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Abstract

tions of OWSGs in quantum cryptography.

One-way quantum state generators (OWSGs), which serve as the quantum analog of one-way functions (OWF's),
have attracted significant interest due to their potential applications and the reduced assumption requirements
compared to OWF's. This paper explores the applications of structured OWSGs and presents several results: We
construct efficiently samplable, statistically far but computationally indistinguishable pairs of distributions (EF'I

pairs) from secretly-verifiable OWSGs with somewhat injectivity, which has implications for guantum commitment
schemes; We demonstrate that somewhat injective OWSGs can be derived from almost reqular OWSGs; We also focus
on a specific type of OWSGs, termed SV-eSI-0WSGs, and prove that the existence of a single-copy-secure hard-
core predicate for these OWSGs is both necessary and sufficient for constructing EFI pairs; Moreover, we propose

a simple quantum commitment scheme based on the decisional LPN assumption, offering improved parameter
choices and flexibility over classical schemes. These findings contribute to the understanding and potential applica-
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Introduction

In classical cryptography, one-way functions stand as
fundamental conceptual elements. Analogously, Mori-
mae and Yamakawa introduced the concept of one-way
quantum state generators (OWSGs) in their work (Mori-
mae and Yamakawa 2022b), which produce a quantum
state instead of a classical string as output. Informally, an
OWSG takes a classical binary string x € {0,1}" as input
and efficiently yields a quantum state |¢.). The secu-
rity guarantee entails that no quantum polynomial-time
(QPT) algorithm can feasibly find any plausible preim-
age, even when provided with polynomial copies of |¢).
Expanding upon this framework, Morimae and Yam-
akawa evolved their initial definition to encompass mixed
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states p, as potential outputs (Morimae and Yamakawa
2022a). To verity, a verification algorithm is provided to
check the validity.

Numerous findings regarding OWSGs have proven to be
consistent with their classical counterparts. Firstly, it is
directly implied by the expansion of pseudorandom states
(PRS) (i.e., the output length is larger than the input) (Ji
et al. 2018). Then, Morimae and Yamakawa demonstrated
the equivalence of OWSGs to bounded-time-secure quan-
tum digital signatures with quantum public keys, as
well as their implication by private-key quantum money
schemes (with pure money states) and quantum pseudo
one-time pad schemes (Morimae and Yamakawa 2022a).
Recently, Khurana and Tomer showed the feasibility of
realizing quantum commitments from pure-state OWSGs.
Moreover, various studies have recognized the parallels
between OWSGs variants and the spectrum of classical
one-way functions, including strong and weak subclasses
(Morimae and Yamakawa 2022a; Cao and Xue 2022), as
initially delineated by the seminal works of Yao (1982).
Additionally, a peculiar and seemingly incommensurable
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variation called secretly-verifiable and statistically-invert-
ible OWSGs (SV-SI-0OWSGs) was proposed by Morimae
and Yamakawa (2022a), proving equivalence to the effi-
ciently samplable, statistically far but computationally
indistinguishable pairs of distributions (EFI pairs), and
hence to quantum commitment.

The notion of OWSGs is indeed a fundamental con-
ceptual object in quantum cryptography, analogous to
one-way functions in classical cryptography. However,
its applications and relationships with other crypto-
graphic primitives is still an active area of research. Yet,
it is undetermined whether the generalized (mixed state
version) OWSGs imply the existence of quantum commit-
ment schemes.

The role of commitment in cryptography is of utmost
importance, serving as a two-phase interactive protocol
that ensures both confidentiality and non-repudiation.
These essential security properties are known as the hid-
ing and binding properties, with two variations typically
discussed for each, namely computational security and
statistical security. Informally, computational (or statis-
tical) hiding implies that a malicious receiver, operating
within polynomial time (or unbounded time), is incapa-
ble of determining the message committed by the com-
mitter. Likewise, computational (or statistical) binding
prevents a committer, operating within polynomial time
(or unbounded time), from altering the committed mes-
sage. In classical setting, it has been demonstrated that
the existence of commitment is equivalent to the one-
way functions (OWFs), as demonstrated by Goldreich
(1990), Naor (1991), Hastad et al. (1999), and Haitner
et al. (2009). Additionally, the MiniCrypt framework by
Impagliazzo (1995) captures these primitives that are
equivalent to OWF's.

With the advent of quantum computing, the power
of cryptographic primitives has been enhanced, provid-
ing new opportunities to realize advanced cryptographic
functionality from basic primitives. It has been shown
that non-interactive quantum commitments can be con-
structed from quantum-secure (post-quantum) one-way
functions (Koshiba and Odaira 2009, 2011; Yan et al.
2015; Bitansky and Brakerski 2021), which is impossi-
ble in the classical setting using a black-box approach.
Two recent works by Grilo et al. (2021) and Bartusek
et al. (2021) indicate the possibility of using quantum
commitments to construct oblivious transfer (OT) and
multi-party computations (MPC), which were previously
considered impossible in the classical setting using a
black-box approach (Impagliazzo and Rudich 1989; Ger-
tner et al. 2000; Mahmoody et al. 2014). Subsequently,
Morimae and Yamakawa (2022b) and Ananth et al
(2022) demonstrated that quantum commitments can be
realized using pseudorandom quantum state generators
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(PRSs), which are quantum analogues of pseudorandom
generators (PRGs). These results relax the requirement of
the underlying assumption, as PRSs appear to be weaker
than quantum-secure one-way functions (Kretschmer
2021; Brakerski et al. 2023), while in the classical setting,
commitments exist if and only if OWF's exist.

Overall, OWSGs, much like their classical counter-
parts, serve as essential building blocks for various
cryptographic primitives. It is a fundamental concept in
quantum cryptography. The applications and relation-
ships with other primitives are still being explored. The
questions of constructing quantum commitment, PRS,
and other cryptographic primitives from OWSGs, as well
as finding practical constructions based on standard
assumptions, are open research problems in this field.
Studying these problems would emphasize the theoretical
importance of OWSGs and demonstrate their feasibility
across different quantum cryptographic functionalities,
hence contributing to the advancement of the field.

Our Contributions: Building on the motivation above,
this work contributes to the field of quantum cryptogra-
phy by advancing the utility and theoretical understand-
ing of OWSGs. These contributions are summarized as
follows and illustrated in Figure 1:

1. Quantum Commitments with OWSGs: We give con-
struction of quantum commitment schemes using
structured OWSGs. By adapting the underlying struc-
tures of somewhat injective one-way primitives,
including OWF's, OWSGs, and SV-OWSGs (secretly-
verifiable OWSGs), we developed a simple construc-
tion of canonical quantum bit commitment. This
scheme achieves statistical binding and computa-
tional hiding, demonstrating the practical feasibility
of such quantum primitives.

2. Equivalence of EFI Pairs and Hard-Core Predi-
cates: Our second result establishes an equivalence
between EFI pairs and single-copy-secure hard-core
predicates for SV-eSI-OWSGs (secretly-verifiable
and extremely-statistically-invertible OWSGs). This
finding not only underscores the practical usage of
such cryptographic primitive but also aligns with the
theoretical frameworks proposed in recent studies,
such as those by Morimae and Yamakawa (2022a),
confirming that SV-eSI-OWSGs are equivalent to
the standard SV-SI-OWSGs.

3. Flexible EFI Pair Construction from LPN: Lastly, we
present a novel and simple approach to constructing
EFI pairs based on the decisional Learning Parity
with Noise (LPN) assumption. This approach allows
for a more flexible selection of parameters, enhanc-
ing the adaptability and robustness of quantum cryp-
tographic protocols.
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Fig. 1 We use the arrow notation to indicate implications between different primitives. Specifically, the arrow A — B"denotes that the primitive
Aimplies the existence or achievability of primitive B. On the other hand, the dotted arrow “A --» B”signifies that A implies a special case of B (i.e.
the secretly-verifiable case). The (1), @), and @) are the main results proved in this paper, and other directions are either implied naturally by their
definitions or shown by Brakerski et al. (2023), Morimae and Yamakawa (2022a)

Overview of techniques

To further illustrate the contributions of this paper, we
outline the techniques involved in our results. This dis-
cussion includes the construction of quantum commit-
ment from somewhat injective one-wayness primitives,
establishing the equivalence between a single-copy-
secure hard-core predicate of SV-eSI-OWSGs and EFI
pairs, and a EFI pairs construction from the decisional
LPN assumption.

Quantum Commitment from Somewhat Injective One-
Wayness Primitives: We begin by revisiting a well-known
construction of commitment from one-way permuta-
tions, assuming P : {0,1}” — {0,1}" is a one-way per-
mutation. The committer sends (P(x), {x,r)y @ b,r) as
the commitment for a bit b, and (x, b) in the reveal phase.
By Goldreich-Levin’s theorem, it is evident that the con-
struction satisfies computational hiding, and perfect
binding follows from the injectiveness of P(-).

In the investigation of quantum constructions, we are
proposing a relaxation of the bijection requirement. Pre-
vious work has demonstrated the equivalence between
canonical quantum bit commitments (specifically those
that are computationally hiding and sum-binding) and
what are known as efficiently samplable, statistically far
but computationally indistinguishable pairs of distribu-
tions (EFI pairs) of distributions (Yan 2022; Brakerski
et al. 2023). For the purposes of our discussion, we will
focus on constructing these EFI pairs due to their con-
ceptual ease.

Informally, EFI pair takes as input a bit b € {0, 1}, and
produces a corresponding (mixed) quantum state pp,. The
two primary conditions for EFT pairs are as follows: (i) pg
and p; must be computationally indistinguishable, mean-
ing they are exceedingly difficult to distinguish using
computational methods, (ii) The trace distance between
po and p1 has to be substantial.

To realize EFI pairs from one-wayness, intuitively, since
the quantum communication is allowed, we can send a
superposition Ex|P(x), (x,1)2 @ b,1)(P(x), (x,r)2 @ b, 1|
as a commitment for b (i.e. the output state of the EFT
pairs with b as input). Note that, a superposition state
over the all possible input is given, to ensure farness
(statistical binding), the P(-) does not have to be injec-
tive over the entire domain. Instead, it suffices for only a
noticeable subset of the input space to be injective. If we
assume a one-way function f that is injective on a frac-
tion of 1/n¢ of its domain, termed as somewhat injective
one-way function (OWF), then the indistinguishability fol-
lows naturally from the inability to discern between the
states p, for b = 0 and b = 1. Furthermore, the farness
is satisfied because the trace distance between pg and p;
is significant, attributed to the noticeable portion of the
injective domain that is featured for the function f. Con-
sequently, this gives rise to a construction of EFI pairs
from somewhat injective OWF's.

Theorem 1 If there exist somewhat injective OWF's, then
EF1I pairs exist.
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One remaining question is how to realize somewhat
injective OWF's. While injective OWFs trivially imply
somewhat injective OWF's, we aim to construct the latter
from the more general case of OWF's. The black-box bar-
rier for constructing injective OWF's from OWF's does not
seem to impede the construction of somewhat injective
OWFs. However, extending the injective property while
maintaining the one-wayness for an arbitrary one-way
function f remains challenging. The core challenge is to
construct somewhat injective OWFs from general OWF's
without relying on the strong assumptions required for
normal injectivity. This involves ensuring that the injec-
tive property can be extended without compromising the
one-wayness of the function.

One intuition is to use a 2-wise independ-
ent hash function /# and consider the construction
f(x,h) := (f (x), h, h(x)). By leveraging the properties of
2-wise independent hash functions, the injective domain
can be expanded with the range of #. However, this strat-
egy may compromise the one-wayness property. If the
range of /1 is too large (e.g., larger than the input space
of f), the preimages of /(x) might be easily sampled. That
limits the number of preimages for each k(x).

Denoting the output size of a 2-wise independent
hash (universal hash) function by an index e, namely,
he : {0,1}” — {0, 1}°. The above discussion suggests that
a small e can maintain one-wayness, while a large e can
achieve injectiveness. Thus, it is crucial to choose a suit-
able e that balances the injectivity and the one-wayness.
However, this decision depends on the size of preimages
of f, leading us to consider the notion of (almost) regular
one-wayness primitives instead.

Informally, a function fis (almost, resp.) regular if for
any (overwhelming part of, resp.) input %, the size of pre-
images of flx) is close to its expected value (with at most
a polynomial factor). In this case, setting the output size
e to be close to log(n? - 2" /Img(f)) for a constant B, using
2-wise independent hash functions (universal hash func-
tions are sufficient), with probability at least 1 — noM®
under the randomness of (x,%.), we deduce that the
image (f (%), he, he(x)) has only one preimage. Further-
more, when e is close to log(nﬂ - 2" /Img(f)), the one-
wayness holds due to the leftover hash lemma.

Lemma 1 [f almost regular OWFE's exist, then somewhat
injective OWE's also exist.

Therefore, we can obtain a construction of somewhat
injective OWFs (and hence the EFI pairs and quantum
commitments) from almost regular OWFs. It is worth
noting that although non-interactive quantum commit-
ment is already shown to be implied by quantum OWFs
(Koshiba and Odaira 2009, 2011; Yan et al. 2015; Bitansky
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and Brakerski 2021), we believe this aspect is still of inde-
pendent interest. This is because the aforementioned
constructions from quantum OWFs are either compli-
cated or rely on PRGs, whereas our construction is sim-
ple and natural (though with additional requirements
on the structure). Furthermore, our construction from
almost regular OWF's to somewhat injective OWF's also
applies to approximate preimage-size (APS) quantum
one-way functions (Koshiba and Odaira 2009) (a func-
tion for which the number of preimages for each image
can be efficiently estimated).

Next, we extend the results above to OWSGs. However,
since the image in this case is a quantum state p, for the
generalized (mixed) version of OWSGs, we need to con-
sider the distance between pairs of these states, unlike in
the classical case where either the images are completely
unrelated or they are the same. Therefore, we charac-
terize injectiveness by considering the “small” sphere
around the image state. Informally, a one-way state gen-
erator f that takes x as input and outputs p, is somewhat
injective if a significant portion of the image states are
contained separately within disjoint small spheres. Spe-
cifically, there exist constants « and ¢ such that:

1
Pr[Pres,(x) = 1] > —,
nC

X

where

Pre: o (x) = {x’ | F(ox, px) 21— nla}
Using a similar argument as before, we can show that
somewhat injective (SV-)OWSGs imply EFI pairs (quan-
tum commitment). By the quantum Goldreich-Levin
theorem for (SV-)OWSGs (Adcock and Cleve 2002; Cola-
dangelo et al. 2021), indistinguishability is maintained
because it is difficult to distinguish the hard-core predi-
cate from a random bit. Then, farness follows from the
somewhat injectivity of such (SV-)OWSGs, which ensures
that two states pp, = Ex;pox ® |1, (X, 1)2 @ b)(r, (X, r)2 ® b|
for b = 0, 1 are separated.

Theorem 2 If somewhat injective (SV-)OWSGs exist,
then EFI pairs exist.

Similar to the discussion of somewhat injective OWF's,
somewhat injective one-wayness in quantum primitive
is trivially implied by a normally injective one. How-
ever, achieving such functionality without relying on
normal injectivity is also a significant area of study. This
is because the normal injective property often neces-
sitates stronger underlying assumptions than those
required for one-wayness alone. Exploring alternatives
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that circumvent these requirements not only broadens
the applicational scope but also enhances the theoreti-
cal understanding of one-wayness in quantum crypto-
graphic contexts.

Motivated by the reason above, we further demon-
strate that the existence of somewhat injective OWSGs
is implied by a quantum analogue of (almost) regular
OWE's, which we refer to as (almost) regular OWSGs.
Informally, an OWSG is (almost) regular if the preimages
contained in each small sphere around the image state
are concentrated. Specifically, a quantum state gen-
erator f is («, B)-almost regular OWSGs if the following
holds for any &’ > o

n n
nh. = <Prey(x) <nf ——,
Eq(£) Ey(£)
where
Eq(f) := min {xl,xQ I UPrecala) = {0,1}"} )
Xi

Applying the same strategy as before, we consider the
case where f takes x as input and outputs py. By defining
the new OWSG as f'(Me,x) = px @ |He, he (%)) (he, he ()],
where %, : {0,1}" — {0,1}° is an 2-wise independent
hash with e = [log(n® - E,(£))]+1 (where g’ >0 is
an arbitrarily fixed constant), we can demonstrate that
£’ is a somewhat injective OWSG. Additionally, it should
be noted that this strategy appears to be infeasible for
achieving somewhat injective SV-OWSGs.Therefore, we
establish the existence of somewhat injective OWSGs by
leveraging the notion of almost regular OWSGs. Specifi-
cally, we present the following lemma:

Lemma 2 If almost regular OWSGs exist, then some-
what injective OWSGs also exist.

Consequently, in this context, we establish an impli-
cation from somewhat injective one-wayness objects
(including OWF's and OWSGs) to quantum commitment,
while demonstrating the feasibility of these objects
based on the existence of almost regular ones. It is
worth noting that PRSs and pure state OWSG already
imply EFI pairs (quantum commitments). However,
constructing from generalized version of OWSGs is also
meaningful due to the potential requirement of fewer
assumptions compared to PRSs and pure state OWSG
(as PRSs and pure state OWSG trivially imply OWSGs,
while the reverse direction remains challenging and
unknown). Additionally, a non-trivial construction of
PRSs from a standard cryptographic assumption that
cannot simultaneously imply OWF's is still unknown. In
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contrast, constructing somewhat injective (SV-)OWSGs
appears to be more achievable.

Equivalence between Single-Copy-Secure Hard-Core
Predicate of SV-eSI-OWSGs and EFI Pairs: As an
incomparable variant of OWSGs, Morimae and Yam-
akawa (2022a) introduced the notion of secretly-verifia-
ble and statistically-invertible quantum state generators
(SV-SI-0WSGs). Unlike the standard OWSGs, SV-SI—
OWSGs allow outputting mixed states while abandoning
the public verification algorithm. To prevent confusion
caused by unverifiable output states, they emphasize the
statistically-invertible property, which requires the out-
put image states to be sufficiently far from each other
(at least 1/poly(n) distance). This property is more
stringent than somewhat injectiveness. In this case, only
secret verification is feasible, which involves checking
whether " # x for two images p, and p,. Morimae and
Yamakawa demonstrated the equivalence between the
existence of SV-SI-OWSGs and EFI pairs (and conse-
quently, quantum commitment). Combining this result
with the quanutm Goldreich-Levin theorem for OWSGs
discussed earlier, the hard-core predicate for SV-SI-
OWSGs is also equivalent to EFI pairs. Based on that,
we observe that for a special case of SV-SI-OWSGs, the
existence of single-copy-secure hard-core predicate is
also essential for EFT pairs.

More specificall, we define a special class of SV-SI-
OWSGs called the secretly-verifiable and extremely-
statistically-invertible = quantum  state  generators
(SV-eSI-0WSGs). In SV-eSI-OWSGs, the trace dis-
tance between every pair of image states is extremely
large (i.e, TD(px, px') = 1 —negl(n) - /2" for any dis-
tinct pair x,x'{0,1}"). It is easy to verify that SV-eSTI-
OWSGs is a special case of SV-SI-OWSGs. Conversely,
SV-eSI-OWSGs is also implied by SV-SI-OWSGs.
That is because, if £(x) = p, is SV-SI-OWSG, then
£ (x) = p¥ ™ for an arbitrary positive polynomial p(n) is
also an SV-SI-OWSG.

As the second result, we show that a single-copy-secure
hard-core predicate for SV-eSI-OWSGs is both neces-
sary and sufficient for EFI pairs and, consequently, quan-
tum commitments. The large trace distance between
pairs of image states implies a noticeable trace distance
between E,P;(x)zo,ox and EL®=1 0x, where p, is the output
of SV-eSI-0WSGs for an input x € {0,1}"”, and P(-) is
the single-copy-secure hard-core predicate. The con-
struction yields EFI pairs is as follows:

StateGen' (17,b) := E px ® |P(x) ® b)(P(x) ® b|.
(1)

Conversely, the implication from EFI pairs to a single-
copy-secure hard-core predicate for SV-eSI-OWSGs
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follows immediately from the equivalence between SV-
SI-OWSGs and EFT pairs, as well as the Goldreich-Levin
theorem for SV-SI-OWSGs. Therefore, we can conclude
the second result with the following theorem:

Theorem 3 EFI pairs exist if and only if a single-copy-
secure hard-core predicate for SV-eSI-OWSGs exists.

EFI Pairs from LPN Assumption with Flexible Param-
eter Choice: The learning parity with noise (LPN) assump-
tion (search version) describes the computational
infeasibility of finding the random preimage x € {0, 1}"
for a given pair (A, Ax @ e), where A is a random binary
matrix with dimensions m x n, and e is a noise vec-
tor sampled from the Bernoulli distribution B}* with
0 < 7 < 1/2(i.e., each entry of e equals 1 with probability
7). The decisional version of LPN characterizes the com-
putational infeasibility of distinguishing an LPN sample
(A, Ax @ e) from a pair (A, r), where r is a random vector
in Z%'. Here n is the security parameter and 7 called the
noise rate. It has been proven that the decisional version
and the search version of LPN are polynomially equiva-
lent (Blum et al. 1993; Applebaum et al. 2009; Katz et al.
2010).

The LPN assumption has been extensively studied in
various fields such as learning theory and coding theory,
where it serves as the average-case analogue of decoding
random linear codes. The average-case hardness of LPN
is guaranteed by the worst-case hardness of the nearest
codeword problem with a low noise rate (Brakerski et al.
2019; Yu and Zhang 2021). As the application to cryp-
tography, the LPN assumption with varying noise rates
implies the security of various cryptographic primitives,
including one-way functions (OWFs), pseudorandom
generators (PRGs), commitment schemes, symmetric
(public) encryption, and collision-resistant hash func-
tions (Pietrzak 2012; Jain et al. 2012; Gilbert et al. 2008;
Applebaum et al. 2009; Alekhnovich 2003; Déttling et al.
2012; Kiltz et al. 2014; Yu et al. 2019).

It is worth noting that a direct construction of a com-
mitment scheme can be obtained from the decisional
(and exact) version of the LPN assumption introduced by
Pietrzak (2012) and Jain et al. (2012). The commitment
for a message m is defined as com(m) := A - (r||m) D e.
Intuitively, when m is sufficiently large (e.g., m = O(n)),
the image A - (r|m) @ e uniquely determines m with
overwhelming probability for a suitable constant noise
rate 7 (i.e., T < 0.25), which guarantees the binding prop-
erty. The computational hiding property holds due to the
decisional (and exact) version of the LPN assumption.
By the nature of LPN, it should be noted that a restricted
number of samples m and a larger noise rate 7 pro-
vide “stronger” security than treating m as an arbitrary
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polynomial of # and a constant 7. From an experimen-
tal perspective, increasing the number of samples and
reducing the noise rate significantly enhances the power
for solving the LPN problem (Blum et al. 2000; Lyuba-
shevsky 2005; May et al. 2011), while from a theoretical
perspective, the analysis of the learning with error (LWE)
assumption (which is highly related to LPN) suggests
that a small number of samples offers more flexibility
in choosing other parameters (Micciancio and Peikert
2013). To ensure security of cryptographic primitives
based on LPN assumptions, it is essential to carefully
choose flexible parameters. However, it should be noted
that for the classical commitment scheme discussed
earlier, choosing such parameters may lead to a loss of
the binding property, as an unbounded adversary could
potentially find a collision for A - (r||m) @ e.

Based on a non-trivial decisional LPN assump-
tion, we can ensure the existence of EFI pairs (and
thus the quantum commitment) as the third result. By
employing Grover and Rudolph’s technique (Grover
and Rudolph 2002), a QPT algorithm can pro-
duce the superposition E.|e)(e| where e < B)". This
directly leads to the construction of EFI pairs as
stateGen(1”,0) = Eq |A)(A| ® (Exe |[Ax @ e)(Ax D e|),
and StateGen(1”,1) = E4 |A)(A| ® (E, |[r){r]). Hence,
it is obvious that the indistinguishability directly follows
the hardness of the decisional LPN. As for the farness,
it is observed that the trace distance between these two
states is limited by the statistical distance between the
distribution of LPN samples and a random one, which is
noticeable as long as the decisional LPN assumption is
non-trivial.

Theorem 4 (Informal) Assuming the non-trivial deci-
sional version LPN is hard on average in the quantum
case, then EFI pairs exist.

It is worth noting that for any constant noise rate
0 <t <0.5, m= O(n) is already adequate for the EFI
pairs. Additionally, it is believed that fort = (1 — 1) /2,
a polynomial m = O(nC/) is sufficient, where C’ is
dependent on C, which allows for a superior parameter
choice compared to previous works by Pietrzak (2012)
and Jain et al. (2012). Furthermore, the construction is
akin to the PRG from LPN but does not necessitate the
length-increasing property, providing the flexibility for
parameter selection.

Related works

The concepts of pseudorandom state generators
(PRSs) and pseudorandom unitary (PRU) were intro-
duced by Ji et al. (2018) as the quantum counterparts
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of pseudorandom generators and pseudorandom func-
tions, respectively. They demonstrated the implica-
tion from quantum OWF's to PRSs and gave a quantum
money scheme from PRSs. Then, Brakerski and Shmu-
eli (2019) extended the original proof to the random
binary phase setting and developed a scalable construc-
tion of pseudorandom quantum states in their subse-
quent work (Brakerski and Shmueli 2020). Additionally,
Kretschmer (2021) provided a quantum oracle O rela-
tive to QWA® = BQP©, demonstrating the existence of
PRS (and even PRU), which offers negative evidence for
reducing OWF from PRS.

Parallelly, Morimae and Yamakawa (2022b) and Ananth
et al. (2022) independently presented constructions of
quantum commitments from PRSs, arising the possibil-
ity of constructing quantum oblivious transfer and mul-
tiparty computation. Subsequently, Brakerski, Canetti,
and Qian formalized the concept of EFI pairs, which was
implicitly described by Yan (2022), and demonstrated its
equivalence to the canonical quantum bit commitment.
They also showed that EFI pairs are implied by various
quantum cryptographic objects, such as quantum oblivi-
ous transfer, general secure multiparty computation, and
non-triviality of QCZK (Brakerski et al. 2023). To com-
plement Kretschmer’s findings, Kretschmer et al. (2022)
further constructed a classical oracle relative to which
P = NP, while a single-copy secure pseudorandom quan-
tum state generator still exists.

As a quantum analogue of OWF's, Morimae and Yam-
akawa (2022b) defined the concept of OWSGs and pro-
vided a construction of a one-time secure signature from
it. They then introduced the generalized definition of
OWSGs, allowing the output state to be a mixed state and
providing an additional verification algorithm for check-
ing the validity in their subsequent work (Morimae and
Yamakawa 2022a). They demonstrated the equivalence
between OWSGs and weak OWSG using the amplification
theorem for weakly verifiable puzzles, and also estab-
lished the equivalence between OWSG and (bounded-
time-secure) quantum digital signatures with quantum
public keys, as well as the implication of OWSG from
private-key quantum money schemes (with pure money
states) and quantum pseudo one-time pad schemes.
Additionally, they introduced an incomparable variant of
OWSG known as the secretly-verifiable and statistically-
invertible quantum state generators (SV-SI-OWSGs),
and demonstrated the equivalence between SV-SI-
OWSGs and EFI pairs.

Very recently, Khurana and Tomer (2023) showed the
feasibility for realizing quantum commitments (and
hence EFI pairs, SV-SI-OWSG) from pure state OWSGs.
Besides, as an intermediate primitive, they introduced
the notion of (quantum) one-way puzzle which seems
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to be necessary for plenty of quantum cryptographic
objects. We remark that their work does not overlap with
ours, because we focus on the structured OWSG which
also includes the generalized (i.e., the mixed state, and
the secretly-verifiable) setting.

Organization of the paper

Basic notions and formal definitions are given in Section .
Then in the following sections, the EFI pairs (quantum
commitment) are studied from three different perspec-
tives. In Section , we present the construction of quan-
tum commitments using OWSGs. Section establishes
the equivalence of EFI pairs and hard-core predicates.
Finally, a practical construction of EFI pairs is given in
Section from the LPN assumption.

Preliminaries

In this section, we will introduce several notations and
cryptographic notions that are useful in the following
context. We begin by providing some basic notations.

Notations

We use the following basic notations throughout the
paper: Z and N denote the sets of positive integers and
positive integers, respectively. [#] represents the set of
integers 1,2, ..., n. The bit length of a string x is denoted
as |x|, and the size of a set X is denoted as |X| as well.
The mathematical expectation of a random variable X is
denoted as E[X]. A function negl(-) is considered negli-
gible if, for any ¢ > 0, negl(n) < 1/#x€ for all sufficiently
large #n. The injective domain of a function f is denoted
as Inj(f). Furthermore, we define additional notations
related to quantum cryptography:

S(N) denotes the set of N-dimensional pure quantum
states, U(N) represents the group of N x N unitary oper-
ators, and Sy, (resp., Uy,) is S(2") (resp., Uy,). For a unitary
operator U € U(N), U" denotes its adjoint, and I, € U(2")
denotes the identity map. Tr(p) denotes the trace of a
quantum state p, and Tra (p) represents the partial trace
over subsystem A. For two mixed quantum states pg

and p1, TD(po, p1) := Trv/(po — p1)*(po — p1)/2 and

F(po, p1) := Try//pPop1./Po denote the trace distance
and fidelity between these two states, respectively.

Quantum cryptographic primitives

Before delving into the specific definitions, we assume
that the reader is already familiar with the fundamentals
of quantum computing and basic cryptographic notions.
We begin by introducing the definition of canonical
quantum bit commitments as defined by Yan (2022):

Definition 1 (Canonical Quantum Bit Commitment)
A canonical quantum bit commitment scheme is an
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ensemble of polynomial-time uniform families of quan-
tum circuits (Qo,,, Qo,.) that operate on two registers: A
(the commitment register) and B (the reveal register). In
the commit phase, the committer selects a bit b € {0, 1}
and applies the circuit Qp, to the state |0) 45, sending the
register A to the receiver. In the reveal phase, the com-
mitter sends the register B and the bit b to the receiver.
The receiver applies the inverse circuit Qz, , on registers A
and B, and accepts if the measurement outcome is 0. The
security of a quantum bit commitment scheme is charac-
terized by its hiding and binding properties.

« Computational (Statistical) Hiding: For any QPT
(resp., unbounded) malicious receiver, it is infea-
sible to distinguish between Trg(Qonl0)) and
Trg(Q1,n]0)).

o Statistical (Computational) Honest Binding: For any
state |¢)c stored in register C and any unitary Upc
acting on registers B and C that can be generated by
an unbounded-time (resp., polynomial-time) algo-
rithm, the following holds:

|[(Qual0}(01Qf,) ® Ic| - Ia ® Ugc) @
(Qonl0)45(@lc)| < negl(n).

Yan (2022) shows that honest binding is equivalent
to the concept of sum-binding. This type of commit-
ment is already sufficient for oblivious transfers and
multi-party computation (Morimae and Yamakawa
2022b). Hence, unless specified otherwise, we refer to
this canonical quantum bit commitment scheme in this
paper. Additionally, we note that the flavor conversion
for quantum bit commitments has been proven feasi-
ble. This means that computational hiding and statisti-
cal (honest) binding can be converted to computational
(honest) binding and statistical hiding, and vice versa
(Yan 2022; Hhan et al. 2023).

Next, we introduce the definition of efficiently sam-
plable, statistically far but computationally indistin-
guishable pairs of distributions (EFI pairs), which was
first described by Yan (2022) and later formalized by
Brakerski et al. (2023).

Definition 2 (EFI Pairs) The efficiently samplable,
statistically far but computationally indistinguishable
pairs of distributions (EFI pairs) consist of a QPT sam-
pler StateGen(1”, b) that takes a parameter 1” and a bit
b € {0, 1} as input and outputs a quantum state pp. These
pairs satisfy the following properties:
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« Distinguishability: For any QPT D, it is computa-
tionally infeasible to distinguish between po and pj,
meaning:

|Pr [DQ", po)] — Pr [DA", p1)]| < negl(n)
3)
for some negligible function negl(-). Sometimes we
omit the security parameter 1”7 when it’s clear from
the context.
o Farness: The trace distance between these two states
satisfies:

1
>
TD(po, p1) = ooly(@) (4)
for some positive polynomial poly(-) when # is suf-
ficiently large.

The equivalence between EFI pairs and quantum com-
mitments has been established in Yan (2022), Brakerski

et al. (2023), as shown in Lemma 3.

Lemma 3 EFI pairs exist if and only if quantum com-
mitment exists.

This lemma implies that achieving quantum commit-
ments is contingent upon constructing EF I pairs. Due to
the more explicit form of EFI pairs, they are often pre-
ferred in subsequent discussions over the construction of
quantum commitments.

The concept of one-way quantum state generators
(OWSGs) was originally introduced by Morimae and
Yamakawa (2022b), and subsequently generalized in
Morimae and Yamakawa (2022a) to allow for mixed state
outputs. We now recall the definition of the mixed state
version of OWSGs:

Definition 3 (One-Way State Generator) One-way state
generator (OWSG) is defined as a triple of QPT algo-
rithms, denoted by f = (KeyGen,StateGen,Ver),
where:

+ KeyGen(1”): The key generation algorithm takes
the security parameter 1”7 as input and outputs
x < KeyGen(1").

+ StateGen(x): The state generation algorithm takes
x as input and outputs a (mixed) state p, indexed by
Xx.

« Ver(x, py): The verification algorithm checks the
validity of the pair («', px), and outputs 1 if it is valid
and 0 otherwise.
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The function f must satisfy the following conditions:

+ Correctness: There exists a negligible function
negl(:) such that

Pr [Ver(x, px) =1:KeyGen(1") — x,
StateGen(x) = px] > 1 —negl(n).

+ One-Wayness: For any QPT adversary .A and polyno-
mial £(+),
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For simplicity, we denote by Expsflj;lows‘g the experi-
ment in inequality (6).
Additionally, when KeyGen is clear from the context, we
write £ (x) = StateGen(x) = p, for convenience.

It is worth noting that SV-OWSGs exist uncondi-
tionally (although they are hard to use in that case).
Therefore, additional structural requirements are
usually considered for SV-OWSGs, such as statis-
tical invertibility (i.e., SV-SI-OWSGs) defined by
Morimae and Yamakawa (2022a) and the somewhat

Pr|Ver(x',px) =1: A(,of’t(")) — &', KeyGen(1") — x, StateGen(x) — px} < negl(n) (5)

for some negligible function negl(-). We denote the
experiment in inequality (5) as Exp?ﬁg for simplicity.

When we refer to pure state version of OWSGs, where
StateGen(x) always outputs a pure state |¢x). In this
case, Ver (&', |¢x)) can be replaced by measuring |¢,) with
the basis {|¢y) (P, I — |px){(Px|}, and output 1 if and
only if the measurement result is [¢,).

Next, we introduce a more generalized version of
OWSGs called secretly-verifiable quantum state genera-
tors (SV-OWSGs), which was proposed by Morimae and
Yamakawa (2022a).

Definition 4 (SV-OWSGs) The secretly-verifiable
OWSG (SV-OWSG) consists of a pair of QPT algorithms
f = (KeyGen, StateGen) such that:

KeyGen(1”): The key generation algorithm takes
the security parameter 1”7 as input and outputs
x < KeyGen(1”).

StateGen(x): The state generation algorithm takes x
as input and outputs a (mixed) state p, indexed by .

The function £ should satisfy the following condition:
+ One-Wayness: For any QPT adversary .4 and poly-

nomial £(-), there exists a negligible function neg1(-)
such that

injectiveness discussed in this paper. For example,
f = (KeyGen, StateGen) is §-statistically-invertible if
it meets the following condition

o &-Statistical Invertibility: £ satisfies the §-statistical
invertibility if

TD(px, pox) = 8

holds for any x # &’ in the support of KeyGen(1").
In particular, if £ is SV-SI-OWSG if § = poly(n)~!
(Morimae and Yamakawa 2022a). Besides, it satisfies the
property of extremely statistical invertibility if its output
states are extremely separated i.e.

TD(pX) px’) > 1—27". negl(n)¢

for all sufficiently large n € N, we refer to such Sv-
SI-OWSGs as the secretly-verifiable and extremely-
statistically-invertible — quantum  state  generators
(SV-eSI-0WSGs). It is worth noting that, as discussed
by Morimae and Yamakawa (2022a), although SV-eSI-
OWSGs seems to be a stronger notion than SV-SI-
OWSGs, these two notions are equivalent in the sense of
existence.

In the standard definition of OWSG (SV-SI-OWSG),
the adversary is given arbitrary polynomial copies of the
challenge state. As a weaker version, we call it meets the
k-copy-security if only k copies are given in the experi-
ment. We stress that the number of copies might be cru-
cial to its security (Cavalar et al. 2023).

Pr|x’ =x: A(p®'"W) - x,KeyGen(1") — x, StateGen(x) — px| = negl(n). (6)
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EFI pairs from somewhat injective one-way
primitives

In this section, we explore the construction of quantum
commitments using one-way quantum state generators
but with some compromises on their structure. Since
there is an equivalence between EFI pairs and canoni-
cal quantum bit commitments, we focus on EFI pairs
instead. We begin by discussing the construction of
EFI pairs from somewhat injective one-way functions
(OWFs).

Warming up with somewhat injective OWF's

In this part, we start by warming up with OWF's. We first
present a construction of EFI pairs from somewhat
injective OWF's, and then show that somewhat injective
OWF's are implied by almost regular OWF's. To begin, we
introduce the definition of somewhat injective OWFs,
which are one-way functions that preserve injectiveness
on a noticeable portion of their domain.

Definition 5 (Somewhat Injective OWFs) An ensemble
of one-way functions! {f, : {0,1}" — {0, l}l(”)}n is some-
what injective if there exists a constant ¢ > 0 such that

pr [l | = 1] = ni (7)

for any n € N. For simplicity, we use f when the param-
eter n is clear from the context.

Since the canonical quantum bit commitments exist
if and only if EFT pairs exist, we aim to construct EFI
pairs from somewhat injective OWFs instead. Let
f:{0,1}" — {0, 1}¥ be a somewhat injective OWF such
that

e[l ren| =1] = ®

for a constant ¢ > 0. We can construct a candidate of
EFT pairs follows.

Construction of EFI Pairs: The generator algorithm
StateGen(1”,b) for the EFI pairs is constructed as
follows:

+ For an input bit b € {0, 1}, the algorithm generates
the state (assuming x follows the uniform distribu-
tion):

bx,1) 4 ® |f (%), (r,x)2 @ b,
Wplag = > 16,70 lf(xz)nv #2 r>B,

x,r€{0,1}"

1 We assume the reader is familiar with the definition of one-way functions.
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where (r,x); :=r-x mod 2. Register A stores the
first part of the state (which contains |b,x,r)), and
register B stores the rest of the state. The algorithm
then outputs the state:

StateGen(1",b) := pp = Tr¥p) (V. 9)

Theorem 5 If somewhat injective OWF's exist in the
quantum case, then the construction in (9) is EFI pairs.

Proof To justify the correctness of that theorem, it is
sufficient to show the distinguishability and the farness
respectively.

Distinguishability: The security of the construction
(9) can be proven using the following lemma that can be
regarded as the Goldreich-Levin Theorem.

We aim to show the distinguishability by making a con-
tradiction. Suppose there exists an adversary A that can
distinguish between the two states with non-negligible
probability e(n), i.e.,

[A(p1) — 0]} = e(n).

(10)
Let Pg"’h denote the probability that A outputs 0 as a
decision given some specific |f(x), (r,x)2 @ b,r) as the
input state. The linearity of A implies that the inequality
(10) can be expressed as:

[A(po) — 0] —
P

Pr Pr
po<StateGen(1,0) 1 <Stat eGen(1,0)

¢ 7] - £ 7]

xX,r xX,r

> e(n). (11)

Since f preserves the one-wayness, by the Goldreich-
Levin Theorem, we have

Pr [D(f (), 7, (x,7)2) = 1] = Pr [DY ), 7, {5, )y ©1) = 1]] < neql(n).
(12)

However, by (11), we construct a QPT distinguisher D
that contradicts to (12) as follows:

+ D takes as input (f(x*),b*,r*) for some random
x*,r* < {0,1}", its task is to determine whether
b* = (x,r*),.

« D invokes A with input state |f (x*), (r*, b*,r*).

+ D would output A’s result as its decision.

By the definition of P(’)”’b, if b* = (x*, r*), then the prob-
ability of D outputting 0 is expressed as
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P (D (6%, (4%, r*)2,1%) = 0] = E P,
x*’r* r,x

On the other hand, if b* = (x*,r*)y @ 1, the correspond-
ing probability becomes

Pr [D(f (x™), (x,r*)2 ® 1,r*) =0l = E PS’”.
x*,r* r,x

Taking inequality (11) into account, the success probabil-
ity of D is at least £(n), leading to a contradiction to (12).

Farness: We begin by considering the trace distance
between these two states, which is noticeable. In accord-
ance with the definition of the trace distance, we have

TD(po, p1) = max Tr (P(o — p1)
Let P, denote the projection generated by the basis

{[f(x), (r,x)o ®b,r) | r €{0,1}",x € Inj(f)},

where Inj(f) represents the injective domain of f.

Since fis injective on Inj(f), it is evident that
|(f ®), (r,x)2 @ b, r|f (&), (%) D DD 1,7)| =0

for any x € Inj(f), implying Py - P = 0.

Given that Pry[x € Inj(f)] > n™¢and Tr(Pgp1) = 0, we
can conclude

TD(po, p1) = Tr(Poeo — 1))
= Tr(Popo) — Tr(Pop1) =n"¢

This completes the proof. O

By establishing the equivalence between quantum
commitments and EFI pairs, we can deduce the impli-
cation from somewhat injective OWFs to quantum
commitments.

Corollary 1  Assuming the existence of somewhat injec-
tive OWF's in quantum case, then the canonical quantum
bit commitments exist.

Next, we demonstrate that the existence of somewhat
injective OWF's is implied by almost regular OWFs. We
adopt the definition of almost regular OWF's by Mazor
and Zhang (2021).

Definition 6 (Almost Regular OWFs) An ensemble of
one-way functions {f; : {0,1}" — {0, 1}4My,, is said to be
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B-almost regular for 8 > 0 if the following conditions are
satisfied:

nf 2" /Img(fy) >

G Ea00)| = 07 2% Img (),

for any n € N. Here, Img(f,) represents the image space
defined as {f,(x) | x € {0,1}"}. For simplicity, we use f
when the parameter # is clear from the context.

In this definition, we assume that Img(f) can be com-
puted efficiently and is known to the user. We will now
show that the existence of almost regular OWF's implies
the existence of somewhat injective OWF's.

Lemma4 Iff:{0,1}" — {0, 1} s a B-almost regular
OWF in the quantum case, then the function

f/(he,x) = (hm he(x)>f(x))

is somewhat injective OWF. Here, h. :{0,1}" — {0,1}¢
denotes a 2-wise independent hash function, and
e := [log(n® - 2" /Img(f))] + L

(13)

Proof 'The proof makes heavy use of the leftover hash
lemma which is introduced as follows:

Lemma 5 (Leftover Hash Lemma) Let
he : {0,1}" — {0, 1}¢ be a universal hash function, where
n > e. Then, for every ¢ > 0 and every distribution X on
{0, 1}* of min-entropy at least e + 21log(1/¢), the random
variable (he, h.(X)) is e-close to the uniform distribution
(he, Ue).

We prove Lemma 4 by making a contradiction. Let A
be a QPT adversary breaking the one-wayness of f’ with
non-negligible advantage §(n). We denote by h.(x)|¢
be the first ¢’ bits of 4 (x). Since the min-entropy of X
conditioned on fX) is at least [log(n# - 2"/Img(f))],
then by Leftover Hash Lemma 5, the distribution
of (he,he(®)|e,f(x)) is 8(n)/2-close to (he,re,f (%))
when € =e—2Blogn—2log(2/8(n)) —1,  where
x < {0,1}", 7y < {0,1}¢ are chosen uniformly at ran-
dom. Next, since there are 28logn + 2log(2/5(n)) + 1
remaining bits in /.(x) which is not close to random
string, we can guess it correctly with probability at least
n=2P . §(n)/2, that implies a QPT adversary B for break-
ing the one-wayness of fwith advantage n~2 - §(n)?/4 as
follows:

« Btakes as input f(x*) as its challenge.
« B generates a universal hash
he : {0,1}" — {0,1}%

function
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o B runs A with (h,f(x*),r) for a random chosen
r < {0, 1}¢ and outputs .A’s result.

Due to the §/2-closeness, A wins with probability at
least §/2 if we replace the first €’ bits of 4, (x*) by a ran-
dom string ry <« {0, 1}¢. Next, for a random chosen
Fe—e < {0,1}¢7¢ it is equal to the last e — ¢’ of h.(x*)
with probability 2¢—e — =28 . 8(n)/2. Since this event is
independent to others, we can conclude that B wins with
probability at least (6/2) - n2p. d(n)/2 = n2p. 8(n)2/4.
That justifies the one-wayness.

Next, we will focus on the injectiveness part. For any
x' € {0,1}", since h, is 2-wise independent hash function
and fis a B-almost regular OWF, the expected value of col-
lisions is given by

< nf . 2"/(Img(f) - 2°).

E L//*(f/(he,x’)) \ (1er ')
he

Since e = [log(nﬁ - 2" /Img(f))], by Markov’s inequality,
we have

e[| e D\ G| 2 1] < -2 (Umg(0) - 2%) = %

This means for arbitrary x, f’(h.,x) has only one preim-
age with probability at least 1/2, which completes the
proof of Lemma 4. J

We observe that the construction from almost regu-
lar OWF's to somewhat injective OWF's can be extended
to a broader class of functions. Specifically, it is applica-
ble to those OWF's for which the number of preimages
can be efficiently estimated based on their image. This
property is captured by the notion of approximate pre-
image-size (APS) quantum one-way functions (Koshiba
and Odaira 2009). In particular, a function fis consid-
ered an approximate preimage-size quantum one-way
function if it is one-way against any QPT adversary,
and the quantity d, := [log |f ~1(y)|] can be efficiently
computed for any given image y. By employing a similar
argument, we can observe that the function

f/(hdf(x)’x) = (hdf(x),hdf(x) (x),f(x)) also preserves both
the one-wayness and the somewhat injectiveness
properties.

Furthermore, we note that Koshiba and Odaira
(2009) presented a construction of statistically-hiding
quantum bit commitment from the combination of
APS quantum one-way functions and almost regular
quantum one-way functions. This construction can be
seen as implying the existence of statistically-binding
quantum bit commitments using the flavor conversion
technique introduced by Yan (2022) and Hhan et al.
(2023). However, our construction offers a more direct
approach and can be extended to the setting of OWSGs.
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EFI Pairs from somewhat injective OWSGs
In this section, we aim to extend the aforementioned
result to the OWSGs. We begin by providing a formal
definition of somewhat injective OWSGs.

Definition 7 (Somewhat Injective OWSGs) A quantum
state generator f that takes x as input and outputs p is
said to be somewhat injective if there exist constants ¢
and « such that

1
Pr[Precy(x) = 1] > —,

x n¢ (14)
where
, 1
Precq(x) := (% | F(px, px) 21— — ¢. (15)
n

Based on the similarity between OWSGs and SV-
OWSGs, we can extend the concept of somewhat injec-
tiveness to SV-OWSGs as well. The formal definition of
somewhat injective SV-OWSGs can be omitted since
it follows the same principles as somewhat injective
OWSGs.

Let us assume that f is a somewhat injective OWSGs
that takes x € {0, 1}” as input and outputs p,, such that

1
Pr[Presq(x) = 1] > — (16)
x n
for some constants ¢, > 0. Based on the discussion in
the last subsection, we establish the following construc-
tion of EFI pairs from somewhat injective OWSGs.

Construction of EFI Pairs: Without loss of general-
ity, when the state generation algorithm of f takes x as
input, it first invokes a unitary Uy on |0) and gets |¢x) B,
then it discards (traces out) the B register and gets
px = Tre|dx) (¢x| Based on that, we construct the gen-
erator algorithm StateGen(1”,b) for the EFI pairs as
follows:

« Foraninputbitb € {0, 1}, it generates the state

S
165, 1) X ®19) s s © 13D @ bi1)

1
Vb) gy =5 © 2 s

x,re{0,1}
(17)
where (r,x)9 :=r-x mod 2 and s > 0is a constant
that will be determined later. It then outputs the state

StateGen(1%,b) := pp = Tr [Yp) (Y. (18)
XB"

Theorem 6 If somewhat injective OWSGs exist, then the
construction in (18) is EFI.
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Proof To prove Theorem 6, it is sufficient to show con-
struction in (18) meets the distinguishability and the
farness:

Distinguishability: The distinguishability can be shown
similarly to its classical counterpart as discussed earlier, it
is sufficient to justify the quantum version of Goldreich-
Levin Theorem (Adcock and Cleve 2002; Coladangelo
etal. 2021).

Lemma 6 (Quantum Goldreich-Levin Theorem) Let
A be a quantum algorithm that takes as input a random
string r and an auxiliary quantum input py, and outputs
a bit b. Then, if

PrlA(r, px) = (x,7)2] = 1/2 + ¢,

there exists a quantum algorithm B that takes as input py
and outputs a string x' such that B(p,) = x with probabil-
ity at least 4 - &%

By the Goldreich-Levin Theorem, suppose there
exists an adversary A that can distinguish between the
two states with non-negligible probability e(n), we can
hence derive a QPT adversary breaking the one-way-
ness of £ with non-negligible probability (x)2. That
hence justifies the distinguishability.

Next, we turn to the proof of the farness for
Theorem 6.

Farness: To show that the trace distance between
these two states is significant, we start with the defini-
tion of the trace distance:

TD(po, p1) = max Tr(P(oo — p1)).

Let Py, be the projection
[Precq (x')|=1
Ph = Z Px®|<ryx>2@b’r)<<r’x>2®b’r|'

X,

For x1, ..., %91, we let the projection Py be

po=TT (m),

19

s (19)

where TI}} is the projection that maxi-
mizes Tr[IT¥ (px — px) ] That implies
Tr[Mpc] > 1 — (1 —1/n%)™ and

T[T px] < (1 — 1/n%)™,
By the definition of IT,’ and Pre¢y(x), when we let
s = o + 2, it holds that
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Tr[Pypx] = 1 —2" - exp(—n?), x=x;
x #x,
for any x such that |Presy (x)| = 1 and for all sufficiently

large n € N. Combining the inequality above with the fact
that Pr, HPref,a (x)| = 1] > n~¢ we have

Tr[Pyxpx] < exp(—n?),

Tr[Popol > n~ ¢ — O(2*" - exp(—2n%))

_ (20)
>n ¢ —negl(n).
On the other hand, we can deduce similarly that
Tr[Pp1] < O@2" - exp(—2n%)) < negl(n).  (21)

This implies

TD(po, p1) = Tr (P(po - p1)) = Tr(Ppo) — Tr(Ppo)

>n ¢ —2-negl(n),

which shows farness of construction (18) and hence com-
pletes the proof. [

Furthermore, the verification step of OWSGs appears
unnecessary in the proof of Theorem 6. By combining
this observation with the result by Morimae and Yam-
akawa (2022a), we can deduce the equivalence between
somewhat injective SV-OWSGs and EFI pairs:

Corollary 2 Somewhat injective SV-OWSGs exist if and
only if EFI pairs exist.

Similarly, we can establish the implication from
somewhat injective OWSGs to canonical quantum bit
commitments:

Corollary 3 Assuming the existence of somewhat injec-
tive (SV-)OWSGs, then canonical quantum bit commit-
ments exist.

Next, we demonstrate that somewhat injective OWSGs
can be achieved using almost regular OWSGs, which we
define as follows:

Definition 8 (Almost Regular OWSGs) A quantum state
generator f is said to be («, 8)-regular OWSG for «, 8 > 0
if the following holds for any constant &’ > o

n n

< Prey (x) < n” . ,
E,(f) Ey(£)

nh.

(22)

where

E,(£) := min Hxl,xg I UPreco ) = Supp(KevGen(li'))}‘,

Xi



Cao and Xue Cybersecurity (2025)8:30

and

o

1
Presy (x) := {x/ | F(ox, px) = 1 — n}-

Additionally, it is almost regular if (22) holds for almost
all x € {0, 1}".Here “almost all” means that the set of x for
which (22) does not hold is negligible.

Based on the notion of almost regularity, we provide a
construction for somewhat injective OWSGs as follows:

Lemma 7 Assuming £ is (o, B)-almost regular OWSG

that takes x € {0, 1}" as input and outputs py, we have
£ (hey %) := Ny, = Px ® |he, he(x)) (he, he(x)|  (23)

as a somewhat injective OWSG, where h, : {0,1}" — {0, 1}¢
is 2-wise independent hash for e = (log(nﬂ -Eq(£)]1+ 1L

Proof Since h, : {0,1}" — {0,1}° is 2-wise independent
hash function, we have

Er[he(x) =he(x)] <27°

Therefore, we have

IE [!Preff,a(he;x) \ (he;x)H = m =< 5
This implies
1
Pr HPref’,a(heyx) \ (he,x)‘ > 1] > —, (24)
he,x 2

This justifies the somewhat injectiveness.

Next, we show the one-wayness of £’. Before giving the
proof, we sirstly revisit the quantum leftover hash lemma
(Renner and Konig 2005; Bartusek et al. 2021) as follows:

Lemma 8 Let {h,:{0,1}" — {0,1}°} be a family of
2-wise independent hash functions. Then for classical-
quantum bipartite state pxy := Ex|x){(x| ® px where X
stores the classical input and Y stores the corresponding
quantum state py, we have

TD( E |he, he(x)><he: he(x)| ® Px
Hex h

er

E ‘her u><he» M| ® Px) =< 2717
XU
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where u < {0,1} is chosen uniformly at random
Hmin(X | Y), is the quantum conditional min-entropy
defined by

Hunin (X1 Y, 1= sup {2 € R: 27" Ix @ 1y = p .
nB

The proof strategy of one-wayness is similar to its
classical counterpart. Assuming there exist a QPT
adversary A breaks the one-wayness of £’ with #(n)
copies and wins with non-negligible advantage &(n).
We denote by h.(x)|s be the first ¢ bits of 4.(x). By
the definition of almost regularity, the min-entropy
Hpmin(X | Y), is at least ,

21’1
Ey(f)

Hpin(X | A), > logn=#~1. (26)
Then by quantum leftover hash lemma 8, the trace dis-
tance can be bounded as follows:

TD( E |he)(he| ® [he(®)|y/)(he ®)]/| ® px,  E
he,x h

DY
e, XL/

|he) (he| ® [re/ ) (ry/ | ® Px>

- B0 50
< e

(27)
e =e— 28+ 1)logn—2log(2/8(n)) — 1,

x < {0,1}", <—{0,1}e/ are chosen uniformly at
random.

Next, since there are (28 + 1) logn + 2log(2/5(n)) + 1
remaining bits in /4.(x) which is not close to ran-
dom string, we can guess it correctly with prob-
ability at least n~2#~1.5§(n)/2, that implies a QPT
adversary B for breaking the one-wayness of f with
advantage n=2#~1 . §(n)? /4 as follows:

where

+ Btakes as input pgt(")

« B generates a
he : {0,1}" — {0,1}%

o B runs A with |k, ) (he, r|®® ® ,ogt(") for a ran-
dom chosen r < {0, 1} and outputs .A’s result.

as its challenge.

universal hash  function

Due to the §/2-closeness between these two state in
inequality (25), A wins with probability at least §/2 if
we replace the first ¢’ bits of /1,(x*) by a random string

(Honin 11 )

(25)




Cao and Xue Cybersecurity (2025)8:30

re < {0, l}el, we can conclude that B wins with probabil-
ity at least n=2#~1. §()? /4. That justifies the one-way-
ness, hence completes the proof of Lemma 7. ]

Similar to its classical counterpart, we note that our
construction from almost regular OWSGs to somewhat
injective OWSGs can also be extended to the case where
the preimage size of OWSG can be efficiently estimated
from the image state, using at most polynomially many
copies.

However, extending Lemma 7 to SV-OWSGs would
face a challenge. In the case of almost regular SV-OWSG,
each image state sphere (that is, a sphere that takes the
an output state as its centre) may contain exponentially
many points, which makes it difficult to suit the lemma
(although it still holds when each sphere of the output
state contains only polynomially many points).

Single-copy-secure hard-core predicates suffice

for EFI Pairs

In this section, we establish the equivalence between
EFI pairs and single-copy-secure hard-core predi-
cates of secretly-verifiable and extremely-statistically-
invertible quantum state generators (SV-eSI-OWSGs)
introduced in Definition 4. We firstly introduce the
definition of single-copy-secure hard-core predicate of
SV-eSI-OWSGs as follows:

Definition 9 (Single-Copy-Secure Hard-Core Predicate
0of SV-eSI-0WSGs) A QPT algorithm P : {0,1}" — {0, 1}
is single-copy-secure hard-core predicate of the secretly-
verifiable and extremely-statistically-invertible quantum
state generator £ (x) := py if it satisfies the condition

[Br[D(px,F () = 1] = PHD(px, F @) & 1) = 1| < negl(n)
for any QPT distinguisher D.

By the Quantum Goldreich Levin Theorem 6, it’s easy
to note that the existence of single-copy-secure hard-core
predicate of SV-eSI-OWSGs is implied by the single-
copy-secure SV-eSI-OWSGs (i.e., only one copy of the
challenge state is given in the experiment Expsft;‘owsg)
Notably, the single-copy-secure hard-core predicate of
SV-eSI-OWSGs appears to be a weaker primitive, as
it only requires one copy of the challenge state. How-
ever, the equivalence with EFI pairs demonstrates their
underlying connection and reveals that they are concep-
tually equivalent.
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Single-Copy-Secure Hard-Core Predicate of SV-eSI-
OWSGs from EFI Pairs: Let StateGen(1”,b) be the
generation algorithm for EFI pairs, where b and 1” are
the input parameters, and pj, is the resulting (mixed)
state. Based on the construction by Morimae and Yam-
akawa (2022a) and the Goldreich-Levin theorem for
SV-eSI-OWSGs, it can be shown that the function

n

P@ill..-lxwrill .- lIrw) = @i

i=1

(28)

serves as the hard-core predicate for the SV-eSI-0WSG
n

E@ll. . mrill ) = Q) p2" @ I (ril - (29)
i=1

where ¢ > 0 is a constant. Based on the argument pre-
sented by Morimae and Yamakawa (2022a), it can be
established that f is a SV-eSI-OWSGs for a suitable con-
stant ¢ > 0 (specifically, a single-copy-secure SV-eSI-
OWSGs). Consequently, the Quantum Goldreich-Levin
Theorem 6 directly implies that P serves as a single-copy-
secure hard-core predicate for £ which hence justifies this
part of implication.]

EFI Pairs from Single-Copy-Secure Hard-Core
Predicate of SV-eSI-OWSGs: Let P be the single-
copy-secure hard-core predicate of SV-eSI-OWSGs
denoted by £ = (KeyGen, StateGen). The state gen-
eration algorithm of EFI pairs is given by

StateGen'(17,b) := E px ® |P(x) ® b)(P(x) ® b|
X
(30)
which generates EFI pairs. Here, the expectation of x fol-
lows the distribution on KeyGen(1”) of f.

The distinguishability of the EFI pairs follows directly
from the security of P. Since if not, for a challenge
Px @ |P(x) @ b)(P(x) @ b|, invoking the distinguisher of
EFTI pairs with this state would directly induce a distin-
guisher for the hard-core predicate P.

Next, we demonstrate the farness of this construction.
For convenience, let

P(x)=b

M= E p (31)

Then, we have
Eﬂx ® |P(x) @ b)(P(x) ® b| = po
N0 ® |b) (bl + (1 —po)m ® |b D 1){(bD 1]
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for some |pg — 1/2| < negl(n) (otherwise, it contradicts
the hardness of predicate P).

Since the function f is statistically invertible, it satisfies
the following inequality:

TD(px, px) = 1 —=2""-negl(n) (32)
Consequently, there exists a projection P,’C‘l such that

Tr(PY px) = 1— 27" negl(n), (33)
and

Tr(PX py) < 27" - negl(n). (34)

X

Now, consider the product of projections H;(x)ZI (Px ,)

(it doesn’t matter in which order the projections are
taken). Define:

P(x)=b
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1 o RN
s T () (1 ()
Ny = T
C (H;po:l (PY ) (H;(x)ﬂ (P;’)) )

and

— , — A\ T
g ) 1)
m = T
Tr (Hi(x):l (I _ Pi’)px (Hi,(x)=1 (I _ Pi’)) >

Using inequalities (33) and (34), we can derive the follow-
ing inequality:

p(x)=1 p(x)=1 i
Tr( II (Pﬁ’)px( II (P§)> ) >1—-negl(n)

for any x such that P(x) = 0.
Similarly, we have:

p(x)=1 p(x)=1 i
Tr( II (I—Pf)px< 11 (1—P§’)> ) >1—negl(n),

X

for any x such that P(x) = 1. Consequently, we obtain:

/:1 ’ /:1 ’ t
(I ) (12 %)

(35)

TD ’ ‘ S E D p ’ 1y — 7y —
(770 770) p X TI‘( Hi/(x )=1 Pi/)px( Hi/(x )=1 P§/)f)
b P(x)=1 ) P(x)=1 )
e T (e )e( 11 (P§))T
* x’ x/
< negl(n).

Similarly, TD(no,ny) < negl(n). Furthermore, since

TD(1¢, n}) = 1, there exists a projection P satisfying:
Tr(Pony) = 1, and Tr(Pyn}) = 0. (36)

We then define P = Py ® |0){(0| + (I — Py) ® |1)(1], and
obtain:

TD| Epx ® IP(x))(P(x)I,pr ® |P(x) & 1)(P(x) & 1]

=TD(po - no ® 0){0] + (1 — po)n1 ® [1){1], po - no ® [1)(1] + (1 — po)n1 ® [0){0])
> TD(po - no ® 10){0] + (1 — po)n1 & [1)(1], po - no & [1){1] + (1 — po)nr ® [0){0])
—negl(n) = Tr(P(po - ny @ 10){0] + (1 — po)n1r ® [1){(1]| — po - no ® [1)(1] — (1 — po)n1’ ® 10)(0})
—negl(n) > 1 — negl(n).
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This completes the proof of the implication from the sin-
gle-copy-secure hard-core predicate of SV-eSI-OWSGs
to the EFI pairs.[]

More specifically, since SV-SI-OWSG is equivalent
to EFI pairs, we can further shows that k-copy-secure §
-statistically-invertible SV-OWSG is sufficient for normal
SV-SI-OWSG when k and § are chosen appropriately.

Corollary 4 Assuming the existence of k-copy-secure &
-statistically-invertible SV-OWSG such that

sk <27 . negl(m), (37)

then SV-SI-OWSG exists.

Simple construction of EFI Pairs from LPN
In this section, we present a construction of EFI pairs
from the decisional Learning with Parity (LPN) assump-
tion. Our construction offers more flexibility in choosing
parameters compared to classical constructions.

We begin by introducing the definition of the deci-
sional known as Learning with Parity problem.

Definition 10 (Learning with Parity (LPN)) For param-
eters 7 € (0, %), n,m € N, the decisional LPN problem
(Learning with Parity problem), denoted as LPN,,,, . , is
considered hard in the quantum case if

Pr [DA,Ax@e)=1] — Pr
AZy*" x (0,1} e<BY! AzZ* M {01

[D(A,r) =1]| < negl(n),

for any quantum polynomial-time distinguisher D, where
B; is the Bernoulli distribution with parameter 7, i.e.,
Pryop[b=1]=1.

In the traditional definition of LPN,,,, ;, the parame-
ter T is often chosen as a constant, which is sufficient
for many cryptographic primitives such as the one-way
functions, pseudorandom generators, and commit-
ments. However, it has been shown that low-noise
LPN,m: (eg, T= ﬁ) implies public-key crypto-
graphic primitives. Besides, it is called the high noise
LPN,: if T > 1—poly(n)~! for some polynomial
poly(-).

We define an LPN, , ; assumption as non-trivial
if the statistical distance between the distribution
of a real LPN,,,,; sample and a random distribution
(A,r) < 25" x {0,1}" is larger than 1/poly(n) for
some positive polynomial poly(-). Next, we demon-
strate the feasibility of EFI pairs and, consequently,
quantum commitment from the decisional LPN
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assumption by giving the following construction of EFI
pairs.

Construction of EFI Pairs: The description of the
generation algorithm StateGen(1”, b) is as follows:

+ Forb=0:
StateGen(1%,0) := pg = E |A)(A] ® po,a
—Elle (E |AxEBe)(Ax€Be|).
o« Forb=1:
StateGen(1”,1) :=p; = E |A)(A] ® p1,4

=§|A)(A| ® (lrilr)(fl)-

Here, the expectation in the first equation is taken over
the randomness of A « Z)™", x < {0,1}", e < B,
while the second equation is taken over A < Z7*" and
r < {0, 1}

Theorem 7 (EFI Pairs from Decisional LPN) Assuming
a non-trivial decisional LPN,,,, . is quantum hard-on-
average, EF I pairs exist.

Proof To justify the statement of Theorem 7, it is suf-
ficient to show the construction above meets the farness

and the distinguishability.

Farness: To show the farness property, we note that

E(po, p1) = F<§ IA)Al® pO,A:E IA)(Al® /01,A>

Ax®e=r
:Z ( Z po(A,x,€)) - p1(A,r)
Ar x,e
<1 A poA,xe)  pr(Ar) N2
2o (Ty mERE-BEn).

Here, po(A,x,e) is the weight of |A,Ax @ e) in pp, and
p1(A,r) is defined similarly. The inequality (x) follows
from the relation between Hellinger distance and statisti-
cal distance. We observe that:

b

Ar

AxDe=r

( > poldxe) —pi(Ar)

Xx,e

/2

is exactly the statistical distance between an LPN,,, .
sample and a random (4,r) < Z5”" x {0,1}"", which
is noticeable due to the non-triviality of the LPN, ;.
assumption. This completes the proof of farness.
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Indistinguishability: Next, we consider the notion of
indistinguishability. Let us assume that there exists an
adversary A that breaks the security of the EFI pairs with
a non-negligible probability (). We will now construct
a distinguisher D that breaks the decisional LPN,,,, .
assumption as follows:

+ The distinguisher D takes (A4, y) as input, which
is either (A4,Ax ®e) or (A, r), where A is chosen
uniformly at random from Z3"*", x and r are cho-
sen uniformly at random from {0,1}" and {0, 1}
respectively , and e is chosen from B!’. The task of
D is to determine which case it is.

+ D runs A with input (4, y) and outputs its decision.

By exploiting the linearity of quantum operators,
A(E [A)(A] ® fe |Ax @ e)({Ax © eI)
=E {E (A(A)(A] ® |Ax & e) (Ax e|)>} :
Similarly,
A(E AN Al ® E |r><r|> =E [1;: (AJ4a)Al ® |r><r|))].

Hence, we can conclude that the distinguisher D can dis-
tinguish these two cases with a probability exactly equal
to e(n). This justifies the indistinguishability and com-
pletes the proof of Theorem 7. O

We remark that the construction described above can
be polarized without increasing the sample number m
of the underlying LPN,, ,,, - assumption. To achieve this,

we set p, = pl‘?”c as the output state of input bit b for
some sufficiently large constant C > 0. By doing so, the
trace distance can be made exponentially small, while
the distinguishability holds by a simple hybrid argument.
Assuming A distinguishes p(, from p}, then for a random

k e [n¢ —1], A also distinguishes pggncfkfl ® p1®k+1

from pgz’”c_k ® pig’k . Therefore, it is sufficient to pad the
challenge value of LPN to a random position of the out-
put state and generate the rest of the parts locally.

Note that commitments can also be achieved using the
exact version of the decisional LPN assumption with a
noise rate T (t < 0.25) when m = O(n) (or with signifi-
cantly larger m from the construction of OWFs or PRGs
under the LPN assumption Pietrzak 2012). However, it
is easy to see that our construction also makes sense for
high noise rates (with large m) and any constant noise ©
(with small m = O(n)) as long as the decisional LPN,, ,,, -
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assumption in that case is non-trivial. Hence, we believe
our construction is simple and achieves a better param-
eter choice than the classical constructions.

Conclusion

In conclusion, our exploration into the intricacies of
OWSGs has not only broadened the theoretical landscape
of quantum cryptography but also provided concrete
methodologies for their application in quantum commit-
ment schemes. By leveraging structured OWSGs, we have
successfully demonstrated the construction of quantum
commitments that offer robust security features, such as
statistical binding and computational hiding. The equiva-
lence established between EFI pairs and hard-core pred-
icates furthers our understanding of the fundamental
properties of quantum cryptographic primitives. Addi-
tionally, our construction of EFI pair construction based
on the decisional LPN assumption highlights the adapta-
bility and potential in enhancing the security parameters
of quantum cryptographic systems.

Moving forward, it is crucial to extend our investiga-
tions into the property of OWSGs, and their broader impli-
cations in other quantum cryptographic primitives. As an
open problem, a key challenge that remains is to construct
pseudorandom state generators (PRSs) and pseudoran-
dom function-like states (PRFSs) from OWSGs. More spe-
cifically, how can we leverage the one-wayness of OWSGs to
develop PRSs that meet the rigorous demands of quantum
pseudorandomness while maintaining efficient comput-
ability and verifiability. This issue is pivotal for advancing
the quantum cryptography and deserves focused research
efforts.

Abbreviations

EFI pairs Efficiently samplable, statistically far but computationally
indistinguishable pairs of distributions

OWF One-way function

OWSG One-way state generator

SV-OWSG Secretly-verifiable OWSG

SV-SI-OWSG Secretly-verifiable and statistically-invertible OWSG

SV-ESI-OWSG  Secretly-verifiable and extremely-statistically-invertible quan-
tum state generators

PRG Pseudorandom generator

PRS Pseudorandom state

QPT Quantum polynomial-time

[)A Pure quantum state in register A

DA Mixed state in register A

Tr(p) Trace of mixed state (density matrix) p

TD(po, p1) Trace distance between pgand p;

F(po, p1) Fidelity between ppand p;

ut Adjoint matrix of U

x|ly Concatenation of string x and y

X, )2 Sum of product of strings x,y € {0, 1} over Z,

Al Ceiling function

E[X] Expectation of variable X

Supp(X) Support of X

® Tensor product

® Bitwise XOR

Img(f) Image space of function f
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negl() Negligible function

Inj(f) Injective domain of function f

Preey (x) Preimages collection of state £ (x) within error «

Ey (£) Minimum of preimages covering the support of £ within
error a

Hmin(X | ¥) s Quantum min-entropy of X conditioned on Y

LPN Learning Parity with Noise
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