂)− U†µ(x− µ̂)ψ(x− µ̂)

]
+ amψ(x)ψ(x)

]
. (1.30)

Using this action, observables may be computed in terms of the partition function. Taking

Eqs. (1.19) and (1.20) as a guide, a general observable may be computed with the equation

〈O〉 =
1

Z0

∫
DUDψDψ O e−Slat , (1.31)

which reduces to

〈O〉 =
1

Tr
[
e−HT

]Tr
[
Oe−HT

]
(1.32)

where T is the length of the lattice in the temporal direction and H is the Hamiltonian.

1.2.2 Doubling Symmetry and Summary of Lattice Actions

One of the consequences of discretizing spacetime is the introduction of unwanted extra

species of quarks, usually known as doublers. The number of doublers is 2D, where D is
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the number of spacetime dimensions, and are referred to as quark “tastes”. The existence of

the doublers is intimately tied with chiral symmetry. Nielsen and Niyomiya proved a no-go

theorem [9] stating that it is not possible to have a doubler-free field theory in lattice QCD

that preserves chiral symmetry. The ramifications of this discovery add the intricacies that

make lattice QCD such a widely studied field.

To obtain results that accurately pertain to physical field theories, it is necessary to

remove the contributions of these extra doublers from the calculations of observables. There

are a variety of methods for achieving this goal, all with their own set of advantages and

disadvantages that depend on the problem being studied. Some methods, such as Wilson (or

clover) quarks, break chiral symmetry explicitly to give the doublers a mass term of order

O(a−1), where a is the lattice spacing, such that they decouple in the continuum limit.

Other methods choose to preserve chiral symmetry in the continuum limit at the expense of

more costly computing times, such as domain wall fermions. The method of choice in this

thesis is to use staggered fermions, which remove only a factor of four doublers (leaving four

remnant tastes), with the benefit of improved computation time. This extra computing time

can then be used to perform higher statistics simulations, with physical quark masses, more

ensembles, and finer lattice spacings than other methods.

One concern with staggered quarks is that the four extra tastes contribute to observables

through virtual quark-antiquark pairs (or “sea” quarks) that interact with the “valence”

quarks that are explicitly introduced into the computation. Written in terms of the path

integral, the virtual quark-antiquark pairs appear as the determinant after integrating out

the quark fields:

〈O〉 =
1

Z

∫
DU O det

[
/D +m

]
e−S[U ] . (1.33)

Since there are more quarks tastes interacting with the valence quarks than the continuum

theory, the calculation results will differ from their physical values unless the extra tastes
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are removed. The simple remedy to this problem is to take a fourth root of the determinant,

det
[
/D +m

]
→
(
det
[
/D +m

])1
4 . (1.34)

This is called the “rooting” trick. This is based on the observation that the tastes are

degenerate in the continuum limit, and so the fermion determinant can be rewritten as

det
[
/D4 +m

]
= det

[(
/D1 +m

)
⊗ 14

]
=
(
det
[(
/D1 +m

)])4
, (1.35)

where /Dn is the fermion derivative for n tastes.

The rooting procedure still depends on whether the continuum limit commutes with the

fourth root. If taste symmetry is broken at finite lattice spacing, then it is possible that

the taste breaking effects spoil the continuum limit. While the former is true, it does not

necessarily imply the latter and the latter does not seem to be an issue. This was tested in

Ref. [10] using a method of rooted staggered chiral perturbation theory developed in Ref. [11].

This method was used to compute observables that are sensitive to the number of quarks

in the sea as a means to test the number of replicas, i.e. the number of tastes of quarks

in the sea. If the rooting trick is valid, then the number of replicas per staggered flavor

nr, which was treated as a fit variable, should be equal to 1
4 . The result of this study was

nr = 0.28(2)(3), in good agreement with expectation. This test is reassuring, although not a

proof of the validity of the procedure. Despite this, other criticisms raised about the rooting

procedure were found to be harmless (see Ref. [12] for a summary of these arguments).

1.3 Success of Lattice QCD

Lattice QCD calculations of nucleon physics today are at the same level of precision that

meson calculations were a decade ago. As computers become more powerful and compu-

tational strategies are refined, it will be possible to probe more physics and with greater

15



precision. Lattice QCD computations are systematically improvable, since better precision

can be achieved by running more computations.

The success of lattice QCD makes it an appealing tool to help inform neutrino physics.

The matrix elements needed for predicting neutrino cross sections are often difficult to probe

with scattering experiments. With lattice QCD, these matrix elements can be computed

directly from first principles. Lattice QCD can fill in gaps left by experiments or serve as a

check of the values obtained from experimental measurements.

1.3.1 Lattice QCD for Spectrum Computations and CKM Matrix Elements

Lattice QCD is a first-principles computation, not a simulation like the Monte Carlo gen-

erators that are widely used in neutrino physics. The gauge ensembles are generated from

only the bare quark masses and the strong coupling constant, and an equal number of in-

puts from experiment are necessary to connect lattice QCD measurements to the physical

theory. These inputs are typically taken from observables that are precisely determined and

independent of the physics that is being studied. Once the scale is set in this way, any other

observables computed with lattice QCD are predictions from theory.

Not only is lattice QCD theoretically robust, but the computations of observables with

lattice QCD are both consistent with each other and with experiment. A compilation of

computations from lattice QCD and the experimental measurements of hadron masses is

shown in Fig. 1.2. The measurements in this figure come from several collaborations and

make use of a variety of lattice QCD actions to compute the spectrum. Open symbols

indicate observables that were used to fix the scale and bare quark masses, and closed

symbols indicate the results for computed observables.

The results from lattice QCD are useful for studying the CKM matrix in flavor physics.

Determinations of the CKM matrix elements from particle decays get contributions from

both the CKM matrix elements and from form factors. Since experiments have difficulty

determining form factor contributions to the observed decays, they rely on theory to compute
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Figure 1.2: Figure showing the mass spectrum for the mesons and baryons computed with
lattice QCD by various collaborations. Masses from experiment are shown as black lines with
gray boxes to indicate widths. The colors indicate how many ensembles were used in the
measurement, where the colors red, orange, yellow, green, and blue are ordered from fewest
to most. The symbol shapes denote the type of lattice QCD action used. Open symbols
denote values that were used to fix the parameters in the computation. Closed symbols are
results. The meson masses that include b quarks are offset downward by 4 GeV. Reproduced
from Ref. [13].

the form factor contributions. Lattice QCD offers the only systematically improvable method

of computing the form factor contributions. As a result, results from lattice QCD are widely

used by the flavor physics community, for instance in the extraction of |Vub/Vcb| by the

LHCb collaboration [14]. Using the results of lattice QCD, the first row of the CKM matrix

are known to sub-percent accuracy from experiment, and elements from the second row are

known to few-percent accuracy from lattice QCD [15].

Determinations of the CKM matrix elements have also served as a proving ground for

the z expansion parameterization of form factors, which will be covered in more detail in

Chapter 2. The z expansion is a model-independent framework based on constraints from

analyticity. Using the z expansion, lattice QCD data at high momentum transfer could be
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used to perform a controlled extrapolation down into the region of low momentum transfer

where experiment is most constraining. Recent results for meson decays [16, 17] as well as

those for baryon decays mentioned above [18] determine the CKM matrix elements |Vub| and

|Vcb| precisely with the z expansion, showing how powerful the strategy can be. A similar

transition of the neutrino community to the z expansion is also necessary. The z expansion

has now been implemented into the GENIE Monte Carlo framework to facilitate the use of

the z expansion by neutrino experiments; see Sec. 2.3 for details.

As lattice QCD computations of nucleon form factors become more precise and better

controlled, the neutrino community should incorporate the form factors from lattice QCD

into their analyses. Lattice QCD offers a way to access matrix elements that are difficult for

neutrino physics to determine experimentally. The axial form factor is one specific example

of a matrix element that is useful to compute from first principles. Since this matrix element

is only accessible through neutrino interactions, lattice QCD can be applied both as a check

of the form factor extracted from experiment and as an experiment-free determination of the

form factor to build a theory upon. Since the axial charge is an integral part of the axial

form factor, the work of this thesis focuses on the axial charge. Later extensions of this work

will compute the full momentum dependence of the axial form factor.

1.3.2 The Nucleon Axial Charge in Lattice QCD

Computing the axial charge with lattice QCD has proved to be a formidable challenge in the

past. Many computations of the axial charge have been attempted, and yet the axial charge

has typically come out 10− 20% too small. Reproduction of the experimental value for the

axial charge has become a litmus test for control of systematic effects.

Computation of nucleon matrix elements is difficult from a theoretical standpoint. As

will be discussed in Chapter 4, baryon correlation functions computed with lattice QCD

suffer from an exponential signal-to-noise degradation due to a three-pion contribution to

the statistical noise. The nucleon is much larger than the pion, meaning that correlation
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functions are sensitive to the size of the lattice ensemble due to pions that wrap around

through the periodic boundary conditions. Excited states can also be a contributing factor,

since the second-lowest nucleon excited state in the same-parity channel is much lower than

other radial excitations.

Past computations of the axial charge have been limited by how well the systematics

could be controlled. Due to restrictions imposed by the amount of computing resources

available, computations needed to be computed at unphysically large pion masses and with

small lattice spatial boxes. Measurements of the axial charge needed to be done for a range of

pion masses and extrapolated to physical masses and infinite volume. These restrictions have

made controlling systematic finite size corrections difficult, since these corrections depend
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Figure 1.3: Plot of lattice spatial extent versus physical box size for lattice QCD computa-
tions of gA with at least 3 flavors of sea quarks. The physical box size is given in dimensionless
units of MπL, which is an estimate of how easily pions can propagate around the periodic

boundary conditions. Lines of constant Mπ are plotted, and the region of Mπ < M
phys
π

(bottom right) is shaded. Ideally, calculations should have masses as close to the physical
line and as far in the vertical direction as possible. The ensemble for this work is the ×
plotted at L ≈ 5 fm along the line denoting physical pion mass, and future extensions of
this work will use the ensembles at L ≈ 6 fm. Computations from Refs. [20–32].
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Figure 1.4: Plot of pion mass versus lattice spacing for lattice QCD computations of gA
with at least 3 flavors of sea quarks. The region of Mπ < M

phys
π (left) is shaded. The

horizontal axis is the pion mass, in MeV, and the vertical mass is the lattice spacing, in
units of 10−15 m. Ideally, calculations should be as close to physical pion mass and for
the smallest lattice spacing possible. The ensemble used in this plot is the × plotted at
a = 0.15 fm, and future extensions of this work will use the ensembles at a = 0.12, 0.09, and
0.06 fm. Computations from Refs. [20–32].

on both the spatial volume and the pion mass. A survey of past calculations of the axial

charge is given in Figs. 1.3 and 1.4. These two plots give an idea of how large of a body of

work has been done to compute the axial charge.

Now, ensembles generated with physical pion masses are available, making it possible

for the first time to do a computation of the axial charge at the physical point. Systematic

effects of nucleon matrix elements are better understood and simulations with full system-

atic error budgets are possible. A measurement of the nucleon vector form factors with

controlled systematic errors has already been completed near the physical point in Ref. [33].

Additionally, a recent paper [34] shows agreement between a new lattice QCD computation

of gA and the experimental value. Even with one value in agreement with experiment, cross
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checks are necessary for giving confidence in lattice QCD results.

The work presented in this thesis represents a first step in a program to compute the

axial form factor with lattice QCD. The nucleon axial form factor is studied by reanalyzing

deuterium bubble chamber data with the z expansion parametrization to determine the

present uncertainty on the free-nucleon cross section from the most theoretically clean data

available. Following this, the results of a computation of the nucleon spectrum and axial

charge using staggered lattice QCD are detailed.
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CHAPTER 2

THE AXIAL FORM FACTOR FROM NEUTRINO

SCATTERING DATA

The axial form factor contributes the largest systematic uncertainty to the quasielastic scat-

tering cross section. Direct experimental determinations of the form factor are sparse, since

only the weak current probes the axial form factor. Experiments that constrain the form

factor are limited to low-statistics neutrino scattering experiments on small nuclear targets,

scattering data with large nuclear targets and significant nuclear effects, or determinations

from pion electroproduction with model-dependent corrections.

The dipole model was introduced by Llewellyn-Smith [35] as an ansatz to explain neutrino

quasielastic scattering data, and is the most ubiquitous parametrization for the axial form

factor. The dipole axial form factor is

F
dpl
A (Q2) = gA

(
1 +

Q2

m2
A

)−2

(2.1)

where gA is the axial charge and mA is a free model parameter, the axial mass. The

axial charge is determined precisely from neutron beta decay experiments, with the value

gA = −1.2723(23) from Ref. [36]. A motivation for the model comes from assuming an

exponential falloff in a nonrelativistic charge distribution for the nucleon wavefunction with

distance, which yields a dipole form factor when a Fourier transform is applied. The dipole

model reproduces the power law scaling that is expected from perturbative QCD, but this

scaling takes effect well outside of the window where neutrino scattering data are collected.

There is no reason to expect that a model fit to data well below the perturbative region will

be an accurate description of the physics at high momentum transfer.

The comparison of the world average dipole mass [37] with the MiniBooNE extraction

of mA [38] shows how adherence to the dipole model introduces ambiguities. For example,
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some representative values of the axial mass are

mA =1.069± 0.016 GeV Ref. [37] ,

meff
A =1.35± 0.17 GeV Ref. [38] . (2.2)

The extracted mA is either accompanied by an unphysically small error, as in the former

value, or entangles the extraction of the free nucleon form factor with the nuclear corrections

used to determine it, as in the latter case. Disagreement in the central values of mA indicate

shortcomings in Eq. (2.1), suggesting that it leads to underestimated uncertainties, and

attempts to compare different regions of Q2 will be incompatible.

This chapter covers a model-independent parametrization, the z expansion. Whereas the

dipole assumes a particular shape with a single characteristic, the z expansion is more flexible.

Term-by-term it can accommodate any shape, and addition of more precise information will

constrain the expansion parameters a systematic way. The first section covers the details

of the z expansion and the advantages conferred by using such a framework. The following

section details an extraction of the best z expansion parameters implied by deuterium bubble

chamber data, along with a full error budget. Finally, some details are given about the

implementation of the z expansion as a module in a neutrino Monte Carlo event generator,

GENIE.

2.1 The z Expansion Parameterization

The z expansion is a model-independent approach for parameterizing hadronic form factors,

appealing only to constraints from analyticity imposed by QCD. This method makes use of

analytic continuation and a conformal mapping to reparametrize the form factor as a power

series in a small expansion parameter. As the data improve, the expansion is systematically

improvable by carrying out the expansion to a higher power.

For concreteness, we will focus on the z expansion as it pertains to the nucleon axial
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form factor. The form factor is written as a function of the Lorentz invariant 4-momentum

transfer, Q2. There are two regions of interest. The first is the particle production region

corresponding to timelike Q2, starting at Q2 = −9m2
π and extending to Q2 → −∞. The

second is the spacelike quasielastic scattering region, extending from Q2 = 0 up to some

finite Q2
max determined by the experiment of interest.

The form factor is analytic outside the branch cut and may be parametrized by applying

the mapping (for t = −Q2)

z(t; t0, t+) =

√
t+ − t−

√
t+ − t0√

t+ − t+
√
t+ − t0

, (2.3)

where t+ = 9m2
π is the particle production threshold. t0 is an unphysical parameter that

corresponds to z(t0) = 0 and is typically chosen to minimize |z(t)| in the range of t under

consideration [39]. The optimal choice of t0 for a choice of Q2
max is

t
opt
0 (Q2

max) = t+

(
1−

√
1 +Q2

max/t+

)
. (2.4)

Under the chosen mapping in Eq. (2.3), the parameter |z(−Q2)| < 1, so the form factor can

be written as a power series with the small expansion parameter z,

FA(Q2) =
∞∑
k=0

akz
k(−Q2) . (2.5)

Fall off of the form factor and the finiteness of
∑
k |ak|2 require that the z expansion

coefficients ak in Eq. (2.5) be not only bounded, but also decreasing [39]. As a result, the

power series is convergent within |z| < 1 and expansion terms of a sufficiently high order

contribute negligibly to the value of the form factor within the fit region 0 < Q2 < Q2
max.

The form factor may therefore be truncated at some finite order kmax without introducing

a large truncation error. If new and better information comes along, the maximum power

can be increased to keep the truncation error negligible.
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Figure 2.1: A diagram depicting the conformal mapping of the form factor from complex
Q2 space to z parameter space. There are two regions of interest: first, the branch cut
corresponding to particle production that starts at the three-pion production threshold at
t = 9m2

π and continues to t→∞, and second, the quasielastic region (blue line segment) for
−Q2

max < t < 0. After applying the z expansion conformal mapping, the quasielastic region
is mapped to within |z| < 1, meaning that the form factor can be expanded as a power series
in z. Figure adapted from Ref. [39].

The coefficient bounds are better understood by imposing an ansatz for the form factor

shape, following the argument in Ref. [39]. In an “axial-vector dominance” ansatz, the form

factor takes a Breit-Wigner form

FA ∼
m2
a1

m2
a1 − t− iΓa1ma1

≡ −
m2
a1

b(t)
. (2.6)

This is recovered by assuming

ImFA(t+ i0) =
Nm3

a1Γa1
|b(t)|2

θ(t− t+) (2.7)

and applying the dispersion relation

FA(t) =
1

π

∫ ∞
t+

ImFA(t′ + i0)

t′ − t
. (2.8)

The normalization N is determined by computing FA(t) and setting t = 0. One can then
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define norms

||FA||p ≡

(∑
k

|ak|p
)1
p

,

||FA||2 =

(∑
k

|ak|2
)1

2

=

(∮
dz

z
|FA|2

)1
2

,

||FA||∞ = lim
p→∞

(∑
k

|ak|p
)1
p

→ max {|ak|} , (2.9)

to find that ||FA||∞ ≤ ||FA||2, which is only possible if |ak| falls off as k increases. One can

then use the definition of ||FA||∞ to determine the condition

∣∣∣∣aka0

∣∣∣∣ ≤ 2|N |
|FA(t0)|

Im

(
−m2

a1

b(t+) +
√

(t+ − t0)b(t+)

)
(2.10)

for all k. Substitution of explicit values for the parameters yields a bound for the maximum

relative parameter size.

Outside of the fit region, one may exert additional control over the form factor shape by

applying sum rules to constrain the expansion coefficients ak. We may use the sum rules

to satisfy arguments from perturbative QCD in Ref. [40] that require the axial form factor

exhibit a Q−4 power law behavior as Q2 → ∞. Other sum rules may be derived from this

one by applying chain rule to derivatives
(
d
dz

)n
FA(z)

∣∣
z→1 and inverting Eq. (2.3) to get

dt
dz . These restrictions are encoded into the sum rules

∞∑
k=n

k(k − 1) . . . (k − n+ 1)ak = 0 (n ∈ 0, 1, 2, 3) (2.11)

where ak = 0 for k > kmax. We may derive these relations by noting that z(−Q2) = 1 at

Q2 →∞, and so
∞∑
k=0

ak = FA

(
z(−Q2)

)∣∣∣∣
z→1
∝ Q−4 . (2.12)
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2.2 Reanalysis of Neutrino Scattering Data in Deuterium

Bubble Chambers

In Ref. [41], we apply the z expansion axial form factor to data from neutrino scattering

in deuterium bubble chambers. Because the z expansion is model-independent, we obtain

in this way a realistic estimate of the uncertainty on the axial form factor. Despite the

existence of many modern neutrino scattering experiments, the deuterium bubble chamber

studies have small nuclear targets and, thus, remain the most theoretically clean samples

available to date. The deuterium nucleus is a weakly bound state of two nucleons such that

each nucleon can be treated as approximately free, making it a good probe of free nucleon

amplitudes. Quasielastic scattering events with sufficient energies in these samples have two

protons in the final state, which may both be detected to better constrain the energies of

the particles involved in the collisions.

Data from three experiments are used in this analysis: the BNL 7-foot bubble cham-

ber [42], the ANL 12-foot bubble chamber [43–45], and the FNAL 15-foot bubble chamber

experiment [46]. We refer to these experiments as BNL1981, ANL1982, and FNAL1983,

respectively. The data are taken for energies at around 1 GeV for BNL1981 and ANL1982,

and around 10 GeV for FNAL1983, and all three experiments have around one thousand

events. Unfortunately, the event-level data for these experiments have been lost, so the data

were extracted by digitizing figures in the references. Agreement between the number of

digitized events and the number of events reported in the publications was found.

2.2.1 Fitting Procedure and Default Inputs

We fit to the momentum transfer event distributions, dN
D

dQ2 (Q2), which were presented in the

references. The superscript D indicates that this distribution refers to a deuteron target,

distinct from the event distribution on a free nucleon target, which will be denoted with

a superscript N . The events in these distributions were created by neutrino beams with a

27

---



range of energies, described by a flux as a function of the neutrino energy, Φ(Eν). Predictions

for the number distribution came from convolving the differential neutrino flux dΦ
dEν

with the

differential cross section of the deuteron given by

(
dND

dQ2

)theory

= Nfit

∫ ∞
0

dEν
dΦ

dEν
(Eν , FA)

dσD

dQ2
(Q2, Eν , FA) , (2.13)

where the differential flux comes from measuring an event distribution in energy,

dΦ

dEν
(Eν , FA) =

1

σ(Eν , FA)

dN

dEν
(Eν) . (2.14)

We normalize the energy distributions by restricting

∫ ∞
0

dNN

dEν
(Eν , FA) dEν = N

∫ ∞
Q2
min

dND

dQ2
(Q2, FA) dQ2 , (2.15)

where Eq. (2.15) is consistent when we set

N =

∫∞
0 dQ2 dNN

dQ2∫∞
Q2
min

dQ2 dND

dQ2

. (2.16)

To prevent computation of the integrals in Eq. (2.16) during fitting, the normalization factor

Nfit is allowed to float freely and is fit. The resulting Nfit may be compared with the

prediction from Eq. (2.16) to check for consistency.

The deuteron differential cross section was determined by applying a correction, which

was assumed to be energy-independent, to the free nucleon differential cross section according

to the prescription

dσD

dQ2
(Q2, Eν) = R(Q2)

dσN

dQ2
(Q2, Eν) . (2.17)

For our default choice of deuteron correction, R(Q2) was taken from Ref. [47]. The flux

distribution dΦ
dEν

was determined from the event energy distribution reported in the literature
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Input Value Reference
gA = FA(0) −1.2723 [36]
µp − µn − 1 3.7058 [36]

FV i BBA2005 [48]
FP PCAC Eq. (2.19)

Deuteron correction Singh [47]

Table 2.1: Our default inputs used in fits to deuterium bubble chamber data.

normalized by the total cross section,

dΦ

dEν
(Eν , FA) ∝ 1

σN (Eν , FA)

dNN

dEν
(Eν) . (2.18)

To prevent artifacts from discrete jumps in the neutrino flux, the flux was smoothed with a

spline smoothing algorithm to bin the flux more finely. The cross section in the denominator

was computed with FA held fixed for a single fit, then the form factor was updated and the

fit recomputed. This process is iterated until the result converges.

Our default choice of fit inputs is listed in Table 2.1. We used the nucleon mass mN =

0.9389 GeV, the pion mass mπ = 0.14 GeV, and the muon mass mµ = 0.1057 GeV. The

value of the form factor normalization gA is well-known from neutron beta decay experiments

and is fixed within the fits [36]. We made use of a soft pion theorem derived from the Partially

Conserved Axial Current (PCAC) to describe the pseudoscalar current, given by

FPCAC
P (Q2) =

2m2
NFA(Q2)

m2
π +Q2

. (2.19)

Equation 2.18 holds as Q2 → 0 and is an ansatz for Q2 > 0. In our mapping to z parameter

space in Eq. (2.3), we chose to optimize our form factor parameterization in the Q2 <

1.0 GeV2 range with t0 = −0.28 GeV2 = t
opt
0 (1.0 GeV2). Over the range of data considered

in our fits, this corresponds to |z|kmax entering at the 20%, 9%, 4% level for k = 2, 3, 4,

respectively.
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Input BNL1981 ANL1982 FNAL1983

Q2 range 0.06− 3 GeV2 0.05− 2.5 GeV2 0− 3 GeV2

Nbins 49 49 30
Nevents 1236 1792 354

kinematic cut Q2 ≥ 0.06 GeV2 Q2 ≥ 0.05 GeV2 Q2 ≥ 0.10 GeV2

Table 2.2: Summary of data and cuts from original publications, BNL1981 [42],
ANL1982 [45], and FNAL1983 [46]. The default choice for our fits replicates these num-
bers.

Our fits were done using a binned log-likelihood function, minimizing the quantity

−2log [L(FA)] = 2
∑
i

[
µi(FA)− ni + nilog

(
ni

µi(FA)

)]
, (2.20)

where ni is the data in bin i and µi(FA) is the prediction as a function of our choice of form

factor. To indicate goodness of fit, we reported the value of the binned likelihood (with the

shorthand −2LL) and the number of data points used in the fits. Our final fit employed a

χ2 function, defined by

χ2(FA) =
∑
i

(
ni − µi(FA)

σi

)2

, (2.21)

where σi is the error on bin i.

It was shown in Ref. [49] that the z expansion coefficients fall off as ak ∼ k−4 for large

k. We use this as a guide for implementing Gaussian priors on z expansion coefficients to

prevent them from becoming unphysically large. We chose a milder dependence on k to

prevent overconstraining parameters, summarized by the constraints

∣∣∣∣aka0

∣∣∣∣ < min

(
5,

25

k

)
. (2.22)

We avoided using the axial mass mA to compare fits because it is defined only in the

context of the dipole model, not as a model-independent quantity. We instead compared fits

by computing the slope at some choice of Q2, which is an observable quantity. This slope

at Q2 = 0 is related to the axial radius, which is obtained from Taylor expanding the axial
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Dipole Na = 3

Experiment Nbins −2LL Nfit r2
A [fm2] −2LL Nfit r2

A [fm2]

BNL1981 49 70.9 1.14+0.08
−0.07 0.424(44) 76.1 1.14+0.12

−0.11 0.36(21)

ANL1982 49 58.6 1.15+0.06
−0.06 0.444(44) 62.3 1.15+0.10

−0.09 0.38(19)

FNAL1983 29 38.2 1.17+0.16
−0.13 0.337(61) 39.1 1.21+0.24

−0.20 0.61(28)

Na = 4 Na = 5

Experiment Nbins −2LL Nfit r2
A [fm2] −2LL Nfit r2

A [fm2]

BNL1981 49 73.4 1.13+0.13
−0.11 0.25(21) 71.0 1.13+0.13

−0.12 0.18(21)

ANL1982 49 60.9 1.14+0.10
−0.10 0.31(19) 59.9 1.14+0.11

−0.10 0.27(19)

FNAL1983 29 39.1 1.21+0.25
−0.21 0.60(28) 39.1 1.20+0.26

−0.21 0.58(32)

Table 2.3: Nominal fits to the dipole and z expansion parametrizations for each of the three
data sets. “LL” denotes log likelihood. Errors on z expansion determinations of r2

A are
determined from the error matrix, all others correspond to ∆(−2LL) = 1. Na = kmax − 4
denotes the number of free expansion coefficients in the z expansion fit (Eq. (2.5)) with
sum rule constraints from Eq. (2.11), prior scheme from Eq. (2.22), and Q2 bounds from
Table 2.2. The second column is the number of bins, including bins with zero data. For
Na = 4, the resulting fit parameters are displayed in Eq. (2.25).

form factor around Q2 = 0:

1

FA(0)

dFA(Q2)

dQ2

∣∣∣∣
Q2=0

=
1

6
r2
A . (2.23)

It is also simple to compare the slope at Q2 = −t0,

dFA(Q2)

dQ2

∣∣∣∣
Q2=−t0

=
dFA(z)

dz

∣∣∣∣
z=0

= a1 . (2.24)

The fit normalizations and axial radius squared (related to the slope at Q2 = 0) for

the nominal dipole and z expansion fits are delineated in Table 2.3. We note that the

dipole fit purports to give an uncertainty for the radius that is nearly an order of magnitude

smaller. The goodness of fit is better for the dipole model than for the z expansion, which is

only possible because the dipole violates the requirements of QCD. This indicates a tension

between the data and the expectation from analyticity.
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The z expansion parameter values for the Na = 4 fit of Table 2.3 are

[a1, a2, a3, a4]

=


[2.24(10), 0.6(1.0), -5.4(2.4), 2.2(2.7)] (BNL)

[2.25(10), 0.2(0.9), -4.9(2.3), 2.7(2.7)] (ANL)

[2.02(14), -1.2(1.5), -0.7(2.9), 0.1(2.8)] (FNAL)

, (2.25)

The errors reported here are the allowed variations in the fit parameters within the region

described by a change of 1.0 in the −2LL function. We notice that, as expected, the higher-

order parameters are less well-constrained than those at lower-order, indicated by the relative

error on the parameters at each order.

For further evaluation of the fits, we turn to the differences in the fit parameter a1, related

to the slope by Eq. (2.24). Our nominal set of fits in Table 2.3 give the values

[a1(BNL), a1(ANL), a1(FNAL)]

=


[2.23(10), 2.23(10), 2.02(14) ] , Na = 3

[2.24(10), 2.25(10), 2.02(14) ] , Na = 4

[2.22(10), 2.25(10), 2.02(14) ] , Na = 5

, (2.26)

showing excellent consistency as we increase the number of fit parameters. The inclusion

of higher-order expansion terms in the power series has little effect on the fit results, a

consequence of the smallness of zk for increasing k as discussed after Eq. (2.19).

We may compare the resulting fit for Nfit to the expectation from Eq. (2.16) assuming

Eν = 1 GeV, which yields

N (Q2
min = 0.06 GeV2) ≈ 1.13, (BNL)

N (Q2
min = 0.05 GeV2) ≈ 1.11, (ANL)

N (Q2
min = 0.10 GeV2) ≈ 1.23 (FNAL)

, (2.27)
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well within the uncertainties reported in Table 2.3. Though one may worry that this normal-

ization is sensitive to the energy distribution of the neutrino beam, this turns out not to be

the case. The neutrino cross section in the beam energies considered does not change con-

siderably, resulting in mild sensitivity to the energy. The dominant effect in values reported

in Eq. (2.27) is the Q2
min cut, which removes data from the domain where the differential

cross section is largest.

The best fit differential cross section (left) and total free nucleon cross sections (right) are

plotted in Fig. 2.2. Although the dipole and z expansion parametrizations of the differential

cross section plots give predictions for the event Q2 distributions that look identical, they

imply total cross sections that differ by as much as 20%. This is best understood by studying

the absolutely normalized differential cross sections in Fig. 2.3. In the Q2 range of the fits

(that is, above Q2 & 0.1 GeV2), the difference in the differential cross section between the

z expansion and dipole parametrizations can be mostly absorbed into a scale factor. The

floating normalization of Eq. (2.13) plays the role of that scale factor. The largest deviations

are then imposed by data close to Q2 = 0, where the estimate of acceptance corrections to

the bin content is unreliable and the data are consequently thrown away.

2.2.2 Systematics Studies

The uncertainties on results listed in Table 2.3 account only for the statistical errors from

data. There are a number of systematic effects that could contribute additional uncertainties

in the form factor parametrization. The z expansion parametrization permits the study and

quantification of systematic corrections in a model-independent scheme, allowing for realistic

assessment of the size of the errors. Strong dependence on systematic effects are an indication

of underestimated errors, which are import to quantify and understand with the intention

of reducing or removing them. In this section, we delineate the contributions of systematic

effects to the form factor extraction and determine uncertainties on observables computed

from the form factors.
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Figure 2.2: Best fit curves and errors for BNL1981 (top row), ANL1982 (middle row), and
FNAL1983 (bottom row). The left column is the differential cross section data and best fit
curves, and the right column is the free-neutron cross section, with errors propagated from
deuterium. Red (solid, vertical stripes) corresponds to Na = 4 z expansion and blue (dotted,
horizontal stripes) to dipole in Table 2.3. First appeared in [41].
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Figure 2.3: Absolutely normalized dσN/dQ2 at Eν = 10 GeV. The z expansion (red) and
dipole (blue) axial form factor parametrizations are the central values reported in Table 2.3
and are the same values used in the FNAL1983 results of Fig. 2.2. Despite the similarity of
the dipole and z expansion parametrizations of the flux-convolved differential cross section
in the left plots of Fig. 2.2, the difference in free nucleon cross sections can be attributed to
a change in the shape of the form factor.

Choice of Priors

The data were fit with Gaussian priors on the z expansion coefficients to prevent noise from

dominating the best fit results. Overly constraining priors have the potential to overpower

the data, and weak priors could allow for large variations in fit results that conform with

unphysical statistical fluctuations in the data. We validated our choice by fitting with priors
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of varying widths, the widest of which we consider overly conservative. We find

[a1(BNL), a1(ANL), a1(FNAL)]

=



[2.18(8), 2.17(8), 2.01(12)],

∣∣∣∣aka0

∣∣∣∣ ≤ min

(
3,

15

k

)

[2.23(10), 2.25(10), 2.02(14)],

∣∣∣∣aka0

∣∣∣∣ ≤ min

(
5,

25

k

)

[2.36(15), 2.41(15), 2.02(17)],

∣∣∣∣aka0

∣∣∣∣ ≤ min

(
10,

50

k

)
. (2.28)

There are no significant differences in the fit results with our default choice and the other

prior choices, and the widest prior width increases the parameter uncertainties by up to 50%

for the ANL and BNL data sets.

Choice of t0

The parameter t0 in the definition of the conformal mapping to z parameter space of Eq. (2.3)

is an unphysical quantity and should not affect our fit results. The choice to use t0 6= 0

reduces the maximum size of |z| in the kinematic range being studied, meaning that the

z expansion need not be carried out to such a high order. To evaluate whether our choice

of t0 has any systematic effect, we compare the nominal fit of t0 = t̄0 = −0.28 GeV2 with

t0 = 0.

Since the definition of a1 is dependent on our choice of t0, we instead compare the slope

of the form factor at Q2 = −t̄0, defined by

ā1 ≡ a1

∣∣
t0=t̄0

≡ −4 (t+ − t̄0)F ′A(t̄0) (2.29)

with t+ given by our particle production threshold as in Eq. (2.3). We must additionally

increase the number of fit parameters Na from 4 to 7, to keep consistent with the choice that
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|z|Na+1
max ≈ 0.02 in the range 0 < Q2 < 3 GeV2. We find

[ā1(BNL), ā1(ANL), ā1(FNAL)]

=

 [2.24(10), 2.25(10), 2.02(14)] (Na = 4, t0 = t̄0)

[2.22(9), 2.21(10), 2.02(14)] (Na = 7, t0 = 0)
, (2.30)

with little difference between fit schemes.

Flux Uncertainties

We estimated the error from uncertainty in the flux shape by varying the energy distribution

provided in the BNL publication within its 1σ statistical error bars. The error was deter-

mined by shifting each bin up or down by 1σ and computing the difference from the nominal

result. The contributions from each bin were added in quadrature and reported as an error

separate from the statistical errors obtained from the Q2 distribution. The result is

ā1 = 2.24± 0.10stat.Q2 ± 0.04stat.Eν (BNL1981) . (2.31)

The error from varying the flux was found to be subleading compared to the Q2 distri-

bution statistical errors. This error will also be small compared to the error from corrections

due to acceptance and deuteron corrections, and so will be neglected in the rest of the

analysis.

Subsets of Q2 Range

We performed fits to subsets of the data to check for regions in which statistical fluctuations

can have a negative impact on the fits. Neglecting certain regions in the fit ranges allows

for isolation of the problem to specific kinematic ranges. We first removed data at high Q2,

fitting instead to the region with Q2 < 1 GeV2.
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In a study analogous to Eq. (2.25), removing the high-Q2 region gives the parameter

values

[a1, a2, a3, a4]
∣∣
Q2≤1 GeV2

=


[1.99(15), 0.5(1.1), -3.6(2.6), 1.1(2.7)] (BNL)

[2.29(14), 0.2(0.9), -5.2(2.5), 2.9(2.7)] (ANL)

[1.88(25), -0.9(1.6), -0.3(2.9), -0.3(2.8)] (FNAL)

. (2.32)

The equivalent to Table 2.3 for this subset of the data is given in Table 2.4. The Q2

distributions for these fits are shown in Fig. 2.4. We see a 1-2σ shift in the central values of

a1 for the data sets.

A similar study was done using the fit range Q2 > 0.2 GeV2. The equivalent to Table 2.3

is shown in Table 2.5, and the analogous parameters to Eq. (2.32) are

[a1, a2, a3, a4]
∣∣
Q2≥0.2 GeV2

=


[2.35(10), -2.0(1.2), -1.4(2.8), 1.4(2.7)] (BNL)

[2.34(10), -3.6(1.2), 1.6(2.8), 0.9(2.8)] (ANL)

[2.04(16), -1.3(1.6), -0.5(3.0), 0.1(2.8)] (FNAL)

. (2.33)

We again find a shift in the value of a1 for different subsets of the data. However, for this

subset of the Q2 range, the computed r2
A shifts by more than 2σ. The form factor is no

longer required to fit the exceptionally low bins in the low-Q2 region, so the fit contorts to

the bins in the 0.2 < Q2 < 1.0 GeV2 region instead. The result is a larger fit normalization

and squared axial radius.

The discrepancies in the fit results for the subsets of the Q2 range are best understood

in Fig. 2.5. This figure shows the residuals when plotting the ratio of the data to a theory
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Figure 2.4: Q2 distributions presented as in Fig. 2.2, except for Q2 < 1.0 GeV2. Best
differential cross sections for BNL1981 (top left), ANL1982 (top right), and FNAL1983
(bottom). Red (solid) corresponds to Na = 4 z expansion and blue (dotted) to dipole in
Table 2.4.
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Dipole Na = 3

Experiment Nbins −2LL Nfit r2
A [fm2] −2LL Nfit r2

A [fm2]

BNL1981 16 24.7 1.16+0.08
−0.08 0.348(48) 27.2 1.17+0.14

−0.13 0.32(22)

ANL1982 19 28.2 1.14+0.07
−0.06 0.452(52) 31.7 1.15+0.10

−0.09 0.38(19)

FNAL1983 9 8.3 1.16+0.26
−0.18 0.33(12) 8.3 1.22+0.29

−0.23 0.54(31)

Na = 4 Na = 5

Experiment Nbins −2LL Nfit r2
A [fm2] −2LL Nfit r2

A [fm2]

BNL1981 16 27.0 1.17+0.14
−0.13 0.28(22) 26.6 1.16+0.14

−0.13 0.24(22)

ANL1982 19 30.5 1.14+0.10
−0.10 0.31(20) 29.2 1.13+0.11

−0.10 0.24(20)

FNAL1983 9 8.2 1.23+0.29
−0.24 0.56(29) 8.1 1.24+0.30

−0.24 0.57(26)

Table 2.4: Same as Table 2.3, but fitting only to data with Q2 ≤ 1.0 GeV2. For Na = 4 the
resulting fit parameters are displayed in Eq. (2.32).

Dipole Na = 3

Experiment Nbins −2LL Nfit r2
A [fm2] −2LL Nfit r2

A [fm2]

BNL1981 47 60.7 1.25+0.21
−0.14 0.61(13) 62.4 1.28+0.20

−0.17 0.83(24)

ANL1982 46 43.2 1.40+0.25
−0.38 1.45+0.92

−0.49 45.8 1.32+0.21
−0.18 1.04(24)

FNAL1983 28 38.2 1.16+0.22
−0.16 0.33(7) 39.1 1.22+0.31

−0.25 0.64(31)

Na = 4 Na = 5

Experiment Nbins −2LL Nfit r2
A [fm2] −2LL Nfit r2

A [fm2]

BNL1981 47 61.5 1.26+0.21
−0.18 0.74(25) 60.9 1.25+0.23

−0.19 0.67(24)

ANL1982 46 45.8 1.32+0.23
−0.20 1.03(25) 45.8 1.32+0.25

−0.21 1.05(24)

FNAL1983 28 39.1 1.22+0.32
−0.25 0.63(30) 39.0 1.21+0.34

−0.26 0.60(35)

Table 2.5: Same as Table 2.3, but fitting only to data with Q2 ≥ 0.2 GeV2. For Na = 4 the
resulting fit parameters are displayed in Eq. (2.33).

prediction from a joint fit to all data sets at once1. The data all appear to prefer the same

Q2-dependent shape over the entire range of data available. The distortions are clearly

significant if only the low-Q2 region is considered. We test the data-to-fit ratio against a

null hypothesis of a flat distribution over the entire Q2 range using a χ2 test, which yields

a p-value of 0.12 and is not exceptional. To use the χ2 fit, we collected the contents of the

1. An equivalent plot with fits to individual datasets exhibits the same behavior, so the joint fit is taken
for demonstration.
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Figure 2.5: Data divided by best fit prediction for the Q2 distributions displayed in Fig. 2.2
and parameter values in Eq. (2.25), for BNL (blue) ANL (red), and FNAL (green). Calcu-
lated χ2/Nbins are 35.3/22, 41.2/25, and 10.7/14 for BNL, ANL, and FNAL respectively.

high-Q2 bins into larger bins.

The z expansion, constrained by the analytic structure inherent to quantum field theories

such as QCD, cannot describe the localized shape distortions that are visible in Fig. 2.5. As

a consequence, the residuals are inconsistent with the any form factors derived from QCD.

This discrepancy must be the result of a systematic error in the experimental data resulting

from including the effects of bias due to hand scanning or from more advanced deuteron

corrections. These effects are explored and quantified in the following sections.

Acceptance Corrections

One of the systematics that must be accounted for is corrections for acceptance of events.

The deuterium bubble chamber data was taken on photograph plates and hand scanned by

experimenters. A scanning efficiency to estimate the bias introduced in the hand scanning

procedure was included in Fig. 1 of ANL1982 [45]. The efficiency ranges from e = 90± 7%

for the range 0.05 GeV2 < Q2 < 0.1 GeV2 to e = 98 ± 1% for Q2 > 0.15 GeV2. The

reduction in efficiency at low-Q2 is a consequence of the tracks being too short to reliably
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measure, and the first bin in each data set has been discarded as a result of this.

The efficiency is included as an enhancement of the differential Q2 distribution. To test

the influence of the efficiency correction, we allow the correction to modify the event Q2

distributions by a term of the form

dN

e(Q2)
→ dN

e(Q2) + ηde(Q2)
=

dN

e(Q2)

(
1 + η

de(Q2)

e(Q2)

)−1

(2.34)

that includes a correlated shift in the efficiency of each bin. The parameter η is a prefactor

that is fit with a Gaussian prior η = 0 ± 1. The efficiency correction e(Q2) is deduced by

linearly interpolating between bins in the efficiency estimates from the ANL1982 publication,

and de(Q2) from the statistical errors on those bins. We assume that the BNL1981 and

FNAL1983 data sets have corrections of the form in Eq. (2.34) and, for simplicity, that the

efficiency e(Q2)± de(Q2) are the same as those for ANL1982.

Including acceptance corrections and fitting to the region Q2 < 1.0 GeV2, the best fit

parameters and goodness of fit values are

BNL : [ā1, −2LL] =

 [1.99(15), 27.0] (without)

[2.04(15), 26.0] (with)
,

ANL : [ā1, −2LL] =

 [2.29(14), 30.5] (without)

[2.38(14), 26.3] (with)
,

FNAL : [ā1, −2LL] =

 [1.88(25), 8.2] (without)

[1.88(25), 8.2] (with)
, (2.35)

with the parameter η taking the values −1.9, −1.0, and +0.01 for ANL1982, BNL1981, and

FNAL1983, respectively. The negative values η indicate that the number of events in the

low-Q2 bins are underestimated with respect to the cross section prediction for those bins.

However, the efficiency corrections for each data set are not large and the goodness of fit

improves only moderately when the correction is included, indicating that the acceptance
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correction has only minor impact on the fits.

Deuteron Corrections

The deuteron correction from Singh [47] is also unable to account for the shape distortions

in the data seen in Fig. 2.5. This deuteron correction modifies only the low-Q2 behavior and

is unity for Q2 > 0.2 GeV2.

One may wonder if a modern deuteron correction would be able to better accommodate

the data and during fitting. The results of Shen et al. [50] is used as a representative for

a modern account of deuterium corrections. The nuclear effects of Singh are stronger than

the correction of Singh and modifies the event distribution by as much as 20% over a broad

range of Q2. Unlike the correction presented by Singh, the deuteron effects presented by

Shen are assumed to be energy dependent and are computed at a few choices of energy. We

assume the deuterium correction from Shen is only dependent on Q2 and use the deuterium

correction computed with Eν = 1 GeV for R(Q2) in Eq. (2.17). The Shen correction is

presented only for the region Q2 . 1.0 GeV2, so data above 1.0 GeV2 are neglected. The

relative size of the corrections of Refs. [47, 50] and of the unmodified free nucleon differential

cross section are shown in Fig. 2.6.

We compute fits with the deuterium corrections presented by Shen et al. and compare

to the fits from Eq. (2.32). The fit results are

BNL : [ā1, −2LL] =

 [1.99(15), 27.0] (Singh)

[2.16(14), 25.1] (Shen et al.)
,

ANL : [ā1, −2LL] =

 [2.29(14), 30.5] (Singh)

[2.46(13), 29.2] (Shen et al.)
,

FNAL : [ā1, −2LL] =

 [1.88(25), 8.2] (Singh)

[2.00(25), 9.1] (Shen et al.)
. (2.36)
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Figure 2.6: Comparison of the free nucleon differential cross section (solid red) to the deu-
terium cross section predicted by Refs. [47, 50] (blue and black dotted, respectively).

The modified deuterium correction of Ref. [50] only shifts the parameter values by at most

1σ, and again no significant improvement in goodness of fit is found. However, the difference

between the corrections of Singh and Shen is not an indicator of the error on estimates of the

deuterium correction. This suggests that there is potential for a future study of systematic

errors on the deuterium corrections even in the absence of a new deuterium experiment.

2.2.3 Final Results

Applying the knowledge acquired from the systematic tests of the previous section, we per-

form a joint fit to the three data sets to extract the best estimate of the form factor from

deuterium bubble chamber data. We focus on treating the effects of the two most important

systematics, the acceptance and deuteron corrections. The Q2 distributions are fit simulta-

neously with the same choice of FA for all three data sets. The fits use our default set of

inputs from Table 2.1 along with t0 = −0.28 GeV2 and Na = 4 free parameters to prevent

significant errors due to truncating the z expansion power series prematurely. Each data set

is allowed an independent correction parameter η from Eq. (2.34) to allow the acceptance

efficiencies to float independently.
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We present the parameters and error matrices for two final fits. In the first fit, we

implement a χ2 fit (Eq. (2.21)), which applies the updated Shen deuterium correction and

fits only up to Q2 < 1.0 GeV2. To estimate the effects of deuterium and other residual

systematics, we apply an uncorrelated inflation of errors by including 10% of the bin content

added in quadrature with the σi of Eq. (2.21). As was shown in the previous section, the

neglect of data above Q2 > 1.0 GeV2 had minimal impact on the resulting fits. The second

is a binned log-likelihood fit (Eq. (2.20)) that utilizes all of the data up to Q2 < 3.0 GeV2

and the Singh deuterium correction, neglecting any systematics associated with corrections

due to deuterium effects. We advocate the use of the χ2 fit with a full systematic error

budget.

For our χ2 fit with full treatment of systematic errors, the fit parameters are

[a1, a2, a3, a4] = [2.30(13),−0.6(1.0),−3.8(2.5), 2.3(2.7)] , (2.37)

with errors computed from δχ2 = 1. The diagonal entries of the error (covariance) matrix,

computed from the inverse of the Hessian matrix for χ2({ak}), are

Ediag. = [0.0154, 1.08, 6.54, 7.40] . (2.38)

and the four-dimensional correlation matrix is

Cij =



1 0.350 −0.678 0.611

0.350 1 −0.898 0.367

−0.678 −0.898 1 −0.685

0.611 0.367 −0.685 1


. (2.39)

For our log-likelihood fit, which neglects deuterium systematic errors, the fit parameters are

[a1, a2, a3, a4] = [2.28(8), 0.25(95),−5.2(2.3), 2.6(2.7)] . (2.40)
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The diagonal entries of the error matrix are

Ediag = [0.00635, 0.781, 4.49, 6.87] , (2.41)

The four-dimensional correlation matrix is

Cij =



1 0.321 −0.677 0.761

0.321 1 −0.889 0.313

−0.677 −0.889 1 −0.689

0.761 0.313 −0.689 1


. (2.42)

The error matrix is given by Eij = δaiδajCij in both cases. Note that (Ediag.)i ≈ (δai)
2,

reflecting approximately Gaussian behavior.

Fig. 2.7 shows the form factor FA as a function of both Q2 and of z plotted for our pre-

ferred fit in Eqs. (2.37)–(2.39). The red (vertical hash) is the central value and error band

for the z expansion and the green (horizontal hash) corresponds to the “world-best” dipole

from Ref. [51]. The plot illustrates how a model-independent parametrization of the form

factor compares with the dipole model extraction on nearly-free nucleon targets. The behav-

ior of the z expansion in z parameter space is nearly linear for |z| . 0.2 GeV2, reaffirming

the assertion that the higher-order parameters in the z expansion are not constrained by the

data. This is also reflected by the consistency of ak with zero for k ≥ 2 in Eq. (2.37). For the

range z & 0.2 GeV2, the form factor is outside the region Q2 < 1.0 GeV2, so the z expansion

parameters are no longer strongly constrained by data and the sum rule constraints take

over.

Fig. 2.8 shows the total cross section plotted for both νµ and ν̄µ. The z expansion

parametrization is again shown in red and the dipole in green. To quantify the uncertainty

in the cross section, we give the cross sections at representative energies of Eν = 1.0 GeV
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Figure 2.7: Final form factor from Eqs. (2.37)–(2.39). Also shown is the dipole axial form
factor with axial mass mA = 1.014(14) GeV [51].

and Eν = 3.0 GeV. The z expansion cross sections are

σνn→µp(Eν = 1 GeV) = 10.1(0.9)× 10−39 cm2 ,

σνn→µp(Eν = 3 GeV) = 9.6(0.9)× 10−39 cm2 , (2.43)

for neutrinos and

σν̄p→µn(Eν = 1 GeV) = 3.83(23)× 10−39 cm2 ,

σν̄p→µn(Eν = 3 GeV) = 6.47(47)× 10−39 cm2 , (2.44)

for antineutrinos.

Table 2.6 shows the axial radius (defined in Eq. (2.23)) extracted for Na = 3, 4, and 5 for

each individual data set and for a joint fit to all three data sets. The axial radius is useful

for comparing to pion electroproduction, where comparison is most robust in the limit as
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Figure 2.8: Total free-nucleon cross section implied by Eqs. (2.37)–(2.39). The νµ cross
section is plotted on the left and ν̄µ on the right. Also shown is the total cross section for
the dipole axial form factor with axial mass mA = 1.014(14) GeV [51].

Data set r2
A [fm2] r2

A [fm2] r2
A [fm2]

(Na = 3) (Na = 4) (Na = 5)
BNL 1981 0.56(23) 0.52(25) 0.48(26)
ANL 1982 0.69(21) 0.63(23) 0.57(24)
FNAL 1983 0.63(34) 0.64(35) 0.64(35)
Joint Fit 0.54(20) 0.46(22) 0.39(23)

Table 2.6: Axial radius extracted using values from Table 2.1, and default scheme choices as
discussed in the text. Note that the joint fit is not an average, but a simultaneous fit to all
data sets.

Q2 → 0. The fit in Eqs. (2.37)–(2.39) gives the best extraction of the axial radius

r2
A = 0.46(22) fm2 . (2.45)

An extraction of the axial radius from pion electroproduction data can be found in Ref. [39],

where the dipole model also strongly influences the extracted axial radius.
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2.2.4 Discussion

As an exercise, the dipole model may be recast in the z expansion parametrization and

the coefficients computed as functions of mA. If this is done, the z expansion coefficients

computed from the dipole model increase linearly as ak ∼ k, in violation of the unitarity

bounds required by QCD in Sec. 2.1. Additionally, the corresponding dipole parametrization

of the vector form factor is already known to be inconsistent with experimental measurements

from electron-proton scattering. Thus, one should consider the dipole ansatz to be unnatural.

We extracted the axial form factor from deuterium bubble chamber experiment data and

have assigned a complete error budget. We provided two alternative extractions of the form

factor. The first of these extractions fits to a subset of the data, but contains estimates of

systematic errors due to deuterium nuclear model corrections and any residual systematics.

The second extraction fits to the full Q2 range of the data, but uses an old estimate of the

effects of deuterium corrections and neglects any systematic corrections to the form factor.

These results are presented in Eqs. (2.37)–(2.42). We also report the total free nucleon cross

section and axial radius squared in Eqs. (2.43) and (2.45), and find the errors to be an order

of magnitude larger than the errors presented in Ref. [51].

In Figs. 2.7 and 2.8, the z expansion error bands are significantly larger than those of the

dipole model in both Figs. 2.7 and 2.8. This is an indication that the dipole model contributed

its own (mis-)information to the fit. Because of its theoretical shortcomings, continued use

of the dipole model runs the risk of introducing unquantifiable systematic errors. This

z expansion parametrization study demonstrates that even low-statistics deuterium bubble

chamber data are constraining enough for the dipole model to underestimate systematic

errors. The comparison of neutrino scattering to electron scattering is especially illuminating

in this regard. It is interesting to note that the extractions of the proton charge radius

from the corresponding vector form factor has larger relative uncertainties than the axial

charge radius from the dipole model, despite how the vector form factors are constrained

by data from a monoenergetic beam, a free nucleon target, and orders of magnitude more
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statistics [49, 52].

The residuals plot shown in Fig. 2.5 suggests the existence of some unquantified correction

to the differential cross section. The discrepancies of the data set residuals from a uniform

line hint at a potentially correlated systematic effect across all of the experiments. These

variations are strongest for the low-Q2 region, where the corrections due to acceptance and

deuteron models are suspected to be most prominent, but variations appear by eye to be

present over the entire Q2 range.

Fig. 2.9 shows the quasielastic differential cross section for the MINERνA data, plotted as

a function of reconstructed Q2, versus the form factor extraction from Eqs. (2.37)–(2.39) and

the dipole model parametrization. If the dipole model is used, then the error bars are small

and the discrepancy between the data and the theory appears to be due to nuclear model

corrections. However, a realistic uncertainty from the z expansion is large enough to explain

the observed data-theory discrepancy, leaving the source of the discrepancy ambiguous. If

the goal is to use data such as these to constrain the nuclear models, then the uncertainty

on the nucleon form factors must be significantly reduced.

The recent popularity of meson exchange current [54] and short-range correlations as a

contribution to explain the larger cross section for MiniBooNE data may indicate stronger

binding of nucleons into deuteron-like pairs than previously thought. From our comparison

of the effects of the updated deuterium correction of Ref. [50] to the previous estimate from

Ref. [47], we found no significant change in the best fit form factor. This is the same argument

as discussed at the end of Sec. 2.2.1, but in the context of deuterium corrections. Despite

the differences between the Shen and Singh deuterium effects (Fig. 2.6), the differences

between the cross sections obtained from applying these corrections are largely absorbed into

the floating normalization of Eq. (2.13). The absence of error estimates on the deuterium

corrections make it difficult to assess the potential impact of nuclear models. This suggests

a possible area for future exploration.

An updated deuterium bubble chamber experiment with increased statistics is an enticing
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Figure 2.9: Plot of the charged-current quasielastic differential cross section on carbon as
a function of reconstructed Q2 for data from the MINERνA experiment [53] versus the
prediction from GENIE with the Relativistic Fermi Gas (RFG) model. Two cross sections
from GENIE are shown. The red band uses the form factor parameters from from Eqs. (2.37)–
(2.39), while the blue band uses the dipole model with mA = 1.014(14) GeV [51].

strategy to help reduce uncertainties on the axial form factor. Modern experiments can reach

much higher intensities, meaning that more statistics could be collected over a shorter run

time. However, safety concerns about large quantities of deuterium contained underground

must be addressed. The challenges involved and cost of making the necessary precautions

to prevent accidents are at this time the main hurdles that need to be overcome.

As an alternative to an updated deuterium experiment, one could perform a first-principles

computation with lattice QCD to extract the axial form factor. Lattice QCD computations

are valuable because they can entirely circumvent the systematic uncertainties due to nu-

clear corrections. In doing so, they offer a way to compute the form factor without appealing

to a specific nuclear model and introducing unquantifiably systematic errors. Lattice QCD
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computations offer a way to provide a systematically improvable determination of the form

factor. This approach is the basis of the remaining chapters, and will be discussed in detail

after an interlude on event generators.

2.3 Implementation of z Expansion in GENIE

Neutrino event generators are a necessary tool for studying neutrino scattering data. The

event generators allow study the effects of different oscillation observables on a given exper-

imental setup. Realistic descriptions of detector geometries are simulated and predictions of

observed events can be made based on an assumed oscillation model. The generators account

for descriptions of nuclear matter and interactions of particles with the detector volume to

fully characterize the efficiencies of experiments.

Typical Monte Carlo event generators are built with the assumption that the atomic nu-

cleus is a weakly-bound gas of nucleons. The assumption of weakly-bound nucleons means

that the nuclear model rely on free-nucleon amplitudes to describe the intranuclear inter-

actions. As a consequence, the neutrino event generators take free-nucleon form factors as

input to a sophisticated model, and accurate free-nucleon form factors are vital to their

success.

GENIE (Generates Events for Neutrino Interaction Experiments) [55] is one such Monte

Carlo event generator. The goal of GENIE is to describe neutrino interactions over a wide

expanse of energy regimes, from MeV to PeV. GENIE is made to be modular; there are

many nuclear models, form factor parametrizations, and event simulation channels that

can be swapped out for others or turned on and off. This makes it a prime candidate for

introducing the z expansion parametrization as a form factor module that can be utilized

by the neutrino community.
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2.3.1 The z Expansion in GENIE

The z expansion parametrization has been implemented into GENIE as a module that can

be turned on by the user. This module is a replacement of the dipole form factor model. To

accompany the z expansion module, reweighting routines have been written to vary over form

factor models with different z expansion parameters. One of the modules, for reweighting

with a covariance matrix, is general and may be used with other parameters as well provided

that the correlations between parameters are known. These routines have been validated

and included into the main release of GENIE.

The z expansion module within GENIE was made to be versatile. The module will

accept z expansion parametrizations of the axial form factor with any number of expansion

coefficients, t0, and cutoff t+. There is also a switch that allows one to turn on and off the

sum rule constraints on the z expansion parameters. These parameters are specified in the

default parameter file, UserPhysicsOptions.xml.

When generating Monte Carlo event samples, it is often necessary to generate many

data sets with parameters shifted from their nominal values. Generating a completely new

sample with shifted parameters requires computing many cross section integrals as well as

the full simulation of a new event sample, which can be costly both in terms of human time

and of disk storage. As an alternative, events in an existing Monte Carlo sample can be

given weights according to the probability of generating that event in the new parameter

scheme. By doing so, one sidesteps the costs of generating a new, independent data set from

scratch. This concept is known as event reweighting, and GENIE now by default allows for

reweighting of the first four z expansion parameters.

For charged current quasielastic events, computing the weights for the new parameter

scheme is simple. Suppose an existing Monte Carlo sample was generated with a monoener-

getic distribution in Q2 governed by a differential cross section dσ
dQ2 (FA), where FA is some

assumed axial form factor. The probability of generating the same event in a world where
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the axial form factor is instead F ′A is just the ratio of the cross sections,

wi =

(
dσ

dQ2
(F ′A, Q

2
i )/

dσ

dQ2
(FA, Q

2
i )

)
, (2.46)

where the index i denotes the event that is being reweighted. If the events were chosen to

reproduce the differential cross section, then we can reweight the fractional number of events

in each bin to a new scheme by applying the transformation

∆Q2
k

Ntot

∑
i∈k

(
dN

dQ2

)
i

=
∆Q2

k

σtot

∑
i∈k

(
dσ

dQ2

)
i

→
∆Q2

k

σtot
∑
iwi

∑
i∈k

(
dσ

dQ2

)
i
wi =

∆Q2
k

σ′tot

∑
i∈k

(
dσ′

dQ2

)
i
, (2.47)

where k sums over bins in Q2, ∆Q2
k is the width of bin k, and the sums i ∈ k are taken

only over weights within a single Q2 bin. The primes in the last line indicate that the cross

section is computed with the updated form factor F ′A.

The method for computing weights outlined previously is a specific case of weight gener-

ation. In general, the routines generate a weight by perturbing the central value according

to the relation

O′i = Oi
(

1 + k
δOi
Oi

)
, (2.48)

where k is some systematic parameter (given the name “tweak dial” in GENIE), Oi is some

observable for event i, and δOi the error on that observable. We may recover Eq. (2.47) if

we let Oi = dσ
dQ2 , δOi =

(
dσ′

dQ2 − dσ
dQ2

)
, and k = 1. This more general case is applied to

reweight distributions under a wider set of event channels, since not all methods have simple

ratios of cross sections like charged current quasielastic scattering. The GENIE reweighting

framework is written with Eq. (2.48) in mind and so the CCQE reweighting algorithms are

recast to fit this form instead of the form in Eq. (2.47).
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2.3.2 Validation of GENIE Reweighting Routines

The GENIE z expansion reweighting packages have been validated against both independent

Monte Carlo generation runs and cross section computations from an independent code. The

intent is to show that the z expansion module and reweighting software behave as expected.

The first test demonstrates that an event sample can be reweighted from the dipole form

factor with some given mA to a z expansion form factor. To compute the event distributions

in Fig. 2.10, we compute a monoenergetic sample of 5 × 104 CCQE events on a carbon

target with both the dipole model and the new z expansion module. To make the difference

between the two form factors clearly distinguishable by eye, we start with an mA = 0.50 GeV

sample. The reweighting routine converts the dipole sample directly to a z expansion sample

and can be compared with the independent sample generated with the z expansion.

The reweighting program used to generate the weights used in Fig. 2.10 is named gRwght1Scan,

which reweights using any generic systematic tweak dial. This reweights by changing the

value of the tweak dial named AxFFCCQEshape. The default (tweak dial = 0) is a pure

dipole form factor, and a tweak dial value of +1 is a pure z expansion form factor. After

applying the weights, one ends up with a Monte Carlo sample with the z expansion param-

eters as they are defined in the default GENIE parameters file, UserPhysicsOptions.xml.

This is demonstrated in Fig. 2.10. Agreement between the reweighting algorithm and the

expectation is demonstrated by the agreement between the blue and red histograms, within

statistical errors. The left plot shows the raw event distributions, and the right plot shows

the event distributions normalized to the nominal dipole distribution, shown in black.

The next test checks several aspects of the code for consistency. The tests are separated

into distinct parts, and then are collected into a single summary figure, Fig. 2.11. The test

involves:

• Validating the z expansion cross section and error against an independent code

• Validating reweighting of parameters on a grid against direct reweighting from one
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Figure 2.10: Plot of 50k pure CCQE events to demonstrate consistency of reweighting routine
for converting dipole distributions into z expansion distributions. A nominal sample of dipole
events (black) is modified with reweighting to generate a sample with a new cross section
(red). This new sample is compared against an equivalent sample generated from scratch with
a z expansion cross section (blue). The blue and red distributions are consistent within error
bars. The left plot shows the raw number distribution of Eν = 1 GeV νµ events generated
on a carbon-12 target. To make the dipole clearly distinguishable from z expansion, a dipole
model with mA = 0.5 GeV was used for the black data. The right shows the same data, but
normalized to the nominal dipole sample (black).

parameter set to another

• Validating the covariance reweighting against direct reweighting

This code uses all of the new reweighting utilities, given the names: grwghtnp, “N-parameter”

reweighting for reweighting with a covariance matrix, grwghtzexpdirect, for reweighting

for directly from one parameter set to another, and grwghtzexpaxff, for reweighting the

z expansion parameters on a grid.

There are two methods employed for finding errors on the cross sections. They are referred

to as the “Principle Axes” (PA) method and the covariance method. The Principle Axes

method uses the Eigenvalues and Eigenvectors of the covariance (error) matrix by adding a

displacement vector to the set of best fit coefficients. Given Eigenvalues λi and Eigenvectors
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~ri of a covariance matrix, we can compute a displacement vector along a principle axis δ~ai

by choosing

δ~ai = λ
1
2
i ~ri .

Choosing displacements along these principle axes results in a set of errors that are uncorre-

lated. For the set of best fit parameters ~̄a, we can then use these displacements to calculate

an uncorrelated error on an observable:

δOi =
∣∣O(~̄a)−O(~̄a± δ~ai)

∣∣ .
Summing the δOi in quadrature yields the total error on observable O.

Alternatively, it is often easier to generate random sets of parameters that respect the

correlations between the parameters in question. This is what we refer to as the covariance

method. With the covariance method, random displacement vectors δ~a′i are drawn. The error

on an observable O is then just the standard deviation of the errors from these randomly

generated displacement vectors:

δO2 =
1

N

N∑
i

(
O(~̄a)−O(~̄a± δ~a′i)

)2
.

If the errors are Gaussian, then both the principle axes and the covariance method should

give identical answers.
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Figure 2.11: Plot to demonstrate consistency of various reweighting routines for determining
errors on z expansion. Descriptions of the reweighting routines are given in the text. Plotted
are the free-nucleon differential cross section and errors as a function of Q2. The plot shows
consistency between errors computed from varying z expansion parameters on a grid (blue),
reweighting directly to the principle axes of the covariance matrix (red), and randomly
sampling around a nominal value while respecting correlations between parameters (green).
These are compared to an independent calculation (black hash).
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CHAPTER 3

STAGGERED QUARKS IN LATTICE QCD

3.1 Staggered Quarks

3.1.1 Notation

In the following, it will be useful to define some notation. We assume that all quantities

have been scaled by the lattice spacing a to make them dimensionless. The lattice sites xµ

are confined to a periodic lattice, and we will take xµ to be integer values in the set

xµ ∈ {0, . . . , N − 1} (3.1)

for N = L/a with lattice box size L. The staggered phases are functions that take the values

±1 and are conventionally defined by

ηµ(x) = (−1)
∑
ν<µ xν , ζµ(x) = (−1)

∑
ν>µ xν , ε(x) = (−1)

∑
ν xν . (3.2)

We work with gamma matrices defined to satisfy the commutation relation
{
γµ, γν

}
= 2δµν .

We will often need to use indices that correspond to the corners of a unit cube. In

such cases, the indices will be referred to as “taste indices” and are labeled with capital

Roman letters. These indices take values in the range {0, . . . 7}. It is useful to use these

interchangeably with “vectorized” taste indices, which are the binary digits of the taste index

A, written as a three-vector. Defined precisely, we may write the vectorized version of taste

index A as

~A = (Mod[A, 2], Mod[Floor[A/2], 2], Floor[A/4]) , (3.3)

with ~Ai ∈ {0, 1}. In four dimensions, the taste indices instead take values in the range
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{0, . . . 15} and the vectorized indices are

~A = (Mod[A, 2], Mod[Floor[A/2], 2], Mod[Floor[A/4], 2], Floor[A/8]) , (3.4)

again with ~Aµ ∈ {0, 1}.

3.1.2 Spin-Taste Basis in the Naive Action

It is helpful to understand how the naive quarks are connected to the staggered quarks. The

naive quark free-field action on the lattice is

S =
∑
x,y

ψ(x)

[∑
µ

γµ
(
δx,y−µ̂ − δx,y+µ̂

)
+mδx,y

]
ψ(y) . (3.5)

This action has the discrete analogues of continuum symmetries (where R12, R13, and R23

are taken as generators of the rotation subgroup) [56],

Translation Tµ: ψ(x)→ ψ(x+ µ̂)

Rotation Rij : ψ(x)→ 1√
2

(
1+ γiγj

)
ψ(R−1

ij x)

Spatial Inversion Is: ψ(x)→ γ4ψ(Isx) ,

(3.6)

as well as a charge conjugation symmetry, which can be ignored for the work in this thesis.

We assume the rotations are about axes that pass through the origin. Because of the fermion

doubling, we have additional site-dependent taste symmetries belonging to the discrete Clif-

ford group Γ4. The representation matrices are [57]

Bµ(x) = γµγ5(−1)xµ , B5(x) = iγ5ε(x), Bµ(x)Bν(x), Bµ(x)B5(x) . (3.7)

The presence of these taste symmetries permits diagonalization of the action in spin-taste
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space. To demonstrate this, we define the Kawamoto-Smit matrix [58]

Ω(x) = γx11 γx22 γx33 γx44 (3.8)

and perform a change of variables on our quark field:

Ψ(x) = Ω(x)X(x) . (3.9)

Under this change of variables, the action becomes diagonal in its spinor indices:

S =
∑
x,y

X(x)

[∑
µ

ηµ(x)
(
δx,y−µ̂ − δx,y+µ̂

)
+mδx,y

]
X(y) . (3.10)

In this form, the action leaves the entries of the vector X invariant, meaning that propagation

of states under this action cannot mix the four components of the spinors X and X. The

Dirac matrix structure is encoded in the relative signs of neighboring sites through the

staggered phase η instead of explicitly permuting the indices of the spinors.

To see how the spin structure of staggered quarks is connected to the naive quark spinors,

consider a quark bilinear with some Dirac matrix structure Γ given by

VΓ(x, y) =
∑
αβ

ψα(x)Γαβψβ(y) , (3.11)

where α and β are spinor indices. This expression may be recast as a trace,

VΓ(x, y) = −Tr
[
Γαβψβ(y)ψα(x)

]
. (3.12)

The spinor combination ψβψα makes up a 4 × 4 matrix, where the 16 entries are de-

termined by the components of the two spinors. The trace is nonvanishing only when the
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spinor components give a term proportional to Γ†, because

Tr
[
ΓΓ′†

]
= 0 (3.13)

when Γ′ 6= Γ. This condition motivates a change of basis to

ψ(y)ψ(x)→ 1

4

∑
AB

χA+B(y)χA(x) Ω(y)Ξ̂
†
BΩ†(x) , (3.14)

where the indices A and B take values from 1 to 16. The Kawamoto-Smit Ω matrices have

been inserted to make the staggered fermion basis manifest. Despite the appearance of the

staggered fields χ and χ, this still has as many degrees of freedom as the left side due to the

taste index A.

The Ξ̂B are the 16 independent combinations of Dirac matrices, related to what is con-

ventionally considered the taste matrix by a permutation of indices that depends on the spin

matrix,

Ξ̂B = OΓ
BCΞC . (3.15)

The permutation is inserted only to make the definition of ΞC consistent for all spin matrices

Γ, since the same quark displacement y−x does not always correspond the same taste matrix

Ξ. It is simplest to figure out which Ξ will be nonvanishing by first fixing y − x and Γ. The

nonvanishing Ξ is then proportional to the combination of gamma matrices obtained from

the product

Ω†(y)ΓΩ(x) ∼ ΓΩ(y − x) . (3.16)

The next task is to remove the redundant spin-taste index A. The way to do this is to

define the sites on a coarser grid with lattice spacing 2a, labeled by x̃, which coincide with

every other site throughout the lattice. The sites of the finer lattice are then described by

this site on the coarser lattice plus some index within a cube. The taste indices are forced
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to coincide with the unit cube index with the relation

~A = x− x̃ , (3.17)

so that the spin and taste degrees of freedom are mapped onto the sites. This projection is

made by the assignment

χA(x̃+ ~C) = χ(x̃+ ~A)δAC = χ(x) , (3.18)

which fixes the 16× 16 object χA(x̃+ ~C) to be confined to only its 16 diagonal elements. A

similar constraint is imposed on y and B such that

~B = y − x . (3.19)

This removes a factor of 16 degrees of freedom, or a factor of 4 degrees of freedom for each

spinor in Eq. (3.14).

With this projection, construction of a spin-taste operator in general requires the use of

nonlocal operators. The spin-taste index on the staggered quark operators may be dropped

and the quark bilinear becomes

VΓ(x, x+ ~B) =
1

4

∑
BC

χ(x)χ(x+ ~B)OΓ
BCTr

[
Γ Ω(x+ ~B)Ξ

†
CΩ†(x)

]
. (3.20)

with the same trace factor that is obtained from quark bilinears written in the spin-taste

basis representation [59–61]. Evaluation of the trace gives back the staggered phase for the

desired spin-taste current,

1

4
Tr
[
Γ Ω(y)Ξ

†
CΩ†(x)

]
≡ αΓ⊗Ξ

C (x) . (3.21)
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3.1.3 Quark Taste Projections

To match the diagonalization of the action in Sec. 3.1.2, we choose a set of symmetry

operations that are also diagonal in spinor indices. These operations are a combination

of the discrete transformations listed in Eq. (3.6) and the taste transformations in Eq. (3.7).

For instance, rather than discrete translations we use shifts defined by

ψ(x)→ BTµ(x)ψ(x+ µ̂)

=⇒ Ω(x)X(x)→ BTµ(x)Ω(x+ µ̂)X(x+ µ̂)

=
[
BTµ(x)Ω(x+ µ̂)Ω−1(x)

]
Ω(x)X(x+ µ̂) . (3.22)

The quantity in square brackets becomes the identity times some site-dependent phase if we

choose

BTµ(x) = −iBµ(x)B5(x) = ηµ(x)ζµ(x)γµ , (3.23)

which replaces Eq. (3.22) by the diagonal shift operation

X(x)→ ζµ(x)X(x+ µ̂) . (3.24)

A similar approach for the rotations yields the naive quark transformation

ψ(x)→ 1√
2
BRij (x)

(
1+ γiγj

)
ψ(R−1

ij x)

=⇒ Ω(x)X(x)→ 1√
2
BRij (x)

(
1+ γiγj

)
Ω(R−1

ij x)X(R−1
ij x)

=

[
1√
2
BRij (x)

(
1+ γiγj

)
Ω(R−1

ij x)Ω−1(x)

]
Ω(x)X(R−1

ij x) . (3.25)

Choosing

BRij (x) =
1√
2

[
1+Bi(x)Bj(x)

]
=

1√
2

[
1− (−1)xi+xjγiγj

]
(3.26)
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and defining SRij (x) as the phase found in the expression (with the sign ± determined by

the ordering (i ≶ j))

SRij (x)1 =
1√
2

[
BRij (x)

(
1+ γiγj

)
Ω(R−1

ij x)Ω−1(x)
]

=
1

2

[
1 + ηi(x)ηj(x)ζi(x)ζj(x)±

(
ζi(x)ζj(x)− ηi(x)ηj(x)

)]
1 (3.27)

gives the staggered rotation symmetry transformation

X(x)→ SRij (x)X(R−1
ij x) . (3.28)

SR in Eq. (3.27) matches the rotation factor derived from the action in Ref. [62].

At this point, a digression is in order. In a continuum theory with no doublers, the

expectation is that fermions that undergo a 2π rotation will transform back to themselves

with a relative factor of −1, indicating that they are in representations of the double cover

of the rotation group. This may be easily checked by applying the rotations from Eq. (3.6),

which gives the gamma factor

1

4

(
1+ γiγj

)4
= −1 . (3.29)

In contrast, application of the staggered rotation four times gives

SRij (x)SRij (R
−1
ij x)SRij (R

−2
ij x)SRij (R

−3
ij x) = 1 . (3.30)

This apparent contradiction is the result of the simultaneous taste and rotation transfor-

mations. The continuum 1√
2

(
1+ γiγj

)
factor is always paired with a factor of BRij (x) ∼

1√
2

(
1± γiγj

)
, either cancelling or squaring the gamma rotation factor. We say that the

double cover has been absorbed by the fermion taste transformations, and is expressed by

the shifts through their anticommutation:

{
Sµ, Sν

}
= 0 (µ 6= ν) . (3.31)
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With the choice of symmetry operators outlined in this section, the four components of the

spinor X(x) are connected only by pure taste transformations and are redundant. The pure

taste symmetry transformations are removed by projecting out all but one spinor component.

This simplification is applied for practical purposes, since removing the redundant degrees

of freedom reduces the computing time needed to perform calculations of observables.

3.1.4 Staggered Quark Group Theory

Though the symmetry group of the full lattice includes four spacetime dimensions, this is

not practical computations of observables in lattice QCD. Extending operators over multiple

timeslices introduces unwanted contact terms and the operator has a more complicated

behavior under the Hamiltonian time evolution. Instead, the operators are restricted to a

single timeslice in a spatial subgroup of the full spacetime symmetry group. This is similar to

the reduction of the continuum Lorentz group to only its non-relativistic spatial translation

and rotation subgroup.

With three spacetime dimensions, the staggered quarks transform under the “Geometric

Timeslice” (GTS) group, given by

GTS = (((TM ×Q8) oW3)×D4)/Z2 , (3.32)

where the definitions of the factors are given below. This is the same group that appears in

Refs. [56, 63], but with the additional observation that SW4 can be represented as the semi-

direct product Q8 o SW3. Since the rotations and taste changes each belong to subgroups

that only intersect for the identity element, proving this semi-direct product amounts only

to showing that there exists a group homomorphism defined by

φ : SW3 → Aut(Q8) (3.33)
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and that Q8 is a normal subgroup of SW4. Apart from the elements in the center of Q8,

R−1
i (±1)Ri = ±1 , (3.34)

both requirements are satisfied by the equation

R−1
i

(
±Ξjk

)
Ri = ±εjkmΞkm ± δijΞjk , (i 6= k, j 6= k) . (3.35)

Eqs. (3.34)–(3.35) together give a mapping Q8 → Q8 defining an automorphism and showing

that the elements of Q8 form a normal subgroup. We can then define the homomorphism

φR(Ξ) ≡ R−1ΞR (3.36)

that preserves the group structure:

φR1
(φR2

(Ξ)) = R−1
2 R−1

1 ΞR1R2 = φR1R2
(Ξ) . (3.37)

The factors in the GTS group may be understood as follows:

TM : (Abelian (ZN )3) Lattice translation symmetry,

Q8 : (Order 8 Quarternions) Discrete taste transformations Ξij ,

W3 : (Order 24 Octahedral) Lattice rotational symmetry and spatial inversion,

D4 : (Order 8 Dihedral) Discrete taste transformations Ξ4, Ξ123.

The only effect of the Z2 quotient is to equate the negative identity element from both group

factors (Q8 oW3 and D4), which forbids irreducible representations that are the product of

a fermionic and bosonic representation.

The order of this group is in fact larger than the true lattice symmetry group by a factor

of 8. The reason for this is that we have double counted the momenta from the corners
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of the Brillouin zone by separating the single site translations Ti from the discrete taste

transformations Ξi. One could try to carefully treat the shift symmetries, in which case the

lattice symmetry group is formally an extension1 of the zero momentum group by (ZN )3.

The irreps one gets from a proper treatment of the shift symmetries are nearly identical to

the irreps one gets from the enlarged, tractable group if one neglects the irreps that have

more than half the maximum lattice momentum. The only exception is in how the irreps

with half the maximum momentum are handled, which are not necessary for understanding

lattice computations with small momenta (in lattice units).

The irreps of the semidirect product in this group can be determined by applying Wigner’s

little group analysis for the discrete groups. The process can be summarized as follows:

1. Compute the irreducible representations of the group Q8.

2. Organize the irreps of Q8 into orbits under action of W3.

3. Compute the subset of group transformations that leave the irrep of Q8 invariant. This

is known as the little group.

4. Compute the irreps of the little group.

We may then classify the irreducible representations of the semidirect product group by

their representations under the subgroups. The dimension of the irrep is then the product

of the dimensions of the irreps of the subgroups times the size of the orbit implied in step 2.

For nonzero momentum, the translation subgroup must also be included in the semidirect

product. This construction is presented in detail in Appendix A.

Baryon wavefunctions in the continuum theory must have overall antisymmetric wave-

functions because they are fermions. The part of the wavefunction corresponding to color is

1. Extension groups are in general difficult to determine, but methods exist for computing the irreducible
representations of certain extension groups. The lattice shift symmetry group that appears as a result of
extension depends on the prime factors of the lattice dimensions and must be treated separately for several
distinct cases. For the simplest case (a 43 lattice), the resulting group is nontrivial and has no conventional
name.

68



purely asymmetric because it must be an SU(3) color singlet constructed from three quarks,

and antisymmetrization with the Levi-Civita epsilon tensor is the only construction that

satisfies these requirements. As a consequence, creating an overall antisymmetric wavefunc-

tion amounts to finding an overall symmetric wavefunction in every quantum number except

color.

To determine the symmetric part of the baryon wavefunctions, it helps to embed the lat-

tice subgroup into a larger subgroup that is more tractable. In the continuum, the embedding

is the SU(6) quark model that symmetrizes over flavor and spin:

SU(2)S × SU(3)F ⊂ SU(6)SF (3.38)

where S and F stand for spin and flavor, respectively. For the GTS group, there is an addi-

tional taste symmetry that must be included. Each of the factors Q8, SW3 (rotations without

spatial inversion), and D4 may be separately embedded in an SU(2) group, simplifying the

interpretation of restoration of symmetry in the continuum limit by the embedding

[D4 × (Q8 o SW3)] ⊂ [SU(2)T1 × SU(2)T2 × SU(2)S ] ⊂ [SU(4)T × SU(2)S ] , (3.39)

where T stands for taste. The quark flavor may also be symmetrized, meaning that the full

embedding is

SU(2)S × SU(3)F × SU(4)T ⊂ SU(24)SFT . (3.40)

By studying how the embedding group breaks down to various subgroups, one can deduce

the particle content of the lattice irreducible representations. This procedure was carried

out in Ref. [64] and will be summarized here.

The quark objects transform under the fundamental representation of the symmetry

group. Here, they transform under the 24 representation of SU(24). Finding a symmetric

representation of three quarks in SU(24) amounts to symmetrizing over the indices of three
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quarks, which yields the 2600S of SU(24), where 2600 is the dimension of the irreducible

representation and the subscript S denotes that the representation is overall symmetric. The

representations that map onto nucleon states and ∆ states have different spins, so the first

step is to decompose the SU(24) irreps under the spin × flavor-taste subgroup:

SU(24)SFT → SU(2)S × SU(12)FT ,

2600S → (4S ⊗ 364S)⊕ (2M ⊗ 572M ) , (3.41)

where again the numbers denote the dimensions of the irreps and the subscript M denotes a

representation of mixed symmetry. The symmetric representations here correspond to states

whose masses and matrix elements tend, in the continuum limit, to those of the ∆ baryon,

and the mixed representations correspond to those states that tend to the nucleon mass.

Next, the SU(12)FT group must be decomposed into its subgroups. The SU(12)FT

subgroup is reduced to SU(8)ud × SU(4)s, allowing study the decomposition of the irreps

into representations with different strangeness. In nature, the strange quark has a mass that

is approximately 27 times the average mass of the up and down quarks. The decomposition is

completed by separating the SU(8)ud subgroup into taste and isospin (strangeness), leading

to SU(4)ud × SU(4)s × SU(2)I , and then taking the diagonal taste subgroup SU(4)ud ×

SU(4)s → SU(4)T × U(1)s.

Representations transforming under the overall symmetric 20S representation of this

SU(4)T factor will have the same spin-flavor structure in the continuum limit as the physical

baryons, and are expected to reproduce the physical baryon spectrum. Since the continuum

limit restores the symmetry group to SU(8)×SU(4), the representations of SU(2)I×SU(4)T

that result from decomposing SU(8)×SU(4) representation will have identical masses in the

continuum limit. It is possible to use this observation to identify the expected continuum
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masses and matrix elements of the representations. The result of this procedure gives

SU(12)FT → SU(8)ud × SU(4)s ,

364S → (120S ⊗ 1)0 ⊕ (36S ⊗ 4)−1 ⊕ (8⊗ 10S)−2 ⊕ (1⊗ 20S)−3 ,

572M → (168M ⊗ 1)0 ⊕ (36S ⊗ 4)−1 ⊕ (28A ⊗ 4)−1

⊕ (8⊗ 6A)−2 ⊕ (8⊗ 10S)−2 ⊕ (1⊗ 20M )−3 , (3.42)

where the subscript on the representations denotes the strangeness.

For the purposes of this project, we are interested only in the operators that have zero

strangeness, that is, only the operators that create nucleons. Continuing the decomposition

to completion for these representations,

SU(8)ud × SU(4)s → SU(2)I × SU(4)T × U(1)s ,

(120S ⊗ 1)0 → (4S ⊗ 20S)0 ⊕ (2M ⊗ 20M )0 ,

(168M ⊗ 1)0 → (4S ⊗ 20M )0 ⊕ (2M ⊗ 20S)0 ⊕ (2M ⊗ 20M )0 ⊕ (2M ⊗ 4A)0 . (3.43)

Both representations contain a 20S of SU(4)T , indicating that all operators transforming

under either representation in Eq. (3.43) will generate baryons with physical masses in the

continuum limit. The former irrep in Eq. (3.43), the (120S⊗1)0, was found by decomposing

the symmetric representation of SU(12)FT . Since the symmetric representation is paired

with the spin 3
2 representation of SU(2)S in Eq. (3.41), all operators that transform under

the (120S ⊗ 1)0 will form spin 3
2 baryons, or ∆ baryons. However, unlike the physical world,

Eq. (3.43) indicates that baryons transforming with spin 3
2 and isospin 1

2 may be formed

in addition to baryons with spin 3
2 and isospin 3

2 . This is a consequence of allowing the

operators to be symmetrized over taste as well as spin and isospin. For this reason, the

operators transforming under the spin 3
2 representation of SU(2)S are all referred to as ∆-

like. A similar argument may be made for the latter irrep in Eq. (3.43), the (168M ⊗ 1)0
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irrep, which transforms under the spin 1
2 and creates states that are referred to as N -like.

From here, the lattice operators may be deduced by applying Eq. (3.39) in reverse. The

simplest way to determine the multiplicities of the lattice irreducible representations is to

break SU(4)T to SU(2)T1 × SU(2)T2 first, giving

SU(4)T → SU(2)T1 × SU(2)T2 ,

20S → (4S ⊗ 4S)⊕ (2M ⊗ 2M ) ,

20M → (4S ⊗ 2M )⊕ (2M ⊗ 4S)⊕ (2M ⊗ 2M ) ,

4A → (2M ⊗ 2M ) . (3.44)

The representations must be subduced down to the discrete lattice subgroups to complete

the analysis. There exist shortcuts that allow determination of the irreducible representa-

tions without going to great lengths. Because of the Z2 quotient factor in the GTS group,

Eq. (3.32), baryonic operators may only be constructed from fermionic representations of D4.

This means that there is only one possible irreducible representation for the representations

to subduce to, namely a two-dimensional representation:

SU(2)T1 → D4 ,

4S → 2⊕ 2 ,

2M → 2 . (3.45)

Any irreducible representation that transforms in the 4S irrep of SU(2)T1 simply gives two

copies of the same representations as the 2M irrep.

The semi-direct product of Eq. (3.32) complicates the subduction of SU(2)T2×SU(2)S ,

but not too much. It helps to note the tautology that when restricting to the subgroup Q8o

SW3 → SW3, the orbits of the representations of Q8 transform as representations of SW3.

This means that the restriction to the SW3 subgroup of Q8oSW3 yields irreps in a diagonal

72

-



subgroup, [SW3]diag. The continuum group SU(2)T2 × SU(2)S equivalently restricts to

[SU(2)]diag. It is simpler to compute the subduction from [SU(2)]diag to [SW3]diag and the

restriction from Q8oSW3 to [SW3]diag than it is to subduce directly from SU(2)T2×SU(2)S

to Q8 o SW3.

There are three fermionic representations of Q8 o SW3, which restrict to

Q8 o SW3 → [SW3]diag ,

2⊗ 2→ A1 ⊕ T1 ,

2⊗ 2̄→ A2 ⊕ T2 ,

2⊗ 4→ E ⊕ T1 ⊕ T2 . (3.46)

Forming D4× (Q8 o SW3) in the GTS group, one obtains the 8, 8′, and 16 representations,

respectively. The subduction from SU(2)T2 × SU(2)S to [SW3]diag gives

SU(2)T2 × SU(2)S → [SU(2)]diag ,

2⊗ 2→ 3⊕ 1 ,

2⊗ 4→ 5⊕ 3 ,

4⊗ 4→ 7⊕ 5⊕ 3⊕ 1 (3.47)

and we may deduce from computing the product tables of all of the representations that [56]

[SU(2)]diag → [SW3]diag ,

1→ A1 ,

3→ T1 ,

5→ E ⊕ T2 ,

7→ (A2 ⊕ T1 ⊕ T2) . (3.48)
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SU(2)S × SU(4)T GTS
4S ⊗ 20S 2 · 8⊕ 2 · 8′ ⊕ 3 · 16
4S ⊗ 20M 1 · 8⊕ 1 · 8′ ⊕ 4 · 16
4S ⊗ 4A 0 · 8⊕ 0 · 8′ ⊕ 1 · 16

2M ⊗ 20S 1 · 8⊕ 0 · 8′ ⊕ 2 · 16
2M ⊗ 20M 3 · 8⊕ 0 · 8′ ⊕ 1 · 16
2M ⊗ 4A 1 · 8⊕ 0 · 8′ ⊕ 0 · 16

Table 3.1: Summary of subduction of irreducible representations from the continuum group
to GTS [64]. All of the 4S representations of SU(2)S correspond to ∆-like baryons, and
all of the 2M representations correspond to N -like baryons. Note that the flavor (isospin)
symmetry group is not considered in this table.

GTS I = 3
2 I = 1

2
8 3N + 2∆ 5N + 1∆
8′ 0N + 2∆ 0N + 1∆
16 1N + 3∆ 3N + 4∆

Table 3.2: Summary of the multiplicities of taste states in the irreducible representations of
SU(2)I ×GTS [64]. These states belong to the lowest-order multiplet. Each excitation of a
physical nucleon and delta will also have its own multiplet of baryon taste states.

The combination of all of these decompositions is summarized in Table 3.1.

The irreps must be classified by which representation of SU(2)I × GTS they belong to,

corresponding to either isospin 3
2 or 1

2 . Furthermore, the states that belong to the (120S⊗1)0

irrep all give ∆-like baryon states, and the states that belong to the (168M ⊗ 1)0 irrep give

N -like states. By revisiting Eq. (3.43), we can use Table 3.1 to compute the multiplicity of

the baryon tastes of each particle type in each irrep. These taste multiplicities are listed in

Table 3.2.
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3.2 Staggered Quark Operators

3.2.1 Staggered Quark Propagator

The baryon operators are tied up by computing propagators, formed from contracting a

quark and an antiquark operator into

χa(y)χb(z) =
[
Gab(y, z)

]−1
. (3.49)

Solving for the free-field staggered quark propagator is not as straightforward as for the

continuum propagator. The solution requires special treatment of the phases to deal with

the site dependence of the taste components. The quark propagators are the inverse of the

action,

S =
∑
x,y

χ(x)

[
1

2

∑
µ

ηµ(x)
(
δx,y−µ̂ − δx,y+µ̂

)
+maδx,y

]
χ(y) . (3.50)

determined by solving for the Green’s function

∑
y

(
/D +m

)
x,y G(y, z) = δx,z , (3.51)

where x, y, and z are lattice sites and the color indices have been dropped.

Fourier transforming Eq. (3.51) gives

e−ik·z =
∑
xy

[
1

2

∑
µ

ηµ(x)
(
δx,y−µ̂ − δx,y+µ̂

)
+maδx,y

]
e−ik·xG(y, z)

=
∑
y

e−ik·y
[

1

2

∑
µ

ηµ(y)
(
e+ikµa − e−ikµa

)
+ma

]
G(y, z)

=
∑
y

e−ik·y
[
i
∑
µ

ηµ(y)sin(kµa) +ma

]
G(y, z) , (3.52)

with −π/2 ≤ kµ < 3π/2.

It is easier to solve for the propagator if the staggered phases and the unit cube sites are
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factored out the momenta and sites. To do this, define the Brillouin zone momenta

(ΠB)ν =

 π/a Bν = 1

0 Bν = 0
, (3.53)

where B is a taste index in four dimensions, and

(
Πηµ

)
ν

=

 π/a ν < µ

0 ν ≥ µ
. (3.54)

Then define tilde variables such that kµ = k̃µ + (ΠB)µ and y = ỹ + ~A. When this is done,

the staggered phase can be written as a momentum contribution by replacing

ηµ(ỹ + ~A) = e−iΠηµ ·
~A , (3.55)

and the sine function may be written

sin(kµa) = sin(k̃µa+ (ΠB)µa) = (−1)Bµ sin(k̃µa) (3.56)

where the tilde denotes that −π/2 ≤ k̃µ < π/2. The last change to make is to replace G

with its Fourier transform

G(y, z) =
1

V 2

∑
p̃p̃′

e+i(p̃+ΠC)·(ỹ+ ~A)e+i(p̃′+ΠC′)·(z̃+ ~D)GCC
′
(p̃, p̃′) (3.57)
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Applying these changes, Eq. (3.57) takes the form

e−i(k̃+ΠB)·z

=
1

V 2

∑
ỹp̃p̃′

∑
ACC ′

[
i
∑
µ

e−i(k̃−p̃)·(ỹ+ ~A)e−i(ΠB+ΠC+Πηµ)· ~A(−1)Bµsin(k̃µa)

+ e−i(k̃−p̃)·(ỹ+ ~A)e−i(ΠB+ΠC)· ~Ama
]

× e+i(p̃′+ΠC′)·(z̃+ ~D)GCC
′
(p̃, p̃′) . (3.58)

The terms have been grouped by how they combine together. The first reduction that can

be done is to complete the sum over ỹ, which reduces one of the exponentials to

∑
ỹ

e−i(k̃−p̃)·(ỹ+ ~A) =
V

16
δ
k̃p̃
e−i(k̃−p̃)·

~A . (3.59)

After evaluating the δ function, the remaining exponential becomes unity, so the term will

be dropped. The next exponentials to reduce are the taste terms

∑
A

e−i(ΠB+ΠC+Πηµ)· ~A = 16 δB,C+ηµ (3.60)

where the shorthand ηµ = a
πΠηµ ∈ {0, 1}. At this point, Eq. (3.58) may be reduced to

e−i(k̃+ΠB)·(z̃+ ~D)

=
1

V

∑
p̃′

∑
CC ′

[
i
∑
µ

δB,C+ηµ(−1)Bµsin(k̃µa) + δB,C ma

]

× e+i(p̃′+ΠC′)·(z̃+ ~D)GCC
′
(k̃, p̃′) . (3.61)

The factor in square brackets should be reminiscent of the four-component spinor factor
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/k +m. Indeed, this factor is easily inverted by multiplying

[
−i
∑
ν

δA,B+ην (−1)Aν sin(k̃νa) + δA,Bma

]
. (3.62)

The cross terms involving one factor of ma immediately cancel because of the relative sign

on the first term. Likewise, for the terms proportional to sin(k̃a), only the µ = ν terms

survive. This is the result of the relation

∑
B

δA,B+ηνδB,C+ηµ(−1)Aν+Bµ = δA,C+ηµ+ην (−1)Aν+Cµ+(ηµ)µ (3.63)

which, when summed over C, gives the sign (−1)Aµ+Aν+(ην)µ . Under the replacement

µ↔ ν, the factor

(−1)(ην)µ → (−1)(ηµ)ν = −(−1)(ην)µ , (3.64)

so the cross terms will always cancel. Carrying out the product gives

[
−i
∑
ν

δA,B+ην (−1)Aν sin(k̃νa) + δA,Bma

]
×

[
+i
∑
µ

δB,C+ηµ(−1)Bµsin(k̃νa) + δB,C ma

]

=

[∑
µ

sin2(k̃µa) + (ma)2

]
δA,C . (3.65)

Dividing out the prefactor and applying another Fourier transform reduces Eq. (3.61) to

G(x, z) =
1

V 2

∑
k̃p̃′

∑
AC ′

e+i(k̃+ΠA)·(x̃+ ~E)e+i(p̃′+ΠC′)·(z̃+ ~D)GAC
′
(k̃, p̃′)

=
1

V

∑
k̃

∑
AB

−i
∑
ν δA,B+ην (−1)Aν sin(k̃νa) + δA,Bma∑

µ sin2(k̃µa) + (ma)2
e+i(k̃+ΠA)·(x̃+ ~E)e−i(k̃+ΠB)·(z̃+ ~D)

=
1

V

∑
k

−i
∑
ν ην(z)sin(kνa) + ma∑
µ sin2(kµa) + (ma)2

e−ik·(z−x) , (3.66)

completing the computation of the staggered propagator.
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3.2.2 Computational Solution for a Quark Propagator

In practice, it is computationally prohibitive on the lattice to solve G(y, z) in Eq. (3.51)

for all y and z. This would require enough memory to store the number of sites squared

complex numbers. To circumvent this issue, the propagator is convolved with a source object

specification ξcd(z) that solves

∑
b,c,y,z

(
/D +m

)ab
x,y G

bc(y, z)ξcd(~z; t) ≡
∑
b,y

(
/D +m

)ab
x,y G̃

bd(y; t) = ξad(~x, t) , (3.67)

which has replaced the delta function that usually appears in the Green’s function with a

source object.

Sources constructed in this way do not necessarily preserve gauge invariance for all terms

in the sum. This is seen by looking at two simple sources combined together to give a

propagator. Consider two sources tied together with

ξcd(~z, t) = δcdδ(~z mod2, 0) , (3.68)

which has non-zero support on every other lattice site throughout a timeslice. Then a two-

point correlation function can be constructed by squaring the Green’s function to give a pion

propagator,

C(2)(t) =
∑
b,d,y

[
G̃db ∗(y; t)

]−1 [
G̃bd(y; t)

]−1

=
∑

b,d,y,z,z′

[
Gdb ∗(y, z)

]−1 [
Gbd(y, z′)

]−1
δ(~z mod2, 0)δ(~z ′ mod2, 0) . (3.69)

The non-gauge invariant contributions come from pieces in which ~z 6= ~z ′. In the ensemble

average, the gauge-variant pieces will average to zero, but contribute noise.

The noise contributions can be partially mitigated by fixing to a particular gauge. When

the gauge is fixed, the quark operators change to include some gauge link “cloud” around
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the operator, summarized as

χ(x)→
∑
y

V (y, x)χ(x) . (3.70)

The matrix V (y, x) can be thought of as a weighted average of gauge link paths connecting

site y to site x. Gauge links also get connecting matrices, of the form

Uµ(x)→
∑
y,y′

V (y, x)Uµ(x)V †(x+ µ, y′) . (3.71)

Operators that may have vanished in the ensemble average before contribute a nonzero

amount after gauge fixing, for instance

〈χ(x)χ(x′)〉 = 0 (~x 6= ~x′)

→
∑
y,y′
〈χ(x)V †(x, y)V (y′, x′)χ(x′)〉 =

∑
y

〈χ(x)V †(x, y)V (y, x′)χ(x′)〉 6= 0 . (3.72)

In the staggered baryon code, two types of quark propagators are used. The first is the

“corner wall” source, namely Eq. (3.68). The second source used in constructing staggered

baryon correlation functions is the random wall source, with a similar construction given by

∑
z

(
/D +m

)ab
x,y Ĝ

bc
A (y; t) = ξ̂ad(~x)δ(~x mod2, ~A) (3.73)

where ξ̂ad is Gaussian random noise generated in vectors that satisfy the condition

〈
(
ξ̂ab(~x)

)∗
ξ̂bc(~y)〉 = δacδ(~x, ~y) . (3.74)

In principle, baryon correlators could also be constructed with “baryon random wall”

noise sources, which share Eq. (3.73) but with noise that instead satisfies

〈εa
′b′c′ ξ̂a

′a(~x)ξ̂b
′b(~y)ξ̂c

′c(~z)〉 = εabcδ(~x, ~y)δ(~y, ~z) . (3.75)
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These noise sources allow for the construction of point baryon sources, but the numerics of

this computation make them not practical. The reason is that these operators suffer from

an unfavorable signal-to-noise scaling. Due to the condition on the random noise vectors

in Eq. (3.75), the only terms that contribute to the signal are those for which ~x = ~y = ~z.

This occurs only once for every site within a timeslice. However, terms with ~x 6= ~y or ~y 6= ~z

will contribute to the noise, for which this happens ∼ V 3 times for the volume V . So the

signal-to-noise scaling goes as

S/N ∝ V√
V 3

= V −
1
2 , (3.76)

decreasing with the square root of the volume. This is not the case for the mesonic noise in

Eq. (3.74), for which

S/N ∝ V√
V 2
∼ const . (3.77)

In practical situations, the scaling will be slightly better than these estimates because the

contribution to the signal or noise exponentially falls off with distance, but the baryon

random walls performed poorly already for the smallest volume they were tested on.

3.2.3 Meson Operators

Most simple observables involving baryons are constructed from an equal number of baryon

and antibaryon operators. When these two operators are tied together, one obtains an object

transforming under the tensor product of the baryon and antibaryon representations, no

matter what the temporal separation of the baryon-antibaryon pair. Rather than worrying

about the details of the baryon operators, it is often easier to treat the baryon-antibaryon

pair as a quark-antiquark pair instead. The group theory product rules for the resulting

mesonic operators are both easier to work out and conceptually easier to grasp. The only

complication is for the 16 representation, in which the operators transform like two-vectors at

each site. Special care is needed for these operators, but the analogy with a meson presented

here still holds.
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As was discussed in the previous section, baryon operators transform under the three

fermionic lattice irreps, named according to their dimensions: the 8, 8′, and 16. The factors

of eight in the dimensions stem from the eight sites on the unit cube. This “taste” index is

explained in more detail in Sec. 3.1.1. Projecting a quark field to zero momentum, we may

represent the fundamental quark field, which transforms in the 8 representation, solely by

its taste index as

χA =
∑
~y

χ(2~y + ~A) , (3.78)

where the sum over ~y picks out every other site on a single timeslice.

For the rest of this section, color indices play no role and will be omitted. Meson operators

are constructed by stitching together a quark-antiquark pair with a phase, of the general

form

φΓ⊗Ξ
AĀ,B

= ωΓ⊗Ξ
B (A)χĀχAδA,Ā+B , (3.79)

where Γ and Ξ denote the spin and taste structure, respectively, of the operator, and B is

fixed depending on the current being considered. Here, ωΓ⊗Ξ denotes a phase that takes the

values ±1, and depends on the lattice site A and the spin and taste Γ and Ξ, respectively.

The spatial structure of the operators in Eq. (3.79), corresponding to the spin and taste

of an equivalent naive quark operator, are encoded into into the phases and the relative

displacement B. It is easy to see that a nonlocal (B 6= 0) operator can change orientation

under rotations. To illustrate the spatial structure of the phases, consider the local spatial-

axial current, φAi⊗AiB=0 . This operator has the form

φAi⊗Ai
AĀ,0

= (−1)
~AiχĀχA . (3.80)

Under a rotation Rij , the phases swap sites, bringing

(−1)
~Ai → (−1)

~Aj . (3.81)
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This operator still transforms as though it had a direction dependence, since the direction

dependence is encoded into the relative signs of the sites.

Non-vanishing correlation functions at zero momentum are those that have trivial trans-

formations under the lattice timeslice symmetries. For all zero momentum irreducible rep-

resentations of the lattice timeslice group (both bosonic and fermionic), the only way to

construct an operator in the trivial representation is to trace over the square of the operator:

φS⊗S = Tr[R⊗R] =
∑
α

R
α
Rα (3.82)

for any irrep R and components α. If we replace R by any meson operator, we end up with

a meson two-point function

C(t) = 〈φΓ⊗Ξ(t)φ∗Γ⊗Ξ(0)〉 . (3.83)

At nonzero momentum, this condition is relaxed to allow for correlation functions that are

proportional to the momentum, for instance the continuum (trivial taste) matrix element

〈Aµ(t)P(0)〉 ∝ pµ . (3.84)

Despite this, the tensor product of all operators in the expectation value must transform

trivially under the taste symmetry.

Often, it is beneficial to shortcut the sum in Eq. (3.82) by computing a sum over only one

of the terms. In this case, the operator is put into a reducible representation that is made

83



up of the sum of all of the operators. For example, the restriction to a corner wall source

∑
α

R
α
Rβ =

∑
A′

φΓ⊗Ξ × χA′χA′δA′,0

=φΓ⊗Ξ ×
∑
A′

[
1

8

(
1 + (−1)

~A′1 + (−1)
~A′2 + . . .

)
χA′χA′

]
=φΓ⊗Ξ × 1

8

[
φS⊗S + φS⊗Vi + φS⊗Vj + . . .

]
(3.85)

for which only the appropriate trace term will be nonvanishing.

3.2.4 Baryon Operators

Consider a quark trilinear object with all of the quarks on the same timeslice,

T ijk,abcABC = χ
i,a
A χ

j,b
B χ

k,c
C , (3.86)

where a, b, and c are color indices, i, j, and k are flavor indices, and A, B, C, are taste indices.

It is worth noting that the group theory dictates that these operators behave similar to a

lone quark at a site D = A+B +C, with the exception of how treatment of the two-vector

in the 16 representation is handled and the sign under rotations for the 8′ representation.

This is immediately apparent for the shift symmetry, where

T ijk,abcABC → ζµ(A)ζµ(B)ζµ(C)T ijk,abcA+µ,B+µ,C+µ = ζµ(A+B + C)T ijk,abcA+µ,B+µ,C+µ , (3.87)

noting that under the sum modulo 2,

(A+ µ) + (B + µ) + (C + µ) = A+B + C + µ = D + µ . (3.88)

It is only for the transformations under rotations that the behavior may differ from a single

quark.
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We can define a tensor that corresponds to an operator in an irreducible representation

of the lattice spacetime group by Oijk,rABC,D, where r is meant to represent the specific con-

struction of the operator within the irreducible representation. The different rs come about

from selecting different sites on a unit cube for each quark in the baryon trilinear. There

are many ways of choosing these combinations, and the choices were classified in Ref. [56].

We adopt the same convention for organizing operators into classes. It turns out that for

each taste state in Eq. (3.2), there exists an operator that transforms in that irreducible

representation.

We note that the tensor Or is symmetric under simultaneous exchange of flavor and

taste:

Oijk,rABC,D = Ojik,rBAC,D = Oikj,rACB,D . (3.89)

The details of the structure of how the tensor Or are constructed for specific irreps are given

in Ref. [64] and not written out in detail here. The baryon operator is then

BrD =
∑
abc

∑
ijk

∑
ABC

Oijk,rABC,Dχ
i,a
A χ

j,b
B χ

k,c
C εabc , (3.90)

where εabc is the Levi-Civita antisymmetric tensor. The antibaryon operator is created by

complex conjugating BrD and replacing χ→ χ. To construct a two-point correlation function,

all of the quark operators within the baryon and antibaryon operators are contracted into

propagators, and the appropriate trace over baryon source and sink locations is taken. The

correlation function then takes the form (assuming the antibaryon operator starts at t = 0)

Crr̄(2)(t, 0) =
∑
D

〈BrD(t)Br̄D(0)〉

=
∑
abcāb̄c̄

∑
ijkīj̄k̄

∑
ABCĀB̄C̄

∑
D

εabcεāb̄c̄
(
Oīj̄k̄,r̄
ĀB̄C̄,D

)∗
Oijk,rABC,D

×
[
G
īi,aā
AĀ

(t, 0)
]−1 [

G
jj̄,bb̄
BB̄

(t, 0)
]−1 [

G
kk̄,cc̄
CC̄

(t, 0)
]−1

. (3.91)
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Since there are multiple baryon operators that transform in the irreducible representations

of the lattice symmetry group, one can construct a large operator basis simply by varying r

and r̄ over the many different operator constructions of Ref. [64].

The baryon operators with a three-point current insertion included must use another

propagator to represent the daughter quark from the current insertion to the sink operator.

In this case, it makes sense to tie up the two spectator quarks separately from the leg with

the current insertion. The spectator object contracts over two quarks, giving

[
G̃
īi,aā,rr̄
AĀ,DD̄

(t, 0)
]−1

=
∑
bcb̄c̄

∑
jkj̄k̄

∑
BCB̄C̄

εabcεāb̄c̄
(
Oīj̄k̄,r̄
ĀB̄C̄,D̄

)∗
Oijk,rABC,D

×
[
G
jj̄,bb̄
BB̄

(t, 0)
]−1 [

G
kk̄,cc̄
CC̄

(t, 0)
]−1

. (3.92)

This spectator contribution behaves in much the same way that an antiquark propagator

would in a meson operator.

The interacting quark leg itself looks like a quark propagator, and is constructed as

[
Ĝ
īi,aā,Γ⊗Ξ
AĀ,E

(t, τ, 0)
]−1

=
∑
i′A′eē

[
G
īi′,aē
A,(A′+E)

(t, τ)
]−1 [

ω
Γ⊗Ξ,ēe
E (A′)

] [
G
i′i,eā
A′Ā

(τ, 0)
]−1

,

(3.93)

where ωΓ⊗Ξ
E is defined in Eq. (3.79) with the color indices reintroduced here. Combining the

two expressions for the spectator and interaction legs of the three-point function, we find

the correlation function

C
Γ⊗Ξ,rr̄
(3),E

(t, τ, 0) =
∑
D

〈BrD+E(t)|φΓ⊗Ξ
E |Br̄D(0)〉

=
∑
D

∑
īiaāAĀ

[
G̃
īi,aā,rr̄
AĀ,D,(D+E)

(t, 0)
]−1 [

Ĝ
īi,aā,Γ⊗Ξ
AĀ,E

(t, τ, 0)
]−1

. (3.94)
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3.2.5 Code Implementation

Producing a baryon correlation function of the form in Eq. (3.94) depends on the operators

r and r̄ being considered. Most operators reuse large subsets of index combinations, but the

number of possible index combinations in Eqs. (3.92) and (3.93) is huge2. This means that

the code is especially amenable to reuse of quark operator tie-ups. The code is designed

in such a way that tie-ups are only done once, then saved to memory. Memory constraints

are a challenge, but can be circumvented by using a memory map to increase the storage

capacity.

The first ingredient that is computed and stored is the parallel-transported the quark

propagators. Parallel transport [56] indicates that paths are averaged to take all possible

shortest-link paths in both positive and negative directions. If we define

↔
U i(x, x

′) =
1

2

(
Ui(x)δ

x,x′−î + U
†
i (x− î)δ

x,x′+î

)
, (3.95)

then the parallel transport dressing with links is

V bcB (x, y) =



δx,y :
∑
`
~B` = 0

↔
U i(x, y) :

∑
`
~B` = 1

1
2

∑
x′,i,j

↔
U i(x, x

′)
↔
U j(x

′, y) :
∑
`
~B` = 2

1
6

∑
x′,x′′,i,j,k

↔
U i(x, x

′)
↔
U j(x

′, x′′)
↔
U k(x′′, y) :

∑
`
~B` = 3

, (3.96)

where the sums are implicitly taken over i 6= j 6= k 6= i and only for the directions that

~B` = 1. Defining the corner wall propagator
[
G̃bcA (y; t)

]−1
as the solution to the Green’s

function in Eq. (3.51) with source Eq. (3.68), are dressed with the gauge links on the sink

to form [
H̃ac
AB(y; t)

]−1
=
∑
x,b

[
G̃abA (x; t)

]−1
V bcB (x, y) . (3.97)

2. For Eq. (3.92), the number of combinations of tie-ups in the code that are saved is 86 × 32 = 2359296.
See Eq. (3.99) for the actual implementation.
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This is done for three sets of eight propagators, corresponding to the three quarks that

make up the baryon operator and the eight unit cube sites from which they can originate.

The taste index A denotes the corner that the corner wall started from, and index B is the

point-splitting at the sink.

For the two-point functions, there is no need to save any more than this. The correlation

function is tied up as

Crr̄(2)(t, 0) =
∑
abcāb̄c̄

∑
ijkīj̄k̄

∑
ABCĀB̄C̄

∑
D

εabcεāb̄c̄
(
Oīj̄k̄,r̄
ĀB̄C̄,D

)∗
Oijk,rABC,D

× δīiδjj̄δkk̄
[
H̃aā
AĀ

(t, 0)
]−1 [

H̃bb̄
BB̄

(t, 0)
]−1 [

H̃cc̄
CC̄

(t, 0)
]−1

, (3.98)

equivalent to Eq. (3.91). Since we fix to Coulomb gauge, the absence of links at the source is

irrelevant. It is possible to put links at the source, but this would introduce the complication

of which site those links tie up to and increase the number of inversions to account for all

possible combinations of link displacement versus corner A, B, and C. For these reasons,

the gauge links are not put in.

For the three-point correlation function tie-ups, further improvement in computing time

is made by saving more data for reuse. The next piece to tie up is the spectator quark

contribution, for use in completing the construction delineated in Eq. (3.92). After tying

together the two spectator quarks into a pair, parallel transport links are applied again and

random wall noise is multiplied to prepare the contributions for attaching the interaction

leg. The code saves spectator contributions of the form

[
H̃
jj̄kk̄,âā
ABB̄CC̄,D

(t, 0)
]−1

=
∑

abca′b̄c̄

∑
xy

εabcεāb̄c̄ δjj̄δkk̄ ξ̂ âa
′

A (x)
(
V a
′a

A (x, y)
)†

× δ(ymod2, ~D)
[
H̃bb̄
BB̄

(y; t)
]−1 [

H̃cc̄
CC̄

(y; t)
]−1

, (3.99)

where the noise vectors ξ̂(x) satisfy the requirement in Eq. (3.74) and t is fixed by the
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timeslice on which ξ̂(x) is defined.

The last piece to be saved is the quark leg with the current interaction, which is tied up

as

[
Ĥ
īi,aā,Γ⊗Ξ
AĀ,E

(t, τ, 0)
]−1

=
∑

i′i′′A′eē

δii
′
δi
′′īOi

′i′′
[
Ĥ
ae,Γ⊗Ξ
AA′,E (x; t, τ)

]−1 [
H̃eā
A′Ā(x; τ)

]−1
,

(3.100)

where we have contracted the daughter quark propagator eminating from the sink together

with the three-point interaction current to give

[
Ĥ
ae,Γ⊗Ξ
AA′,E (x; t, τ)

]−1
=
∑
y

ε(y + ~A)δ(A′, A+ E)
[
ĜabA (y; t, τ)

]∗−1 [
V̂
be,Γ⊗Ξ
E (y, x)

]†
,

(3.101)

with Ĝ defined in Eq. (3.73) as a random wall propagator generated with the same noise as

was used in Eq. (3.99). Again, t is held fixed, but τ is allowed to vary over all the timeslices.

The operator Oi′i′′ is a stand-in operator to indicate that the interaction current may change

the flavor of the quark. V̂ is defined similarly to V in Eq. (3.96), except that the links are

applied with the signs from performing shifts and a phase to make the current have the

desired spin and taste:

V̂ Γ⊗Ξ
E (x, y) = ωΓ⊗Ξ

E (y)

×



δx,y :
∑
`
~E` = 0

↔
U i(x, y)ζi(x) :

∑
`
~E` = 1

1
2

∑
x′,i,j

↔
U i(x, x

′)
↔
U j(x

′, y)ζi(x)ζj(x
′) :

∑
`
~E` = 2

1
6

∑
x′,x′′,i,j,k

↔
U i(x, x

′)
↔
U j(x

′, x′′)
↔
U k(x′′, y)ζi(x)ζj(x

′)ζk(x′′) :
∑
`
~E` = 3

. (3.102)
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CHAPTER 4

STAGGERED BARYON SPECTRUM CALCULATION

4.1 Introduction

4.1.1 Lattice Baryons

Baryons are difficult to simulate with the Monte Carlo methods of lattice QCD. Baryon cor-

relation functions are subject to a signal-to-noise degradation that makes simulation of bary-

onic observables more challenging than the equivalent meson matrix elements [65]. Baryonic

correlation functions are expectation values of three quark and three antiquark operators,

where the signal falls off like a nucleon propagator

S ∼ 〈O〉 = 〈χ3(t)χ̄3(0)〉 ∼ e−MN t . (4.1)

The square of the noise is given by the expectation value of the operator squared, which gets

contributions from a three pion propagator

N2 ∼ 〈OO†〉 = 〈χ3(t)χ̄3(t)χ̄3(0)χ3(0)〉 ∼ e−3Mπt . (4.2)

Taking the signal-to-noise of the correlation function, we find that

S/N ∼ e−(MN−3
2Mπ)t . (4.3)

Since the pion mass is substantially lower than the nucleon mass, the signal-to-noise ratio

exponentially falls off as the time separation between the source and sink increases. With

baryon correlation functions, it is not possible in practice to take t → ∞, as with meson

correlation functions. As a result, fits to baryon correlation functions are often restricted to

a lower t range. Efforts to increase the time range by fitting to lower t can then make fits
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susceptible to contamination from excited states.

Baryons are larger than mesons and are more affected by finite size corrections. Periodic

boundary conditions are used to prevent edge effects caused by the finite box size of the

lattice, which means that particles can self-interact via exchange of pions that loop around

the lattice. As a consequence, lattice box sizes larger than the size of the baryon are necessary

to realistically simulate the physics of the system, with Refs. [66–68] suggesting that a box

size of MπL & 4 could be necessary. These finite size contributions at least as strong as

e−MπL [34, 69–71], meaning that the contributions become more significant at lower pion

mass and smaller box sizes. Both smaller quark masses and larger box sizes contribute to

longer computation times, making the calculations more difficult.

In this chapter, we compute the staggered baryon mass spectrum using the Highly Im-

proved Staggered Quark (HISQ) action. This computation is a prerequisite for the compu-

tation of the axial charge and precise calculations of the baryon masses is important to have

confidence in our results from studies of three-point correlation functions. We will estimate

the size of taste splittings from the baryon sector and compare with the taste splittings from

the meson sector. The N -like and ∆-like masses are extracted on a single lattice ensemble

with statistical errors only. A computation of the spectrum with the asqtad action [72] ap-

peared in Ref. [73], and some preliminary results for this computation appeared in Ref. [74].

4.1.2 Ensemble Data

As detailed in Sec. 1.2.2, there are many quark actions that may be used for computing

lattice matrix elements. Some choices confer specific advantages that are useful for the

problem at hand. In the computations presented here, we choose to compute the N -like and

∆-like spectrum as well as the axial charge using the HISQ action for both the valence and

sea quarks.

We chose to compute the nucleon spectrum and axial form factor with staggered quarks

because they present many characteristics that are favorable to this project. First, staggered
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quarks are much faster to compute than other quark formulations due to the reduction in the

number of degrees of freedom by a factor of four. This speedup in computing time allows us

to compute observables with physical pion masses on several lattice spacings and to quickly

compute many statistics on the ensembles we have. Computing directly at physical quark

masses allows us to use different box sizes and chiral perturbation theory to estimate the

effect of the finite spatial extent on our measurements. The HISQ action is chiral, meaning

it is possible to compute absolutely normalized quantities with ratios of matrix elements.

Simulating with the same action in the valence and sea sector means that there will be

no exceptional configurations, a problem that shows up for mixed action calculations. The

exceptional configurations manifest themselves as near zero eigenvalues in the propagator,

which means that the computation of quark propagators on those gauge configurations never

converges.

The gauge ensembles have been generated by the MILC Collaboration with the HISQ

action for the sea quarks and a one-loop Symanzik-improved gauge action for the gluons,

shown in Fig. 4.1. The a = 0.15 fm ensemble was generated with tuned sea quark masses

and is given in Ref. [75]. The other MILC ensembles are listed in Ref. [76]. The masses are

computed on a single ensemble and only statistical errors are reported. The Lattice spacing

is 0.15 fm with N3
S ×NT = 323 × 48 lattice sites. Correlation functions are computed with

physical quark masses to eliminate the need for extrapolation to the physical point. Instead,

extrapolate to the infinite volume limit by studying the dependence of results on the physical

size of the box. Our ensemble has a box size of MπL = 3.5, which is competitive with other

lattice computations at physical masses. The two-point correlation functions in this chapter

are computed with around 6000 measurements.

4.2 Details of Computation

The spectrum of N -like and ∆-like taste states comes from computing matrix elements

constructed from quark trilinears that are temporally separated, as discussed above. The
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Figure 4.1: Plot of the lattice spacing versus quark masses for the MILC ensembles. The
black crosses are the existing MILC ensembles. The green circle designates the ensemble for
which was used for the current work. The orange squares are ensembles that will be used
for future extensions of the work presented in this dissertation. The a = 0.15 fm ensemble
uses a tuned ensemble from Ref. [75], and the other ensembles are listed in Ref. [76].

matrix elements are computed using Hamiltonian time evolution of the action and take the

form

Cij(t) = 〈Oi(t)O
†
j(0)〉 = Tr

[
e−HTOi(t)O

†
j(0)

]
/Tr

[
e−HT

]
→

T→∞

∑
n±
〈Ω|Oi|n+〉 〈n+|O†j |Ω〉 (e

−Mn+t − (−1)te−Mn+(T−t))

− 〈Ω|Oi|n−〉 〈n−|O
†
j |Ω〉 (e

−Mn−(T−t) − (−1)te−Mn−t) , (4.4)

where n± corresponds to a particle excitation level with parity ±, Ω is the vacuum, and

the sign is determined by whether the state n is bosonic or fermionic. The exponent M±n is

the mass of the state n±, and takes the form of an exponential decay because of the Wick

rotation to imaginary time. The exponentials e−M
±
n (T−t) come from the state propagating
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through the periodic boundary condition. The states in the third line come from charge

conjugating the operators, or equivalently applying parity inversion and time reversal. Since

the charge conjugation operator anticommutes with the transfer matrix, each timeslice in

the separation between the source and sink operators gives a factor of −1 resulting in the

(−1)t factors (which are characteristic of staggered fermions).

Fits of the N -like and ∆-like baryon masses apply the techniques of constrained curve

fitting [77], fitting parameters with Bayesian priors implemented as Gaussian penalty terms

added to the χ2 function. Since many states contribute to the correlation functions, the fit

function must include multiple exponentials to fit the states. However, multi-exponential

fits are typically ill-conditioned. Adding priors for the parameters introduces the minimal

amount of extra information necessary to stabilize the fits. It is then possible to extract

closely-spaced masses from fits to correlation functions.

With priors added to the fit functions, many more exponentials in the sum of Eq. (4.4)

can be accommodated. The parameters that correspond to the low-lying states, in which we

are most interested here, will be constrained by the data, while the other parameters will

result in fit posteriors that are the same as the priors. The fitter used for this analysis was

built on Lepage’s “Corrfitter” codebase [78–80]. Corrfitter was modified to use Eq. (4.4) as a

fit function, rather than the corresponding formula for meson two-point functions. As in the

meson case, with priors on both the overlap factors and the mass splittings are employed.

The extra baryon tastes in the staggered formalism means that many states must be fit.

Each of these states requires a parameter for its mass and an overlap parameter for each

source and sink construction. These requirements quickly lead to fits that include hundreds

of parameters. Furthermore, the signs of many of these parameters are unknown a priori,

so priors must not unnecessarily favor overlap factors of a particular sign.

Assigning priors for every parameter in the fits is impractical. Priors for this project are

assigned with heuristics. The prior central values of the lowest-mass taste states in each

taste multiplet are motivated by undergraduate-level knowledge of the baryon masses, with
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sufficiently large prior widths such that the priors do not drive the fit. Mass splittings for

other taste states in the multiplets are estimated from the meson mass splittings in Ref. [76].

For the excited state multiplets, only the prior for the lowest state is included unless the fit

shows a preference for more than one state. Including too many states can lead to instability

due to a large degeneracy of many closely-spaced states. The priors on the overlap factors

on the lowest-lying multiplet are all assumed to be 0 ± 10, and the excited state multiplet

overlap factors are 0 ± 10
3 . An exception is made for one of the operators in each fit, as is

discussed in the next paragraph.

When computing fits, it is often advantageous to fit to the log of the mass splitting rather

than the mass splitting itself to ensure that the fitted splittings are all positive. There is

another degeneracy introduced by the overlap factors since the same fit can be achieved by

flipping the sign of all of the overlap factors for any excitation level n. The degeneracy could

be removed by restricting to fit the log of the overlap factors. However, the computation of

posterior widths with log variables is only approximately correct if those widths are small.

For the typical sizes of the posterior widths on the overlap factors, the log variables are a

poor approximation of the widths and the nonlinearity introduced makes the fitter unstable.

Instead, this degeneracy is removed by setting the source overlap factors for one operator

class to be x± x
2 , where x is 10 for the lowest-lying multiplet and 10

3 for the excited states,

in agreement with the previous paragraph. So long as only one operator class is treated in

this way, it should not matter which operator gets positive priors. For consistency, the first

operator (i.e. the operator with the lowest class number) is fixed with positive priors.

To improve the estimates of the baryon masses from fits, we employ a chained fitting

strategy. This strategy works by using posteriors from fits to independent but correlated

data to inform the priors of the next fit. The fits are naturally separated into the irreducible

representations of the lattice group. Computing the masses of the states in one irreducible

representation may be used to inform the priors on the masses of the other irreps. The mass

spectrum is first computed for the 8′ representation, which has only ∆-like baryon states, to
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estimate the ∆-like mass and the taste splitting on the lattice ensemble. These fit posteriors

are taken as priors for the fit to the first two ∆-like states in the 16 representation, with

widths inflated by a factor of 2 to account for further taste splittings between ∆-like states

in the 8′ and 16 representations. The fit to the 16 representation then yields precise masses

for the N -like state. In the continuum limit, the mass of this state will yield our nucleon

mass.

Fits are computed on a matrix of correlation functions, taking all possible combinations of

the eight quark propagators that respect the group symmetries. We compute each choice of i

and j for correlation functions in Eq. (4.4). All of the correlators are fit simultaneously, taking

into account correlations between the different choices of source and sink operators. Fitting

all of the operators simultaneously employs the same principle as a variational method,

where the information from a set of similar computations is used to extract information

about orthogonal components in the fits. The variational method taken at face value only

allows determination of the lowest N eigenstates, where N is the size of the correlation

function basis. For this reason, the simultaneous fit is preferred here.

The correlations between data are estimated when computing the statistical errors on

the data. Since the gauge configurations are generated by iteratively updating previously

computed gauge configurations, there is some concern that the statistical samples computed

on consecutive gauge trajectories may not be completely independent. When the entries are

not independent, the statistical errors computed with the standard deviation may under-

estimate the true errors of the data. This is corrected by blocking the data, creating new

samples x̃α from the original samples xi by averaging them together with

x̃α =
1

n

(α+1)·n−1∑
i=α·n

xi (4.5)

for a block size of n. Since the blocked data samples x̃α contain information over a longer

Monte-Carlo time range, the malicious sample-to-sample correlations in Monte Carlo time
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will be suppressed.

4.3 Computation Results

In this section, a computation of the light baryon masses using staggered lattice QCD is pre-

sented. Computations are carried out only for the isospin 3
2 (symmetric isospin) operators,

since they are considerably easier to code and debug. Future studies could use the (mixed

symmetry) I = 1
2 operators, but there are many more operators for this irreducible repre-

sentation so it remains to be seen if computing these operators is cost-effective and whether

the many baryon tastes can be disentangled. However, experience on the symmetric-isospin

operators suggests that computing the I = 1
2 operators for the 8 or 16 representations may

be advantageous if high enough statistics are available to ensure a well-conditioned correla-

tion matrix. These operators are highly correlated, and fits that include the effects of these

correlations are better able to distinguish the effects of each taste state than the irreps with

fewer operators and fewer states.

4.3.1 8′ Representation

The first set of fits are to the 8′ representation, which has no N -like states, but two ∆-like

states. The posteriors of these fits are used to get estimates of the ∆-like mass and taste

splittings. These more well-motivated estimates of the masses are used to motivate priors

for the fits to later representations with N -like states.

There are two possible constructions of the sources and sinks in the 8′ representation.

These are the class 4 and 7 operators, in the terminology of Golterman [56]. The full 2× 2

matrix of correlation functions is computed and fit to extract the lowest ∆-like mass, the

taste splitting, and splittings to higher excited states. If the computation of the correlation

functions is done in the free theory, only the “diagonal” elements, meaning those with the

same source and sink operator, would be non-zero. This tells us that the correlation functions
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Figure 4.2: Plots of the raw correlation function data for the 8′ representation, on a log
scale. All of the plots in a row have a common source operator, and all of the plots in a
column have a common sink operator. The presence of wrong-parity oscillating states is
clearly visible in the correlation functions. The data that were used in the fits are shown in
red, and the resulting fit is shown as a blue line. The error band on the fit is shown as a
green dashed line to make it more visible. The correlation functions fall off roughly as an
exponential decay at large times. The loss of the signal-to-noise is visible at large times, and
larger source-sink separations are left off the plot.

will have larger overlap when the same source and sink operator are paired than with the

“off-diagonal” correlation functions. We fit to a longer time range on the diagonal correlation

functions as a result. The raw correlators are plotted in Fig. 4.2.
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The relatively small number of states in the 8′ representation correlation functions make

them considerably easier to fit than the 8 and 16 representations. However, the contam-

ination from excited states is still clearly visible from the correlation function data. One

way to visualize the data is to plot an effective mass. Assuming that there is only one state

present in the correlation function and neglecting boundary condition effects, the correlation

function should fall off as an exponential decay with time,

C(t) ∼ Ae−Mt . (4.6)

It is possible to isolate the mass of the state by taking a ratio of the correlation function at

different times. This is

M =
1

τ
log

[
C(t)

C(t+ τ)

]
, (4.7)

where τ is some fixed time time separation between the two correlation function measure-

ments. The time separation τ can be picked for convenience, but a long separation will

shorten the range over which the effective mass can be computed. In the following, τ = 2

will be used because the oscillating opposite parity terms at the times t and t+ τ will have

the same sign, and so the effective mass will be less sensitive to the separation.

The data for the 8′ representation are noisier because they only include ∆-like states,

so are fit to a shorter time range than the fits with the 16 representation, shown below.

Because there are fewer states within the 8′ representation, the fits are easier to interpret

and less sensitive to systematic effects. One way to verify the stability of the fits is to change

the number of states used in the fit. This is shown in Figs. 4.4 and 4.5. Moving from left

to right, the number of states is incremented until the central values stop moving and the

errors saturate. This happens quickly for the 8′ representation, where not many states are

needed to reach stability. The fit has stabilized when 4 even and 3 odd states are included

in the fit.

To further test the stability of the fits, we subject the fits to a number of systematic
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Figure 4.3: A plot of the effective mass for a correlation function in the 8′ representation.
The source and sink operator are both the class 7 operator. The blue ×s are the “raw”
effective mass, taken as written in Eq. (4.7). The circles are again the effective mass, except
the contributions to the correlation function from the excited states have been subtracted
out of the data first, leaving the contribution to the data that should come from only the
lowest-mass state. The blue line and green dashed errors are the mass for the lowest-mass
state in the fit. A significant contribution from an excited oscillating state is visible in the
raw effective mass.

checks. The checks are used to estimate the size of systematic uncertainties from fitting the

correlation functions. These are compared to the nominal fit, which uses a set of default

values. The nominal fit parameters are given in Table 4.1. The fit posteriors are very stable

under most of the stability checks presented here. These checks are shown in Fig. 4.6 and

include:

• Nominal: the default fit.

• +1E state: the fit with 5 even and 3 odd states, from Fig. 4.5

• +1O state: the fit with 4 even and 4 odd states, from Fig. 4.4

• +1E + 1O state: the fit with 5 even and 4 odd states
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Figure4.4:Stabilityplotforincreasingnumberofstatesforthe8′representation,whichhas
only2∆-likestatesinthelowest-ordertastemultiplet.Thenumberofeven(non-oscillating
intime)statesisheldfixedat4andthenumberofodd(oscillating)statesisincremented
goinglefttoright.Theverticalaxisshowstheextractedfitmasses,in“latticeunits”ofthe
energytimesthelatticespacing.Shownarethefirstthreeevenstatesinred(offsetslightly
left)andthefirsttwooddstatesinblue(offsetslightlyright).The∆-likestatesareshown
astrianglesandtheexcitedN-likestatesareshownascircles.Thestarsrepresentstates
withundeterminedparticlecontent.

•tmin+1diag:thediagonalcorrelationfunctions,i.e.thosewiththesamesourceand

sinkoperators,arefitstartingfromtimeslice3

•tmin+1offdiag:theoff-diagonalcorrelationfunctions,i.e.thosewithdifferentsource

andsinkoperators,arefitstartingfromtimeslice3

•tmin+1both:allcorrelationfunctionsarefitstartingfromtimeslice3

•tmax−1diag:thediagonalcorrelationfunctionsarefituptotimeslice7

•tmax−1offdiag:theoff-diagonalcorrelationfunctionsarefituptotimeslice5

•tmax−1both:thediagonalcorrelationfunctionsareallfittoatimerangethatisone

timesliceshorterthanthenominal

•tmax+1diag:thediagonalcorrelationfunctionsarefituptotimeslice9
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Figure 4.5: Same as Fig. 4.4, except with the number of odd states fixed and an increasing
number of even states, moving from left to right.

parameter 8′ 16
even states 4 6
odd states 3 5

diagonal time range [2, 9] [2, 9]
off-diagonal time range [2, 7] [2, 7]

taste splitting prior 0.050(25) 0.046(30)
correlator matrix size 2× 2 3× 3

Table 4.1: Description of nominal fit parameters for the 8′ and 16 representations. The
number of states used for the nominal fit is large enough to saturate the errors in the
stability plots of Figs. 4.4 and 4.5, but the number of states that are constrained by the data
is less than the number used. Time ranges are inclusive.

• tmax + 1 offdiag: the off-diagonal correlation functions are fit up to timeslice 8

• tmax + 1 both: both diagonal and off-diagonal correlation functions are fit to an addi-

tional timeslice at large times

• ME prior ×1.5: the prior widths for all of the masses of the even states are multiplied

by a factor of 1.5.

• MO prior ×1.5: the prior widths for all of the masses of the odd states are multiplied

by a factor of 1.5.
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• source prior ×2.0: the prior widths for the overlap factors for all of the source operators

are multiplied by a factor of 2.0.

• sink prior ×2.0: the prior widths for the overlap factors for all of the sink operators

are multiplied by a factor of 2.0.

For the fits with different numbers of fit states, the states are not expected to change

much. The optimal set of states for the nominal fit were chosen by examining the stability

fits to find where the posterior central values and widths saturate. Adding additional states

that cannot be constrained by the data with prior values centered at 0 are expected to return

the prior values and contribute nothing to the fits. These checks are included to give an idea

of the relative size of the shifts from Figs. 4.4 and 4.5 and to show that they are small.

Fits increasing tmin test the effect of low-t data, which constrain the excited states. Thus,

this check is expected to change the posterior width of the higher-mass excited states and

leave the lower-mass states relatively unaffected. However, if the changes are too dramatic,

the higher-mass states may be subsumed into the lower-mass states. This will raise the pos-

terior mass of the lower-mass states and the posterior of the higher-mass state will reproduce

the prior information.

Fits changing tmax test the effect of high-t data, where the statistical errors can be

quite large and possibly underestimated. If the errors have been underestimated, they could

pull the fit away from the best estimates of the parameters. However, the low-t data still

constrain the low-mass states, so a reduced fit range should not cause the low-mass states to

become unconstrained. These checks instead test whether the data at high-t are introducing

a systematic correction to the low-mass states and to quantify the size of this correction.

The fits with widened priors are meant to test the sensitivity of the fit posteriors to the

priors used in the fits. If the posterior is strongly influenced by the prior, then widened

priors can result in a corresponding widening of the posterior widths or significant shifts in

the posterior central values. The fits with widened prior central values on the mass spectra

are more sensitive to the widening because of the taste splittings. Prior widths that overlap
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nominal

+1E state

+1O state

+1E+1O state

tmin +1 diag

tmin +1 offdiag

tmin +1 both

tmax−1 diag

tmax−1 offdiag

tmax−1 both

tmax +1 diag

tmax +1 offdiag

tmax +1 both

ME prior ×1.5

MO prior ×1.5

source prior ×2.0

sink prior ×2.0

2 1 0 1 2

δM∆/δM∆
2 1 0 1 2

δEN ∗/δEN ∗

Figure 4.6: Plot of the changes relative to the central values and posteriors of the masses
of the 8′ representation states under various systematic checks. See text for the details of
the checks. The data plotted are the fit posteriors for the mass splittings of the states.
The nominal sample is the default sample that is being used to make the comparisons. All
data have had the nominal posterior central value subtracted out and have been scaled
by the nominal posterior width. These transformations scale the value and errors such
that the nominal sample has central value and statistical error 0 ± 1. Masses with similar
particle content in the states are grouped in the same column, where each symbol and color
combination represents a different state. On the left, under the δM∆ column, the upper
(cyan) circle gives the scaled mass for the lowest ∆-like state, and the lower (purple) square
is the scaled mass difference between the lowest- and second-lowest ∆-like states. On the
right, under the δEN∗ column, the (red) triangles correspond to the scaled mass of the
excited N -like state. The N∗ state is the lowest-lying odd parity state, which corresponds
to a mass of around 1500 MeV.

too much can result in fit posteriors on the mass splittings that are tiny because both fit

states are being used to describe the same physical state. Furthermore, the logarithm of the

mass splittings are fit instead of the mass splittings to enforce an ordering on the states.
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The logarithms introduce nonlinearities to the Hessian matrix used to compute the widths

during the fitting process, and the nonlinearity is more severe when the widths are large.

These nonlinearities can destabilize the fits. Widening the priors on the source and sink

overlap factors are not subject to these same restrictions, so the systematic check there uses

a larger inflation factor.

4.3.2 16 Representation

The next representation to fit is the 16-dimensional representation, which has oneN -like state

and three ∆-like states. There are four operators for this representation, which constructed

with point splittings in four operator classes. The full matrix of correlation functions is

shown in Fig. 4.7.

One of these operators, specifically the class 3 operator, is considerably noisier than

the rest. Presumably this noise is due to small overlap of the operator with the low-mass

states (and especially the N -like state) that transform in the 16 representation. The nearly

vanishing correlation function constructed from the combination of a class 3 and class 4

operator indicates that the two operators have a nearly orthogonal set of overlap factors.

Steeper descent into noise means that the correlation functions involving the class 3 operators

will become too noisy to fit within the acceptable fit range used on the other operator classes.

A shorter fit range could be applied to the class 3 operators so that they may also be included

in the fits, but then care must be taken that the much less precisely determined overlap

factors for the class 3 operators do not introduce a systematic shift to the fit posteriors. For

simplicity, the class 3 operators are omitted from the fits.

The posterior masses for the first two even and first odd states of the 8′ representation are

taken to inform the priors of the 16 representation. The first even state, which corresponds

to a ∆-like state, informs the prior of the second state of the 16 representation spectrum, the

first ∆-like state. The difference between the first and second mass in the 8′ representation

is taken as a taste splitting, which is used to inform the taste splittings of all three ∆-like
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Figure 4.7: Plots of the raw correlation function data for the 16 representation, on a log scale.
This set of figures is organized in the same way as Fig. 4.2. The class 3 operators (second row
and column) are considerably noisier than the other operators and require special treatment.
They are plotted on a different scale than the other correlation functions. For simplicity, the
class 3 operators are omitted from the fits and no fit functions are plotted with the data.

states in the 16 spectrum. The prior on the lowest N -like state is taken to be the continuum

nucleon mass plus the taste splitting, for better agreement with the posterior mass of the

lowest state. The prior mass of the lowest odd state, the N -π state, is the sum of the axial-

taste pion from Ref. [76], the continuum nucleon mass, and a taste splitting for consistency
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Figure4.8:Stabilityplotforthe16representationwiththenumberofevenstatesheldfixed
atsixandthenumberofoddstatesincreasingfromlefttoright.Thespectrumincludesone
N-likestateandthree∆-likestates,whichcorrespondtothelowestfourreddatapointsin
eachcolumn.ThelowestblueoddstatehasamassthatisconsistentwithanN-πscattering
state.

withthelowestevenstate.Boththepionandthenucleonstatesareassumedtohavezero

momentum.Thesecondoddstatemasspriorischosenfromthelowestoddstateposterior

inthefittothe8′fit.Thevaluesofpriorsforthelowest-lyingstatesarelistedinSec.4.3.3

inTable4.3,alongwiththefitposteriors.

Thestabilityplotsforthespectrumofthe16representationareshowninFigs.4.8and4.9.

Asstatedpreviously,theposteriorsoftheN-likestatearehigherthanthephysicalnucleon

mass.Thisisnotaworrybecausediscretizationeffectschangethemassesatnonzerolattice

spacing.Thereisanupwardshiftinthe∆-likemassesrelativetothe8′representationtoo.

Aninterestingsurpriseisthatthelowestoddstate,suspectedtobeanN-πscattering

state,issowelldetermined.Thestateappearsasaposteriorregardlessofwhetherornot

apriorforthestateisincludedinthefit.Thisstatementholdsevenwhenthepriorwidth

forthelowestoddstateistakentobeunrealisticallysmall,forinstancesmallerthanthe

expectedtastesplitting.Thisposteriorstatehasamassthatistoolowtobeconsistentwith

anexcitationofthebaryonstates,appearingnearly300MeVbelowtheexpectedN∗(1520)
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Figure 4.9: The same as Fig. 4.8, except with odd states fixed and increasing number of even
states.

excitation of the nucleon. The mass is consistent with an N -π state with both the N -like

baryon and the pion at rest, although it is not possible to determine precisely which taste

is represented: it is consistent with the sum of the same N -like state that appears as the

ground state of the non-oscillating spectrum and an axial-taste pion. The axial-taste pion

can be generated from a quark-antiquark operator with A4⊗A4 axial spin-taste, the parity

partner operator to the S ⊗ S singlet current. This operator construction is local, meaning

that the pion would appear from a virtual quark loop that originates at the same site as the

nucleon operator. The operator at the sink is constructed with a sum over the site where

the baryon is tied up,

Oi(x) =
∑
D

∑
abc

εabcOr,ABCi,D χaA+D(x̃)χbB+D(x̃)χcC+D(x̃) , (4.8)

so it is expected that any virtual quark-antiquark operator that gets a nontrivial sign under

shifts will have different quantum numbers. This means that any pion tastes other than the

axial or scalar tastes will have vanishing matrix elements with the operator construction used

here. The scalar taste pion vanishes because the scalar-taste S ⊗ S operator construction
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State Parity Prior [δM ] [GeV] Posterior [δM ] [GeV]
∆ [0] + 1.22(13) [−] 1.289(18) [−]
∆ [1] + 1.29(13) [0.065(33)] 1.349(16) [0.060(19)]
N∗ − 1.51(20) [−] 1.536(12) [−]

Table 4.2: List of fit priors and posteriors for the 8′ representation. Only the states that
are likely to be constrained are presented here. The results presented here give both the
mass splittings (which are fit) and the absolute masses those splittings imply, accounting
for correlations in the posteriors. The ∆ states are both even parity states and the N∗

excitation is an odd parity state. For the lowest-mass state in each parity channel, no mass
splitting is reported because the absolute mass is used as the fit parameter. All of the ∆-like
taste states are reported, and a number is assigned to each. Results have been converted to
physical masses using the lattice spacing listed for the physical a = 0.151 fm ensemble in
Ref. [75] without regard for the lattice spacing errors.

State Parity Prior [δM ] [GeV] Posterior [δM ] [GeV]
N + 0.994(65) [−] 1.003( 6) [−]
∆ [0] + 1.289(74) [0.295(34)] 1.286(22) [0.283(23)]
∆ [1] + 1.349(80) [0.060(31)] 1.337(21) [0.051(21)]
∆ [2] + 1.409(89) [0.060(39)] 1.419(48) [0.082(48)]

Nπ − 1.252(65) [−] 1.255(27) [−]
N∗ − 1.537(76) [0.284(39)] 1.538(13) [0.283(28)]

Table 4.3: Same as Table 4.2, but for the 16 representation. Note that the statistical precision
reported here for the lowest N -like state is smaller than the statistical precision of the lattice
spacing determination.

the systematics tested here.

4.3.3 Summary of Fit Posteriors

A summary of fit posteriors is given in Tables 4.2 and 4.3. Since the (log of) the mass

splittings are the fit parameters, the mass splittings are listed as well as the absolute masses.

The values have been converted to physical units, using a = 0.1509 fm from Ref. [75].

Since the posteriors are expected to reproduce the priors when the data do not constrain

the values, the priors are listed next to the posteriors. The relative size of the widths on the

priors and the posteriors gives an indication of how strongly the state is constrained. For

the 8′ representation, the posteriors on the absolute masses have a width that is about an

order of magnitude smaller than the priors.
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The posteriors for the 8′ fit are used as priors to the 16 representation fit. The masses

of the two lowest ∆-like states are informed directly from the absolute masses of the ∆-

like states in the 8′ fit, and the third ∆-like state comes from reusing the mass splitting

between the two ∆-like states. Since the mass splittings are not expected to be the same

in both representations, the prior widths in the 16 representation are slightly inflated from

the posteriors of the 8′ representation. The resulting mass for the N -like state in the 16

representation is very well constrained by the data, giving a sub-percent error on the mass.
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CHAPTER 5

THE NUCLEON AXIAL CHARGE WITH STAGGERED

BARYONS

5.1 Computation Strategy

5.1.1 The Axial Ward Identity and Axial Form Factor

The two currents of interest here are the axial and pseudoscalar currents. Assuming a two-

flavor theory, the currents are

Aaµ(x) =
∑
ij

ψi(x)γµγ5

taij
2
ψj(x)

P a(x) =
∑
ij

ψi(x)iγ5

taij
2
ψj(x) , (5.1)

where ψi is a spinor with a flavor index, assuming 2 flavors. The matrices ta are the Pauli

spin matrices and act in the flavor space over a spinors in the vector

ψ =

 ψ1

ψ2

 . (5.2)

The masses of the fermions may be different and are assigned to the diagonal of a mass

matrix M = diag [m1,m2].

The divergence of the axial current can be used to derive the relation between the axial
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and pseudoscalar current,

∂µ
(
ψ(x)γµγ5

ta

2
ψ(x)

)
=
(
∂µψ(x)

)
γµγ5

ta

2
ψ(x) + ψ(x)γµγ5

ta

2
(∂µψ(x))

=
(
/∂ψ(x)

)
γ5
ta

2
ψ(x)− ψ(x)γ5

ta

2

(
/∂ψ(x)

)
= ψ(x)iγ5

{
ta

2
,M

}
ψ(x) , (5.3)

where the curly braces denote an anticommutator. This relation is known as the axial Ward

identity. The last line made use of the equations of motion for the spinors,

(
/p−mi

)
ψi(p) = 0

ψi(p)
(
/p+mi

)
= 0 (5.4)

For ta = σ1 ± iσ2, the divergence trivially reduces to

∂µAaµ(x) = (m1 +m2)ψ(x)iγ5
ta

2
ψ(x) = (m1 +m2)P a(x) . (5.5)

For ta = σ3, the relation must be reduced further:

∂µA3
µ(x) = m1

(
ψ1(x)iγ5ψ1(x)

)
−m2

(
ψ2(x)iγ5ψ2(x)

)
= (m1 +m2)ψ(x)iγ5

t3

2
ψ(x) + (m1 −m2)ψ(x)iγ5

1

2
ψ(x) . (5.6)

Taking the isospin-symmetric approximation (m1 = m2 ≡ m̂), this equation reduces to the

form of equation 5.5.
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5.1.2 Isolating the Axial Form Factor

The coupling of nucleon states to an isovector axial current are given in terms of the axial

and induced pseudoscalar form factors, represented by the forms FA and F ′P in

〈N ′(p′)|Aaµ |N(p)〉
∣∣
x=0 = ūN ′(p

′)
[
γµγ5FA(q2) +

qµ
2MN

γ5F
′
P (q2)

]
ta

2
uN (p) , (5.7)

with the momentum qµ = (p′ − p)µ. Similarly, the isovector pseudoscalar current is related

to the pseudoscalar form factor FP by

〈N ′(p′)| 2m̂P a(x) |N(p)〉
∣∣
x=0 = ūN ′(p

′)
[
iγ5MNFP (q2)

] ta
2
uN (p) . (5.8)

The axial Ward identity in Eq. (5.5), here written as

∂µ 〈Aaµ(x)〉 = 2m̂ 〈P a(x)〉 , (5.9)

may be used to isolate the axial form factor. Applying the derivatives and a Fourier transform

gives

iqµ 〈N ′(p′)|Aaµ |N(p)〉 = ūN ′(p
′)
[
/qiγ5FA(q2) +

q2

2MN
iγ5F

′
P (q2)

]
ta

2
uN (p)

=

[
2MNFA(q2) +

q2

2MN
F ′P (q2)

]
ūN ′(p

′)iγ5
ta

2
uN (p)

= MNFP (q2) ūN ′(p
′)iγ5

ta

2
uN (p) (5.10)

where the common spinor factor has been factored out. This equation is solved for F ′P (q2)

to get the expression

F ′P (q2) =
2M2

N

q2

[
FP (q2)− 2FA(q2)

]
. (5.11)
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At q2 = 0, the induced pseudoscalar term vanishes and the relation becomes

FP (0) = 2FA(0) . (5.12)

Substituting Eq. (5.11) into Eq. (5.7) gives the axial current matrix element

〈N ′|Aaµ |N〉 = ūN ′(p
′)
[(
γµγ5 −

2MN qµ

q2
γ5

)
FA(q2) +

MN qµ

q2
γ5FP (q2)

]
ta

2
uN (p) (5.13)

At general qµ with q2 6= 0, the term proportional to FA(q2) cancels when contracting

Eq. (5.13) with both qµ and (p′ + p)µ. To isolate the axial form factor portion, the term

proportional to the pseudoscalar form factor must be removed. The term is subtracted out

by contracting with qµ to get

qµ 〈N ′|Aaµ |N〉 = MNFP (q2) ūN ′(p
′)γ5

ta

2
uN (p) . (5.14)

This is used to define a pseudoscalar-subtracted axial current

A
aµ
⊥ = Aaµ − 2

qµ

q2
q · Aa , (5.15)

which when used in place of the axial current in Eq. (5.13) gives

〈N ′|Aa⊥µ |N〉 = FA(q2) ūN ′(p
′)
[
γµγ5 −

2MN qµ

q2
γ5

]
ta

2
uN (p) (5.16)

Up to some spinor algebra, the expression for general qµ has been reduced to a form con-

taining only the axial form factor.

5.1.3 Absolutely Normalizing the Axial Form Factor

With a lattice UV regulator, quantum effects can change the value of the axial form factor in

Eq. (5.16) and the computation must be renormalized to reconcile the theory and experiment.
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Eq. (5.16) is fixed by introducing the renormalization ZA and making the replacement Aaµ →

ZAA
aµ. If the lattice QCD action does not explicitly break chiral symmetry, then the

normalization factors from quantum effects may be explicitly cancelled by computing similar

matrix elements. This is the case for the staggered lattice QCD action. The nucleon axial

form factor matrix element may be absolutely normalized by computing a ratio with an axial

current matrix element creating a pion state.

The pion decay constant fπ is defined as a multiplicative factor on the axial current

matrix element creating a pion state,

〈Ω|Aaµ(x) |πb(p)〉 = −ipµfπδabe−ip·x . (5.17)

In this convention, the continuum fπ = 130 MeV. The axial Ward identity in Eq. (5.5)

relates the axial matrix element to the pseudoscalar matrix element through the equation

−ipµ 〈Ω|Aaµ(x) |πb(p)〉 = 2m̂ 〈Ω|P a(x) |πb(p)〉 = −p2fπδ
abe−ip·x , (5.18)

and may also be used to compute the pion decay constant. This property will be used later

to cancel out the pion decay constant that is introduced when the ratio with the pion axial

matrix element is computed.

The lattice action exhibits a softly broken U(1)A symmetry. As a result, the renor-

malization effects will explicitly cancel if matrix elements with the appropriate symmetry

properties are computed. The combination m̂P a(x), using the bare quark masses for m̂, is

the combination that gives a renormalization-free computation of the pion decay constant.

For the nucleon axial current, we use the local construction of the axial form factor, which is

expected to be less noisy because it does not involve gauge links. This current has a renor-

malization factor, but the renormalization factor is cancelled when using the same axial

current to obtain the pion matrix element.
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Putting these together, the renormalization factor may be computed with the ratio

ZA =
1

〈Ω|Aa0(x) |πa(p)〉
〈Ω| 2im̂P a(x) |πa(p)〉

Mπ

∣∣∣∣
x=0,p=0

(5.19)

The full relation for the form factor with the renormalization factors, up to some spinor

algebra, becomes:

FA(q2) =
〈N ′|ZAAa⊥µ(q2) |N〉
〈Ω|ZAAa0(0) |πa〉

〈Ω| 2im̂P a(0) |πa〉
Mπ

× (spinor factor) . (5.20)

The spinor factor is worked out below with normalization conditions for states and spinors

suited to finite-volume lattice-QCD calculations.

As we can see, the axial current renormalization ZA cancels out from this choice of

dimensionless ratios. If we can extract the axial charge and the excited states cleanly, we

should be able to calculate the form factor.

5.1.4 Normalizing Lattice QCD to the Continuum

The lattice QCD computation must be normalized to ensure that the conventions used on the

lattice agree with the conventions of the continuum parameter that is being extracted. This

matters for two of the elements being extracted, specifically the pion two-point function

axial current matrix element and the nucleon three-point function matrix element. The

overlap factors for the nucleon are fit in the two-point functions, and so any normalization

conventions will cancel in the final result automatically.

First, the pion two-point function used in the ratio must be properly normalized so

the matrix element gives back only fπ in lattice units. The matrix element in question is

the temporal axial current creation of a pion state, which is given in Refs. [63, 81] and in
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Euclidean space reads

√
MπV3

Nf
〈πa(~p = 0)|Ab4(~x, t) |Ω〉 = −Mπfπ

ZA
δabe−Mπt . (5.21)

where Nf = 4 is the number of tastes, V3 is the spatial volume, and the axial current

Ab4(~x, t) = (−1)tχ(~x)
tb

2
χ(~x) . (5.22)

In this convention, the dimensionful parameters are explicitly written as a prefactor and the

states satisfy

〈πa(~p)|πb(~k)〉 = δabδ
~p~k
. (5.23)

The lattice computation uses an operator that is summed over all sites ~x, so the full conver-

sion factor reads

∑
~x

〈πa(0)|Ab4(~x, t) |Ω〉 = 〈πa(0)|Ab4(~q = 0, t) |Ω〉 = − fπ
ZA

√
NfMπV3 δ

abe−Mπt . (5.24)

The other matrix element that needs to be properly normalized is the axial current matrix

element between the nucleon states. This uses the spatial axial current operator normalized

in the same fashion. If the spinor factors are conventionally normalized by

ur(p)us(p) = 2MN δ
rs , (5.25)

or alternatively ∑
s

us(p)us(p) = i
∑
µ

γµsinpµ −MN , (5.26)

then the axial charge is then defined by the relation

∑
~x

〈N(0)|Aaµ(~x, t) |N ′(0)〉 = 〈N(0)|Aaµ(~q = 0, t) |N ′(0)〉 =
gA
ZA

u(0)γµγ5
ta

2
u(0) . (5.27)
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The spinor factor is then easily computed for µ = 1, 2, or 3, which gives

ur(0)γiγ5u
s(0) = 2MN ξr †σiξ

s (5.28)

with

ξ1 =

 1

0

 , ξ2 =

 0

1

 . (5.29)

With staggered lattice QCD, the product of spinors and gamma matrices is replaced with

a staggered spinor that depends on the phase from the spin and taste. Since the propagator

is normalized by the restriction of Eq. (5.26), which is related to the action, the product

of the spinors remains the same. The choice of indices equivalent to r and s in Eq. (5.26)

correspond to the placement of the quarks in the baryons at the source and sink. For a local

current insertion, it is sufficient to have the baryons at the same unit cube site to obtain a

nonzero Kronecker delta. The form of the spinors is therefore not relevant for Eq. (5.28).

Combining these results, the matrix element of Eq. (5.20) is properly normalized by the

choice

gA
fπ

=
〈N ′|Aai (0) |N〉
〈0|Aa4(0) |πa〉

√
NfMπV3

2MN
. (5.30)

5.1.5 Fitting Strategy

Like the two-point functions, the three-point functions are simultaneously fit, taking into

account the correlations among all data. Neglecting the terms due to the finite temporal
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extent, the three-point data are fit to

Cij(τ, t) = 〈Oi(t)Aµ(τ)O†j(0)〉

→
T→∞

∑
m±n±

〈Ω|Oi|m+〉 〈m+|Aµ|n+〉 〈n+|O†j |Ω〉 e
−M+

mτe−M
+
n (t−τ)

+ 〈Ω|Oi|m−〉 〈m−|Aµ|n+〉 〈n+|O†j |Ω〉 (−1)τe−M
−
mτe−M

+
n (t−τ)

+ 〈Ω|Oi|m+〉 〈m+|Aµ|n−〉 〈n−|O†j |Ω〉 (−1)(t−τ)e−M
+
mτe−M

−
n (t−τ)

+ 〈Ω|Oi|m−〉 〈m−|Aµ|n−〉 〈n−|O
†
j |Ω〉 (−1)te−M

−
mτe−M

−
n (t−τ) . (5.31)

The priors on the amplitudes are set with the same heuristics as the overlap factors. Rather

than setting priors for all of the amplitudes individually, the priors are assigned to be 0± x,

where x is approximately gA/fπa. The only exception is the prior on the transition amplitude

from the N -like state to itself, the amplitude that gives the matrix element proportional to

gA, which is set to the PDG value of gA/fπa with a 100% prior width.

The value of gA is well-known from experiments measuring neutron beta decay [1]. How-

ever, until recently, lattice QCD computations have had difficulties reproducing the exper-

imental value, often being 10 − 20% too low. To prevent bias toward the physical value

of gA, the data have been blinded with blinding factor β. This is done with a constant

prefactor that is multiplied by the correlation function data, such that the three point func-

tion computes βgA/fπa. The key to unblind the data is held by only a few collaboration

members, and the value of the blinding is currently unknown. The Fermilab Lattice and

MILC collaboration will reveal β once results on three lattice-spacings are in hand, with a

complete uncertainty analysis.

5.2 Computation Results

For the computation of the axial charge, many choices of axial current are possible to use.

The local axial current is expected to be the least noisy and can be easily renormalized by
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the ratio method described in Sec 3.2.3. The current insertion is given by the local operator

Aaµ(x) = (−1)xµχ(x)χ(x) , (5.32)

which has a phase that oscillates only in one direction. The temporal component is pro-

portional to qµ and vanishes for the axial charge, so the spatial axial currents are used. To

improve the signal, the axial currents in each direction are averaged together.

The source and sink operators used here are slightly different than were used for the

two-point functions in the previous chapter, in that they were constructed with a different

point-splitting at the source side only. One consequence is that fewer statistics are included

here. The number of measurements here is about 3000 for both the two- and three-point

functions. The fit range for the diagonal operators was reduced to t ∈ [2, 8] inclusive to

account for the increased size of the statistical error bars. The previous analysis was redone

for the new operators with the same set of priors, and the results differ only marginally.

Fig. 5.1 shows the systematics checks on the new set of correlation functions.

The three-point functions will vanish due to symmetry arguments if the source, sink, and

current operators, taken as a whole, do not form a singlet under all of the lattice symmetries.

For the two-point functions, constructing a singlet operator is automatic if the source and

sink are at the same unit cube site, regardless of what unit cube site is used. For the three-

point correlation functions, the current amplitude introduces a nontrivial taste phase, which

must be matched by the source and sink operators. The simple picture is to consider the

source and sink as their own bilinear, and the taste of the current insertion must be the

same as the source-sink bilinear, as detailed in Sec. 3.2.4 For the 16 representation, there is

the added complication that the operators transform like a 2-vector at each of the eight unit

cube sites. The resolution is that a dot product over the 2-vectors may be taken at each unit

cube site.

The most common procedure for constructing a three-point function is to carry out the
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nominal

nominal (prev)

+1E state

+1O state

+1E+1O state

tmin +1 diag

tmin +1 offdiag

tmin +1 both

tmax−1 diag

tmax−1 offdiag

tmax−1 both

tmax +1 diag

tmax +1 offdiag

tmax +1 both

ME prior ×1.5

MO prior ×1.5

source prior ×2.0

sink prior ×2.0

3 2 1 0 1 2 3

δmN/δmN
3 2 1 0 1 2 3

δm∆/δm∆
3 2 1 0 1 2 3

δENπ/δENπ
3 2 1 0 1 2 3

δEN ∗/δEN ∗

Figure 5.1: Same as Fig. 4.10, except with the set of source and sink operators consistent
with the three-point functions. To make contact with the previous chapter, the nominal fit
from Fig. 4.10 is included as the second nominal entry.

inversion for the daughter quark sequentially. In this method, a standard quark propagator,

which is the result of inverting a generic source object, is used to create the source for a

new propagator by applying some transformation to the quark operator at the sink. The

quark propagator may be brought back to the current insertion and tied together with a

quark propagating from the source and some spin-taste prescription. Thus, an interaction

has been introduced into the correlation function. For the three-point functions constructed

with staggered quarks, this method is not feasible as it would require (at least) 64 inversions,

a factor of eight for the starting source and a factor of eight more for the sequential inversions,
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to do one measurement. If more current insertions or time sources are desired, then that

factor must also be applied to the number of inversions. To circumvent this technical issue,

non-sequential inversions using sources with Gaussian random noise vectors are used in place

of the sequential sources, and the operators are tied up with noise constructed to give back

the requested operator again. This is detailed in Sec. 3.2.5.

5.2.1 Three-Point Correlation Function Fits

Because we are concentrating on nucleon matrix elements here,1 the three-point functions

are fit for the 16 representation only. As in the case of the two-point correlation functions,

the correlation functions involving the class 3 operator have been omitted from the fits. The

raw three-point correlation functions, normalized by the pion axial current matrix element,

are shown in Fig. 5.2.

The three-point correlation functions for computing the nucleon axial charge are more af-

fected by statistical noise than was expected. These expectations are derived from comparing

to computations of baryon three-point functions with similar statistics or for meson three-

point functions in staggered lattice QCD. There is some concern that the method of using

noisy sink operators is responsible for the statistical errors. To test this, many random wall

propagators were computed on a single gauge configuration. These propagators were used to

compute the local three-point axial current matrix element with a local baryon operator at

both the source and sink. As a comparison, a two-point function was constructed with the

exact same source and sink operators, but no current insertion. The two-point function sees

no issues with the signal-to-noise when constructed this way, giving an answer with a few

percent statistical uncertainty for 100 random noise propagators. This computation of the

two point function agrees with the two-point function constructed without the random noise

vectors. The corresponding three-point correlation function, where the only difference is that

1. Neutrino physics will also need N → ∆ transition form factors, but that is beyond the scope of this
work.
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Figure 5.2: Plots of the raw three-point correlation function data for the 16 representation.
The correlations functions for two source and sink separations, 6 (red) and 7 (blue) timeslices,
and both correlation functions are plotted in the figures. The class 3 operators (second row
and column) are again too noisy to put into the fit, and are consistent with zero for most of
the data. For simplicity, the class 3 operators are omitted from the fits.

the “noisy leg” of the two-point function is replaced by the quark interaction with a current,

sees the same signal-to-noise issue, which is visible in the three-point functions of Fig. 5.2.

Had the noisy sink been the principle origin of the statistical fluctuations, the two-point

functions constructed with random walls should have suffered from the same signal-to-noise

problems as the three-point functions.

The systematics checks for the three-point functions are the same as for the two-point

functions, with a few additional checks that pertain only here, including

• t3fit = [2, T − 2]: The fit range for the three-point functions. The same fit range is used
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+1E state
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t 3
fit =[2,T−2]

tmin +1 diag

tmin +1 offdiag

tmin +1 both

tmax−1 diag

tmax−1 offdiag

tmax−1 both

tmax +1 diag

tmax +1 offdiag

tmax +1 both

ME prior ×1.5

MO prior ×1.5

source prior ×2.0

sink prior ×2.0

Aµ  prior ×2.0

3 2 1 0 1 2 3

δmN/δmN
3 2 1 0 1 2 3

δm∆/δm∆
3 2 1 0 1 2 3

δENπ/δENπ
3 2 1 0 1 2 3

δEN ∗/δEN ∗

Figure 5.3: Plot of the changes relative to the central values and posteriors of the masses
of the 16 representation states under various systematic checks when three-point correlation
functions are included in the fits. Most of the same checks that were used in Sec. 4.3.1, with
a few additions. The new checks are described in the text. The systematics checks shown
here are less stable than they were for the two-point correlation function checks.

for all combinations of source and sink operators. The nominal fit has a fit range of

[1, T − 1], inclusive, where T = 6 or 7.

• Aµ prior ×2.0: The prior width for the current insertion amplitudes is increased by a

factor of 2.

The systematics checks with the three-point functions included have larger variations

than when the two-point functions are fit alone. The check reducing tmin for the diagonal
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correlation functions only and for both the diagonal and off-diagonal have large deviations for

the N -like mass. This shift can be eliminated by additionally removing the two off-diagonal

correlators with a class 6 source operator. This shift is driven by the second ∆-like state,

which is most significant at low-t. When the lowest timeslices for the diagonal operators are

removed, the restrictions keeping the overlap factors small for this state are removed. The

large slopes on the correlation functions in the bottom row of Fig. 5.2 enhance the overlap

factors, partially absorbing the contribution of the N -like state from the two-point functions.

For the checks that enhance the source and sink operators, the unconstrained state above

the N∗ state in the last column partially absorbs the N∗ state shown, displacing the entire

spectrum to lower masses.

Taking the nominal fit with statistical errors only, the nucleon axial charge and the N−∆

transition charge are

βgAMN/fπ = 11.2(1.8) , (5.33)

βgN∆1

√
MNM∆/fπ = 9.8(2.9) . (5.34)

Using the fit values MNa = 0.7740(52) and M∆a = 1.029(11) as well as the experimental

value of fπ = 130.50(14) MeV [1] and the lattice spacing a = 0.1509(13) fm from Ref. [75],

the blinded best fit axial current matrix elements are

βgA = 1.45(22) , (5.35)

βgN∆1
= 1.09(33) , (5.36)

reporting only the statistical errors.
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+1E state
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+1E+1O state

t 3
fit =[2,T−2]

tmin +1 diag

tmin +1 offdiag

tmin +1 both

tmax−1 diag

tmax−1 offdiag

tmax−1 both

tmax +1 diag

tmax +1 offdiag

tmax +1 both
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MO prior ×1.5

source prior ×2.0
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Aµ  prior ×2.0
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δgA/δgA
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δgN∆1
/δgN∆1

Figure 5.4: Plot of the changes in the current amplitude posteriors for the 16 representation
states under various systematic checks. Shown are the axial charge (first column), the N -∆
transition at zero momentum for the second ∆-like taste state. The other N −∆ transitions
are unconstrained by the data. For the statistical precision in this thesis, the other transitions
are consistent with zero.

5.2.2 Fitting Challenges

The excited states with small mass splittings from taste violations make the data difficult

to fit. The data presented in this dissertation test the limits of constrained curve fitting.

The difficulty of developing well-informed priors for the overlap factors gives the fitter a

large parameter space to explore and fitting the data requires human intervention. Ideally,

the fitting algorithms would be as hands-off as possible. This section details some of the
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challenges that were encountered in fitting and puts forth some proposed solutions to the

challenges encountered here.

Fitters are not often required to deal with such large, degenerate parameter spaces. As a

result, the fitting algorithms are written to move as quickly as possible toward the perceived

minimum of the fit. For fits to many exponential decay functions, this is a sub-optimal

approach to finding the global minimum of the fit function. To see this, consider a theory

that has many low- and high-mass states, but is fit with only a single exponential. Unless

the priors for the parameters in the exponential are very aggressive, the fitter will attempt

to use the parameters to fit the most well-constrained state or some average of a few of the

most well-constrained states, even if the priors are set to accurately and precisely describe

one of the excited states. This is the behavior that appears when the fitter is started far from

the minimum, when the cross-talk between fit parameters is relatively minimal. The fitting

algorithm will start by trying to fit the parameters of every state to the most constraining

data, only going back and filling in the higher excited states when the lowest states are

well-described.

When the most well-constrained low-mass states are described by the fit parameters,

then the data and priors will try to correct the fit parameters to describe the higher-mass

states. Occasionally, the fitter will move into a region of parameter space where one of the

higher-mass states will supplant a low-mass state. When this happens, the low-mass state

will be pushed down beyond what is sensible and becomes spurious. The mass splitting on

the state that does the displacing gives a posterior close to the prior central value, but with

a small width. The displaced low-mass state then gives a posterior that is far displaced from

its prior and with all of its overlap factors consistent with zero.

The chained fitting procedure employed to use the posterior information from the 8′

fit as priors for the 16 fit is especially vulnerable to these displaced spurious states. This

procedure introduces prior widths that are narrower on the higher-mass states than the

lower-mass states. In this case, it is initially favorable for the fitter to use the narrow prior
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widths to fit the well-constrained states, even if this may not be the case for the global fit.

This pushes the fit algorithm to a region of parameter space where it is difficult to escape

to the global minimum.

There are two ways to combat these issues. The first way is to change the starting

guesses used for the parameters in the fit. The most straightforward solution is to use

random starting guesses for overlap factors to find the minimum. If the priors are sensible

and the initial values are reasonable, this method was able to find the minimum the majority

of trials in the fits presented here. Once a fit minimum is determined, the initial values may

be reused to compute variations on the fits quickly.

Another way to prevent spurious states is to arrange priors to remove the phase space

where they occur. This is done by changing the reference mass that is used for the fit. In

the fits considered here, the reference value was 0 and the lowest-mass state was treated as

an energy splitting away from 0. If the states are strictly ordered, as is done in this work,

then raising the reference value to some finite mass puts a floor on the lowest mass that can

be fit. This value can be set a few prior widths below where the lowest state is expected,

yet it will still exclude a large region of parameter space where spurious states appear. This

may be paired with another technique where multiple streams of even and odd states are

allowed in the fits, each with their own reference mass. The pair of these techniques should

be sufficient to eliminate the spurious states due to tight priors on excited states, as is the

case in the fits presented in Sec. 4.3.2.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The precision neutrino oscillation experiments that are coming in the following decades will

test the limits of scientific understanding of nuclear physics. These experiments will require

an equivalent development of theoretical predictions, including creation of advanced nuclear

physics models that accurately portray the interactions inside of a nucleus. However, creation

of precise nuclear models requires a robust understanding of the free nucleon amplitudes

that are used as inputs to the nuclear models. The axial form factor, one of the essential

free nucleon amplitudes, is especially difficult to constrain via experimental measurements

because it is accessed only through interactions involving a weak current. Lattice QCD

offers an independent approach for computing the form factors of the nucleon, making it

an attractive remedy for this difficulty. The work in this dissertation provides a realistic

estimate of the uncertainties in the determination of the axial form factor from the world’s

best determination on nearly-free nucleon targets. The axial form factor at zero momentum

transfer, the axial charge, is also computed using staggered lattice QCD for one ensemble at

physical pion mass. The work in this dissertation represents the first step in a new initiative

to use lattice QCD to compute matrix elements needed by neutrino oscillation experiments.

In Chapter 2, the z expansion parametrization of the axial form factor is fit to deuterium

bubble chamber data to get an estimate of the true form factor uncertainty. The results in

Figs. 2.7 and 2.8 show that the form factor and cross section uncertainties are significantly

underestimated when the dipole parametrization is used. The uncertainty in the free nucleon

form factor is significant, making up a large portion of the data-theory discrepancy shown

in Fig. 2.9. These observations indicate that the axial form factor is not as well-determined

as the dipole model implies. If studies such as that in Fig. 2.9 are to be used to constrain

nuclear models, then uncertainties in the free nucleon form factor uncertainties must be

quantified realistically, and a program is needed—such as lattice QCD—to reduce them..

Chapters 3–5 present the first steps in such a program. Chapter 3 delineates the group
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theory needed to compute baryon observables with lattice QCD using the staggered action.

In this chapter, the staggered timeslice group is fully decomposed into its spin and taste

subgroups, making the decomposition from the continuum group to the lattice subgroup

manifest. From the group transformations, the spectrum of zero-momentum states expected

for each combination of isospin and spin-taste is predicted. These results are used in Chap-

ter 4, where the spectrum of the 8′ and 16 representations of the staggered timeslice group are

computed. The extra taste symmetry in the group transformations results in extra baryon

taste states. Due to strong correlations among the correlation function data, the spectrum

of the staggered baryons can be precisely predicted. Fig. 4.8 depicts the stability of the 16

representation spectrum, showing that the correlation functions constrain many more states

than would be implied from a variational method alone. The stability of results when sub-

jected to various alternate fits and systematics checks is shown in Fig. 4.10. This stability

gives confidence that the mass posteriors presented in Sec. 4.3.3 are a robust an accurate

result of the underlying data.

Chapter 5 goes over the computation of the axial charge from staggered lattice QCD. The

three-point correlation function data in Fig. 5.2 are simultaneously fit with the two-point

function data to extract the axial charge. Despite large statistical errors, cross-correlations

among the data improve the extraction of observables from the data, allowing for more precise

extraction of the axial charge. The computation is absolutely normalized by forming a ratio

with an axial current matrix element coupled to a pion. Removing the extraneous factors, the

computation yields a blinded result of βgA = 1.45(22) with statistical errors only. Extensions

to this calculation will include computing the axial form factor with nonzero momentum and

including ensembles with smaller lattice spacings for a full continuum extrapolation. Fits to

the form factor shape will be computed with the z expansion parametrization, providing a set

of coefficients and a covariance matrix to be implemented into the Monte Carlo generators

used in neutrino physics. The axial form factor data will be unblinded when all systematic

uncertainties have been estimated and fit procedures have been finalized.
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The work in this dissertation provides an overview of the importance of the axial form

factor to neutrino physics. Although the standard dipole ansatz underestimates its un-

certainties, the model-independent z expansion offers a superior alternative. It is already

available as an option in GENIE, using our z fits of the deuterium bubble-chamber data.

From now on, however, lattice QCD offers a way to access the nucleon matrix elements di-

rectly, providing an alternative determination for matrix elements that are difficult to extract

from experiment. These results will provide essential ingredients to the nuclear models on

which determinations of the neutrino oscillation experiments rely. Thus, it is apparent that

lattice QCD will prove to be an invaluable tool for neutrino oscillation physics in the years

to come, providing the missing puzzle pieces necessary to study some of the most elusive

and interesting particles known to this day.
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APPENDIX A

GROUP THEORY DETAILS

In this appendix, we will enumerate the group structure of the staggered action in more

detail. The symmetries of a timeslice with the staggered quark action include staggered

shifts, rotations, spatial inversion, and the temporal taste transformation Ξ4.

Even when all transformations but shifts are neglected, the full staggered quark shift

group is cumbersome. It is simpler to apply the strategy of Ref. [56] and work with transla-

tions and discrete taste transformations rather than shifts:

Tµ ≡
[(
Sµ
)2]−1/2

, Ξµ ≡ Sµ
(
Tµ
)−1

. (A.1)

These operators are nonlocal, but the desired shift group the subgroup obtained from using

the local operators Sµ = ΞµTµ as generators instead of both the Ξµ and Tµ separately. The

consequence of taking this subgroup is to eliminate the irreps that would have momentum

larger than half the maximum momentum; in other words, the phases obtained from trans-

lating high-momentum irreps are made to be degenerate with the staggered phases obtained

from taste transformations.

A.1 Discrete Taste Transformations

Focusing only on the subgroup of discrete taste transformations, one finds that the resulting

symmetries are part of a quotient of a direct product group [63]:

{Ξ12,Ξ23} × {Ξ123,Ξ4} / {−1×−1} ∼= (Q8 ×D4) /Z2 . (A.2)

The set of elements listed in braces are the generators of that group. Here, Q8 denotes the

order 8 quaternion group (generated by the Pauli spin matrices iσi) and D4 specifies the

order 8 dihedral group (generated by iσ2 and σ3).
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Q8 D4 {1} {−1} {±Ξ12/Ξ123} {±Ξ13/Ξ1234} {±Ξ23/Ξ4}
a1 a++ 1 1 1 1 1
bx b−+ 1 1 −1 −1 1
by b−− 1 1 −1 1 −1
bz b+− 1 1 1 −1 −1
σ σ 2 −2 0 0 0

Table A.1: Character table for the Q8 and D4 groups. The character tables for both groups
are identical, but the irreps and group operations are not the same.

The Z2 factor in the quotient forces the −1 element of both groups to be the same

element. If we define “fermionic” (“bosonic”) irreps to mean irreps with a negative (positive)

character for the conjugacy class containing the −1 element, then this quotient eliminates

the irreducible representations of the direct product group that have different characters for

the −1 conjugacy class. In other words, we may only pair bosonic irreps of the Q8 subgroup

with bosonic irreps of D4, and similarly fermionic with fermionic.

The group symmetries have a very clean interpretation when written in this way. The

quaternion group factor Q8 represents the taste transformations induced by shifts in two

independent directions, connecting even sites only to other even sites and odd sites to odd

sites. The dihedral group factor D4 represents the shifts by three lattice sites, which con-

nects the odd sites to the odd sites (that will be referred to as site-parity), and the taste

transformation in the temporal direction. Each of these groups conveniently has the same

character table, displayed in Table A.1. This means that they both have five irreducible

representations; four of these representations are one-dimensional and are bosonic represen-

tations, while the last is a two-dimensional fermionic representation. As we will see, the

two-dimensional representations will both make up factors of two in the dimension of the

fermionic irreducible representations of the full lattice timeslice group.

A.2 Rotations

The rotations belong to the group SW3, the cubic rotation group. This group has five irre-

ducible representations, with an additional three that appear in the double cover. There are
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two 1-dimensional, one 2-dimensional, and two 3-dimensional irreducible representations in

the single cover of the group. The two 1-dimensional and two 3-dimensional representations

differ only by a factor of −1 in the representation matrices for the group generators Rij .

The matrices with a negative character are those corresponding to representations with a

larger spin.

Combining the rotational symmetries with the discrete taste symmetries mixes up oper-

ators with the same site-parity and leads to the semidirect product Q8 o SW3. In Ref. [56],

this factor was isomorphic to the four-dimensional cubic rotation group, SW4. The irreps of

the fermionic representations are either four- or eight-dimensional, corresponding to opera-

tors that are a one- or two-vector at each of the four sites with the same site-parity within

a unit cube. The bosonic representations are constructed from sums of operators over these

four sites.

Under rotations, the orbits of the representations are simple to determine. The two easiest

cases are the trivial irrep, which will only transform into itself, and the fermionic irrep, which

must transform because group orbits can only connect irreps of the same dimension. The

remaining three irreducible representations transform into each other like a 3-vector. This

can be seen if one notes that the rotations act by interchanging the operators Ξij with each

other. This nontrivial orbit is represented by labeling the irreps of Q8 as Ak in Table A.3,

where k denotes the operator εijkΞij that has a positive character in said irrep.

Including spatial inversion takes the group factor from SW3 → W3. The new operator

IS does not commute with the body-diagonal taste transformation Ξ123. This is remedied

by replacing IS with the nearly-equivalent continuum parity operator ISΞ4, which is a good

symmetry of the lattice at zero momentum. The effect is simply to introduce a group

parity, doubling the number of irreducible representations. In practice, constructing lattice

operators with definite parity requires spreading the operator out over the entire temporal

extent, which would introduce unwanted contact terms into measurements of observables.

As a result, parity is often neglected in the construction of operators. A full summary of the
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SW3 {1} {+R}
{

+RR′
} {

±R2
} {

±RR′R
}
{−1} {−R}

{
−RR′

}
A1 1 1 1 1 1 1 1 1
A2 1 −1 1 −1 1 1 −1 1
E 2 0 −1 0 2 2 0 −1
T1 3 1 0 −1 −1 3 1 0
T2 3 −1 0 1 −1 3 −1 0

2 2
√

2 1 0 0 −2 −
√

2 −1

2̄ 2 −
√

2 1 0 0 −2
√

2 −1
4 4 0 −1 0 0 −4 0 1

Table A.2: Character table for the double cover of the W3 (cubic rotation) group. The single
cover of the rotation group is the 5× 5 block in the upper-left corner of this character table.

irreducible representations is given in Table A.3.

A.3 Nonzero Momentum

The direction of the momentum can be changed under rotations. This means that the

little groups of the rotation group are different when generalizing to nonzero momentum.

The semidirect product now acts on the subgroup TM × Q8 instead of just the quaternion

subgroup.

Some of the considerations to take into account when generalizing to nonzero momentum

include

1. the size of the orbits under SW3 change,

2. continuum parity takes p → −p and must be paired with other symmetry operations

to be represented in the little group, and

3. the directions of the momenta and Q8 irreps transform together, and so the dimensions

of the irreps may be smaller than the product of the two constituent orbit sizes.

136



T M
⊗
Q

8
D

im
.

O
rb

.S
iz

e
G

en
s.

L
it

tl
e

gr
p
.

L
G

Ir
re

p
s

M
u
lt

.
T

ot
.D

im
.

(0
,0
,0

)
⊗
A

0
1

1
{ R ij

,Ξ
4
I S
}

S
W

3
×
Z

2

A
± 1
,A
± 2

E
±

T
± 1
,T
± 2

4
×

4
2
×

4
4
×

4

1 2 3

(0
,0
,0

)
⊗
A
k

1
3

{ R 12
,R

2 1
3
,Ξ

4
I S
}

D
4
×
Z

2
A
± 0
,A
± 1
,A
± 2
,A
± 3

σ
±

8
×

4
2
×

4
3 6

(0
,0
,0

)
⊗
σ

2
1

{ R ij
,Ξ

4
I S
}

S̃
W

3
×
Z

2
2±
,2
±

4±
4 2

4
×

2
8
×

2

S
u
m

m
ar

y
:

b
os

on
ic

16 8 48 8

1 2 3 6

fe
rm

io
n
ic

4 2
8 16

T
ab

le
A

.3
:

S
u
m

m
ar

y
of

ir
re

p
m

u
lt

ip
li
ci

ti
es

an
d

d
im

en
si

on
s

fo
r

th
e

la
tt

ic
e

sy
m

m
et

ri
es

at
ze

ro
m

om
en

tu
m

af
te

r
go

in
g

th
ro

u
gh

th
e

W
ig

n
er

li
tt

le
gr

ou
p

an
al

y
si

s.
F

or
th

is
ca

se
,

th
e

b
os

on
ic

ir
re

p
s

h
av

e
th

re
e

p
ar

it
ie

s,
co

rr
es

p
on

d
in

g
to

th
e

op
er

at
or

s
Ξ

1
2
3
,

Ξ
4
,

an
d

co
n
ti

n
u
u
m

p
ar

it
y

Ξ
4
I S

.
A

fa
ct

or
of

fo
u
r

in
th

e
m

u
lt

ip
li
ci

ty
co

lu
m

n
of

th
is

ta
b
le

re
p
re

se
n
ts

th
e

fi
rs

t
tw

o
of

th
es

e
p
ar

it
ie

s,
an

d
th

e
co

n
ti

n
u
u
m

p
ar

it
y

is
in

cl
u
d
ed

in
co

u
n
ti

n
g

th
e

to
ta

l
re

p
re

se
n
ta

ti
on

s
in

th
e

L
it

tl
e

G
ro

u
p

Ir
re

p
s

co
lu

m
n
.

T
h
e

fe
rm

io
n
ic

ir
re

p
s

h
av

e
on

ly
th

e
co

n
ti

n
u
u
m

p
ar

it
y,

Ξ
4
I S

,
w

h
er

e
th

e
ot

h
er

p
ar

it
ie

s
fr

om
Ξ

1
2
3

an
d

Ξ
4

ar
e

ab
so

rb
ed

in
to

th
e

op
er

at
or

d
im

en
si

on
.

137



T M
⊗
Q

8
D

im
.

O
rb

.S
iz

e
G

en
s.

L
it

tl
e

gr
p
.

L
G

Ir
re

p
s

M
u
lt

.
T

ot
.D

im
.

(0
,0
,±
p)
⊗
A

0
1

6
{ R 12

,R
2 1
3
Ξ

4
I S
}

D
4

A
0
,A

1
,A

2
,A

3
σ

4
×

4
1
×

4
6 12

(0
,0
,±
p)
⊗
A
k

(k
‖
p)

1
6

{ R 12
,R

2 1
3
Ξ

4
I S
}

D
4

A
0
,A

1
,A

2
,A

3
σ

4
×

4
1
×

4
6 12

(0
,0
,±
p)
⊗
A
k

(k
⊥
p)

1
12

{ R2 1
2
,R

2 1
3
Ξ

4
I S
}

Z
2
×
Z

2
A

+ +
,A
− +
,A

+ −
,A
− −

4
×

4
12

(0
,0
,±
p)
⊗
σ

2
6

{ R 12
,R

2 1
3
Ξ

4
I S
}

D
8

2,
2

2
24
×

2

S
u
m

m
ar

y
:

b
os

on
ic

32 24
6 12

fe
rm

io
n
ic

2
48

T
ab

le
A

.4
:

T
h
e

sa
m

e
as

T
ab

le
A

.3
,

b
u
t

w
it

h
n
on

ze
ro

m
om

en
tu

m
in

a
si

n
gl

e
d
ir

ec
ti

on
.

T
h
e

ad
d
it

io
n

of
m

om
en

tu
m

h
as

fo
rc

ed
th

e
co

n
ti

n
u
u
m

p
ar

it
y

to
b

e
m

ix
ed

u
p

w
it

h
in

th
e

ir
re

p
s.

T
h
e

d
ou

b
le

co
ve

r
of
D

4
ex

te
n
d
s

th
e

gr
ou

p
to
D

8
,

w
h
ic

h
in

tr
o
d
u
ce

s
tw

o
n
ew

co
n
ju

ga
cy

cl
as

se
s

of
d
im

en
si

on
2.

138



T M
⊗
Q

8
D

im
.

O
rb

.S
iz

e
G

en
s.

L
it

tl
e

gr
p
.

L
G

Ir
re

p
s

M
u
lt

.
T

ot
.D

im
.

(±
p,
±
p,

0)
⊗
A

0
1

12
{ R

2 1
3
R
−

1
1
2
,R

2 1
2
Ξ

4
I S

}
Z

2
×
Z

2
A

+ +
,A
− +
,A

+ −
,A
− −

4
×

4
12

(±
p,
±
p,

0)
⊗
A
k

(k
⊥
p)

1
12

{ R
2 1
3
R
−

1
1
2
,R

2 1
2
Ξ

4
I S

}
Z

2
×
Z

2
A

+ +
,A
− +
,A

+ −
,A
− −

4
×

4
12

(±
p,
±
p,

0)
⊗
A
k

(k
‖
p)

1
24

{ R2 1
2
Ξ

4
I S
}

Z
2

A
+
,A
−

2
×

4
24

(±
p,
±
p,

0)
⊗
σ

2
12

{ R
2 1
3
R
−

1
1
2
,R

2 1
2
Ξ

4
I S

}
D

4
2

1
48
×

2

S
u
m

m
ar

y
:

b
os

on
ic

32 8
12 24

fe
rm

io
n
ic

1
96

T
ab

le
A

.5
:

T
h
e

sa
m

e
as

T
ab

le
A

.3
,

b
u
t

w
it

h
id

en
ti

ca
l

n
on

ze
ro

m
om

en
tu

m
in

tw
o

d
ir

ec
ti

on
s.

T
h
e

d
ou

b
le

co
ve

r
of
Z

2
×
Z

2
is

th
e

gr
ou

p
D

4
.

139



T M
⊗
Q

8
D

im
.

O
rb

.S
iz

e
G

en
s.

L
it

tl
e

gr
p
.

L
G

Ir
re

p
s

M
u
lt

.
T

ot
.D

im
.

(±
p,
±
p,
±
p)
⊗
A

0
1

8

{ R2 1
3
R

1
2
Ξ

4
I S
,

R
2 1
2
R

1
3
Ξ

4
I S
}

D
3

A
0
,A

1
σ

2
×

4
1
×

4
8 16

(±
p,
±
p,
±
p)
⊗
A
k

1
24

{ R2 1
3
R

1
2
Ξ

4
I S
}

Z
2

A
+
,A
−

2
×

4
24

(±
p,
±
p,
±
p)
⊗
σ

2
8

{ R2 1
3
R

1
2
Ξ

4
I S
,

R
2 1
2
R

1
3
Ξ

4
I S
}

D
3
×
Z

2
1+
,1
−

2
2 1

16
×

2
32
×

2

S
u
m

m
ar

y
:

b
os

on
ic

8 4 8

8 16 24

fe
rm

io
n
ic

2 1
32 64

T
ab

le
A

.6
:

T
h
e

sa
m

e
as

T
ab

le
A

.3
,

b
u
t

w
it

h
id

en
ti

ca
l

n
on

ze
ro

m
om

en
tu

m
in

al
l

th
re

e
d
ir

ec
ti

on
s.

T
h
e

d
ou

b
le

co
ve

r
of
D

3
is

th
e

tr
iv

ia
l

ex
te

n
si

on
to
D

3
×
Z

2
.

140



REFERENCES

[1] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, no. 10, 100001 (2016).
doi:10.1088/1674-1137/40/10/100001

[2] L. Aliaga Soplin, Ph. D. thesis, William-Mary Coll., 2016. FERMILAB-THESIS-2016-
03.

[3] J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012)
doi:10.1103/RevModPhys.84.1307 [arXiv:1305.7513 [hep-ex]].

[4] F. P. An et al. [Daya Bay Collaboration], Phys. Rev. Lett. 108, 171803 (2012)
doi:10.1103/PhysRevLett.108.171803 [arXiv:1203.1669 [hep-ex]].

[5] R. Acciarri et al. [DUNE Collaboration], arXiv:1512.06148 [physics.ins-det].

[6] H. Nunokawa, S. J. Parke and J. W. F. Valle, Prog. Part. Nucl. Phys. 60, 338 (2008)
doi:10.1016/j.ppnp.2007.10.001 [arXiv:0710.0554 [hep-ph]].

[7] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, JHEP
1701, 087 (2017) doi:10.1007/JHEP01(2017)087 [arXiv:1611.01514 [hep-ph]].

[8] K. Iwamoto and O. B. O. T. Collaboration, PoS ICHEP 2016, 517 (2016).

[9] H. B. Nielsen and M. Ninomiya, Phys. Lett. 105B, 219 (1981). doi:10.1016/0370-
2693(81)91026-1

[10] C. Bernard et al., PoS LAT 2007, 090 (2007) [arXiv:0710.1118 [hep-lat]].

[11] C. Bernard, Phys. Rev. D 73, 114503 (2006) doi:10.1103/PhysRevD.73.114503 [hep-
lat/0603011].

[12] A. S. Kronfeld, PoS LAT 2007, 016 (2007) [arXiv:0711.0699 [hep-lat]].

[13] A. S. Kronfeld, Ann. Rev. Nucl. Part. Sci. 62, 265 (2012) doi:10.1146/annurev-nucl-
102711-094942 [arXiv:1203.1204 [hep-lat]].

[14] R. Aaij et al. [LHCb Collaboration], Nature Phys. 11, 743 (2015) doi:10.1038/nphys3415
[arXiv:1504.01568 [hep-ex]].

[15] J. L. Rosner, S. Stone and R. S. Van de Water, [arXiv:1509.02220 [hep-ph]].

[16] J. A. Bailey et al. [MILC Collaboration], Phys. Rev. D 92, no. 3, 034506 (2015)
doi:10.1103/PhysRevD.92.034506 [arXiv:1503.07237 [hep-lat]].

[17] J. A. Bailey et al. [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 92, no.
1, 014024 (2015) doi:10.1103/PhysRevD.92.014024 [arXiv:1503.07839 [hep-lat]].

[18] W. Detmold, C. Lehner and S. Meinel, Phys. Rev. D 92, no. 3, 034503 (2015)
doi:10.1103/PhysRevD.92.034503 [arXiv:1503.01421 [hep-lat]].

141



[19] J. Green, M. Engelhardt, S. Krieg, J. Negele, A. Pochinsky and S. Syritsyn, PoS LAT-
TICE 2012, 170 (2012) [arXiv:1211.0253 [hep-lat]].

[20] S. Durr et al., JHEP 1108, 148 (2011) doi:10.1007/JHEP08(2011)148 [arXiv:1011.2711
[hep-lat]].

[21] Y. B. Yang, M. Gong, K. F. Liu and M. Sun, PoS LATTICE 2014, 138 (2014)
[arXiv:1504.04052 [hep-ph]].

[22] B. J. Owen, J. Dragos, W. Kamleh, D. B. Leinweber, M. S. Mahbub, B. J. Menadue
and J. M. Zanotti, Phys. Lett. B 723, 217 (2013) doi:10.1016/j.physletb.2013.04.063
[arXiv:1212.4668 [hep-lat]].

[23] S. Dinter, C. Alexandrou, M. Constantinou, V. Drach, K. Jansen and D. B. Renner,
Phys. Lett. B 704, 89 (2011) doi:10.1016/j.physletb.2011.09.002 [arXiv:1108.1076 [hep-
lat]].

[24] T. Bhattacharya, S. D. Cohen, R. Gupta, A. Joseph, H. W. Lin and B. Yoon, Phys.
Rev. D 89, no. 9, 094502 (2014) doi:10.1103/PhysRevD.89.094502 [arXiv:1306.5435
[hep-lat]].

[25] T. Bhattacharya, R. Gupta and B. Yoon, PoS LATTICE 2014, 141 (2014)
[arXiv:1503.05975 [hep-lat]].

[26] R. Gupta, T. Bhattacharya, A. Joseph, H. W. Lin and B. Yoon, PoS LATTICE 2014,
152 (2014) [arXiv:1501.07639 [hep-lat]].

[27] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, H. W. Lin and B. Yoon, Phys.
Rev. D 94, no. 5, 054508 (2016) doi:10.1103/PhysRevD.94.054508 [arXiv:1606.07049
[hep-lat]].

[28] S. Ohta [RBC and UKQCD Collaborations], PoS LATTICE 2013, 274 (2014)
[arXiv:1309.7942 [hep-lat]].

[29] S. N. Syritsyn et al., Phys. Rev. D 81, 034507 (2010) doi:10.1103/PhysRevD.81.034507
[arXiv:0907.4194 [hep-lat]].

[30] J. Green, M. Engelhardt, S. Krieg, J. Negele, A. Pochinsky and S. Syritsyn, PoS LAT-
TICE 2012, 170 (2012) [arXiv:1211.0253 [hep-lat]].

[31] S. Syritsyn et al., PoS LATTICE 2014, 134 (2015) [arXiv:1412.3175 [hep-lat]].

[32] M. Gockeler et al. [QCDSF/UKQCD Collaboration], PoS LATTICE 2010, 163 (2010)
[arXiv:1102.3407 [hep-lat]].

[33] J. R. Green, J. W. Negele, A. V. Pochinsky, S. N. Syritsyn, M. Engelhardt and S. Krieg,
Phys. Rev. D 90, 074507 (2014) doi:10.1103/PhysRevD.90.074507 [arXiv:1404.4029
[hep-lat]].

[34] E. Berkowitz et al., arXiv:1704.01114 [hep-lat].

142



[35] C. H. Llewellyn Smith, Phys. Rept. 3, 261 (1972). doi:10.1016/0370-1573(72)90010-5

[36] K. A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014).
doi:10.1088/1674-1137/38/9/090001

[37] V. Bernard, L. Elouadrhiri and U. G. Meissner, J. Phys. G 28, R1 (2002)
doi:10.1088/0954-3899/28/1/201 [hep-ph/0107088].

[38] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. D 81, 092005
(2010) doi:10.1103/PhysRevD.81.092005 [arXiv:1002.2680 [hep-ex]].

[39] B. Bhattacharya, R. J. Hill and G. Paz, Phys. Rev. D 84, 073006 (2011)
doi:10.1103/PhysRevD.84.073006 [arXiv:1108.0423 [hep-ph]].

[40] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).
doi:10.1103/PhysRevD.22.2157

[41] A. S. Meyer, M. Betancourt, R. Gran and R. J. Hill, Phys. Rev. D 93, no. 11, 113015
(2016) doi:10.1103/PhysRevD.93.113015 [arXiv:1603.03048 [hep-ph]].

[42] N. J. Baker et al., Phys. Rev. D 23, 2499 (1981). doi:10.1103/PhysRevD.23.2499

[43] W. A. Mann et al., Phys. Rev. Lett. 31, 844 (1973). doi:10.1103/PhysRevLett.31.844

[44] S. J. Barish et al., Phys. Rev. D 16, 3103 (1977). doi:10.1103/PhysRevD.16.3103

[45] K. L. Miller et al., Phys. Rev. D 26, 537 (1982). doi:10.1103/PhysRevD.26.537

[46] T. Kitagaki et al., Phys. Rev. D 28, 436 (1983). doi:10.1103/PhysRevD.28.436

[47] S. K. Singh, Nucl. Phys. B 36, 419 (1972). doi:10.1016/0550-3213(72)90227-1

[48] R. Bradford, A. Bodek, H. S. Budd and J. Arrington, Nucl. Phys. Proc. Suppl. 159,
127 (2006) doi:10.1016/j.nuclphysbps.2006.08.028 [hep-ex/0602017].

[49] G. Lee, J. R. Arrington and R. J. Hill, Phys. Rev. D 92, no. 1, 013013 (2015)
doi:10.1103/PhysRevD.92.013013 [arXiv:1505.01489 [hep-ph]].

[50] G. Shen, L. E. Marcucci, J. Carlson, S. Gandolfi and R. Schiavilla, Phys. Rev. C 86,
035503 (2012) doi:10.1103/PhysRevC.86.035503 [arXiv:1205.4337 [nucl-th]].

[51] A. Bodek, S. Avvakumov, R. Bradford and H. S. Budd, Eur. Phys. J. C 53, 349 (2008)
doi:10.1140/epjc/s10052-007-0491-4 [arXiv:0708.1946 [hep-ex]].

[52] J. C. Bernauer et al. [A1 Collaboration], Phys. Rev. C 90, no. 1, 015206 (2014)
doi:10.1103/PhysRevC.90.015206 [arXiv:1307.6227 [nucl-ex]].

[53] G. A. Fiorentini et al. [MINERvA Collaboration], Phys. Rev. Lett. 111, 022502 (2013)
doi:10.1103/PhysRevLett.111.022502 [arXiv:1305.2243 [hep-ex]].

143



[54] M. Martini, M. Ericson and G. Chanfray, Phys. Rev. C 84, 055502 (2011)
doi:10.1103/PhysRevC.84.055502 [arXiv:1110.0221 [nucl-th]].

[55] C. Andreopoulos et al., Nucl. Instrum. Meth. A 614, 87 (2010)
doi:10.1016/j.nima.2009.12.009 [arXiv:0905.2517 [hep-ph]].

[56] M. F. L. Golterman and J. Smit, Nucl. Phys. B 255, 328 (1985). doi:10.1016/0550-
3213(85)90138-5

[57] L. H. Karsten and J. Smit, Nucl. Phys. B 183, 103 (1981). doi:10.1016/0550-
3213(81)90549-6

[58] N. Kawamoto and J. Smit, Nucl. Phys. B 192, 100 (1981).

[59] F. Gliozzi, Nucl. Phys. B 204, 419 (1982). doi:10.1016/0550-3213(82)90199-7

[60] A. Duncan, R. Roskies and H. Vaidya, Phys. Lett. 114B, 439 (1982). doi:10.1016/0370-
2693(82)90088-0

[61] H. Kluberg-Stern, A. Morel, O. Napoly and B. Petersson, Nucl. Phys. B 220, 447 (1983).
doi:10.1016/0550-3213(83)90501-1

[62] M. F. L. Golterman and J. Smit, Nucl. Phys. B 245, 61 (1984). doi:10.1016/0550-
3213(84)90424-3

[63] G. W. Kilcup and S. R. Sharpe, Nucl. Phys. B 283, 493 (1987). doi:10.1016/0550-
3213(87)90285-9

[64] J. A. Bailey, Phys. Rev. D 75, 114505 (2007) doi:10.1103/PhysRevD.75.114505 [hep-
lat/0611023].

[65] G. P. Lepage, CLNS-89-971, C89-06-04.

[66] D. B. Renner, PoS LAT 2009, 018 (2009) [arXiv:1002.0925 [hep-lat]].

[67] H. W. Lin, PoS LATTICE 2012, 013 (2012) [arXiv:1212.6849 [hep-lat]].

[68] J. M. M. Hall, D. B. Leinweber and R. D. Young, Phys. Rev. D 88, no. 1, 014504 (2013)
doi:10.1103/PhysRevD.88.014504 [arXiv:1305.3984 [hep-lat]].

[69] M. Luscher, Commun. Math. Phys. 104, 177 (1986). doi:10.1007/BF01211589

[70] S. R. Beane and M. J. Savage, Phys. Rev. D 70, 074029 (2004)
doi:10.1103/PhysRevD.70.074029 [hep-ph/0404131].

[71] A. A. Khan et al., Phys. Rev. D 74, 094508 (2006) doi:10.1103/PhysRevD.74.094508
[hep-lat/0603028].

[72] A. Bazavov et al. [MILC Collaboration], Rev. Mod. Phys. 82, 1349 (2010)
doi:10.1103/RevModPhys.82.1349 [arXiv:0903.3598 [hep-lat]].

144



[73] R. Li, Ph. D. thesis, Indiana U., 2014.

[74] A. S. Meyer, R. J. Hill, A. S. Kronfeld, R. Li and J. N. Simone, PoS LATTICE 2016,
179 (2016) [arXiv:1610.04593 [hep-lat]].

[75] A. Bazavov et al. [MILC Collaboration], Phys. Rev. D 93, no. 9, 094510 (2016)
doi:10.1103/PhysRevD.93.094510 [arXiv:1503.02769 [hep-lat]].

[76] A. Bazavov et al. [MILC Collaboration], Phys. Rev. D 87, no. 5, 054505 (2013)
doi:10.1103/PhysRevD.87.054505 [arXiv:1212.4768 [hep-lat]].

[77] G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B. Mackenzie, C. Morn-
ingstar and H. Trottier, Nucl. Phys. Proc. Suppl. 106, 12 (2002) doi:10.1016/S0920-
5632(01)01638-3 [hep-lat/0110175].

[78] G. P. Lepage “Corrfitter v5.0.1,” https://github.com/gplepage/corrfitter

[79] G. P. Lepage and Gohlke, C. “Lsqfit v8.1,” https://github.com/gplepage/lsqfit

[80] G. P. Lepage “Gvar v8.1,” https://github.com/gplepage/gvar

[81] A. Bazavov et al. [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 90, no. 7,
074509 (2014) doi:10.1103/PhysRevD.90.074509 [arXiv:1407.3772 [hep-lat]].

145




