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Abstract. In this talk, we give the formulation of Quantum Hall Effects (QHEs) on the
complex Grassmann manifolds Grz(CY). We set up the Landau problem in Grs(CY), solve
it using group theoretical techniques and provide the energy spectrum and the eigenstates in
terms of the SU(N) Wigner D-functions for charged particles on Grz(CY) under the influence
of abelian and non-abelian background magnetic monopoles or a combination of these thereof.
For the simplest case of Gra(C*) we provide explicit constructions of the single and many-
particle wavefunctions by introducing the Pliicker coordinates and show by calculating the
two-point correlation function that the lowest Landau level (LLL) at filling factor v = 1 forms
an incompressible fluid. Finally, we heuristically identify a relation between the U (1) Hall effect
on Grz(C*) and the Hall effect on the odd sphere S°, which is yet to be investigated in detail,
by appealing to the already known analogous relations between the Hall effects on CP® and
CP7 and those on the spheres S* and S®, respectively. The talk is given by S. Kiirkciioglu
at the Group 30 meeting at Ghent University, Ghent, Belgium in July 2014 and based on the
article by F.Ball, A.Behtash, S.Kiirk¢iioglu, G.Unal [1].

1. Introduction

A 4-dimensional generalization of the quantum Hall effect (QHE) was introduced by Hu and
Zhang in [2]. They treat the Landau problem on S* for charged particles carrying an additional
SU(2) degree of freedom which are under the influence of an SU(2) background gauge field.
In the thermodynamic limit, the multi-particle problem in the lowest Landau level (LLL) with
filling factor ¥ = 1 may be seen as an incompressible 4-dimensional quantum Hall liquid as
demonstrated by these authors. Appearance of massless chiral bosons at the edge of a 2-
dimensional quantum Hall droplet [3, 4, 5, 6] generalizes to this setting. It is found that among
the edge excitations of this 4-dimensional quantum Hall droplet not only photons and gravitons
but also other massless higher spin states occur.

Further developments took place after the work of Hu and Zhang. Other higher-dimensional
generalizations of QHE to a variety of manifolds including complex projective spaces CPY, S8,
53, the Flag manifold %, as well as quantum Hall systems based on higher dimensional
fuzzy spheres have been investigated by several authors [7, 8, 9, 10, 11]. Nair and Karabali
examined the QHE on CPY [7] and solved the Landau problem on CPY using the coset
realization of CPY over SU(N + 1) and performing a suitable restriction of the Wigner D-
functions on the latter to obtain the wave functions and the energy spectrum for charged particles
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under the influence of both U(1) abelian and/or non abelian SU(N) gauge field backgrounds.
The degeneracy in each LL is identified with the dimension of the irreducible representation
(IRR) to which the wave functions belong. A close connection between the Hall effects on CP?
and CP7 with abelian backgrounds and those on the spheres S* and S® with SU(2) and SO(8)
backgrounds, respectively [7, 8, 11] has been revealed in these investigations. These models
possess several features which make them interesting in their own right and worthy for further
study.

Here we focus on the results of our formulation of QHE on the complex Grassmannians
Gr(CV) as reported in our article [1]. Gry(C") are generalizations of complex projective spaces
CPY and share majrvly of their features, such as being a Kahler manifold. Pliicker embedding of
Gr(CY) into (CP(k)_1 is quite useful in capturing several of these features. For the case k = 2,
the Pliicker embedding describes Gry(C"N) as a projective algebraic hypersurface in CPY. For
Gr,(C*) this becomes the well-known Klein Quadric in CP® [12]. Employing group theoretical
techniques we solved the Landau problem on Gra(CY) and developed the physics of at the LLL
at the filling factor » = 1. In this proceedings article, we provide a description of the essential
features of our methods and give our main results and refer the reader to our article [1] for a
full discussion.

It is also worthwhile to remark that Landau problem on two and higher dimensional spaces
have close and striking connections to string physics, D-branes and stringy matrix models
and to the structure fuzzy spaces such as the fuzzy sphere 5’12, and fuzzy complex projective
spaces CPIJTV . These connections are studied at various levels of sophistication in the literature
[13, 14, 15]. Fuzzy spaces arise as quantized versions of their parent manifolds and they are
described by finite-dimensional matrix algebras which tend to the algebra of functions over the
parent manifolds under a suitable mapping such as the diagonal coherent state map. Quantum
field theories are formulated over fuzzy spaces as matrix models with finite degrees of freedom,
while preserving the symmetries of the parent space, which makes them appealing for QFT
applications (see, [16] and references therein). Construction of fuzzy spaces using geometric
quantization methods yields Hilbert spaces H v of wave-functions which are holomorphic sections
of U(1) bundles over the commutative parent manifold and the matrix algebras Maty of linear
transformations on Hy’s form the fuzzy spaces [15]. Observables on the fuzzy spaces belong to
this matrix algebra. It has been observed that the LLL in Landau problems over S2, CPY in
U(1) backgrounds define Hilbert spaces which are identical to Hx as they are also holomorphic
sections of U(1) bundles over these spaces. Similar structural relations between S% and QHE
on S* also exists [15]. Building upon this connection, observables of QHE problem are also
contemplated as linear transformations in Maty acting on Hy. From this angle, we see that
there appears almost an immediate connection of our findings for QHE problem on Gra(C%) to
fuzzy Grassmann spaces which are discussed in some detail in the literature [17, 18, 19].

Landau problem on S2,S* and in higher dimensions, which may be of interest in the context
of string theory, have descriptions in terms of strings interacting with D-branes [13, 14]. In the
2-dimensional case, one considers a D2-brane wrapped around an S? and with N DO-branes
dissolved on it. Stack of K D6- branes extending in directions perpendicular to D2-brane are
then moved to the center of the D2-brane. Due to Hanany-Witten effect [20], K fundamental
strings stretch between a D2-brane and D6-branes. Each DO0-brane provides a magnetic flux
quantum over the world volume of D2-brane while the end points of the string on D2-brane
play the role of charged particles under the world-volume gauge field. Low energy excitations
of this system are described by the QHE system on S? with K playing the number of charged
particles, N being the magnetic flux and the ratio % = v being the filling factor. In this
picture, background magnetic field may be described as the density of DO0-branes on the D2-
brane and DO-brane may be viewed to form an incompressible fluid. An alternative point of
view is obtained by describing the background magnetic field in terms of a combination of DO-
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branes and flux due to a background 2-form field By,. In a similar manner, Fabinger [14] was
able to argue that QHE on S* describes the low energy dynamics of a configuration of strings
interacting with D-branes, where one now wraps a stack of D4-branes on S* and spreads DO-
branes on it. Moving flat infinite D4-branes to the center of S* gives once again fundamental
strings connecting the branes at the center and those forming the S*. Low energy dynamics of
this configuration turns out to be the QHE of Hu and Zhang on S*. Alternatively, one may
develop another interpretation of the latter in terms of a certain number of D0-branes expanded
into a fuzzy four sphere S% [21]. We consider the possibility that these connections between
string physics, fuzzy geometries and QHE systems over two and higher dimensional compact
manifolds may be further exploited to give a description of QHE on Gry(C*) in terms of strings-
D-branes configuration, although it may prove very hard to address the stability of the latter.
Nevertheless, we hope that our results may be preliminarily conceived as a low energy limit of
such a strings- D-branes configuration.

2. Review of QHE on CP!
In this section we give a short summary of the formulation of quantum Hall problem on CP! as
a warm up for the developments in the subsequent sections. Treatment of QHE on CP! = §2
is originally due to Haldane [22]. Karabali and Nair [7] have provided a reformulation which is
adaptable to higher dimensional spaces which we follow here.

Landau problem on CP! can be viewed as electrons on a two-sphere under the influence of
a Dirac monopole sitting at the center. We take up the task to construct the Hamiltonian for a
single electron under the influence of this Dirac monopole. We use the fact that the functions on
the group manifold of SU(2) = S% may be expanded in terms of the Wigner-D functions Dgg) Ry (9)
where g is an SU(2) group element and j is an integral or a half-odd integral number labeling
the IRR of SU(2). The subscripts Lg and R3 are the eigenvalues of the third component of the
left- and right-invariant vector fields on SU(2).Throughout this article we sometimes denote the
left and right invariant vector fields of SU(N) and their eigenvalues by L; and R;, respectively,
which one is meant will be clear from the context. The left- and right-invariant vector fields on
SU(2) satisty

[Li, Lj] = —eijely,  [Ri, Rj] = eijuRe, [Li, Ry =0. (1)

Functions and sections of bundles over CP! may be obtained from the Wigner-D functions

on SU(2) by a suitable restriction of the latter. The coset realization of CP! is

SU(2)
CP!=5%= . 2
This implies that the sections of U(1) bundle over CP! should fulfill
D(ge'™’) = ¢'2°D(g), (3)

()
L32
5 of R3 corresponds to the strength of the Dirac monopole sitting at the center of the sphere

where n is an integer. This condition is satisfied by the functions of the form D}, (g). Eigenvalue

and DE-JQ% (g) are the desired wave functions as will argue so shortly. Let us observe that Dgg)o(g)
simply correspond to the spherical harmonics on S?, which are nothing but the wave functions
for electrons on a sphere with no background magnetic field.

In the presence of a magnetic field B, the Hamiltonian must involve covariant derivatives
whose commutator is proportional to B. We take this commutator as [Dy,D_] = B. We
observe that the covariant derivatives Dy may be identified by the right invariant vector fields

Ri = R1 + iRQ, as
Ry, (4)
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where ¢ denotes the radius of the sphere. Note that [R, , R_] = 2R3, for the eigenvalue § of R3

we have
n

:@’ (5)

for the magnetic monopole field with the magnetic charge 5 in accordance with the Dirac

quantization condition. Magnetic flux through the sphere is 27n.
In terms of the covariant derivatives the Hamiltonian is given as

1

H = m(D.’.D_ + D_D+)
1 3
i=1

where M is the mass of the particle. We have Z‘?:l R? = Z?Zl L? = j(j + 1), with j labeling
the irreducible representations of SU(2). To have § occuring as one of the possible eigenvalues
of Rs3, we need j = %n + g where ¢ is an integer. Spectrum of the Hamiltonian is therefore

1 n n n?
Bin = gar (G oG +a+D-")

q(qg+1)

= g+ T ”)

2M

Eigenfunctions of this Hamiltonian are now clearly seen to be D(] ) (g) as we have noted earlier.

Integer q is readily interpreted as the Landau level (LL) 1ndex The ground state, that is the
Lowest Landau Level (LLL), is at ¢ = 0 and has the energy s M. The LLL is separated from
the higher LL by finite energy gaps. Degeneracy at an LL controlled by the left invariant
vector fields L; since they commute with the covariant derivatives [L;,D;] = 0. Each LL is

2§+ 1 =n+ 1+ 2q)-fold degenerate. These are the wavefunctions D(jf )ﬂ g) at a given LL with
3
2
L3 eigenvalues ranging from —j to j.
Wave functions DY )ﬁ g) may be given in explicit form by choosing a suitable coordinate
L3
2

system. We refer the reader to the original literature [7] where this is done in detail. In [7] it is
also shown that the LLL form an incompressible liquid by computing the two-point correlation
function for the wave-function density. We investigate this crucial property of the LLL for our
case in section ...

3. Landau Problem on the Grassmannian Gry(C*)

We start with recalling a few facts about the Grassmannians and their geometry. Complex
Grassmannians Gry(C") are the set of all k-dimensional linear subspaces of the vector space
CV with the complex dimension k(N —k). They are smooth and compact complex manifolds and
admit Kahler structures. Grassmannians are homogeneous spaces and have the coset realization

U(N) SU(N)
X

Gry(CV) = SIUN —k) x Uk)] ~ SUN — &) x SU(k) x U(1)’

(8)

We see that Gri(CV) = CPY and Gry(C?) is therefore the simplest Grassmannian that is not
a projective space.

To set up and solve the Landau problem on Gra(C*), we contemplate that SU(4) Wigner
D-functions may be suitably restricted to obtain the harmonics and local sections of bundles
over Gro(C*). Let g € SU(4) and let us denote the left- and the right-invariant vector fields
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on SU(4) by L, and R, (v : 1,---,15); they fulfill the Lie algebra commutation relations for
SU(4). We introduce the Wigner-D functions on SU(4) as

(p.a,r)
—D 9
g LOLYO LA LP L5 RO R R RP Ry (9) ®)

where (p,q,r) are three integers labeling the irreducible representations of SU(4), and the
subscripts denote the relevant quantum numbers for the left- and right- rotations. In particular,

the left and right generators of SU(2) x SU(2) subgroup are labeled by L, = (L(l), L<2)) and

3 K3

R, = (Rl(l), RZ@)) (1:1,2,3, a:1,---,6) with corresponding SU(2) x SU(2) quadratic Casimirs

Cy = LW +1) + LO(L® + 1), cft = RY(RM + 1) + RA(R®) 4 1).
Hamiltonian on Gry(C*) may be written down as

1 14
_ 2
H = AIM P2 ZRW
a="T7
1

= M2 (02(19; q77a) - Cf - Ri:)) s (10)

where Ca(p, ¢,7) is the quadratic Casimir of SU(4) in the IRR (p, ¢, ) with the eigenvalue

3 1 1
Co(p,q,r) = §( 2 +p2) + §q2 + §(2pr + 4pq + 4qr + 12p + 16q + 12r). (11)

The dimension of the IRR (p,q,r) is

1
dim(p,q,r) = 5P+a+2)p+a+r+3)(a+r+2)p+1)g+1)r+1). (12)
Coset realization of Gry(C*) signals that, there can be both abelian and non-abelian
background gauge fields corresponding to the gauging of the U(1) and one or both of the SU(2)
subgroups.

3.1. U(1) gauge field background
In this case we are concerned with the branching

SU(4) 5 SU(2) x SU(2) x U(1). (13)

and obtaining the wave functions with the U(1) background gauge field, requires us to restrict
DPa7) in such a way that they transform trivially (i.e. singlets) under the right action of
SU(2) x SU(2), and carry a right U(1) charge (R;5 eigenvalue).

SU(4) IRR (p, ¢,r) has the following branching in Young tableaux notation, which keeps the
SU(2) x SU(2) in the singlet representation,

r q P r+q q2 r
N ———— —N— —
T 1. e
(14)
——
p

Here we have introduced the splitting ¢ = ¢q; + g2 in the representation in order to handle the
partition of columns labeled by ¢ in the branching. We see that a trivial representation of
SU(2) x SU(2) may be obtained if and only if p is equal to 7.
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It is possible to show that [1]

(15)

with n € Z being the U(1) charge of the branching.
Putting these facts together energy spectrum corresponding to the Hamiltonian (10) turns
out to be

1
E= (p? + 3p + np + 263 + 4g2 + 2pga + 2n(1 + 2)) (16)

The LLL energy at a fixed monopole background n is obtained for ¢ = p = 0 and it is

n 2B
Errr = w5 = 5+ (17)

M2 M’
with the degeneracy dim(0,n,0) = &(n+ 1)(n +2)*(n +3). In (17), B = 57z is the field
strength of the U(1) magnetic monopole.
The wave functions corresponding to this energy spectrum are

(p,q1+42 ,p) _ D(py[‘”T"]Jr[%} p) 18
LOL L LY 115:0,0,0,0, 2% (9) LOLP LA LP L1550,0,0,0, 2 (9)- (18)

The degeneracy of each Landau level is given by the dimension of the IRR (p, ¢, p) in equation
(12). This means that the set of left quantum numbers {L(l) ,Lél) . L3 ,L:(f) ,L15} can take on
dim(p, q1 + g2, p) different values as a set.

For the many-body problem in which all the states of LLL are filled with the filling factor
v = 1, in the thermodynamic limit £ — oo, N' — oo we obtain a finite spatial density of particles

N n? 2B\*
_ ; _ (2B 19
p 7‘?58 {—00 N —00 408 s ’ ( )

where we have used N = dim(0,7n,0) = 75(n -+ 1)(n +2)?(n + 3) for the number of fermions in

the LLL with » = 1, and vol(Gry(C4)) = =2
We note that the case n = 0 simply reduces the Wigner-D functions to the harmonics on
Gry(C*) corresponding to the wave functions of a particle on Gry(C*) with vanishing monopole

background.

3.2. Single SU(2) gauge field and U(1) gauge field background
In this case we need to restrict to D®47") which transform as a singlet under one or the other
SU(2) in the right action of SU(2) x SU(2), and carry a U(1) charge. There are a range of
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possibilities within the branching (13) as given in the following Young tableaux decomposition:

r q p r+q1 a2 p+r
N N——— —N—
N PPN ® L[]
(20)
r+q1 q2 T p+r—2x
P S S S,
— ® L[]
(21)
T+q1 a2 p—r
—N— ——
— ® L[]
(22)
—_——

T

Here we have assumed that p > r, split ¢g; + g2 = ¢ and introduced the integer z (0 < z < r) to
conveniently represent the generic case. Eigenvalues of Rj5 take the form

n 1
V2 2V2
We observe from the Young tableaux that the first SU(2) in the branching remains a singlet
while the second may take on values over the range

Ri5 = 2@ —q)—-@-71)) . (23)

RW =0, R(Q):p—r’n_’r—i—p. (24)
2 2
R® values are integers since n being an integer restricts p — r to even integers.
Some algebra shows that the energy spectrum is

E 2¢2 + 2¢2(n + R + m +2) + n(R® +m +2) + (R +m)(2 + m)) ,  (25)

= gares

while the LLL energy at fixed background charges R and n is obtained for ¢go = m = 0 and
reads

1
S <n(R<2) +2)+ 2R<2>) . (26)
Wave functions with this energy spectrum may be given in the form

Errp =

,q1+4q2 1)
D(P q1 . 21
LOLY LA LY L1550,0 R R SV & 0

In the thermodynamic limit, for pure SU(2) background (n = 0,RM) = 0,R® #£ 0), R®

should scale in the thermodynamic limit as R(?) ~ ¢2. The number of fermions in the LLL with
@)° @)*

v=1is N =dim(R? ,0,R®) ~ % and the corresponding spatial density is p ~ ?rTS)’

which is finite. For case when both U(1) and SU(2) backgrounds are present, we may choose
either one of n or R to scale like £2. Taking n ~ ¢2 and R to be finite in thermodynamic
limit, we get p ~ %, which is also finite.

Finally we remark that interchanging the Young tableaux of two SU(2)’s amounts to
interchanging R and R® in (24), and also a flip in the sign of the U(1) charge. In the
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relevant formulas above, one can compensate for these changes by replacing R? with R and
substituting |n| for n.

The treatment of the most general case, with SU(2) x SU(2) gauge field background and
generalization of the results of this section to the Landau problem on Gry(CY) are somewhat
lengthy and omitted here. Interested readers can find a full discussion of these in our article [1].

4. Local Form of the Wave Functions and the Gauge Fields
Pliicker coordinates for Gry(C") are constructed out of a projective embedding, the so-called

Pliicker embedding Gry(C") — P (/\k C”) [12, 24]. For Grp(C*) this construction involves

the projective space P ((C4 A (C4) = CP®. We introduce two sets of complex coordinates vy , W

(a=1,---,4) and take the fully antisymmetric basis for the exterior product space C* A C* in
the form )
Pag = E(ang — ’UBU)Q) . (28)

P, may be seen as the homogenous coordinates on CP?% with the identification Pyg ~ AP,p
where A € U(1) and 3% B |P,s|? = 1. Pliicker embedding of Gry(C*) in CP? is given by the
homogeneous condition

€apys PapPys = P12aP3y — P13Poy + P1yPe3 = 0. (29)

In fact this condition defines the Klein quadric Q4 in CP%, which is complex analytically
equivalent to Gra(C*).

It is possible to use P,g to parametrize the columns of g € SU(4) in the IRR (0,1,0). We
choose a parametrization of the form gyg = Py := Pa.g, gns = enuPy; = Eagng% with
N=[aB], N=1,---,6 and af = (12,13, 14, 23,24, 34).

Wave functions in the U(1) background gauge field are the sections of U(1) bundle over
Gry(C*). They satisfy the gauge transformation property

D(0,q1+4q2.,0) (gh) = p(0,q1+42,0) (geiklw) — p(0,q1+q2,0) (g)ei%Q . (30)

In the IRR (0,1,0) we have A5 = %diag(0,0,0,0, —1,1). Using this fact and (30), we infer
that

DO (g) ~ Pog. (31)

Since (0, ¢,0) IRR is the g-fold symmetric tensor product of the IRR (0, 1,0) we find that

p(0,q1+42.,0) (9) ~ Py Pospy Paq15q1 Pv*lél 7*252 .. 'P;qzéqz ) (32)
LLL wave functions are those with go = 0 and take the form
0,q1,0
D( ) n (g) ~ Pa151Pa252 T Paqlﬁql ) (33)

LOLI L LD 015:0,0,0,0 s

which are holomorphic in the Pliicker coordinates.
At filling factor » = 1 LLL has N = dim(0,1,0) = &(n + 1)(n + 2)*(n + 3) number of
particles. Its wave-function is given in terms of the Slater determinant as

Warp = ey (P 0, (PO) - 0y, (PO (34)
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Here P! denotes the " position fixed in the Hall fluid and correspondingly ‘IfAj(Pi) refers to
the wave function of the j** particle located at the position P!. For a one-particle wave function
in our notation is

Uy, (P =W, ~ Plg. (35)

LLL wave function given in (33) is then

«

Wy, (PY) = W, ~ (Phy)". (36)

Two point correlation function is of the form
01,2) = [ [Wapldn(E)dn(a) - du() = |V P03 - [OR P (37)

wher du(i) denote integration measure of integration on Gra(C?) in the coordinates of the 7"
particle.
ap

Taking the normalized coordinate chart ~; := % where Pjo # 0 and using the notation

X = ¢, yields after some algebra the result in the thermodynamic limit as

Q(l, 2) ~1_— efZB(flffz)zefZsz(det FlfdetF2)2’ (38)

where we have used n = 2B/¢? and introduced T := ( zz 3; ) This result shows the two-

point function of the particles located at the positions z1, #% on Gry(C?), is extracted from
that of the particles on CP® at the positions X 1,X 2 by a restriction of these particles to the
algebraic variety determined by Xé = (detT, as expected. It is apparent from the form of
Q(1,2) that the probability of finding two particles at the same point goes to zero, signalling

the incompressibility of the Hall fluid.

A short calculation show that the U(1) gauge field A = —%Tr ()\%g)g_ldg) may be written

in terms of Pliicker coordinates as
A = —inPyxdPy , (39)

and the associated field strength F' = dA is
F = —indPy AN dPy . (40)

We note that F' is an antisymmetic, gauge invariant, and closed two-form on Gra(C*) and
as such it is proportional to the Kéhler two-form over Gra(C*). It is known from very general
considerations [25] that the integral of F' over a non-contractable two surface ¥ in Gra(C*) is

an integral multiple of 27:
1
— | F=n. 41
3 [P =n (a1)

In the present context, this result signals an analogue of the Dirac quantization condition with
n

5 identified as the magnetic monopole charge and B = 5.

5. Final Remarks

We have presented some of our essential results on the formulation of the quantum Hall problem
on Gry(CV). A group theoretical approach has been used to obtain the energy spectrum and
the wave function for the Landau problem on Gry(C%) and this is supplemented by the local
description of the LLL physics at v = 1 using Pliicker coordinates.



30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012015 doi:10.1088/1742-6596/597/1/012015

It is worthwhile to briefly discuss the following observation about the QHE on Gry(C*) with
U(1) background. The isomorphisms Spin(6) = SU(4) and Spin(4) = SU(2) x SU(2), indicate

that the Stiefel manifold Sto(R%) = gz ZZEEB forms the principal U(1) fibration [23]

U(1) — St3(R%) — Gry(Ch). (42)

There are also a family of fibrations Sty_;(R"~!) — St;(R") — S"~! which for k = 2 and
n = 6 becomes

St — Sto(R%) — S5, (43)
Putting these facts together, we see that Gry(C?) has the local structure 52?15;4. Thus, we think
that the QHE on S° with the S* fibers, associated to a SO(5) gauge field background, may be
seen as a QHE on Gro(C*) with a U(1) background gauge field. The natural question to answer
here is then what we mean by QHE on S°. This problem may be treated by generalizing the
formulation of the QHE on the 3-sphere [9]

~ SU(2) x SU(2) _, Spin(4)
5= SU2)diag ~ Spin(3)’ (44)

which selects the constant background gauge field as the spin connection. In a construction
generalizing this to the QHE on S°,

5 S0(6)  Spin(6)

5= SO(5)  Spin(5)’

(45)

one will be naturally selecting a constant SO(5) background gauge field taking it again as the
spin connection. Such a choice of the gauge field appears to be consistent with our heuristic
argument. Our observation is inspired by and bears a resemblance to the relation between the

QHE on CP” and S8. The former can be realized locally as %, while the latter forms the

base of the 3" Hopf map S7 — S1° — S8 and S is a U(1) bundle over CP7 [8].
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