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在研究量子态的演化问题时, 量子演化速率往往定义为量子初态与其演化态之间的态距离随时间的变

化率. 本文将量子演化的基本理论与线性代数方法相结合, 通过量子态演化的路径距离来研究量子系统的演

化. 量子幺正演化系统中, 量子演化算符包含了量子演化的路径信息, 路径距离的大小则决定于演化算符本

征值的幅角主值分布. 由量子态演化的路径距离随时间的变化率而得到的量子瞬时演化速率则正比于系统

哈密顿量的最大与最小本征值之差. 作为应用之一, 利用量子演化的路径距离及哈密顿量诱导的瞬时演化速率,

可以给出量子演化新的时间下限. 此时间下限只与系统的演化算符及哈密顿量有关, 而与量子初态的具体形式

无关, 这与量子系统真实演化时间所具有的性质一致. 严格的理论证明以及两个演化实例的数值结果均表明,

在   时间范围内, 本文给出的演化时间下限与真实演化时间重合, 是真实演化时间的准确预测. 通

过量子演化的路径距离及相应演化速率来研究量子系统的演化, 为相关问题的解答提供了新的思路和方法.
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1   引　言

iℏ
∂

∂t
|ψ⟩ = Ĥ|ψ⟩

量子态的演化速度是量子理论中的基本问

题 [1–3]. 随着量子信息科学在近二三十年的蓬勃发

展, 量子态的演化速度再次引起物理学工作者的高

度重视, 因为它关系到量子计算的算力 [4,5]、量子信

息转换率 [6–8]、量子测量的测量精度 [9–11] 以及量子

电池的充电量 [12,13] 等 . 在研究量子系统的演化

问题时, 量子演化速度往往定义为量子初态与其演

化态之间的“距离”随时间的变化率, 这使得量子演

化速度的计算不但与量子系统的哈密顿量有关,

还与量子系统所处的状态有关. 但可以从另外一

个角度来看量子态的演化问题. 量子系统的演化

遵循薛定谔方程 :    , 为简单起见 ,

ℏ = 1

|ψ0⟩ Ut

|ψt⟩ |ψt⟩ = Ut|ψ0⟩

Ĥ(t)

Ut = T exp
[
− i

∫ t

0

Ĥ(t′)dt′
]

T

Ut

Ut

接下来设定   . 若不考虑系统耗散 , 则系统

初态  可以通过一个幺正算符  与其 t 时刻的

演化态  关联:  , 而这个幺正算符完

全由系统的哈密顿量   及演化时间 t 决定 :

 
[14]. 其中,    为时序算

符, 其依据时段先后对哈密顿量所对应的演化算符

进行排序, 先作用的哈密顿量所对应的演化算符排

在幺正演化算符连乘形式的右侧. 这意味着, 非耗

散量子系统中, 量子态的演化规律包含在幺正算符

 中, 不同量子初态可以看作量子系统演化的不

同初始条件. 如果能提取幺正算符   中所包含的

“路径”信息, 那么这个路径所包含的演化距离, 以

下简称为路径距离, 随时间的变化率可以用来定义

量子演化的瞬时速率. 不难推断, 通过这个方式定

义的量子演化速率取决于量子系统的哈密顿量, 而
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F = ma

与系统所处的量子态无关, 这个性质与经典物理学

中质点运动的瞬时速率是一致的. 在经典物理学

中, 一个质点的运动状态满足牛顿第二运动定律:

 . 只要给定质点运动的初始状态, 则其所

受外力完全决定质点此后的运动状态, 包括其速度

和位置等. 其中, 质点运动的瞬时速度定义为位移

矢量随时间的变化率. 相应地, 质点运动的瞬时速

率等于路程随时间的变化率, 本质上, 其大小取决

于质点的初速度及其所受合外力, 而与质点所处的

位置无关.

基于量子系统的演化算符, 本文定义了量子态

演化的路径距离, 此路径距离仅取决于演化算符本

征值的辐角主值. 可以证明, 量子演化的路径距离

是所有量子初态与其量子演化态之间距离的上限.

演化算符本征值的辐角主值分布随时间的变化决

定了量子演化的瞬时速率, 其值正好等于系统哈密

顿量最大与最小本征值差值的一半. 作为应用之

一, 给出了量子系统真实演化时间的又一个下限,

文中的理论证明及实例均表明, 此时间下限在一个

特定范围内, 与真实演化时间完全重合, 是对量子

系统真实演化时间的精准预测. 

2   量子演化算符包含的路径距离

Ĥ(t)

Ut=T exp
[
− i

∫ t

0

Ĥ(t′)dt′
]

Ut=exp
(
− iĤt

)
|ψ0⟩ |ψt⟩ = Ut|ψ0⟩

ρt=Utρ0U
†
t

Ut

Ut

Ut

UtU
†
t =E

Ut

在一个非耗散量子系统中, 系统哈密顿量 

决定量子态的演化算符,   .

为简单起见, 本文从不含时的哈密顿量系统展开讨

论. 此时, 量子系统的演化算符与哈密顿量的关系

可以简化为:   . 在此演化算符作用

下, 量子初态   演化为   , 其对应的

密度矩阵演化方程为   . 因为以上演化

方程随时间的变化关系只包含在演化算符   中,

所以可以通过  来定义量子系统演化过程中的路

径距离. 对一个非耗散量子系统, 量子演化算符 

是一个幺正算符, 满足关系   (E 为单位算

符). 这说明量子演化算符  本征值的模始终为 1.

Ut

Ut {ρ0, ρt}

在经典物理的运动学中, 如果一个质点一直沿

某个方向作直线运动, 那么它所经历的路程等于质

点始末位置的距离, 除此之外, 质点所经历的路程

都大于质点始末位置的距离. 以此为借鉴, 定义量

子演化算符   所包含的路径距离, 使其不小于通

过   关联起来的所有量子态对   之间的态

距离: 

d(Ut) ⩾ ΘB(ρ0, ρt), (1)

ρt = Utρ0U
†
t ρ0

ΘB(ρ0, ρt) = arccos [F(ρ0, ρt)]

ρ0 ρt

F(ρ0, ρt) = Tr[
√√

ρ0ρt
√
ρ0]

其中,    定义为量子初态   在 t 时刻的

演化态. 本文采用量子初态和目标态之间的 Bures

角    来度量两量子态间

的态距离 [15], 其中   和   之间的 Uhlmann保

真度 [16,17] 为  .

ρ0 Ut

ρ0 = V ΛV † Ut = STS†

ρ0 V = (|ψ1⟩,
|ψ2⟩, · · · , |ψN ⟩)

Λ Λjj = λj
∑N

j=1
λj=1

Ut

S = (|ψ′
1⟩, |ψ′

2⟩, · · · , |ψ′
N ⟩) Tjj = eiϕj {ϕj}

Ut (−π, π]
{ϕj}
ϕ1 ⩽ ϕ2 ⩽

· · · ⩽ ϕN ρ0 ρt

首先给出量子初态  和量子演化算符  的本

征态分解形式 , 即   和   . V

由量子初态   的本征态列向量构成,   

 , 其对应的本征值构成对角矩阵

 的对角元,   , 满足  . 类似地,

S 和 T 分别由演化算符  的本征态和本征值构成,

即  和  . 其中 

是演化算符   本征值的辐角主值, 限制在  

范围内. 不失一般性, 设定辐角主值   在对角

矩阵 T的对角元中按升序排列 , 满足  

 . 量子态   和它的演化量子态   之间的

Uhlmann保真度可以改写为 [18]
 

F(ρ0, ρt) = Tr
[√√

ρ0ρt
√
ρ0

]
= Tr

∣∣√ρ0√ρt∣∣
= Tr

∣∣V √
ΛV †UtV

√
ΛV †U †

t

∣∣, (2)

Tr| · |
AA† A†A

U †
t

式中,   表示矩阵本征值的绝对值之和. 而一个

矩阵 A的本征值的绝对值等于矩阵   或  

本征值的算术平方根, 这意味着, 一个矩阵左乘或

者右乘任意幺正矩阵都不会改变其本征值的绝对

值. 注意到 V及   均为幺正矩阵, 故 (2)式可改

写为 

F (ρ0, ρt) = Tr
∣∣√ΛV †UtV

√
Λ
∣∣

⩾
∣∣∣Tr(√ΛV †UtV

√
Λ

)∣∣∣ = ∣∣Tr(ΛV †UtV )
∣∣

=

∣∣∣∣∑N

j=1
λj⟨ψj |Ut|ψj⟩

∣∣∣∣ . (3)

ρ0 Ut

|ψj⟩ → |ψ′
j⟩

众所周知, 两个量子态间的保真度在幺正变换下是

保持不变的. 我们总可以选择合适的幺正变换, 使

得量子初态  的本征态过渡到演化算符  的本征

态,   . 上面的 Uhlmann保真度过渡为
 

F (ρ0, ρt) ⩾

∣∣∣∣∣∣
N∑
j=1

λj⟨ψ′
j |Ut|ψ′

j⟩

∣∣∣∣∣∣ =
∣∣∣∣∣∣

N∑
j=1

λjeiϕj

∣∣∣∣∣∣ . (4)
Ut

{ϕj}
接下来根据演化算符   本征值的辐角主值

 的分布, 来确定上面的 Uhlmann保真度的最
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{ϕj}
ϕM ≡ max{|ϕj |}

小值. 毫无疑问, 如果锁定  中绝对值最大的相

位, 比如   , 并忽略 (4) 式中求和结

果中的虚部, 那很容易可得到 Uhlmann保真度的

一个下限: 

F (ρ0, ρt) ⩾

∣∣∣∣∣∣
N∑
j=1

λjeiϕj

∣∣∣∣∣∣ ⩾
∣∣∣∣∣∣

N∑
j=1

λj cos(ϕj)

∣∣∣∣∣∣
⩾

N∑
j=1

λj cos(|ϕj |)

⩾
N∑
j=1

λj cos(ϕM) = cos(ϕM), (5)

∑N

j=1
λj = 1

Ut {ϕj} (−π, π]
ϕM > π/2 cos(ϕM) < 0

0

F(ρ0, ρt) ⩾ cos(ϕM)

ϕM Ut

d(Ut)

Ut Ut

{ρ0, ρt}

最后一步用到了等式   . 注意, 演化算

符  本征值的辐角主值  已经被限制在 

范围内. 而当   时,    , (5)式自

然成立, 因为 Uhlmann保真度不可能小于  . 如果

对 (5)式的最终结果:   , 两端取

反余弦, 并定义  为演化算符  所包含的路径距

离   , 则我们直接证明了 (1)式中的关系, 即:

量子演化算符  所包含的路径距离是通过  关联

起来的所有量子态对  之间的态距离的上限.

cos(ϕM)
通过以上方式得到的 Uhlmann保真度下

限  并不能保证其紧凑性. 注意到  ∣∣∣∣ N∑
j=1

λjeiϕj =

N∑
j=1

λjei(ϕj−ϕ0)

∣∣∣∣,
ϕ0 {|ϕj − ϕ0|}

ϕM

ϕ0 ϕM ϕM

其中,   可以为任意位相常量, 则  的最

大值可以用来计算   . 同时, 为了保证所得到的

Uhlmann保真度下限的紧凑性, 我们又必须选取

合适的  , 使得  尽量小, 所以  定义为 

ϕM ≡ min
{ϕ0}

{
max
{ϕj}

(|ϕj − ϕ0|)
}
. (6)

{ϕj}

Ut

为了让相关讨论更直观, 我们把辐角主值   的

分布在一个极坐标系的单位圆中表示出来. N 维量

子系统中, 量子演化算符   有 N 个本征值, 其辐

角主值与单位圆中 N 条半径的极角相对应, 此单

位圆的圆心取为极坐标系的极点.

ϕ0 ϕM

现在我们通过以下 4步来找出 (6)式中的目

标  及相应的  .

1) {ϕj}

{ϕj}

  在以上单位圆与辐角主值   相对应的

N 条半径中, 找出相邻且夹角最大的两条半径. 如

果辐角主值   按升序排列, 那相邻两条半径之

间的夹角为 

Dj =

{
ϕj+1 − ϕj , j = 1, 2, · · · , N − 1

2π+ ϕ1 − ϕN , j = N.
(7)

OC OD

ϕ3 ϕ4.

在图 1中, 夹角最大的两条半径为   和   , 这

两条半径对应的辐角主值为  和 

2) {Dj} Dk =

max{Dj}
ϕ+ ϕ−

  若   中的第 k 个为最大值 ,  即  

 , 将其所对应的两条半径的极角标记为

 和  , 则: 

ϕ− = ϕk,

ϕ+ =

{
ϕk+1, k = 1, 2, · · · , N − 1

2π+ ϕ1, k = N.
(8)

3) {Dj}
ϕ0

OP ϕ0 =
1

2
(ϕ+ + ϕ−)± π

± ϕ0 (−π, π]

      中值最大的那个夹角的角平分线的

反向延长线的极角即对应方程 (6)中目标位相  

(见图 1中的半径  ), 即  , 其

中“  ” 二选其一, 使得  限定在  范围内.

4) ϕ0 ϕ+ ϕ−

ϕM

      与   和   所对应半径间的夹角相同,

这个夹角大小就是方程 (6) 中  值, 

ϕM = π− 1

2
(ϕ+ − ϕ−) = π− 1

2
max{Dj}. (9)

ϕM

{ϕj}
通过这个方式得到的  值有如下直观解释: 在以

上单位圆中画一个能覆盖辐角主值   所对应

 



4



1

2

3

M
M










ϕ0 ϕM

ϕM

ϕM

图 1    在极坐标系的单位圆中, 不同半径的极角与演化算

符本征值的辐角主值相对应. 具有最大夹角的两相邻半径,

其夹角平分线的反向延长线的极角即为   取值, 而   则

为此反向延长线与前述两相邻半径的夹角 .   也有如下

等效理解: 演化算符本征值的每个辐角主值与一个半径对

应 , 找到能覆盖所有半径的最小扇形 , 此最小扇形的圆心

角的一半即为目标   值

ϕ0 ϕM

ϕM

Fig. 1. In the polar coordinate system, the polar angle of a

radius in the unit  circle  corresponds to the principal  argu-

ment of an eigenvalue of the evolution operator. The angu-

lar bisector of two neighboring radii, which form the largest

included  angle  among  all  neighboring  radii,  is  the  reverse

extension line of  the radius with polar angle    ,  and   

is equal to half the largest included angle among all neigh-

boring radii. Equivalently speaking, the principal argument

of each eigenvalue of the evolution operator corresponds to

a radius in the unit circle. If we find out the smallest sector

in this unit circle to cover all radii mentioned above,    is

then equal to half the sector angle.
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ϕM

ϕ0

N 条半径的扇形, 那么满足这个条件的最小扇形的

圆心角的一半即为方程 (6) 中   值. 这个最小扇

形的对称轴对应方程 (6)中的  位相.

ϕM

F(ρ0, ρt) ⩾ cos(ϕM) F(ρ0, ρt) ⩾ cos(max{ϕj})
ϕM ⩽ max{|ϕj |}

ϕM

Ut

基于此   而得到的 Uhlmann保真度下限 ,

 , 相比 

显然更紧凑 , 因为不等式   始终成

立. 保真度的反余弦值, 即 Bures角度, 可以用来

度量两个量子态之间的态距离. 因此把  作为量

子演化算符  所包含的路径距离: 

d(Ut) = ϕM = π− 1

2
max{Dj}. (10)

cos(ϕM)
Ut

既然  是 Uhlmann保真度的下限, 可以得出

如下结论: 量子演化算符   所包含的路径距离不

小于通过其连接起来的任意量子态对之间的

Bures角. 通俗点讲, 就是量子态与其演化态之间

的距离不大于演化过程中的路径距离. 这与经典物

理中, 一个质点运动轨迹上任意两点之间的距离不

大于这两点之间路程的结论相一致. 

3   哈密顿量诱导的瞬时演化速率

Ut

(t+ dt) dt→ 0

Udt = exp(−iĤdt) Ĥ

D{λ} Ĥ

D{λ} ≡ λmax − λmin

dt→ 0 Udt

Ĥ (−dt)

max{Dj} = 2π− dt(λmax − λmin) =

2π−D{λ}dt Udt

d(Udt) = ϕM =
1

2
D{λ}dt

Ĥ

基于以上对量子演化算符  所包含的路径距

离的定义, 来计算量子系统演化时的瞬时速率. 在

一个不含时非耗散量子系统中, 量子系统从 t 时刻

演化到   时刻 (  ) 所对应的演化算符

为  . 不含时哈密顿量  的本征值

为实数, 本文采用  表示哈密顿量  最大本征

值与最小本征值的差值,   . 不难

得出, 当   时, 演化算符为   的本征值的辐

角主值即为哈密顿量   本征值的   倍, 并且

均为小量. 所以这些辐角主值中, 相邻辐角主值

夹角的最大值为:  

 . 根据 (10)式, 演化算符  所包含的

路径距离为:  . 由此可得到

量子系统在哈密顿量   作用下的瞬时演化速率: 

ωH =
d
dt
d(Udt) =

1

2
D{λ} =

1

2
(λmax − λmin), (11)

λmax λmin Ĥ其中,    和   分别为哈密顿量   的最大和最

小本征值. 由此可得出结论: 不含时哈密度量诱导

的瞬时演化速率仅取决于哈密顿最大与最小本征

值的差值.

如果以量子初态为基准, 则量子系统的演化态

与此量子初态之间的路径距离随时间的变化率必

然以上面得到的瞬时演化速率为上限. 因此, 在一

个不含时量子系统中, 量子系统从初态演化到目标

态所需的时间有一个下限: 

τH =
d(Ut)

ωH
. (12)

τMT = π/(2∆E) ∆E

早在 20世纪上半叶, Mandelstam和 Tamm[1]

研究了一个量子纯态自由演化到与其正交的量子

态所需的最短时间,    ,    是量子

系统的能量带宽. 这个结论说明, 若以量子态之间

的态距离为距离量度, 量子系统的能量带宽与量子

态演化速率直接相关. 相关研究很快被推广到一般

情形, 当目标态与初态不正交时, 在这两个量子态

之间自由演化的 Mandelstam-Tamm时间下限

是 [19,20]: 

τMT =
ΘB

∆E
. (13)

 

4   举例和讨论

|ψ⟩ = 1√
2
(|0⟩+ |1⟩)

Ĥ = E0|0⟩⟨0|+ E1|1⟩⟨1|
|0⟩ |1⟩

E0 E1

t = τMT

Ut = e−iE0t|0⟩⟨0|+ e−iE1t|1⟩⟨1|
t ∈ [0, π/(E1 − E0)]

Ut

d(Ut) =
1

2
(E1 − E0)t Ĥ

ωH =
1

2
(E1 − E0)

τH=
d(Ut)

ωH
= t

|ψ⟩= 1√
2
(|0⟩+|1⟩)

τH

τH = τMT = t

形如  的量子态, 其自由演化

时的哈密顿量可以写为:    ,

其中,   和  为量子系统的基态和某激发态, 对

应的能量本征值分别为   和   . 已有研究表明,

此量子态在自由演化时能以最快的演化速率达到

它的正交态, 演化时间正好满足 (13)式中的时间

下限  . 此系统自由演化过程中, t 时刻所对

应的演化算符为  . 由

上文 (10)式和 (11)式可得, 在 

演化时间范围内, 此系统演化算符   所包含的路

径距离为:  . 哈密顿量   所诱

导的演化速率为:   . 根据 (12)式,

可得到本文定义的演化时间下限:    .

由此可见, 量子态  自由演化过程

中, 无论是 Mandelstam-Tamm时间下限, 还是本

文提出的  时间下限, 都作出了最准确的预测, 其

值正好与实际演化时间相同:     .

Ĥ {|0⟩, |1⟩, |2⟩}

Ĥ

Ĥ = Diag(E0 E1 E2)

E0 < E1 < E2

考虑一个三能级量子态的演化. 在以不含时哈

密顿量   的本征态   为基矢的希尔伯

特空间, 哈密顿量  可以用一个实对角矩阵表示,

设为:    . 当前只讨论非简并的

简单情形 , 并设定   . 量子态的演化
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i
∂

∂t
|ψ⟩ = Ĥ|ψ⟩

|ψ0⟩ =
∑2

j=0
cj |j⟩

|ψt⟩ =
∑2

j=0
cje−iEjt|j⟩

Ut = Diag(e−iE0t e−iE1t e−iE2t)

遵从薛定谔方程,    , 所以量子初态

 在 t 时刻的演化态可以表示为

 . 此时刻对应的演化算符

为:   . 根据这些信息,

不难得到 t 时刻的演化态与初态之间的态距离, 即

Bures角: 

Ut = Diag(e−iE0t e−iE1t e−iE2t).

根据这些信息, 不难得到 t 时刻的演化态与初态之

间的态距离, 即 Bures角为 

ΘB(|ψ0⟩, |ψt⟩) = arccos |⟨ψ0|ψt⟩|

= arccos
∣∣∣∣∑2

j=0
|cj |2e−iEjt

∣∣∣∣,
系统的能量带宽为 

∆E =

√∑2

j=0
|cj |2E2

j −
(∑2

j=0
|cj |2Ej

)2

.

τMT

t ∈ [0, π/(2ωH)]
Ut d(Ut) =

1

2
(E2 − E0)t Ĥ

ωH =
1

2
(E2 − E0)

t ∈ [0, π/(2ωH)]
τH = t

cj

ωH

τH ∈ [0, π/(2ωH)]

进而可用 (13)式来估算从初态到 t 时刻演化态

之间的 Mandelstam-Tamm时间下限   . 同时 ,

在演化时间  范围内, 由 (10) 式可以

给出演化算符   所包含的路径距离 : 

 , 而由 (11)式得到的哈密顿量  所诱

导的演化速率为   . 所以, 在演化

时间  范围内, 采用 (12)式能准确预

测量子系统的真实演化时间:   , 这一结论与

上面讨论的二维纯态情形相同. 值得关注的是, 这

一结论不依赖于量子初态中   参数的选择. 实际

上, 可以把此结论推广到一般情形: 在幺正演化系

统中, 基于哈密顿量诱导的量子演化速率  而得

到的演化时间下限  , 在  范围内, 其

预测值与系统真实演化时间完全相等.

Ĥ =

Diag(1 2 4) |ψ0⟩ =
1

2
(
√
2|0⟩+ |1⟩+ |2⟩)

|ψt⟩

τH

t ∈ [0, π/(2ωH)] τH

如图 2所示 , 设定系统的哈密顿量为  

 , 以初态    与

其演化态  之间的 Bures角为横坐标, 画出了量

子系统的真实演化时间 t, 本文提出的基于哈密顿

量诱导的演化速率的演化时间下限   , 以及

Mandelstam-Tamm演化时间下限的变化曲线. 可

以看到, 在   内,    始终与量子系统

的真实演化时间 t 完美重合 , 而 Mandelstam-

Tamm时间下限曲线位于真实演化时间曲线的下

方, 表明其值始终小于系统的真实演化时间, 其差

值随着演化时间的延长而增大.

τH

|ψ0⟩ =
1

2
(
√
2|0⟩+ |1⟩+ |2⟩)

ρ0 =
1

3
(|ψ0⟩⟨ψ0|+ |ψ1⟩⟨ψ1|+ |ψ2⟩⟨ψ2|)

|ψ1⟩ =
1√
2
(|0⟩+ |1⟩) |ψ2⟩ = |0⟩

Ĥ = Diag(1 2 4)

τH

τH

t ∈ [0, π/(2ωH)]

τH

|ψ0⟩ ρ0

ρ0

本文提出的演化时间下限  只依赖于系统的

演化算符及哈密顿量诱导的演化速率, 而与量子

初态无关, 这个性质也是其与Mandelstam-Tamm

时间下限的又一重要区别. 现在研究以上例子中

的量子纯态  和一个量子

混合态   , 其

中,   和  , 在相同哈密

顿量  作用下的演化速率, 并把本文

提出的时间下限  与 Mandelstam-Tamm时间下

限作对比. 在图 3中以真实的演化时间 t 为横坐

标, 画出了以上纯态和混合态演化特例中时间下限

 与 Mandelstam-Tamm时间下限的变化曲线 .

可以看到, 无论系统的初态是纯态还是混合态, 只

要系统的哈密顿量相同 , 那么系统的演化速度

就相同, 在   演化时间范围内, 本文

提出的演化时间下限  与真实的演化时间 t 完全

重合, 这一结论对纯态和混合态的演化都成立. 而

无论是量子纯态   , 还是混合态   的演化, 若

用 Mandelstam-Tamm下限来估算量子系统的真

实演化时间, 其值都比真实值小. 相比较而言, 量

子混合态  的演化过程中, Mandelstam-Tamm下

限与真实时间的误差比量子纯态的演化过程中的

误差大, 这与文献 [21,22]得到的结论相一致.
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T
im

e

MT

H & real time 

|ψ0⟩ t ∈
[
0, π

2ωH

]
τH

图 2    三能级量子纯态   在   时间范围内的

自由演化过程中 , 本文提出的演化时间下限   始终与真

实演化时间 t 重合 , 见红色实线 . 而 Mandelstam-Tamm时

间下限位于真实演化时间曲线的下方, 见黑色短划线

|ψ0⟩

t ∈
[
0, π

2ωH

]
Fig. 2. During the evolution of a qutrit prepared in a pure

state    , the  lower  bound  of  the  evolution  time   pro-

posed  here  meets  the  real  evolution  time  perfectly  in  the

range    .  The  curve  of  the  Mandelstam-Tamm

bound is below the curve of the real evolution time, see the

black dashed line.
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5   结　论

量子态的演化速度关系到很多量子信息处理

过程的速度, 是量子信息相关领域的重要课题, 正

吸引越来越多的关注 [23–30]. 在以往的研究中, 量子

系统的演化速度往往定义为量子初态与其量子演

化态之间的态距离随时间的变化率. 实际上, 量子

态在幺正系统中的演化过程完全体现在其演化算

符中, 量子系统演化的距离可以通过演化算符来量

化. 从量子基本原理出发, 采用线性代数的方法定

义了量子幺正系统的路径距离, 发现其只与演化算

符的本征值的辐角主值分布有关. 换句话说, 量子

系统的路径距离只取决于系统的哈密顿量及演化

时间, 而与量子态的具体形式无关. 这一性质与不

同量子态在相同哈密顿量作用下的演化特性吻合:

在相同哈密顿量相同时间的作用下, 不同量子态经

历相同的演化算符作用, 可视为经历了相同的演化

“路径”, 但不同量子初态与其量子演化态之间的态

距离是不一样的.

ωH

基于以上的演化路径距离, 量子系统的瞬时演

化速率   可定义为瞬时路径距离对时间的变化

率, 其值正好等于哈密顿量最大与最小本征值之差

ωH

[0, π/(2ωH)]

的一半. 哈密顿量诱导的瞬时演化速率表示量子系

统演化的快慢, 从而决定了量子系统从一个量子态

到一个目标态之间的演化时间. 如果量子系统以哈

密顿量诱导的瞬时演化速率  沿测地线向某目标

态演化, 则量子初态与目标态之间的路径距离与瞬

时演化速率的比值为真实演化时间的一个下限. 本

文在理论上证明: 在  演化时间内, 以上

演化时间下限与真实演化时间完美重合, 是真实演

化时间的精准预测. 而广泛应用的 Mandelstam-

Tamm时间下限只有在二维特殊纯态情况下才与

真实演化时间重合. 采用二维量子比特系统及三

维 qutrit系统中量子纯态和量子混合态的演化实

例对相关结论进行了验证. 通过量子演化的路径距

离及相应演化速率来研究量子系统的演化, 为相关

问题的解答提供了新的思路和方法.
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图 3    在相同的哈密顿量作用下, 三能级量子纯态   和

混合态   在演化过程中 , 依据本文提出的时间下限   在

 范围内与真实演化时间相等 , 见红色实线 . 量

子纯态   演化过程中的Mandelstam-Tamm时间下限小

于真实演化时间, 见黑色短划线. 对混合态   的演化而言,

其 Mandelstam-Tamm时间下限与真实演化时间的偏差最

大, 见蓝色点线

|ψ0⟩ ρ0

t ∈ [0, π/(2ωH)]
ρ0

Fig. 3. During the evolution of a qutrit prepared in a pure

state    and in a mixed state   , governed by the same

Hamiltonian, the  lower  bound  of  the  evolution  time   pro-

posed  here  meets  the  real  evolution  time  perfectly  in  the

range    ,  see  the  black  dashed  line.  In  the

evolution  of  the  mixed  state    ,  the  Mandelstam-Tamm

bound is  deviated  from  the  real  evolution  time   substan-

tially, see the blue dotted line.
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Abstract

[0, π/(2ωH)]

In  the  issue  of  quantum  evolution,  quantum  evolution  speed  is  usually  quantified  by  the  time  rate  of

change  of  state  distance  between  the  initial  sate  and  its  time  evolution.  In  this  paper,  the  path  distance  of

quantum evolution is introduced to study the evolution of a quantum system, through the approach combined

with  basic  theory  of  quantum  evolution  and  the  linear  algebra.  In  a  quantum  unitary  system,  the  quantum

evolution  operator  contains  the  path  information  of  the  quantum  evolution,  where  the  path  distance  is

determined by the principal argument of the eigenvalues of the unitary operator. Accordingly, the instantaneous

quantum evolution speed is proportional to the distance between the maximum and minimum eigenvalues of the

Hamiltonian.  As  one  of  the  applications,  the  path  distance  and  the  instantaneous  quantum  evolution  speed

could be used to form a new lower bound of the real evolution time, which depends on the evolution operator

and  Hamiltonian,  and  is  independent  of  the  initial  state.  It  is  found  that  the  lower  bound  presented  here  is

exactly equal to the real evolution time in the range    . The tool of path distance and instantaneous

quantum evolution speed introduced here provides new method for the related researches.

Keywords: quantum evolution, path distance, quantum evolution speed
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