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Abstract

The aim of this thesis is to study neutrino oscillations, scattering and their applications.

We begin with a brief review of the historical developments leading to establishment of

neutrino masses, mixings and oscillations. Then we briefly review theory of neutrino flavour

conversion, methods of detection in some neutrino experiments, importance of neutrino-

nucleon scattering cross sections (in Quasi- elastic and Ultra High Energy regime), and

neutrino oscillation in the regime of sterile neutrinos. We also present experimental status of

these ideas. Next, we move on to the studies on importance of nuclear effects in neutrino nu-

cleus interactions at low three momentum transfer, in quasi-elastic (QE) regime. In particular,

we have analysed the data from the MINERνA experiment. In this experiment, neutrinos are

scattered off carbon target, using NuMI beamline at Fermilab, to observe neutrino oscillations.

This experiment has reported data (number of events and double differential cross section)

in the range 2 < Eν < 6 GeV. Earlier, scientists have simulated these results using neutrino

event generator GENIE, and some discrepancies between the data and their simulation results

were found to be present. Therefore, in our work, we have studied improved nuclear effects,

using another event Generator GiBUU (version 2016), taking into account FSI effects for

the interaction channels like 2p2h/MEC and default (QE) process. We compare our results

with the MINERνA data, and with earlier work done by P.A. Rodrigues et.al. After that,

we have done investigations on neutrino nucleon cross section both for charged current and

neutral current processes in ultra high energy limit (109
GeV ≤ Eν ≤ 1012

GeV ), which will be

relevant for analysing the high energy neutrinos coming from extra-galactic or astrophysical

sources. Finally, we have studied the viability of various possible textures in light neutrino

mass matrix within the framework of 3+1 (one light (eV scale) sterile neutrino) scenario by

considering a A4 discrete flavour symmetric minimal extended seesaw mechanism (MES).

This study would be relevant in future neutrino oscillation experiments in which existence of

sterile neutrinos might be confirmed with precision. At the end, we present a brief summary

of our works presented in the thesis followed by outlook and future prospects. A detailed list

of references consulted during the work along with some appendices and a list of publications



xii

is also given.
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2p2h effects, final state interactions (FSI), charged current, neutral current, GENIE, GiBUU,

proton structure function, double asymptotic limit, ultra high energy regime, sterile neutrino,

A4 discrete symmetry, minimal extended see saw, light neutrino mass matrix.



Table of contents

List of figures xvii

List of tables xix

1 Introduction 1

1.1 Motivation and scope of the thesis . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Historical background of neutrino oscillation . . . . . . . . . . . . . . . . 3

1.3 Neutrino oscillation and flavour conversion . . . . . . . . . . . . . . . . . 6

1.3.1 Solar Neutrino Problem . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Atmospheric neutrino problem . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Solution of above problems . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Theory of neutrino oscillation . . . . . . . . . . . . . . . . . . . . 7

1.3.5 Two flavour neutrino oscillation . . . . . . . . . . . . . . . . . . . 10

1.3.6 Two flavour neutrino oscillation in matter . . . . . . . . . . . . . . 11

1.3.7 Neutrino oscillation with sterile neutrinos . . . . . . . . . . . . . . 12

1.4 Processes for detection of neutrino oscillation . . . . . . . . . . . . . . . . 13

1.5 More on solar, atmospheric and reactor experiments . . . . . . . . . . . . . 16

1.6 Neutrino nucleon scattering and cross section . . . . . . . . . . . . . . . . 18

1.6.1 Neutrino interaction across various energy scales . . . . . . . . . . 18

1.6.2 Experimental status of neutrino cross section . . . . . . . . . . . . 20

1.7 Ultra High Energy Neutrino experiments . . . . . . . . . . . . . . . . . . . 22

1.8 Sterile neutrino experiments . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.9.1 GENIE and GiBUU event generators . . . . . . . . . . . . . . . . 24

2 Neutrino-carbon interactions at low three-momentum transfer 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 MINERνA experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



xiv Table of contents

2.3 Quasi-elastic and MEC/2p2h processes . . . . . . . . . . . . . . . . . . . . 30

2.4 Neutrino-carbon interaction using transport kinetic theory for nuclear effects 32

2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Neutrino cross section in UHE regime using double asymptotic limit of QCD. 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Neutrino scattering at UHE regime . . . . . . . . . . . . . . . . . . . . . . 44

3.3 A brief review of F
ep
2 (x,Q2) using DAL of QCD . . . . . . . . . . . . . . 44

3.4 Total charged and neutral current neutrino nucleon cross section at UHE . . 47

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Compatibility of A4 Flavour Symmetric Minimal Extended Seesaw with (3+1)

Neutrino Data 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Classification of Textures . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Classification of Allowed Textures . . . . . . . . . . . . . . . . . . 61

4.4 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Summary, Outlook and Future prospects 87

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Outlook and Conclusions of the thesis . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Main features of the thesis . . . . . . . . . . . . . . . . . . . . . . 89

5.2.2 Highlights of the results . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.3 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

References 93

Appendix A A4 product rules 101

Appendix B Scalar Potential for Triplet Flavons φ , φ ′ φ ′′ 103

Appendix C Vacuum alignment of flavon fields φ ′, φ ′′ of allowed cases 107



Table of contents xv

Appendix D Vacuum alignment of φ ′, φ ′′ of disallowed cases 115

Appendix E Vacuum alignment for allowed cases 119

Appendix F Light neutrino mass matrix elements 123

Appendix G List of Publications 127



List of figures

1.1 β energy spectrum (taken from [3]). . . . . . . . . . . . . . . . . . . . . . 4

1.2 Left figure shows four–neutrino mass spectra for (2+2) scheme and the right

figure shows for (3+1) scheme. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Schematic diagram of charged current quasi-elastic scattering process (taken

from [36]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Schematic diagram of 2p2h/MEC process (taken from [72]). . . . . . . . . 31

2.3 Flux of MINERνA experiment [75]. . . . . . . . . . . . . . . . . . . . . . 31

2.4 The double differential cross section d2σ
dEavaildq3

in six regions of q3 using

GiBUU 2016 are plotted for 2p2h process (red line) and the MINERνA

experimental data are shown with their respective error bars. . . . . . . . . 34

2.5 The double differential cross section d2σ
dEavaildq3

in six regions of q3 using

GENIE 2.8.0 are plotted for 2p2h process (red line) and the MINERνA

experimental data are shown with their respective error bars. . . . . . . . . 35

2.6 The double differential cross section d2σ
dEavaildq3

in six regions of q3 using

GiBUU 2016 are plotted for default process (red line) and the MINERνA

experimental data are shown with their respective error bars. . . . . . . . . 36

2.7 The double differential cross section d2σ
dEavaildq3

in six regions of q3 using

GENIE 2.8.0 are plotted for default process (red line) and the MINERνA

experimental data are shown with their respective error bars. . . . . . . . . 37

3.1 (a) Diagram of the νl(pν)+N(pN)→ l− (pl)+X(pX) charged-current DIS

process. (b) Diagram of the same process in the quark-parton model. . . . . 45

3.2 Variation of neutrino-nucleon charged current, neutral current and total

current cross sections with neutrino energy (from our calculation). . . . . . 50

3.3 Comparison of charged current νN cross sections, in cm2 as a function of Eν . 50

3.4 Comparison of neutral current νN cross sections, in cm2 as a function of Eν . 51



xviii List of figures

4.1 Neutrino oscillation parameters in active-sterile sector for case (ii) from

µ− τ symmetric category for NH. . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Neutrino oscillation parameters in active-sterile sector for case (iii) from

µ− τ symmetric category for NH. . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Neutrino oscillation parameters in active-sterile sector for case (iv) from

µ− τ symmetric category for NH . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Neutrino oscillation parameters in active-sterile sector for case (ix) from

texture 1 zero category for NH. . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Neutrino oscillation parameters in active-sterile sector for case (x) from

texture 1 zero category for NH. . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Neutrino oscillation parameters in active-sterile sector for case (i) from

texture 2 zero category for NH. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Neutrino oscillation parameters in active-sterile sector for case (ii) from

texture 2 zero category for NH. . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Neutrino oscillation parameters in active-sterile sector for texture 3 zero case

for NH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



List of tables

1.1 The latest global fit 3σ range data as well as sterile bounds are shown [61, 62]. 23

3.1 Charged current νN cross sections, in cm
2 as a function of Eν are listed.

Here BDHM refers to the work done by Martin M.Block, et al. [91], CTW

refers to A. Connolly, et al. [89], CSMS refers to A. Cooper-Sarkar, et al.

[90], GQRS refers to R. Gandhi, et al. [88] and BSS refers our work in this

chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Neutral current νN cross sections, in cm
2 as a function of Eν are listed. Here

BDHM refers to the work done by Martin M.Block, et al. [91], CTW refers

to A. Connolly, et al. [89], CSMS refers to A. Cooper-Sarkar, et al. [90],

GQRS refers to R. Gandhi, et al. [88] and BSS refers our work in this chapter. 51

4.1 Fields and their transformations under the chosen symmetries. . . . . . . . 56

4.2 Favoured region of parameter space for active sterile neutrino mixing (3+1)

neutrino parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Table showing allowed and disallowed texture subclasses which have been

analysed numerically. Here (
√
) indicates allowed cases and (×) indicates

disallowed cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.1 Texture one zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.2 Texture one zero (contd). . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.3 Texture one zero (contd). . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.4 Texture one zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.5 Texture three zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.6 Texture two zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.7 Texture two zero (contd). . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.8 (µ− τ) symmetry (in 3×3 block). . . . . . . . . . . . . . . . . . . . . . . 110

C.9 Hybrid texture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xx List of tables

C.10 Hybrid texture (contd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.11 Hybrid texture (contd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.12 Hybrid texture (contd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.13 Hybrid texture (contd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.14 Hybrid texture (contd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.15 Hybrid texture (contd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.16 Hybrid texture (contd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.1 Texture zero in the entire 2nd and 3rd row and column of 4×4 matrix. . . . 115

D.2 Texture zero in the entire 2nd row and column of 4×4 matrix. . . . . . . . 115

D.3 Texture zero in the entire 2nd row and column of 4×4 matrix. . . . . . . . 116

D.4 Texture zero in the entire 2nd row and column of 4×4 matrix . . . . . . . . 116

D.5 Texture zero in the entire 3rd row and column of 4×4 matrix. . . . . . . . 117

D.6 Texture zero in the entire 3rd row and column of 4×4 matrix. . . . . . . . 117

D.7 (µ− τ) symmetry in the entire 4×4 matrix. . . . . . . . . . . . . . . . . . 118

D.8 (µ− τ) symmetry in the entire 4×4 matrix. . . . . . . . . . . . . . . . . . 118

E.1 VEV alignment of triplet flavon fields φ ′, φ ′′ for texture 3 zero symmetric

case, that give rise to same complex constraints. . . . . . . . . . . . . . . . 119

E.2 VEV alignment of triplet flavon fields φ ′, φ ′′ for (µ − τ) symmetric case,

that give rise to same complex constraints. . . . . . . . . . . . . . . . . . . 120

E.3 VEV alignment of triplet flavon fields φ ′, φ ′′ for texture 1 zero symmetric

case, that give rise to same complex constraints. . . . . . . . . . . . . . . . 121

E.4 VEV alignment of triplet flavon fields φ ′, φ ′′ for texture 2 zero symmetric

case, that give rise to same complex constraints. . . . . . . . . . . . . . . 121



1
Introduction

1.1 Motivation and scope of the thesis

Motivation- Many properties of neutrino have been studied and measured experimentally,

and neutrino physics has now entered precision era. But still, some parameters need exper-

imental measurement as well as more intense theoretical studies. In this thesis, we have

attempted to address some of these issues. The experimental measurements are inflicted with

uncertainties in neutrino neucleon/nucleus scattering cross sections, which are one of the

major causes of the errors in obtaining the values of neutrino oscillation parameters. Many

experiments worldwide are thus regaining interest in making these measurements for neutrino

scattering cross sections, in different energy regimes. Not only earth based experiments, but

neutrinos coming to earth from extra-galactic and astrophysical sources serve as an important

probe to investigate and know about the dynamics of ultra high energy (UHE) regimes. Since

at the earth based experiments, the energy ranges that can be reached at the accelerators are

constrained due to several limitations, the UHE neutrino studies become timely relevant,

as a natural probe to investigate the dynamics at such scales. Neutrino interactions with

nuclei play a crucial role in all these ongoing/planned experiments, as they make use of

dense nuclear targets from which the incoming neutrinos are scatter off. Therefore, if the

incoming neutrino energy is known precisely, one can extract neutrino oscillation parameters
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from these experiments, provided the neutrino scattering cross section and its flux are known

precisely. In fact, many experiments worldwide are ongoing/planned to measure ν −N

scattering cross sections in low energy and UHE regime. This is the motivation for the work

done in Chapters 2 and 3.

The anomalies in the measurements at LSND and MiniBoone experiments opened a new

window for the existence of neutrino mass differences in the eV scale, which is very large

as compared to the relatively small solar and atmospheric mass differences. This has led

scientists to believe that active neutrinos may oscillate to a relatively heavy, sterile neutrino

state. Many experiments worldwide are/will be making measurements to find stronger evi-

dences for the existence of these sterile neutrinos. We would also like to mention here that

the flavour structure of fermions is not yet well understood. And hence a unified theory that

can explain neutrino masses and mixings along with the observed flavour structure would be

the complete theory for the purpose. This is the motivation for the work done in Chapter 4.

Scope- With above motivation, the aim of this thesis is to study neutrino oscillations and

neutrino-nucleus scattering in intermediate and ultra high energy regimes, and its application

- specially the oscillation of active neutrinos to sterile neutrino, in presence of a discrete

flavour symmetry.

In the first Chapter, we first review the historical developments leading to establishment of

neutrino masses, mixings and oscillations. Then we briefly review theory of neutrino flavour

conversion, methods of detection in some neutrino experiments, importance of neutrino-

nucleon scattering cross sections (in Quasi- elastic and Ultra High Energy regime), and

neutrino oscillation of active to sterile neutrinos. We also present experimental status of these

experiments. A very brief discussion on the Methodology adopted to carry out the work

done in this thesis has also been presented. In Chapter 2, we have studied neutrino-nucleus

scattering cross section in intermediate energy regime (0.1−20 GeV), relevant for measure-

ments done at the MINERνA experiment at Fermi Lab, USA, for Carbon target. We have

simulated the number of events and double scattering cross-section, including nuclear effects,

using an event generator GiBUU, and compare our results with the experimental data and

those available in literature (using GENIE). In Chapter 3, we have studied neutrino nucleon

scattering cross section, both for charged current and neutral current processes, in the energy

range of 109GeV ≤ Eν ≤ 1012GeV , using double asymptotic limit of the proton structure

function. Chapter 4 is devoted to the studies on the viability of various possible textures in

light neutrino mass matrix within the framework of 3+1 (one light sterile neutrino) scenario



1.2 Historical background of neutrino oscillation 3

by considering a A4 discrete flavour symmetric minimal extended seesaw mechanism (MES).

This work would help us build and understand new theories and models to explain the

neutrino masses, mixings and oscillations in 3 active flavours along with the existence of a

fourth eigenstate of neutrino - the sterile neutrino. In the last Chapter, we present summary,

outlook, and future prospects of the work carried out in the thesis.

In a nutshell, we can say that neutrino-nucleus interaction cross section calculations are

important because they are used in any neutrino oscillation experiment. In any neutrino

experimental set-up, if we know the flux, cross section, number of events then from prob-

ability, some of the unknown neutrino parameters like absolute mass squared differences,

mixing angle in active-sterile neutrino sector, a Dirac CP-violating phase can be known with

precision. Our ν−N interaction cross section calculation predictions, will indeed help to

solve such unsolved issues in future oscillation experiments like DUNE [1]. We can say that

if the existence of a light sterile neutrino of eV scale gets well established in future, then the

predictions for the unknown neutrino oscillation parameters obtained in our analysis can be

tested for further scrutiny of the model.

The work presented in this thesis is the compilation of the papers published for this

purpose.

1.2 Historical background of neutrino oscillation

W. Pauli proposed at Tubingen in 1930 the existence of a neutral weakly interacting fermion

emitted in β decay. He named this as ‘neutron’. Later in 1932, Chadwick discovered a neu-

tral, strongly interacting particle which we know as ‘neutron’ today. Enrico Fermi proposed

the name of Pauli’s particle to be as ‘neutrino’. In early times, experiments showed that in β

decay, nucleus decays to another nucleus (having same mass number) along with emission of

an electron. Beta particle distribution is unique, unlike alpha particle energy distribution, it

has a continuous spectrum which starts from zero, reaches a maximum height and then falls

down and attains upper limit which is called ‘end point energy’ [2]. End point energy is the

energy difference between initial and final nuclear states. If we consider β decay to be like a

two body process then all the beta particles would have a unique energy but what we find in

reality is that all the particles are emitted with smaller energy. This indicates that there must

be some energy ‘missing’ in β decay process.
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In 1931, W. Pauli proposed that a third particle might be emitted in the decay process which

shared this missing energy, later the particle was named as ‘neutrino’ by Fermi. For instance,

if we consider Ebeta to be the energy carried by beta particles, Emax is the end point energy,

then the energy carried by ‘neutrino’ is Eν = (Emax−Ebeta) which is the missing energy.

Experiments showed that there exist two different types of neutrinos emitted in beta decay.

They are neutrino and its antiparticle called anti-neutrino (ν̄). The general beta decay process

can be written as

XN → YN−1 +β−+ ν̄ (β−decay) and XN → YN+1 +β++ν (β+decay). (1.1)

In early 1950’s, F. Reines and C. L. Cowan encouraged by B. Pontecorvo performed an

Fig. 1.1 β energy spectrum (taken from [3]).

experiment at Savannah River nuclear reactor in South Carolina which was the first reactor

neutrino experiment [2–7]. They measured inverse beta decay in which an anti-neutrino

produced a positron. The reaction is ν̄ + p→ n+ e+. This reaction was observed by Reins

and Cowan where they used a nuclear reactor as a source of ν̄ . They used a liquid scintillator

(in which a cadmium compound was embedded) for their neutrino detector. Reines and

Cowan took lot of pain to carry out the experiment which proved the existence of neutrino

experimentally. Ray Davis et al [8] in 1968 reported the first experiment to measure solar

neutrinos, where they used a huge tank of chlorine in the Homestake mine in South Dakota.

The famous Homestake experiment was able to observe solar neutrino flux [9] which was

about 2.2±0.4 SNU (Solar Neutrino Unit) [10, 11]. This value was smaller than the amount

predicted by theoretical solar model. This is known as solar neutrino problem. In the year

1998, in Japan, the Super Kamiokande collaboration [12] was able to find evidence for
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oscillation of atmospheric neutrinos. The scientists at Sudbury Neutrino Observatory (SNO)

[13] measured the boron (B8) solar neutrinos through the following reactions

νe +d → p+ p+ e− (charged current),

νa +d → p+n+νa (neutral current),

νa + e−→ νa + e− (elastic scattering),

(1.2)

where ‘d’ is deuteron, ‘p’ is proton, ‘n’ is neutron and a = e,µ,τ . After the discovery of

electron and muon neutrino, search for the third flavour of neutrino finally ended in the

year 2001. The DONUT collaboration at Fermilab [14] was able to observe tau neutrino

interactions. For a long time it was believed that there exist three neutrino flavours but

in the Liquid Scintillator Neutrino Detector (LSND) experiment located at Los Alamos

[15], (electron antineutrinos were observed in a pure muon antineutrino beam) scientists

could explain the existence of fourth type of neutrino called ‘sterile neutrino’. The LSND

experiment searched for ν̄µ → ν̄e oscillations in the appearance mode and reported an

excess of ν̄e interactions that could be explained by incorporating at least one additional

light neutrino with mass in the eV range. This result was supported by the subsequent

measurements at the MiniBooNE experiment [16]. Similar anomalies have been observed at

reactor neutrino experiments and also at gallium solar neutrino experiments [17, 18]. Sterile

neutrino can be defined as a neutral lepton with no gauge interaction. Sterile neutrinos in

principle can have any mass. Very heavy sterile neutrinos are utilized in the minimal type

I seesaw model and play a significant role in leptogenesis . We know that the Standard

Model (SM) is based on the gauge group SU(3)c×SU(2)L×U(1)Y , the elementary particle

interactions are guided by this gauge group. Sterile neutrino is a singlet under both SU(3)c

and SU(2)L and its hypercharge Y = 0. Recently in 2015, Nobel Prize in Physics was awarded

jointly to Takaaki Kajita who belonged to Super-Kamiokande Collaboration, University of

Tokyo, Japan and Arthur B McDonald belonged to Sudbury Neutrino Observatory, Queen’s

University, Canada, for the discovery of neutrino oscillations which shows that neutrinos are

not massless.
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1.3 Neutrino oscillation and flavour conversion

1.3.1 Solar Neutrino Problem

The reactions that occur in the core of the sun are [4]

p+ p→ D+ e++νe (Eν ∼ 0-0.42 MeV),

p+ p+ e−→ D+νe (Eν ∼ 1.44 MeV),

Be7
4 + e−→ Li73 +νe (Eν ∼ 0.861 or 0.33 MeV),

Be8
5 → Be∗84 + e++νe (Eν ∼ 0-14.1 MeV).

(1.3)

The net reaction is

4p→ He4
2 +2e++2νe +28MeV. (1.4)

In 1983, the first phase of Kamiokande experiment i.e. Kamiokande-I started, later in 1986

Kamiokande-II started which was an upgradation of its first one. Kamiokande-II was able to

observe B8 solar neutrinos. They measured solar neutrino flux through the following elastic

scattering process Kamiokande experiment recorded an average of B8 neutrino flux from 1987

to 1995 to be φ Kamiokande
B8 = (2.80±0.38)×106cm−2s−1. Kamiokande used a large detector

of pure water in order to measure the rate at which electrons present in water scattered high

energetic neutrinos emitted from the sun. The Kamiokande experiment observed that the

number of neutrino events was less as compared to the theoretical model of the sun.

Another solar neutrino experiment i.e. SK water Cherenkov detector located in Kamioka

mine is based on the elastic scattering of electron neutrino on electron. SK could measure

precisely high energy neutrinos and confirmed the high energy neutrino deficit as recorded

by chlorine and Kamiokande experiment.

1.3.2 Atmospheric neutrino problem

The interactions of primary cosmic rays with the nuclei in the atmosphere produce atmo-

spheric neutrinos. These interactions produce secondary cosmic rays. In particular, many

secondary pions are produced which decay mainly into muons and muon neutrinos [4]. The

processes for production of atmospheric neutrinos are :

π+→ µ++νµ , µ+→ e++νe + ν̄µ and

π−→ µ−+ ν̄µ , µ−→ e−+ ν̄e +νµ .
(1.5)
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Above Eq (1.5) indicates that the fluxes of νe,νµ , ν̄e, ν̄µ are related to each other by the

relation [19]

φ(νµ + ν̄µ)≃ 2φ(νe + ν̄e). (1.6)

where φ represents the neutrino flux. In 1960, atmospheric neutrino experiments were started,

an experimental set up was built in Kolar Gold Field in India, another was carried out at

the East Rand Proprietary Mine in South Africa. The neutrino interactions that occurred in

the rocks which surrounded a neutrino detector were measured. It was found that some νµ

were missing - flux of νµ was less than that predicted. This is called atmospheric neutrino

problem.

1.3.3 Solution of above problems

Scientist at SNO studied neutrinos coming from the sun. In the year 2001, the SNO research

group proved that these neutrinos switch their identities. As the νe neutrinos travel from

sun to earth, they oscillate to other flavours say to νµ type neutrino or to ντ type neutrino.

This phenomenon is called ‘neutrino oscillation’. The process of neutrino oscillation shows

neutrinos are not massless but are massive. Neutrino oscillation can be explained with the

help of neutrino mixing and neutrino mixing exist only if mass of neutrinos is non zero. Also,

the atmospheric neutrino problem was solved if we assume conversion of atmospheric νµ to

νe or ντ .

1.3.4 Theory of neutrino oscillation

Neutrino oscillation is a quantum mechanical phenomenon where a neutrino created with

a specific flavour transforms into a different flavour which can be measured later. In 1968,

Bruno Pontecorvo proposed that electron neutrino produced in the sun are transformed into a

different type of neutrino (say νµ ) while travelling in vacuum i.e. νe ←→ νµ . The flavour

eigenstate of neutrino is ‘να ’ where α = e,µ,τ. The mass eigenstates ‘ν j’ are different from

flavour eigenstates [4] i.e.

| να >=
3

∑
j=1

Uα j | ν j >, (1.7)

U =







c12c13 s12c13 s13e−iδCP

−s12c23− c12s13s23eiδCP c12c23− s12s13s23eiδCP c13s23

s12c23− c12s13c23eiδCP −c12s23− s12s13c23eiδCP c13c23






, (1.8)

where ci j = cosθi j and si j = sinθi j. Here U is the unitary mixing matrix known as Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix. For a 3×3 neutrino mixing case, we have three mix-
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ing angles θ12(solar angle),θ13(reactor angle),θ23(atmospheric angle), and one complex

phase δCP, which is responsible for CP violation in the neutrino sector. Also, ν j = ν1,ν2,ν3

are the mass eigenstates with mass eigen values m1,m2,m3.

If a neutrino of a given flavour [20], say νe , with energy ‘E’ is produced at νe source then

the probability of finding a neutrino of a different flavour, say νµ , P (νe → νµ ; E, L) at a

distance L away from the source, is called transition probability. Consider a beam of pure νe

states produced at time t = 0, we have [4],

| νe(0)>=Ue1 | ν1 >+Ue2 | ν2 >+Ue3 | ν3 > . (1.9)

We consider all neutrino particles in the beam have a common momentum ‘p’ then mass

eigenstates have energy as E2
j = p2 +m2

j . At some later time, say ‘t’, we have

| νe(t)>=Ue1e−iE1t | ν1 >+Ue2e−iE2t | ν2 >+e−iE3tUe3 | ν3 > . (1.10)

The probability of finding a neutrino of flavour , say νβ at time ’t’ is given by |< να | νβ (t)>|2
i.e.

Pνα→νβ
(t) =|< να | νβ (t)>|2=

3

∑
j,k=1

Uα jU
∗
β jU

∗
αkUβke−i(E j−Ek)t . (1.11)

For relativistic neutrino, p >> m j we have

E j =
√

p2 +m2
j = p+

m2
j

2p

and

E j−Ek =
1

2E
(m2

j −m2
k) =

∆m2
jk

2E
. (1.12)

As neutrinos are ultra-relativistic particles, we can use (t = L), and the transition probability

is

Pνα→νβ
(t) =

3

∑
j,k=1

Uα jU
∗
β jU

∗
αkUβke−i(

∆m2
jk

2E L). (1.13)

The above equation can be written as

Pνα→νβ
=

3

∑
j=1

|Uα j |2|Uβ j |2 +2Re ∑
j>k

Uα jU
∗
β jU

∗
αkUβkexp−i(

∆m2
jk

2E L), (1.14)
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where,
3

∑
j=1

|Uα j |2|Uβ j |2= δαβ −2Re
n

∑
j>k

Uα jU
∗
β jU

∗
αkUβk. (1.15)

The transition probability thus can be written as

Pνα→νβ
= δαβ −2Re

n

∑
j>k

Uα jU
∗
β jU

∗
αkUβk[1− e−i(

∆m2
jk

2E L)]. (1.16)

The identity Re(ab) = Re(a)Re(b)-Im(a)Im(b), is used to write the transition probability as

[20]

Pνα→νβ
= δαβ−4ΣRe(Uα jU

∗
β jU

∗
αkUβk)sin2(

∆m2
jk

4E
L)+2 ∑

j>k

Im(Uα jU
∗
β jU

∗
αkUβk)sin(

∆m2
jk

2E
L).

(1.17)

The above expression for the survival probability can be written as

Pνα→νβ
= 1−4 ∑

j>k

|Uα j |2|Uαk |2 sin2(
∆m2

jk

4E
L). (1.18)

The appearance probability (α 6= β ) can be written as

Pνα→νβ
=−4 ∑

j>k

(Uα jUβ jUαkUβk)sin2(
∆m2

jk

4E
L). (1.19)

There are two kinds of neutrino oscillation experiments i.e. disappearance and appearance

experiments. Suppose in a pure neutrino beam of known flavour say νµ , one looks to see

how many neutrinos have disappeared then this is called ‘disappearance’ experiment which

measures the survival probability (Pνµ→νµ ). On the other hand, suppose in a pure beam

of known flavour say, νµ one looks how many neutrinos of a different flavour say, νe are

detected. This is called ‘appearance experiment’. CP violating effects cannot be studied in

disappearance experiments - they arise only in appearance experiments.

In three neutrino mixing schemes, the three squared mass differences can be written as

∆m2
21(solar) = m2

2−m2
1, ∆m2

31(atmospheric) = m2
3−m2

1, ∆m2
32 = m2

3−m2
2. Out of the

three squared mass differences, [4] only two are independent since ∆m2
32+∆m2

21−∆m2
31 = 0.

The observed hierarchy ∆m2
sol << ∆m2

atm can be accomodated in the two types of three

neutrino mixing schemes i.e. Normal hierarchy (NH) and Inverted hierarchy (IH) schemes.

In Normal ordering: m1 < m2 < m3,

∆m2
A = ∆m2

31 > 0, ∆m2
solar = ∆m2

21 > 0,m2(3) =
√

m2
1 +∆m2

21(31)
,
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In Inverted ordering: m3 < m1 < m2

∆m2
A = ∆m2

32 < 0, ∆m2
solar = ∆m2

21 > 0,m2 =
√

m2
3 +∆m2

23,m1 =
√

m2
3 +∆m2

23−∆m2
21.

1.3.5 Two flavour neutrino oscillation

For the sake of completeness, we discuss here briefly the two-flavour neutrino oscillations.

The effective mixing matrix in case of two flavour neutrino oscillation is given as

U =

(

cosθ sinθ

−sinθ cosθ

)

. (1.20)

The flavor eigenstates are written as a function of the mass eigenstates as:

να = ν1cosθ +ν2sinθ νβ =−ν1sinθ +ν2cosθ , (1.21)

where θ is the mixing angle. For two flavour neutrino oscillation there is one mixing angle

(θ ) and no CP phase. From Eq (1.21), the transition probability can be written as

Pνα→νβ
= sin22θsin2(

∆m2L

4E
). (1.22)

For survival probability, α = β and thus Eq (1.20) gives

Pνα→να = 1− sin22θsin2(
∆m2L

4E
). (1.23)

In Eq (1.23), when the mixing angle θ = 0 the mass eigenstates will be equal to flavour

eigenstates. When θ = π
4

, neutrino mixing is maximum. In order to have neutrino oscillation

we must have non zero and non degenerate neutrino masses and mixing angles. In natural

units of high energy physics, we express ∆m2 in terms of eV 2, L in kilometers and energy in

GeV. The oscillation probability becomes

Pνα→νβ
= sin22θsin2(1.27

∆m2L

E
). (1.24)

In Eq (1.24), ‘L’ is the distance from the source (also called baseline), and ‘E’ is the neutrino

energy. The oscillation wavelength depends upon ‘L’, ‘E’, and ∆m2 and the amplitude

depends upon sin22θ . For the oscillation probability to be maximum, L
E

is chosen such that

1.27
∆m2L

E
=

π

2
or

L

E
=

π

2.54∆m2
. (1.25)



1.3 Neutrino oscillation and flavour conversion 11

1.3.6 Two flavour neutrino oscillation in matter

When neutrinos travel through matter, there is change in the pattern of neutrino oscillations.

Changes come due to forward scattering interactions with electrons and nuclei giving rise

to effective potentials. Neutrinos interact with matter through charged current (CC) (they

mediate through W± boson) and neutral current (NC) (they mediate through Z0 boson)

interaction. When different flavours of neutrino interact with matter through NC process,

then they give rise to an effective potential i.e. VNC =−GF Nn√
2

where Nn is the number density

of neutron of the matter.

On the other hand electron neutrinos, in addition to neutral current interaction also undergo

charged current interaction giving rise to an additional effective CC potential i.e. VCC =√
2GFNe where Ne is the number density of electrons in the matter. Time evolution of flavour

states [4] can be written as

i
d

dt

(

νe(t)

νµ(t)

)

= H

(

νe(t)

νµ(t)

)

, (1.26)

where H is the total Hamiltonian. The flavour eigenstates can be related to mass eigenstates

by the following matrix

(

νe

νµ

)

=

(

cosθ sinθ

−sinθ cosθ

)(

ν1

ν2

)

. (1.27)

In terms of effective Hamiltonian matrix , ‘H’, Eq (1.26) can be expressed as

i
d

dx

(

Aee(x)

Aeµ(x)

)

= H ′
(

Aee(x)

Aeµ(x)

)

, (1.28)

where Aαβ =< νβ | να(t)> (α = e and β = µ) is the probability amplitude of transition of

να → νβ . Thus we have

H ′ =
1

4E

(

−∆m2cos2θ +ACC ∆m2sin2θ

∆m2sin2θ ∆m2cos2θ −ACC

)

, (1.29)

where ∆m2 = m2
2−m2

1 and ACC = 2EVCC = 2
√

2EGFNe. Diagonalising the above matrix by

orthogonal transformation we have

UT
MH ′UM = HM =

1

4E

(

−∆m2
M 0

0 ∆m2
M

)

, (1.30)
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where HM is the effective Hamiltonian matrix in matter. Effective mixing matrix in matter

can be written as

UM =

(

cosθM sinθM

−sinθM cosθM

)

. (1.31)

Effective mass square difference ∆m2
M in matter is

∆m2
M = m2

2M−m2
1M =

√

(∆m2cos2θ −ACC)2 +(∆m2sin2θ)2. (1.32)

Effective mixing angle θM in matter is

θM =
1

2
tan−1(

tan2θ

1−ACC/∆m2cos2θ
). (1.33)

It is observed from Eq (1.33) that at resonance condition we have

ACC = ∆m2cos2θ , (1.34)

and hence θM = π/4. At resonance, mixing among neutrino flavours in matter becomes

maximum. This phenomenon was first observed in 1985 by Mikheyev, Smirnov, Wolfenstein

(or MSW) effect also called Resonant Enhancement in Matter [21, 22].

1.3.7 Neutrino oscillation with sterile neutrinos

We know that neutrinos interact solely through weak interaction in the standard model

(SM). As a consequence only left handed component in the SM is active, and is a part of a

weak isospin doublet with its partner charged lepton. Here a question arises i.e. whether

right-handed neutrinos exist or not. If right handed neutrinos exist in SM then it would be

weak isospin singlets with no weak interactions except through mixing with the left-handed

neutrinos. That is why right handed neutrinos are referred to as ‘sterile’ neutrinos [23].

Following is the mixing matrix between flavour eigenstates να (α = e,µ,τ,s) and mass

eigenstates ν j ( j = 1,2,3,4). We denote sterile neutrinos as νs .











νe

νµ

ντ

νs











=











Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4





















ν1

ν2

ν3

ν4











. (1.35)
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This unitary matrix can be parametrized [24] as

U = R34(θ34,0)R24(θ24,0)R23(θ23,δ3)R14(θ14,0)R13(θ13,δ2)R12(θ12,δ1), (1.36)

where Ri j(θi j,δk) is the complex rotation matrix in the i− j plane and the elements of the

matrix are given by

[Ri j]pq =







































cosθ p = q = i or p = q = j

1 p = q 6= i and p = q 6= j

sinθe−iδ p = i and q = j

−sinθeiδ p = j and q = i

0 otherwise,

(1.37)

where θi j is the angle of rotation in i− j plane. If we consider θ14,θ24,θ34 = 0 then the

above matrix takes the form of Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix for three

flavour mixing. We have two kinds of neutrino schemes with the four flavours of neutrinos

i.e. (2+2) scheme and (3+1)-scheme. These schemes are categorised depending on how the

mass eigenstates are separated by the largest mass squared difference. In (2+2) scheme two

mass eigenstates [25] are separated by other two. On the other hand, in (3+1) scheme one

mass eigenstate is separated by other three mass eigenstates.

In (2+2) scheme, the fraction of sterile neutrino contributions to solar oscillation is given

by |Us1|2 + |Us2|2 and that of atmospheric oscillations is given by |Us3|2 + |Us4|2 . In (3+1)

scheme, the probabilities for disappearance and appearance oscillations are as follows:

P(να → νβ )≃ 4|Uα4|2|Uβ4|2sin2(1.27
∆m2

41L

E
), (1.38)

P(να → να)≃ 1−4(1−|Uα4|2)|Uα4|2sin2(1.27
∆m2

41L

E
). (1.39)

1.4 Processes for detection of neutrino oscillation

1) Radiochemical method (Homestake experiment):

The Homestake Solar Neutrino Observatory is located in the Homestake Gold Mine, in South

Dakota, USA. It detects solar neutrino through inverse beta decay chlorine-argon reaction

νe +Cl37 → Ar37 + e−. (1.40)
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Fig. 1.2 Left figure shows four–neutrino mass spectra for (2+2) scheme and the right figure

shows for (3+1) scheme.

Number of radioactive Ar37 atoms are counted to know how many solar neutrino have been

detected. The argon is extracted through chemical methods and hence the name radiochemi-

cal method.

2) Gallium experiment (GALLEX; SAGE):

The GALLEX/GNO and SAGE experiments were successful in measuring low energy neu-

trinos produced in the fundamental pp chain. In solar neutrino experiments GALLEX/GNO

and SAGE, the solar neutrinos are detected through the reaction

νe +Ga71 → Ge71 + e−. (1.41)

The Ge71 atoms are extracted by chemical methods and counted in small proportional

counters by observing their decay back to Ga71.

3) Water cherenkov detectors (Kamiokande, Superkamiokande):

In Water cherenkov detectors, neutrinos are detected through the elastic scattering reaction

νe + e−→ νe + e−. (1.42)

When incoming electron neutrino interacts with electron of water, the produced electron

travels with velocity greater than velocity of light in the medium. Cherenkov radiation is

emitted in a cone around the direction of motion. The Cherenkov radiation is detected by the

PMTs (photo multiplier tubes).
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4) Heavy water detector (SNO):

The large detectors are fitted with heavy water D2O and incoming solar neutrino are detected

by the Cherenkov radiation emitted. SNO detects solar neutrino through three reactions as

given in Eq (1.2). Neutral current reaction is very important to detect all three flavours of

neutrino (hence for detection of total flux of incoming solar neutrino) which offered solution

to SNP. Heavy water (D2O) Cherenkov detector, Sudbury Neutrino Observatory (SNO)

studied high energy solar neutrinos that was previously investigated by Kamiokande and

SK detectors. SNO alone demonstrated that about two out of three electron solar neutrinos,

change their flavour to other flavours i.e. muon neutrinos (νµ ) or tau neutrinos (ντ ) as they

traverse from core of sun down to earth. SNO detected all the three types of neutrinos i.e.

νe,νµandντ .

5) Detection of atmospheric neutrinos:

In one of the first experiments that detected atmospheric neutrinos (performed in India,

Kolar Gold mine), the detectors were made of scintillator, which recorded tracks of muons.

Kamiokande and SK also detected atmospheric neutrino by detecting muon like events. In

atmospheric neutrino experiments, neutrino fluxes of different flavours are measured by

detection of the charged lepton produced in ν−N reactions

νl +N → l−+X− ν̄l +N → l++X , (1.43)

where l = e,µ,τ. In the neutrino unmagnetized detector, charge of the lepton could not

be distinguished. But it would become possible at magnetized detectors like future INO

experiment. Also, it is extremely difficult to detect tau neutrinos, because the produced tau

leptons decay immediately to leptons and hadrons, without leaving a clear track. Water

cherenkov detector can detect both µ− and e−, muons produce a sharp ring of PMTs, while

electron produce a fuzzy ring.

6) Reactor neutrino experiments:

Fission reactors are copious sources of electron antineutrinos produced in beta decays of

neutron-rich nuclei. Reactor ν̄e are detected through inverse beta decay processes

ν̄e + p→ n+ e−. (1.44)

The emitted positron annihilates immediately with a surrounding electron and the released

gamma are detected in scintillator detectors.

7) Liquid scintillator experiments (KamLAND):

The detector is a liquid scintillator, the luminiscence from scintillator is picked by the PMTs.

KamLAND is designed to detect ν̄e produced by reactors in Japan’s Kamioka mine. ν̄e are
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detected by inverse beta decay

ν̄e + p→ n+ e−, (1.45)

liquid scintillators are rich in hydrogen, which acts as target for this reaction. CC interactions

are easier to work with since electron and muon have characteristic signatures in particle

detectors and they are fairly easy to identify. If an electron is detected, electron neutrino

must have arrived, if a muon neutrino is detected, means muon neutrino must have arrived, at

the detector.

8) Tracking experiment:

Tracking detectors reconstruct the path of the charged leptons produced in CC interactions,

either by ionisation that they cause or by the energy that they deposit. These detectors are

best suited to higher energy neutrinos since distance travelled by a particle will increase as

its energy increases and longer tracks are easier to reconstruct. Muons leave well defined

tracks than electron which produce electromagnetic showers as they travel through dense

material. Tracking detectors are good in separating muons from electrons. Examples of

tracking detectors are MINOS, MINERνA, ICARUS, T2K.

9) Emulsion detector:

Detectors of CC events from tau neutrinos is very challenging since they decay extremely

rapidly. The OPERA experiment at Gran Sasso and DONUT experiment at Fermilab

addressed this change by using technique of nuclear emulsions. They can detect tracker

produced by extremely short lived particles. Water cherenkov detectors can detect electron

or muon from CC or recoil electron from neutrino electron elastic scattering.

1.5 More on solar, atmospheric and reactor experiments

In solar neutrino experiments, borexino is a scintillator detector, has intrinsic high luminosity,

the liquid scintillation technology used by such detectors is extremely suitable for massive

calorimetric low energy spectroscopy. In reactor neutrino experiments liquid scintillator

technology is widely used because such technology has doping capability, mass produc-

tion, uniformity and low cost. Daya Bay, Double Chooz, and RENO experiments used

Gadolinium doped liquid scintillator as the medium to detect inverse beta decay events.

The Gadolinium isotopes contain large cross sections of thermal neutron capture. Borexino

[26] and KamLAND [27] were the two experiments that measured solar neutrinos from

reactions other than B8 [28]. Four experiments namely Super-K, MINOS, SNO, and IceCube

study atmospheric neutrinos. The long baseline neutrino oscillation experiment, MINOS

is the first magnetized tracking detector for detecting atmospheric neutrinos. IceCube is

a neutrino telescope in which very high energy astrophysical neutrinos are studied. The



1.5 More on solar, atmospheric and reactor experiments 17

main background for searching these astrophysical neutrinos are high energy atmospheric

neutrinos. Solar and atmospheric neutrino experiments showed that neutrinos oscillate with

two different mass squared differences i.e. ∆2
sol and ∆2

atm respectively which was confirmed

by KamLAND and K2K experiments [4], among others. DUNE is a very promising future

long baseline (1300 km), underground experiment, being planned at the Fermilab, USA, with

a liquid Ar detector. It is proposed to study about hierarchy problem, CP violation in neutrino

sector etc, among other rich physics.

Reactor neutrinos are mainly produced through beta-decay of neutron-rich fission reactions of

the four isotopes namely U235,U238,Pu239,Pu241. Another important source of anti-electron

neutrinos apart from fission reaction processes come from neutron capture on U238. In

addition to inverse beta decay processes there are various methods for detection of reactor

neutrinos.

First method is the charged current (CC) i.e.

ν̄e +d → n+n+ e+, (1.46)

and neutral current (NC) process i.e.

ν̄e +d → n+ p+ ν̄e. (1.47)

Second method is the antineutrino-electron elastic scattering i.e.

ν̄e + e−→ ν̄e + e−. (1.48)

The third method is the coherent antineutrino-nucleus interaction [29]. KamLAND which

was built at the site of former Kamiokande experiment, aimed to search for reactor ν̄e

oscillations. It was found that the results of KamLAND experiment was consistent with solar

neutrino experiments and confirmed large mixing angle (LMA) solution to be the solution

of SNP. Precise measurements from the combination of SNO and KamLAND experiments

indicated : tan2θ12 = 0.47+0.06
−0.05 and ∆m2

21 = 7.59+0.21
−0.21×10−5eV 2.

Around 2002, neutrino oscillation was well established. Both atmospheric and long-baseline

accelerator neutrino experiments determined the value atmospheric angle θ23 to be ∼ 45◦

also the solar neutrino experiments and KamLAND found the value of solar angle θ12 to be

∼ 33◦. It was assumed earlier that reactor mixing angle θ13 is zero but with advent of time,

later in the year 2012 it was measured with accuracy at the reactor experiments, and found

to have a large value of about 9◦ [30]. Daya Bay [31], Double Chooz [32], and RENO [33],
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were the three reactor neutrino experiments proposed around 2006, to probe θ13 [34]. These

experiments have successfully found non zero value of θ13. Discovery of a large value of θ13

reactor mixing angle is a great achievement for physicists. Precise measurement of θ13 plays

pivotal role not only in model-building in neutrino physics, but also encourages new reactor

neutrino experimentalists to investigate some of the important issues such as determining

neutrino mass hierarchy, CP violation in leptonic sector and searching for sterile neutrinos.

1.6 Neutrino nucleon scattering and cross section

Many properties of neutrino have already been measured experimentally, still some of them

are yet to be measured. Some of unknown quantities are mass hierarchy, nature of neutrinos

which can be either of Dirac or Majorana type, CP violation phase, exact mass of neutrinos,

whether neutrino can help to explain matter-antimatter asymmetry of the universe, whether

sterile neutrinos exist or not, etc. This provides a strong and active area of research for many

researchers worldwide in both nuclear and particle physics. Precise knowledge of neutrino-

nucleon interaction cross sections are required not only to measure the unknown quantities in

several planned/ongoing experimental set ups, worldwide but also these cross sections help

to minimise systematic errors in the analysis of neutrino oscillation experiments. Neutrino

nucleon scattering cross sections are used in neutrino oscillation experiments, at different

stages of calculations like signal cross section, ratio of quasi elastic - (νµ/νe) cross section

and signal efficiency. Number of events (of signal process) are observed experimentally,

which is proportional to the flux of the incoming neutrinos, cross section and probability of

the signal process. The phenomenon of neutrino oscillation is equally important for both

theorist and experimentalist since neutrino has non zero mass which is beyond the Standard

Model. Neutrino-nucleon cross sections have an uncertainty of about 20-30 percent [35].

The main reasons behind it are poor knowledge of neutrino fluxes and the fact that any cross

section measurements make use of nuclear targets.

1.6.1 Neutrino interaction across various energy scales

Neutrino interaction cross sections across various energy scales can be divided into five

categories [36].

1) Thresholdless processes (Eν ∼ 0−1 MeV): The first interaction process is thresholdless

processes which include coherent scattering (where neutrino interacts coherently with the

target nucleus) and neutrino capture. Such processes occur when energy of neutrino ranges
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from 0 to 1 MeV. Coherent process is similar to neutral current exchange process i.e.

ν +AZ
N → ν +A∗ZN . (1.49)

Another neutrino interaction is the stimulated or enhanced beta decay emission which falls

under thresholdless process. The reaction is

νe +AZ
N → e−+AZ+1

N−1. (1.50)

2) Low energy nuclear process (Eν ∼ 0− 100 MeV): The second interaction process in-

clude low energy nuclear processes where energy of neutrino ranges from 1 to 100 MeV.

3) Intermediate energy process (Eν ∼ 0.1−20 GeV): Third interaction process is the in-

termediate energy scale where neutrino energy ranges from 0.1 to 20 GeV. Mainly three

processes - elastic and quasi-elastic scattering, resonance production and deep inelastic scat-

tering fall under this category. Quasi-elastic (QE) also called charged current (CC) neutrino

scattering process occur when neutrinos scatter elastically off an entire nucleon (within target

nucleus) emitting a nucleon/multiple nucleons from target. The CCQE scattering processes

for neutrino and its antineutrino are

νµ +n→ µ−+ p ν̄µ + p→ µ++n. (1.51)

Similarly we have neutral current NC or elastic process where neutrinos elastically scatter

from nucleons of the target nucleus i.e.

ν + p→ ν + p, ν̄ + p→ ν̄ + p. (1.52)

We have another inelastic scattering process where neutrinos with sufficient energy excite the

struck nucleon within the target and produces a baryon resonance state (N∗) which decays to

nucleon and other single pion final state. Typical resonant single pion reaction is

νµ +N → µ−+N∗→ π +N
′
, (1.53)

where N,N
′
= n, p. The baryonic resonance state can possibly give rise to multipion final

state particles. With sufficient neutrino energy, inelastic process like deep inelastic scattering

can produce abundant source of multipion final state particles.

Another coherent process i.e. coherent pion production falls within the intermediate energy

range. Neutrino can coherently scatter from entire nucleus, transferring very less amount of
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energy to the target nucleus. The reactions for both CC and NC coherent pion production are

νµ +A→ νµ +A+π0,

ν̄µ +A→ ν̄µ +A+π0

νµ +A→ µ−+A+π+,

ν̄µ +A→ µ++A+π−.

(1.54)

Lastly in this intermediate energy range, kaons/strange quarks are also produced in the final

state . Both CC and NC processes are possible

νµ +n→ µ−+K++Λ0, νµ + p→ νµ +K++Λ0. (1.55)

4) High energy process (Eν ∼ 20− 500 GeV): In the high energy cross section energy

range, neutrinos with high energy are able to probe the internal structure of target nucleus.

Neutrinos are able to scatter off individual quark content of the target nucleus. Such process

is referred to as Deep Inelastic Scattering (DIS). DIS process for CC and NC are

νe +N → e−+X , ν̄e +N → e++X ,

νe +N → νe +X , ν̄e +N → ν̄e +X ,
(1.56)

where N = target nucleus and X = hadronic system in final state.

5) Ultrahigh energy (UHE) process (Eν ∼ 0.5TeV−1EeV ): In the ultra high energy (UHE)

regime (1EeV = 1018eV ), knowledge of neutrino nucleon cross section becomes particularly

interesting because it provides opportunity for the experimentalist for observation of ultra

high energy neutrinos from astrophysical and extragalactic sources.

1.6.2 Experimental status of neutrino cross section

Since we have already entered precision era of neutrino physics, studies of neutrino oscilla-

tions have been further extended in the long baseline accelerator and reactor experiments.

With the precise determination of five known oscillation parameters i.e. two squared mass

differences and three mixing angles, the present and future neutrino oscillation experiments

aim to find the unknown parameters i.e. Dirac CP-violating phase and neutrino mass order-

ing. In addition to these unknown parameters, modern oscillation experiments are giving

tremendous efforts to investigate the existence of additional massive neutrinos i.e. ‘sterile

neutrinos’. In what follows, we present a brief review on the status of neutrino cross section
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measurements.

Neutrino experiments make use of reliable neutrino fluxes to remeasure absolute QE scat-

tering cross sections. In the intermediate energy range, several neutrino-nucleon scattering

cross section measurements were made. Using carbon as target, high statistics measurements

of QE interaction cross section (as a function of neutrino energy), done by MiniBooNE

and NOMAD experiments appeared to differ by about 30 percent. This problem is called

‘MB-NOMAD’ anomaly [37]. Low energy MB results are found to be higher than that from

theoretical models such as Fermi gas model and impulse approximation calculations. Nuclear

effects beyond impulse approximation are responsible for the discrepancies in the data.

A better understanding of neutrino nucleus interactions is important to reduce systematic

uncertainties in neutrino oscillation experiments. Over the past years, experiments in the

intermediate energy range measured NC elastic cross section ratios w.r.t QE scattering in

order to reduce systematics. For example MiniBooNE experiment measured such ratios using

carbon in bins of Q2. BNL E734 and MiniBooNE reported measurements of differential cross

sections, using carbon as target for NC elastic scattering. P. Coloma et. al. [38] calculated

total cross section (using oxygen as target) for various neutrino interaction channnels using

event generators so as to determine neutrino oscillation parameters for an experimental set

up similar to T2K. In another work by P. Rodrigue et. al. [39], they have calculated double

differential cross section for various neutrino interaction channels (using carbon as target) so

as to study nuclear effects in Minerva experiment. Nuclear effects in neutrino interactions is

one of the leading source of systematic errors in present and future neutrino beam oscillation

experiments.

Accelerator based neutrino experiments measure rate of neutrino interactions which com-

prises of three most important factors i.e. neutrino flux, neutrino cross section interaction

and the detector efficiency [40]. Out of all the three factors, neutrino-nucleus cross section

interaction in the hundreds-MeV to few-GeV energy regime poses one of the most important

sources of systematic errors. For the past decade, for experiments like MiniBooNE and T2K,

there was strong urge to understand neutrino interaction systematics around 1 GeV but at

present time energy region of 2-10 GeV has become significant for oscillation experiments

like NOvA, PINGU, ORCA, Hyper-K, DUNE and INO. For the future accelerator based

neutrino experiments, two targets become most important, namely argon (for liquid argon

time projection chambers (LArTPCs)) and water for water/ice -Cherenkov detectors.
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1.7 Ultra High Energy Neutrino experiments

Knowledge of neutrino cross section in Ultra High Energy regime is important ingredient

in the event rate calculation in high energy neutrino telescopes. Most striking experimental

result of observation of ultra-high energy neutrino events was reported at IceCube. At

IceCube, Ultra high energy neutrinos are detected by observing Cherenkov light produced in

ice by charged particles created when neutrinos interact [41]. From May 2010 to May 2012,

sufficient data were collected by the IceCube detector which provided the first evidence for a

high-energy neutrino flux of extraterrestrial origin. The two neutrino events whose energies

are in between 1 to 10 PeV were detected in IceCube on August 9, 2011 and January 3, 2012

which could be of atmospheric or astrophysical origin [42]. A number of experiments are

geared towards observation of UHE neutrinos from astrophysical sources. The experiments

are namely Baikal [43, 44], Antares [45], Antartic Muon And Neutrino Detector Array

(AMANDA) [46], Radio Ice Cerenkov Experiment (RICE) [47], ANITA [48], HiRes [49]

and Goldstone Lunar Ultra-High Energy experiment (GLUE) [50].

1.8 Sterile neutrino experiments

LSND experiment made use of coincidence of the prompt Cherenkov radiation from the

positron and the delayed neutron capture by a hydrogen and was able to measure ν̄e events.

ν̄µ → ν̄e + p→ e++n. This experiment could observe an excess of ν̄e events. It was found

that this statistically significant signal is consistent with the presence of sterile neutrinos

(ν̄µ → νsterile → ν̄e) [51].

In a recent study [52], they have investigated the capability of planned Tokai to Hyper

Kamiokande (T2HK) experiment to supply information regarding the unknown parameters

like mass hierarchy, CP phases, and the octant of θ23, in the presence of a light eV scale

sterile neutrino. In another recent work [53] they have shown the impact of sterile neutrino

oscillation parameters on the expected sensitivity of planned T2HK and T2HKK experiments

to the neutrino unknown parameters. Recently K.Abe et al., [54] from T2K collaboration

collected data from the T2K far detector which has been used to search oscillation signatures

due to light sterile neutrinos in the (3+1) framework. They have used both CC ν̄µ and ν̄e

samples and NC samples at far detector at baseline of 295 km. In another work by Igor

Krasnov, [55] it was found that they calculated the sensitivity of DUNE to the active-sterile

neutrino mixing for sterile neutrinos having mass at GeV scale. In atmospheric neutrino

oscillation experiments like SK and IceCube, one can probe muon neutrino disappearance

channel. It was found that IceCube can probe highest energy range from 6 GeV to 20 TeV. In
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Parameters Hierarchy Best Fit NH IH

∆m2
21[10−5eV 2] NH or IH 7.37 6.93−7.97 6.93−7.97

sin2θ12/10−1 NH or IH 2.97 2.50−3.54 2.50−3.54

sin2θ13/10−2 NH and IH 2.14 (NH) and 2.18 (IH) 1.85−2.46 1.86−2.48

sin2θ23/10−1 NH and IH 4.37 (NH) and 5.69 (IH) 3.79−6.16 3.83−6.37

δ13/π NH and IH 1.35 (NH) and 1.32 (IH) 0−2 0−2

∆m2
41eV 2 NH and IH 1.63 0.87−2.04 0.87−2.04

|Ve4|2 NH and IH 0.027 0.012−0.047 0.012−0.047

|Vµ4|2 NH and IH 0.013 0.005−0.03 0.005−0.03

|Vτ4|2 NH and IH – < 0.16 < 0.16

Table 1.1 The latest global fit 3σ range data as well as sterile bounds are shown [61, 62].

this energy regime, matter effects becomes significant. For example a large matter-induced

resonance would be expected at 3 TeV neutrino energy, for a 1 eV 2 sterile neutrino search

at such detectors [56]. Future/planned reactor neutrino experiments aim to explore short

baseline ν̄µ disappearance channel, keeping the measurements of the energy spectrum at

different distances so as to gather information on neutrino oscillations that are independent

of the neutrino flux calculations. In near future the LSND ν̄µ → ν̄e appearance channel will

be monitored in the short baseline neutrino experiment at Fermilab [57]. In one of recent

paper by Alan M. Knee et al., they used Planck data to obtain cosmological constraints on

the sterile-neutrino oscillation parameters [58]. In [59], the authors have explained a way to

search sterile neutrinos of keV scale, which are candidates of dark matter. TRISTAN project

will extend the experimental set up of Karlsruhe Tritium Neutrino experiment (KATRIN)

in order to search for such keV-scale sterile neutrino. In a recent work [60] by MINOS and

MINOS+ collaboration, it was found that, these experiments achieved high sensitivity to the

sterile neutrino eigenstate in the mass splitting parameter i.e. ∆m2
41 over the magnitude of

seven orders. In Table 1.1, the latest global fit 3σ range data [61, 62] are given.

1.9 Methodology

In Chapter 2 of the thesis, we will calculate number of events and double differential

cross section for neutrino-carbon scattering in MINERνA experiments (Fermilab). The

methodology for this work would be - to simulate the number of events and double differential

cross section using the event generator GiBUU. Using a low three momentum transfer (q3)

subsample of neutrino-carbon scattering data from MINERνA experiment, separation of

two processes i.e. QE and Delta (1232) resonance processes are done using event generator
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GENIE 2.8.0 in [39], where they used GENIE. We have used another simulation software

i.e. GiBUU in order to investigate about the discrepancy in the region between QE and ∆

processes.

In Chapter 3, we will calculate neutrino cross section for charged current and neutral current

neutrino interaction in ultra high energy regime using QCD inspired double asymptotic limit

fit of electron-proton structure function F
ep
2 . The methodology here is - we will use the

double asymptotic form of proton structure function, and use it to calculate the neutrino

nucleon scattering cross section. We have not used any standard softwares available for

the calculation of these cross sections, rather we will do our calculation using Monte Carlo

(MC) integration technique. We will also do a comparative analysis of our results with those

available in literature.

In Chapter 4 of the thesis, we will consider 4×4 neutrino mass matrix and classify different

possible textures of the matrix based on generic A4 vacuum alignments for triplet flavons.

The methodology here would be - from the 4×4 light neutrino mass matrix, we solve the

constraint equations, to obtain the correlations among the light neutrino mass parameters,

allowed by the 3σ global best fit ranges. And from that, one can see which flavon VEVs give

reasonably good agreement with the present data. We will use Mathematica to solve these

complex constraint equations.

1.9.1 GENIE and GiBUU event generators

GENIE stands for Generates Events for Neutrino Interaction Experiments which is a ROOT

based neutrino Monte Carlo generator designed using object-oriented methodologies. Validity

of GENIE generator extends over a wide spectrum of energies ranging from ∼ 1 MeV to

∼ 1 PeV and also to all nuclear targets and neutrino flavors [63]. GENIE makes use of

nuclear physics models, cross section models, neutrino induced Hadron Production models

for simulation of cross section, event rates, final state particle interaction etc for various

neutrino experimental set-ups functioning worldwide. When a neutrino is scattered off from

a nuclear target, GENIE can simulate complex physics processes within it. Complex physical

processes includes primary scattering process, the neutrino-induced hadronic multiparticle

production and the intra-nuclear hadron transport and re-scattering. Inside GENIE, there

are inbuild flux drivers that enables users to use the desired flux for their experimental set

up. GENIE installation requires 3rd party installation which includes external packages like

ROOT, GSL, LHAPDF, PYTHIA6, log4cpp, libxml2. This is followed by main installtion of

GENIE package. In this thesis, we have used GENIE 2.8.0 version to calculate cross sections

and event rate in Chapter 2.
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GiBUU stands for Giessen Boltzmann–Uehling–Uhlenbeck. It is a simulation code for

electron, photon, neutrino, hadron and heavy-ion induced reactions on nuclei [64]. It is a

transport model based on a coupled set of semi-classical kinetic equations, which describe

the dynamics of a hadronic system explicitly in phase space and in time. GiBUU is based

on Kadanoff-Baym (KB) equations which describe the time development of the Wigner-

transform of the nuclear one-body density matrix [65, 66]. The neutrino event generator

GiBUU can calculate cross sections, event rate for all neutrino flavour. Within GiBUU,

various flux files, potentials, nuclear models are written in fortran 90. The software is user

friendly, one has to run jobcards to generate events, cross sections, reconstructed neutrino

energy etc by choosing appropriate modules within the jobcard. Running a jobcard is simple,

one can just write the command i.e. "./GiBUU.x < "jobcard name" in the terminal, provided

proper directory path is given. Once output files are generated, one can immediately obtain

desired cross section, event rate etc by writing their own analysis program using ROOT/

FORTRAN 90.



2
Neutrino-carbon interactions at low

three-momentum transfer

In this chapter, we intend to study neutrino-carbon interaction for some neutrino channels

like quasi-elastic scattering, 2p2h/MEC process in the intermediate energy regime, with

reference to data taken by the MINERνA experiment at Fermilab, USA.

2.1 Introduction

Neutrino Main Injector (NUMI) beamline located at Fermilab produces intense neutrino

beam which has provided a platform for many experimental set ups like MINERνA, MINOS,

NOνA etc for studying various neutrino/anti-neutrino interactions with nuclei, and neu-

trino oscillations. Accurate measurements of differential, double differential cross sections

for various scattering processes like QE scattering, single and multi-pion production, as

a function of (reconstructed) neutrino energy are done by such experiments, among other

measurements. These along with other accelerator based experiments like T2K, DUNE

(planned) etc, and reactor based experiments aim to study the unknown neutrino properties

from the observation of neutrino oscillations, at different baselines and neutrino energies.

Comparison of neutrino event rates at the far and near detectors, at a given neutrino energy
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is done so as to extract neutrino oscillation parameters, mixing angles and CP-invariance

violating phase, with reduced systematic uncertainties.

We know that neutrino beams are not mono-energetic, and they contain several flavours.

Correct identification of neutrino flavour as well as detailed knowledge of final state particles

after a neutrino interaction takes place, becomes essential to minimize systematic uncer-

tainties in neutrino oscillation experiments [67]. Modern neutrino oscillation experiments

make use of heavy nuclear targets. This is because event rate scales roughly linearly with

mass of target, so use of dense target material will increase statistics. Unfortunately, due

to use of heavy target nucleus, complex nuclear effects also must be taken care of in the

interactions. When neutrino interacts with a heavy target nucleus, generally interaction takes

place among the individual nucleons which are bound inside the target nucleus. At low energy

interactions, distribution of energies and momenta inside the nucleus is not known properly

which leads to uncertainties. Another complicated situation arises when interaction with

target nucleons take place in nuclear medium - in the initial interaction, produced hadrons

travel through dense nuclear medium and undergo further strong interactions giving rise to

final state interactions (FSI). When FSI effects take place in such medium then some particles

are absorbed by nucleus, and many new types of particles may also be created with different

kinematics [68]. Because of FSI, it is not possible to precisely separate different interaction

channels in an experiment, but one can possibly measure the post FSI particle contents [69].

Similar to FSI, another effect may be Pauli blocking (in a nucleus, Pauli exclusion principle

prevents multi occupation of states by the nucleons, i.e. it ensures that the nucleons in a

nuclear state cannot occupy states that are already filled up). Details of how Pauli blocking

applies to nucleons in a target nucleus is not well understood, and can depend on the nuclear

model used. Apart from FSI effects, Pauli blocking, other nuclear effects may be impulse

approximation (scattering cross section is calculated as the incoherent sum of scattering from

the target nucleons), random phase approximation (RPA) (in RPA correlations, the nucleons

in a nucleus interact via two body NN potential) which collectively can cause difficulties in

the precision measurements at the present/planned oscillation experiments.

Monte Carlo event generators play a vital role in every ongoing / planned experiment because

they provide a model for all possible interactions for a given measurement with which analy-

ses can be performed. In general, an event generator provides for any neutrino flavour, energy

and target nucleus, the total cross section for each interaction mode, energy and direction

of all secondary produced particles. It also simulates particle re-interactions inside target

nucleus whenever necessary. Among the most important event generators are GENIE [63],
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NUANCE [70], NEUT [71], GiBUU [65] etc. In GiBUU, the FSI effects are modeled by

solving the semi-classical Boltzmann-Uehling-Uhlenbeck equation.

In [39], the authors have attempted to isolate two different nuclear-medium effects using a

low 3-momentum transfer subsample of neutrino-carbon scattering data from the Minerνa

experiment, using the event generator GENIE. They combined observed hadronic energy in

CC νµ interactions, with muon kinematics, to separate QE and ∆(1232) resonance processes.

They observed a small cross section at very low energy transfer that matches the expected

screening effect of long-range nucleon correlations. Also, they observed that additions to the

event rate in the kinematic region between the QE and the ∆ resonance processes are needed

to describe the data. The data in this kinematic region are also found to have an enhanced

population of multi proton final states. Though contributions predicted for scattering from a

nucleon pair is believed to have both the properties - the model tested in that work did not

fully describe the data. Improved description of the effects of the nuclear environment are

required - as observed by the authors.

Most of the earlier available event generators, for example, relied on free-particle Monte

Carlo cascade simulations that are applicable at very high energies but are of only limited

applicability in the description of relatively low energy FSI of hadrons inside the target

nuclei. A basic feature of nuclei, their binding, is neglected from the outset in these Monte

Carlo calculations. Furthermore, the generators often still rely on outdated nuclear and

hadron physics and consist of a patchwork of descriptions of different reaction channels

without internal consistency. There is, therefore, now a growing realization in the neutrino

long-baseline community that the description of nuclear effects has to be improved.

Hence, in this work, we include the improved nuclear environment effects for the lepton-

nucleus interaction, using implementation of quantum-kinetic transport theory, with improve-

ments in its treatment of the nuclear ground state and 2p2h interactions. This is done by

using another versatile event generator i.e. GiBUU so as to obtain results that could show a

better agreement with the present MINERνA data.

2.2 MINERνA experiment

MINERνA (Main Injector Experiment for v-A) experiment is a neutrino scattering experi-

ment which uses NuMI beamline at Fermilab. The experimental set up consists mainly of

three parts - namely an active scintillator tracking detector, an electromagnetic calorime-
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ter and a hadron calorimeter, including various nuclear targets like carbon, water, helium,

iron and lead. In addition to this, MINOS near detector is used as a muon spectrometer

by MINERνA experiment [72]. Both MINOS and MINERνA are low energy (LE) mode

and medium energy (ME) mode on-axis experiments. The energy range of neutrinos in

MINERνA flux is from 2 < Eν < 6 GeV which peaks at approximately 3.5 GeV as shown in

Fig. 2.3. The experiment does not provide neutrino flux below 1.5 GeV [40]. The MINERνA

data were taken from the year 2010 to 2012, exposed to NuMI beam with 3.33×1020 protons

on target. The experiment has baseline of approximately about 1300 km.

2.3 Quasi-elastic and MEC/2p2h processes

In Quasi-elastic (QE) scattering, neutrinos can elastically scatter off an entire nucleon

emitting multiple nucleons from target nucleus. The formalism related to CCQE process

was first laid in the Llewellyn Smith model [73]. For a CCQE process, the neutrino energy

can be reconstructed from the kinematic variables of the charged lepton l in the final state

interaction as:

E
QE
ν =

2(Mn−Eb)El− (E2
b −2MnEb +∆M2)

2(Mn−Eb−El + plcosθl)
, (2.1)

where Mn is free neutron rest mass, Eb is the binding energy and ∆M2 = M2
n −M2

p +m2
l .

The above equation is valid for a CCQE process, where neutron is at rest.

Meson exchange current (MEC) also known as 2 particle-2 hole (2p-2h) effect, is an inter-

action where a weak boson from the leptonic current is exchanged by a pair of nucleons

(two body current), and it is expected to lead to two nucleon emission [74]. MEC/2p2h

effects are responsible for event excesses observed by various neutrino oscillation experi-

ments. Both GENIE and GiBUU event generators use Llewellyn Smith model to calculate

CCQE interaction. Schematic diagram of both CCQE and MEC/2p2h processes are shown

in Fig. 2.1 and Fig. 2.2 respectively. In Fig. 2.2, diagram (a) represent one particle-one

hole interaction, diagram (b) is a 2p2h/MEC interaction between two nucleons, diagram (c)

shows pion production. These three diagrams collectively represent many body contributions

to the polarisation propagator. The solid (dashed) lines correspond to free nucleon (pion)

propagators and the dotted lines shows interaction between nucleon-nucleon. There is a blob

with solid lines which represent full (dressed) nucleon propagators. In case of nucleons, the

lines pointing to the right (left) denote particle (hole) states.
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Fig. 2.1 Schematic diagram of charged current quasi-elastic scattering process (taken from

[36]).

Fig. 2.2 Schematic diagram of 2p2h/MEC process (taken from [72]).

Energy (GeV)
2 2.5 3 3.5 4 4.5 5 5.5 6

/P
.O

.T
/G

e
V

)
2

/m
­5

F
lu

x
 (

1
0

1

2

3

4

5

6

7

8

9

Graph

Fig. 2.3 Flux of MINERνA experiment [75].
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2.4 Neutrino-carbon interaction using transport kinetic the-

ory for nuclear effects

As discussed earlier in Chapter 1 and in this Chapter, due to discrepancy observed between the

data of MINERνA for neutrino-carbon scattering in quasi-elastic regime, and theoretical re-

sults obtained by the authors of [39], in this work, we analyse this data using transport model

based on a set of coupled set of semi-classical kinetic equations. This is done with the help

of the event generator GiBUU 2016. In GiBUU, all nucleons are bound in a coordinate - and

momentum-dependent potential, which is obtained from an analysis of nuclear matter binding

properties and pA reactions. The momentum distribution is such that a high-momentum

nucleon sees a less attractive potential than the one with a low momentum. The momentum

distribution is modelled by the local Fermi gas distribution with pF ∼ ρ1/3. The significant

shift of strength towards lower momentum values, as compared with the distribution of the

global rFG (relativistic Fermi gas) is reproduced in [64]. The preparation of the ground

state uses a realistic nuclear density profile, then calculates potential from an energy density

functional, and finally inserts the nucleons into this potential with moments distributed

according the local Fermi-gas model. In GiBUU 2016, they have fixed the value of EF from

the outset. This is achieved by calculating the potential for a conventional, realistic Woods-

Saxon density distribution [76]. Then, by keeping the functional form of the potential and

the value of the Fermi-energy fixed, a nonlinear equation for the density is solved by iteration.

We would now describe the kinematics of the interaction. Let Eν be the energy of the incom-

ing neutrino, Eµ be that of the muon produced in CC, Q2 be the square of four-momentum

transferred to the nucleus, three momentum transfer is q3, Eavail is the the hadronic energy

available to produce activity in the detector. Then, they can be defined as follows:

Eν = Eµ +q0, (2.2)

Q2 = 2Eν(Eµ − pµcosθµ)−M2
µ (Mµ is the muon mass), (2.3)

q3 =
√

Q2 +q2
0, (2.4)

Eavail = proton K.E + charged pion K.E + neutral pion K.E + electron + photon total energy.

(2.5)

In next section, we present our results and discussion on them.
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2.5 Results and Discussion

We have calculated double differential cross section for carbon target for MINERνA experi-

ment for some interaction channels like default, 2p2h/MEC processes as shown in Figs 2.4

and 2.6. For the sake of completeness, we also reproduced the results for the same processes

of [39] using GENIE 2.8.0 version (shown in Figs 2.5 and 2.7). We then compare our results

with the available MINERνA neutrino carbon scattering data.

In calculating double differential cross section, we have calculated approximately one lakh

events for both the interaction channels i.e. default and 2p2h/MEC processes, then created

a two dimensional histogram of q3 (along y axis) versus available energy (along x axis),

then no of events in each bin of x and y axes were divided by average MINERνA flux and

3.17×1030 nucleon targets, to obtain the value of double differential cross section. From

the definition mentioned in Section 2.4, the available energy (Eavail) was calculated from

0 to 0.5 GeV energy range corresponding to each value of calculated double differential

cross section. We have followed this procedure for both the generators GENIE and GiBUU.

The double differential cross section d2σ
dEavaildq3

in six region of q3 i.e. 0 < q3/GeV < 0.2,

0.2 < q3/GeV < 0.3, 0.3 < q3/GeV < 0.4, 0.4 < q3/GeV < 0.5, 0.5 < q3/GeV < 0.6 and

0.6 < q3/GeV < 0.8 was calculated using both the generators.

In case of GiBUU, for each interaction channel i.e. default and 2p2h/MEC processes, we

used separate jobcards and gave runs selecting appropriate modules in the jobcard. We

have incorporated the available MINERνA flux which ranges from 2 < Eν < 6 GeV within

the GiBUU package. Using our own analysis programs, we have extracted the kinematic

variables from the generated files and plotted our results. Though there are various versions

of GENIE available but we performed our analysis using GENIE version 2.8.0 since it is

considered to be the most stable version. Since both the generators are unique in terms of

nuclear models, potentials and for various other reasons, the operating technique in both the

generators are quite different. In GENIE, there is no such jobcard, we have created our own

cross section splines for neutrino carbon interaction. Then using appropriate commands we

generated the events and followed the procedure as mentioned above in this Section.

It is seen from Fig 2.4, for the 2p2h/MEC process, we observe that the overall behaviour of

the curves in the six q3 regions are nearly same i.e. double differential cross section starts

from zero value of available energy, slowly rises to some height and then falls down and

attains zero at some value of available energy. In the region 0.6 < q3/GeV < 0.8, we observe

that our results almost coincide with the MINERνA data.
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Fig. 2.4 The double differential cross section d2σ
dEavaildq3

in six regions of q3 using GiBUU

2016 are plotted for 2p2h process (red line) and the MINERνA experimental data are shown

with their respective error bars.
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Fig. 2.5 The double differential cross section d2σ
dEavaildq3

in six regions of q3 using GENIE

2.8.0 are plotted for 2p2h process (red line) and the MINERνA experimental data are shown

with their respective error bars.
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Fig. 2.6 The double differential cross section d2σ
dEavaildq3

in six regions of q3 using GiBUU

2016 are plotted for default process (red line) and the MINERνA experimental data are

shown with their respective error bars.
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Fig. 2.7 The double differential cross section d2σ
dEavaildq3

in six regions of q3 using GENIE 2.8.0

are plotted for default process (red line) and the MINERνA experimental data are shown

with their respective error bars.
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From Fig 2.5, we observe that the double differential cross section for 2p2h/MEC process,

indeed rises from zero value of available energy, attains some height and then slowly fall

down and becomes zero for some value of available energy. This trend is observed for

the five q3 regions i.e. 0 < q3/GeV < 0.2, 0.2 < q3/GeV < 0.3, 0.3 < q3/GeV < 0.4,

0.4 < q3/GeV < 0.5, 0.5 < q3/GeV < 0.6. But it is observed that in the last region of q3 i.e.

0.6 < q3/GeV < 0.8, the cross section curve increases with the increasing values of Eavail

energy. It is expected that at some value of Eavail > 0.5 GeV, the curve may merge along

with x axis. The double differential cross section results obtained using GENIE, are not in

good agreement with the MINERνA data. Thus, using GiBUU, we can say that our results

have improved as compared to those produced with the other generator GENIE.

From Fig 2.6, we observe that double differential cross section for the default process using

GiBUU, is not zero at zero value of available energy, infact the curves slowly rises and attain

some height and then slowly fall down to zero at nearly Eavail = 0.5GeV . This trend is ob-

served for the four q3 regions i.e. 0 < q3/GeV < 0.2, 0.2 < q3/GeV < 0.3, 0.3 < q3/GeV <

0.4, 0.4 < q3/GeV < 0.5. But for the last two regions of q3 i.e. 0.5 < q3/GeV < 0.6 and

0.6 < q3/GeV < 0.8 we observe that our cross section curve increases with the increasing

values of Eavail energy. Similarly from Fig 2.7, we observe that double differential cross

section for the default process using GENIE is zero at zero value of available energy, then the

curves slowly rises and then slowly fall down to zero at some values of available energy. This

trend is observed for the entire six q3 regions i.e. 0 < q3/GeV < 0.2, 0.2 < q3/GeV < 0.3,

0.3 < q3/GeV < 0.4, 0.4 < q3/GeV < 0.5, 0.5 < q3/GeV < 0.6 and 0.6 < q3/GeV < 0.8.

What we can comment from this plot is that the GENIE results are not in good agreement

with the available MINERνA data.

We would like to point out here, that from the theory of electroweak (EW) gauge interactions,

this variation of cross section with energy can be explained very well [36].

2.6 Summary

To summarize, we find that our results obtained including 2p2h process for double differential

cross section of neutrino carbon scattering, produced using GiBUU, are in better agreement

with the MINERνA data, than those reported in [39]. The 2p2h results using GENIE are

low as compared to our results using GiBUU. This differences may be attributed to use of

better nuclear environment effects, through the use of GiBUU. Fine tuning of our GiBUU

results for the two interaction processes i.e. default and 2p2h/ MEC is required. We are also
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working on a different and interesting interaction process i.e. (2p2h + RPA). We expect that

by incorporating RPA effects with 2p2h/MEC process, our GiBUU results will improve and

will indeed agree well with the available MINERνA data.



3
Neutrino cross section in UHE regime

using double asymptotic limit of QCD.

In Chapter 2, we discussed neutrino carbon scattering at low three momentum transfer in

quasi-elastic regime. In this chapter, we focus on neutrino nucleon scattering in ultra high

energy (UHE) regime.

3.1 Introduction

As discussed in Chapter 1, neutrino nucleon scattering cross sections play a pivotal role

in all neutrino oscillation experiments. Such experiments make use of neutrinos coming

from natural resources as well as from artificial (man-made) resources [36]. In any neu-

trino experiment, neutrinos are scattered off a nucleon/nucleus of the detector. Neutrinos

coming to the earth from natural sources have their origin in the sun, active galactic nuclei

(AGN) and core of supernovae-they are believed to play crucial role in various astrophys-

ical phenomenon. The information obtained from astrophysical objects and mechanisms

is complimentary to that available from electromagnetic or hadronic interactions. It was

already mentioned in Chapter 1 that neutrino interactions across various energy scales can

be categorised into five classes [36] - thresholdless process, low energy nuclear process,
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intermediate energy process, high energy (DIS) process and Ultra high energy (UHE) process.

Neutrino DIS processes have been used to validate the standard model (SM) and to also probe

nucleon structure. Cross sections, electroweak (EW) parameters, coupling constants and

scaling variables etc. have also been measured by experimentalists through such processes.

In the νN DIS, the neutrino scatters off a quark in the nucleon via the exchange of a virtual

W (CC) or Z (NC) boson, producing a lepton and hadronic system in the final state. Similarly,

UHE neutrino cross sections have gained importance as many experiments worldwide are

ongoing/planned to observe processes involving them. The natural sources of UHE could

be - supernovae core collapse, cosmic rays, gamma ray burst, AGN etc and they serve as

windows of understanding highest energy processes in the universe. Since attenuation of

these neutrinos due to their travel is very low (as they are only weakly interacting), they

act as a powerful tool to help us know about their sources. Various experiments measuring

UHE neutrinos, ongoing and planned, worldwide are - Baikal [77], ANITA [78], RICE [79],

AMANDA [80], HiRes [81], ANTARES [82] , IceCube [83], GLUE [84], Pierre Auger

Cosmic Ray Observatory [85], ARIANNA [86], JEM-EUSO [87]. A number of studies on

UHE neutrino cross sections (CC and NC) are available in literature. R. Gandhi, et al., [88]

(GQRS1998) reported results based on u,d,c,s quark PDFs (Parton Distribution Function)

from 1998 CTEQ4 analysis of the early HERA-ZEUS small x data. In the results presented

by A. Connolly, et al., [89] (CTW 2011) and A. Cooper-Sarkar, et al., [90] (CSMS 2011)

they included b-quark contribution to both CC and NC scattering and are based on updated

PDFs obtained from newer data. Froissart bound inspired behaviour of F
ep
2 of DIS (e− p)

scattering was used by Martin M. Block, et al., [91] (BDHM 2013) to evaluate UHE neutrino

cross section off an isoscalar nucleon N = n+p
2

, upto Eν ∼ 1017 GeV. It may be noted that

Eν ∼ 1017 GeV is the highest reach of the experimental search for UHE cosmic neutrino

[83, 84].

In this work, we calculate CC and NC neutrino-nucleon scattering cross section in Eν ∼

(109−1012 GeV) using QCD inspired Double Asymptotic limit (DAL) of the proton structure

function F
ep
2 (x,Q2). The preliminary results of this analysis were presented in [92]. In [94],

it has been shown that the e-p structure function exhibits a dynamic pomeron type behaviour:

F
ep
2 ∼ x−λ (Q2), (3.1)

which can be obtained from DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution

equation. It was found to describe the HERA H1 data, available at that time, for F
ep
2 in the

range 1≤ x≤ 10−4 and 5≤Q2 ≤ 5000 GeV 2 within 10 % error. In high energy physics, the
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pomeron is a Regge trajectory, a family of particles with increasing spin, postulated to explain

the slowly rising cross section of hadronic collisions at high energies [95]. At high energies

(and low Q2) γ∗p cross section is believed to have similarities to that of hadron-hadron

interactions. Pomeron type behaviour of F2 at small x can explain the logarithmic rise of

cross section with energy. In Fig 3.2 we present the result from the computation for CC, NC

and total cross section for 109 ≤ Eν ≤ 1012 GeV. We then compare our results (shown in Fig

3.3 and Fig 3.4) in the energy range 109 ≤ Eν ≤ 1012 GeV with those already available in

literature (as no data is available at present). While overall behaviour is found to be similar,

the values of our cross sections are found to be lower than those of BDHM2013, CTW2011

and CSMS2011 for Eν ≥ (109−1011) GeV for CC . On the other hand, our values are lower

than those of GQRS1998, for energy of Eν = 109 GeV. For NC, for Eν ≥ (109−1012) GeV ,

our values are almost same as GQRS1998 whereas for Eν ≥ (109−1010) GeV our values

are slightly lower than BDHM2013, CTW2011 and CSMS2011. In our view, this could be

attributed to the form of structure function Eq (3.1), used to calculate νN cross section. It

may be noted that the rising behaviour of F
ep
2 can be controlled due to screening corrections

and we intend to do it in our future work. Then we present analytical form of total cross

section, fitted to the forms, Eq (3.19) and Eq (3.20) both for CC and NC.

It has been stated in [36] that for a more accurate prediction of the νN cross-section, a well

formulated model of the nucleon structure function is needed and that this predictive power

is specially important in the search of New Physics (NP). At such Ultra High Energies,

the νN cross section can depart substantially from the standard model predictions, if NP

is at play. Study of such UHE neutrino interaction thus could be a possible probe of new

physics. Determination/measurement of νN cross section could also be useful to constrain

the underlying QCD dynamics of the nucleon. Detection of UHE neutrino events may shed

light on the observation of air shower events with energies ≥ 1010 GeV, as well. Moreover,

the behaviour of UHE νN cross section can also be used to discriminate among different

models of gluon dynamics at play at very low x. The energy dependence of total νN cross

section measurement may have important implications for hadronic interactions at such UHE,

not accessible otherwise. If cross section much outside the limits of ongoing/planned neutrino

experiments are observed, then predictions presented in this work could be very important.

This commands attention also, since many experiments worldwide are planned/ongoing in

DIS/UHE regime.

We would like to emphasize here that, we have not used any software available in public

domain, in our work we have done the computation of νN cross section, using our own
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computer program and this is a novely in this work. Another novel feature is dynamic

pomeron type behaviour of F
ep
2 used in our work, which also gives pomeron type behaviour

for νN cross section at UHE.

The Chapter has been organised as follows. In Section 3.2, we present a brief review on

neutrino scattering at UHE regime, in Section 3.3, a review on DAL behaviour of F
ep
2 ,

following [94] is given. In Section 3.4, total σCC
νN and σNC

νN , cross sections using above form

of F
ep
2 are presented. Section 3.5 contain numerical calculations, results and analysis. Lastly

we summarize and draw conclusions in Section 3.6.

3.2 Neutrino scattering at UHE regime

In DIS, the neutrino scatters off a quark in the nucleon via the exchange of a virtual W

or Z boson producing a lepton and a hadronic system in the final state [4]. Both charged

current (CC) and neutral current (NC) processes are possible like νl +N → l−+X and

ν̄l +N → l++X . where N = p,n and X denotes any set of final hadrons.

We now describe the kinematic variables for the process νl(pν)+N(pN)→ l−(pl)+X(pX)

• the four momentum transfer, q = (pν − pl) = (pX − pN)

• Lorentz invariant squared center of mass energy, s = (pν + pN)
2

The other quantities are −Q2 = q2 = (pν − pl)
2

• Bjorken variable, x = Q2/(2.pN .q). It is the fraction of longitudinal momentum of the

nucleon carried by parton.

• Inelasticity, y = pN .q/pN .pν . where pν , pl , pN and pX are the four momenta of neutrino,

the charged lepton, the nucleon and the sum of the four-momenta of the final hadrons

respectively.

The Feynman diagram for the process νl(pν)+N(pN)→ l− (pl)+X(pX) is shown in Figure

3.1(a) and in the quark-parton model with elementary W+(q)+d(pi)→ u(p f ) transition is

shown in Figure 3.2(b).

3.3 A brief review of F
ep

2 (x,Q2) using DAL of QCD

In this section, we describe briefly about electron-proton structure function F
ep
2 (x,Q2)

utilising DAL of QCD, following [94], for the sake of completeness of this work. It is

well known that in DIS (e− p) scattering, the incoming electron scatters off the target proton,

via the exchange of a virtual photon, producing a hadronic system in the final state. A typical

(e− p) DIS event can be described with the help of two independent variables, x and Q2,

where x is the Bjorken variable (fraction of proton’s momentum carried by its constituent
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Fig. 3.1 (a) Diagram of the νl(pν)+N(pN)→ l− (pl)+X(pX) charged-current DIS process.

(b) Diagram of the same process in the quark-parton model.

partons, in Breit’s frame) and Q2 is the transverse momentum squared of the virtual exchanged

photon. The scattering cross section can be described in terms of two structure functions,

F2(x,Q
2) and F1(x,Q

2). Bjorken variable x = Q2

2Mν , here ν is the electron’s energy loss and

Q2 depends on the scattering angle. The squared mass W 2 of the observed hadronic system is

W 2 = (p+q)2 = M2−Q2 +2Mν , (3.2)

(in proton’s rest frame) where p and q are proton and electron’s momentum respectively, M

is proton’s mass. For elastic scattering, W 2 = M2(x = 1). In parton model, at large Q2, for

spin 1
2

partons, F2(x) = 2xF1 and FL = F2−2xF1 = 0. For point like parton, Bjorken scaling

occurs, structure function do not depend on Q2. But scaling violations are found to occur

in (e− p) DIS processes, as x decreases, which means that structure function F
ep
2 depends

on Q2 also. Thus the proton no longer consists of point like partons only, but has a dynamic

structure deep inside, which can be explained via QCD evolution equations in leading log

Q2 approximation (LLQ2), known as DGLAP equations [93]. In (e− p) DIS, in the next

to leading order, scaling violations occur through gluon bremsstrahlung from quarks and

quark pair creation from gluons. At small x < 10−2, the latter process dominates the scaling

violations. This property can be exploited to extract gluon density from the slope dF2

dlnQ2 of

the proton structure function. The general equations [87] describing the Q2 evolution of the

quark density and gluon density respectively are

dqi(x, t)

dt
=

α(t)

2π

∫ 1

x

dy

y
[

2 f

∑
j=1

q j(y, t)Pqq(
x

y
)+G(y, t)PqG(

x

y
)], (3.3)
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dG(x, t)

dt
=

α(t)

2π

∫ 1

x

dy

y
[

2 f

∑
j=1

q j(y, t)PGq(
x

y
)+G(y, t)PGG(

x

y
)], (3.4)

where Pqq(
x
y
),PqG(

x
y
),PGq(

x
y
),PGG(

x
y
) are the splitting functions and t = ln

Q2

Q2
0

. Assuming that

the quark densities are negligible and the non-singlet contribution FNS
2 can be ignored safely

at small x in DGLAP equation, for F2, the equation becomes

dF2(x,Q
2)

dlnQ2
=

10αs

9π

∫ 1

x
dx

′
PqG(x

′
)

x

x
′ g(

x

x
′ ,Q

2). (3.5)

Here xg(x,Q2) = G(x,Q2) is the gluon momentum density and g(x,Q2) is the gluon number

density of the proton and x

x
′ =

x
y
. Rearranging Eq (3.5) we have

dF2(x,Q
2)

dlnQ2
=

5αs

9π

∫ 1

x
dy

x

y
g(y,Q2)

1

y2
[x2 +(y− x)2]. (3.6)

Substituting y = x
1−z

we can write RHS of Eq (3.6) as

5αs

9π

∫ 1−x

0
dzG(

x

1− z
,Q2)[z2 +(1− z)2]. (3.7)

Expanding G( x
1−z

,Q2) about z = 1−x
2

and keeping terms upto the first derivative of G in the

expansion we have

G(
x

1− z
,Q2) = G(

2x

1+ x
,Q2)+(z−

1− x

2
)

4x

(1+ x)2

dG(x
′′
,Q2)

dx
′′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
′′
= 2x

1+x
. (3.8)

When this expansion is used in Eq (3.6) we get

dF2(x,Q
2)

dlnQ2
=

5α

9π

(A+Ax+2B)2

(1+ x)(A+Ax+4B)
G(y

′
,Q2), (3.9)

where y
′
= [ 2x

1+x

(A+Ax+4B)
(A+Ax+2B) ], A = [2(1−x)3

3
− (1− x)2 +(1− x)] and B = [ (1−x)4−(1−x)3

6
] . In

the limit x→ 0, Eq (3.9) reduces to

dF2(x,Q
2)

dlnQ2
=

10αs

9π

(1− x)2

(1−1.5x)
G(2x

(1−1.5x)

(1− x2)
,Q2). (3.10)
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Using the above double asymptotic expression [94] for F2 in small x and large Q2 (DAL)

limit, we can write

F
p

2 ∼
exp

√

144
33−2n f

ξ ln( 1
x1
)

( 144
33−2n f

ξ ln( 1
x1
))

1
4

, (3.11)

with ξ = ln(
ln

Q2

Λ2

ln
Q2

0
Λ2

), x1 =
2x−3x2

1−x2 , n f is the number of flavors, Q2
0 is the value at which the

input parton parameterization is to be used and Λ is the QCD mass scale. F
p

2 in Eq (3.11) in

DAL can be parametrized as

F
p

2 ∼ x−λ (Q2), (3.12)

which can be viewed as of dynamic pomeron type.

3.4 Total charged and neutral current neutrino nucleon

cross section at UHE

The total charged and neutral current (CC and NC) cross section for neutrino nucleon

scattering [91], for an isoscalar nucleon N =
n+p

2
, can be written as

σνN
CC (Eν) =

∫ s

Q2
min

dQ2
∫ 1

Q2

s

dx
d2σCC

dxdQ2
(Eν ,Q

2,x)

=
G2

F

4π

∫ 2mEν

Q2
min=1

dQ2(
M2

W

Q2 +M2
W

)2
∫ 1

Q2

2mEν

dx

x

[

Fν
2 +xFν

3 +(Fν
2 −xFν

3 )
(

1−
Q2

xs

)2

−
(Q2

xs

)2

Fν
L

]

,

(3.13)

where Fν
2 is the neutrino-nucleon structure function, s = 2mEν , s is the Mandelstam variable

which is the total energy in the centre of mass frame, m is the nucleon mass, GF is the Fermi

constant and M2
W is the squared mass of intermediate W-boson, Q2 is the four momentum

square of virtual photon. Here xF3 is a measure of difference of quarks and antiquarks

PDFs, and so is sensitive to the valence quark distribution function. We neglect valence

quark contribution in our analysis, as at small x, structure of proton is dominated by gluons

only [94]. Therefore, contributions of Fν
3 to νN scattering is sub dominant only and hence

neglected in our analysis. Similar expression can be obtained for neutral current cross section

by replacing MW by MZ in Eq (3.13). For the flavour-symmetric (qq̄)N interaction at small

x < 0.1, the neutrino-nucleon structure function, Fν
2 (x,Q2) can be related to electromagnetic
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structure function, F
ep
2 (x,Q2) (see [96]) as

Fν
2 (x,Q2) =

n f

∑
n f
q Q2

q

F
p

2 (x,Q
2), (3.14)

where n f is the number of flavors and Qq is the quark charge. Thus for 109 < Eν < 1012

GeV, x lies in the range 10−5 < x < 10−8. Here σνN
CC,NC, is the neutrino nucleon cross section

- to leading order in weak coupling GF and all orders in strong hadronic interaction.

Minimum value of Q2 is consistant with application of pQCD, we have used Q2
min = 1 GeV 2

in our computation. Now using DAL value of F
ep
2 from Eq (3.12) in Eq (3.13), we obtain the

expression for total neutrino-nucleon cross sections as

σνN
CC (Eν)≈

G2
F

4π

∫ 2mEν×10−2

Q2
min=1

dQ2(
M2

W

Q2 +M2
W

)2
∫ 1

Q2

2mEν

dx

x
(x−λ (Q2)), (3.15)

where λ (Q2) = a− b.e−cQ2
and the values of constants are found to be as a = 0.486,b =

0.272 and c = 0.002. Solving Eq (3.15), we get

σνN
CC (Eν) = A

G2
F

4π

∫ 2mEν×10−2

Q2
min=1

dQ2

−λ (Q2)
(

M2
W

Q2 +M2
W

)2x−λ (Q2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
Q2

2mEν

=−A
G2

F

4π

∫ 2mEν×10−2

Q2
min=1

dQ2

λ (Q2)
(

M2
W

Q2 +M2
W

)2{1− (
Q2

2mEν
)−λ (Q2)} (3.16)

= A
G2

FM4
W

4π

∫ 2mEν×10−2

Q2
min=1

dQ2

λ (Q2)
(

1

Q2 +M2
W

)2{(
Q2

2mEν
)−λ (Q2)−1}, (3.17)

in low x and high Q2 regime. Here A is normalisation constant.

The corresponding total neutral current cross section σνN
NC (Eν) is obtained by replacing MW

by squared mass of intermediate Z boson MZ that is

σνN
NC (Eν) = A

G2
FM4

Z

4π

∫ 2mEν×10−2

Q2
min=1

dQ2

λ (Q2)
(

1

Q2 +M2
Z

)2{(
Q2

2mEν
)−λ (Q2)−1}. (3.18)

3.5 Results and Discussion

We have computed σνN
CC and σνN

NC by carrying out the integration in Eq (3.17) and Eq (3.18)

using our own computation (Monte Carlo integration technique) and have presented the

results in Fig 3.2. We find that the behaviour of σνN
CC and σνN

NC is similar to that available

in literature. The values of our total cross section both for charged and neutral current are
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organised in tabular form (Tables 3.1 and 3.2) along with other cross section values that are

available in literature. We then make a fit to the CC and NC ν−N cross sections to obtain

the analytic forms of the following types in the energy range 109GeV ≤ Eν ≤ 1012GeV :

σνN
CC = (2.00921±0.0113361)× (lnEν)

2 +(−4.45714±0.035448)× (lnEν)

+(−32.2999±0.062563),
(3.19)

σνN
NC = (2.0157±0.010493)× (lnEν)

2 +(−4.46797±0.032813)× (lnEν)

+(−32.3876±0.057913).
(3.20)

This can be viewed as a Reggeon exchange-type behaviour of the cross section at UHE. Here

we would like to emphasize that, a dynamic pomeron type form of F
ep
2 Eq (3.1), of the strong

interactions, gives a Reggeon exchange-type behaviour of Eq (3.19) and Eq (3.20) total cross

section of weak interactions.

3.6 Summary

In this work, we have calculated total neutrino-nucleon cross section σCC
νN for CC and σNC

νN for

NC interactions using the Double Asymptotic Limit of F
ep
2 of DIS (e− p) scattering, found

earlier by one of us [94]. In [88–91], they used standard sets of parton distribution functions

available in literature at that times, to obtain total cross sections at UHE, but we have used

our own parameterization for F
ep
2 (within 10 % error) in DAL, using input PDFs at Q2

min. We

found that though the overall behaviour of our calculated νN cross sections is similar to the

above mentioned works, our values are slightly smaller, in the low energy range, while larger

in the high energy range. This difference could be attributed to different assumptions in input

parameterization of PDFs used in F
ep
2 , and due to the fact that we have used our own analytic

form of F
ep
2 in low x and large Q2 regime obtained from DGLAP equation. We note that with

the use of screening corrections in the evolution of proton structure function, these results can

be improved, and will be done in future work. We used Monte Carlo integration technique

in our computation to obtain these cross-sections in the energy range 109 ≤ Eν ≤ 1012 GeV.

Then we did a parameter fitting of these cross-sections, to obtain their analytical form (Eq

(3.19) and Eq (3.20)). The dynamical pomeron-type behaviour of F
ep
2 give rise to a Reggeon

exchange-type behaviour of total cross-section [95] in UHE regime. This could hint to some

interplay between strong (F
ep
2 ) and weak (σνN) dynamics. The future measurements of σνN

in this regime would provide a test to the ideas presented in the work.
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Fig. 3.2 Variation of neutrino-nucleon charged current, neutral current and total current cross

sections with neutrino energy (from our calculation).

(GeV)
ν

E
910 1010 1110 1210

]
2

 N
)[

c
m

ν
 C

C
(

σ 32−10

31−10

BDHMcc

CTWcc

CSMScc

GQRScc

BSScc

Fig. 3.3 Comparison of charged current νN cross sections, in cm2 as a function of Eν .

Eν (GeV) σBDHM(cm2) σCTW (cm2) σCSMS(cm2) σGQRS(cm2) σBSS(cm2)

109 1.00×10−32 1.1×10−32 1.1×10−32 1.05×10−32 4.09×10−33

1010 1.82×10−32 2.2×10−32 2.4×10−32 2.38×10−32 1.21×10−32

1011 3.02×10−32 4.3×10−32 4.8×10−32 5.34×10−32 3.62×10−32

1012 4.69×10−32 8.3×10−32 7.5×10−32 1.18×10−31 1.08×10−31

Table 3.1 Charged current νN cross sections, in cm2 as a function of Eν are listed. Here

BDHM refers to the work done by Martin M.Block, et al. [91], CTW refers to A. Connolly,

et al. [89], CSMS refers to A. Cooper-Sarkar, et al. [90], GQRS refers to R. Gandhi, et al.

[88] and BSS refers our work in this chapter.
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Fig. 3.4 Comparison of neutral current νN cross sections, in cm2 as a function of Eν .

Eν (GeV) σBDHM(cm2) σCTW (cm2) σCSMS(cm2) σGQRS(cm2) σBSS(cm2)

109 4.12×10−33 4.3×10−33 4.4×10−33 4.64×10−33 3.40×10−33

1010 7.58×10−33 9.0×10−33 9.6×10−33 1.07×10−32 1.016×10−32

1011 1.27×10−32 1.8×10−32 2.0×10−32 2.38×10−32 3.042×10−32

1012 2.00×10−32 3.5×10−32 3.1×10−32 5.20×10−32 9.16×10−32

Table 3.2 Neutral current νN cross sections, in cm2 as a function of Eν are listed. Here

BDHM refers to the work done by Martin M.Block, et al. [91], CTW refers to A. Connolly,

et al. [89], CSMS refers to A. Cooper-Sarkar, et al. [90], GQRS refers to R. Gandhi, et al.

[88] and BSS refers our work in this chapter.



4
Compatibility of A4 Flavour Symmetric

Minimal Extended Seesaw with (3+1)

Neutrino Data

In Chapters 2 and 3, we have discussed neutrino carbon scattering at low three momentum

transfer in quasi-elastic regime and neutrino nucleon scattering cross section in ultra high

energy regime respectively. In this chapter, we have studied some application of neutrino

scattering cross section, focussing on sterile neutrino sector.

4.1 Introduction

Non-zero neutrino masses and large leptonic mixing have now become a well established fact,

thanks to a series of results from several experiments [97–102] over the last twenty years.

While the solar and atmospheric mixing angles plus mass squared difference measurements

have become more precise with time, the evidence for a non-zero reactor mixing angle

emerged with the relatively recent experiments like MINOS [103], T2K [104], NOνA [105],

Double ChooZ [106], Daya-Bay [107] and RENO [108]. Apart from the currently unknown

issues in the neutrino sector, like mass hierarchy, Dirac CP violating phase as the global
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fit data suggest [109], another interesting question in the neutrino sector is the possibility

of additional neutrino species with eV scale mass. In fact, this has turned out to be not

just a speculation, but has gathered considerable attention in the last two decades following

some anomalies reported by a few experiments. The first such anomaly was reported by

the Liquid Scintillator Neutrino Detector (LSND) experiment in their anti-neutrino flux

measurements [110, 111]. The LSND experiment searched for ν̄µ → ν̄e oscillations in

the appearance mode and reported an excess of ν̄e interactions that could be explained by

incorporating at least one additional light neutrino with mass in the eV range. This result was

supported by the subsequent measurements at the MiniBooNE experiment [112]. Similar

anomalies have also been observed at reactor neutrino experiments [113] as well as gallium

solar neutrino experiments [114, 115]. These anomalies received renewed attention recently

after the MiniBooNE collaboration reported their new analysis incorporating twice the size

data sample than before [116], confirming the anomaly at 4.8σ significance level which

becomes > 6σ effect if combined with LSND. Although an eV scale neutrino can explain this

anomaly, such a neutrino can not have gauge interactions in the standard model (SM) from

the requirement of being in agreement with precision measurement of Z boson decay width

at LEP experiment [117]. Hence such a neutrinos is often referred to as a sterile neutrino

while the usual light neutrinos are known as active neutrinos. Status of this framework with

three active and one sterile or 3+1 framework with respect to such short baseline neutrino

anomalies can be found in several global fit studies [118–121]. It is worth mentioning that

the latest cosmology results from the Planck collaboration [122] constrains the effective

number of relativistic degrees of freedom Neff = 2.99±0.17 at 68% confidence level (CL),

which is consistent with the SM prediction Neff = 3.046 for three light neutrinos. Similarly,

the constraint on the sum of absolute neutrino masses ∑i|mi|< 0.12 eV [122] (at 95% CL)

does not leave any room for an additional light neutrino with mass in eV order. Although this

latest bound from the Planck experiment can not accommodate one additional light sterile

neutrino at eV scale within the standard ΛCDM model of cosmology, one can evade these

tight bounds by considering the presence of some new physics beyond the standard model

(BSM). For example, additional gauge interactions in order to suppress the production of

sterile neutrinos through flavour oscillations were studied recently by the authors of [123].

Such experimental indications of an eV scale sterile neutrino having non-trivial mixing with

active neutrinos have led to several BSM proposals that can account for the same. While

the usual seesaw mechanisms like type I [124–128], type II [129–135] and type III [136]

explaining the lightness of active neutrinos were studied in details for a long time, their

extensions to the 3+1 case was not very straightforward primarily due to the gauge singlet
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nature of the sterile neutrino. Yet, there have been several proposals to generate a 4×4 light

neutrino mass matrix within different seesaw frameworks in recent times [137–149, 62, 150].

Here we adopt a minimal framework known as the minimal extended seesaw proposed in

the 3+1 neutrino context by [138, 139] and study different possible realisations within the

framework of non-abelian discrete flavour symmetry A4. Flavour symmetry is needed to

explain the observed flavour structure of different particles of the standard model. In the

original proposal [139] also, the A4 flavour symmetry was utilised but within the limited

discussion the issue of non-zero reactor mixing angle as well as different A4 vacuum align-

ments were not addressed. In another recent work based on the same model with A4 flavour

symmetry [151], some details of the associated neutrino phenomenology was discussed

by sticking to the effective 3× 3 active neutrino mass matrix which can be generated by

integrating out the sterile neutrino. In our present work, we consider the full 4× 4 mass

matrix and do not integrate out the sterile neutrino as its mass may not lie far above the

active ones always, as hinted by experiments mentioned above. We also classify different

possible textures of the 4×4 neutrino mass matrix based on generic A4 vacuum alignments

for triplet flavons. Similar but not texture specific work in three neutrino cases to constrain

different A4 vacuum alignments from three neutrino data was done by the authors of [152]

which was further constrained from successful leptogenesis in [153]. Here we extend such

studies to the 3+1 neutrino cases. Texture zeros in 3+1 neutrino scenarios were discussed

in different contexts earlier using flavour symmetries like ZN ,U(1) etc. [147, 149, 62] but

here we show that some of these textures can be realised (upto a few more constraints)

just from the vacuum alignment of A4 triplet flavons. We first make the classifications for

allowed and disallowed textures based on already known texture results in 3+1 neutrino

frameworks [154–157, 147, 149] and then numerically analyse some of the textures which

have not been studied before. To be more specific, we categorise our textures based on µ− τ

symmetric cases, texture zero cases, hybrid cases and disallowed ones. Out of them, we

numerically analyse all the textures belonging to µ − τ symmetric and texture zero cases

leaving the discussion on hybrid textures to future works. It should be noted that, although

the discovery of non-zero reactor mixing angle has ruled out µ− τ symmetry in the three

neutrino scenarios, it is possible to retain it in a 3+1 scenario where the 3×3 neutrino block

retains this symmetry while the active-sterile sector breaks it. This interesting but much

less explored idea to generate non-zero θ13 by allowing the mixing of three active neutrinos

with a eV scale sterile neutrino was proposed earlier in [158–161] and was also studied in

details recently in [150]. We find that many of the textures belonging to these categories

are already ruled out by neutrino data while the ones which are allowed give interesting cor-
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relations between neutrino parameters which can be tested at ongoing and future experiments.

This chapter is organised as follows. In Section 4.2 we discuss the details of the model

followed by the classification of different textures in Section 4.3. In Section 4.4 we discuss

the numerical analysis adopted in our work followed by results and discussions in Section

4.5. We finally summarise in Section 4.6.

4.2 The Model

As mentioned before, here we adopt the model first proposed in [139] but discuss it from

a more general perspective taking all the allowed terms in the Lagrangian and all possible

generic vacuum alignments of A4 triplets. Here we note that the discrete non-abelian group

A4 is the group of even permutations of four objects or the symmetry group of a tetrahedron.

It has twelve elements and four irreducible representations with dimensions ni such that

∑i n2
i = 12. These four representations are denoted by 1,1′,1′′ and 3 respectively. The

product rules for these representations are given in Appendix A.

The particle content of the model along with their transformations under the symmetries

of the model are shown in table 4.1. Apart from the SM gauge symmetry and A4 flavour

symmetry, an additional discrete symmetry Z4 is also chosen in order to forbid certain

unwanted terms. For example, the chosen Z4 charge of the singlet neutrino S keeps a bare

mass term away from the Lagrangian. This is important because a bare mass term will be

typically large, at least of electroweak scale and hence will not help us generate a 4×4 light

neutrino mass matrix with all terms at or below the eV scale. To have a seesaw mechanism

at place, three right handed neutrinos νRi, i = 1,2,3 are included into the model. Apart from

the usual Higgs field H responsible for electroweak symmetry breaking, there are six flavon

fields φ , φ
′
, φ

′′
, ξ , ξ

′
, χ responsible for spontaneous breaking of the flavour symmetries and

generating the desired leptonic mass matrices. The leading order Lagrangian for the leptons

can be written as

l eR µR τR H φ φ
′

φ
′′

ξ ξ
′

χ νR1 νR2 νR3 S

SU(2)L 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1

A4 3 1 1
′′

1
′

1 3 3 3 1 1
′

1 1 1
′

1 1

Z4 1 1 1 1 1 1 i −1 1 −1 −i 1 −i −1 i

Table 4.1 Fields and their transformations under the chosen symmetries.
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LY ⊃
ye

Λ
(l̄Hφ)1eR +

yµ

Λ
(l̄Hφ)1′µR +

yτ

Λ
(l̄Hφ)1′′τR +

y1

Λ
(l̄Hφ)1νR1 +

y2

Λ
(l̄Hφ ′)1′′νR2

+
y3

Λ
(l̄Hφ ′′)1νR3 +

1

2
λ1ξ νc

R1νR1 +
1

2
λ2ξ ′νR2

cνR2 +
1

2
λ3ξ νR3

cνR3

+
1

2
ρχScνR1 + y4ξ ScνR2 + y5χ†ScνR3 +h.c. (4.1)

where Λ is the cut-off scale of the theory, ye,yµ ,yτ ,y1,y2,y3,y4,y5,λ1,λ2,λ3,ρ are the

dimensionless Yukawa couplings. It is worth noting that the last two terms were not included

in the original model [139] although they are allowed by the chosen symmetry of the model.

We include them here as they contribute non-trivially to the neutrino mass matrix as well as

the generation of correct neutrino mixing.

We denote a generic vacuum alignment of the flavon fields as follows

〈φ〉= v(n1,n2,n3), 〈φ ′〉= v(n4,n5,n6),

〈φ ′′〉= v(n7,n8,n9), 〈ξ 〉= 〈ξ ′〉= v, 〈χ〉= u (4.2)

where ni, i = 1− 9 are dimensionless numbers which we choose to take values as ni ∈
(−1,0,1), which are natural choices for alignments in such flavour symmetric models. Here

v or u denotes the vacuum expectation value (VEV) of the flavon fields which typically

characterises the scale of flavour symmetry breaking. Similar but more restricted alignments

are chosen in the original proposal [139]. Using such VEV alignments and the A4 product

rules given in Appendix A, the charged lepton mass matrix can be written as

ml =
〈H〉v

Λ







n1ye n2yµ n3yτ

n3ye n1yµ n2yτ

n2ye n3yµ n1yτ






. (4.3)

The neutral fermion mass matrix in the basis (νL,νR,S) can be written as

M =







0 MD 0

MT
D MR MT

S

0 MS 0






(4.4)



58

Compatibility of A4 Flavour Symmetric Minimal Extended Seesaw with (3+1) Neutrino

Data

where MD, the Dirac neutrino mass matrix is

MD =
〈H〉v

Λ







y1n1 y2n5 y3n7

y1n3 y2n4 y3n9

y1n2 y2n6 y3n8






=
√

A







y1n1 y2n5 y3n7

y1n3 y2n4 y3n9

y1n2 y2n6 y3n8






(4.5)

with A = 〈H〉2v2

Λ2 . The right-handed neutrino mass matrix takes the diagonal form

MR =







λ1v 0 0

0 λ2v 0

0 0 λ3v






, (4.6)

and MS in the basis (S,νR) is given by

MS = (ρu,y4v,y5u). (4.7)

In the case where MR ≫MS > MD, the effective 4×4 light neutrino mass matrix in the basis

(νL,νs) can be written as [139]

Mν =−
(

MDM−1
R MT

D MDM−1
R MT

S

MS(M
−1
R )T MT

D MSM−1
R MT

S

)

(4.8)

Using the expressions for MD,MR,MS mentioned above, the 4×4 active-sterile mass matrix

can be written as

m4×4
ν =











−Aa7 −Aa8 −Aa9 −
√

Aa1

−Aa10 −Aa11 −Aa12 −
√

Aa2

−Aa13 −Aa14 −Aa15 −
√

Aa3

−
√

Aa4 −
√

Aa5 −
√

Aa6 −a0











(4.9)

where

a0 = (
ρ2u2

λ1v
+

y2
4v

λ2
+

y2
5u2

vλ3
), (4.10)

a1 = a4 = (
ρuy1n1

vλ1
+

y4y2n5

λ2
+

uy5y3n7

vλ3
), (4.11)

a2 = a5 = (
ρuy1n3

vλ1
+

y4y2n4

λ2
+

uy5y3n9

vλ3
), (4.12)

a3 = a6 = (
ρuy1n2

vλ1
+

y4y2n6

λ2
+

uy5y3n8

vλ3
), (4.13)
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a7 = (
y2

1n2
1

vλ1
+

y2
2n2

5

vλ2
+

y2
3n2

7

vλ3
), (4.14)

a8 = a10 = (
y2

1n3n1

vλ1
+

y2
2n4n5

vλ2
+

y2
3n7n9

vλ3
), (4.15)

a9 = a13 = (
y2

1n1n2

vλ1
+

y2
2n5n6

vλ2
+

y2
3n7n8

vλ3
), (4.16)

a11 = (
y2

1n2
3

vλ1
+

y2
2n2

4

vλ2
+

y2
3n2

9

vλ3
), (4.17)

a12 = a14 = (
y2

1n2n3

vλ1
+

y2
2n4n6

vλ2
+

y2
3n8n9

vλ3
), (4.18)

a15 = (
y2

1n2
2

vλ1
+

y2
2n2

6

vλ2
+

y2
3n2

8

vλ3
). (4.19)

This is a 4×4 complex symmetric mass matrix, in general having ten independent elements.

However, depending upon the vacuum alignments or the specific values of ni ∈ (−1,0,1),

the mass matrix can have interesting textures which we discuss in details in the next section.

The choice of vacuum alignment of the flavon fields required to achieve the desired structures

of lepton mass matrices can be realised only when additional driving fields are incorporated

as discussed in [162] for usual three neutrino scenarios. For similar discussion in a 3+ 1

neutrino scenario, please refer to [150]. Since these driving fields do not affect the general

structure of the mass matrices, we have not incorporated them in the discussion above. The

non-trivial vacuum alignment of the φ , φ
′
, φ

′′
fields required to produce the specific structure

of the charged lepton mass matrix and the 4×4 block of the light neutrino mass matrix is

realised by introducing three additional driving fields. As shown in such works discussing

the vacuum alignment of A4 flavons, ni ∈ (−1,0,1) corresponds to generic alignments

which can be naturally realised from the minimisation of the scalar potential (superpotential

in supersymmetric scenarios). For illustrative purposes, we show the scalar potential for

triplet flavons in Appendix B and minimise the parts for one triplet flavon. By solving the

minimisation equations, we get several minima which belong to the above mentioned general

class. Analysis of the full scalar potential is beyond the scope of the present work and

one can refer to dedicated studies of vacuum alignment in supersymmetric [163] as well

as non-supersymmetric A4 models [164]. It should be noted that additional driving fields

are needed sometimes to get the desired alignment and depending upon the combinations

of such driving fields, it may be possible to get vacuum alignment different from the above

mentioned class. However, we stick to the minimal class as mentioned above for our studies.
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4.3 Classification of Textures

We choose to work in the basis where the charged lepton mass matrix is diagonal. This

allows the leptonic mixing matrix to be directly related to the diagonalising matrix of the

light neutrino mass matrix. As discussed in the previous section, this corresponds to the VEV

of the flavon field φ to be 〈φ〉= v(n1,n2,n3), with n1 = 1, n2 = n3 = 0. In the most general

case of the vacuum alignments of the flavon fields φ ′ and φ ′′, each of n4,n5,n6,n7,n8,n9

can take 3 values, i.e. 0,1,−1. Therefore we have 36 = 729 possible cases of different

vacuum alignments, which will generate 729 different 4×4 neutrino mass matrices. These

729 vacuum alignments are presented in Appendix C and Appendix D. We also note that

many of the vacuum alignments give rise to light neutrino mass matrices having the same

set of constraints and hence predict same correlations among neutrino parameters. We point

out these alignments for the allowed cases (to be found in our numerical analysis below) in

Appendix E.

We first single out the disallowed textures based on the known results from previous analysis

[154–157, 147–149]. They are given as follows.

Disallowed cases:

1. Texture zero in entire second row and column. Total number of such textures is 71.

2. Texture zero in entire third row and column. Total number of such textures is 73.

3. Texture zero in entire second and third rows and columns. Total number of such

textures is 9.

4. µ− τ symmetry in the entire 4×4 block. Total number of such textures is 72.

Total no of such disallowed mass matrices is 225. While the first three categories are

inconsistent with the 3+1 global fit neutrino data (see for example, [165]), the last category

is ruled out as it gives rise to vanishing reactor mixing angle.

The textures which are not disallowed from the results of previous analysis can be

categorised spontaneous breaking of flavour symmetries as follows.

Allowed cases:

1. µ− τ symmetry in 3×3 active neutrino block. Total number of such textures is 40.

2. One zero texture mass matrix. Total number of such textures is 96.

3. Two zero texture mass matrix. Total number of such textures is 64.

4. Three zero texture mass matrix. Total number of such textures is 8.
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5. Hybrid texture mass matrix with no zeros but some constraints relating different

elements. Total number of such textures is 296.

Total number of such allowed mass matrices is 504. We further classify each of these allowed

categories into different sub-categories based on the the constraints relating different elements

of the light neutrino mass matrix.

4.3.1 Classification of Allowed Textures

(µ− τ) symmetric textures

The 40 µ− τ symmetric textures can be classified into 4 sub-categories depending upon the

constraints that they satisfy. For representative purpose, we also mention one such VEV

alignment and the corresponding mass matrix.

(i) 16 matrices with 5 complex constraints:

Meµ = 0, Meτ = 0, Mµµ = Mττ , Mµτ =−Mττ , Mµs =−Mτs

• n1 = 1;n2 = 0;n3 = 0;n4 = 1;n5 = 0;n6 =−1;n7 = 0; n8 = 1;n9 =−1;


























−H2vy2
1

Λ2λ1
0 0 −u

√

H2v2

Λ2 ρy1

vλ1

0 −
H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
H2v2

(

− y2
2

vλ2
− y2

3
vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

0 −
H2v2

(

− y2
2

vλ2
− y2

3
vλ3

)

Λ2 −
H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

−y2y4

λ2
+ uy3y5

vλ3

)

−u

√

H2v2

Λ2 ρy1

vλ1
−
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

−
√

H2v2

Λ2

(

− y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(ii) 8 matrices with 3 complex constraints:

Meµ = 0, Meτ = 0, Mµµ = Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 1;n5 = 0; n6 = 1;n7 = 0; n8 = 1; n9 =−1;


























−H2vy2
1

Λ2λ1
0 0 −u

√

H2v2

Λ2 ρy1

vλ1

0 −
H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
H2v2

(

y2
2

vλ2
− y2

3
vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

0 −
H2v2

(

y2
2

vλ2
− y2

3
vλ3

)

Λ2 −
H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−u

√

H2v2

Λ2 ρy1

vλ1
−
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3


























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(iii) 8 matrices with 3 complex constraints:

Meµ = Meτ , Mµµ = Mττ , Mττ +Mµτ = 2Meτ

• n1 = 1;n2 = 0; n3 = 0;n4 = 1;n5 = 0; n6 =−1;n7 = 1;n8 = 1; n9 = 1;


























−
H2v2

(

y2
1

vλ1
+

y2
3

vλ3

)

Λ2 −H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
H2v2

(

− y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−H2vy2
3

Λ2λ3
−

H2v2

(

− y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

− y2y4

λ2
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

− y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(iv) 8 matrices with 3 complex constraints:

Meµ = Meτ , Mµµ = Mττ , Mττ +Mµτ =−2Meτ

• n1 = 1;n2 = 0; n3 = 0;n4 = 1;n5 = 0; n6 =−1;n7 = 1;n8 =−1; n9 =−1;


























−
H2v2

(

y2
1

vλ1
+

y2
3

vλ3

)

Λ2

H2vy2
3

Λ2λ3

H2vy2
3

Λ2λ3
−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
H2v2

(

− y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

H2vy2
3

Λ2λ3
−

H2v2

(

− y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

− y2y4

λ2
− uy3y5

vλ3

)

−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

−
√

H2v2

Λ2

(

− y2y4

λ2
− uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























Texture 1 zero case

All 96 texture 1 zero cases can be classified into 12 categories depending upon constraints

satisfied by them. For representative purpose, we also mention one such VEV alignment and

the corresponding mass matrix.

(i) 8 matrices with 3 complex constraints:

Meµ = 0, Mµµ =−Mµτ , Meτ +Mµτ =−Mττ
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• n1 = 1;n2 = 0;n3 = 0;n4 = 0;n5 = 1;n6 =−1;n7 = 0;n8 = 1;n9 =−1;


























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2

)

Λ2 0
H2vy2

2

Λ2λ2
−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)

0 −H2vy2
3

Λ2λ3

H2vy2
3

Λ2λ3

u

√

H2v2

Λ2 y3y5

vλ3

H2vy2
2

Λ2λ2

H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

−y2y4

λ2
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)

u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2

(

− y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(ii) 8 matrices with 3 complex constraints:

Meτ = 0, Mττ =−Mµτ , Meµ +Mµτ =−Mµµ

• n1 = 1;n2 = 0;3= 0;n4 = 1;n5 = 0;n6 =−1;n7 = 1;n8 = 0;n9 =−1;


























−
H2v2

(

y2
1

vλ1
+

y2
3

vλ3

)

Λ2

H2vy2
3

Λ2λ3
0 −

√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2

H2vy2
2

Λ2λ2
−
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

0
H2vy2

2

Λ2λ2
−H2vy2

2

Λ2λ2

√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(iii) 8 matrices with 3 complex constraints:

Meµ = 0, Mµµ = Mµτ , Meτ +Mµτ = Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 1; n6 = 1;n7 = 0;n8 = 1; n9 = 1;


























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2

)

Λ2 0 −H2vy2
2

Λ2λ2
−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)

0 −H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
−u

√

H2v2

Λ2 y3y5

vλ3

−H2vy2
2

Λ2λ2
−H2vy2

3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)

−u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(iv) 8 matrices with 3 complex constraints:

Meµ = 0, Mµµ =−Mµτ , Meτ −Mµτ = Mττ
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• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 1; n6 = 1;n7 = 0;n8 = 1; n9 =−1;


























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2

)

Λ2 0 −H2vy2
2

Λ2λ2
−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)

0 −H2vy2
3

Λ2λ3

H2vy2
3

Λ2λ3

u

√

H2v2

Λ2 y3y5

vλ3

−H2vy2
2

Λ2λ2

H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)

u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(v) 8 matrices with 3 complex constraints:

Meµ = 0, Mµµ = Mµτ , Meτ −Mµτ =−Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 1; n6 =−1;n7 = 0;n8 = 1; n9 = 1;


























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2

)

Λ2 0
H2vy2

2

Λ2λ2
−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)

0 −H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
−u

√

H2v2

Λ2 y3y5

vλ3

H2vy2
2

Λ2λ2
−H2vy2

3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

−y2y4

λ2
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)

−u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2

(

− y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(vi) 8 matrices with 3 complex constraints:

Meτ = 0, Mττ = Mµτ , Meµ +Mµτ = Mµµ

• n1 = 1;n2 = 0; n3 = 0;n4 = 1;n5 = 0; n6 = 1;n7 = 1;n8 = 0; n9 = 1;


























−
H2v2

(

y2
1

vλ1
+

y2
3

vλ3

)

Λ2 −H2vy2
3

Λ2λ3
0 −

√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −H2vy2
2

Λ2λ2
−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

0 −H2vy2
2

Λ2λ2
−H2vy2

2

Λ2λ2
−
√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−
√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(vii) 7 matrices with 3 complex constraints:

Meτ = 0, Mττ = Mµτ , Meµ −Mµτ =−Mµµ
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• n1 = 1;n2 = 0; n3 = 0;n4 = 1;n5 = 0; n6 = 1;n7 = 1;n8 = 0; n9 =−1;


























−
H2v2

(

y2
1

vλ1
+

y2
3

vλ3

)

Λ2

H2vy2
3

Λ2λ3
0 −

√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −H2vy2
2

Λ2λ2
−
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

0 −H2vy2
2

Λ2λ2
−H2vy2

2

Λ2λ2
−
√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

y2y4

λ2
− uy3y5

vλ3

)

−
√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(viii) 8 matrices with 3 complex constraints:

Meτ = 0, Mττ =−Mµτ , Meµ −Mµτ = Mµµ

• n1 = 1;n2 = 0; n3 = 0;n4 = 1;n5 = 0; n6 =−1;n7 = 1;n8 = 0; n9 = 1;


























−
H2v2

(

y2
1

vλ1
+

y2
3

vλ3

)

Λ2 −H2vy2
3

Λ2λ3
0 −

√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2

H2vy2
2

Λ2λ2
−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

0
H2vy2

2

Λ2λ2
−H2vy2

2

Λ2λ2

√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3



























(ix) 8 matrices with 3 complex constraints:

Mµτ = 0, Meµ =−Mµµ , Meτ =−Mττ

• n1 = 1;n2 = 0;n3 = 0;n4 = 1;n5 =−1;n6 = 0;n7 = 1;n8 =−1;n9 = 0;
























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2
+

y2
3

vλ3

)

Λ2

H2vy2
2

Λ2λ2

H2vy2
3

Λ2λ3
−
√

H2v2

Λ2

(

uρy1

vλ1
− y2y4

λ2
+ uy3y5

vλ3

)

H2vy2
2

Λ2λ2
−H2vy2

2

Λ2λ2
0 −

√

H2v2

Λ2 y2y4

λ2

H2vy2
3

Λ2λ3
0 −H2vy2

3

Λ2λ3

u

√

H2v2

Λ2 y3y5

vλ3

−
√

H2v2

Λ2

(

uρy1

vλ1
− y2y4

λ2
+ uy3y5

vλ3

)

−
√

H2v2

Λ2 y2y4

λ2

u

√

H2v2

Λ2 y3y5

vλ3
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3

























(x) 8 matrices with 3 complex constraints:

Mµτ = 0, Meµ = Mµµ , Meτ = Mττ
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Data

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 1; n6 = 1;n7 = 1;n8 = 0; n9 = 1;
























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −H2vy2
3

Λ2λ3
−H2vy2

2

Λ2λ2
−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2
+ uy3y5

vλ3

)

−H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
0 −u

√

H2v2

Λ2 y3y5

vλ3

−H2vy2
2

Λ2λ2
0 −H2vy2

2

Λ2λ2
−
√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2
+ uy3y5

vλ3

)

−u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3

























(xi) 9 matrices with 3 complex constraints:

Mµτ = 0, Meµ =−Mµµ , Meτ = Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 1; n6 = 1;n7 = 1;n8 = 0; n9 =−1;
























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2
+

y2
3

vλ3

)

Λ2

H2vy2
3

Λ2λ3
−H2vy2

2

Λ2λ2
−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2
+ uy3y5

vλ3

)

H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
0

u

√

H2v2

Λ2 y3y5

vλ3

−H2vy2
2

Λ2λ2
0 −H2vy2

2

Λ2λ2
−
√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2
+ uy3y5

vλ3

)

u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3

























(xii) 8 matrices with 3 complex constraints:

Mµτ = 0, Meµ = Mµµ , Meτ =−Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 1; n6 =−1;n7 = 1;n8 = 0; n9 = 1;
























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −H2vy2
3

Λ2λ3

H2vy2
2

Λ2λ2
−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2
+ uy3y5

vλ3

)

−H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
0 −u

√

H2v2

Λ2 y3y5

vλ3

H2vy2
2

Λ2λ2
0 −H2vy2

2

Λ2λ2

√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2
+ uy3y5

vλ3

)

−u

√

H2v2

Λ2 y3y5

vλ3

√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3

























Texture 2 zero case

All 64 texture 2 zero cases can be classified into following categories. For representative

purpose, we also mention one such VEV alignment and the corresponding mass matrix.

(i) 8 matrices with 3 complex constraints:

Meµ = 0, Meτ = 0, Mµµ = Mµτ
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• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 0; n6 = 1;n7 = 0;n8 = 1; n9 = 1;

























−H2vy2
1

Λ2λ1
0 0 −u

√

H2v2

Λ2 ρy1

vλ1

0 −H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
−u

√

H2v2

Λ2 y3y5

vλ3

0 −H2vy2
3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−u

√

H2v2

Λ2 ρy1

vλ1
−u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3

























(ii) 8 matrices with 3 complex constraints:

Meµ = 0, Meτ = 0, Mµµ =−Mµτ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 0; n6 = 1;n7 = 0;n8 = 1; n9 =−1;

























−H2vy2
1

Λ2λ1
0 0 −u

√

H2v2

Λ2 ρy1

vλ1

0 −H2vy2
3

Λ2λ3

H2vy2
3

Λ2λ3

u

√

H2v2

Λ2 y3y5

vλ3

0
H2vy2

3

Λ2λ3
−

H2v2

(

y2
2

vλ2
+

y2
3

vλ3

)

Λ2 −
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−u

√

H2v2

Λ2 ρy1

vλ1

u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2

(

y2y4

λ2
+ uy3y5

vλ3

)

−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3

























(iii) 8 matrices with 3 complex constraints:

Meτ = 0, Mµτ = 0, Meµ =−Mµµ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 0; n6 = 1;n7 = 1;n8 = 0; n9 =−1;

























−
H2v2

(

y2
1

vλ1
+

y2
3

vλ3

)

Λ2

H2vy2
3

Λ2λ3
0 −

√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
0

u

√

H2v2

Λ2 y3y5

vλ3

0 0 −H2vy2
2

Λ2λ2
−
√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3

























(iv) 8 matrices with 3 complex constraints:
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Data

Meτ = 0, Mµτ = 0, Meµ = Mµµ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 0; n6 = 1;n7 = 1;n8 = 0; n9 = 1;

























−
H2v2

(

y2
1

vλ1
+

y2
3

vλ3

)

Λ2 −H2vy2
3

Λ2λ3
0 −

√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−H2vy2
3

Λ2λ3
−H2vy2

3

Λ2λ3
0 −u

√

H2v2

Λ2 y3y5

vλ3

0 0 −H2vy2
2

Λ2λ2
−
√

H2v2

Λ2 y2y4

λ2

−
√

H2v2

Λ2

(

uρy1

vλ1
+ uy3y5

vλ3

)

−u

√

H2v2

Λ2 y3y5

vλ3
−
√

H2v2

Λ2 y2y4

λ2
−u2ρ2

vλ1
− vy2

4

λ2
− u2y2

5

vλ3

























(v) 8 matrices with 3 complex constraints:

Meµ = 0, Mµτ = 0, Meτ = Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 1; n6 = 1;n7 = 0;n8 = 0; n9 =−1;

























−
H2v2

(

y2
1

vλ1
+

y2
2

vλ2

)

Λ2 0 −H2vy2
2

Λ2λ2
−
√

H2v2

Λ2

(

uρy1

vλ1
+ y2y4

λ2

)
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(vi) 8 matrices with 3 complex constraints:

Meµ = 0, Mµτ = 0, Meτ =−Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 1; n6 =−1;n7 = 0;n8 = 0; n9 = 1;


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(vii) 9 matrices with 3 complex constraints:
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Meµ = 0, Meτ = 0, Mµτ = Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 1;n5 = 0; n6 = 0;n7 = 0;n8 = 1; n9 = 1;
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(viii) 7 matrices with 3 complex constraints:

Meµ = 0, Meτ = 0, Mµτ =−Mττ

• n1 = 1;n2 = 0; n3 = 0;n4 = 1;n5 = 0; n6 = 0;n7 = 0;n8 =−1; n9 = 1;
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Texture 3 zero case

All 8 texture 3 zero cases can be classified into the following category. For representative

purpose, we mention the VEV alignment and the corresponding mass matrix.

(i) 8 matrices with 3 complex constraints:

Meµ = 0, Meτ = 0, Mµτ = 0

• n1 = 1;n2 = 0; n3 = 0;n4 = 0;n5 = 0; n6 = 1;n7 = 0;n8 = 0; v9 =−1;
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Hybrid texture case

All 296 hybrid textures can be classified into following categories depending upon constraints

satisfied by them.

(i) 12 matrices with 6 complex constraints:

Meµ =−Meτ , Mµµ = Mττ , Meτ = Mττ , Meµ = Mµτ ,

Meµ +Meτ = Mµµ +Mµτ , Mµs =−Mτs

(ii) 6 matrices with 6 complex constraints:

Meµ =−Meτ , Mµµ = Mττ , Meτ = Mµτ , Meµ = Mττ ,

Meµ +Meτ = Mµµ +Mµτ , Mµs =−Mτs

(iii) 6 matrices with 6 complex constraints:

Meµ =−Meτ , Mµµ = Mττ , Meτ = Mµτ , Meµ = Mµµ ,

Meµ +Meτ = Mµµ +Mµτ , Mµs =−Mτs

(iv) 8 matrices with 3 complex constraints:

Meµ = Meτ , Mµµ = Mµτ , Meµ = Mµτ

(v) 8 matrices with 4 complex constraints:

Meµ = Mµτ , Meτ = Mµµ , Meµ =−Meτ , Mµµ =−Mττ

(vi) 8 matrices with 3 complex constraints:

Meµ =−Meτ , Meµ = Mµµ , Meτ = Mµτ

(vii) 8 matrices with 4 complex constraints:

Meµ = Meτ , Mµµ = Mµτ , Meµ =−Mµτ , Meµ =−Mµµ

(viii) 8 matrices with 3 complex constraints:
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Mµµ = Mµτ , Meµ = Mµτ , Meτ = Mττ

(ix) 8 matrices with 3 complex constraints:

Meµ = Mµτ , Meµ =−Mµµ , Meτ = Mττ

(x) 8 matrices with 3 complex constraints:

Meµ = Mµµ , Meµ =−Mµτ Meµ +Meτ = Mµτ +Mττ

(xi) 8 matrices with 3 complex constraints:

Mµµ = Mµτ , Meµ =−Mµµ , Meτ +Mµµ = Meµ +Mττ

(xii) 7 matrices with 2 complex constraints:

Meµ = Mµµ , Meµ = Mµτ

(xiii) 8 matrices with 3 complex constraints:

Mµµ −Meτ = Mµτ +Mττ , Mµµ =−Mµτ , Meµ = Mµτ

(xiv) 8 matrices with 3 complex constraints:

Meµ = Mµµ , Meµ =−Mµτ , Meτ =−Mττ

(xv) 8 matrices with 3 complex constraints:

Mµµ = Mµτ , Meµ =−Mµµ , Mττ =−Meτ

(xvi) 8 matrices with 3 complex constraints:

Meµ = Meτ , Meτ = Mµτ , Meτ = Mττ

(xvii) 8 matrices with 3 complex constraints:

Meµ = Mµτ , Meτ = Mττ , Meµ =−Meτ

(xviii) 8 matrices with 4 complex constraints:

Meµ =−Meτ , Meµ =−Mµτ , Mµτ =−Mττ , Meµ = Mττ

(xix) 8 matrices with 3 complex constraints:

Meµ = Meτ , Mµτ = Mττ , Meµ =−Mµτ

(xx) 16 matrices with 3 complex constraints:
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Meµ =−Meτ , Mµµ = Mττ , 2Meµ +Mµµ −Mµτ = 0

(xxi) 16 matrices with 4 complex constraints:

Meµ =−Meτ , Mµµ = Mττ , Mµs =−Mτs, Mµτ =−Mττ

(xxii) 8 matrices with 4 complex constraints:

Meµ =−Mµµ , Meτ = Mµτ , Meτ = Mττ , Meµ −Mµµ +Meτ +Mµτ −2Mττ = 0

(xxiii) 8 matrices with 3 complex constraints:

Meτ = Mττ , Meτ =−Mµτ , Meµ −Mµµ −2Mµτ = 0

(xxiv) 8 matrices with 3 complex constraints:

Meµ = Mµµ , Meτ =−Mττ , Meτ = Mµτ

(xxv) 8 matrices with 3 complex constraints:

Meµ = Mµµ , Mµµ = Mττ , Meτ = Mµτ

(xxvi) 8 matrices with 3 complex constraints:

Meτ =−Mττ , Meτ =−Mµτ , Meµ −Mµµ −2Meτ = 0

(xxvii) 3 matrices with 3 complex constraints:

Meτ = Mττ , Meτ = Mµτ , Meµ −Mµµ +Mµτ +Mττ = 0

(xxviii) 1 matrix with 5 complex constraints:

Meτ = Mττ , Mµµ = Mττ ,

Mµs =−Mτs, Meµ = Mµµ , Meµ +Mµµ = Meτ +Mµτ

(xxix) 2 matrices with 3 complex constraints:

Meτ = Mµτ , Mµτ =−Mττ , Meµ +Mµµ −2Meτ = 0

(xxx) 6 matrices with 3 complex constraints:

Meτ = Mµτ , Meτ =−Mττ , Meµ +Mµµ −2Mττ = 0

(xxxi) 5 matrices with 3 complex constraints:

Meτ = Mµτ , Meτ = Mττ , Meµ +Mµµ −2Meτ = 0
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(xxxii) 8 matrices with 3 complex constraints:

Meτ =−Mµτ , Meτ = Mττ , Meµ +Mµµ = 0

(xxxiii) 7 matrices with 3 complex constraints:

Meτ = Mττ , Mµµ = Mττ , Meµ = Mµτ

(xxxiv) 4 matrices with 5 complex constraints:

Meµ = Mµµ , Meτ = Mµτ , Meµ = Mττ , Mµs +Mτs = 0, Meτ +Mµµ = 0

(xxxv) 8 matrices with 4 complex constraints:

Mµµ = Mττ , Meµ +Mµτ = 0 , Mµµ +Meτ = 0 , Meτ +Mττ = 0

(xxxvi) 4 matrices with 4 complex constraints:

Mµµ = Mττ , Meµ = Mµτ , Meτ = Mµµ , Meµ +Meτ = 0

(xxxvii) 8 matrices with 4 complex constraints:

Mµµ = Mττ , Mµs +Mτs = 0 ,

Mµµ =−Mµτ , Meµ +Mµµ = Mττ −Meτ

(xxxviii) 8 matrices with 3 complex constraints:

Mµµ = Mττ , Meτ =−Mµτ , Meµ =−Mττ

(xxxix) 8 matrices with 3 complex constraints:

Meτ =−Mττ , Meτ =−Mµτ , Meµ +Mµµ = 0

(xxxx) 1 matrix with 3 complex constraints:

Mµµ = Mµτ , Meµ = Mµτ , Meτ −Mµµ = Mµτ −Mττ
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Fig. 4.1 Neutrino oscillation parameters in active-sterile sector for case (ii) from µ − τ
symmetric category for NH.

4.4 Numerical analysis

In this section, we present the method adopted for numerical analysis for (µ − τ) symmetric

textures, texture 1, texture 2 and texture 3 zero cases, in order to check their consistency with

3+1 neutrino data. It is well known that 4×4 unitary mixing matrix can be parametrised as

[159]

U = R34R̃24R̃14R23R̃13R12P (4.20)

where

R34 =











1 0 0 0

0 1 0 0

0 0 c34 s34

0 0 −s34 c34











(4.21)

R̃14 =











c14 0 0 s14e−iδ14

0 1 0 0

0 0 1 0

−s14eiδ14 0 0 c14











(4.22)

with ci j = cosθi j, si j = sinθi j , δi j being the Dirac CP phases, and

P = diag(1,e−i α
2 ,e−i( β

2 −δ13),e−i( γ
2−δ14))

is the diagonal phase matrix containing the three Majorana phases α,β ,γ . In this parametri-

sation, the six CP phases vary from −π to π . Using the above form of mixing matrix, the

4×4 complex symmetric Majorana light neutrino mass matrix can be written as

Mν =UM
diag
ν UT (4.23)
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Fig. 4.2 Neutrino oscillation parameters in active-sterile sector for case (iii) from µ − τ
symmetric category for NH.
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Fig. 4.3 Neutrino oscillation parameters in active-sterile sector for case (iv) from µ − τ
symmetric category for NH
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Fig. 4.4 Neutrino oscillation parameters in active-sterile sector for case (ix) from texture 1

zero category for NH.
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Fig. 4.5 Neutrino oscillation parameters in active-sterile sector for case (x) from texture 1

zero category for NH.
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Fig. 4.6 Neutrino oscillation parameters in active-sterile sector for case (i) from texture 2

zero category for NH.
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Fig. 4.7 Neutrino oscillation parameters in active-sterile sector for case (ii) from texture 2

zero category for NH.
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Fig. 4.8 Neutrino oscillation parameters in active-sterile sector for texture 3 zero case for

NH.
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=
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







mee meµ meτ mes

mµe mµµ mµτ mµs

mτe mτµ mττ mτs

mse msµ msτ mss











, (4.24)

where M
diag
ν = diag(m1,m2,m3,m4) is the diagonal light neutrino mass matrix. For normal

hierarchy (NH) of active neutrinos i.e., m4 > m3 > m2 > m1, the neutrino mass eigenvalues

can be written in terms of the lightest neutrino mass m1 as

m2 =
√

m2
1 +∆m2

21, m3 =
√

m2
1 +∆m2

31, m4 =
√

m2
1 +∆m2

41.

Similarly for inverted hierarchy (IH) of active neutrinos i.e., m4 > m2 > m1 > m3, the neu-

trino mass eigenvalues can be written in terms of the lightest neutrino mass m3 as

m1 =
√

m2
3 −∆m2

32 −∆m2
21, m2 =

√

m2
3 −∆m2

32, m4 =
√

m2
3 +∆m2

43.

Using these, one can analytically write down the 4×4 light neutrino mass matrix in terms of

three mass squared differences, lightest neutrino mass m1(m3), six mixing angles i.e., θ13,

θ12, θ23, θ14, θ24, θ34, three Dirac type CP phases i.e., δ13, δ14, δ24 and three Majorana type

CP phases i.e., α , β , γ . The analytical expressions of the 4×4 light neutrino mass matrix

elements are given in Appendix F.

For each class of neutrino mass matrix with textures that we analyse, there exists several

constraints relating the mass matrix elements or equating some of them to zero. Since the

mass matrix is complex symmetric, each such constraint gives rise to two real equations

that can be solved for two unknown parameters. Depending upon the number of constraints,

we choose the set of input parameters and solve for the remaining ones. We have varied

our input parameters for the usual three neutrino part in the 3σ allowed range as given in

the global analysis of the world neutrino data [109, 166, 167] and varied ∆m2
LSND from 0.7

eV2 to 2.5 eV2. If the output of θ14, θ24 and θ34 falls between 0◦ to 20◦, 0◦ to 11.5◦ and 0◦

to 30◦ respectively [118, 168, 169] with the condition m1(m3) = 0 (as the model predicts

vanishing lightest neutrino mass), then we say this texture is allowed in NH (IH). Note that

according to the global analysis of the short-baseline data [118] we have 6◦ < θ14 < 20◦ and

3◦ < θ24 < 11.5◦ at 3σ . However the Refs. [168, 169], give only an upper limit on θ14 and

θ24 as they analyse stand-alone data. Thus for a conservative approach, in our analysis we

have taken the upper limits of θ14 and θ24 from the global analysis and allowed them to have

lower limits as zero.
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4.5 Results and Discussion

Adopting the classifications of different textures in 4×4 mass matrix not ruled out from pre-

vious studies and the method of numerical analysis discussed in the previous section we have

analysed all possible mass matrices either with texture zeros or with µ − τ symmetry in the

3×3 block. Here we show some of the numerical results we have obtained for those textures

which are found to be allowed in our analysis after taking into account the 3+1 neutrino data.

We first show the results for µ −τ symmetric textures. Out of four different classes belonging

to this type of texture we found three of them to be allowed for NH of active neutrino masses.

They are namely, the subclasses (ii), (iii), (iv) of µ − τ symmetric textures discussed earlier.

It is not surprising that the texture subclass (i) is not allowed due to too many constraints (5

complex and hence 10 real constraint equations) it has, which become difficult to be satisfied

simultaneously while keeping all neutrino parameters in allowed range. For IH of active

neutrino masses, none of these textures are allowed. We show some correlation plots between

neutrino parameters for µ −τ symmetric subclasses (ii), (iii), (iv) with NH in Fig 4.1, 4.2, 4.3

respectively. Fig 4.1 shows the correlations between active-sterile mixing angles θ34 −θ14

and between Majorana CP phases α −γ after the constraint equations corresponding to µ −τ

symmetric subclass (ii) were solved for 1 million random points. The resulting acceptable

number of solutions is only a handful, as can be seen from the plots. The same trend is

repeated for the other two subclasses (iii), (iv) as well, the correlations for which are shown

in Fig 4.2, 4.3 respectively.

Among the one zero texture category, only two subclasses namely (ix), (x) with NH are al-

lowed. The subclass (ix) has three complex constraints Mµτ = 0,Meµ =−Mµµ ,Meτ =−Mττ

which indeed give rise to six real equations. These six real equations are solved simultane-

ously for six unknown parameters: three active-sterile mixing angles (θ14,θ24,θ34) and three

CP violating Majorana phases (α,β ,γ). We took the lightest neutrino mass mlightest = m1 to

be zero as before and varied the three active neutrino mixing angles (θ12,θ13,

θ23), three mass squared differences (∆m2
21,∆m2

31,∆m2
41) and three Dirac CP violating phases

(δ13,δ14,δ24) in their respective 3σ global fit ranges. The solution of the six real equations

obtained like this give rise to a few correlation plots which are shown in Fig 4.4. Now, for

the subclass (x) under texture 1 zero category, we again have three complex constraints

Mµτ = 0,Meµ = Mµµ ,Meτ = Mττ which give rise to six real equation s. The corresponding

correlation plots obtained from the solutions of these equations are shown in Fig 4.5.
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Similar numerical analysis was done for two zero and three zero texture subclasses as well.

Among the two zero texture subclasses only two namely, (i), (ii) with NH were found to

be allowed. The subclass (i) has three complex constraints Meµ = 0,Meτ = 0,Mµµ = Mµτ

while subclass (ii) has Meµ = 0 Meτ = 0 Mµµ =−Mµτ . The correlations corresponding

to the solutions for subclass (i), (ii) are shown in Fig 4.6, 4.7 respectively. Similarly, the three

zero texture has the three complex constraint equations Meµ = 0,Meτ = 0,Mµτ = 0 and the

corresponding correlations are shown in Fig 4.8. As can be seen from these plots, we get

more allowed solutions for two zero and three zero texture cases out of one million iterations

compared to what we had obtained for µ − τ symmetric and one zero texture cases.

4.6 Summary

To summarise, we have studied the viability of different possible textures in light neutrino

mass matrix within the framework of 3+1 light neutrino scenario by considering a A4 flavour

symmetric minimal extended seesaw mechanism.

While the minimal extended seesaw mechanism naturally explains 3+1 light neutrino sce-

nario in an economical way predicting the lightest neutrino to be massless, presence of the

A4 flavour symmetry dictates the flavour structure of the 4×4 light neutrino mass matrix. In

addition to that, an additional discrete symmetry Z4 is also chosen in order to forbid certain

unwanted terms from the Lagrangian. Considering generic A4 flavon alignments where

a triplet flavon acquires VEV like 〈φ〉 = v(n1,n2,n3),ni ∈ (−1,0,1), we first consider all

possible combinations of such alignments and find the analytical form of the light neutrino

mass matrix for each such case. For two triplet flavons taking part in generating the light

neutrino mass matrix, while the other triplet alignment is kept fixed for diagonal charged

lepton mass matrix, we get 1× 27× 27 = 729 possible cases. Based on previous studies

on 3+1 neutrino textures, we first point out the disallowed textures out of these 729 mass

matrices and discarded these 225 mass matrices from our analysis. From the remaining cases,

we classify 96 of them as one zero texture, 64 as two zero texture, 8 as three zero texture and

296 of them as hybrid textures (which do not contain any zeros). The remaining 40 mass

matrices correspond to an interesting category where the 3×3 active neutrino block of the

3+1 light neutrino mass matrix possess µ − τ symmetry whereas the active-sterile block

breaks it explicitly.

We then analyse the mass matrices with texture zeros and µ − τ symmetry by numerically

solving the constraint equations in each case and comparing the resulting solution with the
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3+1 neutrino data for consistency. Although there are large number of mass matrices for

each such cases, they belong to a smaller number of subclasses where each subclass is a

group of mass matrices giving rise to the same set of constraint equations. The number of

such subclasses is 4, 12, 8 and 1 for µ − τ symmetric, one zero, two zero and three zero

texture mass matrices respectively. We therefore numerically solved the constraint equations

for these 25 cases in total. We find that only 8 out of these 25 subclasses are allowed by the

3+1 global fit data and all of them have normal hierarchical pattern of light neutrino masses.

Out of these 8 allowed subclasses, 3 belong to the µ − τ symmetric category, 2 belong to

the one zero texture category, 2 belong to the two zero texture category and 1 belong to the

remaining three zero texture category. We also find interesting correlation plots between

different light neutrino parameters for each of these allowed subclasses. In some cases, we

find a more favoured region of parameter space (within 3 σ range only) in active sterile sector

with more density of points and hence more likely to be supported by the model. These

preferred regions are shown in the Table 4.2. We also show the summary of allowed and

disallowed cases in Table 4.3. Compared to the usual texture zero scenarios discussed in

previous works, the textures in the present scenario are more constrained due to additional

constraints apart from texture zero conditions or µ − τ symmetry alone and the requirement

of vanishing lightest neutrino mass. This is reflected in our results of getting only 8 out of 25

subclasses studied numerically. As we can see from the summary table, all the cases with

inverted hierarchy are disfavoured. The allowed cases, however do not prefer any specific

values of CP phases. We also find interesting correlations between θ23 and active-sterile

mixing angles for the µ − τ symmetric case. As can be seen from Fig 4.3, maximal θ23

seems to be disfavoured in this case. Also, lower octant values of θ23 favour lower values of

mixing angle θ24, while higher octant values of θ23 favour large mixing angle θ24. So octant

degeneracy of θ23 present in long baseline neutrino experiments is found to be related to the

value of mixing in active sterile sector, (i.e. in mixing angle θ24). On the other hand lower

octant of θ23 seem to favour high values of mixing angle θ14.

While the fate of an additional light neutrino having mass around the eV scale is yet to be

confirmed by other neutrino experiments, our analysis show how difficult it is to realise such

a scenario in the minimal extended seesaw if A4 flavour symmetry with generic vacuum

alignment is present. If the existence of such light sterile neutrino gets well established later,

the predictions for unknown neutrino parameters obtained in our analysis can be tested for

further scrutiny of the model, in a way similar to [170] where the possibility of probing

texture zeros in three neutrino scenarios at neutrino oscillation experiments was studied.
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Sl no. Case Parameter space Range of parameter

1.

µ − τ symmetry

Fig 4.2 (case iii)

(θ14,θ34)
(θ23,θ24)
(θ23,θ14)

0.06 < sinθ14 < 0.15, 0.02 < sinθ34 < 0.09.

higher octant of θ23 is favoured for 0.02 < sinθ24 < 0.1

higher octant of θ23 is favoured for 0.05 < sinθ14 < 0.2

2.

µ − τ symmetry

(Fig. 4.3) (case iv)

(θ23,θ24)
(θ23,θ14)

(0.64 < sinθ23 < 0.68, 0.07 < sinθ24 < 0.11),

(0.74 < sinθ23 < 0.78, 0.09 < sinθ24 < 0.19)

(0.64 < sinθ23 < 0.68, 0.15 < sinθ14 < 0.2),

(0.74 < sinθ23 < 0.78, 0.12 < sinθ14 < 0.2)

3.

Texture 1 zero

(Fig. 4.4) (case ix)

(θ34,θ24)
(θ13,θ23)

(0.48 < sinθ34 < 0.50, 0.04 < sinθ24 < 0.05)

(0.13 < sinθ13 < 0.145, 0.6 < sinθ23 < 0.65)

4.

Texture 2 zero

(Fig. 4.6) (case i)

(θ14,θ24)
(θ34,θ14)
(θ12,θ14)

(0.002 < sinθ14 < 0.016 , 0.03 < sinθ24 < 0.15)

sinθ14 < 0.007 more favoured for sinθ34 < 0.3

sinθ14 < 0.015 more favoured for whole 3σ range of sinθ12

5.
Texture 2 zero

(Fig. 4.7) (case ii)
(θ14,θ24)

(0.002 < sinθ14 < 0.007 , 0.02 < sinθ24 < 0.06

sinθ14 < 0.014, sinθ24 < 0.015)

6.

Texture 3 zero

(Fig. 4.8)

(θ23,θ24)
(θ14,θ24)
(θ34,θ24)
(θ12,θ14)
(θ34,θ14)

sinθ24 < 0.03 more favoured for whole 3σ range of sinθ23

sinθ14 < 0.008 and 0.01 < sinθ24 < 0.03

sinθ24 < 0.03 more favoured for whole 3σ range of sinθ34

sinθ14 < 0.008 more favoured for whole 3σ range of sinθ12

sinθ14 < 0.008 more favoured for whole 3σ range of sinθ34

Table 4.2 Favoured region of parameter space for active sterile neutrino mixing (3+ 1)
neutrino parameters.

Texture Subclass Normal Hierarchy Inverted Hierarchy

µ −
τ
symmetric

(i) × ×
(ii)

√ ×
(iii)

√ ×
(iv)

√ ×

One

zero

(i) × ×
(ii) × ×
(iii) × ×
(iv) × ×
(v) × ×
(vi) × ×
(vii) × ×
(viii) × ×
(ix)

√ ×
(x)

√ ×
(xi) × ×
(xii) × ×

Two

zero

(i)
√ ×

(ii)
√ ×

(iii) × ×
(iv) × ×
(v) × ×
(vi) × ×
(vii) × ×
(viii) × ×

Three zero (i)
√ ×

Table 4.3 Table showing allowed and disallowed texture subclasses which have been analysed

numerically. Here (
√
) indicates allowed cases and (×) indicates disallowed cases.
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5.1 Summary

To summarise, in Chapter 1, we presented a brief review of historical background of neutrino

oscillation and various processes for detection, experimental status of neutrino oscillation

and neutrino cross section measurements etc.

In Chapter 2, we studied the importance of nuclear effects in neutrino nucleus interactions

at low three momentum transfer, in quasi-elastic regime (2 < Eν < 6) GeV of neutrino

energies. Various nuclear effects include Fermi motion and binding energy, Pauli blocking,

random phase approximation (RPA), multi-nucleon effects, final state interaction (FSI) ef-

fect. This study was done with reference to the data taken by MINERνA experiment. We

calculated double differential cross section for carbon target for some interaction channels

like 2p2h/MEC and default process (QE). Since the theoretical results produced using the

event generator GENIE [39], are found to show some discrepancies with the data, we used

another neutrino event generator - GiBUU version 2016. We then compared our results with

the data and with those reported in [39]. We find that our results are in better agreement with

the MINERνA data.
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In Chapter 3, we calculated neutrino nucleon cross section both for charged current and

neutral current processes in ultra high energy regime in the energy range of 109GeV ≤ Eν ≤

1012GeV . We made use of double asymptotic limit of F
ep
2 proton structure function of DIS

(e-p) scattering in order to calculate the total cross sections σCC
νN and σNC

νN at UHE. Though

some softwares are available for calculation of neutrino scattering cross section, we made

our own computation program for this purpose. The dynamical pomeron-type behaviour

of F
ep
2 gives rise to a Reggeon exchange-type behaviour of total neutrino cross-section in

UHE regime. Our results are in reasonably good agreement with other works available in

literature.

In Chapter 4, we studied the viability of different possible textures in light neutrino mass

matrix within the framework of 3+ 1 light neutrino scenario by considering a A4 flavour

symmetric minimal extended seesaw mechanism. We considered A4 flavon alignments where

a triplet flavon acquires VEV like 〈φ〉= v(n1,n2,n3),ni ∈ (−1,0,1). We then considered all

possible combinations of such alignments and found the analytical form of the light neutrino

mass matrix for each such case. One of the triplet alignment is kept fixed while the other

two triplet flavons take part in generating the light neutrino mass matrix, as a result we get

1× 27× 27 = 729 possible cases. Out of the 729 cases, we discarded 225 mass matrices

from our analysis ( as they did not gave results within the global best fit values of the light

neutrino oscillation parameters), remaining cases were classified as - one zero, two zero,

three zero and hybrid textures i.e. total of 504 cases. In (3+1) neutrino scenario, texture zeros

were discussed in different contexts earlier using flavour symmetries, but in this thesis we

have shown that some of these textures can be realised (upto a few more constraints) just

from the general vacuum alignment of A4 triplet flavons. We then numerically analysed all

the textures belonging to (µ − τ) symmetric and texture 1, texture 2 and texture 3 zero cases

by taking into account latest (3+1) neutrino data. We presented our results as correlation

plots among the neutrino oscillation parameters for the allowed cases, within 3σ range of

their global best fit values. We also performed same analysis for inverted hierarchy and found

that none of our textures are allowed for IH. These results can be tested in future, when more

data becomes available from sterile neutrino measurements.
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5.2 Outlook and Conclusions of the thesis

5.2.1 Main features of the thesis

1. In Chapter 2, we made use of double asymptotic limit of the proton structure function, to

estimate the neutrino-nucleon scattering cross section.

2. In Chapter 3, we used effects of nuclear environment, to study neutrino-carbon scattering

in quasi-elastic range, with reference to MINERνA data, using the event generator GiBUU.

3. In Chapter 4, we studied compatibility of 3+1 scenario of neutrinos, in presence of an eV

scale sterile neutrino, with A4 discrete flavour symmetry group, and general VEV alignments

of the triplet flavour field.

5.2.2 Highlights of the results

1. Chapter 2 - We presented predictions on ν−N scattering cross section in UHE range, which

can be tested in future, when the data becomes available from the experiments worldwide (as

stated in Chapter 1).

2. Chapter 3 - From the analysis of results of Chapter 3, we can say that including the

nuclear effects (through GiBUU) improves agreement between our theoretical values and the

data (in low momentum transfer region) on double differential cross section of MINERνA

experiment, for neutrino scattering off Carbon target.

3. From the results presented in Chapter 4, we can pinpoint, which flavon VEV alignments

are more favourable to explain the data on light neutrino mass oscillation parameters, in

presence of an eV scale sterile neutrino (3+1 scenario), if A4 group is assumed to explain

the flavour structure of the fermions. This would help us gain a deeper understanding of the

flavour structure, and favourable VEV alignments of the flavon field.

5.2.3 Relevance

From the highlights of the results presented above, we conclude that all the results obtained

in this thesis are testable in future neutrino experiments. We addressed some important and

contemporary issues in neutrino physics in this thesis - to reduce uncertainties in ν −N

scattering cross section in QE regime, prediction on these cross section in UHE regime, and

to build model for eV scale sterile neutrino in presence of discrete flavour symmetry. This

can further help us improve our understanding of nuclear effects in ν −N scattering, which

in turn could be applied in future precision measurements of unknown neutrino oscillation

parameters, along with a better understanding of theories for existence of light sterile neutrino
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and flavour structure of fermions. The UHE ν −N cross sections would help us gain insights

into nature of fundamental interactions at energy scales which otherwise cannot be reached

in terresterial experiments.

5.3 Future prospects

1. As future prospects of the work done in this thesis, we would like to continue work of

Chapter 3, on ultra high energy cross section calculation. Though we found that the overall

behaviour of our calculated νN cross sections both for CC and NC processes are similar

to the other works available in literature, our values are slightly smaller, in the low energy

range, while larger in the high energy range. With the use of screening corrections in the

evolution of proton structure function, these results can be improved.

Shadowing correction to the evolution of the singlet quark distribution [171] can be written

as
∂xq(x,Q2)

∂ lnQ2
=

∂xq(x,Q2)

∂ lnQ2













DGLAP
−

27

160

α2
s

R2Q2
[xg(x,Q2)]2, (5.1)

which can be written as

∂F2(x,Q
2)

∂ lnQ2
=

∂F2(x,Q
2)

∂ lnQ2













DGLAP
−

5

18

27α2
s

R2Q2
[xg(x,Q2)]2, (5.2)

where the first term is the standard DGLAP evolution equation and the value of R is the

correlation radius between two interacting gluons. Putting Eq (3.10) in Eq (5.2) we get

∂F2(x,Q
2)

∂ lnQ2
=

10αs

9π

(1− x)2

(1−1.5x)
G(2x

(1−1.5x)

(1− x2)
,Q2)−

5

18

27α2
s

R2Q2
[G(x,Q2)]

2
, (5.3)

here q(x,Q2) is the quark density and g(x,Q2) is the gluon density distribution functions.

Here, the representation for the gluon distribution G(x,Q2) = xg(x,Q2) is used.

Integrating above Eq (5.3), we get

∫

dF2(x,Q
2) =

∫

[
10αs

9π

(1− x)2

(1−1.5x)
G(2x

(1−1.5x)

(1− x2)
,Q2)−

5

18

27α2
s

R2Q2
[G(x,Q2)]

2]dlnQ2
.

(5.4)

Once the value of F2(x,Q
2) is found out from above equation, the total ν −N scattering cross

section can be calculated from Eq (3.13). We expect that inclusion of screening corrections

in proton structure function F2(x,Q
2) will improve the results both for CC and NC process

ν −N cross section.
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2. We also aim to continue our work on Chapter 2, where we would calculate double

differential cross section for neutrino carbon interaction using random phase approximation

(RPA) effects with 2p2h/ MEC process. Using such nuclear effects we expect that our double

differential cross section results would be in good agreement with the available MINERνA

experimental data. We would do such analysis using both the generators i.e. GENIE and

GiBUU.



References

[1] Corey Adams et al., (LBNE Collaboration) BNL-101354-2014-JA, FERMILAB-PUB-
14-022, LA-UR-14-20881, arxiv: 1307.7335.

[2] Kenneth S. Krane, Introductory Nuclear Physics (John Wiley and Sons).

[3] S.L. Kakani and Shubra Kakani, Nuclear and Particle Physics (Viva Books).

[4] Carlo Guinti and Chung W. Kim, Fundamental of Neutrino Physics and Astrophysics
(Oxford University Press).

[5] David Griffiths, Introduction to Elementary Particles (Willey-VCH Verlag GmbH &
Co. KGaA).

[6] K. Heyde, Basic Ideas and Concepts in Nuclear Physics (IOP Publishing Ltd).

[7] E. D. Commins and P. H. Bucksbaum, Weak Interactions of leptons and quarks
(Cambridge University Press).

[8] R. Davis, J. C. Evans and B. Cleveland, Conference Proceedings, Purdue University,
Lafayette, Ind, 1978.

[9] B. T. Cleveland et al., J. Astrophy., 496, 505–526, (1998).

[10] J. N. Bahcall, M. H. Pinsonneault, and S. Basu, Astrophys. J., 555, 990–1012, astro-
ph/0010346 (2001).

[11] J. N. Bahcall, N. A. Bahcall and G. Shaviv, Phys. Rev. Lett., 20, 1209–1212, (1968).

[12] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys.Rev.Lett. 81, 1562 (1998).

[13] Q. R. Ahmad et al, (SNO Collaboration), Phys. Rev. Lett. 87, 071301 (2001).

[14] K. Kodama et al, (DONOUT Collaboration), Phys. Lett. B504, 218 (2001).

[15] A. Aguilar et al., (LSND), Phys. Rev.D 64, 112007 (2001).

[16] A. A. Aguilar-Arevalo et al., (MiniBooNE Collaboration), Phys. Rev.Lett.110, 161801
(2013).

[17] M. A. Acero, C. Guinti, M. Laveder, Phys.Rev.D 78, 073009 (2008).

[18] C. Giunti, M. Laveder, Phys. Rev. C 83, 065504 (2011).



94 References

[19] Takaaki Kajita, Advances in High Energy Physics Volume 2012, Article ID 504715,
24 pages.

[20] T. P. Cheng and L. F. Li, Gauge theory of elementary particle physics (Oxford Univer-
sity Press).

[21] S. P. Mikheev, A. Yu. Smirnov, J. Nucl. Phys., 42:913917, (1985).

[22] L. Wolfenstein, Phys. Rev., D17: 23692374, (1978).

[23] J.M. Conrad and M.H.Shaevitz, arXiv: 1609.07803v1.

[24] Kalpana Bora, Debajyoti Dutta and Pomita Ghoshal, JHEP 12 025 (2012).

[25] Osamu Yasuda, arXiv: 1004.2388v1.

[26] G. Bellini et al. (Borexino Collaboration), Phys. Rev. D 82, 033006 (2010).

[27] S. Abe et al. (KamLAND Collaboration), Phys. Rev. C 84, 035804 (2011).

[28] M. Anderson et al., PRD 99, 012012 (2019).

[29] Jen-Chieh Peng, Rep. Prog. Phys. 82 036201 (2019).

[30] Feng Peng An et al., Phys. Rev. Lett., 116(6):061801 (2016).

[31] F. An, et al., (Daya-Bay Collaboration), Phys. Rev. Lett. 108 171803 (2012).

[32] Y. Abe, et al., (Double-Chooz Collaboration) Phys. Rev. Lett. 108 131801 (2012).

[33] J. Ahn, et al., RENO Collaboration, Phys. Rev. Lett. 108 (2012) 191802 (2012).

[34] H.Zhang, Physics Letters B 714 262-266 (2012).

[35] M.S. Atthar, Talk presented at Nu HoriZon 2016.

[36] J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012).

[37] V. Lyubushkin, et al., Eur. Phys. J. C 63, 355 (2009).

[38] Pilar Coloma et al., Phys. Rev. D 89, 073015 (2014)

[39] P.A. Rodrigues et al., PRL 116, 071802 (2016).

[40] Tappei Katori and Marco Martini, arXiv hep/ 1611.07770v1.

[41] M.G. Aartsen et al., Phys. Rev. Lett. 113, 101101 (2014).

[42] M. G. Aartsen, R. Abbasi et al., IceCube Collaboration, Phys. Rev. Lett. 111, 021103
(2013).

[43] K. Antipin, et al., Nucl. Phys. B, Proc. Suppl. 168 296 (2007).

[44] V. Aynutdinov et al., in Proceedings of the 3rd International Workshop on a Very
Large Volume Neutrino Telescope for the Mediterranean Sea Vol 14, pp. 602 (2009).



References 95

[45] E. Aslanides et al., (ANTARES), arXiv:astro-ph/9907432, (2009).

[46] A. Achterberg et al., Phys. Rev. D 75, 102001 (2007).

[47] I. Kravchenko et al., Astropart. Phys. 20, 195 (2003).

[48] S. W. Barwick et al., (ANITA) Phys. Rev. Lett. 96, 171101 (2006).

[49] R. U. Abbasi et al. (High Resolution Flys Eye Collaboration) Phys. Rev. Lett.92

151101 (2004).

[50] P. W. Gorham et al., Phys. Rev. Lett. 93, 041101 (2004).

[51] Teppei Katori, Journal of Physics: Conference Series 598 012006 (2015), and refer-
ences therein.

[52] S. K. Agarwalla, S. S. Chatterjee and Antonio Palazzo, JHEP 04 091 (2018) .

[53] S. Choubey, D. Dutta and D. Pramanik, Phys. Rev. D 96, 056026 (2017).

[54] K. Abe, R. Akutsu, A. Ali, (T2K Collaboration) arXiv: 1902.06529v1.

[55] Igor Krasnov, arXiv: 1902.06099v1.

[56] B. J. P. Jones Proceeding for the VLVNT2018 Conference (IceCube Collaboration),
arXiv: 1902.06185.

[57] Carlo Giunti and Thierry Lasserre, Submitted for publication in the Annual Review of
Nuclear and Particle Science, Volume 69, arXiv: 1901.08330.

[58] Alan M. Knee, Dagoberto Contreras, Douglas Scott, arxiv : 1812.02102v2.

[59] Susanne Mertens et al., arXiv: 1810.06711.

[60] P. Adamson et al., (MINOS+ Collaboration) Phys. Rev. Lett. 122, 091803 (2019).

[61] F. Capozzi et al., Nucl. Phys. B 908 218 (2016).

[62] N. Nath, M. Ghosh, S. Goswami and S. Gupta, JHEP 1703, 075 (2017)
[arXiv:1610.09090 [hep-ph]].

[63] Costas Andreopoulos et al., arXiv [hep-ph]/1510.05494v1.

[64] O. Buss et al., Physics Reports 512 1-124 (2012).

[65] O. Buss et al. Phys.Rept. 512 1 (2012).

[66] U. Mosel, Ann. Rev. Nuc. Part. Sci. 66 1–26, (2016).

[67] Ulrich Mosel, Annual Review of Nuclear and Particle Science volume 66 (2016).

[68] Andrew Furmanski, Ph.D Thesis, The University of Warwick (2015).

[69] M. Betancourt et al., TENSIONS2016 report, arXiv: 1805.07378.



96 References

[70] D. Casper, Nucl. Phys. Proc. Suppl. 112, 161 (2002).

[71] Y. Hayato, Acta Phys. Polon. B40, 2477 (2009).

[72] L. Alvarez-Ruso, Y. Hayato and J. Nieves, New J. Phys. 16 075015 (2014).

[73] C. H. Llewellyn Smith. Neutrino reactions at accelerator energies Physics Reports,
3(5):261 – 379, (1972), ISSN 0370-1573.

[74] Teppei Katori, Proceedings of the 8th International Workshop on Neutrino-Nucleus
Interactions in the Few-GeV Region (NuInt12) arXiv: 1304.6014 (2012).

[75] http://link.aps.org/supplemental/10.1103/PhysRevLett.116.071802.

[76] K. Gallmeister, U. Mosel, J. Weil, Phys. Rev. C 94, 035502 (2016).

[77] A.D. Avrorin, et al., Astropart. Phys. 62 12-20 (2015).

[78] S. Hoover, et al., (ANITA Collaboration), Journal of Physics: Conference Series 81

012009 (2007).

[79] I. Kravchenko, et al., (RICE Collaboration), Phys. Rev. D85 062004 (2012).

[80] J. Ahrens, et al., (AMANDA Collaboration), Nucl. Inst. Meth. A524 169 (2004).

[81] R. Abbasi, et al., (HiRes Collaboration), Ap. J. 684 790 (2008).

[82] A.Gleixner, et al., (ANTARES Collaboration), EPJ Web of Conferences 70 00070
(2014).

[83] M. Aartsen, et al.,(IceCube Collaboration) Phys. Rev. Lett. 113, 101101 (2014).

[84] P. Gorham, et al., (GLUE Collaboration), Phys. Rev. Lett. 93 (2004) 041101.

[85] A. Aab, et al., (Pierre Auger Collaboration), Phys. Rev. D93 072006 (2016).

[86] Stuart A. Kleinfelder (ARIANNA Collaboration) Presented at the 2015 IEEE Nuclear
Science Symposium, arXiv: 1511.07525.

[87] Andreas Haungs, et al.,(JEM-EUSO collaboration), Journal of Physics: Conference
Series, vol 632 012092, arXiv : 1504.02593.

[88] R. Gandhi, et al., Phys. Rev. D58 093009 (1998).

[89] A. Connolly, et al., Phys. Rev. D83 113009 (2011), arXiv: 1102.0691.

[90] A. Cooper-Sarkar, et al., JHEP 08 042 (2011), arXiv:1106.3723.

[91] Martin M. Block, et al., Phys. Rev. D88 013003 (2013), arXiv:1302.6127.

[92] Kalpana Bora, Neelakshi Sarma, Springer Conference Proceedings vol 174 345-351
(2015).

[93] F. E. Close, An Introduction to Quarks and Partons (Academic Press) (1979).



References 97

[94] Kalpana Bora, PhD Thesis Polarised and unpolarised structure functions of nucleons
at low - x, Gauhati University, (1998).

[95] P. D. B Collins, Introduction to Regge Theory and High Energy Physics (Cambridge
University Press) (1977).

[96] M. Kuroda, D. Schildknecht, Phys. Rev. D88 053007 (2013) .

[97] S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 86, 5656 (2001), hep-
ex/0103033.

[98] Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89, 011301 (2002), nucl-ex/0204008.

[99] Q. R. Ahmad et al. (SNO),Phys. Rev. Lett. 89, 011302 (2002), nucl-ex/0204009.

[100] J. N. Bahcall and C. Pena-Garay, New J. Phys. 6, 63 (2004), hep-ph/0404061.

[101] K. Nakamura et al., J. Phys. G37, 075021 (2010).

[102] S. Abe et al. (KamLAND Collaboration), Phys.Rev.Lett. 100, 221803 (2008).

[103] P. Adamson et al. (MINOS), Phys.Rev.Lett. 110, 171801 (2013)

[104] K. Abe et al. [T2K Collaboration], Phys. Rev. Lett. 107, 041801 (2011),
[arXiv:1106.2822 [hep-ex]].

[105] D. S. Ayres et al. [NOvA Collaboration], hep-ex/0503053.

[106] Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012), [arXiv:1112.6353 [hep-ex]].

[107] F. P. An et al. [DAYA-BAY Collaboration], Phys. Rev. Lett. 108, 171803 (2012),
[arXiv:1203.1669 [hep-ex]].

[108] J. K. Ahn et al. [RENO Collaboration], Phys. Rev. Lett. 108, 191802 (2012),
[arXiv:1204.0626][hep-ex]].

[109] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz,
JHEP 01, 087 (2017).

[110] C. Athanassopoulos et al. [LSND Collaboration], Phys. Rev. Lett. 77, 3082 (1996)
[nucl-ex/9605003].

[111] A. Aguilar-Arevalo et al. [LSND Collaboration], Phys. Rev. D64, 112007 (2001)
[hep-ex/0104049].

[112] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. Lett. 110, 161801
(2013) [arXiv:1303.2588 [hep-ex]].

[113] G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier and
A. Letourneau, Phys. Rev. D83, 073006 (2011) [arXiv:1101.2755 [hep-ex]].

[114] M. A. Acero, C. Giunti and M. Laveder, Phys. Rev. D78, 073009 (2008)
[arXiv:0711.4222 [hep-ph]].



98 References

[115] C. Giunti and M. Laveder, Phys. Rev. C83, 065504 (2011) [arXiv:1006.3244 [hep-
ph]].

[116] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], [arXiv:1805.12028[hep-
ex]].

[117] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D98, 030001 (2018).

[118] J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, JHEP 1305, 050 (2013)
[arXiv:1303.3011 [hep-ph]].

[119] C. Giunti, M. Laveder, Y. F. Li and H. W. Long, Phys. Rev. D88, 073008 (2013)
[arXiv:1308.5288 [hep-ph]].

[120] S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li and E. M. Zavanin, J. Phys. G43, 033001
(2016) [arXiv:1507.08204 [hep-ph]].

[121] M. Dentler, A. Hernandez-Cabezudo, J. Kopp, P. A. N. Machado, M. Maltoni, I.
Martinez-Soler and T. Schwetz, JHEP bf 08, 010 (2018), [arXiv:1803.10661[hep-ph]].

[122] N. Aghanim et al. [Planck Collaboration], [arXiv:1807.06209 [astro-ph.CO]].

[123] X. Chu, B. Dasgupta, M. Dentler, J. Kopp and N, Saviano, [arXiv:1806.10629 [hep-
ph]].

[124] P. Minkowski, Phys. Lett. B 67, 421 (1977).

[125] M. Gell-Mann, P. Ramond, and R. Slansky (1980), print-80-0576 (CERN).

[126] T. Yanagida (1979), in Proceedings of the Workshop on the Baryon Number of the
Universe and Unified Theories, Tsukuba, Japan, 13-14 Feb 1979.

[127] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett 44, 912 (1980).

[128] J. Schechter and J. W. F. Valle, Phys. Rev. D22, 2227 (1980).

[129] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D23, 165 (1981).

[130] G. Lazarides, Q. Shafi and C Wetterich, Nucl. Phys. B181, 287 (1981).

[131] C. Wetterich, Nucl. Phys. B187, 343 (1981).

[132] J. Schechter and J. W. F. Valle, Phys. Rev. D25, 774 (1982).

[133] B. Brahmachari and R. N. Mohapatra, Phys. Rev. D58, 015001 (1998).

[134] R. N. Mohapatra, Nucl. Phys. Proc. suppl. 138, 257 (2005).

[135] S. Antusch and S. F. King, Phys. Lett. B597, (2), 199 (2004).

[136] R. Foot, H. Lew, X. G. He and G. C. Joshi, Z. Phys. C44, 441 (1989).

[137] A. Merle and V. Niro, JCAP 1107, 023 (2011) [arXiv:1105.5136 [hep-ph]].



References 99

[138] J. Barry, W. Rodejohann and H. Zhang, JHEP 1107, 091 (2011) [arXiv:1105.3911
[hep-ph]].

[139] H. Zhang, Phys. Lett. B714, 262 (2012) [arXiv:1110.6838 [hep-ph]].

[140] J. Barry, W. Rodejohann and H. Zhang, JCAP 1201, 052 (2012) [arXiv:1110.6382
[hep-ph]].

[141] J. Heeck and H. Zhang, JHEP 1305, 164 (2013) [arXiv:1211.0538 [hep-ph]].

[142] P. S. Bhupal Dev and A. Pilaftsis, Phys. Rev. D 87, no. 5, 053007 (2013)
[arXiv:1212.3808 [hep-ph]].

[143] Y. Zhang, X. Ji and R. N. Mohapatra, JHEP 1310, 104 (2013) [arXiv:1307.6178
[hep-ph]].

[144] M. Frank and L. Selbuz, Phys. Rev. D 88, 055003 (2013) [arXiv:1308.5243 [hep-ph]].

[145] D. Borah and R. Adhikari, Phys. Lett. B729, 143 (2014) [arXiv:1310.5419 [hep-ph]].

[146] R. Adhikari, D. Borah and E. Ma, Phys. Lett. B755, 414 (2016) [arXiv:1512.05491
[hep-ph]].

[147] D. Borah, M. Ghosh, S. Gupta, S. Prakash and S. K. Raut, Phys. Rev. 9D4, no. 11,
113001 (2016) [arXiv:1606.02076 [hep-ph]].

[148] D. Borah, Phys. Rev. D94, 075024 (2016).

[149] D. Borah, M. Ghosh, S. Gupta and S. K. Raut, Phys. Rev. D 96, no. 5, 055017 (20167)
[arXiv:1706.02017 [hep-ph]].

[150] D. Borah, Phys. Rev. D95, 035016 (2017).

[151] P. Das, A. Mukherjee and M. K. Das, [arXiv:1805.09231[hep-ph]].

[152] M-C. Chen, J. Huang, J-M. O’Bryan, A. M. Wijangco and F. Yu, JHEP 1302, 021
(2013).

[153] R. Kalita and D. Borah, Phys. Rev. D92, 055012 (2015).

[154] M. Ghosh, S. Goswami and S. Gupta, JHEP 1304, 103 (2013) [arXiv:1211.0118
[hep-ph]].

[155] M. Ghosh, S. Goswami, S. Gupta and C. S. Kim, Phys. Rev. D88, no. 3, 033009 (2013)
[arXiv:1305.0180 [hep-ph]].

[156] Y. Zhang, Phys. Rev. D87, no. 5, 053020 (2013) [arXiv:1301.7302 [hep-ph]].

[157] N. Nath, M. Ghosh and S. Gupta, Int. J. Mod. Phys. A31, no. 24, 1650132 (2016)
[arXiv:1512.00635 [hep-ph]].

[158] R. N. Mohapatra, S. Nasri and H. -B. Yu, Phys. Rev. D72, 033007 (2005).



100 References

[159] J. Barry, W. Rodejohann and H. Zhang, JHEP 1107, 091 (2011); J. Barry, W. Rodejo-
hann and H. Zhang, JCAP 01, 052 (2012).

[160] A. Merle, S. Morisi and W. Winter, JHEP 1407, 039 (2014).

[161] D. C. Rivera-Agudelo and A. Perez-Lorenzana, Phys. Rev. D92, 073009 (2015).

[162] G. Altarelli and F. Feruglio, Nucl. Phys. B741, 215 (2006).

[163] F. Feruglio, C. Hagedorn and L. Merlo, JHEP 1003, 084 (2010).

[164] M. Holthausen and M. A. Schmidt, JHEP 1201, 126 (2012).

[165] S. Gariazzo C. Giunti, M. Laveder and Y.F. Li, JHEP 1706, 135 (2017).

[166] D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D90, no. 9, 093006 (2014)
[arXiv:1405.7540 [hep-ph]].

[167] F. Capozzi, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Phys. Rev.
D89, 093018 (2014) [arXiv:1312.2878 [hep-ph]].

[168] F. P. An et al. [Daya Bay Collaboration], Phys. Rev. Lett. 113, 141802 (2014)
[arXiv:1407.7259 [hep-ex]].

[169] P. Adamson et al. [MINOS Collaboration], Phys. Rev. Lett. 107, 011802 (2011)
[arXiv:1104.3922 [hep-ex]].

[170] K. Bora, D. Borah and D. Dutta, Phys. Rev. D96, 075006 (2017).

[171] G. R. Boroun, Physical Review C 97, 015206 (2018).



A
A4 product rules

A4, the symmetry group of a tetrahedron, is a discrete non-abelian group of even permutations

of four objects. It has four irreducible representations: three one-dimensional and one three

dimensional which are denoted by 1,1′,1′′ and 3 respectively, being consistent with the sum

of square of the dimensions ∑i n2
i = 12. Their product rules are given as

1⊗1 = 1

1′⊗1′ = 1′′

1′⊗1′′ = 1

1′′⊗1′′ = 1′

3⊗3 = 1⊕1′⊕1′′⊕3a ⊕3s

where a and s in the subscript corresponds to anti-symmetric and symmetric parts respectively.

Denoting two triplets as (a1,b1,c1) and (a2,b2,c2) respectively, their direct product can be

decomposed into the direct sum mentioned above as

1 ∽ a1a2 +b1c2 + c1b2
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1′ ∽ c1c2 +a1b2 +b1a2

1′′ ∽ b1b2 + c1a2 +a1c2

3s ∽ (2a1a2 −b1c2 − c1b2,2c1c2 −a1b2 −b1a2,2b1b2 −a1c2 − c1a2)

3a ∽ (b1c2 − c1b2,a1b2 −b1a2,c1a2 −a1c2)



B
Scalar Potential for Triplet Flavons φ , φ ′ φ ′′

The scalar potential for the most general case containing all the three triplet vevs,

φ , φ ′ and φ ′′ can be written as

V =V (φ)+V (φ ′)+V (φ ′′)+Vint

where

V (φ) =−µ2
1 (φ

†φ)+λ1(φ
†φ)2

,

V (φ ′) =−µ2
2 (φ

′†φ ′)+λ2(φ
′†φ ′)2

,

V (φ ′′) =−µ2
3 (φ

′′†φ ′′)+λ3(φ
′′†φ ′′)2

,

and the interaction among different triplet flavons are denoted as

Vint = (µ4φ ′2φ ′′+µ5φφ ′′2 +h.c.)+λ4(φ
†φ)(φ ′†φ ′)+λ5(φ

†φ)(φ ′′†φ ′′)+

λ6(φ
′†φ ′)(φ ′′†φ ′′)+{λ7(φφ

′′
)(φ

′
φ

′
)+h.c.} (B.1)

Expanding the triplet flavons in terms of components

φ = (φ1,φ2,φ3) φ ′ = (φ ′
1,φ

′
2,φ

′
3) φ ′′ = (φ ′′

1 ,φ
′′
2 ,φ

′′
3 )
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we can write their products according to the A4 product rules as

(φφ
′′
)1 = (φ1φ ′′

1 +φ2φ ′′
3 +φ3φ ′′

2 )

(φ ′φ
′
)1 = (φ ′

1φ ′
1 +φ ′

2φ ′
3 +φ ′

3φ ′
2)

(φφ
′′
)1′ = (φ3φ ′′

3 +φ1φ ′′
2 +φ2φ ′′

1 )

(φ ′φ
′
)1′′ = (φ ′

2φ ′
2 +φ ′

3φ ′
1 +φ ′

1φ ′
3)

(φφ ′′)3s = (2φ1φ ′′
1 −φ2φ ′′

3 −φ3φ ′′
2 , 2φ3φ ′′

3 −φ1φ ′′
2 −φ2φ ′′

1 , 2φ2φ ′′
2 −φ1φ ′′

3 −φ3φ ′′
1 )

(φ ′φ ′)3s = (2φ ′
1φ ′

1 −φ ′
2φ ′

3 −φ ′
3φ ′

2, 2φ ′
3φ ′

3 −φ ′
1φ ′

2 −φ ′
2φ ′

1, 2φ ′
2φ ′

2 −φ ′
1φ ′

3 −φ ′
3φ ′

1)

(φφ ′′)3 × (φ ′φ ′)3 = (2φ1φ ′′
1 −φ2φ ′′

3 −φ3φ ′′
2 )× (2φ ′

1φ ′
1 −φ ′

2φ ′
3 −φ ′

3φ ′
2)+

(2φ3φ ′′
3 −φ1φ ′′

2 −φ2φ ′′
1 )× (2φ ′

2φ ′
2 −φ ′

1φ ′
3 −φ ′

3φ ′
1)

+(2φ2φ ′′
2 −φ1φ ′′

3 −φ3φ ′′
1 )× (2φ ′

3φ ′
3 −φ ′

1φ ′
2 −φ ′

2φ ′
1). (B.2)

The other products can similarly be written in component forms. For an illustrative purpose,

we consider the minimisation of a single triplet flavon φ ′. The potential for this flavon in

component form can be written as

V (φ ′) =−µ2
2 (φ

′†
1 φ ′

1 +φ ′†
2 φ ′

3 +φ ′†
3 φ ′

2)+λ2[(φ
′†
1 φ ′

1 +φ ′†
2 φ ′

3 +φ ′†
3 φ ′

2)
2 +(φ ′†

3 φ ′
3 +φ ′†

1 φ ′
2 +φ ′†

2 φ ′
1)

× (φ ′†
2 φ ′

2 +φ ′†
3 φ ′

1 +φ ′†
1 φ ′

3)+(2φ ′†
1 φ ′

1 −φ ′†
2 φ ′

3 −φ ′†
3 φ ′

2)
2 +2(2φ ′†

3 φ ′
3 −φ ′†

1 φ ′
2 −φ ′†

2 φ ′
1)

× (2φ ′†
2 φ ′

2 −φ ′†
1 φ ′

3 −φ ′†
3 φ ′

1)] (B.3)

The minimisation conditions are given as

∂V (φ ′)

∂φ
′
1

=−µ2
2 φ

′†
1 +λ2[2φ

′†
1 (φ ′†

1 φ ′
1 +φ ′†

2 φ ′
3 +φ ′†

3 φ ′
2)+φ

′†
2 (φ ′†

2 φ ′
2 +φ ′†

3 φ ′
1 +φ ′†

1 φ ′
3)

+φ
′†
3 (φ ′†

3 φ ′
3 +φ ′†

1 φ ′
2 +φ ′†

2 φ ′
1)+4φ

′†
1 (2φ ′†

1 φ ′
1 −φ ′†

2 φ ′
3 −φ ′†

3 φ ′
2)−2φ

′†
2

(2φ ′†
2 φ ′

2 −φ ′†
1 φ ′

3 −φ ′†
3 φ ′

1)−2φ
′†
3 (2φ ′†

3 φ ′
3 −φ ′†

1 φ ′
2 −φ ′†

2 φ ′
1)] = 0 (B.4)

∂V (φ ′)

∂φ
′
2

=−µ2
2 φ

′†
3 +λ2[2φ

′†
3 (φ ′†

1 φ ′
1 +φ ′†

2 φ ′
3 +φ ′†

3 φ ′
2)+φ

′†
1 (φ ′†

2 φ ′
2 +φ ′†

3 φ ′
1 +φ ′†

1 φ ′
3)

+φ
′†
2 (φ ′†

3 φ ′
3 +φ ′†

1 φ ′
2 +φ ′†

2 φ ′
1)−2φ

′†
3 (2φ ′†

1 φ ′
1 −φ ′†

2 φ ′
3 −φ ′†

3 φ ′
2)−2φ

′†
1

(2φ ′†
2 φ ′

2 −φ ′†
1 φ ′

3 −φ ′†
3 φ ′

1)+4φ
′†
2 (2φ ′†

3 φ ′
3 −φ ′†

1 φ ′
2 −φ ′†

2 φ ′
1)] = 0 (B.5)
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∂V (φ ′)

∂φ
′
3

=−µ2
2 φ

′†
2 +λ2[2φ

′†
2 (φ ′†

1 φ ′
1 +φ ′†

2 φ ′
3 +φ ′†

3 φ ′
2)+φ

′†
3 (φ ′†

2 φ ′
2 +φ ′†

3 φ ′
1 +φ ′†

1 φ ′
3)

+φ
′†
1 (φ ′†

3 φ ′
3 +φ ′†

1 φ ′
2 +φ ′†

2 φ ′
1)−2φ

′†
2 (2φ ′†

1 φ ′
1 −φ ′†

2 φ ′
3 −φ ′†

3 φ ′
2)+4φ

′†
3

(2φ ′†
2 φ ′

2 −φ ′†
1 φ ′

3 −φ ′†
3 φ ′

1)−2φ
′†
1 (2φ ′†

3 φ ′
3 −φ ′†

1 φ ′
2 −φ ′†

2 φ ′
1)] = 0 (B.6)

A few of the solutions we obtained from the above minimisation conditions are as follows.

1) φ ′
1 → 0,φ ′

2 → 0,φ ′
3 → 0

2) φ ′
1 → 0,φ ′

2 →− i
√

µ2
2√

17
√

λ2

,φ ′
3 →

i
√

µ2
2√

17
√

λ2

=⇒ φ ′ =− i
√

µ2
2√

17
√

λ2

(0,1,−1)

3) φ ′
1 → 0,φ ′

2 →
i
√

µ2
2√

17
√

λ2

,φ ′
3 →− i

√
µ2

2√
17
√

λ2

=⇒ φ ′ =− i
√

µ2
2√

17
√

λ2

(0,−1,1)

4)φ ′
1 →−

√
µ2

2

2
√

3
√

λ2

,φ ′
2 →−

√
µ2

2

2
√

3
√

λ2

,φ ′
3 →−

√
µ2

2

2
√

3
√

λ2

=⇒ φ ′ =−
√

µ2
2

2
√

3
√

λ2

(1,1,1)

5) φ ′
1 →−

√
µ2

2√
10
√

λ2

,φ ′
2 → 0,φ ′

3 → 0 =⇒ φ ′ =−
√

µ2
2√

10
√

λ2

(1,0,0)





C
Vacuum alignment of flavon fields φ ′, φ ′′ of

allowed cases

Sl no. φ
′

φ
′′

1. (0,1,−1) (0,1,−1)
2. (0,−1,1) (0,−1,1)
3. (1,0,−1) (1,0,−1)
4. (1,−1,0) (1,−1,0)
5. (−1,0,1) (−1,0,1)
6. (−1,1,0) (−1,1,0)
7. (0,1,−1) (0,−1,1)
8. (0,1,−1) (1,0,−1)
9. (0,1,−1) (−1,0,1)

10. (0,−1,1) (0,1,−1)
11. (0,−1,1) (1,0,−1)
12. (0,−1,1) (−1,0,1)

Table C.1 Texture one zero.

Sl no. φ
′

φ
′′

13. (1,0,−1) (1,−1,0)
14. (1,0,−1) (−1,0,1)
15. (1,0,−1) (−1,1,0)
16. (1,−1,0) (0,1,−1)
17. (1,−1,0) (0,−1,1)
18. (1,−1,0) (−1,1,0)
19. (−1,0,1) (1,0,−1)
20. (−1,0,1) (1,−1,0)
21. (−1,0,1) (−1,1,0)
22. (−1,1,0) (0,1,−1)
23. (−1,1,0) (0,−1,1)
24. (−1,1,0) (1,−1,0)

Table C.2 Texture one zero (contd).
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Sl no. φ
′

φ
′′

25. (0,1,1) (0,1,1)
26. (0,1,1) (0,1,−1)
27. (0,1,1) (0,−1,1)
28. (0,1,1) (0,−1,−1)
29. (0,1,1) (1,0,1)
30. (0,1,1) (1,0,−1)
31. (0,1,1) (−1,0,1)
32. (0,1,1) (−1,0,−1)
33. (0,1,−1) (0,1,1)
34. (0,1,−1) (0,−1,−1)
35. (0,1,−1) (1,0,1)
36. (0,1,−1) (−1,0,−1)
37. (0,−1,1) (0,1,1)
38. (0,−1,1) (0,−1,−1)
39. (0,−1,1) (1,0,1)
40. (0,−1,−1) (0,1,1)
41. (0,−1,−1) (0,1,−1)
42. (0,−1,−1) (0,−1,1)
43. (0,−1,−1) (0,−1,−1)
44. (0,−1,−1) (1,0,1)
45. (0,−1,−1) (1,0,−1)
46. (0,−1,−1) (−1,0,1)
47. (0,−1,−1) (−1,0,−1)
48. (1,0,1) (1,0,1)
49. (1,0,1) (1,0,−1)
50. (1,0,1) (1,1,0)
51. (1,0,1) (1,−1,0)
52. (1,0,1) (−1,0,1)
53. (1,0,1) (−1,1,0)
54. (1,0,1) (−1,−1,0)
55. (1,0,1) (−1,0,−1)
56. (1,0,−1) (1,0,1)
57. (1,0,−1) (1,1,0)
58. (1,0,−1) (−1,0,−1)
59. (1,0,−1) (−1,−1,0)
60. (1,1,0) (0,1,1)

Table C.3 Texture one zero (contd).

Sl no. φ
′

φ
′′

61. (1,1,0) (0,1,−1)
62. (1,1,0) (0,−1,1)
63. (1,1,0) (0,−1,−1)
64. (1,1,0) (1,1,0)
65. (1,1,0) (1,−1,0)
66. (1,1,0) (−1,1,0)
67. (1,1,0) (−1,−1,0)
68. (1,−1,0) (0,1,1)
69. (1,−1,0) (0,−1,−1)
70. (1,−1,0) (1,1,0)
71. (−1,0,1) (1,0,1)
72. (−1,0,1) (1,1,0)
73. (−1,0,1) (−1,0,−1)
74. (−1,0,1) (−1,−1,0)
75. (−1,0,−1) (1,0,1)
76. (−1,0,−1) (1,0,−1)
77. (−1,0,−1) (1,1,0)
78. (−1,0,−1) (1,−1,0)
79. (−1,0,−1) (−1,0,−1)
80. (−1,0,−1) (−1,1,0)
81. (−1,0,−1) (−1,−1,0)
82. (−1,1,0) (0,−1,−1)
83. (−1,1,0) (1,1,0)
84. (−1,1,0) (−1,−1,0)
85. (−1,−1,0) (0,1,1)
86. (−1,−1,0) (0,1,−1)
87. (−1,−1,0) (0,−1,1)
88. (−1,−1,0) (0,−1,−1)
89. (−1,−1,0) (−1,1,0)
90. (−1,−1,0) (−1,−1,0)
91. (−1,−1,0) (1,1,0)
92. (−1,−1,0) (1,−1,0)
93. (−1,1,0) (0,1,1)
94. (0,−1,1) (−1,0,−1)
95. (1,−1,0) (1,1,0)
96 (1,−1,0) (−1,−1,0)

Table C.4 Texture one zero.
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Sl no. φ
′

φ
′′

1. (0,0,1) (0,0,1)
2. (0,0,1) (0,0,−1)
3. (0,0,−1) (0,0,1)
4. (0,0,−1) (0,0,−1)
5. (1,0,0) (0,1,0)
6. (1,0,0) (0,−1,0)
7. (−1,0,0) (0,1,0)
8. (−1,0,0) (0,−1,0)

Table C.5 Texture three zero.

Sl no. φ
′

φ
′′

1. (0,0,1) (0,1,1)
2. (0,0,1) (0,1,−1)
3. (0,0,1) (0,−1,1)
4. (0,0,1) (0,−1,−1)
5. (0,0,1) (1,0,1)
6. (0,0,1) (1,0,−1)
7. (0,0,1) (−1,0,1)
8. (0,0,1) (−1,0,−1)
9. (0,0,−1) (0,1,1)
10. (0,0,−1) (0,1,−1)
11. (0,0,−1) (0,−1,1)
12. (0,0,−1) (0,−1,−1)
13. (0,0,−1) (1,0,1)
14. (0,0,−1) (1,0,−1)
15. (0,0,−1) (−1,0,1)
16. (0,0,−1) (−1,0,−1)
17. (0,1,1) (0,0,1)
18. (0,1,1) (0,0,−1)
19. (0,1,−1) (0,0,1)
20. (0,1,−1) (0,0,−1)
21. (0,−1,1) (0,0,1)
22. (0,−1,1) (0,0,−1)
23. (0,−1,−1) (0,0,1)
24. (0,−1,−1) (0,0,−1)
25. (1,0,0) (0,1,1)
26. (1,0,0) (0,1,−1)
27. (1,0,0) (0,−1,1)
28. (1,0,0) (0,−1,−1)
29. (1,0,0) (1,1,0)
30. (1,0,0) (1,−1,0)
31. (1,0,0) (−1,1,0)
32. (1,0,0) (−1,−1,0)

Table C.6 Texture two zero.
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Sl no. φ
′

φ
′′

33. (1,0,1) (0,0,1)
34. (1,0,1) (0,0,−1)
35. (1,0,1) (0,1,0)
36. (1,0,1) (0,−1,0)
37. (1,0,−1) (0,0,1)
38. (1,0,−1) (0,0,−1)
39. (1,0,−1) (0,1,0)
40. (1,0,−1) (0,−1,0)
41. (1,1,0) (0,1,0)
42. (1,1,0) (0,−1,0)
43. (1,−1,0) (0,1,0)
44. (1,−1,0) (0,−1,0)
45. (−1,0,0) (0,1,1)
46. (−1,0,0) (0,1,−1)
47. (−1,0,0) (0,−1,1)
48. (−1,0,0) (0,−1,−1)
49. (−1,0,0) (1,1,0)
50. (−1,0,0) (1,−1,0)
51. (−1,0,0) (−1,1,0)
52. (−1,0,0) (−1,−1,0)
53. (−1,0,1) (0,0,1)
54. (−1,0,1) (0,0,−1)
55. (−1,0,1) (0,1,0)
56. (−1,0,1) (0,−1,0)
57. (−1,0,−1) (0,0,1)
58. (−1,0,−1) (0,0,−1)
59. (−1,0,−1) (0,1,0)
60. (−1,0,−1) (0,−1,0)
61. (−1,1,0) (0,1,0)
62. (−1,1,0) (0,−1,0)
63. (−1,−1,0) (0,1,0)
64. (−1,−1,0) (0,−1,0)

Table C.7 Texture two zero (contd).

Sl no. φ
′

φ
′′

1. (1,0,−1) (0,1,−1)
2. (1,0,−1) (0,−1,1)
3. (−1,0,1) (0,1,−1)
4. (−1,0,1) (0,−1,1)
5. (0,0,0) (0,1,−1)
6. (0,0,0) (0,−1,1)
7. (0,1,0) (0,1,−1)
8. (0,1,0) (0,−1,1)
9. (0,−1,0) (0,1,−1)

10. (0,−1,0) (0,−1,1)
11. (1,0,1) (0,1,−1)
12. (1,0,1) (0,−1,1)
13. (1,0,−1) (0,0,0)
14. (1,0,−1) (0,1,1)
15. (1,0,−1) (0,−1,−1)
16. (1,0,−1) (1,0,0)
17. (1,0,−1) (1,1,1)
18. (1,0,−1) (1,−1,−1)
19. (1,0,−1) (−1,0,0)
20. (1,0,−1) (−1,1,1)
21. (1,0,−1) (−1,−1,−1)
22. (1,1,1) (0,1,−1)
23. (1,1,1) (0,−1,1)
24. (1,−1,1) (0,1,−1)
25. (1,−1,1) (0,−1,1)
26. (−1,0,1) (0,0,0)
27. (−1,0,1) (0,1,1)
28. (−1,0,1) (0,−1,−1)
29. (−1,0,1) (1,0,0)
30. (−1,0,1) (1,1,1)
31. (−1,0,1) (1,−1,−1)
32. (−1,0,1) (−1,0,0)
33. (−1,0,1) (−1,1,1)
34. (−1,0,1) (−1,−1,−1)
35. (−1,0,−1) (0,1,−1)
36. (−1,0,−1) (0,−1,1)
37. (−1,−1,−1) (0,1,−1)
38. (−1,1,−1) (0,1,−1)
39. (−1,1,−1) (0,−1,1)
40. (−1,−1,−1) (0,−1,1)

Table C.8 (µ −τ) symmetry (in 3×3

block).
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Sl no. φ
′

φ
′′

1. (0,0,0) (1,1,−1)
2. (0,0,0) (1,−1,1)
3. (0,0,0) (−1,1,−1)
4. (0,0,0) (−1,−1,1)
5. (0,0,1) (1,1,1)
6. (0,0,1) (1,1,−1)
7. (0,0,1) (1,−1,1)
8. (0,0,1) (1,−1,−1)
9. (0,0,1) (−1,1,1)
10. (0,0,1) (−1,1,−1)
11. (0,0,1) (−1,−1,1)
12. (0,0,1) (−1,−1,−1)
13. (0,0,−1) (1,1,1)
14. (0,0,−1) (1,1,−1)
15. (0,0,−1) (1,−1,1)
16. (0,0,−1) (1,−1,−1)
17. (0,0,−1) (−1,1,1)
18. (0,0,−1) (−1,1,−1)
19. (0,0,−1) (−1,−1,1)
20. (0,0,−1) (−1,−1,−1)
21. (0,1,0) (1,1,−1)
22. (0,1,0) (1,−1,1)
23. (0,1,0) (−1,1,−1)
24. (0,1,0) (−1,−1,1)
25. (0,1,1) (1,1,1)
26. (0,1,1) (1,1,−1)
27. (0,1,1) (1,−1,1)
28. (0,1,1) (1,−1,−1)
29. (0,1,1) (−1,1,1)
30. (0,1,1) (−1,1,−1)
31. (0,1,1) (−1,−1,1)
32. (0,1,1) (−1,−1,−1)
33. (0,1,−1) (1,1,1)
34. (0,1,−1) (1,1,−1)
35. (0,1,−1) (1,−1,1)
36. (0,1,−1) (1,−1,−1)
37. (0,1,−1) (−1,1,1)
38. (0,1,−1) (−1,1,−1)
39. (0,1,−1) (−1,−1,1)
40. (0,1,−1) (−1,−1,−1)

Table C.9 Hybrid texture.

Sl no. φ
′

φ
′′

41. (0,−1,0) (1,1,−1)
42. (0,−1,0) (1,−1,1)
43. (0,−1,0) (−1,1,−1)
44. (0,−1,0) (−1,−1,1)
45. (0,−1,1) (1,1,1)
46. (0,−1,1) (1,1,−1)
47. (0,−1,1) (1,−1,1)
48. (0,−1,1) (1,−1,−1)
49. (0,−1,1) (−1,1,1)
50. (0,−1,1) (−1,1,−1)
51. (0,−1,1) (−1,−1,1)
52. (0,−1,1) (−1,−1,−1)
53. (0,−1,−1) (1,1,1)
54. (0,−1,−1) (1,1,−1)
55. (0,−1,−1) (1,−1,1)
56. (0,−1,−1) (1,−1,−1)
57. (0,−1,−1) (−1,1,1)
58. (0,−1,−1) (−1,1,−1)
59. (0,−1,−1) (−1,−1,1)
60. (0,−1,−1) (−1,−1,−1)
61. (1,0,0) (1,1,1)
62. (1,0,0) (1,1,−1)
63. (1,0,0) (1,−1,1)
64. (1,0,0) (1,−1,−1)
65. (1,0,0) (−1,1,1)
66. (1,0,0) (−1,1,−1)
67. (1,0,0) (−1,−1,1)
68. (1,0,0) (−1,−1,−1)
69. (1,0,1) (1,1,−1)
70. (1,0,1) (1,−1,1)
71. (1,0,1) (−1,1,−1)
72. (1,0,1) (−1,−1,1)
73. (1,0,−1) (1,1,−1)
74. (1,0,−1) (1,−1,1)
75. (1,0,−1) (−1,1,−1)
76. (1,0,−1) (−1,−1,1)
77. (1,1,0) (1,1,1)
78. (1,1,0) (1,1,−1)
79. (1,1,0) (1,−1,1)
80. (1,1,0) (1,−1,−1)

Table C.10 Hybrid texture (contd).
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Sl no. φ
′

φ
′′

81. (1,1,0) (−1,1,1)
82. (1,1,0) (−1,1,−1)
83. (1,1,0) (−1,−1,1)
84. (1,1,0) (−1,−1,−1)
85. (1,1,1) (0,0,1)
86. (1,1,1) (0,0,−1)
87. (1,1,1) (0,1,0)
88. (1,1,1) (0,−1,0)
89. (1,1,1) (1,0,1)
90. (1,1,1) (1,0,−1)
91. (1,1,1) (1,1,0)
92. (1,1,1) (1,1,−1)
93. (1,1,1) (1,−1,0)
94. (1,1,1) (1,−1,1)
95. (1,1,1) (−1,0,1)
96. (1,1,1) (−1,0,−1)
97. (1,1,1) (−1,1,0)
98. (1,1,1) (−1,1,−1)
99. (1,1,1) (−1,−1,0)
100. (1,1,1) (−1,−1,1)
101. (1,1,−1) (0,0,0)
102. (1,1,−1) (0,0,1)
103. (1,1,−1) (0,0,−1)
104. (1,1,−1) (0,1,0)
105. (1,1,−1) (0,1,1)
106. (1,1,−1) (0,1,−1)
107. (1,1,−1) (0,−1,0)
108. (1,1,−1) (0,−1,1)
109. (1,1,−1) (0,−1,−1)
110. (1,1,−1) (1,0,0)
111. (1,1,−1) (1,0,1)
112. (1,1,−1) (1,0,−1)
113. (1,1,−1) (1,1,0)
114. (1,1,−1) (1,1,1)
115. (1,1,−1) (1,1,−1)
116. (1,1,−1) (1,−1,0)
117. (1,1,−1) (1,−1,1)
118. (1,1,−1) (1,−1,−1)
119. (1,1,−1) (−1,0,0)
120. (1,1,−1) (−1,0,1)
121. (1,1,−1) (−1,0,−1)

Table C.11 Hybrid texture (contd).

Sl no. φ
′

φ
′′

122. (1,1,−1) (−1,1,0)
123. (1,1,−1) (−1,1,1)
124. (1,1,−1) (−1,1,−1)
125. (1,1,−1) (−1,−1,0)
126. (1,1,−1) (−1,−1,1)
127. (1,1,−1) (−1,−1,−1)
128. (1,−1,0) (1,1,1)
129. (1,−1,0) (1,1,−1)
130. (1,−1,0) (1,−1,1)
131. (1,−1,0) (1,−1,−1)
132. (1,−1,0) (−1,1,1)
133. (1,−1,0) (−1,1,−1)
134. (1,−1,0) (−1,−1,1)
135. (1,−1,0) (−1,−1,−1)
136. (1,−1,1) (0,0,1)
137. (1,−1,1) (0,0,−1)
138. (1,−1,1) (0,1,0)
139. (1,−1,1) (0,−1,0)
140. (1,−1,1) (1,0,−1)
141. (1,−1,1) (1,1,0)
142. (1,−1,1) (1,−1,0)
143. (1,−1,1) (1,−1,1)
144. (1,−1,1) (1,1,−1)
145. (1,−1,1) (−1,0,1)
146. (1,−1,1) (−1,0,−1)
147. (1,−1,1) (−1,1,0)
148. (1,−1,1) (−1,1,−1)
149. (1,−1,1) (−1,−1,0)
150. (1,−1,1) (−1,−1,1)
151. (1,−1,−1) (0,0,0)
152. (1,−1,−1) (0,0,1)
153. (1,−1,−1) (0,0,−1)
154. (1,−1,−1) (0,1,0)
155. (1,−1,−1) (0,1,1)
156. (1,−1,−1) (0,1,−1)
157. (1,−1,−1) (0,−1,0)
158. (1,−1,−1) (0,−1,1)
159. (1,−1,−1) (0,−1,−1)
160. (1,−1,−1) (1,0,0)
161. (1,−1,−1) (1,0,1)
162. (1,−1,−1) (1,0,−1)

Table C.12 Hybrid texture (contd).
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Sl no. φ
′

φ
′′

163. (1,−1,−1) (1,1,0)
164. (1,−1,−1) (1,1,1)
165. (1,−1,−1) (1,1,−1)
166. (1,−1,−1) (1,−1,0)
167. (1,−1,−1) (1,−1,1)
168. (1,−1,−1) (1,−1,−1)
169. (1,−1,−1) (−1,0,0)
170. (1,−1,−1) (−1,0,1)
171. (1,−1,−1) (−1,0,−1)
172. (1,−1,−1) (−1,1,0)
173. (1,−1,−1) (−1,1,1)
174. (1,−1,−1) (−1,1,−1)
175. (1,−1,−1) (−1,−1,0)
176. (1,−1,−1) (−1,−1,1)
177. (1,−1,−1) (−1,−1,−1)
178. (−1,0,0) (1,1,1)
179. (−1,0,0) (1,1,−1)
180. (−1,0,0) (1,−1,1)
181. (−1,0,0) (1,−1,−1)
182. (−1,0,0) (−1,1,1)
183. (−1,0,0) (−1,1,−1)
184. (−1,0,0) (−1,−1,1)
185. (−1,0,0) (−1,−1,−1)
186. (−1,0,1) (1,1,−1)
187. (−1,0,1) (1,−1,1)
188. (−1,0,1) (−1,1,−1)
189. (−1,0,1) (−1,−1,1)
190. (−1,0,−1) (1,1,−1)
191. (−1,0,−1) (1,−1,1)
192. (−1,0,−1) (−1,1,−1)
193. (−1,0,−1) (−1,−1,1)
194. (−1,1,0) (1,1,1)
195. (−1,1,0) (1,1,−1)
196. (−1,1,0) (1,−1,1)
197. (−1,1,0) (1,−1,−1)
198. (−1,1,0) (−1,1,1)
199. (−1,1,0) (−1,1,−1)
200. (−1,1,0) (−1,−1,1)
201. (−1,1,0) (−1,−1,−1)
202. (−1,1,1) (0,0,0)
203. (−1,1,1) (0,0,1)

Table C.13 Hybrid texture (contd).

Sl no. φ
′

φ
′′

204. (−1,1,1) (0,0,−1)
205. (−1,1,1) (0,1,0)
206. (−1,1,1) (0,1,1)
207. (−1,1,1) (0,1,−1)
208. (−1,1,1) (0,−1,0)
209. (−1,1,1) (0,−1,1)
210. (−1,1,1) (0,−1,−1)
211. (−1,1,1) (1,0,0)
212. (−1,1,1) (1,0,1)
213. (−1,1,1) (1,0,−1)
214. (−1,1,1) (1,1,0)
215. (−1,1,1) (1,1,1)
216. (−1,1,1) (1,1,−1)
217. (−1,1,1) (1,−1,0)
218. (−1,1,1) (1,−1,1)
219. (−1,1,1) (1,−1,−1)
220. (−1,1,1) (−1,0,0)
221. (−1,1,1) (−1,0,1)
222. (−1,1,1) (−1,0,−1)
223. (−1,1,1) (−1,1,0)
224. (−1,1,1) (−1,1,1)
225. (−1,1,1) (−1,1,−1)
226. (−1,1,1) (−1,−1,0)
227. (−1,1,1) (−1,−1,1)
228. (−1,1,1) (−1,−1,−1)
229. (−1,1,−1) (0,0,1)
230. (−1,1,−1) (0,0,−1)
231. (−1,1,−1) (0,1,0)
232. (−1,1,−1) (0,−1,0)
233. (−1,1,−1) (1,0,1)
234. (−1,1,−1) (1,0,−1)
235. (−1,1,−1) (1,1,0)
236. (−1,1,−1) (1,1,−1)
237. (−1,1,−1) (1,−1,0)
238. (−1,1,−1) (1,−1,1)
239. (−1,1,−1) (−1,0,1)
240. (−1,1,−1) (−1,0,−1)
241. (−1,1,−1) (−1,1,0)
242. (−1,1,−1) (−1,1,−1)
243. (−1,1,−1) (−1,−1,0)

Table C.14 Hybrid texture (contd)



114 Vacuum alignment of flavon fields φ ′, φ ′′ of allowed cases

Sl no. φ
′

φ
′′

244. (−1,1,−1) (−1,−1,1)
245. (−1,−1,0) (1,1,1)
246. (−1,−1,0) (1,1,−1)
247. (−1,−1,0) (1,−1,1)
248. (−1,−1,0) (1,−1,−1)
249. (−1,−1,0) (−1,1,1)
250. (−1,−1,0) (−1,1,−1)
251. (−1,−1,0) (−1,−1,1)
252. (−1,−1,0) (−1,−1,−1)
253. (−1,−1,1) (0,0,0)
254. (−1,−1,1) (0,0,1)
255. (−1,−1,1) (0,0,−1)
256. (−1,−1,1) (0,1,0)
257. (−1,−1,1) (0,1,1)
258. (−1,−1,1) (0,1,−1)
259. (−1,−1,1) (0,−1,0)
260. (−1,−1,1) (0,−1,1)
261. (−1,−1,1) (0,−1,−1)
262. (−1,−1,1) (1,0,0)
263. (−1,−1,1) (1,0,1)
264. (−1,−1,1) (1,0,−1)
265. (−1,−1,1) (1,1,0)
266. (−1,−1,1) (1,1,1)
267. (−1,−1,1) (1,1,−1)
268. (−1,−1,1) (1,−1,0)
269. (−1,−1,1) (1,−1,1)
270. (−1,−1,1) (1,−1,−1)
271. (−1,−1,1) (−1,0,0)
272. (−1,−1,1) (−1,0,1)
273. (−1,−1,1) (−1,0,−1)
274. (−1,−1,1) (−1,1,0)
275. (−1,−1,1) (−1,1,1)
276. (−1,−1,1) (−1,1,−1)
277. (−1,−1,1) (−1,−1,0)
278. (−1,−1,1) (−1,−1,1)
279. (−1,−1,1) (−1,−1,−1)
280. (−1,−1,−1) (0,0,1)
281. (−1,−1,−1) (0,0,−1)
282. (−1,−1,−1) (0,1,0)
283. (−1,−1,−1) (0,−1,0)
284. (−1,−1,−1) (1,0,1)

Table C.15 Hybrid texture (contd).

Sl no. φ
′

φ
′′

285. (−1,−1,−1) (1,0,−1)
286. (−1,−1,−1) (1,1,0)
287. (−1,−1,−1) (1,1,−1)
288. (−1,−1,−1) (1,−1,0)
289. (−1,−1,−1) (1,−1,1)
290. (−1,−1,−1) (−1,0,1)
291. (−1,−1,−1) (−1,0,−1)
292. (−1,−1,−1) (−1,1,0)
293. (−1,−1,−1) (−1,1,−1)
294. (−1,−1,−1) (−1,−1,0)
295. (−1,−1,−1) (−1,−1,1)
296. (1,−1,1) (1,0,1)

Table C.16 Hybrid texture

(contd)



D
Vacuum alignment of φ ′, φ ′′ of disallowed

cases

Sl no. φ
′

φ
′′

1. (0,0,0) (0,0,0)
2. (0,0,0) (1,0,0)
3. (0,0,0) (−1,0,0)
4. (0,1,0) (0,0,0)
5. (0,1,0) (1,0,0)
6. (0,1,0) (−1,0,0)
7. (0,−1,0) (0,0,0)
8. (0,−1,0) (1,0,0)
9. (0,−1,0) (−1,0,0)

Table D.1 Texture zero in the entire

2nd and 3rd row and column of 4×4

matrix.

Sl no. φ
′

φ
′′

1. (0,1,−1) (1,−1,0)
2. (0,1,−1) (−1,1,0)
3. (0,−1,1) (1,−1,0)
4. (0,−1,1) (−1,1,0)
5. (0,0,0) (0,1,0)
6. (0,0,0) (0,−1,0)
7. (0,0,0) (1,−1,0)
8. (0,0,0) (−1,1,0)
9. (0,0,0) (−1,−1,0)

10. (0,0,1) (0,0,0)

Table D.2 Texture zero in the entire

2nd row and column of 4×4 matrix.
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Sl no. φ
′

φ
′′

11. (0,0,1) (0,1,0)
12. (0,0,1) (0,−1,0)
13. (0,0,1) (1,0,0)
14. (0,0,1) (1,1,0)
15. (0,0,1) (1,−1,0)
16. (0,0,1) (−1,0,0)
17. (0,0,1) (−1,1,0)
18. (0,0,1) (−1,−1,0)
19. (0,0,−1) (0,0,0)
20. (0,0,−1) (0,1,0)
21. (0,0,−1) (1,0,0)
22. (0,0,−1) (1,1,0)
23. (0,0,−1) (1,−1,0)
24. (0,0,−1) (−1,0,0)
25. (0,0,−1) (−1,1,0)
26. (0,0,−1) (−1,−1,0)
27. (0,1,0) (0,1,0)
28. (0,1,0) (0,−1,0)
29. (0,1,0) (1,1,0)
30. (0,1,0) (1,−1,0)
31. (0,1,0) (−1,1,0)
32. (0,1,0) (−1,−1,0)
33. (0,1,1) (0,0,0)
34. (0,1,1) (0,1,0)
35. (0,1,1) (0,−1,0)
36. (0,1,1) (1,0,0)

Table D.3 Texture zero in the entire

2nd row and column of 4×4 matrix.

Sl no. φ
′

φ
′′

37. (0,1,1) (1,1,0)
38. (0,1,1) (1,−1,0)
39. (0,1,1) (−1,0,0)
40. (0,1,1) (−1,1,0)
41. (0,1,1) (−1,−1,0)
42. (0,1,−1) (0,0,0)
43. (0,1,−1) (0,1,0)
44. (0,1,−1) (0,−1,0)
45. (0,1,−1) (1,0,0)
46. (0,1,−1) (1,1,0)
47. (0,1,−1) (−1,0,0)
48. (0,1,−1) (−1,−1,0)
49. (0,−1,0) (0,1,0)
50. (0,−1,0) (0,−1,0)
51. (0,−1,0) (1,1,0)
52. (0,−1,0) (1,−1,0)
53. (0,−1,0) (−1,1,0)
54. (0,−1,0) (−1,−1,0)
55. (0,−1,1) (0,0,0)
56. (0,−1,1) (0,1,0)
57. (0,−1,1) (0,−1,0)
58. (0,−1,1) (1,0,0)
59. (0,−1,1) (1,1,0)
60. (0,−1,1) (−1,0,0)
61. (0,−1,1) (−1,−1,0)
62. (0,−1,−1) (0,0,0)
63. (0,−1,−1) (0,1,0)
64. (0,−1,−1) (0,−1,0)
65. (0,−1,−1) (1,0,0)
66. (0,−1,−1) (1,1,0)
67. (0,−1,−1) (1,−1,0)
68. (0,−1,−1) (−1,0,0)
69. (0,−1,−1) (−1,1,0)
70. (0,−1,−1) (−1,−1,0)
71. (0,0,−1) (0,−1,0)

Table D.4 Texture zero in the entire

2nd row and column of 4×4 matrix .
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Sl no. φ
′

φ
′′

1. (1,−1,0) (1,0,−1)
2. (1,−1,0) (−1,0,1)
3. (−1,1,0) (1,0,−1)
4. (−1,1,0) (−1,0,1)
5. (0,0,0) (0,0,1)
6. (0,0,0) (0,0,−1)
7. (0,0,0) (1,0,1)
8. (0,0,0) (1,0,−1)
9. (0,0,0) (1,1,0)
10. (0,0,0) (−1,0,1)
11. (0,0,0) (−1,0,−1)
12. (0,1,0) (0,0,1)
13. (0,1,0) (0,0,−1)
14. (0,1,0) (1,0,1)
15. (0,1,0) (1,0,−1)
16. (0,1,0) (−1,0,1)
17. (0,1,0) (−1,0,−1)
18. (0,−1,0) (0,0,1)
19. (0,−1,0) (0,0,−1)
20. (0,−1,0) (1,0,1)
21. (0,−1,0) (1,0,−1)
22. (0,−1,0) (−1,0,1)
23. (0,−1,0) (−1,0,−1)
24. (1,0,0) (0,0,0)
25. (1,0,0) (0,0,1)
26. (1,0,0) (0,0,−1)
27. (1,0,0) (1,0,0)
28. (1,0,0) (1,0,1)
29. (1,0,0) (1,0,−1)
30. (1,0,0) (−1,0,0)
31. (1,0,0) (−1,0,1)
32. (1,0,0) (−1,0,−1)
33. (1,1,0) (0,0,0)
34. (1,1,0) (0,0,1)
35. (1,1,0) (0,0,−1)
36. (1,1,0) (1,0,0)
37. (1,1,0) (1,0,1)

Table D.5 Texture zero in the entire

3rd row and column of 4×4 matrix.

Sl no. φ
′

φ
′′

38. (1,1,0) (1,0,−1)
39. (1,1,0) (−1,0,0)
40. (1,1,0) (−1,0,1)
41. (1,1,0) (−1,0,−1)
42. (1,−1,0) (0,0,0)
43. (1,−1,0) (0,0,1)
44. (1,−1,0) (0,0,−1)
45. (1,−1,0) (1,0,0)
46. (1,−1,0) (1,0,1)
47. (1,−1,0) (−1,0,0)
48. (1,−1,0) (−1,0,−1)
49. (−1,0,0) (0,0,0)
50. (−1,0,0) (0,0,1)
51. (−1,0,0) (0,0,−1)
52. (−1,0,0) (1,0,0)
53. (−1,0,0) (1,0,1)
54. (−1,0,0) (1,0,−1)
55. (−1,0,0) (−1,0,0)
56. (−1,0,0) (−1,0,1)
57. (−1,0,0) (−1,0,−1)
58. (−1,1,0) (0,0,0)
59. (−1,1,0) (0,0,1)
60. (−1,1,0) (0,0,−1)
61. (−1,1,0) (1,0,0)
62. (−1,1,0) (1,0,1)
63. (−1,1,0) (−1,0,0)
64. (−1,1,0) (−1,0,−1)
65. (−1,−1,0) (0,0,0)
66. (−1,−1,0) (0,0,1)
67. (−1,−1,0) (0,0,−1)
68. (−1,−1,0) (1,0,0)
69. (−1,−1,0) (1,0,1)
70. (−1,−1,0) (1,0,−1)
71. (−1,−1,0) (−1,0,0)
72. (−1,−1,0) (−1,0,1)
73. (−1,−1,0) (−1,0,−1)

Table D.6 Texture zero in the entire

3rd row and column of 4×4 matrix.



118 Vacuum alignment of φ ′, φ ′′ of disallowed cases

Sl no. φ
′

φ
′′

1. (0,0,0) (0,1,1)
2. (0,0,0) (0,−1,−1)
3. (0,0,0) (1,−1,−1)
4. (0,0,0) (−1,1,1)
5. (0,0,0) (−1,−1,−1)
6. (0,1,0) (0,1,1)
7. (0,1,0) (1,1,1)
8. (0,1,0) (−1,−1,−1)
9. (0,−1,0) (0,1,1)
10. (0,−1,0) (0,−1,−1)
11. (0,−1,0) (1,1,1)
12. (0,1,0) (1,−1,−1)
13. (0,1,0) (−1,1,1)
14. (0,−1,0) (1,−1,−1)
15. (0,−1,0) (−1,1,1)
16. (0,−1,0) (−1,−1,−1)
17. (1,0,1) (0,0,0)
18. (1,0,1) (1,1,1)
19. (1,0,1) (1,−1,−1)
20. (1,0,1) (−1,0,0)
21. (1,0,1) (−1,1,1)
22. (1,0,1) (−1,−1,−1)
23. (1,1,1) (0,0,0)
24. (1,1,1) (0,1,1)
25. (1,1,1) (0,−1,−1)
26. (1,1,1) (1,0,0)
27. (1,1,1) (1,1,1)
28. (1,1,1) (1,−1,−1)
29. (1,1,1) (−1,0,0)
30. (1,1,1) (−1,1,1)

Table D.7 (µ − τ) symmetry in the

entire 4×4 matrix.

Sl no. φ
′

φ
′′

31. (1,1,1) (−1,−1,−1)
32. (1,−1,1) (0,0,0)
33. (1,−1,1) (0,1,1)
34. (1,−1,1) (0,−1,−1)
35. (1,−1,1) (1,0,0)
36. (1,−1,1) (1,1,1)
37. (1,−1,1) (1,−1,−1)
38. (1,−1,1) (−1,0,0)
39. (1,−1,1) (−1,1,1)
40. (1,−1,1) (−1,−1,−1)
41. (−1,0,−1) (0,1,1)
42. (−1,0,−1) (1,1,1)
43. (−1,0,−1) (1,−1,−1)
44. (−1,0,−1) (−1,1,1)
45. (−1,0,−1) (−1,−1,−1)
46. (−1,1,−1) (0,0,0)
47. (−1,1,−1) (0,1,1)
48. (−1,1,−1) (0,−1,−1)
49. (−1,1,−1) (1,0,0)
50. (−1,1,−1) (1,1,1)
51. (−1,1,−1) (1,−1,−1)
52. (−1,1,−1) (−1,0,0)
53. (−1,1,−1) (−1,1,1)
54. (−1,1,−1) (−1,−1,−1)
55. (−1,−1,−1) (0,0,0)
56. (−1,−1,−1) (0,1,1)
57. (−1,−1,−1) (0,−1,−1)
58. (−1,−1,−1) (1,0,0)
59. (−1,−1,−1) (1,1,1)
60. (−1,−1,−1) (1,−1,−1)
61. (−1,−1,−1) (−1,0,0)
62. (−1,−1,−1) (−1,1,1)
63. (−1,−1,−1) (−1,−1,−1)
64. (0,1,0) (0,−1,−1)
65. (1,0,1) (0,1,1)
66. (1,0,1) (0,−1,−1)
67. (1,0,1) (1,0,0)
68. (−1,0,−1) (0,0,0)
69. (−1,0,−1) (0,−1,−1)
70. (−1,0,−1) (1,0,0)
71. (−1,0,−1) (−1,0,0)
72. (0,0,0) (1,1,1)

Table D.8 (µ − τ) symmetry in the

entire 4×4 matrix.



E
Vacuum alignment for allowed cases

Sl no. VEV list Comment

1. φ ′ = (0,0,1), φ ′′ = (0,0,1) 8 of such matrices

φ ′ = (0,0,1), φ ′′ = (0,0,−1)
φ ′ = (0,0,−1), φ ′′ = (0,0,1)

φ ′ = (0,0,−1), φ ′′ = (0,0,−1)
φ ′ = (1,0,0), φ ′′ = (0,1,0)

φ ′ = (1,0,0), φ ′′ = (0,−1,0)
φ ′ = (−1,0,0), φ ′′ = (0,1,0)

φ ′ = (−1,0,0), φ ′′ = (0,−1,0)

Table E.1 VEV alignment of triplet flavon fields φ ′, φ ′′ for texture 3 zero symmetric case,

that give rise to same complex constraints.
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Sl no. VEV list Comment

1. φ ′ = (1,0,1), φ ′′ = (0,1,−1) 8 of such matrices

φ ′ = (1,0,1),φ ′′ = (0,−1,1)
φ ′ = (1,0,−1),φ ′′ = (0,1,1)

φ ′ = (1,0,−1),φ ′′ = (0,−1,−1)
φ ′ = (−1,0,1),φ ′′ = (0,1,1)

φ ′ = (−1,0,1),φ ′′ = (0,−1,−1)
φ ′ = (−1,0,−1),φ ′′ = (0,1,−1)
φ ′ = (−1,0,−1),φ ′′ = (0,−1,1)

2. φ ′ = (1,0,−1), φ ′′ = (1,1,1) 8 of such matrices

φ ′ = (1,0,−1), φ ′′ = (−1,−1,−1)
φ ′ = (1,1,1), φ ′′ = (0,1,−1)
φ ′ = (1,1,1), φ ′′ = (0,−1,1)
φ ′ = (−1,0,1), φ ′′ = (1,1,1)

φ ′ = (−1,0,1), φ ′′ = (−1,−1,−1)
φ ′ = (−1,−1,−1), φ ′′ = (0,1,−1)
φ ′ = (−1,−1,−1), φ ′′ = (0,−1,1)

3. φ ′ = (1,0,−1), φ ′′ = (1,−1,−1) 8 of such matrices

φ ′ = (1,0,−1), φ ′′ = (−1,1,1)
φ ′ = (1,−1,1), φ ′′ = (0,1,−1)
φ ′ = (1,−1,1), φ ′′ = (0,−1,1)

φ ′ = (−1,0,1), φ ′′ = (1,−1,−1)
φ ′ = (−1,0,1), φ ′′ = (−1,1,1)

φ ′ = (−1,1,−1), φ ′′ = (0,1,−1)
φ ′ = (−1,1,−1), φ ′′ = (0,−1,1)

Table E.2 VEV alignment of triplet flavon fields φ ′, φ ′′ for (µ − τ) symmetric case, that give

rise to same complex constraints.
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Sl no. VEV list Comment

1. φ ′ = (1,−1,0), φ ′′ = (1,−1,0) 8 of such matrices

φ ′ = (−1,1,0), φ ′′ = (−1,1,0)
φ ′ = (0,1,−1), φ ′′ = (1,0,−1)
φ ′ = (0,1,−1), φ ′′ = (−1,0,1)
φ ′ = (0,−1,1,), φ ′′ = (1,0,−1)
φ ′ = (0,−1,1), φ ′′ = (−1,0,1)
φ ′ = (1,−1,0), φ ′′ = (−1,1,0)
φ ′ = (−1,1,0), φ ′′ = (1,−1,0)

2. φ ′ = (0,1,1), φ ′′ = (1,0,1) 8 of such matrices

φ ′ = (0,1,1), φ ′′ = (−1,0,−1)
φ ′ = (0,−1,−1), φ ′′ = (1,0,1)

φ ′ = (0,−1,−1), φ ′′ = (−1,0,−1)
φ ′ = (1,1,0), φ ′′ = (1,1,0)

φ ′ = (1,1,0), φ ′′ = (−1,−1,0)
φ ′ = (−1,−1,0), φ ′′ = (−1,−1,0)

φ ′ = (−1,−1,0), φ ′′ = (1,1,0)

Table E.3 VEV alignment of triplet flavon fields φ ′, φ ′′ for texture 1 zero symmetric case,

that give rise to same complex constraints.

Sl no. VEV list Comment

1. φ ′ = (0,0,1),φ ′′ = (0,1,1) 8 of such matrices

φ ′ = (0,0,1),φ ′′ = (0,−1,−1)
φ ′ = (0,0,−1),φ ′′ = (0,1,1)

φ ′ = (0,0,−1),φ ′′ = (0,−1,−1)
φ ′ = (1,0,1),φ ′′ = (0,−1,0)
φ ′ = (1,0,1),φ ′′ = (0,1,0)

φ ′ = (−1,0,−1),φ ′′ = (0,1,0)
φ ′ = (−1,0,−1),φ ′′ = (0,−1,0)

2. φ ′ = (0,0,1),φ ′′ = (0,1,−1) 8 of such matrices

φ ′ = (0,0,1),φ ′′ = (0,−1,1)
φ ′ = (0,0,−1),φ ′′ = (0,1,−1)
φ ′ = (0,0,−1),φ ′′ = (0,−1,1)
φ ′ = (1,0,−1),φ ′′ = (0,1,0)

φ ′ = (1,0,−1),φ ′′ = (0,−1,0)
φ ′ = (−1,0,1),φ ′′ = (0,1,0)

φ ′ = (−1,0,1),φ ′′ = (0,−1,0)

Table E.4 VEV alignment of triplet flavon fields φ ′, φ ′′ for texture 2 zero symmetric case,

that give rise to same complex constraints.
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