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We present a model which extends the approach introduced by D. Brink to evi-
dence the collective nature of Giant Dipole Resonance. For neutron-rich nuclei the
emergence of an additional low energy mode that can be associated to the Pygmy Dipole
Resonance (PDR) is predicted. We explore the role of a separable dipole-dipole inter-
action where the condition to have a unique coupling constant was relaxed in order to
account for the density dependence of the symmetry energy. The values of the coupling
constants are not affecting too much the position of energy centroid of the pygmy state
but are strongly influencing the Energy Weighted Sum Rule (EWSR) exhausted by it.
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1. INTRODUCTION

After its discovery the Giant Dipole Resonance becomes one of the most stud-
ied collective state of the atomic nuclei. Its properties as the energy centroid EGDR,
the width, the fine structure, provide informations about the structure of nuclear sys-
tems, the features of the nuclear interactions as well as about the damping mecha-
nisms in finite fermionic systems [1].

One of the first microscopic investigations based on the shell model showing
that in nuclear photo-effect the protons vibrate against the neutrons was proposed by
David Brink in 1957 [2]. Indeed, starting from a Harmonic Oscillator Shell Model
(HOSM) Hamiltonian for N neutrons and Z protons

HSM =

A∑
i=1

p⃗i
2

2m
+

mω2
0

2

A∑
i=1

r⃗i
2 (1)

a separation into four commuting terms:

HSM =Hn,int+Hp,int+HGDR+HCM (2)

was proposed. In this decomposition Hn,int and Hp,int depend only on the neutron-
neutron and proton-proton relative coordinates and characterize the internal motion
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of the two species, HCM describe the center of mass motion, while HGDR

HGDR =
P⃗ 2

2MD
+

MDω
2
0

2
X⃗2 (3)

determine a Goldhaber-Teller motion with the frequency ω0 of the protons against

neutrons. Here MD =
mNZ

A
is the collective mass associated to the dipolar mo-

tion, X⃗ = R⃗p− R⃗n define the distance between the centers of mass of protons and
of neutrons respectively, P⃗ is the canonically conjugate momentum to X⃗ , m is the
nucleon mass. The frequency ω0 is derived from the requirement to reproduce the
nuclear size and is obtained ℏω0 = 40A−1/3 MeV. This value is almost half the ob-
served value of the GDR energy centroid which is well described by the parametriza-
tion EGDR = 80A−1/3 MeV. However by adding to HGDR a separable dipole-dipole

residual interaction [3, 4] VD =
1

2
χD2 the experimental value of the GDR energy can

be reproduced when the coupling constant χ is related to the value of the potential
symmetry energy at saturation density [5], i.e. χ= χ(ρ0).

2. PYGMY DIPOLE RESONANCE WITHIN A HARMONIC OSCILLATOR SHELL MODEL
WITH SEPARABLE RESIDUAL INTERACTION

For a neutron rich nucleus the weaker coupled neutrons can be treated as a
distinct system. We call them neutrons in excess and denote their number by Ne. The
remain neutrons Nc = N −Ne and all protons define a second system, namely the
core which is expected to be more stable. Also in this case it is possible a separation
of the shell model Hamiltonian into six commuting terms [6]:

HSM =Hnc,int+Hne,int+Hp,int+HCM +Hc+Hy (4)

with the first three terms describing the internal motion of protons, core neutrons and

neutrons in excess respectively. The fourth term, HCM =
1

2mA
P⃗ 2
CM +

mω2
0A

2
R⃗2

CM ,

characterizes the center of mass motion. Here R⃗CM define the center of mass posi-
tion while P⃗CM is the corresponding linear momentum. Hc determines the dynamics
of the core coordinate X⃗c = R⃗p− R⃗n,c, defined as the distance between the core neu-
trons and core protons, while Hy describes a Goldhaber-Teller type vibration of the
neutrons in excess against the core. The corresponding coordinate for the latter mo-
tion is the distance between the core center of mass and neutrons in excess center of

mass, Y⃗ =
NcR⃗n,c+ZcR⃗p

Nc+Z
− R⃗n,e. Then:

Hc =
P⃗ 2
c

2Mc
+

Mc

2
ω2
0X⃗

2
c ; Hy =

P⃗ 2
y

2My
+

My

2
ω2
0Y⃗

2 (5)
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Here Mc =m
NcZ

Ac
, My =m

NeAc

A
are the collective masses while Pc and Py are the

canonically conjugated momenta to Xc and Y respectively. As in the case of Brink
model both degrees of freedom are oscillating with the same frequency ω0.

However it was noticed above that a separable dipole-dipole interaction changes
the frequency of the GDR and places it closer to the experimentally observed values.
Here, in order to explore the role of the residual interaction on the two collective
modes evidenced in HOSM a generalized separable dipole-dipole interaction is in-
troduced. Since the neutrons in excess are in a lower density nuclear environment
and because the coupling constants are determined by potential symmetry energy,
which is density dependent, we relax the condition to have a unique coupling con-
stant for all particle-hole pairs in the residual interaction. We consider a more general
structure

Vint =
1

2
χ1D

2
c +

1

2
χ2D

2
y +χ3DcDy (6)

with Dc =
NcZ

Ac
Xc, Dy =

NeZ

A
Y and χ1 > χ3 > χ2. We assume that χ1 = χ(ρ0).

Here χ3 determine the coupling between the two subsystems and therefore will be
defined by a symmetry energy corresponding to a density intermediate between that
of the skin and that of the core respectively. The part of the Hamiltonian describing
the two collective motions becomes

H =
P 2
c

2Mc
+

Mc

2

(
ω2
0 +ω2

c

)
X2

c +
P 2
y

2My
+

My

2

(
ω2
0 +ω2

y

)
Y 2+CXcY. (7)

where:

ω2
c =

χ1

m

NcZ

Ac
; ω2

y =
χ2

m

NeZ
2

AAc
; C =

NcZ
2Ne

AAc
χ3 =

χ3√
χ1χ2

√
McMyω2

cω
2
y .

(8)
With the definitions ω2

1 = ω2
0 +ω2

c , ω2
2 = ω2

0 +ω2
y from the Hamilton equations the

following system of coupled equations for Xc and Y is obtained:{
McẌc+Mcω

2
1Xc+CY = 0

MyŸ +Myω
2
2Y +CXc = 0,

(9)

The frequencies of the two normal modes are:

ω2
α,β = ω2

0 +
ω2
c +ω2

y

2
± 1

2

√
(ω2

c −ω2
y)

2+4
χ2
3

χ1χ2
ω2
cω

2
y , (10)
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In terms of the normal coordinates and the associated momenta defined as:

X1 =R(Xc−
My

C
(ω2

β −ω2
2)Y ) ; X2 =R(Xc−

My

C
(ω2

α−ω2
1)Y )

P1 = Pc+
Mc

C
((ω2

α−ω2
1))Py ; P2 =

My

C
((ω2

β −ω2
2))Pc+Py

(11)

the Hamiltonian splits into two independent terms:

H =
P 2
1

2M1
+

M1ω
2
α

2
X2

1 +
P 2
2

2M2
+

M2ω
2
β

2
X2

2 (12)

In these expressions the factor R and the masses M1 and M2 are:

R−1 = 1−MyMc

C2
(ω2

α−ω2
1)(ω

2
β −ω2

2) ; M1 =
Mc

R
; M2 =

My

R
(13)

Summarizing the analysis presented above we conclude that in the presence of the
separable dipole-dipole interaction (6) the HOSM models predicts the existence of
two collective states with energies E1 = ℏωα and E2 = ℏωβ respectively.

The dipole moment D=
NZ

A
X =

NcZ

Ac
Xc+

NeZ

A
Y =Dc+Dy can be written

as a sum of the dipole moments defined by the normal coordinates D =D1+D2 =
d1X1+d2X2:

D1 = (
NcZ

Ac
+

NeZ

A

Mc

C
(ω2

α−ω2
1))X1 ; D2 = (

NeZ

A
+

NeZ

Ac

My

C
(ω2

β −ω2
2))X2

(14)

Consequently, the total EWSR which is proportional to [D, [H,D]] =
ℏ2

m

NZ

A
will be

distributed now among the two states:

[D, [H,D]] = [D1, [H1,D1]]+ [D2, [H2,D2]] =
ℏ2

M1
d21+

ℏ2

M2
d22 (15)

In Fig. 1 we present the predictions of our model in the case of 68Ni. We consider
an intermediate value for the number of neutrons in excess, Ne = 6, assume a fixed
value for χ2, χ2 = 0.2χ1 and discuss the results as a function of χ3, the strength
which determine the coupling between the two subsystems, the core and the neutrons
in excess. It is seen that one of the states has an energy close to the GDR energy and
we interpret it as the usual GDR. The second state has an energy between 10.2 MeV
and 9.5 MeV when χ3/χ1 varies from 0.2 to 1.0. We associate the latter state with
PDR. The corresponding EWSR fraction exhausted by PDR changes from 4.2% to
zero for the same values of χ3. Recent experimental results [8] reported for PDR
in 68Ni an energy centroid at 9.55 MeV and a fraction of EWSR around 2.8%. In
Fig. 1 is also represented the ratio of the variation of the two coordinates Y and Xc

corresponding to the two states. We observe that these coordinates oscillates in phase
in the case of GDR and out of phase in the case of PDR.
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Fig. 1 – (color on-line) The GDR (top, black lines) and PDR (bottom, red lines) energies (EGDR and
EPDR), the EWSR fractions exhausted by each state (f1 and f2) and the structure of the two normal
modes in terms of the collective coordinates Y and Xc (δY/δXc).

3. CONCLUSIONS

In this paper we discussed a generalization of the Brink model based on the
Harmonic Oscillator Shell Model in the presence of a separable dipole-dipole inter-
action where the condition to have a unique coupling constant was relaxed. Within
this approach for 68Ni we identified two dipolar collective states which are describing
quite well the basic properties of GDR and PDR states observed experimentally.
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