

Kaonic-Atom X-ray Spectroscopy with Superconducting Microcalorimeters

T. Hashimoto¹, M. Bazzi², D.A. Bennett³, C. Berucci⁴, D. Bosnar⁵, C. Curceanu², W.B. Doriese³, J.W. Fowler³, H. Fujioka⁶, C. Guaraldo², F. Parnefjord Gustafsson⁷, R.S. Hayano⁸, J.P. Hays-Wehle³, G.C. Hilton³, T. Hiraiwa⁹, M. Iio¹⁰, M. Iliescu², S. Ishimoto¹⁰, K. Itahashi¹, M. Iwasaki^{1,12}, Y. Ma¹, H. Noumi⁹, G.C. O'Neil³, H. Ohnishi¹, S. Okada¹, H. Outa¹, K. Piscicchia², C.D. Reintsema³, Y. Sada⁹, F. Sakuma¹, M. Sato¹, D.R. Schmidt³, A. Scordo², M. Sekimoto¹⁰, H. Shi², D. Sirghi², F. Sirghi², K. Suzuki⁴, D.S. Swetz³, K. Tanida¹¹, H. Tatsuno^{3,10}, M. Tokuda¹², J. Uhlig⁷, J.N. Ullom^{3,13}, S. Yamada¹⁴, T. Yamazaki⁸, and J. Zmeskal⁴

¹ RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan

² Laboratori Nazionali di Frascati dell' INFN, Frascati, RM, I-00044, Italy

³ National Institute of Standards and Technology (NIST), Boulder, CO, 80303, USA

⁴ Stefan-Meyer-Institut für subatomare Physik, Vienna, A-1090, Austria

⁵ Department of Physics, University of Zagreb, Zagreb, HR-10000, Croatia

⁶ Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

⁷ Department of Chemical Physics, Lund University, Lund, 221 00, Sweden

⁸ Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan

⁹ Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan

¹⁰ High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan

¹¹ Japan Atomic Energy Agency (JAEA), Tokai, 319-1184, Japan

¹² Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan

¹³ Department of Physics, University of Colorado at Boulder, Boulder, CO, 80309-0390, USA

¹⁴ Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan

E-mail: tadashi.hashimoto@riken.jp

(Received December 16, 2015)

We will measure kaonic helium x-rays using transition-edge-sensor microcalorimeters, TES, in the J-PARC hadron experimental facility. To demonstrate the feasibility of the experiment, we performed a measurement of pionic carbon x-rays at PSI, where an excellent FWHM energy resolution of 7 eV at 6.4 keV was achieved. We also evaluated the expected TES performance in the kaon beam at J-PARC. The simulation results show that the TES spectrometer would work with a good energy resolution, and clear peaks of kaonic helium x-rays would be observed on a reasonably suppressed background.

KEYWORDS: $\bar{K}N$ interaction, kaonic atom, x-ray spectroscopy

1. Introduction

X-ray spectroscopies of hadronic atoms (e.g., π^- , K^- , \bar{p} , Σ^- , Ξ^- atoms) provide unique information on the hadron-nucleon/nucleus interaction in the low-energy limits via their energy levels perturbed by the strong interaction [1]. The global tendency of available kaonic-atom data ranging from helium to uranium is well explained by the attractive and absorptive $\bar{K}N$ interaction. However, the real part strength of the potential differs widely among potential models. For example, a global fit with a phenomenological density-dependent potential yields $Re(V_0) \sim -180$ MeV [1], while a chirally mo-