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Abstract

The concept of global conformal invariance (GCI) opens the way of applying
algebraic techniques, developed in the context of 2-dimensional chiral conformal field
theory, to a higher (even) dimensional space-time. In particular, a system of GCI
scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal
fields, Vs (z,y), where the M span a finite dimensional real matrix algebra M closed
under transposition. The associative algebra M is irreducible iff its commutant A’
coincides with one of the three real division rings. The Lie algebra of (the modes
of) the bilocal fields is in each case an infinite dimensional Lie algebra: sp(oo,R)
corresponding to the field R of reals, u(oo, co0) associated to the field C of complex
numbers, and so*(400) related to the algebra H of quaternions. They give rise to
quantum field theory models with superselection sectors governed by the (global)
gauge groups O(N),U(N), and U(N,H) = Sp(2N), respectively.

1 Introduction

The assumption of global conformal invariance — which says that we are dealing with a
single valued representation of SU(2, 2) rather than with a representation of its covering —
in (4-dimensional) Minkowski space has surprisingly strong consequences [18]. Combined
with the Wightman axioms, it implies Huygens locality, which yields the vertex-algebra-

type condition
(x=y)" [#(x), 93] =0 for N >0 (1)
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for any pair ¢, ¢ of local Bose fields (N > 0 meaning “N sufficiently large”). Huygens
locality and energy positivity imply, in turn, rationality of correlation functions. A GCI
quantum field theory (QFT) that admits a stress-energy tensor (something, we here ag-
sume) necessarily involves infinitely many conserved syminetrie tensor currents in the
operator product expansion (OPE) of any Wightman field with its conjugate. The twist
two contributions give rise to a harmonic befield V' (x, y), which is an important tool in the
study of GCI QFT models [2,14-17]. The spectacular development of 2-dimensional (2D)
conformal field theory in the 1980’s is based on the preceding study of infinite dimensional
(Kac-Moody and Virasoro) Lic algebras and their representations. A straightforward gen-
eralization of this tool did not seem to apply in higher dimensions. After the first attempts
to construct (4D) Poincaré invariant Lie fields led to examples violating energy positiv-
ity [13], it was proven [3], that scalar Lie fields do not exist in three or more dimensions.
It is therefore important to realize that the argument does not pass to bifields, and that
the above mentioned harmonic bifields do give rise to infinite dimensional Lie algebras.
Consider bilocal fields of the form

Vi(x,y) = Y My :0i(x)e0;(y): (2)

where M is a real matrix and ¢; are a system of independent real massless free fields.
According to Wick’s theorem, the commutator of Vi, (x1,x2) and Vi, (x3,%4) is:

[Var, (21, %2), Vag (%3, %4)] = Baa Viroas (%1, %4) + Daa Vi ity (%1, %3)
+ Ava Ve an, (x2,x4) + A1 Vins, g, (X2, X3)
+ tr (MyMyQyg34 + "My Moo 43), (3)

where 'M is the transposed matrix, A is the free field commutator, A, = Af, — Af
and Ajeum = AF A8, — A Af, for Aty = Ay (x; — x;), the two point massless scalar
correlation function.

It is one of the main results of [15] that the same abstract structure can be derived from
first principles in GCI quantum field theory. More precisely, the twist two bilocal fields
appearing in the OPE of any two scalar fields of dimension 2 can be linearly labeled by
matrices M such that the commutation relations (3) hold. From this, the representation
(2) can be deduced. In the present paper we shall consider only finite size matrices; in
general, the system of independent massless free fields can be infinite and then the M’s
should be assumed to be Hilbert—-Schmidt operators.

The question arises, whether there are nontrivial linear subspaces M of real matrix
algebras upon which the commutation relations of the corresponding bifields Vy, (M € M)
close. We shall call such systems of bifields Lie systems, or, Lie bifields. It follows from
(3) that if M is a t-subalgebra (i.e., a subalgebra closed under transposition) of the real
matrix algebra, then {Vas}are m is a Lie system. Conversely, any Lie system corresponds
to a subalgebra M such that M, My, M,'M,, *M,*M, € M whenever M, My, € M. In
particular, if M contains the identity matrix, then it is a t-subalgebra.

2 t-subalgebras of real matrix algebras

Let M be a t-subalgebra of the matrix algebra Mat(L, R), where L is a positive integer
(equal to the number of fields ;). The classification of all such M is a classical mathe-
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matical problem, which goes back to F.G. Frobenius, I. Schur, and J.H.M. Wedderburn
(see, e.g., [11, Chapter XVII] and [4, Chapter 9, Appendix II}).
We first observe that M is equipped with the Frobenius inner product

(M, My) = tr ‘M My = (M) (My)y5, (4)

L))

which is symmelrie, positive definite, and has the property (M M,, Mz) = (M, My 'M,).
This implies that for every right ideal Z ¢ M, the orthogonal complement Zt is again a
vight ideal. Note also that Z is a right ideal if and only if *Z is a left ideal. Therefore, M
is a sermsimple algehra (e, a divect sum of left ideals), and every module over M is a
direct sum of irreducible ones.

Now assume, without loss of generality, that the algebra M C Endg £ = Mat(L,R)
acts irreducibly on the vector space £ = R, Let M’ C Endg L be the commutant of
M, i.c., the set of all matrices M commuting with all elements ol M. Then by Schur’s
lemma (whose real version [11] is much less popular than the complex one), M’ is a real
division algebra. By the Frobenius theorem, M" is isomorphic to R, C, or H as a real
algebra (where H denotes the algebra of quaternions). Finally, the classical Wedderburn
theorem gives that M is isomorphic to the matrix algebra Endyy L. In addition, since
M is closed under transposition, then M’ is also a t-algebra, and the transposition in M’
coincides with the conjugation in R, C, or H, respectively.

Observe that, since M = Endy L (where F = R, C, or H), we can view £ as a left
F-module on which M acts F-lincarly. Alternatively, £ can be made an (M, F)-bimodule
by setting M - f - M' .= M(*M') f for f € L, M € M and M' € M' 2 F. Then
the embedding F C Endy L = M endows £ with the structure of an F-bimodule. In
other words, we have two commuting copies, left and right, of F in Endg £, which are
subalgebras of M and M’, respectively. Moreover, L = dimg £ = dimgF - dimg L is
divisible by 2 and 4 when F = C or H, respectively.

If M is not an irreducible ¢-subalgebra of Mat(L,R), i.e., £ = R is not an irreducible
M-module, then £ splits into irreducible submodules, each of them of the above three
types:

L=Lg ® Lc ® Ly, (5)
where each Ly (F = B, C, H) is an Fmodule such that M acts on it inearly. In our
QFT application, the space £ is the real linear span of the real massless scalar fields @,
and then a Lie system of bifields Vy, splits into three subsystems: of types R, € and H.
The first two cases were considered in a previous paper [2] and led to gauge groups of
type O(N) and U(N), respectively. Here we are going to consider the third case in which,
as we shall see, the gauge groups that arise are of type Sp(2N), the compact real form of
the symplectic group.

3 Irreducible Lie bifields and associated dual pairs

In this section we consider Lie bifields {Vjs}pem corresponding to irreducible ¢-
subalgebras M of Mat(L,R). As discussed in the previous section, we have M =
Enday L, where £ = R and the commutant M’ 2 R, C, or H.

In the case when M’ 2 R and dimg £ = 1, we have one bifield

V(x,y) = wp(x)e(y):- (6)
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More generally, V' can be taken a sum of N independent copies of Lie bifields of type (6),
N
V(%y) = Vim(y) =)o) =Y wx)ei(y):, (7)

i=1

which is invariant under the gauge group O(N) (including reflections). Here O(NV) is re-
alized as the group of linear automorphisms of £ = Spang{¢;} preserving the quadratic
form (7) in ;. In this case the field Lie algebra (i.e., the Lie algebra of ficld modes cor-
responding to the eigenvalues of the one-particle energy, see the Appendix) is isomorphic
to sp(oo, R); see [2].

The case when M’ = C and dimg¢ £ = 1 is given by two real bifields, V4 and V; that
correspond to the 2 x 2 matrices

G0 (2

They are thus generated by two independent real massless fields ¢, (x) and ¢,(x):

Vi(%,y) = 101001 (y): + 1p2(x)pa(¥):,
Ve(x,y) = wo1(x)ea(y): — wp2(x)pr(y): - (9)

Combining ¢, and ¢, into one complex field p(x) = @;(x) + ipa(x) we get that V; and
V. are the real and the imaginary parts of the complex bifield

W(x,y) = @' ()e(y): = Vilx,y) +iVe(x,y). (10)

Taking again N independent copies of such Lie bifields,

N

W (6y) = D03 (0)ws(y):,  ©i(%) = @u(x) + i pa;(x), (11)
3=1

we get a gauge group U(N). The field Lie algebra in this second case is isomorphic to
u (00, 00); see [2].

Finally, for M’ = H the minimal size of the matrices in M is four. We can formally
derive the basic bifields Vi in this case as in the above complex case (10). Let us combine
the four independent scalar fields ¢;(x) (7 = 0,1,2,3) in a single “quaternionic-valued”
field and its conjugate:

P(x) = @o(x) + @1(x) I + pa(x) J + p3(x) K,
et (x) = @o(x) = @1(x) I — pa(x) J — p3(x) K, (12)

where I, J, K are the (imaginary) quaternionic units satisfying IJ = K = —JI,I* = J? =
K? = —1. This allows us to write a quaternionic bifield Y as

Y(x,y) = 07 (x) p(y): = Volx,y) + ilx,y) T + Va(x,y) J + Va(x,y) K, (13)

where the components V, (@ = 0,1,2,3) of Y can be further expressed in terms of the
4-vectors ¢ and a 4 x 4 matrix realization of the quaternionic units in a manner similar



to (9):

010 0
-1 00 0

/e e e

=1, b 00 0-=1|"
001 0

0 010 00 01

0 00 1 0 0-10

b=1_1 000 | = 01 00 (14)
=1 0 O -10 00

It is straightforward to check that the 4 x 4 matrices ¢, generate the quaternionic algebra
H =2 M. The commutant M’ in Mat(4,R) is spanned by the unit matrix and another
realization of the imaginary quaternionic units as a set of real antisymmetric 4 x 4 matrices
e (k=1,2,3). The two sets {r}i_, and {€;}3_, correspond to the splitting of the Lie
algebra so(4) iuto a direct sum of two so(3) algebras:
6120'3®E, £2=E®1, 2326182:0'1@57
" =eQo3, 1y =1Qe, ry=ri190 =—137 = €Q0, (15)
where o are the Pauli matrices and € = 40, as in (8).
We shall demonstrate that the quaternionic field ¥ (13) generates (a central extension
of) the Lie algebra! so*(4c0). To this end, we represent ¥ by a pair of complex bifields

Wixy) = %( (%) + iV3(%,))
=W B): + P50 aly) i = Wy, %),
(16)
Al y) = 3 (Vixy) - Ve, ))
= i) ay) — 20 i (y) = —A(y, %),

and their conjugates, where 1, are complex linear combinations of ,:

= (votin), = (o—inn). (17
Substituting as above each @, (respectively 1, ) by an N-vector of commuting free fields
we can write the nontrivial local commutation relations (CR) of W (1,2) = W (x;, x2) and
A(1,2) in the form

[(W*(1,2),W(3,4)] = A13W(2 4) + Doy W*(1,3) + 2N A3 (18)

[W(1,2), A(3,4)] = A3 A(2,4) — A4 A(2,3),

(W, 2) A (3,4)] = Ag3 A(1,4) — Agq A%(1,3),

[4*(1,2),A(3,4)] = A1gW(2,4) —~ A1 a W(2,3) + Aga W(L,3)

—Da3W(1,4) + 2N (D123 — Arz34) - (19)

'For a description of the Lic algebra so*(2n) of the noncompact group SO*(2n) and of its highest
weight representations, see [7]. For an oscillator realization of the Lie superalgebra osp(2m*|2n) (with
even subalgebra so®(2m) x sp(2n)), see [8]. If we view so*(4c0) as an inductive limit of so*(4n) then the
" central extension is trivial
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In particular, VW coincides with Wy in (11) and generates the u(00, 00) algebra (of
even central charge), which contains the compact Cartan subalgebra of so*(4oo); sec
Appendix A. On the other hand, it is straightforward to display the gauge group in the
original picture as the invariance group of the quaternionic valued bifield ¥ (13) viewed
as a quatcrnionic form in the N-dimensional space of real quaternions. We obtain the
group of N x N unitary matrices with quaternionic entries

U(N,H) = Sp(2N) = USp(2N), (20)

i.e., the compact group of unitary complex symplectic 2N x 2N matrices.

4  Unitary positive energy representations and superselection
structure

Two important developments, one in QFT, the other in representation theory, origi-
nated half a century ago from the talks of Rudolf Haag and Irving Segal at the first Lille
conference [12] on mathematical problems in QFT. Later they gradually drifted apart and
lost sight of each other. The work of the Hamburg-Rome-Gdttingen school on the oper-
ator algebra approach to local quantum physics [9] culminated in the theory of (global)
gauge groups and superselection sectors [5,6]. The parallel development of the theory of
highest weight modules of semisimple Lie groups (and of the related dual pairs) can be
traced back from [7,10,19]. Here we aim at completing the task, undertaken in [2] of
(restoring and) displaying the relationship betwecn the two developments.

Before formulating the main result of this section we shall rewrite the CR (18), (19)
in terms of the discrete modes of W, A and A* and introduce along the way the conformal
Hamiltonian. We first list the u(co, 00) modes of W [2] and write down their CR. Here
belong the generators Ef; (€ = +, —) of the maximal compact subalgebra u(co) ®u(co) of
u(00,00) and of the noncompact raising and lowering operators X;; and X}, respectively
(1,7 =1,2,...) satisfying

[E+ El-:l] = ijEJ - tSi[E,:;., [E—

ij> ij)

E,) = 6By — SuEy;, [Ef, Eg] =0,

179
(B Xl = 6 X, (BT, Xkl = —6uXaj,
(B, Xl = 0 Xs,  [Bij Xu] = =Xy,

[Xij,X,:,] = ,'kEf]f + 5]'!Ek_i 5 (21)

The commuting diagonal elements Ef; span a compact Cartan subalgebra. The anti-
symmetric bifield A gives rise to an abelian algebra spanned by the raising operators
Yif = =Y,f, the lowering operators (Y;;)* = —(Y;;)* and the operators Fy;; the modes of
A* are hermitian conjugate to those of A. The above E’s together with the Fj; and their
conjugates, £}, give rise to the maximal compact subalgebra 1(200) of s0*(400). The ad-
ditional nontrivial CR can be restored (applying when necessary hermitian conjugation)
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from the following ones:

(B Ful = 8 Fa, [Fiy, Bl = SFu, (£, ) = 8By, — 0u By

(X35, Fr] = 5k3]: (X Fg)=— j:Y,,Z,
(Vi Bl = 8ixYyq — 6 Y,
Y, X3 = 8aFi; — 63 Fi,

[)/1_; wXAt] =8k — (szkl‘]u

(Yi)'] = 6uBY; — 03 Ej; + 6L} — Su By
[YiF, Fifl = 8uXes — 85X,

Fr) = 0,5 Xa — 0 X0, (22)

i3

[V

VRl
iy
[
We note that the CR (21) and (22) do not depend on the “central charge” 2N of the
inhomogeneous terms in Eqs. (18) and (19) that is absorbed in the definition of Ef (cf.
Eq. (A.4) of Appendix A). The parameter N reappears, however, in the expression for the
conformal Hamiltonian H, which involves an infinite sum of Cartan modes — and hence
only belongs to an appropriate extension of u(oo, c0) C so*(4o0):

oo
H, =Y &(Ef + E; — 2N). (23)

i=1

Here the energy eigenvalues €; form an increasing sequence of positive integers (in D = 4:
€1 = l,ep = =¢€5 = 2,66 = -+ = €14 = 3, etc.). The charge Q and the number
operator C* which span the centre of u(0o,00) and of u(200), respectively, also involve
infinite sums of Cartan modes:

(e o]

G = Z E3), Ct=) (Bf+E;-2N). (24)

i=1 i=1

A priori N is a (positive) real number. It has been proven in [15,16], however, that in
a unitary positive energy realization of any algebra of bifields generated by local scalar
fields of scaling dimension two, N must be a natural number.

Let us define the vacuum representation of the bifields W and A™ obeying the CR (18)
and (19) as the unitary irreducible positive energy representation (UIPER) of s0*(400) in
which H, is well defined and has eigenvalue zero on the ground state |vac) (the vacuum
state). We are now ready to state our main result.

Theorem 4.1 In any UIPER (of fized N) of so*(4c0) we have:

(i) N is a nonnegative integer and all UIPERs of so*(4oc0) are realized (with multi-
plicities) in the Fock space Fyy of 2N free compler massless scalar fields (see Appendiz
A).

(ii) The ground states of equivalent UIPERs of so*(400) in Fon form irreducible rep-
resentations of the gauge group Sp(2N). This establishes a one-to-one correspondence
between UIPERs of so*(400) occurring in the Fock space and the irreducible representa-
tions of Sp(2N).

The proof parallels that of Theorem 1 in [2, Sect. 2] using the results of Appendix A.
We shall only note that each UIPER of so*(400) is expressed in terms of the fundamental
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weights A, of so*(dn) (for large enough n, exceeding N):
2n—1

A= kA, k<0 (25)
v=0

In particular, the vacuum representation has weight —2NAg (see (A.17)). Thus, cach
UIPER remains irreducible when restricted to some so*(4n), so that we are effectively
dealing with representations of finite dimensional Lie algebras. We also note that the
bifield W has a vanishing vacuum expectation value in view of (A.16). in accord with its
definition as a sum of twist two local fields.

The outcome of Theorem 4.1 and of Theorems 1 and 3 of [2] was expected in view of
the abstract results of the Doplicher-Haag--Roberts theory of superselection sectors [5, 6,
9]. However, considerable technical difficulties arc encountered in relating the extension
theory of bifields with the representations of the corresponding nets. Our study provides
an independent derivation of DHR-type results in the field theoretic framework, advancing
at the same time the program of classifying globally conformal invariant quantum field
theories in four dimensions.
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Appendix.
Fock space realization of the Lie algebra so*(4n) (for n — o0)

For the higher dimensional vertex algebra formalism (and the associated complex
variable realization of compactified Minkowski space) used in this Appendix, see [1] and
references therein (for a summary, see Appendix A to [2]). We write the pair of vectors
of complex fields (17) as

P(z) = a(z) +0"(2), ¢'(2) =a’(z) +b(2), (A1)

where 7 = (1/70 ra=1,2)= W :a=12 p=1,...,N) and likewise for a,b. Their
mode decomposition in the compact picture is:

00 1 (1)
do(z) = T heu(z),
ZZ:;) 7+1 #2::1 (2 Ely
o) 1 (€+1)?
By(z) = bon heu(2) (A2)
ﬁ ﬂﬂ Z,;L 1]
£=0 ¢+1 p=1



where {fg,(2) : p=1,...,(¢+ 1)?} is a basis of homogeneous harmonic polynomials of
degree ¢ in the 4-vector z, diagonalizing the conformal one-particle enecrgy, n = n(¢, )
(= 1,2,...) is an cnumeration, and a(n*), bs,,*) obey the canonical commutation relations
(we only list the nontrivial ones):

[”Zuw “73:1] = (saﬁ (smn oM = [bfwm b/qj:z] : . (AS)

The corresponding modes of W (i.e., the u(co, c0) generators) are split into two groups:
(i) the compact (u(co) @ u(o0)) ones:
= 1 * * — 1 * *
Ez; = 5 [(’L,»,(lj]+ = a;4; + N(Si]- ) Eij = 5 [b,—,()]‘]_,_ = bi bj -+ N(Sij . (A4)
where «}a; ete. stands for the inner products

2 2 N
* _ —k = p* D,
;@ = § : ai Qaj = § :E O Qo 5 (A.5)
a=1 a=1p=1
*

(ii) the energy decreasing (X;;) and energy increasing (X};) operators

2
Xij = biaj (= ) bai-Gaj), X35 = blaj . (A.6)
a=1
The modes of the skewsymmetric bifield A and its conjugate also include a compact part
(Fig*)) and a noncompact one (Y#(')):

i
Fy =By — B, @y (A7)
Y =y — @ - dy (= Y5,
YU_ = b:i i sz . b;;' 'blj (= _Yj:) (A-S)

and their conjugates.

We shall now present the subalgebras obtained by restricting the modes to the n
lowest one-particle energies. Because we wish to treat positive-energy representations as
highest-weight representations, it is convenient to assign positive roots to energy lowering
operators. According to the ordering of energies 6] = e} < e =€ <.+ (dealing with
degeneracies as in [2]) we choose the (ordered set of) simple roots and raising operators
(= energy lowering operators) as

ap = —ej — ey, Hy=-FEj, - EY;, X1 (= Ey),

o = e; — ey, H, = Ey, - Eft, F (= Ey),

Qp = €3 — €3, H2:EH_E2_2’ Fl‘Z(E E2)’ (A 9)
Qop-2 = €2p-2 — €21, Hop g = E:_lnul = E'"_n, F,f_ln (E EZn——Z):

Qop—1 = Cap—1 — €2n, H’Z‘n—l = E;n - E:m - 2 (E EZn—l) .

Here the names H, and E, of the generators comply with the standard Chevalley—Serre
notation; the vectors {e,} form an orthonormal basis so that the scalar products (c|c;)
reproduce the Cartan matrix of so*(4n):
(eilai) =2, (aolar) =0,
(o) = (an|ae) = =1 = (av]eviyy) (A.10)
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fori = 2,...,2n — 2. The positive roots (corresponding to the raising operators) are
e;—e;and —¢; —e; (1 <4< j<2n).

The sum # of e, is a root vector, the corresponding Cartan element H, generating the
centre of the maximal compact subalgebra u(2n) of so*(4n):

2n n

t=> e, H =) (Ef+E;). (A.11)

s=1 i=1

The so*(4n) fundamental weights A, and the half sum ¢ of positive roots of so*(4n) are
given by

t t
Ao =—§, A= 61—5,
J 2n
A=) e—t==Y &€ (j=2..2n-1), (A.12)
s=1 s=j+1
2n—1 2n 1
5= Au=—Z(s—1)e,=p—(n—§)t (A.13)
v=0 s=1
where p is the half sum of positive roots of su(2n):
- 1
= Z(n =54 5) (6_, - 52n+l—s) s (A14)

s=1

Note that (tjo) = 0 = (¢|p) for « a root of su(2n); observe that p,d and the Casimir
invariants below are only defined for finite n. The second order Casimir operators of
50*(4n) D u(2n) D su(2n) are related by

2 R n
05 = o 4 %% =G 42 )" XX
=1
+2 Y (WY YY) + (e - 1) A, (A.15)

1€i<jg<n

The vacuum |vac) is defined as a basis vector in a 1-dimensional space satisfying the
relations @o;fvac) = 0 = by;|vac) or equivalently

Xijlvae) = Yiflvac) = [ = F,-(J-')Ivac), E%lvac) = N§j; [vac). (A.16)

It follows that it can be identified with the highest weight vector of a unitary irreducible
representation of so*(4n) (for any n > 1) of weight —2NAg:

lvac) = |- 2NAo), C3”“(=2NAo) = 2nN(N + 1 - 2n). (A.17)

As anticipated by the ordering {A.9) of roots (and Cartan and raising operators), it is
convenient to relabel the oscillators setting:

Agiy = —by;, Apx=0d1;, Bui=0by, Bu=ay;, 1i=1,...,n. (A.18)
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Then the generators of so*(4n) can be rewritten as

E* F,F* — Ek(:,iZ~A[+B‘Z'_'l+6k1N<. (A.19)
A (k,l=1,...2n) '

o
=
i
1
et
i\
il
s
2
st
|
0y
S

We refrain from displaying the CR of so*(4n) again, which are most easily (and more
compactly than (22)) read off this representation.
Our aim is to classify the UIPERs with ground states |h) with Cartan eigenvalues

Biulh) = hylh). (A.20)

We omit the details of the argument which is in perfect analogy with [2], indicating only
the three main steps.

1. Unitarity of the submodule U(h) obtained by acting with the generators of the
maximal compact Lie algebra u(2n) on the ground state implies that

hl 2 h2 2 h3 > ZA (AZ])

is an integer-spaced non-increasing sequence, stabilizing at some value hy, and hy =
2N/2 = N in order to have a finite Hamiltonian. The finiteness of the operators @) and
C} in all states of finite energy is then automatically guaranteed.

2. We choose n large enough so that hy, = he = N. Let Y be the Young tableau of
su(n) with rows of length my = hy, — heo.

The noneompact, generators Y5 with negative roots transform like the antisymmetric
rank 2 representation of u(2n). Hence, the linear span of Y U(h) decomposes into irre-
ducible representations of u(2n) whose Young diagrams are obtained by adding two boxes
in different rows to Y. Their highest weights A are of the form i+ e, + ¢ where k # (.

In each of these states, the above Casimir operators can be computed. Since the
difference C™ — €37 is a positive operator, the difference of eigenvalues must be
nonnegative. This yields the necessary bounds

A+6X+08)—~(h+4,h+6) 20 (A.22)

for all A = h + e; + ¢;. The strongest bound occurs when & and [ are chosen maximal,
ie, k=r+4+1and [ =7+ 2 when r + 1 is the smallest index such that k.41 = hy (ic.,
7 is the number of the rows of the Young diagram }). Evaluating the bound, yields the

condition
r < N. (A.23)

3. The Young diagrams admitted by this condition are precisely those of the unitary
tensor representations of U(N). It remains to establish the relation between thesc and
the unitary representations of the gauge group Sp(2N) of the field algebra (18) (which
contains U(N)), and to verify that each of these is realized on the Fock space of 2V
complex massless free fields Y2 (¢ =1,2,p=1,...,N).

By the above relabeling of the oscillators, the infinitesimal generators of sp(2NV) be-

come " N —
Er =B = 3T (ALAL - B{Bf) (A.24)
Xri=X% = Y2©(A"BI+ATBY)  (p,g=1,...N).
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The EP? are the generators of U(N) C Sp(2N), and A* (the creation operators for ¢ and
for 'fﬁg) transform in the vector representation of U(N), while B* (the creation operators
for (/7; and for 1/71) transform in the coujugate representation. In other words, one may
assign the weights ¢ to AP* and —¢? to BP*, so that EP? correspond to the roots e? — et
and X? to —¢? — e, The simple roots are ¢” — ¢’*! (corresponding to SU(N) C Sp(N))
and 2¢V.

Now let (hi,ha,y ..., by hney = -+ = hy, = N) be the Cartan weights of a positive-
cnergy representation of so*(4n) C so*(4oo). Let Y be the Young diagram of U(N) with
rows of length my = hy — N, and r; the heights of its columns.

Define in the Fock space of the complex free fields ’I/_;f*) and 1/7;') the vector

|h) e = (ﬁ A'M'> [vac) (A.25)
1=1

p=l,.r
. Then [h)p is a highest weight vector for so*(doco) with
k=1l,..#

where A*" = det (Ai’.’)
the proper Cartan eigenvalues hy of Eg. It is a component of a U(N) tensor in the
representation given by ). This tensor extends, by the action of the generators X779,
X7 to a Sp(2N) tensor. (The gencrators XP%* will swap some of the A-excitations into
B-excitations.)

As a representation of u(N), this representation has highest weight w = me' + - +
muye”. We decompose this into the fundamental weights of sp(2/V). These are determined
by the property that (Af, ;) = 6}‘% where oy, are the simple roots, giving A' = e! + .- ¢!
(l=1,...N—1)and A¥ =35, ¢®. Then

w=mA" +- +nyAY (A.26)

with n; = my — myy; (I < N), and ny = 2mpy. We therefore obtain all those representa-
tions of sp(2N) for which ny is even.

Representations with half-integral weights (ny odd) integrate to representations of
a two-fold covering of Sp(2N), because the U(1) subgroups exp itEP integrate to —1
as t = 2n. Thus, we obtain the desired duality result: All irreducible positive-energy
representations of su*(4oc0) are realized on the Fock space, and their multiplicity spaces
are representation spaces of all irreducible unitary true representations of the gauge group
Sp(2N).
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