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Abstract 

One-way quantum state generators (OWSGs), which serve as the quantum analog of one-way functions (OWFs), 
have attracted significant interest due to their potential applications and the reduced assumption requirements 
compared to OWFs. This paper explores the applications of structured OWSGs and presents several results: We 
construct efficiently samplable, statistically far but computationally indistinguishable pairs of distributions (EFI 
pairs) from secretly-verifiable OWSGs with somewhat injectivity, which has implications for quantum commitment 
schemes; We demonstrate that somewhat injective OWSGs can be derived from almost regular OWSGs; We also focus 
on a specific type of OWSGs, termed SV-eSI-OWSGs, and prove that the existence of a single-copy-secure hard-
core predicate for these OWSGs is both necessary and sufficient for constructing EFI pairs; Moreover, we propose 
a simple quantum commitment scheme based on the decisional LPN assumption, offering improved parameter 
choices and flexibility over classical schemes. These findings contribute to the understanding and potential applica-
tions of OWSGs in quantum cryptography.
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Introduction
In classical cryptography, one-way functions stand as 
fundamental conceptual elements. Analogously, Mori-
mae and Yamakawa introduced the concept of one-way 
quantum state generators (OWSGs) in their work (Mori-
mae and Yamakawa 2022b), which produce a quantum 
state instead of a classical string as output. Informally, an 
OWSG takes a classical binary string x ∈ {0, 1}n as input 
and efficiently yields a quantum state |φx� . The secu-
rity guarantee entails that no quantum polynomial-time 
(QPT) algorithm can feasibly find any plausible preim-
age, even when provided with polynomial copies of |φx� . 
Expanding upon this framework, Morimae and Yam-
akawa evolved their initial definition to encompass mixed 

states ρx as potential outputs (Morimae and Yamakawa 
2022a). To verify, a verification algorithm is provided to 
check the validity.

Numerous findings regarding OWSGs have proven to be 
consistent with their classical counterparts. Firstly, it is 
directly implied by the expansion of pseudorandom states 
(PRS) (i.e., the output length is larger than the input) (Ji 
et al. 2018). Then, Morimae and Yamakawa demonstrated 
the equivalence of OWSGs to bounded-time-secure quan-
tum digital signatures with quantum public keys, as 
well as their implication by private-key quantum money 
schemes (with pure money states) and quantum pseudo 
one-time pad schemes (Morimae and Yamakawa 2022a). 
Recently, Khurana and Tomer showed the feasibility of 
realizing quantum commitments from pure-state OWSGs. 
Moreover, various studies have recognized the parallels 
between OWSGs variants and the spectrum of classical 
one-way functions, including strong and weak subclasses 
(Morimae and Yamakawa 2022a; Cao and Xue 2022), as 
initially delineated by the seminal works of Yao (1982). 
Additionally, a peculiar and seemingly incommensurable 
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variation called secretly-verifiable and statistically-invert-
ible OWSGs (SV-SI-OWSGs) was proposed by Morimae 
and Yamakawa (2022a), proving equivalence to the effi-
ciently samplable, statistically far but computationally 
indistinguishable pairs of distributions (EFI pairs), and 
hence to quantum commitment.
The notion of OWSGs is indeed a fundamental con-

ceptual object in quantum cryptography, analogous to 
one-way functions in classical cryptography. However, 
its applications and relationships with other crypto-
graphic primitives is still an active area of research. Yet, 
it is undetermined whether the generalized (mixed state 
version) OWSGs imply the existence of quantum commit-
ment schemes.
The role of commitment in cryptography is of utmost 

importance, serving as a two-phase interactive protocol 
that ensures both confidentiality and non-repudiation. 
These essential security properties are known as the hid-
ing and binding properties, with two variations typically 
discussed for each, namely computational security and 
statistical security. Informally, computational (or statis-
tical) hiding implies that a malicious receiver, operating 
within polynomial time (or unbounded time), is incapa-
ble of determining the message committed by the com-
mitter. Likewise, computational (or statistical) binding 
prevents a committer, operating within polynomial time 
(or unbounded time), from altering the committed mes-
sage. In classical setting, it has been demonstrated that 
the existence of commitment is equivalent to the one-
way functions (OWFs), as demonstrated by Goldreich 
(1990), Naor (1991), Håstad et  al. (1999), and Haitner 
et al. (2009). Additionally, the MiniCrypt framework by 
Impagliazzo (1995) captures these primitives that are 
equivalent to OWFs.

With the advent of quantum computing, the power 
of cryptographic primitives has been enhanced, provid-
ing new opportunities to realize advanced cryptographic 
functionality from basic primitives. It has been shown 
that non-interactive quantum commitments can be con-
structed from quantum-secure (post-quantum) one-way 
functions (Koshiba and Odaira 2009, 2011; Yan et  al. 
2015; Bitansky and Brakerski 2021), which is impossi-
ble in the classical setting using a black-box approach. 
Two recent works by Grilo et  al. (2021) and Bartusek 
et  al. (2021) indicate the possibility of using quantum 
commitments to construct oblivious transfer (OT) and 
multi-party computations (MPC), which were previously 
considered impossible in the classical setting using a 
black-box approach (Impagliazzo and Rudich 1989; Ger-
tner et  al. 2000; Mahmoody et  al. 2014). Subsequently, 
Morimae and Yamakawa (2022b) and Ananth et  al. 
(2022) demonstrated that quantum commitments can be 
realized using pseudorandom quantum state generators 

(PRSs), which are quantum analogues of pseudorandom 
generators (PRGs). These results relax the requirement of 
the underlying assumption, as PRSs appear to be weaker 
than quantum-secure one-way functions (Kretschmer 
2021; Brakerski et al. 2023), while in the classical setting, 
commitments exist if and only if OWFs exist.

Overall, OWSGs, much like their classical counter-
parts, serve as essential building blocks for various 
cryptographic primitives. It is a fundamental concept in 
quantum cryptography. The applications and relation-
ships with other primitives are still being explored. The 
questions of constructing quantum commitment, PRS, 
and other cryptographic primitives from OWSGs, as well 
as finding practical constructions based on standard 
assumptions, are open research problems in this field. 
Studying these problems would emphasize the theoretical 
importance of OWSGs and demonstrate their feasibility 
across different quantum cryptographic functionalities, 
hence contributing to the advancement of the field.

Our Contributions: Building on the motivation above, 
this work contributes to the field of quantum cryptogra-
phy by advancing the utility and theoretical understand-
ing of OWSGs. These contributions are summarized as 
follows and illustrated in Figure 1: 

1. Quantum Commitments with OWSGs: We give con-
struction of quantum commitment schemes using 
structured OWSGs. By adapting the underlying struc-
tures of somewhat injective one-way primitives, 
including OWFs, OWSGs, and SV-OWSGs (secretly-
verifiable OWSGs), we developed a simple construc-
tion of canonical quantum bit commitment. This 
scheme achieves statistical binding and computa-
tional hiding, demonstrating the practical feasibility 
of such quantum primitives.

2. Equivalence of EFI Pairs and Hard-Core Predi-
cates: Our second result establishes an equivalence 
between EFI pairs and single-copy-secure hard-core 
predicates for SV-eSI-OWSGs (secretly-verifiable 
and extremely-statistically-invertible OWSGs). This 
finding not only underscores the practical usage of 
such cryptographic primitive but also aligns with the 
theoretical frameworks proposed in recent studies, 
such as those by Morimae and Yamakawa (2022a), 
confirming that SV-eSI-OWSGs are equivalent to 
the standard SV-SI-OWSGs.

3. Flexible EFI Pair Construction from LPN: Lastly, we 
present a novel and simple approach to constructing 
EFI pairs based on the decisional Learning Parity 
with Noise (LPN) assumption. This approach allows 
for a more flexible selection of parameters, enhanc-
ing the adaptability and robustness of quantum cryp-
tographic protocols.
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Overview of techniques
To further illustrate the contributions of this paper, we 
outline the techniques involved in our results. This dis-
cussion includes the construction of quantum commit-
ment from somewhat injective one-wayness primitives, 
establishing the equivalence between a single-copy-
secure hard-core predicate of SV-eSI-OWSGs and EFI 
pairs, and a EFI pairs construction from the decisional 
LPN assumption.

Quantum Commitment from Somewhat Injective One-
Wayness Primitives: We begin by revisiting a well-known 
construction of commitment from one-way permuta-
tions, assuming P : {0, 1}n → {0, 1}n is a one-way per-
mutation. The committer sends (P(x), �x, r�2 ⊕ b, r) as 
the commitment for a bit b, and (x, b) in the reveal phase. 
By Goldreich-Levin’s theorem, it is evident that the con-
struction satisfies computational hiding, and perfect 
binding follows from the injectiveness of P(·).

In the investigation of quantum constructions, we are 
proposing a relaxation of the bijection requirement. Pre-
vious work has demonstrated the equivalence between 
canonical quantum bit commitments (specifically those 
that are computationally hiding and sum-binding) and 
what are known as efficiently samplable, statistically far 
but computationally indistinguishable pairs of distribu-
tions (EFI pairs) of distributions (Yan 2022; Brakerski 
et al. 2023). For the purposes of our discussion, we will 
focus on constructing these EFI pairs due to their con-
ceptual ease.

Informally, EFI pair takes as input a bit b ∈ {0, 1} , and 
produces a corresponding (mixed) quantum state ρb . The 
two primary conditions for EFI pairs are as follows: (i) ρ0 
and ρ1 must be computationally indistinguishable, mean-
ing they are exceedingly difficult to distinguish using 
computational methods, (ii) The trace distance between 
ρ0 and ρ1 has to be substantial.

To realize EFI pairs from one-wayness, intuitively, since 
the quantum communication is allowed, we can send a 
superposition Ex,r|P(x), �x, r�2 ⊕ b, r��P(x), �x, r�2 ⊕ b, r| 
as a commitment for b (i.e. the output state of the EFI 
pairs with b as input). Note that, a superposition state 
over the all possible input is given, to ensure farness 
(statistical binding), the P(·) does not have to be injec-
tive over the entire domain. Instead, it suffices for only a 
noticeable subset of the input space to be injective. If we 
assume a one-way function f that is injective on a frac-
tion of 1/nc of its domain, termed as somewhat injective 
one-way function (OWF), then the indistinguishability fol-
lows naturally from the inability to discern between the 
states ρb for b = 0 and b = 1 . Furthermore, the farness 
is satisfied because the trace distance between ρ0 and ρ1 
is significant, attributed to the noticeable portion of the 
injective domain that is featured for the function f. Con-
sequently, this gives rise to a construction of EFI pairs 
from somewhat injective OWFs.

Theorem 1 If there exist somewhat injective OWFs, then 
EFI pairs exist.

Fig. 1 We use the arrow notation to indicate implications between different primitives. Specifically, the arrow “ A → B ” denotes that the primitive 
A implies the existence or achievability of primitive B. On the other hand, the dotted arrow “ A ��� B ” signifies that A implies a special case of B (i.e. 
the secretly-verifiable case). The 1�, 2� , and 3� are the main results proved in this paper, and other directions are either implied naturally by their 
definitions or shown by Brakerski et al. (2023), Morimae and Yamakawa (2022a)
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One remaining question is how to realize somewhat 
injective OWFs. While injective OWFs trivially imply 
somewhat injective OWFs, we aim to construct the latter 
from the more general case of OWFs. The black-box bar-
rier for constructing injective OWFs from OWFs does not 
seem to impede the construction of somewhat injective 
OWFs. However, extending the injective property while 
maintaining the one-wayness for an arbitrary one-way 
function f remains challenging. The core challenge is to 
construct somewhat injective OWFs from general OWFs 
without relying on the strong assumptions required for 
normal injectivity. This involves ensuring that the injec-
tive property can be extended without compromising the 
one-wayness of the function.

One intuition is to use a 2-wise independ-
ent hash function h and consider the construction 
f ′(x, h) := (f (x), h, h(x)) . By leveraging the properties of 
2-wise independent hash functions, the injective domain 
can be expanded with the range of h. However, this strat-
egy may compromise the one-wayness property. If the 
range of h is too large (e.g., larger than the input space 
of f), the preimages of h(x) might be easily sampled. That 
limits the number of preimages for each h(x).

Denoting the output size of a 2-wise independent 
hash (universal hash) function by an index e, namely, 
he : {0, 1}n → {0, 1}e . The above discussion suggests that 
a small e can maintain one-wayness, while a large e can 
achieve injectiveness. Thus, it is crucial to choose a suit-
able e that balances the injectivity and the one-wayness. 
However, this decision depends on the size of preimages 
of f, leading us to consider the notion of (almost) regular 
one-wayness primitives instead.

Informally, a function f is (almost, resp.) regular if for 
any (overwhelming part of, resp.) input x, the size of pre-
images of f(x) is close to its expected value (with at most 
a polynomial factor). In this case, setting the output size 
e to be close to log(nβ · 2n/Img(f)) for a constant β , using 
2-wise independent hash functions (universal hash func-
tions are sufficient), with probability at least 1 − nO(1) 
under the randomness of (x, he) , we deduce that the 
image (f (x), he, he(x)) has only one preimage. Further-
more, when e is close to log(nβ · 2n/Img(f)), the one-
wayness holds due to the leftover hash lemma.

Lemma 1 If almost regular OWFs exist, then somewhat 
injective OWFs also exist.

Therefore, we can obtain a construction of somewhat 
injective OWFs (and hence the EFI pairs and quantum 
commitments) from almost regular OWFs. It is worth 
noting that although non-interactive quantum commit-
ment is already shown to be implied by quantum OWFs 
(Koshiba and Odaira 2009, 2011; Yan et al. 2015; Bitansky 

and Brakerski 2021), we believe this aspect is still of inde-
pendent interest. This is because the aforementioned 
constructions from quantum OWFs are either compli-
cated or rely on PRGs, whereas our construction is sim-
ple and natural (though with additional requirements 
on the structure). Furthermore, our construction from 
almost regular OWFs to somewhat injective OWFs also 
applies to approximate preimage-size (APS) quantum 
one-way functions (Koshiba and Odaira 2009) (a func-
tion for which the number of preimages for each image 
can be efficiently estimated).

Next, we extend the results above to OWSGs. However, 
since the image in this case is a quantum state ρx for the 
generalized (mixed) version of OWSGs, we need to con-
sider the distance between pairs of these states, unlike in 
the classical case where either the images are completely 
unrelated or they are the same. Therefore, we charac-
terize injectiveness by considering the “small” sphere 
around the image state. Informally, a one-way state gen-
erator f that takes x as input and outputs ρx is somewhat 
injective if a significant portion of the image states are 
contained separately within disjoint small spheres. Spe-
cifically, there exist constants α and c such that:

where

Using a similar argument as before, we can show that 
somewhat injective (SV-)OWSGs imply EFI pairs (quan-
tum commitment). By the quantum Goldreich-Levin 
theorem for (SV-)OWSGs (Adcock and Cleve 2002; Cola-
dangelo et  al. 2021), indistinguishability is maintained 
because it is difficult to distinguish the hard-core predi-
cate from a random bit. Then, farness follows from the 
somewhat injectivity of such (SV-)OWSGs, which ensures 
that two states ρb = Ex,rρx ⊗ |r, �x, r�2 ⊕ b��r, �x, r�2 ⊕ b| 
for b = 0, 1 are separated.

Theorem  2 If somewhat injective (SV-)OWSGs exist, 
then EFI pairs exist.

Similar to the discussion of somewhat injective OWFs, 
somewhat injective one-wayness in quantum primitive 
is trivially implied by a normally injective one. How-
ever, achieving such functionality without relying on 
normal injectivity is also a significant area of study. This 
is because the normal injective property often neces-
sitates stronger underlying assumptions than those 
required for one-wayness alone. Exploring alternatives 

Pr
x

[Pref,α(x) = 1] ≥
1

nc
,

Pref,α(x) :=
�

x′ | F(ρx, ρx′) ≥ 1 −
1

nα
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.
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that circumvent these requirements not only broadens 
the applicational scope but also enhances the theoreti-
cal understanding of one-wayness in quantum crypto-
graphic contexts.

Motivated by the reason above, we further demon-
strate that the existence of somewhat injective OWSGs 
is implied by a quantum analogue of (almost) regular 
OWFs, which we refer to as (almost) regular OWSGs. 
Informally, an OWSG is (almost) regular if the preimages 
contained in each small sphere around the image state 
are concentrated. Specifically, a quantum state gen-
erator f is (α,β)-almost regular OWSGs if the following 
holds for any α′ > α:

where

Applying the same strategy as before, we consider the 
case where f takes x as input and outputs ρx . By defining 
the new OWSG as f′(he, x) = ρx ⊗ |he, he(x)��he, he(x)| , 
where he : {0, 1}n → {0, 1}e is an 2-wise independent 
hash with e = [log(nβ ′ · Eα(f))] + 1 (where β ′ > 0 is 
an arbitrarily fixed constant), we can demonstrate that 
f′ is a somewhat injective OWSG. Additionally, it should 
be noted that this strategy appears to be infeasible for 
achieving somewhat injective SV-OWSGs.Therefore, we 
establish the existence of somewhat injective OWSGs by 
leveraging the notion of almost regular OWSGs. Specifi-
cally, we present the following lemma:

Lemma 2 If almost regular OWSGs exist, then some-
what injective OWSGs also exist.

Consequently, in this context, we establish an impli-
cation from somewhat injective one-wayness objects 
(including OWFs and OWSGs) to quantum commitment, 
while demonstrating the feasibility of these objects 
based on the existence of almost regular ones. It is 
worth noting that PRSs and pure state OWSG already 
imply EFI pairs (quantum commitments). However, 
constructing from generalized version of OWSGs is also 
meaningful due to the potential requirement of fewer 
assumptions compared to PRSs and pure state OWSG 
(as PRSs and pure state OWSG trivially imply OWSGs, 
while the reverse direction remains challenging and 
unknown). Additionally, a non-trivial construction of 
PRSs from a standard cryptographic assumption that 
cannot simultaneously imply OWFs is still unknown. In 

n−β ·
2n

Eα(f)
≤ Preα′(x) ≤ nβ ·

2n
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contrast, constructing somewhat injective (SV-)OWSGs 
appears to be more achievable.

Equivalence between Single-Copy-Secure Hard-Core 
Predicate of SV-eSI-OWSGs and EFI Pairs:  As an 
incomparable variant of OWSGs, Morimae and Yam-
akawa (2022a) introduced the notion of secretly-verifia-
ble and statistically-invertible quantum state generators 
(SV-SI-OWSGs). Unlike the standard OWSGs, SV-SI-
OWSGs allow outputting mixed states while abandoning 
the public verification algorithm. To prevent confusion 
caused by unverifiable output states, they emphasize the 
statistically-invertible property, which requires the out-
put image states to be sufficiently far from each other 
(at least 1/poly(n) distance). This property is more 
stringent than somewhat injectiveness. In this case, only 
secret verification is feasible, which involves checking 
whether x′ �= x for two images ρx and ρx′ . Morimae and 
Yamakawa demonstrated the equivalence between the 
existence of SV-SI-OWSGs and EFI pairs (and conse-
quently, quantum commitment). Combining this result 
with the quanutm Goldreich-Levin theorem for OWSGs 
discussed earlier, the hard-core predicate for SV-SI-
OWSGs is also equivalent to EFI pairs. Based on that, 
we observe that for a special case of SV-SI-OWSGs, the 
existence of single-copy-secure hard-core predicate is 
also essential for EFI pairs.

More specificall, we define a special class of SV-SI-
OWSGs called the secretly-verifiable and extremely-
statistically-invertible quantum state generators 
(SV-eSI-OWSGs). In SV-eSI-OWSGs, the trace dis-
tance between every pair of image states is extremely 
large (i.e., TD(ρx, ρx′) ≥ 1 − negl(n) · /2n for any dis-
tinct pair x, x′{0, 1}n ). It is easy to verify that SV-eSI-
OWSGs is a special case of SV-SI-OWSGs. Conversely, 
SV-eSI-OWSGs is also implied by SV-SI-OWSGs. 
That is because, if f(x) = ρx is SV-SI-OWSG, then 
f′(x) = ρ

⊗p(n)
x  for an arbitrary positive polynomial p(n) is 

also an SV-SI-OWSG.
As the second result, we show that a single-copy-secure 

hard-core predicate for SV-eSI-OWSGs is both neces-
sary and sufficient for EFI pairs and, consequently, quan-
tum commitments. The large trace distance between 
pairs of image states implies a noticeable trace distance 
between EP(x)=0

x ρx and EP(x)=1
x ρx , where ρx is the output 

of SV-eSI-OWSGs for an input x ∈ {0, 1}n , and P(·) is 
the single-copy-secure hard-core predicate. The con-
struction yields EFI pairs is as follows:

Conversely, the implication from EFI pairs to a single-
copy-secure hard-core predicate for SV-eSI-OWSGs 

(1)
StateGen

′(1n, b) := E
x
ρx ⊗ |P(x) ⊕ b��P(x) ⊕ b|.
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follows immediately from the equivalence between SV-
SI-OWSGs and EFI pairs, as well as the Goldreich-Levin 
theorem for SV-SI-OWSGs. Therefore, we can conclude 
the second result with the following theorem:

Theorem 3 EFI pairs exist if and only if a single-copy-
secure hard-core predicate for SV-eSI-OWSGs exists.

EFI Pairs from LPN Assumption with Flexible Param-
eter Choice: The learning parity with noise (LPN) assump-
tion (search version) describes the computational 
infeasibility of finding the random preimage x ∈ {0, 1}n 
for a given pair (A,Ax ⊕ e) , where A is a random binary 
matrix with dimensions m × n , and e is a noise vec-
tor sampled from the Bernoulli distribution Bm

τ  with 
0 < τ < 1/2 (i.e., each entry of e equals 1 with probability 
τ ). The decisional version of LPN characterizes the com-
putational infeasibility of distinguishing an LPN sample 
(A,Ax ⊕ e) from a pair (A, r), where r is a random vector 
in Zm

2  . Here n is the security parameter and τ called the 
noise rate. It has been proven that the decisional version 
and the search version of LPN are polynomially equiva-
lent (Blum et al. 1993; Applebaum et al. 2009; Katz et al. 
2010).
The LPN assumption has been extensively studied in 

various fields such as learning theory and coding theory, 
where it serves as the average-case analogue of decoding 
random linear codes. The average-case hardness of LPN 
is guaranteed by the worst-case hardness of the nearest 
codeword problem with a low noise rate (Brakerski et al. 
2019; Yu and Zhang 2021). As the application to cryp-
tography, the LPN assumption with varying noise rates 
implies the security of various cryptographic primitives, 
including one-way functions (OWFs), pseudorandom 
generators (PRGs), commitment schemes, symmetric 
(public) encryption, and collision-resistant hash func-
tions (Pietrzak 2012; Jain et al. 2012; Gilbert et al. 2008; 
Applebaum et al. 2009; Alekhnovich 2003; Döttling et al. 
2012; Kiltz et al. 2014; Yu et al. 2019).

It is worth noting that a direct construction of a com-
mitment scheme can be obtained from the decisional 
(and exact) version of the LPN assumption introduced by 
Pietrzak (2012) and Jain et  al. (2012). The commitment 
for a message m is defined as com(m) := A · (r�m) ⊕ e . 
Intuitively, when m is sufficiently large (e.g., m = O(n) ), 
the image A · (r�m) ⊕ e uniquely determines m with 
overwhelming probability for a suitable constant noise 
rate τ (i.e., τ < 0.25 ), which guarantees the binding prop-
erty. The computational hiding property holds due to the 
decisional (and exact) version of the LPN assumption. 
By the nature of LPN, it should be noted that a restricted 
number of samples m and a larger noise rate τ pro-
vide “stronger” security than treating m as an arbitrary 

polynomial of n and a constant τ . From an experimen-
tal perspective, increasing the number of samples and 
reducing the noise rate significantly enhances the power 
for solving the LPN problem (Blum et  al. 2000; Lyuba-
shevsky 2005; May et al. 2011), while from a theoretical 
perspective, the analysis of the learning with error (LWE) 
assumption (which is highly related to LPN) suggests 
that a small number of samples offers more flexibility 
in choosing other parameters (Micciancio and Peikert 
2013). To ensure security of cryptographic primitives 
based on LPN assumptions, it is essential to carefully 
choose flexible parameters. However, it should be noted 
that for the classical commitment scheme discussed 
earlier, choosing such parameters may lead to a loss of 
the binding property, as an unbounded adversary could 
potentially find a collision for A · (r�m) ⊕ e.

Based on a non-trivial decisional LPN assump-
tion, we can ensure the existence of EFI pairs (and 
thus the quantum commitment) as the third result. By 
employing Grover and Rudolph’s technique (Grover 
and Rudolph 2002), a QPT algorithm can pro-
duce the superposition Ee|e��e| where e ← Bm

τ  . This 
directly leads to the construction of EFI pairs as 
StateGen(1n, 0) = EA |A��A| ⊗

�

Ex,e |Ax ⊕ e��Ax ⊕ e|
�

 , 
and StateGen(1n, 1) = EA |A��A| ⊗ (Er |r��r|) . Hence, 
it is obvious that the indistinguishability directly follows 
the hardness of the decisional LPN. As for the farness, 
it is observed that the trace distance between these two 
states is limited by the statistical distance between the 
distribution of LPN samples and a random one, which is 
noticeable as long as the decisional LPN assumption is 
non-trivial.

Theorem  4 (Informal) Assuming the non-trivial deci-
sional version LPN is hard on average in the quantum 
case, then EFI pairs exist.

It is worth noting that for any constant noise rate 
0 < τ < 0.5 , m = O(n) is already adequate for the EFI 
pairs. Additionally, it  is believed that for τ = (1 − nC)/2 , 
a polynomial m = O(nC

′
) is sufficient, where C ′ is 

dependent on C, which allows for a superior parameter 
choice compared to previous works by Pietrzak (2012) 
and Jain et  al. (2012). Furthermore, the construction is 
akin to the PRG from LPN but does not necessitate the 
length-increasing property, providing the flexibility for 
parameter selection.

Related works
The concepts of pseudorandom state generators 
(PRSs) and pseudorandom unitary (PRU) were intro-
duced by Ji et  al. (2018) as the quantum counterparts 
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of pseudorandom generators and pseudorandom func-
tions, respectively. They demonstrated the implica-
tion from quantum OWFs to PRSs and gave a quantum 
money scheme from PRSs. Then, Brakerski and Shmu-
eli (2019) extended the original proof to the random 
binary phase setting and developed a scalable construc-
tion of pseudorandom quantum states in their subse-
quent work (Brakerski and Shmueli 2020). Additionally, 
Kretschmer (2021) provided a quantum oracle O rela-
tive to QMA

O = BQP
O , demonstrating the existence of 

PRS (and even PRU ), which offers negative evidence for 
reducing OWF from PRS.

Parallelly, Morimae and Yamakawa (2022b) and Ananth 
et  al. (2022) independently presented constructions of 
quantum commitments from PRSs, arising the possibil-
ity of constructing quantum oblivious transfer and mul-
tiparty computation. Subsequently, Brakerski, Canetti, 
and Qian formalized the concept of EFI pairs, which was 
implicitly described by Yan (2022), and demonstrated its 
equivalence to the canonical quantum bit commitment. 
They also showed that EFI pairs are implied by various 
quantum cryptographic objects, such as quantum oblivi-
ous transfer, general secure multiparty computation, and 
non-triviality of QCZK (Brakerski et  al. 2023). To com-
plement Kretschmer’s findings, Kretschmer et al. (2022) 
further constructed a classical oracle relative to which 
P = NP , while a single-copy secure pseudorandom quan-
tum state generator still exists.

As a quantum analogue of OWFs, Morimae and Yam-
akawa (2022b) defined the concept of OWSGs and pro-
vided a construction of a one-time secure signature from 
it. They then introduced the generalized definition of 
OWSGs, allowing the output state to be a mixed state and 
providing an additional verification algorithm for check-
ing the validity in their subsequent work (Morimae and 
Yamakawa 2022a). They demonstrated the equivalence 
between OWSGs and weak OWSG using the amplification 
theorem for weakly verifiable puzzles, and also estab-
lished the equivalence between OWSG and (bounded-
time-secure) quantum digital signatures with quantum 
public keys, as well as the implication of OWSG from 
private-key quantum money schemes (with pure money 
states) and quantum pseudo one-time pad schemes. 
Additionally, they introduced an incomparable variant of 
OWSG known as the secretly-verifiable and statistically-
invertible quantum state generators (SV-SI-OWSGs), 
and demonstrated the equivalence between SV-SI-
OWSGs and EFI pairs.

Very recently, Khurana and Tomer (2023) showed the 
feasibility for realizing quantum commitments (and 
hence EFI pairs, SV-SI-OWSG) from pure state OWSGs. 
Besides, as an intermediate primitive, they introduced 
the notion of (quantum) one-way puzzle which seems 

to be necessary for plenty of quantum cryptographic 
objects. We remark that their work does not overlap with 
ours, because we focus on the structured OWSG which 
also includes the generalized (i.e., the mixed state, and 
the secretly-verifiable) setting.

Organization of the paper
Basic notions and formal definitions are given in Section . 
Then in the following sections, the EFI pairs (quantum 
commitment) are studied from three different perspec-
tives. In Section  , we present the construction of quan-
tum commitments using OWSGs. Section   establishes 
the equivalence of EFI pairs and hard-core predicates. 
Finally, a practical construction of EFI pairs is given in 
Section  from the LPN assumption.

Preliminaries
In this section, we will introduce several notations and 
cryptographic notions that are useful in the following 
context. We begin by providing some basic notations.

Notations
We use the following basic notations throughout the 
paper: Z and N denote the sets of positive integers and 
positive integers, respectively. [n] represents the set of 
integers 1, 2, . . . , n . The bit length of a string x is denoted 
as |x|, and the size of a set X is denoted as |X| as well. 
The mathematical expectation of a random variable X is 
denoted as E[X] . A function negl(·) is considered negli-
gible if, for any c > 0 , negl(n) < 1/nc for all sufficiently 
large n. The injective domain of a function f is denoted 
as Inj(f ) . Furthermore, we define additional notations 
related to quantum cryptography:

S(N ) denotes the set of N-dimensional pure quantum 
states, U(N ) represents the group of N × N  unitary oper-
ators, and Sn (resp., Un ) is S(2n) (resp., Un ). For a unitary 
operator U ∈ U(N ) , U † denotes its adjoint, and In ∈ U(2n) 
denotes the identity map. Tr(ρ) denotes the trace of a 
quantum state ρ , and TrA(ρ) represents the partial trace 
over subsystem A. For two mixed quantum states ρ0 
and ρ1 , TD(ρ0, ρ1) := Tr

�

(ρ0 − ρ1)†(ρ0 − ρ1)/2 and 
F(ρ0, ρ1) := Tr

�√
ρ0ρ1

√
ρ0 denote the trace distance 

and fidelity between these two states, respectively.

Quantum cryptographic primitives
Before delving into the specific definitions, we assume 
that the reader is already familiar with the fundamentals 
of quantum computing and basic cryptographic notions. 
We begin by introducing the definition of canonical 
quantum bit commitments as defined by Yan (2022):

Definition 1 (Canonical Quantum Bit Commitment) 
A canonical quantum bit commitment scheme is an 
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ensemble of polynomial-time uniform families of quan-
tum circuits (Q0,n,Q0,n) that operate on two registers: A 
(the commitment register) and B (the reveal register). In 
the commit phase, the committer selects a bit b ∈ {0, 1} 
and applies the circuit Qb,n to the state |0�AB , sending the 
register A to the receiver. In the reveal phase, the com-
mitter sends the register B and the bit b to the receiver. 
The receiver applies the inverse circuit Q†

b,n on registers A 
and B, and accepts if the measurement outcome is 0. The 
security of a quantum bit commitment scheme is charac-
terized by its hiding and binding properties.

• Computational (Statistical) Hiding: For any QPT 
(resp., unbounded) malicious receiver, it is infea-
sible to distinguish between TrB(Q0,n|0�) and 
TrB(Q1,n|0�).

• Statistical (Computational) Honest Binding: For any 
state |φ�C stored in register C and any unitary UBC 
acting on registers B and C that can be generated by 
an unbounded-time (resp., polynomial-time) algo-
rithm, the following holds: 

Yan (2022) shows that honest binding is equivalent 
to the concept of sum-binding. This type of commit-
ment is already sufficient for oblivious transfers and 
multi-party computation (Morimae and Yamakawa 
2022b). Hence, unless specified otherwise, we refer to 
this canonical quantum bit commitment scheme in this 
paper. Additionally, we note that the flavor conversion 
for quantum bit commitments has been proven feasi-
ble. This means that computational hiding and statisti-
cal (honest) binding can be converted to computational 
(honest) binding and statistical hiding, and vice versa 
(Yan 2022; Hhan et al. 2023).

Next, we introduce the definition of efficiently sam-
plable, statistically far but computationally indistin-
guishable pairs of distributions (EFI pairs), which was 
first described by Yan (2022) and later formalized by 
Brakerski et al. (2023).

Definition 2 (EFI Pairs) The efficiently samplable, 
statistically far but computationally indistinguishable 
pairs of distributions (EFI pairs) consist of a QPT sam-
pler StateGen(1n, b) that takes a parameter 1n and a bit 
b ∈ {0, 1} as input and outputs a quantum state ρb . These 
pairs satisfy the following properties:

(2)
�

�

��

Q1,n|0��0|Q+
1,n

�

⊗ IC
�

· (IA ⊗ UBC)

·
�

Q0,n|0�AB�φ|C
�

| ≤ negl(n).

• Distinguishability: For any QPT D , it is computa-
tionally infeasible to distinguish between ρ0 and ρ1 , 
meaning: 

 for some negligible function negl(·) . Sometimes we 
omit the security parameter 1n when it’s clear from 
the context.

• Farness: The trace distance between these two states 
satisfies: 

 for some positive polynomial poly(·) when n is suf-
ficiently large.

The equivalence between EFI pairs and quantum com-
mitments has been established in Yan (2022), Brakerski 
et al. (2023), as shown in Lemma 3.

Lemma 3 EFI pairs exist if and only if quantum com-
mitment exists.

This lemma implies that achieving quantum commit-
ments is contingent upon constructing EFI pairs. Due to 
the more explicit form of EFI pairs, they are often pre-
ferred in subsequent discussions over the construction of 
quantum commitments.
The concept of one-way quantum state generators 

(OWSGs) was originally introduced by Morimae and 
Yamakawa (2022b), and subsequently generalized in 
Morimae and Yamakawa (2022a) to allow for mixed state 
outputs. We now recall the definition of the mixed state 
version of OWSGs:

Definition 3 (One-Way State Generator) One-way state 
generator (OWSG) is defined as a triple of QPT algo-
rithms, denoted by f = (KeyGen,StateGen,Ver) , 
where:

• KeyGen(1n) : The key generation algorithm takes 
the security parameter 1n as input and outputs 
x ← KeyGen(1n).

• StateGen(x) : The state generation algorithm takes 
x as input and outputs a (mixed) state ρx indexed by 
x.

• Ver(x′, ρx) : The verification algorithm checks the 
validity of the pair (x′, ρx) , and outputs 1 if it is valid 
and 0 otherwise.

(3)

�

�Pr
�

D(1n, ρ0)
�

− Pr
�

D(1n, ρ1)
��

� ≤ negl(n)

(4)TD(ρ0, ρ1) ≥
1

poly(n)
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The function f must satisfy the following conditions:

• Correctness: There exists a negligible function 
negl(·) such that 

• One-Wayness: For any QPT adversary A and polyno-
mial t(·) , 

 for some negligible function negl(·) . We denote the 
experiment in inequality (5) as Expowsgf,A  for simplicity.

When we refer to pure state version of OWSGs, where 
StateGen(x) always outputs a pure state |φx� . In this 
case, Ver(x′, |φx�) can be replaced by measuring |φx� with 
the basis {|φx′ ��φx′ |, I − |φx′ ��φx′ |} , and output 1 if and 
only if the measurement result is |φx′ �.

Next, we introduce a more generalized version of 
OWSGs called secretly-verifiable quantum state genera-
tors (SV-OWSGs), which was proposed by Morimae and 
Yamakawa (2022a).

Definition 4 (SV-OWSGs) The secretly-verifiable 
OWSG (SV-OWSG) consists of a pair of QPT algorithms 
f = (KeyGen,StateGen) such that:

KeyGen(1n) : The key generation algorithm takes 
the security parameter 1n as input and outputs 
x ← KeyGen(1n).

StateGen(x) : The state generation algorithm takes x 
as input and outputs a (mixed) state ρx indexed by x.

The function f should satisfy the following condition:

• One-Wayness: For any QPT adversary A and poly-
nomial t(·) , there exists a negligible function negl(·) 
such that 

Pr
�

Ver(x, ρx) = 1 : KeyGen(1n) → x,

StateGen(x) → ρx] ≥ 1 − negl(n).

(5)Pr
�

Ver(x′, ρx) = 1 : A

�

ρ⊗t(n)
x

�

→ x′,KeyGen(1n) → x, StateGen(x) → ρx

�

≤ negl(n)

(6)Pr
�

x′ = x : A(ρ⊗t(n)
x ) → x′,KeyGen(1n) → x,StateGen(x) → ρx

�

≥ negl(n).

 For simplicity, we denote by Expsv−owsg
f,A  the experi-

ment in inequality (6).
Additionally, when KeyGen is clear from the context, we 
write f(x) = StateGen(x) = ρx for convenience.

It is worth noting that SV-OWSGs exist uncondi-
tionally (although they are hard to use in that case). 
Therefore, additional structural requirements are 
usually considered for SV-OWSGs, such as statis-
tical invertibility (i.e., SV-SI-OWSGs) defined by 
Morimae and Yamakawa (2022a) and the somewhat 

injectiveness discussed in this paper. For example, 
f = (KeyGen,StateGen) is δ-statistically-invertible if 
it meets the following condition

• δ-Statistical Invertibility: f satisfies the δ-statistical 
invertibility if 

 holds for any x  = x′ in the support of KeyGen(1n).
In particular, if f is SV-SI-OWSG if δ = poly(n)−1 
(Morimae and Yamakawa 2022a). Besides, it satisfies the 
property of extremely statistical invertibility if its output 
states are extremely separated i.e.

for all sufficiently large n ∈ N , we refer to such SV-
SI-OWSGs as the secretly-verifiable and extremely-
statistically-invertible quantum state generators 
(SV-eSI-OWSGs). It is worth noting that, as discussed 
by Morimae and Yamakawa (2022a), although SV-eSI-
OWSGs seems to be a stronger notion than SV-SI-
OWSGs, these two notions are equivalent in the sense of 
existence.

In the standard definition of OWSG (SV-SI-OWSG), 
the adversary is given arbitrary polynomial copies of the 
challenge state. As a weaker version, we call it meets the 
k-copy-security if only k copies are given in the experi-
ment. We stress that the number of copies might be cru-
cial to its security (Cavalar et al. 2023).

TD(ρx, ρx′) ≥ δ

TD(ρx, ρx′) ≥ 1 − 2−n · negl(n),
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EFI pairs from somewhat injective one‑way 
primitives
In this section, we explore the construction of quantum 
commitments using one-way quantum state generators 
but with some compromises on their structure. Since 
there is an equivalence between EFI pairs and canoni-
cal quantum bit commitments, we focus on EFI pairs 
instead. We begin by discussing the construction of 
EFI pairs from somewhat injective one-way functions 
(OWFs).

Warming up with somewhat injective OWFs
In this part, we start by warming up with OWFs. We first 
present a construction of EFI pairs from somewhat 
injective OWFs, and then show that somewhat injective 
OWFs are implied by almost regular OWFs. To begin, we 
introduce the definition of somewhat injective OWFs, 
which are one-way functions that preserve injectiveness 
on a noticeable portion of their domain.

Definition 5 (Somewhat Injective OWFs) An ensemble 
of one-way functions1 {fn : {0, 1}n → {0, 1}l(n)}n is some-
what injective if there exists a constant c > 0 such that

for any n ∈ N . For simplicity, we use f when the param-
eter n is clear from the context.

Since the canonical quantum bit commitments exist 
if and only if EFI pairs exist, we aim to construct EFI 
pairs from somewhat injective OWFs instead. Let 
f : {0, 1}n → {0, 1}l(n) be a somewhat injective OWF such 
that

for a constant c > 0 . We can construct a candidate of 
EFI pairs follows.

Construction of EFI Pairs: The generator algorithm 
StateGen(1n, b) for the EFI pairs is constructed as 
follows:

• For an input bit b ∈ {0, 1} , the algorithm generates 
the state (assuming x follows the uniform distribu-
tion): 

(7)Prx
��

�

�f −1
n (fn(x))

�

�

� = 1
�

≥ 1
nc ,

(8)Pr
x

��

�

�f −1(f (x))
�

�

� = 1
�

≥
1

nc
,

|ψb�AB :=
�

x,r∈{0,1}n
|b, x, r�A ⊗ |f (x), �r, x�2 ⊕ b, r�B

2n ,

where �r, x�2 := r · x mod 2 . Register A stores the 
first part of the state (which contains |b, x, r� ), and 
register B stores the rest of the state. The algorithm 
then outputs the state: 

Theorem  5 If somewhat injective OWFs exist in the 
quantum case, then the construction in (9) is EFI pairs.

Proof To justify the correctness of that theorem, it is 
sufficient to show the distinguishability and the farness 
respectively.

Distinguishability: The security of the construction 
(9) can be proven using the following lemma that can be 
regarded as the Goldreich-Levin Theorem.

We aim to show the distinguishability by making a con-
tradiction. Suppose there exists an adversary A that can 
distinguish between the two states with non-negligible 
probability ε(n) , i.e.,

Let Px,r,b
0  denote the probability that A outputs 0 as a 

decision given some specific |f (x), �r, x�2 ⊕ b, r� as the 
input state. The linearity of A implies that the inequality 
(10) can be expressed as:

Since f preserves the one-wayness, by the Goldreich-
Levin Theorem, we have

However, by (11), we construct a QPT distinguisher D 
that contradicts to (12) as follows:

• D takes as input (f (x∗), b∗, r∗) for some random 
x∗, r∗ ← {0, 1}n , its task is to determine whether 
b∗ = �x, r∗�2.

• D invokes A with input state |f (x∗), �r∗, b∗, r∗�.
• D would output A ’s result as its decision.

By the definition of Px,r,b
0  , if b∗ = �x∗, r∗�2 , then the prob-

ability of D outputting 0 is expressed as

(9)StateGen(1n, b) := ρb = Tr
A

|ψb��ψb|.

(10)

�

�

�

�

Pr
ρ0←��������(1n ,0)

[A(ρ0) → 0] − Pr
ρ1←��������(1n ,0)

[A(ρ1) → 0]
�

�

�

�

≥ ε(n).

(11)
�

�

�

�

E
x,r

�

Px,r,0
0

�

− E
x,r

�

Px,r,1
0

�

�

�

�

�

≥ ε(n).

(12)

�

�

�

�

Prx,r [D(f (x), r, �x, r�2) = 1] − Prx,r [D(f (x), r, �x, r�2 ⊕ 1) = 1]
�

�

�

�

≤ ����(n).

1 We assume the reader is familiar with the definition of one-way functions.
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On the other hand, if b∗ = �x∗, r∗�2 ⊕ 1 , the correspond-
ing probability becomes

Taking inequality (11) into account, the success probabil-
ity of D is at least ε(n) , leading to a contradiction to (12).

Farness: We begin by considering the trace distance 
between these two states, which is noticeable. In accord-
ance with the definition of the trace distance, we have

Let Pb denote the projection generated by the basis

where Inj(f ) represents the injective domain of f.

Since f is injective on Inj(f ) , it is evident that

for any x ∈ Inj(f ) , implying P0 · P1 = 0.

Given that Prx[x ∈ Inj(f)] ≥ n−c and Tr(P0ρ1) = 0 , we 
can conclude

This completes the proof.   �

By establishing the equivalence between quantum 
commitments and EFI pairs, we can deduce the impli-
cation from somewhat injective OWFs to quantum 
commitments.

Corollary 1 Assuming the existence of somewhat injec-
tive OWFs in quantum case, then the canonical quantum 
bit commitments exist.

Next, we demonstrate that the existence of somewhat 
injective OWFs is implied by almost regular OWFs. We 
adopt the definition of almost regular OWFs by Mazor 
and Zhang (2021).

Definition 6 (Almost Regular OWFs) An ensemble of 
one-way functions {fn : {0, 1}n → {0, 1}l(n)}n is said to be 

Pr
x∗,r∗

[D(f (x∗), �x∗, r∗�2, r∗) = 0] = E
r,x

Px,r,0
0 .

Pr
x∗,r∗

[D(f (x∗), �x, r∗�2 ⊕ 1, r∗) = 0] = E
r,x

Px,r,1
0 .

TD(ρ0, ρ1) = max
P

Tr
�

P(ρ0 − ρ1)

�

�

|f (x), �r, x�2 ⊕ b, r� | r ∈ {0, 1}n, x ∈ Inj(f )
�

,

�

��f (x), �r, x�2 ⊕ b, r|f (x′), �r′, x�2 ⊕ b ⊕ 1, r′�
�

� = 0

TD(ρ0, ρ1) ≥ Tr
�

P0(ρ0 − ρ1)

�

= Tr(P0ρ0) − Tr(P0ρ1) = n−c

β-almost regular for β > 0 if the following conditions are 
satisfied:

for any n ∈ N . Here, Img(fn) represents the image space 
defined as {fn(x) | x ∈ {0, 1}n} . For simplicity, we use f 
when the parameter n is clear from the context.

In this definition, we assume that Img(f) can be com-
puted efficiently and is known to the user. We will now 
show that the existence of almost regular OWFs implies 
the existence of somewhat injective OWFs.

Lemma 4 If f : {0, 1}n → {0, 1}l(n) is a β-almost regular 
OWF in the quantum case, then the function

is somewhat injective OWF. Here, he : {0, 1}n → {0, 1}e
denotes a 2-wise independent hash function, and 
e := ⌈log(nβ · 2n/Img(f))⌉ + 1.

Proof The proof makes heavy use of the leftover hash 
lemma which is introduced as follows:

Lemma 5 (Leftover Hash Lemma) Let 
he : {0, 1}n → {0, 1}e be a universal hash function, where 
n > e . Then, for every ε > 0 and every distribution X on 
{0, 1}n of min-entropy at least e + 2 log(1/ε) , the random 
variable (he, he(X)) is ε-close to the uniform distribution 
(he,Ue).

We prove Lemma 4 by making a contradiction. Let A 
be a QPT adversary breaking the one-wayness of f ′ with 
non-negligible advantage δ(n) . We denote by he(x)|e′ 
be the first e′ bits of he(x) . Since the min-entropy of X 
conditioned on f(X) is at least ⌊log(n−β · 2n/Img(f))⌋ , 
then by Leftover Hash Lemma 5, the distribution 
of (he, he(x)|e′ , f (x)) is δ(n)/2-close to (he, re′ , f (x)) 
when e′ = e − 2β log n − 2 log(2/δ(n)) − 1 , where 
x ← {0, 1}n, re′ ← {0, 1}e′ are chosen uniformly at ran-
dom. Next, since there are 2β log n + 2 log(2/δ(n)) + 1 
remaining bits in he(x) which is not close to random 
string, we can guess it correctly with probability at least 
n−2β · δ(n)/2 , that implies a QPT adversary B for break-
ing the one-wayness of f with advantage n−2β · δ(n)2/4 as 
follows:

• B takes as input f (x∗) as its challenge.
• B generates a universal hash function 

he : {0, 1}n → {0, 1}e.

nβ · 2n/Img(fn) ≥
�

�

�
f−1
n (fn(x))

�

�

�
≥ n−β · 2n/Img(fn),

(13)f ′(he, x) =
�

he, he(x), f (x)
�
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• B runs A with (he, f (x∗), r) for a random chosen 
r ← {0, 1}e and outputs A ’s result.

Due to the δ/2-closeness, A wins with probability at 
least δ/2 if we replace the first e′ bits of he(x∗) by a ran-
dom string re′ ← {0, 1}e′ . Next, for a random chosen 
re−e′ ← {0, 1}e−e′ , it is equal to the last e − e′ of he(x∗) 
with probability 2e′−e = n−2β · δ(n)/2. Since this event is 
independent to others, we can conclude that B wins with 
probability at least (δ/2) · n−2β · δ(n)/2 = n−2β · δ(n)2/4 . 
That justifies the one-wayness.

Next, we will focus on the injectiveness part. For any 
x′ ∈ {0, 1}n , since he is 2-wise independent hash function 
and f is a β-almost regular OWF, the expected value of col-
lisions is given by

Since e = [log(nβ · 2n/Img(f))] , by Markov’s inequality, 
we have

This means for arbitrary x, f ′(he, x) has only one preim-
age with probability at least 1/2, which completes the 
proof of Lemma 4. �

We observe that the construction from almost regu-
lar OWFs to somewhat injective OWFs can be extended 
to a broader class of functions. Specifically, it is applica-
ble to those OWFs for which the number of preimages 
can be efficiently estimated based on their image. This 
property is captured by the notion of approximate pre-
image-size (APS) quantum one-way functions (Koshiba 
and Odaira 2009). In particular, a function f is consid-
ered an approximate preimage-size quantum one-way 
function if it is one-way against any QPT adversary, 
and the quantity dy := ⌈log |f −1(y)|⌉ can be efficiently 
computed for any given image y. By employing a similar 
argument, we can observe that the function 
f ′(hdf (x) , x) =

�

hdf (x) , hdf (x) (x), f (x)
�

 also preserves both 
the one-wayness and the somewhat injectiveness 
properties.

Furthermore, we note that Koshiba and Odaira 
(2009) presented a construction of statistically-hiding 
quantum bit commitment from the combination of 
APS quantum one-way functions and almost regular 
quantum one-way functions. This construction can be 
seen as implying the existence of statistically-binding 
quantum bit commitments using the flavor conversion 
technique introduced by Yan (2022) and Hhan et  al. 
(2023). However, our construction offers a more direct 
approach and can be extended to the setting of OWSGs.

E
he

�

�

�
f ′−1(f ′(he, x

′)) \ (he, x
′)
�

�

�
≤ nβ · 2n/(Img(f) · 2e).

Pr
he

��

�

�f �−1(f �(he , x�)) \ (he , x�)
�

�

� ≥ 1
�

≤ nβ · 2n/(Img(f) · 2e) = 1
2 .

EFI Pairs from somewhat injective OWSGs
In this section, we aim to extend the aforementioned 
result to the OWSGs. We begin by providing a formal 
definition of somewhat injective OWSGs.

Definition 7 (Somewhat Injective OWSGs) A quantum 
state generator f that takes x as input and outputs ρx is 
said to be somewhat injective if there exist constants c 
and α such that

where

Based on the similarity between OWSGs and SV-
OWSGs, we can extend the concept of somewhat injec-
tiveness to SV-OWSGs as well. The formal definition of 
somewhat injective SV-OWSGs can be omitted since 
it follows the same principles as somewhat injective 
OWSGs.

Let us assume that f is a somewhat injective OWSGs 
that takes x ∈ {0, 1}n as input and outputs ρx , such that

for some constants c,α > 0 . Based on the discussion in 
the last subsection, we establish the following construc-
tion of EFI pairs from somewhat injective OWSGs.

Construction of EFI Pairs: Without loss of general-
ity, when the state generation algorithm of f takes x as 
input, it first invokes a unitary Ux on |0� and gets |φx�AB , 
then it discards (traces out) the B register and gets 
ρx = TrB|φx��φx| . Based on that, we construct the gen-
erator algorithm StateGen(1n, b) for the EFI pairs as 
follows:

• For an input bit b ∈ {0, 1} , it generates the state 

 where �r, x�2 := r · x mod 2 and s > 0 is a constant 
that will be determined later. It then outputs the state 

Theorem 6 If somewhat injective OWSGs exist, then the 
construction in (18) is EFI.

(14)Pr
x
[Pref,α(x) = 1] ≥

1

nc
,

(15)Pref,α(x) :=
�

x′ | F(ρx, ρx′) ≥ 1 −
1

nα

�

.

(16)Pr
x
[Pref,α(x) = 1] ≥

1

nc

(17)

|ψb�XAns Bns Y := 1
2n ·

�

x,r∈{0,1}n
|b, x, r�X⊗|φx�⊗ns

Ans Bns
⊗ |�r, x�2 ⊕ b, r�

Y
,

(18)StateGen(1n, b) := ρb = Tr
XBn

s
|ψb��ψb|.
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Proof To prove Theorem 6, it is sufficient to show con-
struction in (18) meets the distinguishability and the 
farness:

Distinguishability: The distinguishability can be shown 
similarly to its classical counterpart as discussed earlier, it 
is sufficient to justify the quantum version of Goldreich-
Levin Theorem (Adcock and Cleve 2002; Coladangelo 
et al. 2021).

Lemma 6 (Quantum Goldreich-Levin Theorem) Let 
A be a quantum algorithm that takes as input a random 
string r and an auxiliary quantum input ρx , and outputs 
a bit b. Then, if

there exists a quantum algorithm B that takes as input ρx 
and outputs a string x′ such that B(ρx) = x with probabil-
ity at least 4 · ε2.

By the Goldreich-Levin Theorem, suppose there 
exists an adversary A that can distinguish between the 
two states with non-negligible probability ε(n) , we can 
hence derive a QPT adversary breaking the one-way-
ness of f with non-negligible probability ε(n)2 . That 
hence justifies the distinguishability.

Next, we turn to the proof of the farness for 
Theorem 6.

Farness: To show that the trace distance between 
these two states is significant, we start with the defini-
tion of the trace distance:

Let Pb be the projection

For x1, . . . , x2n , we let the projection Px be

where �
xi
x  is the projection that maxi-

mizes Tr[�xi
x (ρx − ρxi)] . That implies 

Tr[�xi
x ρx] ≥ 1 − (1 − 1/nα)n

s and 
Tr[�xi

x ρx] ≤ (1 − 1/nα)n
s.

By the definition of �xi
x  and Pref,α(x) , when we let 

s = α + 2 , it holds that

Pr[A(r, ρx) = �x, r�2] ≥ 1/2 + ε,

TD(ρ0, ρ1) = max
P

Tr
�

P(ρ0 − ρ1)

�

.

Pb :=
|Pref,α(x′)|=1

�

x,r

Px ⊗ |�r, x�2 ⊕ b, r���r, x�2 ⊕ b, r|.

(19)Px =
�

xi �=x

�

�xi
x

�

,

for any x such that |Pref,α(x)| = 1 and for all sufficiently 
large n ∈ N . Combining the inequality above with the fact 
that Prx

��

�Pref,α(x)
�

� = 1
�

≥ n−c , we have

On the other hand, we can deduce similarly that

This implies

which shows farness of construction (18) and hence com-
pletes the proof. �

Furthermore, the verification step of OWSGs appears 
unnecessary in the proof of Theorem  6. By combining 
this observation with the result by Morimae and Yam-
akawa (2022a), we can deduce the equivalence between 
somewhat injective SV-OWSGs and EFI pairs:

Corollary 2 Somewhat injective SV-OWSGs exist if and 
only if EFI pairs exist.

Similarly, we can establish the implication from 
somewhat injective OWSGs to canonical quantum bit 
commitments:

Corollary 3 Assuming the existence of somewhat injec-
tive (SV-)OWSGs, then canonical quantum bit commit-
ments exist.

Next, we demonstrate that somewhat injective OWSGs 
can be achieved using almost regular OWSGs, which we 
define as follows:

Definition 8 (Almost Regular OWSGs) A quantum state 
generator f is said to be (α,β)-regular OWSG for α,β > 0 
if the following holds for any constant α′ ≥ α:

where

Tr[Pxρx′ ] ≥ 1 − 2n · exp(−n2), x = x′;
Tr[Pxρx′ ] ≤ exp(−n2), x �= x′,

(20)
Tr[P0ρ0] ≥ n−c − O(22n · exp(−2n2))

≥ n−c − negl(n).

(21)Tr[P0ρ1] ≤ O(2n · exp(−2n2)) ≤ negl(n).

TD(ρ0, ρ1) ≥ Tr
�

P(ρ0 − ρ1)

�

= Tr(Pρ0) − Tr(Pρ0)

≥ n−c − 2 · negl(n),

(22)n−β ·
2n

Eα(f)
≤ Preα′(x) ≤ nβ ·

2n

Eα(f)
,

Eα(�) := min
�

�

�

�

x1, x2 . . . |
�

xi
Pre�,α(xi) = Supp(������(1�))

��

�

�,
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and

Additionally, it is almost regular if (22) holds for almost 
all x ∈ {0, 1}n.Here “almost all” means that the set of x for 
which (22) does not hold is negligible.

Based on the notion of almost regularity, we provide a 
construction for somewhat injective OWSGs as follows:

Lemma 7 Assuming f is (α,β)-almost regular OWSG 
that takes x ∈ {0, 1}n as input and outputs ρx , we have

as a somewhat injective OWSG, where he : {0, 1}n → {0, 1}e 
is 2-wise independent hash for e = ⌈log(nβ · Eα(f))⌉ + 1.

Proof Since he : {0, 1}n → {0, 1}e is 2-wise independent 
hash function, we have

Therefore, we have

This implies

This justifies the somewhat injectiveness.

Next, we show the one-wayness of f′ . Before giving the 
proof, we sirstly revisit the quantum leftover hash lemma 
(Renner and König 2005; Bartusek et al. 2021) as follows:

Lemma 8 Let {he : {0, 1}n → {0, 1}e} be a family of 
2-wise independent hash functions. Then for classical-
quantum bipartite state ρXY := Ex|x��x| ⊗ ρx where X 
stores the classical input and Y stores the corresponding 
quantum state ρx , we have

Pref,α(x) :=
�

x′ | F(ρx, ρx′) ≥ 1 −
1

nα

�

.

(23)f
′(he, x) := ηx,he = ρx ⊗ |he, he(x)��he, he(x)|

Pr
he

[he(x) = he(x
′)] ≤ 2−e.

E
he

��

�Pref′,α(he, x) \ (he, x)
�

�

�

=
nβ · 2n

2e · Eα(f)
≤

1

2
.

(24)Pr
he ,x

��

�Pref′,α(he, x) \ (he, x)
�

� > 1
�

≥
1

2
.

(25)
TD

�

E
he ,x

�

�he, he(x)
��

he, he(x)
�

� ⊗ ρx, E
he ,x,u

�

�he,u
��

he,u
�

� ⊗ ρx

�

≤ 2−1− (Hmin(X |Y )ρ−e)
2

where u ← {0, 1}l is chosen uniformly at random 
Hmin(X | Y)ρ is the quantum conditional min-entropy 
defined by

The proof strategy of one-wayness is similar to its 
classical counterpart. Assuming there exist a QPT 
adversary A breaks the one-wayness of f′ with t(n) 
copies and wins with non-negligible advantage δ(n) . 
We denote by he(x)|e′ be the first e′ bits of he(x) . By 
the definition of almost regularity, the min-entropy 
Hmin(X | Y)ρ is at least ,

Then by quantum leftover hash lemma 8, the trace dis-
tance can be bounded as follows:

where e′ = e − (2β + 1) log n − 2 log(2/δ(n)) − 1 , 
x ← {0, 1}n, re′ ← {0, 1}e′ are chosen uniformly at 
random.

Next, since there are (2β + 1) log n + 2 log(2/δ(n)) + 1 
remaining bits in he(x) which is not close to ran-
dom string, we can guess it correctly with prob-
ability at least n−2β−1 · δ(n)/2 , that implies a QPT 
adversary B for breaking the one-wayness of f with 
advantage n−2β−1 · δ(n)2/4 as follows:

• B takes as input ρ⊗t(n)
x∗  as its challenge.

• B generates a universal hash function 
he : {0, 1}n → {0, 1}e.

• B runs A with |he, r��he, r|⊗t(n) ⊗ ρ
⊗t(n)
x∗  for a ran-

dom chosen r ← {0, 1}e and outputs A ’s result.

Due to the δ/2-closeness between these two state in 
inequality (25), A wins with probability at least δ/2 if 
we replace the first e′ bits of he(x∗) by a random string 

Hmin(X | Y)ρ := sup
ηB

�

� ∈ R : 2−�IX ⊗ ηY ≥ ρ

�

.

(26)Hmin(X | A)ρ > log n−β−1 ·
2n

Eα(f)
.

(27)

TD
�

E
he,x

|he��he| ⊗ |he(x)|e� ��he(x)|e� | ⊗ ρx, E
he,x,re�

|he��he| ⊗ |re� ��re� | ⊗ ρx

�

≤ 2−1− (Hmin(X|Y)ρ−e�)
2 = δ(n)

2 ,
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re′ ← {0, 1}e′ , we can conclude that B wins with probabil-
ity at least n−2β−1 · δ(n)2/4 . That justifies the one-way-
ness, hence completes the proof of Lemma 7. �

Similar to its classical counterpart, we note that our 
construction from almost regular OWSGs to somewhat 
injective OWSGs can also be extended to the case where 
the preimage size of OWSG can be efficiently estimated 
from the image state, using at most polynomially many 
copies.

However, extending Lemma 7 to SV-OWSGs would 
face a challenge. In the case of almost regular SV-OWSG, 
each image state sphere (that is, a sphere that takes the 
an output state as its centre) may contain exponentially 
many points, which makes it difficult to suit the lemma 
(although it still holds when each sphere of the output 
state contains only polynomially many points).

Single‑copy‑secure hard‑core predicates suffice 
for EFI Pairs
In this section, we establish the equivalence between 
EFI pairs and single-copy-secure hard-core predi-
cates of secretly-verifiable and extremely-statistically-
invertible quantum state generators (SV-eSI-OWSGs) 
introduced in Definition 4. We firstly introduce the 
definition of single-copy-secure hard-core predicate of 
SV-eSI-OWSGs as follows:

Definition 9 (Single-Copy-Secure Hard-Core Predicate 
of SV-eSI-OWSGs) A QPT algorithm P : {0, 1}n → {0, 1} 
is single-copy-secure hard-core predicate of the secretly-
verifiable and extremely-statistically-invertible quantum 
state generator f(x) := ρx if it satisfies the condition

for any QPT distinguisher D.

By the Quantum Goldreich Levin Theorem 6, it’s easy 
to note that the existence of single-copy-secure hard-core 
predicate of SV-eSI-OWSGs is implied by the single-
copy-secure SV-eSI-OWSGs (i.e., only one copy of the 
challenge state is given in the experiment Expsv−owsg

f,A  ). 
Notably, the single-copy-secure hard-core predicate of 
SV-eSI-OWSGs appears to be a weaker primitive, as 
it only requires one copy of the challenge state. How-
ever, the equivalence with EFI pairs demonstrates their 
underlying connection and reveals that they are concep-
tually equivalent.

�

�

�Prx [D(ρx ,�(x)) = 1] − Prx [D(ρx ,�(x) ⊕ 1) = 1]
�

�

� ≤ ����(n)

Single-Copy-Secure Hard-Core Predicate of SV-eSI-
OWSGs from EFI Pairs: Let StateGen(1n, b) be the 
generation algorithm for EFI pairs, where b and 1n are 
the input parameters, and ρb is the resulting (mixed) 
state. Based on the construction by Morimae and Yam-
akawa (2022a) and the Goldreich-Levin theorem for 
SV-eSI-OWSGs, it can be shown that the function

serves as the hard-core predicate for the SV-eSI-OWSG

where c > 0 is a constant. Based on the argument pre-
sented by Morimae and Yamakawa (2022a), it can be 
established that f is a SV-eSI-OWSGs for a suitable con-
stant c > 0 (specifically, a single-copy-secure SV-eSI-
OWSGs). Consequently, the Quantum Goldreich-Levin 
Theorem 6 directly implies that P serves as a single-copy-
secure hard-core predicate for f which hence justifies this 
part of implication.�
EFI Pairs from Single-Copy-Secure Hard-Core 

Predicate of SV-eSI-OWSGs: Let P be the single-
copy-secure hard-core predicate of SV-eSI-OWSGs 
denoted by f = (KeyGen,StateGen) . The state gen-
eration algorithm of EFI pairs is given by

which generates EFI pairs. Here, the expectation of x fol-
lows the distribution on KeyGen(1n) of f.
The distinguishability of the EFI pairs follows directly 

from the security of P . Since if not, for a challenge 
ρx ⊗ |P(x) ⊕ b��P(x) ⊕ b| , invoking the distinguisher of 
EFI pairs with this state would directly induce a distin-
guisher for the hard-core predicate P.

Next, we demonstrate the farness of this construction. 
For convenience, let

Then, we have

(28)P(x1� . . . �xn, r1� . . . �rn) =
n

�

i=1

ri · xi

(29)f(x1� . . . �xn, r1� . . . �rn) =
n

�

i=1

ρ⊗nc

xi
⊗ |ri��ri|

(30)
StateGen

′(1n, b) := E
x
ρx ⊗ |P(x) ⊕ b��P(x) ⊕ b|

(31)ηb :=
P(x)=b

E
x

ρx

E
x
ρx ⊗ |�(x) ⊕ b���(x) ⊕ b| = p0

· η0 ⊗ |b��b| + (1 − p0)η1 ⊗ |b ⊕ 1��b ⊕ 1|
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for some |p0 − 1/2| ≤ negl(n) (otherwise, it contradicts 
the hardness of predicate P).

Since the function f is statistically invertible, it satisfies 
the following inequality:

Consequently, there exists a projection Px′
x  such that

and

Now, consider the product of projections 
�P(x)=1

x′

�

Px′
x

�

 
(it doesn’t matter in which order the projections are 
taken). Define:

(32)TD(ρx, ρx′) ≥ 1 − 2−n · negl(n)

(33)Tr(Px
′

x ρx) ≥ 1 − 2−n · negl(n),

(34)Tr(Px
′

x ρx′) ≤ 2−n · negl(n).

and

Using inequalities (33) and (34), we can derive the follow-
ing inequality:

for any x such that P(x) = 0.
Similarly, we have:

for any x such that P(x) = 1 . Consequently, we obtain:

Similarly, TD(η0, η
′
0) ≤ negl(n) . Furthermore, since 

TD(η′
0, η

′
1) = 1 , there exists a projection P0 satisfying:

We then define P = P0 ⊗ |0��0| + (I − P0) ⊗ |1��1| , and 
obtain:

η�
0 :=

�(x)=0
E
x

�

�(x)=1
x�

�

Px�
x

�

ρx
�

�

�(x)=1
x�

�

Px�
x

��†

Tr
�

�

�(x)=1
x�

�

Px�
x

�

ρx
�

�

�(x)=1
x�

�

Px�
x

�

�†�

η�
1 :=

�(x)=1
E
x

�

�(x)=1
x�

�

I − Px�
x

�

ρx
�

�

�(x)=1
x�

�

I − Px�
x

��†

Tr
�

�

�(x)=1
x�

�

I − Px�
x

�

ρx
�

�

�(x)=1
x�

�

I − Px�
x

�

�†�

Tr





�(x�)=1
�

x�

�

Px�
x

�

ρx





�(x�)=1
�

x�

�

Px�
x

�





†

 ≥ 1 − ����(n)

Tr





�(x�)=1
�

x�

�

I − Px�
x

�

ρx





�(x�)=1
�

x�

�

I − Px�
x

�





†

 ≥ 1 − ����(n),

(35)
TD

�

η0, η
′
0

�

≤
P(x)=b

E
x

TD






ρx,

�
�P(x′)=1

x′ Px
′

x

�

ρx

�

�P(x′)=1

x′ Px
′

x

�†

Tr
�
�P(x′)=1

x′ Px
′

x

�

ρx
�
�P(x′)=1

x′ Px
′

x

�†�







≤
P(x)=b

E
x



1 − Tr





P(x′)=1
�

x′

�

P
x′
x

�

ρx

�

P(x′)=1
�

x′

�

P
x′
x

�

�†









≤ negl(n).

(36)Tr(P0η
′
0) = 1, and Tr(P0η

′
1) = 0.

TD

�

E
x
ρx ⊗ |P(x)��P(x)|, E

x
ρx ⊗ |P(x) ⊕ 1��P(x) ⊕ 1|

�

= TD(p0 · η0 ⊗ |0��0| + (1 − p0)η1 ⊗ |1��1|, p0 · η0 ⊗ |1��1| + (1 − p0)η1 ⊗ |0��0|)
≥ TD(p0 · η0′ ⊗ |0��0| + (1 − p0)η1′ ⊗ |1��1|, p0 · η0′ ⊗ |1��1| + (1 − p0)η1′ ⊗ |0��0|)

−negl(n) ≥ Tr(P(p0 · η0′ ⊗ |0��0| + (1 − p0)η1′ ⊗ |1��1| − p0 · η0′ ⊗ |1��1| − (1 − p0)η1′ ⊗ |0��0|)
−negl(n) ≥ 1 − negl(n).
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This completes the proof of the implication from the sin-
gle-copy-secure hard-core predicate of SV-eSI-OWSGs 
to the EFI pairs.�

More specifically, since SV-SI-OWSG is equivalent 
to EFI pairs, we can further shows that k-copy-secure δ
-statistically-invertible SV-OWSG is sufficient for normal 
SV-SI-OWSG when k and δ are chosen appropriately.

Corollary 4 Assuming the existence of k-copy-secure δ
-statistically-invertible SV-OWSG such that

then SV-SI-OWSG exists.

Simple construction of EFI Pairs from LPN
In this section, we present a construction of EFI pairs 
from the decisional Learning with Parity (LPN) assump-
tion. Our construction offers more flexibility in choosing 
parameters compared to classical constructions.

We begin by introducing the definition of the deci-
sional known as Learning with Parity problem.

Definition 10 (Learning with Parity (LPN)) For param-
eters τ ∈ (0, 12 ) , n,m ∈ N , the decisional LPN problem 
(Learning with Parity problem), denoted as LPNn,m,τ , is 
considered hard in the quantum case if

for any quantum polynomial-time distinguisher D , where 
Bτ is the Bernoulli distribution with parameter τ , i.e., 
Prb←Bτ [b = 1] = τ.

In the traditional definition of LPNn,m,τ , the parame-
ter τ is often chosen as a constant, which is sufficient 
for many cryptographic primitives such as the one-way 
functions, pseudorandom generators, and commit-
ments. However, it has been shown that low-noise 
LPNn,m,τ (e.g., τ = 1√

N
 ) implies public-key crypto-

graphic primitives. Besides, it is called the high noise 
LPNn,m,τ if τ > 1 − poly(n)−1 for some polynomial 
poly(·).

We define an LPNn,m,τ assumption as non-trivial 
if the statistical distance between the distribution 
of a real LPNn,m,τ sample and a random distribution 
(A, r) ← Z

m×n
2 × {0, 1}m is larger than 1/poly(n) for 

some positive polynomial poly(·) . Next, we demon-
strate the feasibility of EFI pairs and, consequently, 
quantum commitment from the decisional LPN 

(37)δk ≤ 2−n · negl(n),

�

�

�

�

�

�

�

Pr
A←Zm×n

2 ,x←{0,1}n ,e←Bmτ
[D(A,Ax ⊕ e) = 1] − Pr

A←Zm×n
2 ,r←{0,1}m

[D(A, r) = 1]

�

�

�

�

�

�

�

≤ ����(n),

assumption by giving the following construction of ��� 
pairs.

Construction of EFI Pairs: The description of the 
generation algorithm StateGen(1n, b) is as follows:

• For b = 0 : 

• For b = 1 : 

Here, the expectation in the first equation is taken over 
the randomness of A ← Z

m×n
2  , x ← {0, 1}n , e ← Bm

τ  , 
while the second equation is taken over A ← Z

m×n
2  and 

r ← {0, 1}m.

Theorem 7 (EFI Pairs from Decisional LPN) Assuming 
a non-trivial decisional LPNn,m,τ is quantum hard-on-
average, EFI pairs exist.

Proof To justify the statement of Theorem 7, it is suf-
ficient to show the construction above meets the farness 
and the distinguishability.

Farness: To show the farness property, we note that

Here, p0(A, x, e) is the weight of |A,Ax ⊕ e� in ρ0 , and 
p1(A, r) is defined similarly. The inequality (∗) follows 
from the relation between Hellinger distance and statisti-
cal distance. We observe that:

is exactly the statistical distance between an LPNn,m,τ 
sample and a random (A, r) ← Z

m×n
2 × {0, 1}m , which 

is noticeable due to the non-triviality of the LPNn,m,τ 
assumption. This completes the proof of farness.

StateGen(1n, 0) := ρ0 = E
A

|A��A| ⊗ ρ0,A

= E
A

|A��A| ⊗
�

E
x,e

|Ax ⊕ e��Ax ⊕ e|
�

.

StateGen(1n, 1) := ρ1 = E
A

|A��A| ⊗ ρ1,A

= E
A

|A��A| ⊗
�

E
r
|r��r|

�

.

F(ρ0, ρ1) ≤ F

�

E
A

|A��A| ⊗ ρ0,A, E
A

|A��A| ⊗ ρ1,A

�

=
�

A,r

�

�

�

�(

Ax⊕e=r
�

x,e

p0(A, x, e)) · p1(A, r)

∗
≤ 1 −

�

�

A,r

|(
Ax⊕e=r
�

x,e

p0(A, x, e))

2
−

p1(A, r)

2
)|
�2

.

�

A,r

�

�

�

�

�

(

Ax⊕e=r
�

x,e

p0(A, x, e)) − p1(A, r))

�

�

�

�

�

/2
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Indistinguishability: Next, we consider the notion of 
indistinguishability. Let us assume that there exists an 
adversary A that breaks the security of the EFI pairs with 
a non-negligible probability ε(n) . We will now construct 
a distinguisher D that breaks the decisional LPNn,m,τ 
assumption as follows:

• The distinguisher D takes (A,  y) as input, which 
is either (A,Ax ⊕ e) or (A,  r), where A is chosen 
uniformly at random from Zm×n

2  , x and r are cho-
sen uniformly at random from {0, 1}n and {0, 1}m 
respectively , and e is chosen from Bm

τ  . The task of 
D is to determine which case it is.

• D runs A with input (A, y) and outputs its decision.

By exploiting the linearity of quantum operators,

Similarly,

Hence, we can conclude that the distinguisher D can dis-
tinguish these two cases with a probability exactly equal 
to ε(n) . This justifies the indistinguishability and com-
pletes the proof of Theorem 7.   �

We remark that the construction described above can 
be polarized without increasing the sample number m 
of the underlying LPNn,m,τ assumption. To achieve this, 
we set ρ′

b = ρ⊗nC

b  as the output state of input bit b for 
some sufficiently large constant C > 0 . By doing so, the 
trace distance can be made exponentially small, while 
the distinguishability holds by a simple hybrid argument. 
Assuming A distinguishes ρ′

0 from ρ′
1 , then for a random 

k ∈ [nC − 1] , A also distinguishes ρ⊗nC−k−1
0 ⊗ ρ⊗k+1

1  
from ρ⊗nC−k

0 ⊗ ρ⊗k
1  . Therefore, it is sufficient to pad the 

challenge value of LPN to a random position of the out-
put state and generate the rest of the parts locally.

Note that commitments can also be achieved using the 
exact version of the decisional LPN assumption with a 
noise rate τ ( τ < 0.25 ) when m = O(n) (or with signifi-
cantly larger m from the construction of OWFs or PRGs 
under the LPN assumption Pietrzak 2012). However, it 
is easy to see that our construction also makes sense for 
high noise rates (with large m) and any constant noise τ 
(with small m = O(n) ) as long as the decisional LPNn,m,τ 

A

�

E
A

|A��A| ⊗ E
x,e

|Ax ⊕ e��Ax ⊕ e|
�

= E
A

�

E
x,e

(A(|A��A| ⊗ |Ax ⊕ e��Ax ⊕ e|))
�

.

A

�

E
A

|A��A| ⊗ E
r
|r��r|

�

= E
A

�

E
r

�

A(|A��A| ⊗ |r��r|)
�

�

.

assumption in that case is non-trivial. Hence, we believe 
our construction is simple and achieves a better param-
eter choice than the classical constructions.

Conclusion
In conclusion, our exploration into the intricacies of 
OWSGs has not only broadened the theoretical landscape 
of quantum cryptography but also provided concrete 
methodologies for their application in quantum commit-
ment schemes. By leveraging structured OWSGs, we have 
successfully demonstrated the construction of quantum 
commitments that offer robust security features, such as 
statistical binding and computational hiding. The equiva-
lence established between EFI pairs and hard-core pred-
icates furthers our understanding of the fundamental 
properties of quantum cryptographic primitives. Addi-
tionally, our construction of EFI pair construction based 
on the decisional LPN assumption highlights the adapta-
bility and potential in enhancing the security parameters 
of quantum cryptographic systems.

Moving forward, it is crucial to extend our investiga-
tions into the property of OWSGs, and their broader impli-
cations in other quantum cryptographic primitives. As an 
open problem, a key challenge that remains is to construct 
pseudorandom state generators (PRSs) and pseudoran-
dom function-like states (PRFSs) from OWSGs. More spe-
cifically, how can we leverage the one-wayness of OWSGs to 
develop PRSs that meet the rigorous demands of quantum 
pseudorandomness while maintaining efficient comput-
ability and verifiability. This issue is pivotal for advancing 
the quantum cryptography and deserves focused research 
efforts.
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