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Abstract 

The concept of global conformal invariance (GCI) opens the way of applying 
algebraic techniques, developed in the context of 2-dimensional chiral conformal field 
theory, to a higher (even) dimensional space-time. In particular, a system of GCI 
scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal 
fields, VM(x, y), where the M span a finite dimensional real matrix algebra M closed 
under transposition. The associative algebra M is irreducible iff its commutant M' 
coincides with one of the three real division rings. The Lie algebra of (the modes 
of) the bilocal fields is in each case an infinite dimensional Lie algebra: sp( oo, JR) 
corresponding to the field JR of reals, u( oo, oo) associated to the field IC of complex 
numbers, and so* ( 400) related to the algebra JIJ[ of quaternions. They give rise to 
quantum field theory models with superselection sectors governed by the (global) 
gauge groups O(N), U(N), and U(N, JIJ[) = Sp(2N), respectively. 

1 Introduction 

The assumption of global conformal invariance - which says that we are dealing with a 
single valued representation of SU(2, 2) rather than with a representation of its covering -
in ( 4-dimensional) Minkowski space has surprisingly strong consequences [18]. Combined 
with the Wightman axioms, it implies Huygens locality, which yields the vertex-algebra­
type condition 

((x -y)2( [¢(x),1p(y)] = 0 for N » 0 (1) 
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for any pair¢, 1/J of local Bose fields (N » 0 meaning "N sufficiently large"). Huygens 
locality and energy positivity imply, in turn, rationality of correlation functions. A GCI 
quantum field theory (QFT) that. mhniLii a Rf, rr>R~- 11-:rgy tensor (so111 Lhi11g1 \V(' lt rre !ll'i· 

.sume) necessarily involve.s inliniLrly 111 a11y 1:1rnsr•r rd symmctri<' tr11~l11· c11rre11ts in Lhe 
operator product c~xpansion ((PE) of a.ny Wighumrn field with i ts rrn1j11 gnl.P . Tho I.wist 
two contributions give rise to 11 hao11(rnic: bijielcl \l (x , y), which is nn imporL1111 Loo i in Llw 
.study of GCI QFT models [2, 14-17] . The spectacular development of 2-climensional (2D) 
conformal field theory in the 1980's is based on the preceding study of infinite dimensional 
(Kac- Moody and Virasoro) Lie algebras and their representations. A straightforward gen­
eralization of this tool did not seem to apply in higher dimensions. After the first attempts 
to construct (4D) Poincarc invariant Lie fields led to examples violating energy positiv­
ity [13], it was proven [3], that scalar Lie fields do not exist in three or more dimensions. 
It is therefore important to realize that the argument does not pass to bifields, and that 
the above mentioned harmonic bifields do give rise to infinite dimensional Lie algebras. 

Consider bilocal fields of the form 

VM(x,y) = L M;j :<p;(x)<pj(y):, (2) 
lJ 

where M is a real matrix and <pj are a system of independent real massless free fields. 
According to Wick's theorem, the commutator of VM, (x1 , x2) and ViVI, (x3 , x4 ) is: 

[VM,(x1,X2),VM,(X3,x4)] = 6.2,JVM,M,(X1,x4) + 6.~,4vM,'M,(x1,X3) 
+ 61,3 ViM1 M2 (X2,X4) + 61,4 V'M1 'M2 (X2 1 X3) 

+tr (M1M2612,J4 + 1M1M26.12,43), (3) 

where 1M is the transposed matrix, 6.j,k is the free field commutator, 6j,k = 6.J.k - D.t.i' 
and 6jk,lm = 6.j,m6t,1 - 6!,j6tk for 6.J.k := 6.+(xj - xk), the two point massless scalar 
correlation function. 

It is one of the main results of [15] that the same abstract structure can be derived from 
first principles in GCI quantum field theory. More precisely, the twist two bilocal fields 
appearing in the OPE of any two scalar fields of dimension 2 can be linearly labeled by 
matrices M such that the commutation relations (3) hold. From this, the representation 
(2) can be deduced. In the present paper we shall consider only finite size matrices; in 
general, the system of independent massless free fields can be infinite and then the M's 
should be assumed to be Hilbert-Schmidt operators. 

The question arises, whether there are nontrivial linear subspaces M of real matrix 
algebras upon which the commutation relations of the corresponding bifields VM (M EM) 
close. We shall call such systems of bifields Lie systems, or, Lie bifields. It follows from 
(3) that if M is a t-subalgebra (i.e., a subalgebra closed under transposition) of the real 
matrix algebra, then { V M} ME M is a Lie system. Conversely, any Lie system corresponds 
to a subalgebra M such that 1M1 M2 , M1

1M2 , 1M1 1M2 EM whenever M1, M2 EM. In 
particular, if M contains the identity matrix, then it is a t-subalgebra. 

2 t-subalgebras of real matrix algebras 

Let M be a t-subalgebra of the matrix algebra Mat(L, JR), where Lis a positive integer 
(equal to the number of fields <pj). The classification of all such M is a classical ma the-
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matical problem, which goes back to F.G. Frobenius, I. Schur, and J.H.M. Wedderburn 
(He(,, e.g., [11, Chapter XVII] and [4, Chapter 9, Appendix II]). 

vVe first obserw that M is equipped with the Frobcnius in11er product 

'.1 

wliic::h issymnrnl rit , positivc duli ni L11, rnd has l ite p1opcrLy (Jv/1Jv/2 ,M3 ) = (ivl1,M3 tM2 ). 

Th is i111pliw; 1hat for t' vcry rig b.t, ideal'.£. c- .M, Lim ort,bogonal complement Il. is again a 
ri~ l tl. idraJ. . ol.r Hill l Lita! I is rt riv:ltL idl'id if aucl nnl if 11: is a left ideal. Thr,refore, M 
is a M!1ll.!.~!tr171l1 alg1~ lm1 (i.e., a dirl'<:I, :-1 111 11 o r l11f ideals) , a nd every module over M is a 
direct sum of irreducible ones. 

Now assume, without loss of generality, that the algebra M C Endr11. [, ~ M at(L, JR) 
acts irreducibly on the vector space [, ~ JRL. Let M' C EndrR l be the commutant of 
M, i.e., the set of all matrices M corn muLiri p; with all elcnwnf s or M . Then by Schur's 
lemma (whose real version [11] is m11rl1 h•::.-s popular thai1 Lhct complex one), M' is a real 
division algebra. By the Frobe11i11s theorem, M' is isomorphii- Lo JR, C, or ]IJ[ as a real 
algebra (where ]IJ[ denotes the alg<'hra of 111wlt!mion.~). Fi 11 11 1ly, Lltr classical Wedderburn 
theorem gives that M is isomorphic to the matrix algebra EndM•L. In addition, since 
M is closed under transposition, then M' is also at-algebra, and the transposition in M' 
coincides with the conjugation in JR, C, or IIB, respectively. 

Observe that, since M ~ Endy £ (where IF = JR, C, or IIB), we can view [, as a left 
IF-moctule on which M acts IF-linearly. Alternatively,[, can be made an (M, IF)-bimodule 
by setting M · f · M' := M( 1M')f for f E £,ME Mand M' EM'~ IF. Then 
the embedding IF c Endy [, ~ M endows [, with the structure of an IF-bimodule. In 
other words, we have two commuting copies, left and right, of IF in End~ £, which are 
subalgebras of M and M', respectively. Moreover, L = dimlR [, = dim/R IF· dimy [, is 
divisible by 2 and 4 when IF = C or IIB, respectively. 

If M is not an irreducible t-subalgebra of M at(L, JR), i.e., [, ~ JRL is not an irreducible 
M-module, then [, splits into irreducible submodules, each of them of the above three 
types: 

(5) 

wh~ire co h L•· (IF= IR,C,El) is a.n IF-ruodnl su ·h that Marts 011 it. Jll'- liJieurly. [n ur 
QF a ppli ation th spa c L is lhe rea.I linear span of I.he l'cai masslc~~s scafor Ci ·•Ids 'PJ, 
1ltlcl t.he11 a Lie system of bifi l<lr; VM splits into three subsystems: of typ<'~~ R, C i.wrl IFD. 
TIJ fi.rsl. l;wo cru;es wPr cousider cl in a pr •vious P<IP<'T 121 <Uld led Lo p;aup;11 grn11ps of 
type O(N) and U(N), r ·pC:'cL iv Ly. Ile.re wear g i11g to r:l)11sidcr I.he t hi rd case in which , 
as we sha ll sec, the gaugt> gro 11 ps Llmt. nris are f Lype Sr>(2N), I.he compn.d ma! fo rm of 
the symplectic group. 

3 Irreducible Lie bifields and associated dual pairs 

In this section we consider Lie bifields {VM} MEM corresponding to irreducible t­
subalgebras M of M at(L, JR). As discussed in the previous section, we have M ~ 

EndM•L, where[,~ JRL and the commutant M' ~JR, C, or IIB. 
In the case when M' ~ JR and dima [, = 1, we have one bifield 

V(x, y) = :cp(x)cp(y):. (G) 
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More generally, V <.:an be taken a sum of N independent copies of Lie bifielcls of type (G), 

N 

l'(x, y) = \i(N)(x, y) = :cp(x)cp(y): = L :<pj(x)<pi(y):, (7) 
i= I 

whid1 is invariant under the gauge group O(N) (inclncling reflections). Here O(N) is re­
alized as the group of linear automorphisms of L = Spani!<:{ 'Pi} presr~rving thr. quadrati<.: 
form (7) in 'Pj· In this case the field Lie algebra (i.e., the Lie algebra of field modes cor­
responding to the eigenvalues of the one-particle energy, see the Appendix) is isomorphic: 
to sp(oo,JR); see [2]. 

The case when M' ~ C and dime L = 1 is given by two real bificlds, Vi and V, that 
correspond to the 2 x 2 matrices 

1 = (~ ~) , c = (-~ ~). 
They are thus generated by two independent real massless fields cp1(x) and cp2 (x): 

Vi(x,y) = :<p,(x)cp,(y): + :<p2(x)<p2(y):, 

V,(x,y) = :cp1(x)cp2(y): - :cp2(x)cp1(y):. 

(8) 

(9) 

Combining cp1 and cp2 into one complex field cp(x) = <p1 (x) + i<p2(x) we get that Vi and 
V, are the real and the imaginary parts of the complex bifield 

W(x,y) = :cp*(x)cp(y): = Vi(x,y)+iV,(x,y). (10) 

Taking again N independent copies of such Lie bifields, 

N 

w(N)(x,y) = L :cpj(x)cpj(y):, 'Pj(x) = 'P1,j(x) + icp2,1(x), (11) 
j=l 

we get a gauge group U(N). The field Lie algebra in this second case is isomorphic to 
u(oo, oo); see [2]. 

Finally, for M' =IHI the minimal size of the matrices in M is four. We can formally 
derive the basic bifields VM in this case as in the above complex case (10). Let us combine 
the four independent scalar fields 'Pi(x) (j = 0, 1, 2, 3) in a single "quaternionic-valued" 
field and its conjugate: 

cp(x) = cpo(x) + 'Pi(x) I+ cp2(x) J + <p3(x) K, 
ci:>+(x) = cpa(x) - cp1(x) I - cp2(x) J - cp3(x) K, (12) 

where I, J, Kare the (imaginary) quaternionic units satisfying I J = K = -JI, 12 = J2 = 
K 2 = -1. This allows us to write a quaternionic bifield Y as 

Y(x,y) = :cp+(x)cp(y): = Vo(x,y)+Vi(x,y)l+Vi(x,y)J+Vi(x,y)K, (13) 

where the components V0 (a= 0, 1, 2, 3) of Y can be further expressed in terms of the 
4-vectors <p and a 4 x 4 matrix realization of the quatcrnionic units in a manner similar 
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to (9) : 

l;,(x , y) Ve,, (x,y) = :<p(:i:)f,..<p(y):, 

(- ~ ~ ~ - ~) . 
0 0 1 0 

e.l = ( : H i) . 
--1 0 0 0 

(14) ( 
0 () 1 0) 

f. = () () 0 1 
2 -1 () 0 0 I 

() - 1 0 0 

It is straightforward to check that the 4 x 4 matrices 1!0 generate the quat.<:rnionic algebra 
lllI 3" M. The comrnut.a11t M' in J\!lat(4, IR) is spanned by the unit matrix and another 
realization of the imaginary quaternionic units as a set of real antisymmetric 4 x 4 matrices 
r, (k = 1, 2,3). The two sets {rk}L 1 and {f!k}~=l correspond to the splitting of the Lie 
algebra so( 4) iuto a direct s11m of two so(3) algebras: 

f!1 = <T:i®E, f!2 = c®l, /!3 = f!1f!2 = <T1@E, 

Ti = c: ® <T3 , r2 = 1 0 c: ' r3 = r1 r2 = -r2 r1 = E: 0 a1 ' (15) 

where ak are the Pauli matrices and E: = i<T2 as in (8). 
We shall demonstrate that the quaternionic field Y (13) generates (a central extension 

of) the Lie algebra1 so*(4oo). To this end, we represent Y by a pair of complex bifields 

W(x,y) = ~ (vo(x,y) + iVi(x,y)) 

= :1f1~(x) 1/11 (y): + :1/J~(x) 1f12(Y): = W(y, x)', 
(16) 

A(x, y) = ~ (Vi (x, y) - iV2(x, y)) 

= v'11(x)1/;2(y)-1/J2(x)v''1(Y) = -A(y,x), 

and their conjugates, where 'l/;0 are complex linear combinations of 'Pv: 

1 1 
1/J1 = J2('Po +ii.p3), 1/J2 = J2('P1 - i<.p2). (17) 

Substituting as above each 'Pv (respectively 'l/;0 ) by an N-vector of commuting free fields 
we can write the nontrivial local commutation relations (CR) of W(l, 2) = W(x 1, x2) and 
A(l, 2) in the form 

[W*(l, 2), W(3, 4)] = 6.1,3 W(2, 4) + 6.2,4 W*(l, 3) + 2N 6.12,43; (18) 

[W(l, 2), A(3, 4)] = 6.1,3 A(2, 4) - 6.1,4 A(2, 3), 

[W(l, 2), A*(3, 4)] = 6.2,3 A'(l, 4) - 6.2,4 A*(l, 3), 

[A*(l, 2), A(.3, 4)] = 6.1,3 W(2, 4) - 6.1,4 W(2, 3) + 6.2,4 W(l, 3) 

- 6.2,3 W(l,4) + 2N(ll12,43 - 6.12,34). (19) 

1For a description of the Lie algebra so*(2n) of the noncompact group S0*(2n) and of its highest 
weight representatious, see [7). For an oscillator realization of the Lie superalgebra osp(2m'l2n) (with 
even subalgebra so'(2m) x sp(2n)), see [8). If we view so'(4oo) as an inductive limit of so'(4n) then the 

· central extension is trivial 
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In particular, W coincides with W(2 N) in (11) and generates the u(oo, oo) algebra (of 
even central charge) , which contains the compact Cartan subalgebra of so'(4oo); sec 
Appendix A. On the other hand, it is straightforward to display the gauge group in the 
original picture Rs the invariance group of the quat.ernionic valued bifield Y (13) viewed 
as a quatcrnionie form in the JV-dimensional space~ of real quateri1ions. We obtain the 
group of N x N nnitary matrices with quaternionic entries 

U(N, JHI) = Sp(2N) =: U Sp(2N), (20) 

i.e., the com pa.rt group of unitary complex symplectic 2N x 2N matrices. 

4 Unitary positive energy representations and superselection 
structure 

Two important developments, one in QFT, the other in representation theory, origi­
nated half a century ago from the talks of Rudolf Haag and Irving Segal at the first Lille 
conference [12) on mathematical problems in QFT. Later they gradually drifted apart and 
lost sight of each other. The work of the Hamburg-Rome- Gottingen school on the oper­
ator algebra approach to local quantum physics [9] culminated in the theory of (global) 
gauge groups and superselection sectors [5, 6). The parallel development of the theory of 
highest weight modules of semisimple Lie groups (and of the related dual pairs) can be 
traced back from [7, 10, 19]. Here we aim at completing the task, undertaken in [2) of 
(restoring and) displaying the relationship between the two developments. 

Before formulating the main result of this section we shall rewrite the CR (18), (19) 
in terms of the discrete modes of W, A and A' and introduce along the way the conformal 
Hamiltonian. We first list the u(oo, oo) modes of W [2) and write down their CR. Here 
belong the generators Eii ( t = +, - ) of the maximal compact subalgebra u( oo) EE! u( oo) of 
u( oo, oo) and of the noncom pact raising and lowering operators X;j and X;j, respectively 
(i,j = 1, 2, . . . ) satisfying 

[E;j,X;i] = <5i1X;;, 

[E;j 1 X;1J = OjkX;i, 

[E;j, Xki] = -<5i1Xki, 

[E;j, Xk1] = -<5;kXj1, 

(21) 

The commuting diagonal clements Ef; span a compact Cartan subalgebra. The anti­
symmetric bifield A gives rise to an abelian algebra spanned by the raising operators 
Y;j = -Yjt, the lowering operators (Y;j)* = -(Yji)* and the operators F;j; the modes of 
A• are hermitian conjugate to those of A. The above E's together with the F;j and their 
conjugates, F;j, give rise to the maximal compact subalgebra u(2oo) of so• ( 400). The ad­
ditional nontrivial CR can be restored (applying when necessary hermitian conjugation) 
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from the following ones: 

[E;j, Fkt] = OjkFil, [F;i, E~] = oikFit, [F;1, Ft1] = fiitEik - o;kE1j; 
[X;j, Fki] = 8;kYj-j, [X;1, F;i] = - 6j1}iJ;, 

[Y;j, E~iJ = oikY;I - b;k}j/, 

P·ij, XZ1l = oilFkj - oj1Fk;, 

[Y;j, x;iJ = oikF;i - o;kFii; 

[1ij, (Y{1)*] = fi;kE[1 -- OjkE1c; + Oj1E~; - 0;1E'ki; 

Pi;~. Ft,]= 0;1Xkj - Oj1Xk;, 

[.Y~j, Fki] = OjkX;1 - O;kXj1- (22) 

We note that the CR (21) and (22) do not depend on the "central charge" 2N of the 
inhomogeneous terms in Eqs. (18) and (19) that is absorbed in the definition of Ef; ( cL 
Eq. (A-4) of Appendix A). The parameter N reappears, however, in the expression for the 
conformal Hamiltonian He which involves an infinite sum of Cartan modes - and hence 
only belongs to an appropriate extension of u( oo, oo) C so• ( 400): 

00 

He= LE;(Et + E;i - 2N). (23) 
i=l 

Here the energy eigenvalues£; form an increasing sequence of positive integers (in D = 4: 
£ 1 = l,c2 = - - - =cs = 2, £6 = --- = £14 = 3, etc.). The charge Q and the number 
operator er which span the centre of u( oo, 00) and of u(2oo), respectively, also involve 
infinite sums of Cartan modes: 

00 00 

(24) 

A priori N is a (positive) real number. It has been proven in (15, 16], however, that in 
a unitary positive energy realization of any algebra of bifields generated by local scalar 
fields of scaling dimension two, N must be a natural number. 

Let us define the vacuum representation of the bifields Wand A(*l obeying the CR (18) 
and (19) as the unitary irreducible positive energy representation (VIPER) of so*(4oo) in 
which He is well defined and has eigenvalue zero on the ground state \vac) (the vacuum 
state), We are now ready to state our main result. 

Theorem 4.1 In any UIPER (of fixed N) of sa•(4oo) we have: 
(i) N is a nonnegative integer and all UJPERs of sa•(4oo) are realized (with mnlti­

plicities) in the Fack space :F2N of 2N free complex massless scalar fields (see Appendix 
A). 

(ii) The ground states of equivalent UJPERs of so*(4oo) in :F2N form irreducible rep­
resentations of the gauge group Sp(2N). This establishes a one-to-one correspondence 
between UIPERs of so*(4oo) occurring in the Fack space and the irreducible representa­
tions of Sp(2N), 

The proof parallels that of Theorem 1 in (2, Sect. 2] using the results of Appendix A. 
We shall only note that each UIPER of so• ( 400) is expressed in terms of the fundamental 
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weights A,, of so'(4n) (for large enough n, exceeding N): 
2n - l 

A = L k,,A,,, k,, ~ 0. (25) 
v=D 

In particular, the vacuum representation has weight -2N Ao (sec (A.17) ). Thus, each 
UIPER. remains irreducible when restricted to some so•(4n), so that we arc effectively 
dealing with representations of finite dimensional Lie algebras. \\'p also note that the 
bifield lV has a vanishing vacuum expectation value in view of (:-\ .. 16). in accord with its 
definition as a sum of twist two local fields. 

The outcome of Theorem 4.1 and of Theorems 1 aml 3 of [2] was expected iu view of 
the abstract results of the Doplicher-Haag--Robcrts theory of superselection ~ectors [5, 6, 
9]. However, considerable technical difficulties arc encountered in relating the extension 
theory of bifields with the representations of the corrnsponding nets. Our study provides 
an independent derivation of DHR-iype results in the field theoretic framework, advancing 
at the same time the program of classifying globally conformal invariant quantum field 
theories in four dimensions. 
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Appendix. 
Fock space realization of the Lie algebra so*(4n) (for n--+ oo) 

For the higher dimensional vertex algebra formalism (and the associated complex 
variable realization of compactified Minkowski space) used in this Appendix, see [1] and 
references therein (for a summary, see Appendix A to [2]). We write the pair of vectors 
of complex fields (17) as 

1/J(z) = a(z) + b*(z), 'lj;*(z) = a'(z) + b(z), (A.I) 

where 1f; = (',P°' : et = 1, 2) = (1/!~ : a = 1, 2, p = 1, . .. , N) and likewise for a, b. Their 
mode decomposition in the compact picture is: 

00 1 (f+l) 2 ~ 
~ ~ aan h () 

= L..J Je + 1 L..J ( 2)e+1 1,1• z , 
l=O µ=l Z 

00 1 (1+1)
2 ~ 

b~(z) = ~ Je + 1 1~ bfin he,µ(z), (A.2) 
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where {h1,1,(z) : /l = 1, . .. , (f + 1) 2
} is a basis of homogeneous harmonic polynomials of 

degree (I in the 1-vector z, diagonalizing the conformal one-particle energy, n = n(f, µ) 
( = 1, 2, ... ) is an ennrnerntion, and a~·J, b~~) obey the canonical commutation relations 
(we only list. tlw nontrivial oues): 

(A.3) 

The corresponding uuHlPs of W (i.e., the u(oo, oo) generators) are split into two groups: 
(i) the compact (ll(oo) EB u(oo)) ones: 

+ -- 1 [ * ] - • N' Eij - 2 ai , n.i + - rr.; Uj + 1 u;j , (A.4) 

where aiai etc. stands for the inner products 

N 

L La~:a~i; (A.5) 
o=lp=l 

(ii) the enr.rgy decreasing (Xij) and energy increasing (X;'j) operators 

2 

xij = b;aj ( = L bai. aaj), Xij = b7aj . (A.6) 
o=l 

The modes of the skewsymmetric bifield A and its conjugate also include a compact part 
(F;~*)) and a noncompact one CYi~(•J): 

and their conjugates. 

- -F';i = b;; · a2j - b;; · a1j ; 

1~j =a;;· i12j - ii';;· i11j ( = -YjTJ, 
Yij- = 'b;i . b2j - 'b;i . b1j ( = -Yj'i) 

(A.7) 

(A.8) 

We shall now present the subalgebras obtained by restricting the modes to the n 
lowest one-partir.lr. energies. Because we wish to treat positive-energy representations as 
highest-weight representations, it is convenient to assign positive roots to energy lowering 
operators. According to the ordering of energies cl = ci ~ c2 = c:[ ~ · · · (dealing with 
degeneracies as in [2]) we choose the (ordered set of) simple roots and raising operators 
( = energy lowering operators) as 

ao = -e1 - e2, 
CTJ = C1 - e2, 
a2 = e2 - e3, 

CT2n-2 = e2n-2 - C2n-l 1 

CY2n-l = C2n-l - e2n1 

Ho= -E!1 - Ei1, 
Hi=E!i.-E{i, 
H2 = E~ - E;_, 

H2n-2 = E;t_ln- 1 - E;;n, 
H2n-l = E;;n - E;in, 

X11 (:= Eo), 
F11 (:= E1), 
Ft2 (:= E2), 

F;_ln (:= E2n-2), 

Fnn (:= E2n-1) · 

(A.9) 

Here the names Hv and Ev of the generators comply with the standard Chevalley- Serre 
notation; the vectors {e,} form an orthonormal basis so that the scalar products (a;lai) 
reproduce the Cr.rt an matrix of so* ( 4n): 

(a;la;) = 2, 

(0<ol0<2) = (aila2) 

(aolai) = 0, 
-1 = (a;iCY;+1) 
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for i = 2, ... , 2n - 2. The positive roots (corresponding to the raising operators) are 
e; - ei and -c; - ej (1 ~ i < j ~ 2n). 

The sum t of e. is a root vector, the corresponding Cartan element H 1 generating the 
c~ntre of the maximal compact subalgebra u(2n) of so•(4n): 

211 n 

t = L e.,, H, = L (E;T + Eii). (A.11) 
i=l 

The so•(4n) fundamental weights Av and the half sum 8 of positive roots of so'(4n) are 
given by 

•=l 

2n 

L e, (j = 2, ... , 2n - 1 ), 
s=j+I 

2n-l 2n l 
8 = L Av = - L(s - l)e, = p - (n - 2) t 

v=O s=l 

where pis the half sum of positive roots of su(2n): 

(A.12) 

(A.13) 

(A.14) 

Note that (t/a) = 0 = (t/p) for a a root of su(2n); observe that p, 8 and the Casimir 
invariants below are only defined for finite n. The second order Casimir operators of 
so*(4n) J u(2n) J su(2n) are related by 

H2 n 
c~(2n) = c;u(2n) + _!_ = c;o'(4n) + 2 L X;jX;j 

2n i=I 

+2 L (Y;j'Y;j + Y;j'Y;j) + (2n - l)H1 . (A.15) 
l'i<j'n 

The vacuum /vac) is defined as a basis vector in a I-dimensional space satisfying the 
relations aa;/vac) = 0 = ba;/vac) or equivalently 

(A.16) 

It follows that it can be identified with the highest weight vector of a unit.my irreducible 
representation of so•(4n) (for any n > 1) of weight -2NA0: 

/vac) = I- 2NAo)' c;0
'(

4nl(-2NA0) = 2nN(N + 1- :ln.). (A.17) 

As anticipated by the ordering (A.9) of roots (and Cartan and rni8ing operators), it is 
convenient to relabel the oscillators setting: 

(A.18) 

263 



Then the generators of so' ( 4n) can be rewritten as 

E±,F,F'---+ Ek1=Ak·A1+B ';. · B1+6k1N, 
x, y± ---+ Ykt =A<· Bi - Bk· A1 (k, t = 1, ... 2n) . 

(A.19} 

We refrain from displaying the CR of so'(4n) again, which are most easily (and more 
compactly than (22}) read off this representation. 

Our aim is to classify the UIPERs with ground stat.es lh) with Cartan eigenval11e8 

(A.20} 

We omit the details of the argument which is in perfect analogy with (2), indicating only 
the three main steps. 

1. Unitarity of the submodule U(h) obtained by acting with the generators of the 
maximal compact Lie algebra u(2n) on the ground state implies that 

(A.21) 

is an integer-spared non-increasing sequence, stabi!i;:ing at some value h00 , and h00 = 
2N /2 = N in order to have a finite Hamiltonian. The finiteness of the operators Q and 
er in all states of finite energy is then automatically guaranteed. 

2. We choose n large enough so that h2n = h00 = N . Let Y be the Young tableau of 
su(n) with rows of length mk = hk - h00 • 

T h<· 11 uucN11j)nr t, gc•11erntorn ) ·~·1 with negative rootR transfon11 lil e Lhe an l.isymmeLril' 
n1.11k 2 rnpr srJ 1 ~al.io11 of ti.(2n) . Heuer, t ho linc<1.r span of }; . U(h) dccompos' iuto isrt>­
d uc:ilil' rnpre!'\eul. atic 11s <I f ?1(2n) whos<> Yo1111 g rli agrn ms 11n• obtained by adding Lwo l oxes 
in dilfornnt n ws l > y , Tlwir highool. wP.ight.s >. ar of 1.)1 • fonu h + 'k., e1 where k =f- l. 

In each of these sta t.cs, 1.he nbov • ,11.si111lr lp r11lors can be C'tlm p11~ cl . Sintc l.hu 
l ·1r ,,,(211) ,.,o· (·h•l . . . I cl ·n· f . I L r 1 f: r net• •2 - 2 1s a positive opr.ra1.or, L w 1 l'I' n(:r o eigPnva tH!S mus~ >f: 
nonnegative. This yields the necessary bounds 

(,\ + 6, ,\ + 6) - (h + r5, h + 6) ~ 0 (A.22) 

for all >. = h + ek + c 1. The strongest bound occurs when k and l are chosen maximal, 
i. e., k = r + 1 and l = r + 2 when r + 1 is the smallest index such that hr+! = h00 (i.e., 
r is the number of the rows of the Young diagram Y). Evaluating the bound, yields the 
condition 

r ~ N. (A.23) 

3. The Young diagrams admitted by this condition are precisely those of the unitary 
tensor representations of U(N). It remains to establish the relation between these and 
the unitary representations of the gauge group Sp(2N) of the field algebra (18) (which 
contains U(N)), and to verify that each of these is realized on the Fock space of 2N 
complex massless free fields '1/J~ (a= 1, 2, p = 1, . .. , N). 

By the above relabeling of the oscillators, the infinitesimal generators of sp(2N) be-
come 

(p,q=l, ... N). 
(A .24) 
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The Erq are the generators of U ( N) c Sp(2N), and .·l' (the creation operators for ·1~i a11d 

for ·1F2) t1ansform in the vcctor n:prPscnt.aLion of U(N), whih• B' (tlw creation operatots 
for ·1~~ and for 1/71 ) transform in the conjugate rcpn·s~·ntatiun. In otht:r words, one may 
assign the \Wights el' to AP' and - r:P to flP', so that £Pq rnrrt'spond t.o the routs pP - e'I 

and )(P'1 to -c1' - e"- The simple roots arc er - e''+ 1 (rnrresponding to SU(N) c S'p(N)) 
and 2eN . 

Now let (h 1, h2 , . .. ,hN,hN+i =···=It.,,= N) be the Cartan weights of a positiv<·­
c:nergy representn,tion of so'(4n) C so'(4oo). Let Y be the Young diagram of U(N) with 
rows of length mk = hk - N , and r 1 the• heights of its rolnmns. 

Ddine in the Foc:k space of the complex fret~ fields 47\•l and ij7~•) the vector 

("'' ) lh)!" = IT A*l\ri Ivar) 
l=l 

(A.25) 

where A •l\r = det (A~· r=l .... J.. Then lh) F is a highest weight vector for 80*( 400) with 
k=l,. .. J' 

the proper Cartan eigenvalues hk of Ekk· It is a compon<~nt of a U(N) tensor in the 
representation given by Y. This tensor extends, by the action of the generators )(Pq, 

XPq•, to a Sp(2N) tensor. (The generators xrq• will swap some of the A-excitations into 
B-excitations.) 

As a representation of u(N), this representation has highest weight w = m 1e1 + · · · + 
mNCN. We decompose this into the fundamental weights of s7i(2N). These are determined 
by the property that (A1

, ak) = b~ where ak are the simple roots, giving A' = e1 + · · · + r) 
(l = 1, ... N - 1) and AN=~ L:p=I eP. Then 

(A.2G) 

with n1 = m1 - m1+1 (I < N), and nN = 2mN. We therefore obtain all those representa­
tions of sp(2N) for which nN is even. 

Representations with half-integral weights (nN odd) integrate to representations of 
a two-fold covering of Sp(2N), because the U(l) subgroups expitEPP integrate to -1 
as t = 2n. Thus, we obtain the desired duality result: All irreducible positive-energy 
representations of su• ( 400) are realized on the Fock space, and their multiplicity spaces 
are representation spaces of all irreducible unitary true representations of the gauge group 
Sp(2N). 
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