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Abstract We calculate explicitly the Betti numbers of a class of barely G2 mani-
folds -
that is, G2 manifolds that are realised as a product of a Calabi-Yau manifold and
a circle, modulo an involution. The particular class which we consider are those
spaces where the Calabi-Yau manifolds are complete intersections of hypersur-
faces in products of complex projective spaces from which they inherit all their
(1,1)-cohomology and the involutions are free acting.

1 Introduction

One of the key concepts in String and M-theory is the concept of compactification
- here the full 10- or 11-dimensional spacetime is considered to be of the form
M4×X , where M4 is the “large” 4-dimensional visible spacetime, while X is the
“small” compact
6- or 7-dimensional Riemannian manifold. Due to considerations of supersym-
metry, these compact manifolds have to satisfy certain conditions which place
restrictions on the geometry. In the case of String theory, the 6-dimensional man-
ifolds have to be Calabi-Yau manifolds - that is Kähler manifolds with vanishing
first Chern class. The existence of Ricci-flat Kähler metrics for these manifolds
has been proven by Yau in 1978 (1). One of the first examples of a Calabi-Yau
3-fold (6 real dimensions) was the quintic - a degree 5 hypersurface in CP4. Later,
Candelas et al. (2) found the first large class of Calabi-Yau manifolds - the Com-
plete Intersection Calabi-Yau (CICY) manifolds, which are given by intersections
of hypersurfaces in products of complex projective spaces. We review the details
in Sect. 3. Since then even larger classes of Calabi-Yau manifolds have been con-
structed - such as Weighted Complete Intersection manifolds (3), and complete
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intersection manifolds in toric varieties (4). So overall there is a very large pool of
examples of Calabi-Yau manifolds, and it is in fact still an open question whether
the number of topologically distinct Calabi-Yau 3-folds is finite or not. One of
the great discoveries in the study of Calabi-Yau manifolds is Mirror Symmetry
(5; 6). This symmetry first appeared in String Theory where evidence was found
that conformal field theories (CFTs) related to compactifications on a Calabi-Yau
manifold with Hodge numbers (h1,1,h2,1) are equivalent to CFTs on a Calabi-Yau
manifold with Hodge numbers (h2,1,h1,1). Mirror symmetry is currently a power-
ful tool both for calculations in String Theory and in the study of the Calabi-Yau
manifolds and their moduli spaces.

However if we go one dimension higher, and look at compactifications of
M-theory, a natural analogue of a Calabi-Yau manifold in this setting is a 7-
dimensional manifold with G2 holonomy. These manifolds are also Ricci-flat, but
being odd-dimensional they are real manifolds. The first examples of G2 man-
ifolds have been constructed by Joyce in (7). While some work has been done
both on the physical aspects of G2 compactifications (for example (8; 9; 10; 11)
among others) and on the structure and properties of the moduli space (for exam-
ple (7; 12; 13; 14; 15) among others), still very little is known about the overall
structure of G2 moduli spaces. One of the problems is that there are relatively
few examples of G2 manifolds, and for the ones that are known it is hard to do
any calculations, because the examples are not very explicit. However there is
a conjectured method of constructing G2 manifolds from Calabi-Yau manifolds,
which could potentially yield many new examples of G2 manifolds. Here we take
a Calabi-Yau 3-fold Y and let Z = (Y × S1)/σ̂ , where σ̂ acts as antiholomorphic
involution on Y and acts as z−→−z on the S1. In general, the result will have sin-
gularities, and it is still an unresolved question how to systematically resolve these
singularities to obtain a smooth manifold with G2 holonomy. This construction
has been suggested by Joyce in (7; 16). A more basic approach is to only consider
involutions without fixed points, so that the resulting manifold Z is smooth. Man-
ifolds belonging to this class have been called barely G2 manifolds in (8). Such
manifolds do not have the full G2 holonomy, but rather only Z2 n SU (3). How-
ever, they do share many of the same properties as full G2 manifolds, so for many
purposes they can play the same role as genuine G2 manifolds (8; 17). In partic-
ular, if we consider a specific class of of Calabi-Yau manifolds, such as CICY
manifolds, we can construct a corresponding class of barely G2 manifolds rather
explicitly. This is what we focus on in this paper. We first give an overview of G2
manifolds and CICY manifolds, and then describe the algorithm that was used to
systematically calculate the Betti numbers of the barely G2 manifolds correspond-
ing to the independent CICY manifolds. In order to work out how the involution
acts on 2-forms, we need to know the structure of the second cohomology of the
CICY manifold, and for this reason we limit our attention to those CICY man-
ifolds which inherit all of their second cohomology from the ambient product
space.
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2 G2 Manifolds

2.1 Basics

We will first review the basics of manifolds with G2 holonomy. The
14-dimensional exceptional Lie group G2 ⊂ SO(7) is precisely the group of au-
tomorphisms of imaginary octonions, so it preserves the octonionic structure con-
stants (18). Suppose x1, . . . ,x7 are coordinates on R7 and let ei jk = dxi∧dx j∧dxk.
Then define ϕ0 to be the 3-form on R7 given by

ϕ0 = e123 + e145 + e167 + e246− e257− e347− e356. (2.1)

These precisely give the structure constants of the octonions, so G2 preserves ϕ0.
Since G2 preserves the standard Euclidean metric g0 on R7, it preserves the Hodge
star, and hence the dual 4-form ∗ϕ0, which is given by

∗ϕ0 = e4567 + e2367 + e2345 + e1357− e1346− e1256− e1247. (2.2)

Now suppose X is a smooth, oriented 7-dimensional manifold. A G2 structure
Q on X is a principal subbundle of the frame bundle F , with fibre G2. However we
can also uniquely define Q via 3-forms on X . Define a 3-form ϕ to be positive if
we locally can choose coordinates such that ϕ is written in the form (2.1) - that is
for every p ∈ X there is an isomorphism between TpX and R7 such that ϕ|p = ϕ0.
Using this isomorphism, to each positive ϕ we can associate a metric g and a
Hodge dual ∗ϕ which are identified with g0 and ∗ϕ0 under this isomorphism. It
is shown in (16) that there is a 1−1 correspondence between positive 3-forms ϕ

and G2 structures Q on X .
So given a positive 3-form ϕ on X , it is possible to define a metric g associated

to ϕ and this metric then defines the Hodge star, which in turn gives the 4-form
∗ϕ . Thus although ∗ϕ looks linear in ϕ , it actually is not, so sometimes we will
write ψ = ∗ϕ to emphasize that the relation between ϕ and ∗ϕ is very non-trivial.

It turns out that the holonomy group Hol (X ,g) ⊆ G2 if and only if X has a
torsion-free G2 structure (16). In this case, the invariant 3-form ϕ satisfies

dϕ = d ∗ϕ = 0 (2.3)

and equivalently, ∇ϕ = 0 where ∇ is the Levi-Civita connection of g. So in fact,
in this case ϕ is harmonic. Moreover, if Hol (X ,g)⊆G2, then X is Ricci-flat. The
holonomy group is precisely G2 if and only if the fundamental group π1 (X) is
finite. In particular, if Hol (X ,g) = G2, the first Betti number b1 vanishes. The
reverse is however not true in general.

Special holonomy manifolds play a very important role in string and M-theory
because of their relation to supersymmetry. In general, if we compactify string or
M-theory on a manifold of special holonomy X the preservation of supersymme-
try is related to existence of covariantly constant spinors (also known as parallel
spinors). In fact, if all bosonic fields except the metric are set to zero, and a super-
symmetric vacuum solution is sought, then in both string and M-theory, this gives
precisely the equation

∇ξ = 0 (2.4)
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for a spinor ξ . As lucidly explained in (10), condition (2.4) on a spinor immedi-
ately implies special holonomy. Here ξ is invariant under parallel transport, and
is hence invariant under the action of the holonomy group Hol (X ,g). This shows
that the spinor representation of Hol (X ,g) must contain the trivial representa-
tion. For Hol (X ,g) = SO(n), this is not possible since the spinor representation
is reducible, so Hol (X ,g)⊂ SO(n). In particular, Calabi-Yau 3-folds with SU (3)
holonomy admit two covariantly constant spinors and G2 holonomy manifolds ad-
mit only one covariantly constant spinor. Hence eleven-dimensional supergravity
compactified on a G2 holonomy manifold gives rise to a N = 1 effective theory.
From (10; 11) and (9) we know that the deformations of the G2 3-form ϕ give b3
real moduli which combine with the deformations of the supergravity 3-form C to
give b3 complex moduli. Together with modes of the gravitino, this gives b3 chiral
multiplets. Decomposition of the C-field also gives b2 abelian gauge fields, which
again combine with gravitino modes to give b2 vector multiplets. The structure of
the moduli space has been studied in detail in (15).

Examples of compact G2 manifolds have been first constructed by Joyce (7)
as resolutions of orbifolds T 7/Γ for a discrete group Γ . There Γ is taken to be a
finite group of diffeomorphisms of T 7 preserving the flat G2-structure on T 7. The
resulting orbifold will have a singular set coming from the fixed point of the action
of Γ , and these singularities are resolved by gluing ALE spaces with holonomy
SU (2) or SU (3).

2.2 G2 manifolds from Calabi-Yau manifolds

A simple way to construct a manifold with a torsion-free G2 structure is to con-
sider X = Y ×S1, where Y is a Calabi-Yau 3-fold. Define the metric and a 3-form
on X as

gX = dθ
2×gY , (2.5)

ϕ = dθ ∧ω +ReΩ , (2.6)

where θ is the coordinate on S1, ω is the Kähler form on Y and Ω is the holomor-
phic 3-form on Y . This then defines a torsion-free G2 structure, with

∗ϕ =
1
2

ω ∧ω−dθ ∧ ImΩ . (2.7)

However, the holonomy of X in this case is SU (3) ⊂ G2. From the Künneth for-
mula we get the following relations between the Betti numbers of X and the Hodge
numbers of Y :

b1 = 1,

b2 = h1,1,

b3 = h1,1 +2(h2,1 +1).

In (7) and (16), Joyce describes a possible construction of a smooth manifold with
holonomy equal to G2 from a Calabi-Yau manifold Y . So suppose Y is a Calabi-
Yau 3-fold as above. Then suppose σ : Y −→ Y is an antiholomorphic isometric
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involution on Y , that is, χ preserves the metric on Y and satisfies

σ
2 = 1, (2.8a)

σ
∗ (ω) = −ω, (2.8b)

σ
∗ (Ω) = Ω̄ .

Such an involution σ is known as a real structure on Y . Define now a quotient
given by

Z =
(
Y ×S1)/σ̂ , (2.9)

where σ̂ :Y × S1 −→ Y × S1 is defined by σ̂ (y,θ) = (σ (y) ,−θ). The 3-form ϕ

defined on Y ×S1 by (2.6) is invariant under the action of σ̂ and hence provides Z
with a G2 structure. Similarly, the dual 4-form ∗ϕ given by (2.7) is also invariant.
Generically, the action of σ on Y will have a non-empty fixed point set N, which
is in fact a special Lagrangian submanifold on Y (16). This gives rise to orbifold
singularities on Z. The singular set is two copies of N. It is conjectured that if
there exists a non-vanishing harmonic 1-form on N, then it is possible to resolve
each singular point using an ALE 4-manifold with holonomy SU (2) in order to
obtain a smooth manifold with holonomy G2. The precise details of the proof
of this conjecture are not yet available however. We will therefore consider only
free-acting involutions, that is those without fixed points.

Manifolds defined by (2.9) with a freely acting involution were called barely
G2 manifolds by Harvey and Moore in (8). The cohomology of barely G2 mani-
folds is expressed in terms of the cohomology of the underlying Calabi-Yau man-
ifold Y :

H2 (Z) = H2 (Y )+ ,
(2.10a)

H3 (Z) = H2 (Y )−⊕H3 (Y )+.

Here the superscripts ± refer to the ± eigenspaces of σ∗. Thus H2 (Y )+ refers
to two-forms on Y which are invariant under the action of involution σ and cor-
respondingly H2 (Y )− refers to two-forms which are odd under σ . Wedging an
odd two-form on Y with dθ gives an invariant 3-form on Y ×S1, and hence these
forms, together with the invariant 3-forms H3 (Y )+ on Y , give the three-forms on
the quotient space Z. Also note that H1 (Z) vanishes, since the 1-form on S1 is odd
under σ̂ .

Consider the action of σ on H3 (Y ). It sends H3,0 (Y ) to H0,3 (Y ) and H2,1 (Y )
to H1,2 (Y ). Therefore the positive and negative eigenspaces are of equal dimen-
sion, so dimH3 (Y )+ = h2,1 + 1. Therefore the Betti numbers of Z in terms of
Hodge numbers of Y are

b1 = 0,

b2 = h+
1,1, (2.11a)

b3 = h−1,1 +h2,1 +1.

Hence in order to construct barely G2 manifolds we need to be able to find in-
volutions of Calabi-Yau manifolds and determine the action of the involution on
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H1,1 (Y ). A relatively large class of Calabi-Yau manifolds for which this is not
hard to do are the complete intersection Calabi-Yau manifolds. We review the
properties of these manifolds in the next section.

3 Complete Intersection Calabi-Yau Manifolds

3.1 Basics

Complete intersection Calabi-Yau (CICY) manifolds were the first major class
of Calabi-Yau manifolds which was discovered by Candelas et al. in (2). Such a
manifold M is defined as a complete intersection of K hypersurfaces in a product
of m complex projective spaces W = CPn1 × ·· · ×CPnm . Each hypersurface is
defined as the zero set of a homogeneous holomorphic polynomial

f a (zµ
r) = 0 a = 1, . . . ,K. (3.12)

Each such polynomial is homogeneous of degree qr
a with respect to the homoge-

neous coordinates of CPnr . By complete intersection it is meant that the K-form

Θ = d f 1∧·· ·∧d f K

does not vanish on M. This condition ensures that the resulting manifold is defined
globally. In order for M to be a 3-fold, we obviously need

K =
m

∑
i=1

ni−3. (3.13)

The standard notation for a CICY manifold is a m× (K +1) array of the form

[n‖q], (3.14)

where n is a column m-vector whose entries nr are the dimensions of the CPnr

factors, and q is a m×K matrix with entries qr
a which give the degrees of the poly-

nomials in the coordinates of each of the CPnr factor. Each such array defining
a CICY is known as a configuration matrix, while an equivalence class of con-
figuration matrices under permutation of all rows and all columns belonging to q
is called a configuration. Clearly each such permutation defines exactly the same
manifold.

As it was shown in (2), Chern classes can be computed directly from the defin-
ing quantities n and q. In particular, we immediately get the condition for a van-
ishing first Chern class:

nr +1 =
K

∑
a=1

qr
a ∀r. (3.15)

That is, the sum of entries of in each row of q must equal the dimension of the
corresponding CPnr factors. This is hence precisely the condition for the complete
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intersection manifold to be Calabi-Yau. Moreover from the expressions for Chern
classes, an expression for the Euler number is also obtained. This is given by

χE (M) =

[(
m

∑
r,s,t=1

crst
3 xrxsxt

)
·

K

∏
b=1

(
m

∑
u=1

qu
bxu

)]
coefficient of ∏

m
r=1(xr)nr

, (3.16)

where

crst
3 =

1
3

(
(nr +1)δ

rst −
K

∑
a=1

qr
aqs

aqt
a

)
and δ rst = 1 for r = s = t and vanishes otherwise.

Varying the coefficients of polynomials in a CICY configuration generally cor-
responds to complex structure deformations, but as it was shown in (19), there is
no one to one correspondence. So it is said that each configuration corresponds to
a partial deformation class. There are also various identities which relate differ-
ent configurations, so not all configurations are independent. There are however
7868 independent configurations. A method for calculating Hodge numbers of the
CICY manifolds has been found by Green and Hübsch in (19), and in (20) Green,
Hübsch and Lütken calculated the Hodge numbers for each of the 7868 configura-
tions. They found there were 265 unique pairs of Hodge numbers. Unfortunately,
the original data with the CICY Hodge numbers has been lost, and the original
computer code by Hübsch has been written in a curious mix of C and Pascal so
the original code had to be rewritten in standard C in order to be able to recompile
the list of Hodge numbers for CICY manifolds, which is necessary to be able to
calculate the Betti numbers of corresponding barely G2 manifolds.

3.2 Involutions

Antiholomorphic involutions of projective spaces have been classified in (17), and
here we briefly review their results. First consider involutions of a single projective
space CPn. Suppose we have homogeneous coordinates (z0,z1, . . . ,zn) on CPn,
then we can represent an anti-holomorphic involution σ by a matrix M which acts
as

zi −→Mi j z̄ j. (3.17)

Without loss of generality we fix detM = 1 since multiplication by any non-zero
complex number still gives the same involution. Moreover, involutions which dif-
fer only by a holomorphic change of basis can be regarded to be the same.

Also σ2 = 1 must be true projectively, so we get

MM̄ = λ I. (3.18)

Taking the determinant of (3.18), we find that λ n+1 = 1, and taking the trace we
see that λ is real. Thus λ = 1 for n even and λ =±1 for n odd. The involution σ

is required to be an isometry - that is, it must preserve the standard Fubini-Study
metric of CPn. Together with previous restrictions on M, this gives the condition

MM† = I. (3.19)
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Combining (3.18) and (3.19), we see that for λ = 1 these equations imply that M
is symmetric, and for λ = −1 that M is antisymmetric. Moreover, due to (3.18),
the real and imaginary parts of M commute, and so can be simultaneously brought
into a canonical form - diagonal for λ = 1 and block-diagonal for λ = −1. An-
other change of basis can be used to normalize the coefficients. Hence we get two
distinct antiholomorphic involutions:

A : (z0,z1, . . . ,zn)−→ (z̄0, z̄1, . . . , z̄n),
(3.20a)

B : (z0,z1, . . . ,zn−1,zn)−→ (−z̄1, z̄0, . . . ,−z̄n, z̄n−1).

The involution A corresponds to λ = +1 and is defined for n both odd and even,
whereas the involution B corresponds to λ = −1 and is only defined for n odd.
An important difference between the two involutions is that A has a fixed point set
{zi = z̄i}, whereas B acts freely without any fixed points.

So far we considered antiholomorphic involutions of a single projective space,
but in general we are interested in products of projective spaces, so we should
also consider involutions which mix different factors. As pointed out in (17), the
only possibility for this is to exchange two identical projective factors CPn, giving
another involution C:

C : ({yi} ;{zi})−→ ({z̄i} ;{ȳi}). (3.21)

This involution clearly has a fixed point set {yi = z̄i}.
Now that we have antiholomorphic involutions of projective spaces, we can

use these to construct barely G2 manifolds from CICY manifolds, as in (2.9). In
general we must either have an involution acting on each projective factor - either
involutions A or B on single factors or involution C on a pair of identical projective
factors.

Given a CICY configuration matrix, we will denote the resulting barely G2
manifold by the same configuration matrix, but indicating in the first column of the
configuration matrix which involutions are acting on each projective factor. These

actions will be denoted by n̄, n̂ and

_

n
n
^

for involutions A, B and C, respectively. For

example, consider the configuration matrix:
1̂
_
1
1̂

2
3

∥∥∥∥∥∥∥∥∥∥∥

0 0 0 0 2
0 0 1 1 0
0 0 1 1 0
1 1 1 0 0
1 1 0 1 1


1,39

(3.22)

This denotes the barely G2 manifolds constructed from CICY with the same con-
figuration matrix but with involution A acting on the CP2 and CP3 factors, invo-
lution B acting on the first remaining CP1 factor and involution C acting on the
remaining CP1×CP1. The superscripts (1,39) give the Betti numbers b2 and b3

of the resulting 7-manifold. Note that since this example includes the action of
involution B which has no fixed points, the full involution acting on the whole
CICY is also free, so the resulting space is a smooth barely G2 manifold.
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When the projective space involution restricts to the complete intersection
space, conditions are imposed on the coefficients of the defining homogeneous
equations. Thus the involutions must be compatible with the defining equations,
and this may not always be possible. In particular, the invariance of the defin-
ing equations under the involution implies that the transformed equations must be
equivalent to the original equations. Let us use the configuration matrix (3.22) to
demonstrate this. Let ui, vi, wi for i = 0,1 be the homogeneous coordinates on the
CP1 spaces, let y j for j = 0,1,2 be coordinates on CP2 and zk for k = 0,1,2,3
be the homogeneous coordinates on the CP3 factor. Then the original defining
equations are  f1 (y,z) = f2 (y,z) = 0,

g1 (v,w,y) = g2 (v,w,z) = 0,
h(u,z) = 0,

(3.23)

where the fi and gi are polynomials homogeneous of degree 1 in their variable
and h is a polynomial which is homogeneous of degree 2 in ui and of degree 1 in
zk. Under the involution presented in (3.22), after taking the complex conjugates,
these equations become  f̄1 (y,z) = f̄2 (y,z) = 0,

ḡ1 (w,v,y) = ḡ2 (w,v,z) = 0,
h̄(û,z) = 0,

(3.24)

where û2k =−u2k+1 and û2k+1 = u2k. Then for some complex numbers λ1,λ2 and
λ3 we must have

g1 (v,w,y) = λ1ḡ1 (w,v,y), (3.25a)
g2 (v,w,z) = λ2ḡ2 (w,v,z), (3.25b)

h(u,z) = λ3h̄(û,z), (3.25c)

and for some matrix M in GL(2,C) we must have

and
(

f1 (y,z)
f2 (y,z)

)
= M

(
f̄1 (y,z)
f̄2 (y,z)

)
. (3.26)

For consistency in (3.25a) and (3.25b), we find that λ1λ̄1 = 1 and λ2λ̄2 = 1. With-
out loss of generality, we can set λ1 = λ2 = 1. From (3.25c), we have

h(u,z) = λ3h̄(û,z) = λ3λ̄3h
( ˆ̂u,z

)
= λ3λ̄3h(u,z). (3.27)

Here we have used the fact that h(u,z) is of degree 2 in ui, so even though ˆ̂u =−u,
the minus sign cancels, and we get λ3λ̄3 = 1. So we can set λ3 = 1 without loss of
generality. In order for (3.26) to be consistent, we find that we must have MM̄ = I,
but M = I satisfies this condition and so fulfills the consistency criteria. We can
see that all these conditions on the coefficients of the defining polynomials halve
the number of possible choices for the coefficients. This also shows that not all
combinations of involutions are possible. In particular, suppose if we wanted a B
involution to act on the CP3 factor. Then since ˆ̂z = −z, and h(u,z) is of degree
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1 in z, from (3.27) we would get that λ3λ̄3 = −1, which is clearly not possible.
Also, the C involution is not always possible - the configuration must be invariant
under the interchange of factors.

In order to construct all possible barely G2 manifolds from CICY manifolds,
we must be able to find all possible involutions of a given CICY configuration.
Since we want freely acting involutions, we only consider those combinations of
involutions which contain a B involution.

The overall strategy is the following. We first find all possible combinations
of C involutions, and then for each such combination we find the possible B invo-
lutions. The remaining factors which do not have any involutions acting on them
get an A involution.

Suppose we have a configuration matrix with m rows and K columns - that is
we have K hypersurfaces in a product of m projective factors. Let the coordinates
be labelled by x1, . . . ,xm, and let the homogeneous polynomials be f1, . . . , fK . So
the intersection of hypersurfaces is given by

f1 = f2 = . . . = fK = 0. (3.28)

We want to check whether a C involution is possible on the first two factors.
For this we assume that the two factors are of the same dimension, as this is a
basic necessary condition for a C involution. Then we have to make sure that after
the interchange of x1 and x2 the new set of homogeneous equations is equivalent
to (3.28). This is true if and only if under the interchange of x1 and x2 the poly-
nomials remain the same up to a change of ordering. In terms of the configuration
matrix this means that under the interchange of two rows the matrix remains in-
variant up to a permutation of the columns. For more than one C involution acting
on the same configuration matrix, we thus require that under the full set of row
interchanges the matrix remains invariant up to a permutation of the columns.

To find all the possible C involutions for a given configuration matrix we do an
exhaustive search of all possibilities. First we find all the possible combinations
of pairs of rows that correspond to projective factors of equal dimensions. Then
for each such combination of pairs we check if under the interchange of rows in
each pair the configuration matrix stays invariant up to a reordering of columns. If
this is true, then it is possible to have C involutions acting on each of these pairs
of rows. This procedure then gives us the full set C = {C1, . . . ,CN} of all possible
combinations of C involutions acting on the configuration matrix.

Now given all the possible C involutions on a configuration matrix, for each
such combination Ci ∈ C , we need to find the possible B involutions. Suppose we
have a configuration matrix as before, and we want to check whether a B involution
is possible on the first projective factor. The basic necessary condition is that the
dimension of this projective factor is odd. Then we need to make sure that the
new set of homogeneous equations is equivalent to the old set. Let I be the set
of columns which have non-zero entries in the first row - or equivalently, the set
of polynomials that involve x1. First suppose that all columns in I are distinct.
Then for each i ∈I we require

fi
(
z1, . . .

)
= λi f̄i

(
ẑ1, . . .

)
(3.29)

for some constant λi ∈ C. As in (3.27), we then have the consistency requirement

fi
(
z1, . . .

)
= λi f̄i

(
ẑ1, . . .

)
= λiλ̄i fi

( ˆ̂z1, . . .
)
. (3.30)
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However, ˆ̂z1 = −z1, but fi is homogeneous of degree q1
i in z1, so fi

( ˆ̂z1, . . .
)

=

(−1)q1
i fi
(
z1, . . .

)
. Hence in order for (3.30) to be consistent, q1

i needs to be even
for each i. If this is true, then we can have a B involution on the first projective
factor.

More generally, however, suppose that we have some identical columns in I .
In particular assume that columns k1, . . . ,kr ∈ I are all identical, and that the
remaining columns in I are distinct from these. These columns correspond to
polynomials which have the same degrees in projective space coordinates. We can
have an involution B if and only if

fk1 = fk2 = . . . = fkr = 0⇐⇒ f̂k1 = f̂k2 = . . . = f̂kr = 0.

So for some matrix M ∈ GL(r,C) we must have fk1

(
z1, . . .

)
. . .

fkr

(
z1, . . .

)
= M

 f̄k1

(
ẑ1, . . .

)
. . .

f̄kr

(
ẑ1, . . .

)
. (3.31)

From (3.31) we have the consistency condition fk1

(
z1, . . .

)
. . .

fkr

(
z1, . . .

)
= MM̄

 fk1

( ˆ̂z1, . . .
)

. . .
fkr

( ˆ̂z1, . . .
)
= (−1)Q MM̄

 fk1

(
z1, . . .

)
. . .

fkr

(
z1, . . .

)
 , (3.32)

where Q = q1
k1

+ . . .+ q1
kr

. If r is even, then we can always find a block-diagonal
real matrix M such that MM̄ = M2 = −I, so in this case the condition (3.32) is
always consistent, independent of the parity of Q. For example for r = 2 we could

set M =
(

0 1
−1 0

)
. However if r is odd, then it is not possible to find a matrix

which satisfies MM̄ =−I, so we then cannot have Q odd.
To find all possible B involutions, we again proceed with an exhaustive search.

We look for all possible combinations of B involutions for each combination of
C involutions Ci ∈ C . First we find the set R of all possible combinations of
rows such that the dimensions of the corresponding projective factors are odd, and
such that these rows do not have a C involution from Ci acting on them. Given a
combination R∈R, we want to check if it is possible to have a B involution acting
on each row in R. We look for the set I of columns which have a non-zero entry
in at least one of the rows in R. The set I is then split into maximal subsets of
identical columns. For each such subset we evaluate Q as above, and if for some
subset of size r, rQ is odd, then the consistency condition (3.32) is not fulfilled,
and so the combination of rows R does not admit a B involution.

The above algorithm has been implemented in the programming language C.
After running the algorithm, for each configuration matrix in the original list of
7868 CICY configurations we find the possible combinations of C-involutions,
and for each combination of C-involution all the possible combinations of B in-
volutions. Since we are interested in manifolds with free-acting involutions, we
are only concerned with those configuration that admit a B-involution. It turns out
that a total of 4652 configurations do admit a B-involution, out of which 153 have
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unique pairs of Hodge numbers. The Hodge pairs for which there exist configura-
tions that admit B involutions are listed in (3.33):

h1,1 h2,1
1 65,73,89
2 50+2k for k = 0, . . . ,13,18
3 31+2k for k = 0,2,3, . . . ,17,19,22
4 26+2k for k = 0,1, . . . ,19,21
5 25+2k for k = 0,1, . . . ,18
6 24+2k for k = 0,1, . . . ,13,15
7 23+2k for k = 0,1, . . . ,10,12,13
8 22+2k for k = 0, . . . ,11
9 21+2k for k = 0, . . . ,9
10 20+2k for k = 0, . . . ,7
11 19+2k for k = 0, . . . ,6
12 18+2k for k = 0, . . . ,3,5
13 17+2k for k = 0, . . . ,4
14 16+2k for k = 0,1,3
15 15,21
16 20
19 19

(3.33)

As we can see there is a clear pattern - all these pairs of Hodge numbers have an
even sum. In fact the only pairs of Hodge numbers that have an even sum but do
not admit any B involutions are (2,46) , (2,64) ,(3,27)and (3,33).

4 Barely G2 Manifolds

4.1 Betti numbers

Now that we have found the CICY involutions, we can calculate the Betti numbers
of the corresponding barely G2 manifolds. Thus we need to find the harmonic
forms on these manifolds. As we know from Sect. 2.1, for this we only need to
determine the stabilizer of the involution σ acting on the H1,1 (Y ) of a CICY Y .
In general, we can expect part of the cohomology group to come from H1,1 (W )
(where W is the product of projective factors) and some of it may come from the
embedding of the hypersurface. In fact, from (21) we have

ker
(

j : H1,1 (W )−→ H1,1 (Y )
)

= H1

(
Y,

K⊕
a=1

E∗a

)
, (4.1)

where Ea are the line bundles over W , the sections of which correspond to the
polynomials Pa. The rank of this cohomology group can easily be calculated for
CICY manifolds (19; 22). However, whenever the rank is non-zero, the configu-
ration matrix can be reduced to an equivalent one for which the rank does indeed
vanish (20, Cor. 2). The simplest example of such a reduction is that a homo-
geneous hypersurface of degree 1 in CP1 ×CP1 is again CP1. So in fact, the
map j from H1,1 (W ) to H1,1 (Y ) may be taken to be injective. It turns out that
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all of the 7868 CICY configurations in (2) satisfy this. There could still however
be some elements of H1,1 (Y ) that do not come from H1,1 (W ). The cycles cor-
responding to these cohomology classes are called vanishing cycles. However if
h1,1 (Y ) = h1,1 (W ), then j is in fact an isomorphism. We restrict our attention to
this particular case, because otherwise we cannot say how the cohomology classes
that correspond to vanishing cycles behave under the involution.

Since W is a product of complex projective factors, we have in fact that h1,1 =
m, the number of complex projective factors in the given CICY. Then the harmonic
(1,1)-forms on Y are simply the pullbacks of the Kähler forms J1, . . . ,Jm on the
corresponding complex projective factors. In the list of CICYs by Candelas et al.,
4874 configurations satisfy this criterion, while the rest do not. The class of CICYs
for which this holds have been referred to as favourable by Candelas and He (23).

Now suppose we have some involutions acting on Y ×S1. First let us consider
the case when there are no C involutions. In this case, no projective factors are
mixed, and each of the Kähler forms is odd under the involution. Hence in this
case, h−1,1 = h1,1 and h+

1,1 = 0. From (2.11), we thus have on the 7-dimensional
quotient space that b2 = 0 and b3 = h11 +h2,1 +1.

Now consider the case when we have one C involution acting on Y . Without
loss of generality assume that the C involution acts on the first two projective fac-
tors. Then J1 +J2 is odd, while J1−J2 is even under this involution. The remaining
Kähler forms remain odd as before. So in this case, h−1,1 = h1,1− 1 and h+

1,1 = 1,
and so b2 = 1 and b3 = h1,11 + h2,1. When we have multiple C involutions, b2
correspondingly is equal to the number of C involutions:

b2 = nc, (4.2a)
b3 = h1,1 +h2,1 +1−nc, (4.2b)

where nC is the number of C involutions acting on the base CICY manifold.
After doing all the calculations we find the following pairs of Betti numbers

of the barely G2 manifolds:

b2 b3
0 31+2k for k = 0, . . . ,22,24,29,30
1 30+2k for k = 0, . . . ,19,21
2 29+2k for k = 0, . . . ,10,12,13,15
3 28+2k for k = 0, . . . ,7,9,10
4 27+2k for k = 0,1,2,3
5 26

(4.3)

Thus we have a total of 76 distinct pairs of Betti numbers. All of these pairs
have odd b2 +b3, and while most of Joyce’s examples of G2 holonomy manifolds
have b2 + b3 ≡ 3 mod 4, here we have a mix between b2 + b3 ≡ 1 mod 4 and
b2 +b3 ≡ 3 mod 4.

5 Concluding Remarks

We have obtained the Betti numbers of barely G2 manifolds obtained from Com-
plete Intersection Calabi-Yau manifolds. This gives a class of manifolds that have
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an explicit description. One of the ways to use these examples is to try and un-
derstand the moduli spaces. On one hand we know the structure of the moduli
space of the underlying CICY manifolds, but on the other hand, previous general
results about the structure of G2 moduli spaces (14; 15) could be applied to these
specific cases. In particular, quantities like the Yukawa couplings and curvature
could be calculated for these examples. This should then give a relationship be-
tween the corresponding Calabi-Yau quantities and the G2 quantities. This could
then lead to much better understanding of G2 moduli spaces and their relationship
to Calabi-Yau moduli spaces.

Another direction could be to construct barely G2 manifolds from some larger
class of Calabi-Yau manifolds. In particular it is interesting to see what is the
relationship between manifolds constructed from Calabi-Yau mirror pairs, and
whether this could shed some light on possible G2 mirror symmetry.

Acknowledgements. I would like to thank Tristan Hübsch for the useful correspondence about
CICY Hodge number, Rahil Baber for the help with programming, and the anonymous referee
for very helpful remarks.
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