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Abstract We consider a cosmological scenario endowed
with an interaction between the universe’s dark components
– dark matter and dark energy. Specifically, we assume
the dark matter component to be a pressure-less fluid,
while the dark energy component is a quintessence scalar
field with Lagrangian function modified by the quadratic
Generalized Uncertainty Principle. The latter modification
introduces new higher-order terms of fourth-derivative due
to quantum corrections in the scalar field’s equation of
motion. Then, we investigate asymptotic dynamics and
general behaviour of solutions of the field equations for
some interacting models of special interests in the lit-
erature. At the background level, the present interacting
model exhibits the matter-dominated and de Sitter solu-
tions which are absent in the corresponding quintessence
model. Furthermore, to boost the background analysis, we
study cosmological linear perturbations in the Newtonian
gauge where we show how perturbations are modified by
quantum corrected terms from the quadratic Generalized
Uncertainty Principle. Depending on the coupling param-
eters, scalar perturbations show a wide range of behavior.

1 Introduction

The physics of the dark sector of our Universe is obscure,
at least according to the up-to-date observational shreds of
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evidence. This dark sector comprises of a dark matter (DM)
which is almost pressure-less or cold, and a dark energy (DE)
fluid, and they jointly contribute nearly 96% (∼ 68% for DE
and ∼ 28% for DM) of the entire energy content of the Uni-
verse [1]. The most mathematically simplest cosmological
model that explains this dark sector is the �-Cold Dark Mat-
ter (�CDM) in which � > 0, the cosmological constant,
plays the role of DE. Even though the �CDM model has been
found to fit excellently to most of the available astrophysi-
cal and cosmological probes, the most significant assump-
tion within such a cosmological picture is the independent
evolution of both DM and DE, that means, in other words,
we have a non-interacting cosmological scenario. However,
despite the tremendous success of the �CDM model, there
are already known severe issues associated with it. We can
reconcile the existing problems related to the �CDM model
by an alternative description of the Universe along with the
excellent fits to the available observational data. The list of
the models is quite extensive, including a variety of cosmo-
logical theories and models; see for instance [2]. Amongst
many attractive cosmological models, in this article, we focus
on a very generalized cosmological theory where DM and
DE are freely allowed to interact with one other, known as
Interacting DE (IDE) or coupled DE.

The IDE theory which was formally proposed by Amen-
dola [3] received tremendous attention in the scientific com-
munity for its ability to offer a possible explanation to the cos-
mic coincidence problem [4–10] where a direct interaction
between DM and DE (in a non-gravitational way) can play the
game. However, we recall an earlier work by Wetterich [11]
where the author first argued the possibility of an interaction
in the Universe where a coupling or interaction between a
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scalar field and gravity can lead to a time-dependent cosmo-
logical ‘constant’ which asymptotically becomes constant
and consequently a possible explanation to the cosmolog-
ical constant problem was placed. With such motivations,
IDE theory was investigated widely in the literature. Subse-
quently it was proved that interaction between DM and DE
could offer some more interesting possibilities, for example,
the crossing of the phantom divide line without any need to
scalar field [4,12–15], and most importantly, it can explain
the recent H0 tension [16–18] and the σ8 tension [18–20]. We
refer to a recent review on the Ho tension where the obser-
vational data report that IDE rocks (see Tables B1 and B2 of
[21]). Nevertheless, the questions regarding the derivation of
the interaction function from some fundamental action have
not been truly understood yet. Attempts to derive the interac-
tion function have been made by various investigators with
some reasonable answers, see for instance [22–29], however,
the development of this section is still in progress.

In this article, we consider an interacting scheme where
DM is pressure-less, and DE is a scalar field. Even though
we are considering an interacting scalar field model which
reminds us the earlier works in this direction [3,4,30], how-
ever, the framework and the formulation of the present inter-
acting scalar field scenario is different from them [3,4,30]
because here the scalar field sector which is interacting with
the pressure-less DM has been modified following the gen-
eralized uncertainty principle (GUP). The inclusion of GUP
adds a novel feature to this work. According to the past his-
torical records, GUP has many astrophysical and cosmolog-
ical implications, for instance, the origin of the magnetic
fields in the Universe sector [31], black hole thermodynam-
ics [32] and some others (see [33,34] for a detailed descrip-
tion). Since GUP plays a vital role in the context of the early
physics of the Universe, therefore, its effects on the late Uni-
verse physics is a topical issue that should be investigated,
aiming to understand the complete dynamical picture of the
Universe. It is always very appealing to encounter the new
physical theories modified by the GUP’s inclusion to under-
stand the minimum length scale effects in the late Universe
physics. Following this motivation, the authors of [34] first
investigated the dynamics of the GUP modified quintessence
scalar field with two different potentials; one is exponential,
and the other is an arbitrary. The resulted dynamics offered
some interesting possibilities that are absent in the usual
quintessence scalar field model. For instance, the appearance
of the critical points describing the de Sitter Universe in the
GUP modified quintessence is a new piece of result, and this
does not depend on the choice of the potential. In this article,
we extended the previous work [34] by allowing an interac-
tion between the GUP modified quintessence scalar field and
the pressure-less DM to examine the dynamical features of
this generalized cosmic scenario.

To improve the background analysis, we also investi-
gate cosmological linear perturbations. More specifically, we
study the dynamics of scalar perturbations during the matter-
dominated era, where the effect of GUP might imprint excit-
ing features during the growth of structure. Such analysis is
crucial to identify specific signatures of the interacting scalar
field theories in the light of GUP to look for by cosmolog-
ical observations. Therefore, the present study will serve as
a preliminary investigation of the modified interacting IDE
model’s cosmic viability.

The article is structured as follows: In Sect. 2 we present
the basic equations of the interacting scenario. For the dark
energy, we assume that it is described by a minimally coupled
scalar field where the GUP modifies the Action Integral. The
new set of equations are presented in Sect. 3. We continue
our analysis to study the asymptotic solutions for the field
equations for a linear interacting model. The detailed analy-
sis of the asymptotic solutions and their physical properties
are given in Sect. 4. Furthermore, in Sect. 5, we derive the
scalar equations of the cosmological linear perturbations. We
find that the perturbed system is also a singular perturbation
system due to the new terms introduced by GUP. Therefore,
the qualitative evolution of the perturbed equations in the
slow-fast manifolds is studied in the matter-dominated era
from where we find new growing modes that follow from
GUP corrections. Finally, in Sect. 6 we summarize the main
results of this article.

2 Interacting dark energy

According to cosmological principle, our Universe in the
large scales is almost homogeneous and isotropic. Therefore,
we consider that the background physical space is described
by Friedmann–Lemaître–Robertson–Walker (FLRW) line-
element with zero curvature given by

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (1)

where a (t) is the expansion scale factor and (t, x, y, z) are
the co-moving coordinates. In the context of Einstein’s Gen-
eral Relativity (GR) the gravitational field equations are (in
the units where 8πG = 1):

Gμ
ν = Tμ

ν , μ, ν = 0, 1, 2, 3 (2)

where Gμ
ν = Rμ

ν − 1
2 Rg

μ
ν is the Einstein tensor and Tμ

ν is
the effective momentum tensor

Tμν = T (m)
μν + T (d)

μν + T (r)
μν + T (b)

μν , (3)

in which T (b)
μν = ρbuμuν describes baryonic matter,

T (r)
μν = (ρr + pr ) uμuν corresponds to radiation, T (m)

μν =
ρmuμuν describes dark matter component and T (d)

μν =
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(ρd + pd) uμuν + pdgμν is the energy-momentum tensor
for DE fluid source which has a negative equation of state
parameter wd = pd/ρd < 0 such that the late-time accel-
erating phase of the Universe is realized [35]. Here uμ

describes a comoving observer uμ = δ
μ
t , uμuμ = −1 and

ρi (i = b, r,m, d) stands for the energy density of i-th fluid;
pr and pd denote the pressure of radiation and DE fluid. We
note that baryons and DM are assumed to be pressureless.

For spatially flat FLRW background space the gravita-
tional field equations (2) read

3H2 = ρm + ρd + ρr + ρb, (4)

−2Ḣ − 3H2 = pd + pr , (5)

where an overhead dot represents the derivative with respect
to the cosmic time and H = ȧ/a is the Hubble function.
From Bianchi identity ∇νGμν = 0, we get ∇νTμν = 0,

which means,

∇νT
(m)μν + ∇νT

(d)μν + ∇νT
(r)μν + ∇νT

(b)μν = 0. (6)

Often, it is assumed that the fluid components do not interact
with each other, that means, ∇νT (m)μν = 0 , ∇νT (d)μν =
0 , ∇νT (r)μν = 0 and ∇νT (b)μν = 0. However, over the last
several years, cosmological models allowing an interaction
between DM and DE have drawn a significant attention. In
this case the conservation equation (6) gives the following
conditions ∇νT (r)μν = 0 , ∇νT (b)μν = 0 and ∇νT (m)μν +
∇νT (d)μν = 0 where the last relation between DM and DE
can be decoupled into two separated equations by introducing
an interaction term Q as follows

∇νT
(m)μν = Q, ∇νT

(d)μν = −Q. (7)

We note that the nature of interaction function Q is unknown
and there is not a unique theoretical model which describes its
origin [36–39]. In terms of phenomenology, there are various
approaches in the literature which have shown that a nonzero
function Q is supported by the cosmological observations
[40–47].

For the background space (1), conservation equations (7)
take the forms

ρ̇m + 3Hρm = Q, (8)

ρ̇d + 3H (ρd + pd) = −Q. (9)

Thus, once an interaction function Q is given, one can solve
the conservation equations either analytically or numerically
(depending on the nature of the interaction function) and
finally using the Friedmann equation (4), the dynamics of
interacting Universe can be explored. Let us make an impor-
tant comment that is essential to understand the dynamics in
the following sections. In the total energy density of the Uni-
verse (see Eq. (4)) the contributions of baryonic matter and
radiation fluid are very small compared to that of DM and DE,

therefore, the total dynamics of the Universe is not influenced
by their joint contribution. Hence, we shall omit their contri-
bution from now on and we shall focus on the dynamics of
the Universe driven mainly by DM and DE. That means, the
effective cosmological fluid responsible for the Universe’s
dynamics is identified with the energy-momentum tensor
T eff

μν = T (m)
μν + T (d)

μν .
As mentioned earlier, the DE fluid is quintessence scalar

field, one of the simplest time-varying DE models [48]. In
quintessence DE, energy density and pressure terms of T (d)

μν

are written as

ρd = 1

2
φ̇2 + V (φ) , pd = 1

2
φ̇2 − V (φ) , (10)

where V (φ) is the potential of quintessence scalar field. With
the above expressions for energy density and pressure of the
quintessence DE, the set of Eqs. (8), (9) can now be explicitly
written as

ρ̇m + 3Hρm = Q, (11)

φ̇
(
φ̈ + 3H φ̇ + V,φ

) = −Q. (12)

The latter system has been the case of study of various analy-
sis in the literature [49–60] where Q = Q (ρm, ρd) has been
assumed to be either a linear function Q = αHρm + κ Hρd

or a nonlinear function such as Q = α
Hρm
φ̇2ρφ

, Q = α
H φ̇2ρφ

ρm
,

Q = − 1
2 (4−3γ )ρm φ̇

χ ′(φ)
χ(φ)

[46–49,61–66] and many others.
Additionally, with the above choices for the coupling func-
tion, various functional forms of the scalar field potential
function V (φ) can also be chosen [33,35,50–52,60,67–72].

In this work we are interested to extend the analysis of
IDE models for a generalization of the quintessence scalar
field model inspired by GUP.

3 Quintessence modified by the GUP

In this section we offer a brief description about GUP and
the modifications of quintessence scalar field due to this prin-
ciple. The quadratic GUP is based on the introduction of a
minimum measurable length in which the Heisenberg uncer-
tainty principle is modified as


Xi
Pj � h̄

2
[δi j (1 + βP2) + 2βPi Pj ], (13)

where β = β0�
2
Pl/2h̄2 and β0 is the deformation parame-

ter [73–76]. The deformation parameter can be positive or
negative [77,78]. Moreover, there are various proposed the-
oretical constraints in the literature from quantum systems
[79,80] and also from gravitational systems [81,82].

The main characteristic of GUP is that it modifies the
second-order Klein–Gordon equation for a scalar field into
a fourth-order. Inspired by this observation in Ref. [33] a
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generalized quintessence scalar field model modified by the
GUP has been proposed; in which Klein–Gordon equation is
modified.

The Action Integral for the scalar field has been proposed
to be [33]

SGU P
Q =

∫
dx4√−g

(
1

2
gμνDμφDνφ − V (φ)

)
, (14)

in which Dμ = ∇μ +βh̄2∇μ (
) and 
 is the Laplace oper-
ator. For zero deformation parameter Action Integral (14)
reduces to that of quintessence. For β0 �= 0, with the use of
a Lagrange multiplier the Action Integral (14) is written in
the equivalent form

SGU P
Q =

∫
dx4√−g

(
1

2
gμν∇μφ∇νφ − V (φ)

+βh̄2
(

2gμν∇μφ∇νψ + ψ2
))

, (15)

where the new scalar field ψ attributes the degrees of freedom
provided by higher-order derivatives.

Therefore, in this context DE components read

ρd = ρφ + ρψ, pd = pφ + pψ, (16)

where ρφ, pφ are usual terms of energy density and pres-
sure for quintessence scalar field given by (10). The quanti-
ties ρψ , pψ are respectively the energy density and pressure
terms which correspond to higher-order derivatives and are
described by kinematic and dynamic quantities for the sec-
ond field ψ as follows

ρψ = βh̄2
(

2φ̇ψ̇ − ψ2
)

, pψ = βh̄2
(

2φ̇ψ̇ + ψ2
)

.

(17)

Hence, using (16) and (17) the interacting conservation equa-
tions (11), (12) are modified as

ρ̇m + 3Hρm = Q, (18)

2βh̄2φ̇
(
ψ̈ + 3H ψ̇

) + φ̇
(
ψ + V,φ

) = −Q, (19)

with constraint equation

φ̈ + 3H φ̇ − ψ = 0, (20)

which follows from definition of Lagrange multiplier, where
the dot means derivative with respect to cosmic time t .

We continue our analyses by studying the dynamics and
asymptotic behaviour of the solutions of the gravitational
field equations for various interacting functions of the form
Q = Q (ρm, ρd) in the light of GUP. In particular, we classify
stationary points according to their stability and determine
generic features irrespective of the initial conditions. This
is achieved using dynamical systems tools. Concerning the

choice of interaction function we consider its linear form:

QA = φ̇√
6

(αρm + κ ρd) , (21)

where α and κ are coupling parameters of the interaction
function. Notice that for different values of α and κ , one
can realize a number of interaction functions. For instance,
α = 0 reduces to QA = φ̇√

6
κρd . Similarly, one can also get

another two versions, namely, QA = φ̇√
6

αρm for κ = 0 and

QA = φ̇√
6
δ (ρm + ρd) for α = κ = δ. These kind of inter-

actions were motivated from scalar-tensor theories [11,83].
In particular, model QA = φ̇√

6
αρm is conformally equiva-

lent to power-law potential model of Brans–Dicke theory. As
far as the scalar field potential is concerned we consider the
exponential potentialV (φ) = V0e−λφ , which as it was found
in [34] can describe different kinds of asymptotic solutions
with physical interest.

4 Asymptotic solutions and stability

To study asymptotic evolution of interacting gravitational
model we define dimensionless variables following [34]:

x1 = φ̇√
6H

, y1 =
√

V

3H2 , x2 = βh̄2 2
√

2ψ̇√
3H

,

y2 = βh̄2ψ2

3H2 , �m = ρm

3H2 . (22)

Using the new variables, the field equations (4), (5), (11),
(12) reduce to an algebraic-differential system of first-order.
We determine the stationary points of the new system and
investigate their stability. Every stationary point describes
an asymptotic solution for the cosmological field equations.

4.1 Interaction QA

For interaction model QA, the field equations reduce to the
equivalent system

dx1

dτ
= 1

4

(
6x1

(
x1(x1 + x2) − y2

1 − 1
)

+ y2

(
6x1 − √

6μ
))

,

(23)
dy1

dτ
= 1

2
y1

(
x1

(
−√

6λ + 3 x1 + 3x2

)
− 3y2

1 + 3y2 + 3
)

,

(24)
dx2

dτ
= 1

2

(
−2α

(
−x1 (x1 + x2 ) − y2

1 + y2 + 1
)

+ x1(3x2 − 2κ) (x1 + x2) + y2
1

(
2
√

6λ − 2κ − 3x2

)

+ y2

(√
6μ + 2κ + 3x2

)
− 3x2

)
, (25)
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dy2

dτ
= 1

4
y2

(
12x2

1 + 12 x1x2 − √
6μ x2 + 12

(
−y2

1 + y2 + 1
))

,

(26)

dμ

dτ
= 1

4

√
3

2
μ2 x2, (27)

with the constraint equation

�m = 1 − (x2
1 + y2

1 ) − (x1x2 − y2), (28)

where the new phase space variable μ is defined as μ =
−2

(
βh̄2ψ

)−1
. From the requirement that the dimensionless

energy densities of matter fluids must be non-negative, i.e.,
�m ≥ 0 and �d := (

x2
1 + y2

1

) + (x1x2 − y2) ≥ 0 we have
the physical part of the phase space is 0 ≤ (

x2
1 + y2

1

) +
(x1x2 − y2) ≤ 1. However, it is important to mention here,
that from expression (28) the phase space variables are not
bounded, but the set of initial conditions in which parameters
x2, y2 reach infinity are not physically acceptable (because
x2, y2 are proportional to β and β 	 1 from the model’s
construction). For this reason one can omit the analysis when
x2 or y2 tends to infinity.

In the new variables the effective equation of state param-
eter weff = −1 − 2

3
Ḣ
H2 is written as

weff (x1, x2, y1, y2) = x2
1 − y2

1 + x1x2 + y2. (29)

Note that at a stationary point the scale factor is expressed as

a (t) = a0t
2

3(1+weff ) , for weff �= −1 and a (t) = a0eH0t for
weff = −1. On the other hand, according to (17), we have

wψ = pψ

ρψ

=
(
2φ̇ψ̇ − ψ2

)

(
2φ̇ψ̇ + ψ2

) = x1x2 − y2

x1x2 + y2
. (30)

The deceleration parameter q = −1 − Ḣ
H2 is written as

q = 1

2
(3weff + 1) = 1

2

(
3x1(x1 + x2) − 3y2

1 + 3y2 + 1
)

. (31)

It is useful to define c2
d , the effective sound speed of dark

energy perturbations (the corresponding quantity for matter
is zero in the dust case) as

c2
d = wd − w′

d

3(1 + wd)
, (32)

where wd = pd
ρd

and prime denotes derivative with respect to
τ . In terms of phase-space variables we have

c2
d =

x1x2
2

(
12x1 − √

6μy2

)
+ x2y2

(
12x1 + √

6μy2

)
− 2

√
6x1y2

(
2λy2

1 + μy2
)

12x1x2(x1x2 + y2)

− αy2
(
x1(x1 + x2) + y2

1 − y2 − 1
)

3x2(x1x2 + y2)
+ κy2

(
x1(x1 + x2) + y2

1 − y2
)

3x2(x1x2 + y2)
. (33)

Before studying the general case for arbitrary values of
the coupling parameters {α, κ} in the following sections we
consider the special cases where κ = 0 or α = 0.

4.1.1 Interaction QA with κ = 0

For κ = 0, the dynamical system consisted by the dif-
ferential equations (23)–(27) admits the stationary points
A = A (x, y,μ; λ, α), x = (x1, x2) , y = (y1, y2) with coor-
dinates

A±
0 = (±1, 0, 0, 0, μ) , A1 =

(
x1,

1

x1
− x1, 0, 0, 0

)
,

A2 =
(

0,

√
2

3
λy2

1 , y1, y2
1 − 1, 0

)

,

A3 =
(

0, −2

3
α, 0, 0, 0

)
, A4 =

(
3

α
, 0, 0, −1 − 9

α2 ,
6
√

6α

9 + α2

)

.

While the family of points A±
0 constitutes a line, A1, A2

describe surfaces in the phase space. We continue with the
presentation of physical properties of the stationary points
and investigate asymptotic solutions’ stability properties. To
determine the stability behavior, we examine the nature of
eigenvalues corresponding to a perturbed matrix of the sys-
tem (23)–(27) for each point.

The family of points A±
0 describe asymptotic solutions

where only the kinetic parts of scalar field contribute to
the effective cosmological fluid, that is, �m

(
A±

0

) = 0 and
weff

(
A±

0

) = 1. Hence, the asymptotic solution for the

scale factor is a (t) = a0t
1
3 . The eigenvalues of the lin-

earized system around each stationary point are e1
(
A±

0

) =
6, e2

(
A±

0

) = 3 ± α, e3
(
A±

0

) = 1
2

(
6 ∓ √

6λ
)

, e4
(
A±

0

) = 0

and e5
(
A±

0

) = 0. Therefore, the family of points A+
0 is

unstable when α > −3 and λ <
√

6, otherwise it is saddle.
Also, the family of points A−

0 is unstable when α < 3 and
λ > −√

6, otherwise it is saddle.
The family of points A1 describe the same physical proper-

ties as that of A±
0 . The family of points A1 and A±

0 intersect at
points (±1, 0, 0, 0, 0). The eigenvalues of the linearized sys-
tem around the stationary point are e1 (A1) = 6, e2 (A1) =
3 + αx1, e3 (A1) = 1

2

(
6 − √

6λx1

)
, e4 (A1) = 0 and

e5 (A1) = 0. Looking from the nature of eigenvalues, the
family of points A1 is unstable when α x1 > −3 and
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Fig. 1 Qualitative evolution of
weff (a) (left figure) and �m (a)

(right figure) for the interacting
model QA with κ = 0. Solid
line (α = 5) and dashed line
(α = −5) are for the initial
conditions(
x0

1 , x0
2 , y0

1 , y0
2 , μ0

) =(
0,− 2

3 α, 0,−0.01.0.2
)
, while

the dotted line is for α = −5
with initial conditions(
x0

1 , x0
2 , y0

1 , y0
2 , μ0

) =
(0.5, 0, 0, 0.01, 0.2). The unique
attractor of the dynamical
system is point A2 which
describes the de Sitter universe

λ x1 <
√

6, otherwise it is saddle as one of the eigenval-
ues is always positive. Therefore, the asymptotic solutions at
A1 are not stable.

The family of points A2 describes de Sitter asymptotic
solution where the dynamical part of scalar field dominates
in the field equations, that is, �m (A2) = 0, weff (A2) =
−1 and a (t) = a0eH0t . The eigenvalues of the linearized
system are e1 (A2) = −3, e2 (A2) = −3, e3 (A2) = −3,
e4 (A2) = 0, e5 (A2) = 0. Therefore, we apply the center
manifold theorem (CMT) to analyze the stability of A2.

Point A3 describes a universe dominated by DM fluid

�m (A3) = 1 weff (A3) = 0 with scale factor a (t) = a0t
2
3 .

The eigenvalues of the linearized system are e1 (A3) = 3,
e2 (A3) = − 3

2 , e3 (A3) = − 3
2 , e4 (A3) = 3

2 , e5 (A3) = 0.
Therefore, the asymptotic solution is not stable and the point
is a saddle.

Finally, for point A4 we find �m (A4) = − 18
α2 < 0 and

so the point is not physically acceptable. Therefore it is not
necessary to investigate its stability.

Compared with the corresponding model of usual
quintessence theory [84], the present model does not con-
tain any accelerated scaling solution. However, the present
model exhibits new stationary points describing late time de
Sitter solution and matter-dominated solution.

In Fig. 1 we present the qualitative evolution of the physi-
cal parameters weff (a) and �m (a) for various sets of initial
conditions near to the matter dominated era. Note that we
have chosen initial conditions where the final attractor is the
de Sitter solution described by the point A2.

4.1.2 Interaction QA with α = 0

For arbitrary parameter κ and α = 0, the stationary points of
the dynamical system (23)–(27) are

Ā1 = (0, 0, 0, 0, μ) ,

Ā2 =
(

0,

√
6λy2

1 − κ

3
, y1, y

2
1 − 1, 0

)

,

Ā3 =
⎛

⎜
⎝

√
6

λ
,

(
λ2 − 12

)
κ − √

6λ
(
λ2 − 6

)

2λ
(√

6κ − 3λ
) ,

√√√
√ κ

(
9λ − 2

√
6κ

)

2
√

6κ2 − 30κλ + 9
√

6λ2
, 0, 0

⎞

⎟
⎠ ,

Ā(±)
4 =

⎛

⎝ − 3 ± √
9 − 2κ2

2κ
, 0, 0,−9 + κ2 ± 3

√
9 − 2κ2

2κ2 ,

−
2
√

6κ
(

9 ± √
9 − 2κ2

)

36 + κ2

⎞

⎠ .

The family of stationary points Ā1 describes a universe domi-
nated by dark matter fluid, that is,�m

(
Ā1

) = 1, weff
(
Ā1

) =
0 and a (t) = a0t

2
3 . The eigenvalues of the linearized sys-

tem are e1
(
Ā1

) = 3, e2
(
Ā1

) = − 3
2 , e3

(
Ā1

) = − 3
2 ,

e4
(
Ā1

) = 3
2 , e5

(
Ā1

) = 0 which means that the point is
a saddle point and the asymptotic solution is not stable.

Ā2 describes a family of stationary points of de Sitter
asymptotic solutions, with physical properties �m

(
Ā2

) =
0, weff

(
Ā2

) = −1 and a (t) = a0eH0t . The eigenvalues are
exactly that of A2, therefore we shall apply CMT.

For point Ā3, we find �m
(
Ā3

) = 2κ

2κ−√
6λ

, weff
(
Ā3

) =
1. Therefore, for the point to be real and physically accept-
able

{
y1

(
Ā3

) ≥ 0, 0 ≤ �m
(
Ā3

) ≤ 1
}
, we must have κ = 0

i.e. there is no interaction. Hence, we omit the study of its
stability.

Finally, for the point Ā(±)
4 , we obtain �m

(
Ā(±)

4

)
=

1− 9
κ2 ∓ 3

κ2

√
9 − 2κ2, weff

(
Ā(±)

4

)
= −1. However, the point

is not physically acceptable as there is no value of κ satisfying

the physical conditions
{

0 ≤ �m

(
Ā(±)

4

)
≤ 1, 9 − 2κ2 ≥ 0

}
.
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4.1.3 Interaction QA with arbitrary α and κ

In the general case where the coupling parameters α and κ

are arbitrary we find the stationary points

A′
1 =

(
0,−2α

3
, 0, 0, 0

)
,

A′
2 =

(

0,

√
6λy2

1 − κ

3
, y1, y

2
1 − 1, 0

)

,

A′
3 =

⎛

⎜
⎝

√
6

λ
,

(
λ2 − 6

) (
2α + √

6λ
)

− (
λ2 − 12

)
κ

2λ
(√

6 (α − κ) + 3λ
) ,

√√
√
√
√

κ
(

2
√

6 (α − κ) + 9λ
)

4
√

6 (α − κ)2 + 3λ
(

10 (α − κ) + 3
√

6λ
) , 0, 0

⎞

⎟
⎠ ,

A′(±)
4 =

(
3 ± K4

2 (α − κ)
, 0, 0,−9 + 2α2 − 3ακ + κ2 ± 3K4

2 (α − κ)2 ,

−2
√

6 ((κ − 2 α) (3 ± K4) + 6 κ)

(2 α − κ)2 + 36

)

.

where K4 = √
9 + 2κ (α − κ).

The stationary point A′
1 describes a matter dominated

solution with �m
(
A′

1

) = 1, weff
(
A′

1

) = 0 and asymptotic

solution a (t) = a0t
2
3 . The linearized system around the sta-

tionary point admits eigenvalues e1
(
A′

1

) = 3, e2
(
A′

1

) =
− 3

2 , e3
(
A′

1

) = − 3
2 , e4

(
A′

1

) = 3
2 , e5

(
A′

1

) = 0 from where
we infer that A′

1 is a saddle point.
The family of stationary points described by A′

2 have the
same physical properties and eigenvalues as that of family
of points A2 and Ā2. Hence, we shall apply the CMT to
investigate the stability of the points.

Point A
′
3 describes an asymptotic solution with�m

(
A′

3

) =
− 2κ√

6λ+2(α−κ)
and weff

(
A′

3

) = 1. We can easily find that

the asymptotic solution at the stationary point is physically
acceptable only when κ = 0, which belongs to a family of

points A1 for x1 =
√

6
λ

.

For a stationary point A′(±)
4 , we find that �m

(
A′(±)

4

)
=

κ2−aκ−3(3±K4)

(α−κ)2 , weff

(
A′(±)

4

)
= −1. However, this point is

not physically acceptable as there are no real values for κ and
α such that 0 ≤ �m ≤ 1. In the next subsection, we shall
proceed with the analysis of a non-hyperbolic equilibrium
point A

′
2.

4.1.4 CMT for A′
2

We use the Center Manifold Theorem to analyze the stability
of the stationary point A

′
2 of system (23)–(27) and we discuss

the specific cases κ = 0, or α = 0 which correspond to the
points A2 and Ā3 respectively.

Firstly, we assume (
√

6κ + 6(1 − 2y2
c )λ) �= 0, yc �=

0, y2
c �= 1. Then, evaluating the Jacobian matrix of system

(23)–(27) at A
′
2 we obtain

J (A
′
2) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

−3 0 0 0 − 1
2

√
3
2

(
y2

1 − 1
)

1
2 y1

(√
6λ

(
y2

1 − 1
) − κ

)
−3y2

1 0 3y1
2 0

− 1
6

(
κ − √

6λy2
1

) (
2α − 3κ + √

6λy2
1

)
−y1

(
−2α + κ + √

6λ
(
y2

1 − 2
)) −3 1

2

(
−2α + κ + √

6λy2
1

) √
3
2

(
y2

1 − 1
)

(
y2

1 − 1
) (√

6λy2
1 − κ

)
−6y1

(
y2

1 − 1
)

0 3
(
y2

1 − 1
) 1

12

(
y2

1 − 1
) (√

6κ − 6λy2
1

)

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

,

(34)

which can be reduced to its canonical Jordan Form

j (A
′
2) =

⎛

⎜⎜
⎜⎜
⎝

−3 1 0 0 0
0 −3 1 0 0
0 0 −3 0 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟⎟
⎟⎟
⎠

, (35)

defining a similarity matrix s which satisfies J (A
′
2) =

s j (A
′
2)s

−1. The eigenvalues of J (A
′
2) and j (A

′
2) are −3,−3,

−3, 0, 0. Defining new variables

(v1, v2, v3, u1, u2)

= s−1 ·
(
x1, y1 − yc, x2 + 1

3

(
κ − √

6λy2
c

)
, y2 − y2

c + 1, μ

)
,

(36)

which translates a fixed point on the curve A
′
2 labelled by the

value of yc to the origin, that is,

v1 = 1

216

(
12

(
3
√

6μ + y2
c

(
−

(
3
√

6μ + λ
(
λ

(
y2
c − 1

)

×
(

12x1 + √
6μ

(
3y2

c − 2
))

+ 6
√

6
(
y2 + y2

c

))) )

+ 12
√

6λy1

(
y2
c − 1

)
yc

)
+ κ

(
72 − 2μ

(
y2
c − 1

)

×
(√

6α + 3λy2
c

))
+ 3

√
6κ2μ

(
y2
c − 1

) )
+ x2, (37a)
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v2 =
x1

(
κ − √

6λ
(
y2
c − 1

)) (
2α − κ + √

6λy2
c

)2

6
(
κ(κ − 2α) + √

6λ
(
κ + 2α

(
y2
c − 1

)
− 2κy2

c

)
+ 6λ2 y2

c

(
y2
c − 1

))2

×
(

κ2(3κ − 2α) + 6λ2 y2
c

(
κ

(
3y2

c − 2
)

− 2α
(
y2
c − 1

))

+ √
6κλ

(
α

(
4y2

c − 2
)

+ κ
(

3 − 7y2
c

))

+ 6
√

6λ3 y2
c

(
y4
c − 3y2

c + 2
) )

+ yc(y1 − yc)
(

2α − κ + √
6λy2

c

)

+ 1

2

(
y2 − y2

c + 1
) (

−2α + κ − √
6λy2

c

)

−
μ

(
y2
c − 1

) (
2α − κ + √

6λy2
c

)

72
(
κ(κ − 2α) + √

6λ
(
κ + 2α

(
y2
c − 1

)
− 2κy2

c

)
+ 6λ2 y2

c

(
y2
c − 1

))2

×
(

3
√

6κ5 − 24κ2λ
(
y2
c − 1

)

×
(

2α2 + √
6αλ

(
5y2

c − 2
)

+ 3λ2 y2
c

(
3y2

c − 1
))

+ 12
√

6κλ2
(
y2
c − 1

)2 (
2α2 + 3λ2 y2

c

(
2 − 3y2

c

))

− 4κ4
(

2
√

6α + 9λ
(

2y2
c − 1

))

+ 144λ4 y2
c

(
y2
c − 1

)3 (√
6α + 3λy2

c

)
+ 2κ3

×
(

2
√

6α2 + 24αλ
(

3y2
c − 2

)
+ 3

√
6λ2

(
16y4

c − 16y2
c + 3

)) )
, (37b)

v3 = 1

24
κ

(
12x1 + √

6μ
(
y2
c − 1

)) (
−2α + κ − √

6λy2
c

)
, (37c)

u1 = 1

3
yc

(
yc

((
y2
c − 1

) (√
6λx1 + λμ

(
y2
c − 1

)
+ 3

)
+ 3y2

)

−6y1

(
y2
c − 1

))
, (37d)

u2 = 1

12
μy2

c

(
y2
c − 1

) (√
6κ + 6λ

(
1 − 2y2

c

))
, (37e)

we obtain evolution equations u′
1, u

′
2, v

′
1, v

′
2 and v′

3 from the
equations that results from taking derivative with respect to
τ of (37) and substituting x ′

1, y
′
1, x

′
2, y

′
2 and μ′ from equa-

tions (23)–(27) and taking inverse transformation of (37).
The linear part of the resulting system is written as

⎛

⎜⎜
⎜⎜
⎝

v′
1

v′
2

v′
3

u′
1

u′
2

⎞

⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎝

−3 1 0 0 0
0 −3 1 0 0
0 0 −3 0 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

v1

v2

v3

u1

u2

⎞

⎟⎟
⎟⎟
⎠

. (38)

Therefore, the center manifold is given by the graph

Wc
loc(0) =

{
(v1, v2, v3, u1, u2) ∈ R

5 : vi = hi (u1, u2),

hi (0, 0) = 0,

∂hi
∂u j

∣∣
∣∣
(u1,u2)=(0,0)

= 0, i = 1, 2, 3, j = 1, 2, ||(u1, u2)|| < δ

}
,

(39)

for some δ > 0.

The hi ’s satisfy a set of partial quasi-linear differential
equations than can be written symbolically by

− u′
2
∂h1

∂u2
(u1, u2) − u′

1
∂h1

∂u1
(u1, u2) + v′

1 = 0, (40a)

− u′
2
∂h2

∂u2
(u1, u2) − u′

1
∂h2

∂u1
(u1, u2) + v′

2, (40b)

− u′
2
∂h3

∂u2
(u1, u2) − u′

1
∂h3

∂u1
(u1, u2) + v′

3 = 0. (40c)

where the prime means derivative with respect to τ . These
equations are obtained by substituting the expressions u′

1, u
′
2,

v′
1, v

′
2 and v′

3 from the equations that results from tak-
ing derivative with respect to τ of (37) and substituting
x ′

1, y
′
1, x

′
2, y

′
2 and μ′ from equations (23)–(27) and tak-

ing inverse transformation of (37). Next, replacing v1 �→
h1(u1, u2), v2 �→ h2(u1, u2), v3 �→ h3(u1, u2) we obtain
the final equations for h1(u1, u2), h2(u1, u2), h3(u1, u2).
In general, we solve these equations by using Taylor expan-
sions in the independent variables u1, u2 that are of order
greater or equal than two. Therefore, we propose the expan-
sion in series

hi (u1, u2) =
N∑

n=2

n∑

k=0

a[i]
nku

n−k
1 uk2

+O(‖(u1, u2)
N+1‖), i = 1, 2, 3. (41)

Setting N = 2, we obtain the coefficients a[1]
20 =

−
(
y2
c−1

)
λ

2
√

6y2
c

, a[2]
20 = −√

6λy2
c−2α+κ

8y2
c

, a[3]
20 = 0, a[3]

21 =

− κ
(
−6λy2

c−2
√

6α+√
6κ

)

2y2
c (y2

c−1)
(√

6κ+6(1−2y2
c )λ

) , anda[1]
21 , a[2]

21 , a[1]
22 , a[2]

22 anda[3]
22

are complicated expressions of the parameters.
Finally, the dynamics on the center manifold up to third

order is given by a system of the form

u′
1 = α1u

2
2 + α2u1u2 + u2 + O(‖(u1, u2)

3‖), (42a)

u′
2 = −

u2
2

(√
6κ − 6y2

cλ
)

2y2
c

(
y2
c − 1

) (√
6κ + 6

(
1 − 2y2

c

)
λ
)

+ O(‖(u1, u2)
3‖), (42b)

where α1 and α2 are complicated functions of the parameters.
From Eq. (42b) the center is unstable to perturbations

along the u2-axis (saddle behavior). This is due to (42b)
which is a gradient like equation

u′
2 = −U ′(u2),

U (u2) =
u3

2

(√
6κ − 6y2

cλ
)

6y2
c

(
y2
c − 1

) (√
6κ + 6

(
1 − 2y2

c

)
λ
) , (43)
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Fig. 2 Phase plot of system (42) for some values of the parameters showing that A
′
2 is a saddle point

such that u2 = 0 is an inflection point of U (u2). That is, the
solution either depart or approach the origin along the u2-
axis, depending on the sign of the initial value of u2, u20 and

the sign of

(√
6κ−6y2

c λ
)

y2
c (y2

c−1)
(√

6κ+6(1−2y2
c )λ

) . The system also admits

an invariant line of stationary points which at second order
is approximated by α1u2 + α2u1 + 1 = 0 which behaves as
saddle.

We represent the phase plot of the system (42) for several
choices of parameters in Fig. 2 where the origin is a saddle
point.

Now, we study the particular cases (
√

6κ+6(1−2y2
c )λ) =

0, or yc = 0, or y2
c = 1.
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(a) Subcase λ = κ√
6(2y2

c−1)
, y2

c �= 1
2 . In this subcase the

similarity matrix is

s =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

− y2
c−1

2
√

6
0 0 0 1

72κ(2y2
c−1)

3
(α(2−4y2

c )+κ(y2
c−1))

κyc
(
y2
c−1

)

12
√

6(2y2
c−1)

1
2yc

0 yc
12(2y2

c−1)(κ+α(4y2
c−2)−κy2

c )
κyc

(
y2
c−1

)2

216(1−2y2
c )

4
(κ+α(4y2

c−2)−κy2
c )

2
(
y2
c−1

)(
2ακ+(yc−1)(yc+1)

(
3κ2+8y2

c (κ(α−κ)+18)
)+36

)

36
√

6(1−2y2
c )

2
κ

6y2
c−3

1 0 0

0 1 0 y2
c−1

6(2y2
c−1)(κ+α(4y2

c−2)−κy2
c )

(
y2
c−1

)(
α
(
4y2

c−2
)+κ

(
2y4

c−5y2
c+3

))

216(1−2y2
c )

4
(κ+α(4y2

c−2)−κy2
c )

2

1 0 0 0 0

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

, (44)

and the real Jordan form of the matrix is

j (A
′
2) =

⎛

⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 −3 1 0
0 0 0 −3 1
0 0 0 0 −3

⎞

⎟⎟⎟⎟
⎠

. (45)

Defining

(u1, u2, v1, v2, v3)

= s−1 ·
(
x1, y1 − yc, x2 + 1

3

(
κ − κy2

c

2y2
c − 1

)
,

y2 − y2
c + 1, μ

)
,

and using the CMT we obtain that the center manifold is
given by (39), where the hi satisfy (40).

Using the ansatz (41) with N = 2, we obtain the coeffi-
cients

a[1]
20 = − κ

(
y2
c−1

)2(−4α2+12ακ−9κ2+8y6
c
(
4α2−11ακ+7κ2−72

)+y4
c
(−48α2+136ακ−101κ2+720

)+y2
c
(
24α2−70ακ+54κ2−288

)+36
)

2592(2y2
c−1)

3 ,

a[2]
20 =

(
y2
c−1

)2(
144y4

c+(
κ2−144

)
y2
c+36

)(
κ+α

(
4y2

c−2
)−κy2

c
)

144(2y2
c−1)

, a[3]
20 =

0, a[1]
21 = 2ακ−κ2+y4

c
(
8ακ+3

(
κ2+48

))−2y2
c
(
4ακ+κ2+72

)+36

36
√

6(1−2y2
c )

2 , a[2]
21

= κ
(
α
(
20y4

c−22y2
c+6

)+κ
(−9y4

c+16y2
c−7

))

2
√

6
, a[3]

21 = 6
√

6κ
(
2y2

c

−1)3 (
κ + α

(
4y2

c − 2
) − κy2

c

)
, a[1]

22 = − κ−κy2
c

12y2
c−24y4

c
, a[2]

22 =
− 3

(
2y2

c−1
)(

κ+α
(
4y2

c−2
)−κy2

c
)

2y2
c

, a[3]
22 = 0.

Therefore, the dynamics on the center manifold is gov-
erned up to third order by

u′
1 =

√
6κu2

1

(
y2
c − 1

)

24(1 − 2y2
c )

, (46a)

u′
2 = −u2

1

(
y2
c − 1

)2
y2
c

(−ακ + 2
(
κ2 − 9

) + 2y2
c (κ(α − κ) + 18)

)

72
(
2y2

c − 1
)

− κu1u2
(
y2
c − 1

)
y2
c√

6
(
2y2

c − 1
) . (46b)

From Eq. (46a) the center is unstable to perturbations along
the u1-axis (saddle behavior). This is due to (46a) which is a
gradient like equation

u′
1 = −U ′(u1), U (u1) = −

√
6κu3

1

(
y2
c − 1

)

72(1 − 2y2
c )

, (47)

such that u1 = 0 is an inflection point of U (u1). That is,
the solution either depart or approach the origin along the
u1-axis, depending on the sign of the initial value of u1, u10

and the sign of
κ
(
y2
c−1

)

(1−2y2
c )

.

In Fig. 3 a phase plot of system (46) is presented for some
values of the parameters showing that A

′
2 is a saddle point.

(b) Subcase κ = 0, y2
c = 1

2 .

For yc =
√

2
2 the similarity matrix is

s =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

1
λ2

4α+√
6λ

+ λ√
6

0 1√
2
3 αλ+λ2

1
4
√

6
0

− 3λ

4
√

3α+6
√

2λ
0 1

2
√

2α+2
√

3λ
− λ

24
√

2
1√
2

0 1 0 −λ2+12
24

√
6

√
2
3λ

1 0 0 0 1
0 0 0 1 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

, (48)
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Fig. 3 Phase plot of system (46) for some values of the parameters showing that A
′
2 is a saddle point

and the real Jordan matrix is

j (A
′
2) =

⎛

⎜⎜⎜⎜
⎝

−3 0 0 0 0
0 −3 1 0 0
0 0 −3 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

. (49)

In this case we define

v1 = 1

24

(
−λμ + 2

√
6λx1 − 12

√
2y1 + 12y2 + 18

)
,

v2 = 1

144

(
−√

6
(
λ2 − 12

)
μ

−12λ
(
−2λx1 + 4

√
3y1 + 2

√
6y2 + √

6
))

+ x2,

v3 = α

(
λx1√

6
+ √

2y1 − y2 − 3

2

)

− 1

48
λ

(√
6(λμ + 18) − 36λx1 − 24

√
3y1 + 12

√
6y2

)
,

u1 = μ,

u2 = 1

24

(
λμ − 2

√
6λx1 + 12

√
2y1 + 12y2 − 6

)
.

On the other hand, for yc = −
√

2
2 the similarity matrix

changes to

s =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

1
λ2

4α+√
6λ

+ λ√
6

0 1√
2
3 αλ+λ2

1
4
√

6
0

3λ

4
√

3α+6
√

2λ
0 1

−2
√

2α−2
√

3λ

λ

24
√

2
− 1√

2

0 1 0 −λ2+12
24

√
6

√
2
3λ

1 0 0 0 1
0 0 0 1 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

, (51)

and the real Jordan matrix is (49). In this case we define

v1 = 1

24

(
−λμ + 2

√
6λx1 + 12

√
2y1 + 12y2 + 18

)
,

v2 = 1

144

(
−√

6
(
λ2 − 12

)
μ

−12λ
(
−2λx1 − 4

√
3y1 + 2

√
6y2 + √

6
))

+ x2,

v3 = −1

6
α

(
−√

6λx1 + 6
√

2y1 + 6y2 + 9
)

− 1

48
λ

(√
6(λμ + 18) − 36λx1 + 24

√
3y1 + 12

√
6y2

)
,

u1 = μ,

u2 = 1

24

(
λμ − 2

√
6λx1 − 12

√
2y1 + 12y2 − 6

)
.

The real Jordan matrix is the same as before. In both cases
the CMT gives the same result. That is, the center manifold
is given by (39), where the hi satisfy (40).

Using the ansatz (41) with N = 2, we obtain the

coefficients a[1]
20 = −λ2−12

2304 , a[2]
20 = λ

(
λ2+24

)

1152
√

6
, a[3]

20 =
(
λ2+12

)(
4α+√

6λ
)

4608 , a[1]
21 = − λ

16 , a[2]
21 = 24−5λ2

24
√

6
, a[3]

21 =
− 1

96λ
(

4α + 5
√

6λ
)

, a[1]
22 = 1

4 , a[2]
22 = λ

2
√

6
, a[3]

22 = 1
8(

−4α − √
6λ

)
.

Therefore, the dynamics on the center manifold is gov-
erned up to third order by

u′
1 = λu2

1

8
, (53a)

u′
2 = λu1u2

4
− u2

1

32
. (53b)
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Fig. 4 Phase plot of system (53) for some values of the parameters showing that A
′
2 is a saddle point

From Eq. (53a)which the center is unstable to perturbations
along the u1-axis (saddle behavior). This is due to (53a)
which is a gradient like equation

u′
1 = −U ′(u1), U (u1) = −λu3

1

24
, (54)

such that u1 = 0 is an inflection point of U (u1). That is,
the solution either depart or approach the origin along the
u1-axis, depending on the sign of the initial value of u1, u10

and the sign of λ.
In Fig. 4 a phase plot of system (53) is presented for some

values of the parameters showing that A
′
2 is a saddle point.

(c) Subcase yc = 0, κ �= 2α. In this subcase the similarity
matrix is

s =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 − 2
2ακ−κ2

1
2
√

6
0

0 0 0 0 1

1 0 0 − 2ακ−3κ2+36
36

√
6

0

0 2
κ−2α

4α−6κ
3(κ−2α)2 0 0

0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (55)

and the real Jordan matrix is

j (A
′
2) =

⎛

⎜⎜
⎜⎜
⎝

−3 1 0 0 0
0 −3 1 0 0
0 0 −3 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟
⎟⎟
⎠

. (56)

Defining

v1 = μ
(
2ακ − 3κ2 + 36

)

36
√

6
+ κ

3
+ x2,

v2 = 1

72

(
3κ

(
−√

6κμ + 12κx1 + 12y2 + 12
)

−2α
(
−√

6κμ + 12κx1 + 36y2 + 36
))

,

v3 = − 1

24
κ(2α − κ)

(
12x1 − √

6μ
)

, u1 = μ, u2 = y1,

and using the CMT we obtain that the center manifold is
given by (39), where the hi satisfy (40).

Using the ansatz (41) with N = 2, we obtain the

coefficients a[1]
20 = κ

(−4α2+12ακ−9κ2+36
)

2592 , a[2]
20 = 1

48 (2α −
κ), a[3]

20 = 0, a[1]
21 = 0, a[2]

21 = 0, a[3]
21 = 0, a[1]

22 =√
2
3λ, a[2]

22 = 1
2 (κ − 2α), a[3]

22 = 0. Therefore, the dynam-
ics on the center manifold is governed up to third order by

u′
1 = − κu2

1

4
√

6
, (58a)

u′
2 = 1

24
u1u2

(
−√

6κ − 6λ
)

. (58b)

From Eq. (58a) the center is unstable to perturbations along
the u1-axis (saddle behavior). This is due to (58a) which is a
gradient like equation

u′
1 = −U ′(u1), U (u1) = κu3

1

12
√

6
, (59)
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such that u1 = 0 is an inflection point of U (u1). That is,
the solution either depart or approach the origin along the
u1-axis, depending on the sign of the initial value of u1, u10

and the sign of κ .
In Fig. 5 a phase plot of system (58) is presented for some

values of the parameters showing that A
′
2 is a saddle point.

(d) Subcase yc = 0, κ = 2α.
In this case, the similarity matrix is

s =

⎛

⎜
⎜⎜⎜⎜
⎝

0 0 1 1
2
√

6
0

0 0 0 0 1

− κ
3

κ2

3 0 κ2−18
18

√
6

0

0 κ 0 0 0
0 0 0 1 0

⎞

⎟
⎟⎟⎟⎟
⎠

, (60)

and the real Jordan matrix is (49).
Defining

v1 =
√

6
(
κ2 − 18

)
μ − 108x2 + 36κy2

36κ
,

v2 = y2 + 1

κ
, v3 = x1 − μ

2
√

6
, u1 = μ, u2 = y1

and using the CMT we obtain that the center manifold is
given by (39), where the hi satisfy (40).

Using the ansatz (41) with N = 2, we obtain the coeffi-
cients a[1]

20 = 1
216

(
κ2 − 18

)
, a[2]

20 = − 1
24κ

, a[3]
20 = 0, a[1]

21 =
0, a[2]

21 = 0, a[3]
21 = 0, a[1]

22 = 1 −
√

6λ
κ

, a[2]
22 = 1

κ
, a[3]

22 = 0.
Hence, we obtain the system governing the dynamics on the
center manifold is (58). Then, it follows the same result as
before. That is, A

′
2 is a saddle point.

(e) Subcase y2
c = 1, 2α − κ + √

6λ �= 0. In this subcase the
similarity matrix is

s =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

0 0 2

κ
(
−2α+κ−√

6λ
) 0 0

0 ε

2α−κ+√
6λ

ε
(
κ−√

6λ
)(

−2α+3κ−√
6λ

)

3κ
(

2α−κ+√
6λ

)2 0 ε
2

1 0 0 0
√

2
3λ

0 0 0 0 1
0 0 0 1 0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

,

(62)

where ε = ±1 is the value of yc and the real Jordan matrix
is the same as (56).

Defining

v1 = 1

3

(
κ + 3x2 − √

6λ(y2 + 1)
)

,

v2 = 1

6

(
6λ2x1 − 2α

(
κx1 − √

6λx1 − 6y1ε + 3y2 + 6
)

−√
6λ(4κx1 − 6y1ε + 3y2 + 6) + 3κ(κx1 − 2y1ε + y2 + 2)

)
,

v3 = 1

2
κx1

(
−2α + κ − √

6λ
)

, u1 = μ, u2 = y2,

and using the CMT we obtain that the center manifold is
given by (39), where the hi satisfy (40).

Using the ansatz (41) with N = 2, we obtain the
coefficients a[1]

20 = 0, a[2]
20 = 0, a[3]

20 = 0, a[1]
21 =

1
216

(
2
√

6ακ − 3
√

6κ2 + 6κλ + 12
√

6
(
λ2 + 3

))
, a[2]

21 =
1

72κ
(

2
√

6α − 3
√

6κ + 18λ
)

, a[3]
21 = 1

24κ
(

2
√

6α − √
6κ

+6λ) , a[1]
22 = 0, a[2]

22 = 1
8

(
−2α + κ − √

6λ
)

, a[3]
22 = 0.

Therefore, the dynamics on the center manifold is governed
up to third order by

u′
1 = − 1

24
u2

1

(√
6κ − 6λ

)
, (64a)

u′
2 = 1

12
u1u2

(√
6κ − 6λ

)
. (64b)

From Eq. (64a) the center is unstable to perturbations
along the u1-axis. This is due to (64a) which is a gradient
like equation (saddle behavior)

u′
1 = −U ′(u1), U (u1) = 1

72
u2

1

(√
6κ − 6λ

)
, (65)

such that u1 = 0 is an inflection point of U (u1). That is,
the solution either depart or approach the origin along the
u1-axis, depending on the sign of the initial value of u1, u10

and the sign of
√

6κ − 6λ.
In Fig. 6 a phase plot of system (58) is presented for some

values of the parameters showing that A
′
2 is a saddle point.

(f ) Subcase y2
c = 1, 2α − κ + √

6λ = 0, α �= 0. In this
subcase the similarity matrix is

s =

⎛

⎜
⎜⎜⎜⎜⎜
⎜
⎝

0 0 1 0 0
3ε

2
(
κ−√

6λ
) − κε

2 0 0 ε
2

0 1
3κ

(
κ − √

6λ
)

0 0
√

2
3λ

0 0 0 0 1
0 0 0 1 0

⎞

⎟
⎟⎟⎟⎟⎟
⎟
⎠

, (66)

where ε = ±1 is the value of yc and the real Jordan matrix
is the same as (49).

Defining

v1 = 1

3

(
3x2 − κ(−2y1ε + y2 + 1) + √

6λ(1 − 2y1ε)
)

,

v2 = κ + 3x2 − √
6λ(y2 + 1)

κ
(
κ − √

6λ
) , v3 = x1, u1 = μ, u2 = y2,
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Fig. 5 Phase plot of system (58) for some values of the parameters showing that A
′
2 is a saddle point

Fig. 6 Phase plot of system (64) for some values of the parameters showing that A
′
2 is a saddle point

and using the CMT we obtain that the center manifold is
given by (39), where the hi satisfy (40).

Using the ansatz (41) with N = 2, we obtain the nonzero
coefficients a[1]

20 = 0, a[2]
20 = 0, a[3]

20 = 0, a[1]
21 = 1√

6
−

1
108κ

(√
6κ − 6λ

)
, a[2]

21 = −κ2+6λ2+18
6
√

6κ2−36κλ
, a[3]

21 = − 1
2
√

6
, a[1]

22

= 1
12

(√
6λ − κ

)
, a[2]

22 = 0, a[3]
22 = 0. Therefore, the

dynamics on the center manifold is governed up to third order
by (64) and we have the same result as before that A

′
2 is a

saddle point.
(g) Subcase y2

c = 1, κ = √
6λ, α = 0.

In this subcase the similarity matrix is

s =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 −
√

2
3 ε

λ
0 0

0 1 0 0 ε
2

1 0 0 0
√

2
3λ

0 0 0 0 1
0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (68)

where ε = ±1 is the value of yc and the real Jordan matrix
is the same as (49).
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Fig. 7 Phase plot of system (70) for some values of the parameters showing that A
′
2 is a saddle point

Defining

v1 = x2 −
√

2

3
λy2, v2 = y1 − 1

2
(y2 + 2)ε,

v3 = −
√

3

2
λx1ε, u1 = μ, u2 = y2,

and using the CMT we obtain that the center manifold is
given by (39), where the hi satisfy (40).

Using the ansatz (41) with N = 3, we obtain the coef-
ficients a[1]

20 = 0, a[2]
20 = 0, a[3]

20 = 0, a[1]
21 = 1√

6
, a[2]

21 =
λε
12 , a[3]

21 = λε
4 , a[1]

22 = 0, a[2]
22 = − ε

8 , a[1]
22 = 0, a[1]

30 =
0, a[2]

30 = 0, a[3]
30 = 0, a[1]

31 = 0, a[2]
31 = 0, a[3]

31 = 0, a[1]
32 =

5λ2

6
√

6
, a[2]

32 = λε
24 , a[3]

32 = 0, a[1]
33 = 0, a[2]

33 = ε3

16 , a[3]
33 = 0.

Therefore, the dynamics on the center manifold is gov-
erned up to fourth order by

u′
1 = 1

4
λu2

1u2, u′
2 = −λu1u

2
2. (70)

In Fig. 7 a phase plot of system (70) is presented for some
values of the parameters showing that A

′
2 is a saddle point.

5 Cosmological linear perturbations

We continue our analysis by investigating the modified scalar
field Lagrangian’s effects in the cosmological linear pertur-
bation theory. For this purpose, we consider the simple lin-
ear perturbation theory in the Newtonian gauge, where the

spacetime line element is described as [85]

ds2 = a2 (η)
(
− (1 + 2�(η, x, y, z)) dη2

+ (1 − 2�(η, x, y, z))
(
dx2 + dy2 + dz2

))
,

(71)

where η (= ∫
a−1dt) is the conformal time .

Before presenting the perturbed equations, let us define
the perturbed physical quantities of the usual scalar field φ,
the scalar field ψ due to the effect of GUP, the matter-energy
density, the DE density, the dark energy pressure as follows:

φ + δφ, ψ + δψ, ρm + δρm, ρd + δρd , pd + δpd .

(72)

We note here that φ,ψ, ρm, ρd , pd denote the corresponding
background quantities.

For the line element (71), the perturbed terms of the Ein-
stein tensor are [85]

δG0
0 = − 2

a2 ∇2� + 6

a
H (

�̇ + aH�
)
, (73)

δG0
i = − 2

a2 ∇i
(
�̇ + aH�

)
, (74)

δGi
j = 2�

(
2

a
Ḣ + 3H2

)
+ 2

a2

(
�̈ + 3aH�̇

)
, (75)

where now dot means the derivative with respect to the vari-
able η, and H = ȧ

a2 is the Hubble parameter in the new
frame.

We assume the comoving observer uμ = ( 1−�
a , δui

)
such

that the energy momentum tensor for the dark matter to have
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nonzero perturbed components [85]

δT (m)0
0 = −ρmδm, δT i

0 = aρmδui , (76)

where δm = δρm/ρm . Similarly for the scalar field it follows

δT (d)0
0 = − 1

a2

(
φ̇ ˙(δφ) − φ̇2�

)
− V,φδφ

−2βh̄2

a2

( ˙(δφ)ψ̇ − 2φ̇ψ̇�
)

−2βh̄2

a2 φ̇ ˙(δψ) + 2βh̄2ψδψ, (77)

δT (d)i
i = 1

a2

(
φ̇ ˙(δφ) − φ̇2�

)
− V,φδφ

+2βh̄2

a2

( ˙(δφ)ψ̇ − 2φ̇ψ̇�
)

+2βh̄2

a2 φ̇ ˙(δψ) + 2βh̄2ψδψ, (78)

δT (d)0
i = − φ̇

a2

(
δφ + 4βh̄2δψ

)

,i
, (79)

where we have replaced φ → φ + δφ and ψ → ψ + δψ .
However, δφ and δψ are not independent, they are related
with the constraint condition (20). At this point, someone
could omit the terms βh̄2δφ , βh̄2δψ , etc., because they are
small. However, it is important to remark that in terms of
βh̄2, the related dynamical system is a singular perturbation
system, and as it has been shown before in [33] that the
singular perturbation term can be relatively large such that it
can drive the dynamics in the background space. That is why
we found the existence of de Sitter asymptotic universe for
the background space in the previous section.

We now proceed with our analysis by considering the
interacting model of previous section with κ = 0, that is
QA = α√

6a

(
φ̇δm + ρmδφ̇

)
. Therefore, the perturbative equa-

tions for the matter components are

δ̇m − 3�̇ + a(δui ),i − α√
6

(
�φ̇ + δφ̇

) = 0, (80)

where we have replaced Q = Q0 + δQ, in which Q0 is the
unperturbed term and δQ is the linear perturbation term.

For the scalar field it follows

1

a2

( ¨(δφ) − ∇2 (δφ) − 4�̇φ̇
) + 2

a
Hδφ̇ − 2�ψ − δψ = 0,

(81)
2βh̄2

a2

((
δψ̈

) − ∇2 (δψ) − ψ̇�̇ + 2aH ˙(δψ) + 2aHψ̇�
)

+ (
δψ + V,φφδφ

) + 2
(
ψ + V,φ

)
� + 2α√

6
�ρm

+ α√
6
ρmδm = 0 , (82)

where we have omitted the presentation of the equations for
the velocity divergence.

From Eqs. (81) and (82) it is clear that for βh̄2 = 0,
the equations for quintessence are recovered [49]. How-
ever, from Eq. (82), we observe that it is singular in terms
of βh̄2, which means that the singular perturbative term((

δψ̈
) − ∇2 (δψ) + 2

aHψ̇� − 4�̇ψ̇
)

can be significantly
large such that it can dominate and drive the dynamics.

We continue by define the new independent variable to be
τ = ln a, that is 1

a
d
dη

= H d
d ln a . Hence, by writing in Fourier

form and setting δui = 0, for the exponential potential, the
perturbative equations (80)–(82) are written as follows

0 = δ′
m − 3�′ − α√

6

(
δφ′ + 2

√
6x1�

)
, (83)

0 = δφ′′ +
(H′

H + 4

)
δφ′

−4
√

6x1�
′ + k2

a2H2 δφ − δψ + 3μy2�

H2 , (84)

0 = 2βh̄2
(

δψ ′′ +
(H′

H + 4

)
δψ ′ + k2

a2H2 δψ

)

+δψ + 3μy2�

H2 + 3y2
1λ (λδφ − 2�)

+2
√

6x2
(
� − �′) + 3√

6
α (δm + 2�) , (85)

where a prime means derivative with respect to τ = ln a.

Recalling

H′

H = −3

2
(1 + weff), (86)

where weff is given by (30), one could write,

H′

H + 4 = 1

2

(
5 − 3x1(x1 + x2) + 3y2

1 − 3y2

)
. (87)

Note that the above equations can be simplified by con-
sidering the Poisson equation, which in sub-horizon scales
(k/a � H) becomes [86]:

− k2

a2H2 � = 3

2

(
�mδm + (1 + 3c2

d)�dδd

)
, (88)

where c2
d is the effective sound speed of DE perturbations (the

corresponding quantity for matter is zero in the dust case),

c2
d = wd − w′

d

3(1 + wd)
, (89)

�d = (x2
1 + y2

1 ) + (x1x2 − y2), (90)

�m = 1 − (x2
1 + y2

1 ) − (x1x2 − y2), (91)

�dδd ≡ −�dδT
(d)0

0 /ρd = −δT (d)0
0

3H2 , (92)
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where we have used δT (d)0
0 = −ρdδd with δT (d)0

0 given by
(77). That is,

�dδd = 1

3H2a2

(
φ̇ ˙(δφ) − φ̇2�

)

+ V,φδφ

3H2 + 2βh̄2

3H2a2

( ˙(δφ)ψ̇ − 2φ̇ψ̇�
)

+ 2βh̄2

3H2a2 φ̇ ˙(δψ) − 2βh̄2 ψδψ

3H2 . (93)

Using ˙(δφ) = aHδφ′, φ̇ = aHφ′, ˙(δψ) = aHδψ ′, ψ̇ =
aHψ ′, where the dot denotes derivative with respect to
the conformal time η, and φ′(τ ) = √

6x1, V (φ) =
3y2

1H2, ψ ′(τ ) =
√

3
2 x2

2βh̄2 , ψ = − 3
2H2μy2, we obtain

�dδd =
(
φ′δφ′ − φ′2�

)
+ 2βh̄2

3

(
δφ′ψ ′ − 2φ′ψ ′�

)

+ 2βh̄2

3
φ′δψ ′ + V,φδφ

3H2 − 2βh̄2 ψδψ

3H2

=
(
φ′δφ′ − φ′2�

)
+ 2βh̄2

3

(
δφ′ψ ′ − 2φ′ψ ′�

)

+ 2βh̄2

3
φ′δψ ′ − λ

V δφ

3H2 − 2βh̄2 ψδψ

3H2

= −2�x2
1 (4βh̄2 + 3) + 2

√
2

3
βx1h̄

2δψ ′

+ (6x1 + x2)δφ
′

√
6

− λy2
1δφ + βμy2h̄

2δψ. (94)

The effective sound speed of the dark energy perturbations
c2
d for κ = 0 can be expressed as

c2
d =

x1x2
2

(
12x1 − √

6μy2

)
+ x2 y2

(
12x1 + √

6μy2

)
− 2

√
6x1 y2

(
2λy2

1 + μy2
)

12x1x2(x1x2 + y2)

− αy2
(
x1(x1 + x2) + y2

1 − y2 − 1
)

3x2(x1x2 + y2)
. (95)

In what follows, we are going to explore how scalar pertur-
bations behave in the matter dominated solutions obtained
from the background analysis.

5.1 Matter era

Consider now that we are near the stationary point A3, then
from the linear perturbation terms of the Einstein field equa-
tions and (83)–(85) it follows

δ′′
m + 7

2
δ′
m + α√

6

(
2δφ′ − δψ

) = 0, (96)

δφ′′ +
(H′

H + 4

)
δφ′ − δψ = 0 , (97)

2βh̄2H2
(

δ′′
ψ +

(H′

H + 4

)
δψ ′ + 33

2
δψ

)
+ δψ

+ 2α

3
√

6

(
6δm + 5δ′

m − 6ζ δφ′) = 0, (98)

in which δψ = H2δψ , H2 (τ ) = H2
0e

−3τ and for simplicity,
we have assumed k = 0. The latter system is a singular
perturbation system that possesses a slow invariant manifold.
Therefore, we continue our analysis by studying the evolution
in the slow-fast manifolds [87,88].

Now in the fast manifold we do the change of independent
variable τ = 2βh̄2s, in Eq. (98) the dominated terms are(

∂2δψ

∂s2 − 3
2

∂δψ

∂s

)
� 0, which provides δψ (a) = δ0

ψ + δ1
ψe

3
2 s ,

recall that ln a = 2βh̄2s and we assume that δ1
ψ is large

enough. Therefore, in the fast manifold from (96), (97) we
find

∂2δφ

∂s2 − 3

2

∂δφ

∂s
− δ1

ψe
3
2 s � 0, (99)

and

∂2δm

∂s2 − α√
6

(
δ̄1
ψe

3
2 s

)
= 0. (100)

Therefore,

δφ (s) = 2

9
e

3
2 s

(
(3s − 2) δ1

ψ + δφ1

)
+ δφ2, (101)

δm (s) = 4

9

α√
6

(
δ̄1
ψe

3
2 s

)
+ sδ0

m + δ0
m, (102)

from where we observe that a growing mode exists in the
fast manifold because of the higher-order derivative terms of
the GUP. Hence, we see that the GUP component’s presence
enhances scalar perturbations’ growth compared to the usual
quintessence case.

On the other hand, in the slow manifold where 2βh̄2 → 0,
we find the system

δ′′
m + α

9

(
6αδm + 5αδ′

m − √
6

(
α2 − 3

)
δφ′) + 7

2
δm = 0,

(103)

δφ′′ + α

9

(√
6

(
6δm + 5δ′

m

) − 6αδφ′) + 5

2
δφ′ = 0.

(104)

We replace δm (τ ) = δ0
me

Aτ and δφ (τ) = δφ0eAτ and the
values of the exponent A depend of the coupling parameter α,
as they are presented in Fig. 8. The behavior of A concerning
coupling parameter α exhibits two interesting results. First,
the evolution of perturbations is independent of the sign of α.
Second, unlike the usual quintessence model, there is a decay
of scalar perturbations (i.e., A < 0) in the present model
for the uncoupled scenario. However, scalar perturbations
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Fig. 8 The dependency of the
exponents of the linear system
(103), (104) with the coupling
parameter α is displayed in the
plots

Fig. 9 The evolution of matter density perturbation for α = 0 (solid
curve), α = 1 (dotted-dashed curve) and α = 3 (dashed curve)

either decay or grow or describe an oscillatory solution for
the coupling case. It is worth mentioning that in the case
where scalar perturbations decay, the decay rate is slower
compared to the uncoupled case. From Fig. 9, it is interesting
to see that while for α = 0, 1 there is a decay of scalar
perturbations, however, for α = 3 there is a growth of scalar
perturbations. On assuming a negligible oscillating behavior
of δφ, the results reduce to that of [49]. However, in general,
such an assumption cannot be applied as δφ may have non-
oscillating terms since it is a singular perturbation system.

We have presented a qualitative analysis for the evolu-
tion of the perturbations in the slow-fast manifolds. From
the above results, it is clear that the modification of the scalar
field Action Integral by the GUP indeed modifies the evolu-
tion at the perturbation level.

6 Conclusions

The Heisenberg Uncertainty Principle needs to be modified
whenever we consider gravitational interaction. The GUP,
which emerges from one such modification, has given rise to
a host of exciting results. For instance, the quantum effects
due to GUP modifies Hawking temperature and the Beken-
stein entropy. Consequently, we get a modified Bekenstein

system that critically affects Black hole evaporation. Simi-
larly, in cosmology, the GUP is also very effective in explain-
ing various issues related to the universe’s evolution. The
cosmological background dynamics of the GUP modified
quintessence scalar field analyzed in [34] provides engaging
scenarios which are absent in the usual quintessence scalar
field model. These exciting results motivate us to extend the
work of [34] to the GUP modified interacting quintessence
scenario at the background and perturbation levels.

More elaborately, here, we investigated a very general-
ized cosmological scenario of recent interest. We consider a
quintessence scalar field cosmological model in a spatially
flat FLRW background space in which the Lagrangian of
the scalar field has been modified according to the quadratic
GUP. Besides, we assumed that the scalar field is coupled
to the dark matter component of the cosmological fluid. We
considered three models already proposed in the literature
for the interacting functions between the two fluid sources.
For each cosmological model, we investigated the evolution
of the global dynamics and studied the asymptotic behaviour.

First, we analyze the interacting DE model’s dynamics
at the background level using the dynamical analysis tools.
Indeed, we found that the models’ cosmological evolution
is different in the presence of the minimum length or its
absence. One of the present model’s interesting features
compared to the corresponding interacting model of usual
quintessence is that it exhibits matter-dominated and de Sitter
solutions. While the former is crucial to explain the structure
formation, the latter describes the late time acceleration at
the background level. It is worth mentioning that these two
solutions are due to the GUP modification and are indepen-
dent of the choice of potential or coupling functions. Unlike
the usual quintessence theory, the GUP modified interacting
model cannot provide a solution that alleviates the coinci-
dence problem.

To better understand background dynamics, we explored
the model’s behavior at the linear perturbation level. More
precisely, we focused on the scalar perturbations. We derived
the dynamical equations for linear cosmological perturba-
tion, where we found that the resulting linear equations form
a singular perturbation system. Therefore, in contrast to the
usual quintessence, we can explicitly write the perturbed
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equations’ solution in the fast and slow manifolds. In the
fast manifold, the GUP components enhance the scalar per-
turbations’ growth due to the higher-order derivative terms
of the GUP. However, in the slow manifold, the scalar pertur-
bations either decay or grow or describe an oscillatory solu-
tion. Consequently, in the presence of the minimum length,
the perturbation equations are also affected. It means that the
present model differs from the usual quintessence scalar field
theory.

In Ref. [89], the possibility to solve the cosmological con-
stant problem with the introduction of the minimum length
and specifically with the quadratic GUP has been investi-
gated. However, the predicted value of the cosmological con-
stant has been found to be � ∼ 1

β2 which cannot solve the
smallness problem for the cosmological constant. A simi-
lar result was found recently in [90] by introducing a more
general expression for the GUP where the authors found that
� ∼ 1

β4 . On the other hand, quintessence has been introduced
as a theoretical model to introduce a time-varying effects of
the DE fluid. However, for the simple exponential poten-
tial for the quintessence model the de Sitter universe is not
recovered [2]. Thus, this is not the case where the minimum
length is introduced to modify the scalar field Lagrangian.
As we investigated in this study, the presence of the mini-
mum length modifies the field equations in such a way so
that the quintessence may reach the limit of the cosmological
constant. This is an interesting mechanism in order the field
equation to reach the de Sitter limit. The de Sitter expan-
sion era can solve the “flatness”, “horizon” and monopole
problems [91,92] as it is explained by the support the cos-
mic “no-hair” conjecture [93,94]. Furthermore, because the
deformation parameter β is found to be multiplied always
with the derivatives of the scalar field, the new degrees of
freedom can solve the smallness problem of the cosmologi-
cal constant. For instance, considering the de Sitter point A2

of the interaction model QA, it follows
√

2

3
λy2

1 = βh̄2 2
√

2ψ̇√
3H0

,
√

3y1 =
√
V

3H0
,

y2
1 − 1 = βh̄2ψ2

3H2
0

with H0 =
√

2

3
�.

Hence, it is clear that � does not depend explicitly on β.

However, if we assume λ = 0 and y1 = 0, which means that
the initial scalar field model is the stiff fluid, from the latter
expressions, it follows � = −βh̄2ψ2

2 . Hence, either from
a simple quintessence model which does not provide any
inflationary era, the modification of the Lagrangian function
by the GUP provides an inflationary epoch driven by the
higher-order derivatives of the scalar field.

This work contributes to the study of the existence of the
minimum length in cosmological models. It would be inter-
esting to investigate the constraint of the model concerning

the upcoming precise cosmological observations in future
works.
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