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In Feynman’s parton picture, the proton spin can be understood as sum of
the contributions from the spin and orbital angular momentum of the quark and
gluon partons. However, in gauge theories, there is no local gauge-invariant notion
of the spin or orbital angular momentum of the gauge particles. It is shown that
in the infinite momentum frame of the proton, the gluons can be equivalent to free
radiation, which is analogous to the Weizsacker-Williams approximation in electro-
dynamics, and therefore one can talk about gluon helicity and longitudinal orbital
angular momentum. We will justify the physical meaning of the Jaffe-Manohar sum
rule for the longitudinal proton spin which uses the free-field expression of the QCD
angular momentum operator in the light-cone gauge. Furthermore, it is discovered
that each term in the Jaffe-Manohar sum rule can be related to the matrix element
of a gauge-invariant, but frame-dependent operator through a factorization formula
in large-momentum effective field theory. This provides a new approach for the

nonperturbative calculation of the proton spin content in lattice QCD, and can be



applied to the other parton observables as well. We present all the matching coeffi-
cients for the proton spin sum rule and non-singlet quark distributions at one-loop
order in perturbation theory. These results will be useful for a first direct lattice
calculation of the corresponding parton properties, especially the gluon helicity and

parton orbital angular momentum.
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Chapter 1

Introduction

Fifty years ago, quarks and color symmetry were introduced to study the
hadron structure and strong interaction. Later on, quantum chromodynamics (QCD),
an SU(3) gauge theory, was established as the fundamental theory that describes the
interactions between quarks and the strong force mediator—gluons. The quarks bind
together to form baryons and mesons, and asymptotic freedom of QCD makes it im-
possible to separate them as free particles. At the energy scale of Aqcp ~ 200 MeV
for baryons and mesons, the coupling «y is strong and thus the physical properties
of the proton are governed by nonpeturbative effects. For example, the proton is
understood to be made of two up and one down quarks, but its mass (~ 1 GeV) is
way larger than the sum of the (current) masses of the three (~ 10 MeV), which
indicates that the interaction accounts for the most contribution. Due to this rea-
son, it remains a challenging task in theoretical physics to quantitate the hadron

structure in terms of the quark and gluon degrees of freedom.

1.1 The Proton Spin Problem

The proton has a spin of 1/2 when at rest. For a moving proton, the projec-
tion of spin along the direction of its motion—the helicity—is conserved and has

quantized values of £1/2. In 1974, Ellis and Jaffe [1] suggested that the polarized



proton does not contain any polarized strange quarks, and based only on SU(3) fla-
vor symmetry they could predict the total quark spin contribution to be about 60%
from hyperon §-decay [2]. In a quark model it is reasonable to attribute the proton
spin to the spin and orbital motions of the quarks, and the Ellis-Jaffe prediction
was once a “folklore” in particle physics [2].

High-energy scattering provides another window to look at the proton. In
this case, the proton is moving at almost the speed of light, and the quarks can
be approximated as a beam of free partons that were introduced by Feynman [3].
In 1987, the European Muon Collaboration (EMC) at CERN measured the quark
spin from polarized deep-inelastic (DIS) muon scattering with a fixed proton target,
and discovered that it was consistent with zero [4, 5], which sharply contradicted
the Ellis-Jaffe prediction and thus generated the famous “proton spin crisis”, or,
proton spin problem. Ever since that, an enormous amount of experimental efforts
have been dedicated to measure the separate contributions of different quark flavors
as well as the gluon helicity. These include the spin programs at SLAC, CERN
(SMC and COMPASS), DESY (HERMES), JLab and RHIC (STAR, PHENIX, and
BRAHMS) [6]. The electron-ion collider (EIC), which will become the next QCD

frontier, will give more precise answer to the spin structure of the proton [7].

1.2 Spin Structure Functions and Parton Distributions

The quark and gluon spin contributions can be understood from polarized

inclusive and semi-inclusive DIS and proton-proton scattering experiments. The



former measures a spin-dependent structure function g;(x,Q?), while the latter is
directly related to the polarized parton distribution functions for different quark

flavors and the gluon.

1.2.1 Inclusive and Semi-inclusive Deep Inelastic Scattering

In a fixed-target lepton-proton scattering experiment, the high-energy lepton
exchanges a hard virtual photon with the static proton, and strikes out a quark that
hadronizes into observable particles. For totally inclusive processes, the longitudinal

spin asymmetry of the cross section is related to g;(z, @?) in the scaling limit [8]:

g

—~ g1<CL’, Q2)
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where z is the Bjorken variable, and —Q? is the invariant mass of the exchanged pho-
ton. os and o 1 are the cross sections for the absorption of a transversely polarized
photon with spin parallel and antiparallel to the spin of the longitudinally polarized

proton, and Fi(z, Q?) is a well-known DIS structure function. In the parton model,
1 Qg
@ = 3D ea{Aq+ 2 AC, © Ag+ AC, © Agl] . (1.2)
q

where p stands for proton, and e, is the unit of charge carried by the quark of flavor

q. Aq(z) and Ag(z) are the polarized quark and distribution functions,

Ag(r) = qu(2) + 34 (1) = g-(2) — G- (2) ,

>
2,
Na¥

I

g+(x) —g-(z),

with + and — meaning that the spin of the parton is parallel or antiparallel to

that of the proton. There are only three light flavors considered here because it is



assumed that Q? is below the threshold of the production of heavy quarks, otherwise
contributions from the latter should be taken as negligible. AC, and AC, are spin-
dependent Wilson coefficients calculable in perturbative QCD, and the convolution

“®” is defined to be

(AC ® q)(x, Q%) = / %Ao<§>q<y, Q). (1.3)

By parametrizing the polarized quark and gluon distributions according to
the ansatz in Ref. [9], one can fit these distributions and obtain the flavor structure
of proton spin. This method requires large statistics and a good understanding
of the unpolarized parton distributions, and the earliest analysis came in 1995 [9].
On the other hand, semi-inclusive experiments that measure the cross section of
specific hadron prodcutions can be used to tag the flavor of the struck quark, and
the longitudinal spin asymmetry is rewritten as [6]

S 20q(x, Q) [ dzDh(z,Q?)

g3l Q2) [, d=Di(z, Q?)

Al(z, Q%) ~ (1.4)

where h stands for the hadron, and D’; is a fragmentation function for the struck
quark to produce a hadron h with momentum fraction z. Here ¢(z,Q?) is the
unpolarized quark distribution, and zpy, (~ 0.2) is determined by kinematical cuts
applied when measuring the asymmetries. In this way, one can also reconstruct the
flavor content of the quark spin [10].

Actually, the quantity being analyzed immediately in the EMC results was the



first moment of g;. According to operator product expansion (OPE) [11],

L oy _ 1 2
/degl(:r,Q) = §;eq{AE + — {AZ / dzAC,(x) —l—AG/ deACy(x )}}
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where the flavor- non-singlet and singlet Wilson coefficients ¢, ¢} are calculable

in [-loop perturbative QCD, and O(1/Q?) are higher-twist contributions. 92)7 g,(f),

and gf) are the isovector, SU(3) octet, and flavor-singlet charges, respectively:

2(P, S|ipyH~ot P.S) _ Sk
fy~ytn5 48 Iz
GBan — 2ﬁ<P,Slw2wtw\P,s> (AS, + AT, — 27, )15307
P, S|ty | P, S s
gWsr = (P WQ;OW ! >:(AEU+AEd+AES)SN—AZE, (1.6)

where t* is an SU(3)-flavor generator in the fundamental representation, |P,S) is a
proton state of momentum P, spin vector S* with S? = —M?2, S- P = 0, normalized

o (P, S|P, S") = 2P°(21)36G3) (P — P')dgg, and

s ' (P, S|qy*y°q| P, S)
AY,— = A
o SH /0 dxAg(x) = 5o ,
1
AG = / deAg(x) . (1.7)
0
The flavor-singlet axial vector current
]Z = &VMPYSQﬂ = UYuY5U + J7u75d + SV Y5S (1-8)

has an anomalous dimension starting at two loops, and gg)) is multiplicatively renor-



malized:

as(Q?)
9@ = ¢V liw/Eley) ,  Blay) = exp [ / day(al)/Bel)| . (1.9)

where gf)hnv is gg))(Q2 = 00) and thus renormalization group invariant. Note that

there is no gluonic contribution in Eq. (1.5) because the first moment of the Wilson
coefficient AC,(z) is zero in the MS factorization scheme. This became a matter of
dispute over the EMC results and will be explained in the following discussions.
For massless u, d and s quarks, SU(3) flavor symmetry ensures that the non-
singlet axial charges gf’) and gff) are strictly conserved. As gf) and gf) are the
nucleon matrix elements in baryon S-decays, the latter can measure these two con-
stants even though they are at low energy. By performing a weighted least squares

two-parameter (F and D) fit to the modified Particle Data Group data of baryon

p-decays [12], Jaffe and Manohar obtained [2]
g =F+D=128+007, ¢¥=3F-D=060+0.12. (1.10)

Before the EMC experiment, the idea that the strange quark content of the proton
is very small was a corollary of the famous Okubo-Zweig-lizuka (OZI) rule [2], and

according to the Ellis-Jaffe ansatz [1] one would have predicted that
AS(QEuc)er = ¢V ~ ¢ = 0.60+0.12 . (1.11)

However, the EMC experiment measured the first moment of ¢; [4, 5], and found

the total quark spin of the proton to be

AS(Q3e) = ¢V =0.134+0.19 |



which was consistent with zero and significantly smaller than the Ellis-Jaffe predic-
tion. This is how the “proton spin crisis” came into being.
The smallness of AY(Q%,;c) could be explained by a violation of the OZI rule

as As may contribute considerably to the proton spin,
As(Qyc) = —0.16 +0.08 |

or the breaking of the SU(3) flavor symmetry that makes the two parameter fit
of the axial charges inaccurate [2]. It was also pointed out in Ref. [13] that an
instanton-induced axial U(1) symmetry breaking will lead to a polarized condensate
that contributes to ¢;(x) with support only at z = 0. However, the kinematical
region of all the inelastic scattering experiments can only reach a minimal value of
x which can be extremely small but nonzero, so it is actually “ggo) — N'—where
A is the contribution from the polarized condensate—that they extract from the
first moment of g;. To provide an independent measurement of As and evaluate
the effects of dynamical axial U(1) symmetry breaking, one can turn to elastic Z°
exchange processes such as vp scattering as it can probe the complete gg)) [13,14].
An analysis in Ref. [14] showed that the value for A is consistent with the EMC
result if one assumes SU(3) flavor symmetry. This indicates a nonzero negative
contribution from As and small value of A, but more extensive studies are still
needed to make such a statement.

Meanwhile, another interesting idea prevailing around 1988 was that the small-
ness of the “quark spin” measured by the EMC experiment is due to a large cancel-

lation from the gluon helicity AG through the U(1) axial triangle anomaly [16-18],



which corresponds to the Feynman diagram shown in Fig. 1.1. Thus the flavor-

singlet charge calculated at one-loop order of QCD is

, Qg SH
:<AZ-—WE;AG>FE, (1.12)

(P, S|yt~ p| P, S)
2P0

where n; is the number of active quark flavors and ny = 3 for the EMC experiment.
AY is regarded as the renormalization-group-invariant intrinsic quark spin, and
the scaling violation comes from the gluonic term. The inclusion of the gluonic
contribution is due to the redefinition of the Wilson coefficient AC,(x), which refers

to the Adler-Bardeen factorization scheme [16-18].

VY5

Figure 1.1: Triangle anomaly contribution to the flavor-singlet axial vector current.

It was argued that AG(Q?) scales like 1/a4(Q?) at leading order in the limit
of Q? — oo, and therefore its contribution to ggj) can be important and the total
quark spin AY can be consistent with the Ellis-Jaffe prediction [17,18]|. However,
to have such a cancellation in gff) it requires a large AG (~ 10), while Jaffe and
Manohar showed that this will lead to a large intrinsic heavy quark spin [2] which
contradicts the quark model even worse. Nevertheless, in recent years, the actual

contribution from AG is measured to be much smaller (~ 0.2) than anticipated,

which we will elaborate in the following subsection. Therefore, in the rest of this



paper we will ignore the dispute over the triangle anomaly, and only consider the

total quark spin in the MS factorization scheme, i.e., the flavor-singlet charge gg)) )

1.2.2  Proton-proton Scattering

Polarized deep inelastic proton-proton scattering provides another window to
measure the spin of quarks with different flavors as well as the gluon helicity. RHIC
is the first and only polarized proton-proton collider in the world, and a typical
observable of interest at RHIC is the spin-dependent cross section for pp — jet + X

with transverse momentum pp [19],

dAO' 1 d0'++ _ d0'+7
de 2 ’

1.13
dpr dpr (1.13)

where the superscripts “++" and “+—" denote the same and opposite helicity com-

binations of the proton beams. The above cross section can be factorized into a

convolution of polarized parton densities and hard scattering cross sections:

CZA(T dA&ab—n‘et-&-X

a2 Py Pp) . (114
- (aPa, 1Py, 1) (1.14)

= %;/dxadbeqa(x,u)Aqb(m,u) -
where  is the factorization scale, a, b run over all quark flavors and the gluon, and
P,, P, are the momenta of the scattering protons.

When jet = W*, the cross section is dominated by the channels ud — W+
and du — W~ with no fragmentation, and therefore the RHIC data can provide
complementary and precise information on the polarized distributions of the up and
down quarks and their antiquarks [19]. When jet = 7°, the longitudinal double spin

asymmetry is sensitive to the gluon polarization distribution, which is key to the

determination of its xz-dependence.



In 2009, the DSSV (D. de Florian, Sassot, Stratmann and Vogelsang) group [20]
made a global analysis of the data from the inclusive and semi-inclusive experiments
of SMC, HERMES and COMPASS, as well as the proton-proton scattering at RHIC.
Their results showed that the (truncated) total quark spin and gluon polarization

of the proton are

1
AY(Q* =10 GeV?) = / dr AX(z,Q* = 10 GeV?) = 0.3661) 045
0.001
1

AG(Q?* =10 GeV?) = / dr Ag(r,Q* =10 GeV?) = 0.01373192 . (1.15)

0.001

Especially, within the kinematical range of the RHIC experiments, 0.05 < z < 0.2,

0.2
/ dr Ag™C(z, Q? = 10 GeV?) = 0.00510129 | (1.16)
0

.05
which shows that the gluon polarization is consistent with zero.

Later on the DSSV group included the new data from the 2009 run of RHIC
and re-analyzed the gluon polarization [21]. In contrast to their earlier results [20],
the new analysis supports a positive definite distribution Ag(z, Q%) at Q* = 10 GeV?,

and the truncated first moment of Ag is

0.2
/ dr Ag™MC(x, Q? = 10 GeV?) = 0.195 £ 0.070 (1.17)
0

05
within 90% confidential level. Note that the exact value and error of the truncated
first moment of Ag was not given in Ref. [21], while the result provided above is
obtained by reading the pixels in the plot of the change of its Ay? profile.

Since the small x region is still the most important source of uncertainty for
Ag(z,Q?), EIC will provide the missing information needed to fully determine the
gluon polarization [7].

10



1.3 Sum rules for the proton spin

With the total quark spin measured to be about one third, and the gluon
helicity not likely to be significantly larger than 0.2, it is natural to attribute the
rest of the proton spin to the orbital motion of the quarks and gluons.

In the past 25 years, two well-known sum rules have been proposed to ana-
lyze the proton spin structure. The first, proposed by Jaffe and Manohar [2], was
motivated from a free-field expression of QCD angular momentum boosted to the
infinite momentum frame (IMF) of the proton. The second, usually called Ji’s sum
rule, is the frame-independent and manifestly gauge-invariant decomposition of the

proton spin [22].

1.3.1 The Jaffe-Manohar sum rule

The Jaffe-Manohar sum rule is defined in the light-cone gauge AT = 0, and

states that the proton spin can be decomposed into four parts,

% - %AEW +AG(p) + Lg(p) + Lg(w) (1.18)

where the individual terms are the spin and OAM of the quarks and gluons, respec-
tively, and p is a renormalization scale. All the four terms are defined to be the
proton matrix elements of free-field angular momentum operators in the IMF or on

the light-cone plane [2]:
T_ 3 Ti 3 tE 2,
T=[@eutSut [ degiEx (¥
+ /d3§ E, x A" + /d3§ El € x VAW | (1.19)

11



where E' = F'* q and i are the color and spatial indices. Here the the light-cone
coordinates &+ = (20 £ 23)/+/2 are used.

In light-cone quantization, each term in Eq. (1.18) can be expressed as sum of
the spin and OAM over all Fock states, so the Jaffe-Manohar sum rule has a clear
partonic interpretation. However, the free-field form of the angular momentum in
gauge theories faces two conceptual problems: all terms except the first one are
gauge dependent, and it is unclear why the light-cone gauge operator is measurable
in experiments.

AY and AG in the Jaffe-Manohar sum rule are known to be the quark spin
and gluon polarization measured in polarized DIS experiments. It is not obvious
that AG is just the gluon spin, as in OPE there is no local gauge-invariant operator
for the first moment of the polarized gluon distribution Ag(z). To understand this,

let us look at the definition of Ag(x) from QCD factorization theorems [23]:

i df_ —izPtE~
2@) = g [ 5

X<Pa S|ch_a(07§_7OL)ﬁab(g_vo)Fo—:b(o707OL)|Pa S) ) (120)

where F% = 1eo®m F | and £(£7,0) = Pexp|—ig fog_ dn~A*(0,n7,0,)] with AT =
T* A7 is a light-cone gauge link defined in the adjoint representation of SU(3). The
n-th (n > 2) moments of Ag(x) give rise to the matrix elements of all the leading-
twist gluonic operators in the spin-dependent part of the OPE [11]. Since the first
moment of Ag(x) is understood to be the total gluon polarization, we can define

the gauge-invariant gluon spin operator as [24]

. ) dé~ . _ -
S;nv:/dx%/f—ﬂe_”wé Fja(o,g‘,OL),C“I’(E,O)FJ,)(O,O,OL). (1.21)

12



In the light-cone gauge AT = 0, the gauge link becomes unit one. After integration
by parts,

: (1.22)

5= [E Ao |

which is exactly the free-field gluon spin operator.

As for L and L7, they originate from the transverse motion of the quarks and
gluons, so they should be related to higher-twist effects. The free-field form of OAM
is also called “canonical OAM”, and recent theoretical developments found that they
are related to twist-three generalized parton distributions (GPD’s) [25-27], which
have been studied and can be extracted from two-photon processes such as deep

virtual Compton scattering (DVCS) [28,29].

1.3.2 Ji’s sum rule

Ji’s sum rule takes a different form from Eq. (1.19), as the total QCD angular

momentum is decomposed into three gauge-invariant parts [22]:

-,

J = /d% w*%w + /d% YTz x (—iV — gA)
+/d3:c 7 x (Ex B) , (1.23)

where the total gluon angular momentum in the second line cannot be gauge-
invariantly decomposed into local spin and OAM operators [30]. In this way, Ji’s

sum rule reads:

1 1 ; .
5 = 5 A% + Lo(w) + J5 (k) - (1.24)
Unlike the Jaffe-Manohar sum rule, each term in Eq. (1.23) is gauge invariant

and frame independent, which is what one would expect from physical observables.

13



When Ji’s sum rule was first proposed, it immediately received a lot of attention
because each term can be measured through twist-two GPD’s from DVCS experi-

ments [22,31]. The quark and gluon angular momenta satisfy

Jog = [Aq,g(o) "’Bq,g(o)] )

(1.25)

N~ N —

Jo+Jy =

where A,,(0) and B, 4(0) are form factors of the symmetrized quark and gluon

energy-momentum tensors.

Figure 1.2: Dominant scattering process in DVCS.

In a DVCS process as shown in Fig. 1.2, the Compton amplitude depends on
four twist-two GPD’s, H, H, E and E. In the light-cone gauge, they are defined to

be the off-forward matrix elements of the light-cone correlations:
dA an _
[ e P IR = H A% 9P U (P)

+E(:c,A2,§)U(P’) ——U(P)+ -,

2M
[ Ze Pl Ssu(SIP) = A, A% 90 U(P)

2
oM A,

B, A%, 0 (P)i 7

UP)+---,

(1.26)

where n* is a vector along the light-cone direction, and the skewness parameter

14



§=-n-A/n-(P+ P'"). Here the “ --” represents higher-twist contributions. The

quark angular momentum is related to these GPD’s through the sum rule [22,31]

/_l dz x [H(z,&,A%) + E(z, &, A%)] = A (A%) + By(A?) . (1.27)

1

To obtain J,, one can extrapolate the sum rule to A? = 0, and then J, =
1/2 — J,. Since the quark spin AY has been precisely measured in inclusive and
semi-inclusive scattering experiments, one can subtract it from .J; to determine £,

in Ji’s sum rule. In the IMF, J, can be further decomposed into three parts,
Jy =AG+ L, + J5 , (1.28)

where the so called “potential” angular momentum Jg ; is the matrix element of the

operator
Jpot = g/d% VIEx Ay (1.29)
5ot 18 also related to twist-three GPD’s that can be measured in hard exclusive

processes [27].

1.4 Theoretical Understanding of the Proton Spin Content

Since the 1970’s, there has been a lot of proposals to calculate the proton
spin content. The early attempts were model calculations which give predictions for
parton spin and OAM in terms of free parameters that can be fitted from known
experimental results (see Appendix A). Instead of modeling the baryons, one would
expect to do a first-principle calculation of the proton matrix elements. Till now,
the only practical nonperturbative approach to solve QCD is the lattice theory
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developed by K. Wilson. In this section we discuss the development of lattice QCD
calculation of the proton spin content.

Since the Jaffe-Manohar sum rule is defined in the light-cone coordinates (or
IMF) and the A* = 0 gauge, the real time dependence makes it not feasible for
lattice QCD calculations because the latter is formulated in the Euclidean space
with imaginary time. Nevertheless, unlike the other three operators, the quark spin
is gauge invariant and frame independent, so one can calculate its matrix in a finite
momentum frame with any gauge conditions that can be fixed on the lattice.

In 1995, the first lattice calculation of the flavor-singlet axial charge gg)) was
carried out using the improved Wilson action with quenched approximation [32,33].
In this calculation, the spin of a specific quark flavor is divided into the connected
and disconnected insertions, which correspond to the valence and sea contributions
respectively. The connected insertions obey the OZI rule, so the strange quark spin
originates solely from the disconnected insertion. In Ref. [32], the result for 5 = 6
is

AY =AY, + AYy + AY, = 40.79(11) — 0.42(11) — 0.12(1) = 4+0.25(12) , (1.30)
while in Ref. [33], at 5 = 5.7,

AY = AX,+AS+AY, = +0.638(54)—0.347(46) —0.109(30) = +0.18(10) . (1.31)

With improved computational power, simulation with dynamical fermions be-
came available. In 1999, a re-analysis of gg)) was done with ny = 2 heavy dynamical

quarks [34], and the result for 5 = 5.6 is

AY = Au+ Ad + As = +0.62(7) — 0.29(6) — 0.12(7) = +0.20(12) . (1.32)
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Since the disconnected sea contribution has a larger uncertainty compared to the
connected insertions, simulation of the strange quark spin with light dynamical
quarks has been studied with improved statistics in recent years [35-38]. The
values for AY, are {—0.020(10)(4), —0.031(17), —0.0227(34), —0.019(11)} for p? =

{7.4 GeV? 4 GeV? 0,0} in the MS renormalization scheme.

The earliest attempt to calculate the gluon polarization in lattice QCD was

carried out by evaluating the matrix element of the topological current

K, = €uaro TTA*(FA7 — gAAAU) (1.33)

or Ter,F # in the A° = 0 gauge [39]. However, it was soon pointed out that what
Ref. [39] measured is actually not the gluon polarization AG [40,41]. The topological
current is not gauge invariant, although its forward matrix element coincides with
the AG at one-loop order in perturbation theory [2]. AG in parton physics is defined
to be the matrix element of K, in the light-cone gauge [2], while it was proved in
Ref. [42] nonperturbatively that the result fixed in the A° = 0 gauge differs from
AG by 1/P° corrections, where P is the energy of the nucleon.

Since it is not possible to directly calculate AG or the polarized gluon distri-
bution Ag(z) in lattice QCD, there has been little progress in this direction in the
past two decades, let alone the calculation of the quark and gluon canonical OAM.

The quark OAM and gluon angular momentum in Ji’'s sum rule, however,
are accessible on the Euclidean lattice. Since they are gauge invariant and frame

independent, one can calculate them on the equal-time plane, and then analytically
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continue to the FEuclidean space with imaginary time. Therefore, there has been
consistent effort in calculating the quark OAM in Ji’s sum rule [43-49]. The most
recent calculation that includes both the connected and disconnected insertions was

accomplished on a quenched lattice [50]. In the MS scheme at p = 2 GeV,

AY, = CI(u+d)+ 2DI(u/d) + DI(s) = +0.62(9) — 0.24(2) — 0.12(1) = 0.25(12) ,
2L = Cl(u+ d) + 2DI(u/d) 4+ DI(s) = +0.01(10) + 0.16(1) + 0.14(1) = 0.28(10) ,

(1.34)

where CI and DI stand for connected and disconnected insertions repsectively.
To summarize, there has been significant progress in determining the proton

spin content in Ji’'s sum rule in lattice QCD, but the calculation for the Jaffe-

Manohar sum rule still remains as a challenging task nowadays.
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Chapter 2

A Physical Sum Rule for the Proton Spin
In this chapter, we justify the physical meaning of the Jaffe-Manohar sum rule

in quantum field theory.

2.1 Poincaré symmetry and the QCD angular momentum

In quantum field theory, Noether’s theorem states that there is a conserved
current associated with each continuous symmetry, and the charge of the conserved
current is a generator of the symmetry group. Poincaré group is the basic sym-
metry group for relativistic quantum fields, as it includes translation and Lorentz

symmetries. For a generic field ¢, with Lagrangian density

L= L[6r, 0,8 (2.1)

translational invariance leads to the conserved energy-momentum tensor

iy~ 9L o, w

and Lorentz invariance gives rise to the conserved angular momentum density

oL
MMA = g T — g TH — i————(5") ¢, () 2.3
8(6M¢r)( )" ¢s(2) (23)

where ¥* is a generator in the spinor space. Under an infinitesimal Lorentz trans-
s /
formation, z# — 2™ = (g*, + wH )z,

60(r) = (&) = 61(2) — L0 (), "6.(x) (2.4
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For scalars, spin-1/2 fermions and spin-1 bosons,

o(x) XM =0,
uvy s 1 AN ]
¢T(l‘) (E )r - 5(0- )7‘ )
Aa(z)  (Z") =949 — 909" - (2:5)
In canonical quantization, the commutation relations of the fields and their

conjugate momenta are defined at equal time. Accordingly, the charge for a con-

served current j* is defined to be

Q= [ W),

Meanwhile, in light-cone quantization, the commutation relations are defined at

equal light-cone time, and thus the conserved charges are

QE/%W%ﬁ@- (2.6)

Therefore, in canonical quantization the four-momentum and Lorentz genera-

tors are

Pt = /d?’x T (z) ,

j;w — /d333 MOuu(x) ’ (27)

and their commutation relations with the field operator generate the infinitesimal

Poincaré transformation of the latter,

Z’[PH’ @} = au¢r7
igv, o] = (2'90” —x"0")e,. — (M), 0 . (2.8)
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JH is anti-symmetric with J% (i = 1,2,3) being the boost generator and J% =
€% J* the angular momentum operator.

For the QCD Lagrangian
1 =/
Lqcp = —ZFﬁnyV + (i — ed) (2.9)

Noether’s theorem leads to the canonical energy-momentum and angular momentum

density tensors,
TC‘L;I;I = &iy“@”w — Fjaa”AZ — g‘ul/,CQCD s
MED = iy (70— PO) 1+ Py
—Fl (" ONAL — OV AL) — (FUW Ay — FINAY)
+(2¥g" — 2 g") Lacp - (2.10)

As a result, the canonical momentum and angular momentum operators are

—

Peon / dPa P (=iV)y + / &Pz E'VA

L w*( Z) v
¢

+/d3xﬁxg+/d3xE’<xx )Ai (2.11)

!

According to the previous discussion, the Jaffe-Manohar sum rule is based on the
canonical form of the QCD angular momentum.

The canonical energy-momentum tensor is generally not symmetric, and each
term except the quark spin in Eq. (2.11) is gauge dependent. This can be improved

by adding a divergence term to T*:

can*

can

ThY =T + O HM (2.12)

21



where the totally anti-symmetric super potential H*" is

1| oc

Apv .~

2 [(0uer)

VA s oL [N . oL
(Z )7’ ¢S + (a}\gbr) (E )7‘ ¢s (8V¢T)

(B¥),%0s| . (2.13)

TLY is called the Belinfante-Rosenfeld tensor, which is symmetric and mani-

festly gauge invariant. For QCD,
uv L - (Lav) _ﬁ( v) a v,a v
Tha = §WD Uy i DA ap] — FEYF2Y — g" Laep (2.14)

<_
where D, = 9, + igA,, ﬁﬂ = — 0, +igA,, and A®BY) means that the Lorentz
indices pu,v are symmetrized. Accordingly, the Belinfante-Rosenfeld angular mo-
mentum density tensor is
VA v A v
M]gel =z T]gel - ‘x)\T]gLel
1 _ _
= 56“”51#75751# + iy (2¥iD — 2D )
FFE (@ F — 2 F) + 0pShPl
+(z"g" — 2 g™ ) Lacp (2.15)
where SIAlPA s a super potential with anti-symmetrized indices i, 8 and v, A.

After the Belinfante-Rosenfeld procedure, one obtains

Ppa = /d39€ =iV — eff)@/)—l—/d?’x ExB,
3 Ti 3. it e 7
Jpa = dxqu@ZH— d*x PTT x (—iV — eA)y
+/d3xf>< (E x B) , (2.16)
where each term is gauge invariant. ]3]361 and jBel are actually equivalent to ﬁcan

and j;an as their differences are merely two surface terms that vanish after the
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integration. The quark momentum and OAM operators in Eq. (2.16) are also called
“mechanical” in literature, and jBel is the starting point of Ji’s sum rule for the
proton spin.

While each term in Jpe is gauge invariant, the total gluon angular momentum
cannot be further decomposed into local gauge-invariant spin and OAM parts. This
has been a standard textbook point of view [30], and it leaves us with a great puzzle:

how can the gluon spin be measured from high-energy scattering experiments.

2.2  Gauge-invariant decomposition of the proton spin

The gluon spin puzzle has motivated resurrected attempts to define the gauge-
invariant parton spin and OAM in recent years [51-57]. In particular, in 2008, Chen
et al. reinvented the concept of gauge symmetry by proposing to decompose the
gauge potential A into the so-called “physical” and “pure” gauge parts [52], which

we denote by A, and fT” respectively,
A=A + 4, (2.17)
where A, satisfies a generalized Coulomb condition,
DAL —ig[A", AL =0, (2.18)
and and ffH generates null chromo- electric and magnetic field strength,
DAL — QAR — gfTAIT A =0 (2.19)

These conditions were found by Treat in 1973 [58] in an attempt at a gauge-invariant
formulation of the quantized Yang-Mills theory [59].
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Under a gauge transformation U(x),

A = U@)A U (2),

A = U(x)X”UT(ngU(I)ﬁUT(x). (2.20)

In this way, Chen et al. use A, and fTH to construct gauge-invariant spin and OAM

operators of quarks and gluons [52],

. » .
J = /d3x ¢T§¢ + /d3x YIZ x (—iV — eA))Y

+/d3:c ExA + /d?’a: E'Z x VAL, (2.21)

and thus redefine the proton spin sum rule. The difference between the quark OAM
in Eq. (2.21) and Jga is that A in the covariant derivative is replaced by fT”.
Later on Chen et al. proposed that the QCD momentum be decomposed in a

similar way [53]:
P= /d?’:c W (—iV — e + /d3m E'DjA, (2.22)

where Di = 0" —ig[A{,]| and acts on the adjoint representation. 73” was also used
to replace the partial derivative in the gluon OAM in Eq. (2.21) to “improve” the
latter [53]. With the redefinition of quark and gluon momenta, Chen et al. concluded
that the gluons carry about one fifth of the nucleon momentum in the asymptotic
limit, which is contradictory to conventional QCD prediction of one half [53].
Following the work by Chen et al., Wakamatsu [8] proposed to generalize
the procedure of separating the “pure” and “physical” parts of the potential so
that one can impose alternative conditions on the latter and still maintain the
gauge symmetry of Chen et al.’s decomposition. By requiring the transformation
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properties of A7 and A} in Eq. (2.20), as well as the covariant version of Eq. (2.19),
Wakamatsu decomposed the angular momentum tensor into gauge invariant parts
and claimed that this procedure is Lorentz covariant or frame independent. Since A’
and Aﬂ‘ are not completely fixed in his approach, one can recover Chen et al.’s result
by imposing the generalized Coulomb condition in Eq. (2.18), or the Bashinsky-Jaffe
decomposition with the light-cone condition [51]. Besides, Wakamatsu pointed out
that there are two distinct decompositions depending on whether one attributes the
potential angular momentum—which is % x A 1% in this case— to the quark or
gluon OAM.

A deeper discussion of the gauge-invariance of the above proposals is available

in Appendix B.

2.3 Canonical or mechanical orbital angular momentum?

As has been thoroughly discussed in a recent review [60], all these different
proposals, including the Jaffe-Manohar and Ji's sum rules, can be classified into
two categories. If one fixes the generalized Coulomb gauge condition, then Chen et
al.’s decomposition will reduce to the canonical form; so does the Bashinsky-Jaffe
decomposition in the light-cone gauge. On the other hand, if the potential angular
momentum is attributed to the quark OAM, then the decomposition will be similar
to Ji’s form except that the gluon angular momentum is further separated into its
spin and OAM.

Since the potential angular momentum itself is gauge invariant, one needs fur-
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ther reason to decide whether the canonical or mechanical form is a more physical
operator description of the proton spin. As the OAM is naturally linked to momen-
tum through its classical definition T x 13, such discrepancy also leads to the debate
on whether the canonical momentum should be chosen as a physical observable over
the mechanical one [53].

Supporters for the canonical form of momentum and angular momentum argue
that their matrix elements are gauge invariant despite the fact that these operators
are not [61,62]. However, a general proof in the path integral formalism showed that
the gluon spin in the free-field form has different matrix elements in the light-cone
and covariant gauges [63]. A recent one-loop calculation in the Coulomb gauge also
invalidates this argument [64]. Therefore, it is not likely that the canonical operators
are the real physical observables in a general sense. To understand this, let us give
a simple proof in non-relativistic quantum mechanics [24].

In a non-relativistic quantum theory with external electromagnetic fields, the
Hamiltonian is

+ep, (2.23)

where P is the canonical momentum and we have customarily called ¢ = A°. It has

the eigenvalue system
H (1) = Eyib(7) (2.24)
with energy eigenvalues F,, and eigen wave functions v, (7).
Under a time-independent gauge transformation,
AM(F) — AM(F) = A*(7) + O (7) (2.25)
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we obtain a new Hamiltonian,

P —eA)?

e +ep, (2.26)

which is manifestly different. However, since energy is a physical observable, it

should remain the same under a gauge transformation, thus

H';, (7) = Entf, (7) (2.27)

where ¢/, = €*X(Mq), (¥) is the new eigen wave function. As a result, while the

charged particle probability density

Pu(T) = Uy (M) (7) (2.28)

is gauge invariant, the expectation value of the canonical momentum P is not:

(4,

Pl ) = (m [P ) + € (0n [VX)] ) (2:29)

Actually, in Ref. [62] it was claimed that the gauge transformation leaves the physical
states invariant, but this is not true according to Eq. (2.27): the wave function is
a not a gauge-independent quantity. It is the matrix element of the mechanical

momentum 7= P — eA that is gauge invariant:

<1p7'n P—eA

w;> = <z/zm ‘13— eff‘ wn> , (2.30)

— —

which corresponds to the covariant derivative in quantization, p= P — eA —iD.

There is a simple example from Feynman’s lectures on physics that demon-
strates why the covariant derivative corresponds to the observed momentum for a
charged particle [65]: Consider a charged particle near a solenoid with wave func-
tion (7, t). The solenoid does not have any current in the beginning. At some
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point in time, a current passes through the solenoid and a stable magnetic field is
established. During the process, the particle gets a momentum kick because the
changing magnetic field induces an electric field which exerts a force on the charged
particle. From the Schrédinger equation, the wave function must be continuous in
time. Therefore, the momentum kick on the particle cannot be obtained from the
partial derivative acting on the wave function, which must be also continuous in
time. Instead, it comes from the establishment of the vector potential A in the
system.

Nevertheless, the distinction between canonical and mechanical momentum
is camouflaged in parton physics. As has been explained in the previous chapter,
the simple parton picture emerges in the IMF of the proton, so parton physics is
formulated in the IMF, or equivalently on the light-cone plane.

The gauge-invariant longitudinal quark distribution from QCD factorization

1 dg; ei:cP*{’

4(2) =557 | 5= (PS[W(£7,00)7y"W(0,0,)|PS) (2.31)

measures the probability to find a quark parton with momentum A+t = zP*. Here
U(€) is a gauge-invariant quark field defined through multiplication of a light-cone
gauge link,

V() = exp <—ig /OOO AT+ n)dn) W(E) - (2.32)
The gauge link ensures that whenever a partial derivative (canonical momentum)

of colored quarks appear, the gauge potential A* must be present simultaneously to

make it a covariant derivative (mechanical momentum), D* = 9* + igA*. Indeed,
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taking the moments of ¢(z), one gets

n—1
/ P lg(@)de  ~  (PloT(0)TDT DT $(0)|P) . (2.33)
Especially, the average quark momentum
(x) ~ (PlY1i(0F +igAt)p|P) . (2.34)

We can see that the parton momentum distribution refers to the gauge-invariant
mechanical momentum! The mechanical momentum structure is clearly seen through
Feynman diagrams in Fig. 2.1: Gauge symmetry requires that a parton with me-
chanical momentum k* = zP* includes the sum of all diagrams with towers of

longitudinal gluon A" insertions.

Figure 2.1: DIS process in which the gauge invariance involving the longitudinal quark
mechanical momentum zP7 is achieved through insertions of gluons with longitudinal

polarization A™.

The inclusion of longitudinal gluons guarantees the gauge-invariance of QCD
factorization, but the simple parton picture is still not clear as the quark is always
accompanied by an infinite number of unphysical gluons. Only in the light-cone
gauge At = 0, the gauge link disappears and all the covariant derivatives in Eq.

(2.33) become partial ones, i.e., the canonical momentum, and the simple quark
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field becomes physical. Therefore, the parton picture is both frame (the IMF) and
gauge (the light-cone gauge) dependent, and in this picture the distinction between
canonical and mechanical momentum is overlooked.

However, such statement cannot be applied to the longitudinal OAM of the
quarks and gluons. The reason is simple: the longitudinal component of the me-
chanical angular momentum involves the transverse components of the gluon field

that does not vanish in the light-cone gauge,
L; = /dgx Wl [2!(i0% — gA®) — 2°(i0" — gA")] ¥ . (2.35)

Therefore, the mechanical OAM does not have a simple partonic interpretation even
in the light-cone gauge. If one prefers to use the parton picture as a standard for
defining the physical spin sum rule, then the canonical OAM should be prior to the

mechanical one.

2.4 Frame-dependence and the infinite momentum frame limit

It is well known that the Coulomb gauge eliminates all the unphysical degrees
of freedom in QED, so Chen et al.’s decomposition appears to bear much physical
significance when it was first proposed. However, it was soon criticized that an-
gular momentum operators in Eq. (2.21)—except for the quark spin—are nonlocal
and frame dependent, which does not satisfy the requirement for physical observ-
ables [66,67]. Nevertheless, this problem turns out to be the crucial point for us to
disentangle the intricacy and unravel the physical meaning of parton observables.
In particular, we will focus on the gluon spin operator and show how it acquires
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physical significance when boosted to the IMF.

Before we discuss the frame-dependence of angular momentum operators in
Eq. (2.21), let us review the representations of the Lorentz group. For a massless
particle, the representation of the homogeneous Lorentz group can be induced from
the representation of its little group I.SO(2), which is different from that for a mas-
sive particle (SO(3)) [68]. The 1.50O(2) group consists of translations and rotations
in two dimensions, and for photons they correspond to the gauge symmetry and
helicity respectively. Therefore, with the elimination of the redundant degrees of
freedom, the free photon state is distinguished by the eigen value of the helicity
operator, which is invariant under any Lorentz transformation. In other words, the
free photon state does not form an irreducible representation of the SO(3) group,

2 or %) is not a good quantum number for the photon. Only when the

so spin (s
z axis is chosen along the direction of propagation of the photon, s* coincides with
the helicity and thus it can be regarded as a physical observable. Therefore, our
discussion in this paper is limited to the longitudinal gluon spin.

In the bound state proton, the gluons are off-shell and have unphysical lon-
gitudinal degrees of freedom. Although one can define gauge-invariant gluon spin
operators, it is not clear whether they carry the physical meaning of spin or he-
licity. In addition, for nonlocal operators such ExA 1 in Chen et al.’s proposal,

their transformation under a Lorentz boost is nontrivial and strongly related to the

dynamics. To understand this, we can first look at the example of QED.
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In QED, Ex A, is equivalent to E x A in the Coulomb gauge
V-A=0. (2.36)

Before we impose the above condition, we find that under a Lorentz boost A along

the z direction,
V- A(z) = 9;A'(x) = g[N , AM(A )] = (ATY)AT 9, A" (a) (2.37)

where 2/ = A=z, Eq. (2.37) shows that if A satisfies the Coulomb condition in the
original frame, then A" will not satisfy the same condition in the new frame. In
other words, the Coulomb condition is not a frame-independent condition.

In Chen et al.’s proposal, A 1 and /T” are subject to the conditions,
V-A, =0, VxA=0. (2.38)

With the boundary conditions that A, and fT” decrease faster than 1/|Z| when

|Z| — oo, the solution is unique, i.e., the Helmholtz decomposition,

Al — A A v A= A i 3 Y
@) = A - VgV A= A+ v [y
4 1= 4 v, - Ay)
7 — I3 . A — 1 3 Yy X 2.

According to Eq. (2.37), under the Lorentz boost A, A, will not remain as
the solution to Eq. (2.38) in the new reference frame. Instead, for an arbitrary four

vector V#,

1

Ve o= VE+V)=—=AV*T+ XV,

H3|H
(\&]

Vo= VT—V)=—=QAV*T =XV, (2.40)

S-S
S
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where A > 1 is a boost factor. In this way, for i = 1,2,

, A A 1
AZ — Alz A—l _ a/z
(=) W) = O G e — 299 T A2 )

X (6J_ . gﬁ_ + %[)\28/+A/+ _ 8/*A/+ o a/JrA/f + )\28/14/])

o 121 / /7 1 / /
Ao A (g)) — D Wam*. (2.41)

If x were originally fixed on the equal-time plane, then under the infinite boost x’

will be on the light-cone plane.
Recall the gauge-invariant gluon spin defined as a GIE of the light-cone gauge,
inv i dg_ —izPTE~ +a¢e— ab/¢— T+
Sg = dx; g@ Fa (6 ,OJ_)E (5 ’O)Fa,b(()?OJ-) .
In QED, there is no need of the gauge link, so the gauge-invariant photon spin [64]
Sinvy [dx [d’ky — 2 —i(xPte—k -€1) [; i i =
S*(0) :z/?/w /d§ d*¢ el L) [z PYAY(E) — ik AT ()] F,7(0)
dkTd?k, T+, k- ~
—— [ S A ) - SR AW B
| S [0 A W] F o)
. . . 3
- [E(O) x (A(O) —a—/ﬁ(g*,ogﬂ , (2.42)
where 07 = 0/90¢~, E' = F'" with i = 1,2, and k™ = xPT. The first equality is
obtained with integration by parts, and the £~ coordinate on A1 in the last line

is taken to 0 after operation of the inverse derivative, which is understood with a

Fourier transform
1 _ U gre [dE™ pve
gl = far e [t e
1 _ _ _ _
= 5 [ @ senle — i) (2.43)
However, for a general first-order differential equation

OTF(E) = f(&),
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there is no unique solution if one does not impose a boundary condition. In
other words, to have well-defined Green’s function 1/9%, one must require that
F(£o0) = 0. Unfortunately, this condition cannot always be satisfied in the light-

cone coordinates, so we make a little change by defining

I3 )
- <§'—>:§[/ i~ | dg'—] F€) + 3 1F(o0) + Fl-o0)] . (244)

In this way, the operation of 1/0% is independent of the boundary conditions.

Since £ = F will be reduced to F** under the infinite boost, by comparison
. NG
we can easily find that ST is just the IMF limit of (E X AL> !

The case for QCD is a bit more complicated. So far no exact solutions to
Egs. (2.18), (2.19) have been obtained, so it is not possible for us to directly study
the IMF limit of A/ . Instead, we can first take the IMF limit of these equations,
and then seek the solutions. Since 4] = A* — Aﬂ‘ , we just need to solve for Aﬂ‘ first.

Recall Eq. (2.19) of Aﬁ, and now let us choose p =+ and v =1 (i = 1,2),
DA — AL — gfTATTAT =0 (2.45)

We first want to show that Aﬁr = AT so that this nonlinear equation can be

reduced to a linear one. Our strategy is to rewrite Eq. (2.19) in terms of A,
OMAY — VA =0"AY — OV AF 4 ig[AF — AL AY — AT
First we choose ;= i and hit both sides by &%, then the sum over i gives

V2AL — 0O A = VA — PO A +igd[AT — A AT — AY] (2.46)
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Substituting Eq. (2.18) into the above equation, we have

VIAY = VAN — QPOA +igd[AT — Al A — AY] — igdV[AT, AL

With a proper boundary condition, the solution at leading order of g is

1

AD =4, - s

—0,(V-A4)

or alternatively in momentum space

At the next-to-leading order, A(f,)y satisfies
VA, = igofA; — AV, A, — AT)] — igd, [A;, AT))
= ig0i[A;, A) — gDl A, AT)) — gD AT} A
~igd,[Ai, AT)) + igdi AT, AT))
The solution is given by

Zg
A(Ll,)u - VQ <a [A AL R A A ] al/ [AZ’ Aioi]) ’

At higher orders, A (n > 2) satisfies

VQA(ﬁ)V = —igo, [AZ,A” V] — igo; [Afz VA —igd,[A;, AT Y]

n—1
+ig »_ oA, Al
m=0

so we obtain a recursive solution for higher-order terms (with n > 2):

AP, - & (—ai[Ai,Ai’f;”] — ATV, A - 9,4, AT

V?
+Za (AT, A m>]) :
m=0
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Now let us take v = + and boost the system to the IMF,

1

AS(_)),-I— N A+ o 8+ (8+)2

(OFAT) = 0. (2.54)

Plugging this into Eq. (2.51), we find that in the IMF limit,

2

Aﬁ_l)7+ N 9 <5i[Ai _ Aj:(o),A+] _ 8+[Ai,A3’_(O)]>

<

— i <8+ [A+ - AI7(0)7 A+] - a+ [A+7 AI7(0)]>

(0+)?
= 0. (2.55)
Following the same procedure, we have for n > 2,
AT 0 (2.56)

under an infinite Lorentz boost.
Therefore, we prove that AT = 0 in the IMF limit perturbatively. Substituting

this into Eq. (2.19), we obtain a first-order inhomogeneous linear equation for Aﬁ:
DA — gfrrATPAY = 0TAT (2.57)
Its solution is easy to construct as a geometric series expansion [64]:

ia 1 . 1 . 1\" @ i
A = 55 {1 + (—ng*a—+> + ..+ (—ng+a—+) + ] (@AY . (2.58)
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The last two factors of the n-th order term can be explicitly expressed as

1 1 bnb '
I, = aT<_Zg'A+a+> 82A+7b(§7:+1)
n—1
1 En1 o0
= gy | [ e - [ | A

1 &n oo '
X3 [ / dé g — / dé 1| 0'AT?(&,, 1) + boundary term
— 00 &

n

] 1 S o
= gy | [ g [ e
g n—1

/ i / e, ( ng+(5 )" A*b(&, 1) + boundary term

Sns1

AT, ) / dg AL (€0)

- bnb

= AT / & (~ig AT ()" | (2:59)

5n+1

where the second term in the last but second line is a constant, so it can be absorbed

into the boundary term as a redefinition of 1/9 ;. In this way, the n-th term in

Eq. (2.58) is
A(n)l@(g) _ L _'A—i—i n(azA+b)
I ot g o+
b & €1
AT nH/ d&/ gy [y
;Jrl n+1 Snt1

X (—ng+<5;>)‘1’“ (—ig AT (&))" - (—igAt(EN) ™",

(2.60)

where 1/07 brings the coordinate in 9*A™*(¢, ) to €. Let us denote &~ =&, .4,
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then we have

A\i\@(g—) _ 81A+ b

" 5@%2/ d§1/£ dg;.--/;_ldg;

X (—igAT (€)™ (~igA (€)™ -+ (~igAT (€)™

_ ab
1 &

= —8’A+’b(f’_) Pexp —z'g/ dU_A+(77_)]
o+ o

1 i A+,b (- . &
= 8_+8A (&™) Pexp —zg/5

dn‘«“(n‘)] ,
= e (eareeme o) (2.61)
ot s )

where we have used the unitarity of Wilson lines,

Lz, y) =L (z,y) = L(y,z) . (2.62)

An alternative way to solve Eq. (2.57) is to multiply both sides by a gauge

link £(§~, —00). After some manipulations [64], one finds that
o+ (Afﬁcad@—, —oo)) = (JIAT) L 00) | (2.63)
Then the solution to A‘i"a is formally given by

Aje) = [a+ (0 A7 ()£ =00)) | (L7 (67, —00)

= (A ,o), (2:64)

where £7! is absorbed into the square bracket because it does not depend on the

integration variable ¢'~. Therefore,

Alt(e) = Ai(E) — oz (AT L (E ) (2.65)

which is equivalent to the result derived in Ref. [56].
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Now recall the gauge-invariant gluon spin operator in Eq. (1.21). Since
F;—i — a-i—Ai,a . aiA+,a . gfabcA+,bAi7c ’ (266)

after integration by parts, we have

inv dx d2kl 2 sz+ —k
S = / / /dgdfe ¢ —ki€1)

[—(—iaP*)A(€) — ik AT (g) — g f*" AT(§) A™*(¢)]

X L(67,0,;0,0)®F*0,0,)

/dil?/ koJ_ /df d2£ e —i(xPtT¢™ —kaL)

x (igA™(€)AT(€7,0,)[T]™) L(£7,01;0,0,)PF1(0,0,) , (2.67)

where one sums over ¢ = 1,2, and the second term comes from the derivative of
the gauge link £. Since the integration over k; will give us §(£,), it doesn’t make
a difference to change the coordinate of AT¢(£7,0,) to AT¢(£). Moreover, after

exchanging the dummy color indices,

(ig AP (&) AT(E7,0,)[T)™) L(£7,0150,0,)" = gf*P AT A™(E)L(E,01350,0,)™
(2.68)

Therefore, Eq. (2.67) can be simplified as

inv dx d2kl— i(zPt —kl i
S, = / / /dfdzfe (@PTe™—k.€1)

X [=(—ixPT)AS(€) — ik AT(E)] L(€7,04;0,00)F7"(0,0,)
+
= - [ [aeere [ameon - roaree o)

XL(67,0.:0,0,)®FH(0,0,)

= [E0) x (4"0) - 31+(3A+b)ﬁba(£ 0))}3, (2.69)
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which is exactly the IMF limit of (E x A,)? in Chen et al.’s proposal [64].

If one starts from Wakamatsu’s proposal and fixes A’/ with the axial gauge
condition A* = 0, then Aﬁ will be a nonlocal operator that involves a gauge-link
along the z axis. We can easily prove that the IMF limit of (E x A 1 )% in this proposal
is still the gluon spin defined in Eq. (1.21). Apart from the gluon spin operator, we
can also prove that the OAM operators in Chen et al.’s proposal have the IMF limit
as light-cone correlation operators—although we do not know the counterparts to
them in parton physics—and reduce to the free-field form in the light-cone gauge.

This reflects why the IMF and light-cone gauge are natural for parton physics.

2.5 Weizsacker-Williams approximation

From the previous section, one learns that although the physical meaning of
gluon spin—or more rigorously, helicity—is ambiguous when the proton is at rest, it
becomes clear in the IMF and light-cone gauge. It is on the basis that the gluons can
be approximated as free massless particles in the IMF limit, i.e., when the parton
picture emerges. Such approximation is actually known as the Weizsacker-Williams’
equivalent photon method in electrodynamics [69].

It is known that in electromagnetic theory the vector potential can be uniquely
separated into the longitudinal and transverse parts, A= fTH + A 1, and the trans-
verse part is gauge invariant [30,70-72]: Given A, A, can be uniquely constructed
as a functional of A with an appropriate boundary condition. Thus ExA 1 is can

be regarded as the gauge-invariant part of the gauge particle spin [52].
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However, it is also important to realize that separating A and E into longi-
tudinal and transverse parts is in general not physically meaningful. In the first
place, the physics of E is to apply force to electric charge and there is no charge
that responds separately to EII and E | [64]. Second, in a different frame, one sees
different transverse and longitudinal separations, and therefore the notion has no
Lorentz covariance [66,67]. As we shall see later, the frame-dependence of both
parts is dynamical, and cannot be calculated without solving the theory. To explain
this point, let us consider the example of a point charge.

For a static charge, the electric field is purely longitudinal,
E_')ZE_"”:€AO, 6XE_:H:0.

As the charge moves with velocity [, the field lines start to contract in the transverse

direction due to special relativity, which is shown in Fig. 2.2. The moving charge

Figure 2.2: Contraction of the electric field lines of a moving point charge. The light-blue

arrow indicates the direction of motion of the charge.

forms an electric current that generates transverse magnetic fields,

—

ézﬁxgzﬁx 1,
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which requires A to have a nontrivial transverse part A, . Since the magnetic field
cannot be constant in time, this means that A (t) will in turn generate a transverse

electric field

5 0AL
T et

If we define
1

7:—,1_—527

the electromagnetic field in the transverse direction gets enhanced by a factor of
B, while the electric field in the longitudinal direction is suppressed by a factor
of v72 [69]. In the limit of 5 — 1 (or ¥ — o0), B, ~ B, and |E.| > |E]|, SO
the electromagnetic field can be approximated as free radiation. If one considers a
charged target being scattered by a high-energy charged particle, the cross section
can be equivalent to that of the scattering of free photons. As shown in Fig. 3.20,
when the charged particle moves very fast, the virtuality k% of the photon can be

ignored, and the relationship between the two differential cross section is [30]
doy, = do, - n(k)d®p’ | (2.70)

where n(E) is the number density of the photons. This is called the equivalent-
photon method or Weizsécker-Williams approximation in electrodynamics [69].

In analogy to QED, the Weizsacker-Williams approximation is also a valid
picture for the gluons in a proton moving at extremely large momentum [73]. For
free radiation, there are only two transverse degrees of freedom of the gauge field.
In the case of a beam of free gluons propagating along the z direction, the gauge-
dependent field components A2 thus acquire physical meaning. Therefore, (E x
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Figure 2.3: Weizsédcker-Williams approximation in electrodynamics.

A)3 = E'A? — E2A! can be clearly interpreted as the longitudinal gluon spin (or
gluon helicity) operator as long as one fixes it in a physical gauge condition that
leaves Ab? intact, such as AT = 0 in the light-cone coordinates. Any other version
of the gluon spin operator that has the IMF limit as (E x fT)S in the light-cone gauge
can be considered as an element of a universality class [74], which we will elaborate
in the next chapter.

To gain more physical insights from QED, we will review how the photon spin

and OAM are measured in atomic physics in Appendix C.

To conclude this chapter, we establish the free-field form of QCD angular
momentum as the basis of a physical sum rule, i.e., the Jaffe-Manohar sum rule, for
the proton spin in high-energy scattering experiments. Our future discussions will

be focusing on how to obtain this sum rule from first principle calculations.
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Chapter 3
Universality Class of Operators for the Spin Sum Rule

3.1 New window for lattice QCD calculation

In the last chapter we have justified the physical meaning of the Jaffe-Manohar
sum rule, and our ultimate goal is to calculate it on the theoretical side. Since the
proton spin structure is intrinsically nonperturbative, one has to rely on lattice QCD
to do the calculations.

However, from a practical perspective, the Jaffe-Manohar sum rule places a
great hurdle for lattice calculation, because the explicit usage of light-cone coor-
dinates and gauge brings real-time dependence, as has been discussed in the first
chapter. One may avoid this difficulty by using normal space-time coordinates with
a “physical” gauge that does not involve time, and calculating with a proton at
infinite momentum [2]. However, the largest momentum attainable on the lattice
with spacing a is constrained by the lattice cutoff 7/a, and usually the nucleon mo-
mentum is taken to be much smaller than this value to reduce the noise in numerical
computations.

The angular momentum operators defined in Eq. (2.21), instead, provide a
solution to this problem. Since they are constructed to be time independent, one
can calculate their matrix elements directly in lattice QCD [64]. By exploiting their

dependence on the nucleon momentum, one may eventually extract out the result
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in the IMF limit. However, taking the IMF limit of the matrix elements is not a
trivial task in quantum field theory, and it will be the main subject for the rest of
this paper.

Before we go on to discuss the procedure of taking the IMF limit, it is neces-
sary to note that there can be more than one proposals whose Weizsacker—Williams
approximation is the Jaffe-Manohar sum rule. This allows us to talk about a uni-
versality class of operators that can be used to define the gluon spin [74], as well as
the quark and gluon OAM. Since any operator in the universality class is essentially
the free-field operators defined in a specific gauge, this universality class is actu-
ally a group of “physical” gauge conditions that eliminate the unphysical degrees
of freedom. For instance, in the Coulomb gauge, the condition k-A=0 yields
¢¢ = 0 for a beam of gluons propagating along the z direction with momentum k.
Under an infinite Lorentz boost, the transverse components of A* are not affected,
whereas the t- and z- components are transformed into the 4+-component so that
the Coulomb condition reduces to the light-cone condition AT = 0. The universality
class of operators will offer more options for lattice calculations, and therefore it is

worthwhile for a thorough investigation.

3.2 A universality class of operators for the gluon spin

In this section, we discuss the matrix elements of the gluon spin operator with
different gauge choices, which asymptotically approach the physical gluon helicity

AG in the IMF limit. We start with the Coulomb gauge that has been considered
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in Ref. [64].
Let us begin with the standard definition of AG as the matrix element of the

gauge-invariant gluon spin operator defined in Eq. (1.21) [23],

st 1 L[dET i pre- Fae—\ pabie— M\ B+
AGor = ﬁ/dwg/ge (PS|F (&)L (E, 0)F, 3 (0)[PS)
1 o )
= o (PSITF ()AL (0)|PS) (3.1)

In the second line we defined [56,60, 64]

1
Al = EFW, (3.2)

and introduced the antisymmetric tensor in the transverse plane ¢ (e!? = —¢?! =

1). The boundary condition for the integral operator 1/D" is related to the ie-
prescription for the 1/x pole, and we have derived the explicit result in the previous
chapter. In the light-cone gauge AT =0, A" reduces to A"

The matrix element in Eq. (3.1), being nonlocal in the light—cone direction,
cannot be readily evaluated in lattice QCD. However, one can relate AG to the

following matrix element in the Coulomb gauge [64],

3 g= 1 o .
AG(P 1) 55 = ﬁ@SIE”FZO(O)A](O)!P& : (3.3)

which is local and time independent, hence measurable on the lattice. In Eq. (3.3),
the momentum PZ is assumed to be large but finite. ¢/ F©0AJ = (E X ff)3 is the
gluon helicity operator identified by Jaffe and Manohar [2]. As is well-known, this
operator is not gauge invariant, so the matrix element in Eq. (3.3) depends on the

gauge choice.
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The scales that matter in the nucleon state are the nucleon mass M, Aqcp,
and the nucleon momentum P*. M and Aqcp are associated with the infrared (IR)
physics of the system, while P? is the only large scale among the three. The matrix
elements of the gluon spin in the Coulomb gauge is expected to have a nontrivial
dependence on P?, as has been shown at the operator level in the previous chapter.
In perturbation theory, P* only affects the ultraviolet (UV) behavior of the loop
integrals, resulting in a logarithmic dependence in the matrix elements. Therefore,
the IMF limit of the matrix element is not well defined, and the procedure needs
special treatment.

For the external onshell quark state |PS),, a one-loop calculation using di-

mensional regularization (in d = 4 — 2e dimensions) yields [64, 75]

~ z 1j [0 AJ 2 z
AG@ﬁm§<=kaF‘4W$q _aCr (5 1 4 AP\ S
Po 2 PO eio 4m \Beyy 9 3 m?2) PO
(3.4)

where we defined 1/e;y = 1/e—yp+Indr+In(u?/m?). pis the renormalization scale,
and m is the quark mass to regularize the collinear divergence. Cr = (N2 —1)/2N.
as usual. However, if we follow the procedure in Ref. [76] to take the P* — oo limit

before the loop integration [64],

- (PS|e9F0AI|PS),

a,C 3 S*

o is0 == 47T <E + 7) ﬁ . (35)

On the other hand, in the same regularization scheme Eq. (3.1) is evaluated

in the light-cone gauge as [77]

PS|éii Fi+ A|PS),
2P+

AG() = ¢




We see that the coefficients of 1/eyy (anomalous dimension) are different. The
reason for this discrepancy is that the IMF limit P* — oo and the large loop mo-
mentum limit [* — oo in the one-loop integral do not commute: One can actually
recover the exact light-cone gauge result in Eq. (3.6) from the Coulomb gauge cal-
culation by sending P?* — oo before doing the [-integral [64]. On a lattice, P is
restricted to be less than the cutoff, which is tantamount to taking the [* — oo limit
first. Thus, the matrix element in Eq. (3.3), evaluated in the Coulomb gauge, fails to
capture the UV properties of AG. Nevertheless, since the IR physics characterized
by Inm? is not affected by the order of limits, one can correct the discrepancy via
the

1 16 4 P?

4+ ==
v 3 m2

. (3.7)

This observation paves the way for evaluating AG on a Euclidean lattice.
The Coulomb gauge is not the unique possibility in order to match with AG.
For instance, consider the temporal axial gauge A° = 0. In this gauge one can

identically write

1
Al = ﬁFOM- (3.8)

Taking the IMF limit, one trivially recovers Eq. (3.2),

1 1.

Alternatively, one may choose the A* = 0 gauge so that

1
A= —F (3.10)

which has the same IMF limit in Eq. (3.9).
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However, the matrix elements of E x A are generally different in different

gauges. To one-loop order, we find

; (PS|eii FOAI| PS), 0.Cr [ 3 S
AG(P*, ) = = = 47) 2 3.11
. (PS|ei1 FOAI| PS), 0, Cp [ 2 pP=  (PY+ P)?] S*
AG(P*, ) = i e R [ Sl A (e
GE ) 2P0 ey dm ey TR Tz PO
(3.12)

Eq. (3.11) agrees with the previous result in Eq. (3.6) in the light—cone gauge (see,
also, Ref. [78]). On the other hand, Eq. (3.12) features yet another anomalous
dimension together with logarithmic frame dependence. Here again, the order of
limits matters: If one takes the P* — oo limit before the loop integration, one
recovers Eq. (3.6) from the A* = 0 gauge calculation. At large but finite momentum,
part of the divergence 1/eyy is transferred to the logarithm In P2, keeping the sum
of their coefficients unchanged. The following matching condition then establishes

the connection between Eq. (3.12) and Eq. (3.6),

1
3= e s (3.13)

The constant term is different from the Coulomb gauge case in Eq. (3.7).

Thus, for the purpose of obtaining AG, one can broadly generalize the ap-
proach of Ref. [64]: Evaluate the “naive” gluon helicity operator Eq. (3.3) either in
the Coulomb gauge, or A° = 0, or A% = 0 gauge and perform an appropriate match-
ing. However, this does not mean that any gauge choice is allowed. For instance, in
the A* = 0 gauge where

Al = (3.14)



or 111 lhe Landau (Or COVarianl) gauge 8 . A — 0 Where
Al = AF — =) 6”8 A (3 5)
5 1

Neither of the above has the same IMF limit as Eq. (3.9). This is also reflected in

their one-loop matrix elements

PS|€ii Fi0AT| PS Cras (3 T\ 5

(PSle [PS)q _ Cras I Ry (3.16)
2P0 Az—( 4 2euv 2/) PO

PS|eid Fi0 A | P 2 z

(PS|e [PS)qg _Cros (2, S_, (3.17)
2P0 5.4=0 4\ eyv po

which do not agree with the light-cone gauge result.! Moreover, the logarithm of
P~# is absent, so the matrix element is the same even one take the P* — oo before

the l-integral and there is no possibility of matching.

The above analysis suggests that there is a class of gauges (similar to the
universality class of second order phase transitions) which flows to the “fixed point”
of light-cone gauge in the IMF limit, and thus can be used to compute AG. This
class of gauges clearly do not include all possible gauge conditions. To see what
gauges are permitted, we consider the Weizsécker—Williams approximation [69] in
the IMF. The gluon field is dominated by quasi-free radiation in the sense that
B o~ E > EII- Thus we have in effect a beam of gluons with momentum xP?. For
these on-shell gluons, gauge transformation only affects the time component and the

third spatial component (we consider only the example of Abelian gauge theory),

AP s AP 4 KM (3.18)

nterestingly, Eq. (3.16) is exactly one half of Eq. (3.11).
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where k* = (k°,0,0,k%). Thus the transverse part of the polarization vector is
physical,
1

A~ (2 P?) = E(0, 1,74,0) . (3.19)

The longitudinal gluon spin operator (E X fY)3 is independent of gauge transfor-
mations which leave A'? invariant. Although Eq. (3.18) seems to guarantee this
for Weizsacker—Williams gluon field, it allows for only a subclass of gauges. For
the gauge choices that are incompatible with the notion that Weizsacker—Williams
gluon fields A'? shall not be affected, they will not “flow” into the fixed point—the
light-cone gauge—in the IMF limit.

The axial gauge A* = 0 and the temporal gauge A° = 0 have no effect on
the gluon polarization vector. Therefore, they can be used to calculate the gluon
helicity. In the Coulomb gauge, one has k- A= k*A* = 0. This is similar to the
axial gauge A* = 0.

On the other hand, the obvious counterexample is A* = 0 or AY = 0. A less
trivial one is the covariant gauge, in which the condition k- A = kT A~ = 0 itself
is consistent with having nonzero transverse components. However, actually the
Weizsidcker—Williams field in the covariant gauge has only the AT component. This
can be seen from an example of the Weizsdcker—Williams field associated with a

fast-moving pointlike charge [74]. In the covariant gauge we have
AR(E) = —eng2o(¢7) (3.20)

Eq. (3.20) indeed satisfies 9 - A = 9, AT = 0, but has vanishing transverse compo-
nents. Therefore, the covariant gauge does not belong to the universality class.
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3.3 Axial gauges and topological current

The temporal axial gauge A = 0 seems to have a special status since the
matrix element in Eq. (3.11) coincides with that in the AT = 0 gauge. Therefore,
in this section we explore strategies to measure AG in the A° = 0 gauge where
there is no logarithmic matching, or more generally, in non-lightlike axial gauges
n-A =0 with n? # 0 (see, also, Ref. [78]). As we shall see, the matrix element of
the topological current allows us to find more operators in the universality class [74],
and some of them do not even have the form of spin operator in a particular gauge.

First, note that in the A° = 0 gauge, the operator ¢/ "’ A7 is the same as
i (i 45 L g0 i
¢ (FOA — SAFT ) (3.21)
Likewise, in the AT = 0 gauge the operator ¢/ F** A7 is the same as
i (it g5 _ L gt i
I FEA - ATFT ) (3.22)

Actually, the forward matrix elements of these operators are gauge invariant to

one-loop,

(PS|e (FAT — JA°F9)|PS),  a,C ( 3 . 7) S*
€vv

2P0 4 \ey po’ (3.23)

as can be explicitly checked in all the gauges mentioned in the previous section (See,
also, Ref. [79]). This in particular means that the logarithm of P* which appears

in some gauges is canceled by the contribution from the extra term €7 A°F%. The
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reason is that Eqs. (3.21) and (3.22) are a part of the topological current in QCD,

14 a a g a C

Kb e (A,,FpA +d fabcA,,AgAA) , (3.24)
. . . 1 ..

Kt = 29 <F3+A£ - §F;]A:1L - gfabcA;rA?Ai) )
. ) . 1 ..

K* = 26 (F;OAz— i gfabcAgAfAﬁ) ,

which satisfies 9, K* = Fg”ﬁgy. The forward matrix element of Eq. (3.24) is per-
turbatively gauge invariant [2,17] and the O(gAAA) term starts to contribute only
at two loops for quark external states.

Nonperturbatively, however, there is gauge dependence due to anomaly [2,42,
80]. In axial gauges n - A = 0, this dependence has been precisely calculated in
Ref. [42]. The non-forward matrix element of K* in a polarized nucleon state is

given by

(PS|K"|P+q,S)

MR . i 5
L0y (S“ 1 Sn“) AG (n, P)+——(PS|F!™ F%, |PS),
g n

n-A=0 q-n “om

(3.25)
where

/ h AN(PS|n" F,,(An)LF""(0)|PS) = 25*AG(n, P). (3.26)

The matrix element in Eq. (3.26) is the same as in Eq. (3.1) except for the direction

of the Wilson line. Expanding around the deviation from the light—cone n?, one

which is valid at large momentum (assuming P - n # 0).
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From Eq. (3.25) one can read off various representations of AG. For the u = z
component in the A° = 0 gauge, the ambiguity (gauge dependence) in the ¢ — 0

limit drops out. One can safely take the forward limit and find

(PS|eTAAT|PS) | o_, = 25°AG + O(1/P2). (3.28)

This result extends Eq. (3.11) to all orders in perturbation theory. Similarly, taking

=0 in the A* = 0 gauge, one gets

(PS|e7A'P AT|PS) | ,._, = 25°AG +O(1/P?), (3.29)

which is related to Eq. (3.12) by replacing F° with F*. In the IMF limit, the
t—component and z—component of a quantity have similar scaling properties as they
both approach the “4” direction. Note that the operator on the left hand side of
Eq. (3.29) does not have a straightforward gluon spin interpretation.

Moreover, Egs. (3.26) and (3.27) directly give

/ OOdé‘”(PS\FOV(go)L‘F”O(O)\PS> — (PS|A". B%|PS)
0

A%=0

= 2S°AG +O(1/P?). (3.30)

/ OOdfz(PS|FZV(§Z)£F”Z(O)|PS) = (PS|eV (F@'OAJ'—%AOFU) |PS)
0

A7=0

= 2S5°AG +O(1/P?). (3.31)
The operator in Eq. (3.30) is similar to an operator written down by Jaffe [110],
except that it includes the z—component as well. Eq. (3.31) coincides with the
operator introduced in Ref. [81]. All the matrix elements in Eqs. (3.28)—(3.31) are
measurable on the lattice. In particular, the operators in Egs. (3.29) and (3.30)
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can be readily transcribed into Euclidean space as they do not contain temporal
indices 9°, A°. Note that all these operators yield the gluon helicity AG without

logarithmic corrections at large P~.

3.4 Matching the gluon spin to the lattice

Before we introduce our systematic approach to calculate parton observables
from the universality class of operators in the next chapter, let us first consider the
gluon spin. In order to relate AG,,; measured on the lattice to AGfyg defined in the
continuum theory in the MS scheme, one has to perform a perturbative matching.
The matching coefficients depend on the operators chosen and the UV regularization
scheme, which is independent of the IR regulator. In the case of the operators in
Egs. (3.28)-(3.31), the perturbative matching is particularly simple because there
are no logarithms In P*/pu involved.

To figure out the matching coefficients, we should first consider the mixing
of AG with the quark spin AY. This can be read off from Eq. (3.6), but here we
use a different regularization of the IR and collinear divergences in order to keep in
line with the gluon matrix element calculated below, and also with typical lattice
computations [82]. Namely, we now assume that the quark is massless and slightly

off-shell P? < 0. This affects the finite term of the matrix element

L . QSC 3 3 ree
(PSITFAIPS), |y = “E (2 a) (Sl alPs)e, (532)

where 1/¢, = 1/e—~vg+Indr+In p?/(—P?). Due to the fact that K* transforms as a
Lorentz vector and its forward matrix element is one-loop gauge invariant, Eq. (3.32)
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immediately implies that the same coefficient should appear in the (quark) matrix

element of all the operators in Egs. (3.28)—(3.31), e.g.,

(PS| F0AI|PS),  (PS|€li AigF AT| PS),

25" s 250

(3.33)

Next we compute the one-loop matrix element in the gluon external state | Ph),

(h = %1 is the helicity). In the light—cone gauge with the Mandelstam-Leibbrandt
prescription for the propagator pole 1/k™ — 1/(k™ +iek™) [83,84], the contribution

from the irreducible diagrams is calculated to be (see Appendix D)

irr sNC 2
= pete (2 + W—) . (3.34)

A+=0 2m

(Ph|éd F+ AT|Ph),
2P+

Note that there is no divergence here. The self-energy insertion in the external gluon

legs is divergent and reads (cf. Ref. [85])

self
a,N, (11 7 67 agNy 1 5
=h—— - — 4+ = h — - —
2m (661, 3 * 18) N 2m ( 3€y 9) ’

At=0
(3.35)

(Ph|él F+ A¥|Ph),
2P+

where the two terms correspond to the gluon and quark loop contributions, respec-

tively. Combining these results, we find

ij it Aj _ as (Bo . 103N.— 10Ny i iree
(Ph|e"F'™* A7 |Ph)y| ., _, = {1 + o (Z + 5 (PhleV F™" A7|Ph)yee

(3.36)

where [y = % — @ is the coefficient of the one-loop QCD beta function. By the

same reasoning as in Eq. (3.33), we immediately obtain?

17 1710 A g o Qg BO 103Nc_ 10Nf i7 1i0 A4 ree
(Phle"F A]|Ph>g|Ao:0 = {1 + I (g + 9 (Ph|e" F A]|Ph>; ,
(3.37)

2The agreement of the divergent part in Eqs. (3.36) and (3.37) was explicitly checked in Ref. [78].
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and similarly for the other matrix elements in Eqgs. (3.29)-(3.31). Note that, a
priori, the one-loop calculation of the latter two matrix elements Eqgs. (3.30) and
(3.31) could be complicated, not least because the non-Abelian part of the op-
erator O(gAAA) would contribute already at one-loop for gluon external states.
Yet, the above discussion guarantees that the final result is identical to the one
computed in the light-cone gauge Eq. (3.36). In the MS scheme, 1/e, is replaced by
In 2 /(—P?). In lattice perturbation theory the logarithms become In 1/(a?P2) with
Pg being the Euclidean momentum of the proton. Since the anomalous dimension
is renormalization-scheme independent, it should be the same in these two cases.

The matching of the constant terms can be done in a standard manner [82].3

To conclude , in this chapter we first extended the matching method of Ref. [64]
to a broad class of gauges. Not only the Coulomb gauge, but also other gauge choices
that maintain the transverse components of the on-shell gluon fields do qualify, and
for some of them the gluon spin matrix element does not have logarithmic corrections
at large momentum. We then focused our attention on non-light-like axial gauges.
All the matrix elements in Egs. (3.28)—(3.31) can be used to compute AG in lattice
QCD, and we have computed the one-loop matching coefficients on the continuum
theory side.

The implementation of the Coulomb gauge and axial gauges on a lattice may

pose technical problems. The usual periodic boundary condition on gauge field con-

3We note that there exists an exact matching scheme [86] which goes beyond the one-loop

matching considered here.
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figurations is incompatible with the condition n - A = 0 because of nonvanishing
Polyakov loops. In order to circumvent this and fix the residual gauge symmetry,
ideally one should impose antisymmetric boundary condition in the direction spec-
ified by the vector n*. Or else, one has to confront the problem of lattice Gribov
copies [87,88].

It is worthwhile to mention that our approach has been taken in a recent
attempt to calculate the gluon polarization in lattice QCD [89]. In this calculation
A 1 is fixed with the Coulomb condition, and the unrenormalized lattice matrix
element indicates a nonzero gluon spin contribution at small proton momenta. By
going to larger momentum and performing a renormalization of the lattice matrix

elements, one can expect to obtain AG in the near future.
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Chapter 4

A Large Momentum Effective Field Theory Approach

Acknowledging that lattice QCD can only calculate the matrix elements of
time-independent operators with finite nucleon momentum, we need to figure out a
way to relate the results to the parton observables defined in the IMF. As has been
mentioned in the last chapter, the solution is a perturbative matching which is yet
to be systemized as a general approach. Therefore, in this chapter we formulate this
approach in the frame work of large-momentum effective field theory (LaMET) [90],

and will use it to obtain the factorization formula for the proton spin content.

4.1 Large momentum effective field theory

Suppose one is to calcualte some light-cone quantity or parton observable O.
Instead of computing it directly, one defines, in the LaMET framework, a quasi-
observable O that depends on a large hadron momentum P?. In general, both the
parton and quasi- observables suffer from UV and IR divergences. If P* — oo
is taken prior to UV regularization, the quasi-observable O becomes the parton
observable O by construction. On the other hand, what one can calculate in lattice
QCD is the quasi-observable at finite P*, with UV regularization imposed first. As
shown in the previous chapter, the result may have logarithmic dependence on P~?

so that its IMF limit is not well defined.
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The difference between @ and O is just a matter of order of limits. Since P*
remains as a large scale of the system, taking the P* — oo limit shall not change
the IR property of the quasi-observable @, whereas it only affects the UV physics.
Therefore, O captures all the nonperturbative physics in O, and the difference be-
tween them should be IR free. This is exactly the situation in an effective field
theory set-up. The difference is that the role of heavy degree of freedom is played
by the large momentum of the external state, so it cannot be arranged into a La-
grangian formalism. Nevertheless, one can bridge the quasi- and parton observables
by a factorization formula,

O(P*/A) = Z(PZ/A,M/A)O(u)vL?}vLﬁJr'-- : (4.1)

where A is a UV cutoff imposed on the quasi-observable, and ¢;’s are higher-twist
contributions suppressed by powers of 1/P2. This formula means that the quasi-
observable O(P#/A) can be factorized into the parton observable O(x) and a match-
ing coefficient Z, which is completely perturbative, up to power-suppressed correc-
tions. Within this context, Feynman’s parton model can be regarded as an effective
theory for the nucleon moving at large momentum [90].

According to Eq. (4.1), the momentum dependence of the quasi-observables
can be studied through a “renormalization group” equation. One can define the

anomalous dimension [90]

1 dZ

_ -t 42
o) =2 (4.2)

and obtain the renormalization group equation,

dO(P? /)

I ()0 N) + Ol ) (1.3

z
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Finally, the above equation can be used to sum the large logarithms involving P~?
to solve for O(P?/A) in terms of O(y).

A lattice calculation of the quasi-observables will give the IR (nonperturbative)
as well as UV (perturbative) contributions, and the factorization formula will help
us to correct the UV part to obtain the parton observables. This approach can in
principle be applied to all parton physics with variations of the factorization formula.
When there is operator mixing in the quasi-observables, the matching coefficient Z
will become a matrix; when the parton observable is a distribution, the factorization

will take a convolutional form.

4.2 Factorization formula for the Jaffe-Manohar spin sum rule

With LaMET, we can start with any quasi-observable fulfilling the above cri-
teria to calculate the proton spin content. These quasi-observables are just the
universality class of operators that have the correct Weizsacker-Williams approxi-
mation as free-field operators in the light-cone gauge [74]. A possible choice of the
“physical” gauge condition is the nonlocal operators introduced by Chen et al. in
Eq. (2.21) [52,53]. From Eq. (2.18), one can show order by order that A, = A if one
fixes A in the Coulomb gauge V-A=0. Therefore, Chen et al.’s decomposition of
angular momentum corresponds to choosing the Coulomb gauge as the “physical”
gauge.

The advantage of the expression in Eq. (2.21) is that it is time independent and

thus allows for direct calculations in lattice QCD. Suppose we evaluate the matrix
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elements of these quasi-observables with finite momentum P?  we should have

11 = ~ = 7
3 = A% P?) + AG(, P7) + Ly(p, P) + Ly(p, P7) (4.4)

where the dependence on P? is expected since Eq. (2.21) is a frame-dependent
expression.

Based on the effective theory argument, for all the quasi-observables defined
in Eq. (2.21) we can relate them to the corresponding parton observables through

the following factorization formula [91]:

AX(p, P7) = AX(p) ,

M2
AG(uP?) = quAE(u)+zggAG(u)+O<—) |

P2
~ ’ M2
Ly(p, P?) = PyLy(p) + PygLg(pt) + pggAX (1) + pggAG(p) + O (E) )
_ e
L0 P%) = Pulali) + ProLofu) + piSE() + pgGi00 + 0 (35 )

where M is the proton mass. All the matrix elements on both sides of Eq. (4.5) are
renormalized in the MS scheme and thus there is no A dependence. Ai(,u, P?) is
the same as AX(u) because the quark spin operator is gauge invariant and should
have the same matrix elements in the Coulomb and light-cone gauges. z;;, F;; and
pi;’s are the matching coefficients to be calculated in perturbative QCD.

In the remainder of this section, we show how to obtain all the matching
coeflicients in Eq. (4.5) at one-loop order. First, let us take z,, and 2,4, as an example.
To obtain zy, and z4,, we need to calculate the matrix elements of E, X ff‘i at finite
P# and in the IMF limit (before UV regularization). To ensure gauge invariance
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and angular momentum conservation in our calculation, we use on-shell and massless
external quarks and gluons, and regularize the UV and IR /collinear divergences with
dimensional regularization (d = 4 — 2¢). One may think of using the off-shellness
of external quarks and gluons as IR/collinear regulator, and then take the on-shell
limit. However, in this case one needs to take into account the contribution from
the ghost and gauge-fixing terms. This is because the total angular momentum
operator in QCD from Noether’s theorem contains not only the terms presented in
our paper, but also the ghost and gauge-fixing terms—which are called BRS-exact
“alien” operators in Ref. [92]—from the QCD Lagrangian. The matrix elements of
BRS-exact operators vanish in a physical on-shell state, but not in an off-shell state.
Therefore, one has to be careful with these contributions when starting from off-
shell external states and then going to the on-shell limit, in order to have angular
momentum conservation. Considering matrix elements of on-shell states simply
avoids such complications.

Since the angular momentum operators we consider are all gauge invariant,
we can work in an arbitrary gauge, and for simplicity we choose the Coulomb gauge
V- A* = 0. As mentioned before, the Coulomb gauge condition is equivalent to the
condition for A| in QCD (see Eq. (2.18)) . So in our calculation, we treat A% as the
transverse component of A, In Appendix E we provide the explicit calculation of
the one-loop matrix elements of all the angular momentum operators in Eq. (2.21).

At tree level, AG'™ = AGHe, At one-loop level, the Feynman diagram for
the quark matrix element is shown in Fig. E.2, while the Feynman diagrams for
the gluon matrix element are listed in Fig. E.3. The one-loop matrix elements of
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E, x A are

_ Cr (51 4 P> 3

AGl—loop _ QR R 2 + Rl Aztree
4 3€/UV 3 MZ GIIR

Qg |:4CA — 2nf 1 11C, — an 1

ar 3 €y 3 €IR

2

2

where

1
—=-—79g+1Indnr Ca=N, .
€ €

R, and R, are finite constants that depend on the regularization scheme,

8 64 14 121
Ry = Smm2- 2 Ry = —In2—
1 3D 97 2 3 n 9 )

The corresponding IMF (or light-cone) matrix elements are [93]

C 3 3

sgpen = 20 (3 3) s
47 vy €Im
as 11C4 —2ny 1 B 11C,4 — ani AGHTe
Arr 3 €y 3 €IR

7 P
7 —|—CA (—1H—Z+R2):| AGtree,
3

(4.6)

(4.8)

(4.9)

Apparently the anomalous dimensions (coefficients of 1/ej,,’s) are different

between AGH°P and AGM°°P | but the IR or collinear divergence (coefficients of

1/€;z’s) is the same for both. In the MS scheme, we subtract the 1/€},, terms, and

then substitute the 1/€}, terms in AG with AG, and obtain the relation:

Aél-loop _ OéSCF (4 P2

iz 4 R, ) Axtre
dr \3 an * 1)

2
OésCA zlni + Rg AGtree + AGl—loop )
A \3  u?

Since
Aé ~ Aétree_i_Aél—loop’ AG =~ AGtree—FAGl_lOOp,
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we have at O(ay)

~  a,Cp (4 P2 asCy (T, P?

Therefore, the matching coefficients for AG are:

C 4 P2
cal) ) = © F(‘ln_”Rl) 7

A \ 3 u?
asCa (T, P?
2e9(W/P?) = 1+ 47TA (§1DF+R2> . (4.13)

As one can see, z4, and z,, are both dependent on P*/u only. Following the
same procedure, we calculate all the matching coefficients in Eq. (4.5) at one-loop

order. The results are as follows,

,C P?
Py=1+2 F(—21n—;+R3) , P, =0 ,
1

47
OésOF PZZ
qu: 471' (QIHF—R;g) s ng = 1 y
OéSCF 1 Pz2
Peg = = (_gl F ‘|‘R4> s Pgg = 0 )
QSCF P22 asCA 7 Pz2
Dgg = e (— In E — R, — R4) s Pgg = i —3 In F — Ry ,
(4.14)
where
2 2 1
Rs = —4ln2+§8, Ry = —§1n2+§3. (4.15)

At this stage, we are able to match the quasi-observables in Eq. (2.21) evalu-
ated at a large finite momentum to the parton spin and OAM. The next step is to
perform a similar matching procedure to extract the continuum theory matrix ele-
ments from the lattice QCD simulations. To be more specific, we need to calculate
the one-loop matrix elements of the quasi-observables in lattice perturbation the-
ory [82], and compare them to the continuum theory matrix elements renormalized
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in the MS scheme. The soft and collinear divergences in the quasi-observables are
unchanged in the lattice theory because the discretization of space-time does not af-
fect the long range physics. Therefore, the matching is still completely perturbative,
but to keep track of the soft and collinear divergences we should use dimensional
regularization to handle them. Since the renormalization in lattice and continuum
theories only differs by scheme, the anomalous dimension should be the same as in
Eq. (4.14) because it is scheme independent. However, the finite constants in the
matching coefficients are scheme dependent and should be precisely calculated in

lattice perturbation theory.

4.3 Factorization formula for parton distributions

Apart from the proton spin content, parton distributions can also be calculated
directly on the Euclidean lattice with the LaMET approach [81]. In this approach
one computes, instead of the light-cone distribution, a related quantity which may
be called quasi-distribution. In the case of unpolarized quark density, the quasi-

distribution is [81]

o7 = [ Eeripiinen (<io [(aa@))volr) @19

where x = k*/P?. The above quantity is time-independent, and thus can be simu-
lated on the lattice. However, the result is not the light-cone distribution extracted
from the experimental data, q(z,u?). Instead, it approaches the light-cone distri-

bution in the IMF limit, so LaMET allows us to relate the two (for the non-singlet
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case) through the factorization formula [81,94]

xz

ste A P) = [z (20 ) sty + O a1

According to LaMET, Z is entirely perturbative. One has yet to prove that the
above relation holds to all orders in perturbation theory. However, as a first step,
we test this factorization at next-to-leading order at this stage. Of course the choice
of quasi-distributions is not unique, one can define more than one possible quasi-
distributions which have similar properties as ¢(x, A, P*). Here we focus on the

simplest type suitable for lattice QCD calculations.

4.3.1 One-loop result for unpolarized quasi-quark distribution

In this subsection, we consider the one-loop correction to the unpolarized
quasi-quark distribution ¢(z, A, P?). The one-loop calculation for non-singlet quark
distribution is similar to QED because the non-Abelian property has no effect in
the non-singlet case.

Since the one-loop result is gauge-invariant, we can perform the calculation
in any gauge. The simplest choice is the axial gauge A* = 0 [95-97] where the
gauge link in Eq. (4.16) becomes unity. In the axial gauge, the relevant Feynman
diagrams are shown in Fig. 4.1, where the non-local operator is depicted as a dashed
line. The diagrams contain UV as well as soft and collinear divergences. We use the
quark mass m to regulate the collinear divergence. The soft divergence is expected
to cancel between the diagrams. The UV divergence is regulated by a transverse-

momentum cut-off A. Of course this cut-off violates rotational symmetry. However,
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it is expected to yield the correct leading-logarithmic behavior.

Figure 4.1: One loop corrections to quasi quark distribution.

The one-loop diagrams generate the following result

i(x, AP =(1+2ZY+ . Yoz —1)+ V() +... (4.18)
with
)
1+:D2 Z(A(I)—:L‘Pz) . rP?
o n DA P =) T L T Am
iz .
1422 P2 1422 4x(A(x)—xP?) 4z
0 (z) = a,Cp | Tor Moz + 0 N R — s
o
zP? zA(1—z)+(1—z)A(z)
+1 — A T (1=0)2P" , 0<z<l1,
1422 (z—D)(A(x)—zP®) 1 _ zP*
oo 0 2(A(1—2)+(1—2)P7) 1 A(@)
\ Al Tt <0 .
(4.19)

for finite P?, where A(z) = /A? + 22P2 and the logarithm with collinear diver-

gences is related to the standard Altarelli-Parisi kernel [73]. The wave function
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renormalization correction depends on P* as well

(

142 In y(A(y)—yP?) _ 1 _ yA0—y)+(1—y)A(y)

1-y (y—1)(A(1=y)+P=(1—y)) (1—y)2P=

2 pz —y) P? A —A(1—
+y/\(§) + yg\l(lg)y) + ) Pz(l Y) ’ y>1,
g, P2ty 4y(A(y)—yP*?) + % 41

Zg>:asCF / dy T—y ' mZ T Toy ey (A(—y)+(1-y)P?)

2m —yA(l_(f)_zgg;g)A(y) + @//\2(1;; + y(Alag)y)z + A(y)—;\z(l—y) ., O<y<1,
R 1 - i
\ —l—yg\l(_ﬁ);;z + zf(lz)z + A(y)—;\z(l—y) : y<0.
(4.20)
It is easy to check that the result satisfies the vector current conservation
+00
/ dx §(z,\, P*) =1 (4.21)

to one-loop order. Since the constituent of quark in a quasi-distribution does not
have a parton interpretation, the parton momentum fraction = extends from —oo
to +00. However, it is interesting to see that the collinear divergence exists only for
O0<z <l

In field theory calculations, one often takes the ultraviolet cut-off to be larger
than any other scale in the problem. In other words, one shall take the limit A — oo
and keep only the leading contribution and ignore the power-suppressed ones. This

in principle shall also be the case in lattice QCD calculations. Thus the actual field
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theoretical result for the quasi-distribution shall be

;

1+x ln——i—l-i-wa x>1,
W (g, A, P?) = a;iF Lee? 1 P2+1+x1 ___+1_|_(1 g 0<z <1,
\11+Zl L e z<0,
(4.22)
and
)
11+yy1 =l Sl s y>1,
A= [ e e 0yt
K—%lny?_lJrl—ﬁ, y<0.
(4.23)

One shall note several interesting features of the above result: First, there are con-
tributions in the regions x > 1 and x < 0. The physics behind this is clear: when
the parent particle has a finite momentum P?, it can have backward emissions, so
the constituent parton can have momentum larger than P?, and even negative. This
is very different from the IMF case, where the momentum fraction is restricted to
0 < x < 1. Second, there is a linear divergence arising from the self-energy of the
gauge link, which can be easily seen if one goes to a non-axial gauge, e.g., the Feyn-
man gauge. This linear divergence is usually ignored in dimensional regularization.
However, it is present in lattice regularization. Third, there is no logarithmic UV di-
vergence. Instead, there is a logarithmic dependence on PZ in the region 0 < x < 1.
We will see later on that this logarithmic dependence can be translated into the
renormalization scale dependence of the light-cone parton distribution throught the
factorization formula. Finally, all soft divergences are cancelled between the quasi-
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and light-cone distributions. However, there are remaining collinear divergences
reflected by the logarithm of quark mass.

On the other hand, in the same regularization scheme one can calculate the
light-cone parton distribution by taking the limit P* — oo. This is done following

the spirit of Ref. [76], and the result is

gz ) =1+ 20+ e —1)+ ¢V (@) + ... (4.24)
with
0 r>lorx <0
OZSCF ’ )
%ln#—llt“fln(l—x)Q—f_—xI, 0<zx<l1,
and
C 0, y>lory<0,
zp) == F/dy
7r

2 2 2
S (1P 2 0<y <,

(4.26)
where the integrand of §Z() is exactly opposite to that of ¢(!)(z). This result agrees
exactly with that derived from the light-cone definition of parton distribution in
the transverse momentum cut-off scheme. Also the collinear divergence is clearly
the same as in the quasi-parton distribution. This shows that at one-loop level, the
quasi-parton distribution captures all the IR physics of the parton distributions in
the IMF. Moreover, the collinear divergence comes only from the diagram where the

intermediate gluon has a cut that leads to a partonic interpretation.
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4.3.2 Factorization at next-to-leading order

Now we are ready to derive the factorization formula at next-to-leading order
for the non-singlet parton distribution. In the IMF or on the light-cone plane,
the momentum fraction in parton distributions and splitting functions is limited to
0 < z < 1. However, in the present case, the splitting in the quasi-distribution is
not constrained to this region, it can be in —oo < x < co. Therefore, the connection
between the two distributions is reflected through the following factorization formula

up to power corrections for large P?,

Ldy x N p
q(x, A, P? :/ —7 <—,—,—>q )+ O (A*/ P2 M?/P?) | 4.27
( e e ey K (A%/ /P?) (4.27)

where the integration range is determined by the support of the quark distribution

q(y) on the light cone.

The Z factor has a perturbative expansion in a,

Z(g,%,%) :5(5—1)+%Z<1> (g,%,%) o (4.28)
Before we proceed, it is important to note the existence of a linear divergence coupled
to the axial-gauge singularity, which is a double pole at & = 1 in the one-loop cor-
rections to the quasi-quark distribution, as one can see from Egs. (4.22) and (4.23).
As mentioned earlier, if one chooses a covariant gauge like the Feynman gauge, the
diagrams in Fig. 4.1 do not give axial singularities, but now one has extra diagrams
with gauge link where the axial-gauge singularity originates from. Obviously the

linear divergence is absent in dimensional regularization, but it is present in the

cutoff regularization. Unlike the case of light-cone parton distribution, where one
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encounters at most a single pole at £ = 1 and can appropriately regularize it by a
plus-prescription, singularity at the double pole cannot be completely regularized.
In general, it only reduces the double pole to a single pole, which still yields singular
contribution after integration over &. However, it turns out that in our case this
singularity can be removed with a principal value prescription, which corresponds
to a regularization of the Wilson line self-energy. Although the linear divergence
can also be singled out (this can be done on the lattice by varying the lattice spac-
ing with fixed P* and z) and subtracted [98], we propose to include this linearly
divergent term within our factorization formula, in order to simplify the extraction
of light-cone distribution from lattice data.

Now we are ready to write down the Z factor matching the quasi-quark dis-

tribution to the light-cone quark distribution. For £ > 1, one has

(1) (14 ¢ 19 1A

Zl(g)/Cp—(1_5)ln€_1+1+(1_€)2pz, (4.29)

whereas for 0 < £ < 1,

W _(1+N, P 1+£2) a2 A

Zl<£)/CF—(1_€ ln/ﬂ—l— T—¢ ln[4§(1 5)] 1_54—1—1——(1_5)2]32,
(4.30)

and for £ < 0,

2 — A

Near & = 1, one has an additional term coming from the self energy correction

ZW(€) =02 (2n/a,)é(€ — 1), (4.32)
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which can be extracted from Eqgs. (4.23) and (4.26), and provides a plus-regularization
for the singularity at & = 1. Thus the large logarithmic dependence on P? in
G(z, A, P?) can be translated into the renormalization scale dependence through the
above factorization formula. On the lattice, the matching coefficient Z must be
recalculated up to a constant accuracy using the standard approach, where the lon-
gitudinal and transverse momentum cutoffs are done in a way consistent with lattice
symmetry [82,100,101].

So far, we have considered only the quark contribution. One can start with an
antiquark to do the one-loop calculation. In this case, there is also a contribution

to ¢(z, A, P?) from g(z). However, the antiquark distribution has the property

q(z) = —q(=2) , (4.33)

which is related to quark distribution at negative x. By including both quark and
antiquark contributions, one obtains the following factorization formula with the

integration region extended to —1 < y < 1,

it AP = [ 2 (“”“ A “)q@,u)w(A?/Pf,M?/Pf), (4.34)

Llyl™ \y' P P
where negative y indicates the antiquark contribution. The above is the complete
one-loop factorization formula for the non-singlet case, which replaces Eq. (4.27) and
the Z-factor in Ref. [81]. In Appendix F we also provide the factorization formulas
for the polarized and transversity distributions for the non-singlet case [94]. Note

that the polarized gluon distribution function can also be matched to the quasi

distribution defined in Ref. [81] similarly with the LaMET approach.
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We have constructed at one-loop level a factorization formula matching the
quasi-parton distribution to the light-cone parton distribution. The factorization
formula then allows one to extract the parton distribution g(z, 4?) from the lattice
calculation of the time-independent ¢(x, A, P?) in a state with increasingly large PZ.
P? cannot be larger than the lattice cutoff 7/a, but should be much larger than the
mass of the nucleon.

Of course it remains to be shown that there exists such a formula to all orders
in perturbation theory, which is attempted recently in Ref. [102]. Besides, Ref. [102]
offers a different perspective by proposing to extract the quasi-parton distributions
from the QCD factorization of lattice “cross sections”. Meanwhile, the first direct
lattice calculation of the isovector sea-quark parton distributions [103] is done using

the formalism developed in Ref. [81] and our factorization formula in Eq. (4.34).

In conclusion, we have shown in detail how each term in the Jaffe-Manohar
sum rule can be extracted from the lattice matrix elements of corresponding quasi-
observables through the LaMET approach. The factorization formulas we have
obtained will be of great importance to the first lattice calculation of the gluon po-
larization and parton OAM. Since the data on quark and gluon spin is being collected
by the state-of-the-art hadron physics programs, while the OAM are also related to
observables that can be measured in high-energy scattering, we will eventually be

able to compare the proton spin structure in both theory and experiment.
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Appendix A

Model Calculations of the Proton Spin Content
In this appendix we discuss several models that have been used to calculate

the quark and gluon contributions to the proton spin.

A.1 Quark models

The simple SU(6) symmetric non-relativistic quark model (NRQM) was the
first to predict the quark spin contribution. In this model, the proton is made
of three constituent quarks which are current quarks dressed with gluons and the
quark sea. If a constituent quark is not distinguished from a current quark, then
the NRQM predicts AY = 1 [2]. Otherwise, the quark OAM contributes to the
proton spin, and with the OZI rule the NRQM leads to AY = gff) = gﬁg), that is,
the Ellis-Jaffe prediction [1,2] that can be extracted from hyperon decays. However,
this was cast into doubt after the EMC spin crisis.

Relativistic quark models, for example, the MIT bag model [104], are capable
of generating the spin contribution from the quarks. In the MIT bag model, the
proton is an ensemble of three current quarks confined in a finite square well poten-
tial. The quarks satisfy the Dirac equation and certain boundary conditions on the

surface of the potential, and they can only form a color-singlet. According to the
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MIT bag model, the wave function of the quark is given by

N f(7)
Y(r) = J= : (A1)
io - £g(7)

where N is a renormalization factor, and f and g are normalized as

/ Er(f+ ) =1 (A.2)

In the limit of SU(3) flavor symmetry, for all the quarks in the 1s ground state of

the proton [2,105],
1
A =3F - D = N2/d2r 7 (f2 - gg2) =0.65 , (A.3)

which is not much different from the Ellis-Jaffe prediction. In the ground state of
the bag-model proton, the other 35% contribution comes from the quark OAM.
Another type of relativistic quark models is the covariant spectator quark
(CSQ) model, where the proton is a bound state of a dressed quark and a pair of
spectator quarks that obey spin-flavor symmetry [106]. The dressed quark is off-
shell and is involved in the interaction of the proton with external sources, while
the spectator quarks are on-shell. The pair of spectator quarks are also referred
to as a “diquark”, but actually they do not interact with each other. In the CSQ
model, the proton wave function is constructed to be Lorentz covariant in the Dirac
spinor representation, and can include S-, P-, D-, and higher OAM components
with free parameters to be fitted by known nucleon structure functions [107]. With
the parameters fixed, one can calculate the polarized quark distributions of different

flavors [107].
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In the light-cone representation of the quark-spectator model, the relation
between the polarized and unpolarized valence quark distributions was obtained by
taking into account of flavor asymmetry and the Wigner rotation effect [108]. As
for the origin of the quark OAM, Ref. [109] proposed that it is transferred from the
quark spin through the Melosh-Wigner rotation. In the light-cone representation,
the quark OAM distribution is equal to the polarized quark distribution times a
Melosh-Wigner rotation factor. In Ref. [109], sum rules for the quark OAM were

obtained for the quark-spectator model, and the estimated values are
L,+ Ls;=0.04~0.42. (A.4)
The total quark OAM calculated from the sum rule in Ref. [109] is
L,=062—-A¥Y=0.76 £0.26 , (A.5)

where 0% is the proton tensor charge.

In all the quark models, the gluon spin and OAM do not show up in the lowest
order wave function of the proton. Since the quarks interact strongly via gluons,
one should be able to calculate their contribution in QCD with the quark models.
In fact, the baryon mass difference Ma — My was well explained by the lowest order
exchange of transverse magnetic gluons, and it has motivated Jaffe to calculate the
spin carried by them [110]. The results of AG in NRQM and the MIT bag model

are [110]
AGnrqm(Q? = 0.25 GeV?) =~ —0.7, AGhag(Q* = 0.25 GeV?) ~ —0.4 , (A.6)

which are negative and do not satisfy the requirement by the axial anomaly anal-
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ysis discussed previously. Later on, in Ref. [111], it was argued that one should
include the “self angular momentum” effects. Based on the Isgur—Karl (IK) quark

model [112-114], the gluon spin contribution was calculated to be very different

from Eq. (A.6) [111],
AGk(Q* = 0.25 GeV?) ~ 0.24 . (A7)

In addition to calculating the total gluon spin, it was proposed in Ref. [115]
that one can also calculate the polarized gluon distribution Ag(z) from the MIT bag
model. It was argued that at the leading non-vanishing order only the one-body
exchange Feynman diagram gives rise to the the matrix elements of the nonlocal
operator for Ag(x). The result in Ref. [115] suggests that AG is of the order of 0.2

or 0.3 at low-energy scales.

A.2 Chiral models

Another general approach to the proton spin problem is based on the chiral-
soliton models, where the chiral symmetry is spontaneously broken and the proton
is treated as a collective excitation, i.e., soliton or Skyrmion.

In 1988, based on the simplest version of the SU(3) Skyrme model, Brodsky
et al. predicted that the flavor-singlet axial charge vanishes at the leading-order
in the 1/N, expansion [116]. Therefore, the quark spin contribution to the proton
should be of order 1/N,, which is consistent with the EMC result. Later on, Ryzak
introduced an effective operator that corresponds to the flavor-singlet axial current
and calculated its baryonic matrix element [117]. His result on the total quark spin
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is
Au+Ad+As=02=+0.1. (A.8)
The chiral-soliton model has had much improvement since it was first applied
to the calculation of the quark spin in the proton. One of the variants is the
chiral model that includes vector mesons as auxiliary “gauge fields” [118,119] whose
presence in the effective Lagrangian respects the chiral U(3) x U(3) symmetry. The
vector mesons lead to an additional term to the U(1) axial vector current, and its

contribution to the flavor-singlet axial charge is
g =0.30, (A.9)

which changes only by about 10% on the variation of the parameters in this model [119].
Another variant is the chiral quark model [118,119], which includes quarks explicitly
in the Lagrangian. This model gives the prediction of the flavor-singlet axial charge

in terms of adjustable parameters, and is capable of generating the value
W ~033 . (A.10)

Actually, the traditional chiral quark model, or chiral bag model [120], treats
the proton as soliton outside the bag and allows it to interact with the bag quarks
via the pion clouds at the boundary. With the bag radius fixed to be R = 0.6 fm,

the chiral bag model predicts [120]
g =030 . (A.11)

Since the up-to-date result of the quark spin contribution is 36.6% [20], the
predictions of the chiral models are consistent with experiments. However, it must
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be pointed out that the consistency is based on the proper fixing of the parameters

in all of these models.
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Appendix B

Gauge-invariant extension

According to Wakamatsu [55], Egs. (2.19), (2.20) are adequate to ensure the
gauge-invariance and frame-independence of the decomposition, although they do
not completely fix the gauge field A/ or Al’l‘ . For practical calculations, one can fix
A"l by a further constraint, such as the generalized Coulomb condition in Eq. (2.18)
or the light-cone condition which lead to Chen et al. and Jaffe-Bashinsky’s spin
decompositions respectively. Since gauge-invariance is ensured before one exactly
fixes A" and Aﬁ , these proposals should be gauge equivalent [55]. In other words, the
physical matrix elements of the angular momentum operators should be the same
in different proposals. To show the gauge-invariance of the gluon spin operator
Ex A, with A, given by the light-cone condition, Wakamatsu calculated its one-
loop anomalous dimension in the Feynman gauge, and found that the result is the
same as that in the light-cone gauge [121].

We agree that operators defined with A/ and Ah’ have gauge-invariant physical
matrix elements, but disagree that different proposals are gauge equivalent. Let us
first take the photon propagator as an example [24]. In QED, the propagator of the

“physical” gauge field

DY (k) = —i / gt DT A% (2) A (y) (B.1)

should be gauge invariant at the operator level.
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Now let us fix A/ (x) with a certain condition, such as the Coulomb and light-
cone conditions. In both cases, A" (z) can be defined in the momentum space with

a projection operator P,

A1(e) = [ PR (B.2)

where for the Coulomb gauge,

nrEY ke, kPR

nv k . k kQ B.
PC() g n (n-k)Q—k2+n(n'k)2—k2+ (n.k)Q_k27 (B.3)
and for the light-cone gauge,
[y A7 VILp TN 7
P (k) = g — TE TR g (B.4)

n-k (n-k)?"
with n# = (1,0,0,0) and n* = (1,0,0, —1)/v/2.

The photon propagator can be rewritten as

DM (k) = P* (k) (—i / d*z eI [A%(2) AP (y)])) Py (k) . (B.5)

With A" defined by projecting A* onto P&” and Pl, we calculate the photon
propagator perturbatively in the general covariant, axial, and Coulomb gauges, and
find that it is just the same Coulomb or light-cone propagator respectively. It is easy
to verify this at tree level; at higher orders, since the vacuum polarization satisfies
the Ward identity, we can write down the general form of the radiative corrections
to the gluon propagator (k*¢"” — kk”) and find that after contraction with P4” and
P it just returns the Coulomb or light-cone propagator.

However, gauge-invariant as they are, the photon propagators obtained from
PE” and Pl are obviously different. Moreover, the anomalous dimension of the
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gluon spin operator with A" fixed by the Coulomb condition is also calculated in
Refs. [64, 75], and the result is different from that in the light-cone gauge [77].
This indicates that the two different choices for A/ are not gauge equivalent, so
the claim by Wakamatsu is not correct [55]. The reason behind the discrepancy is
simple: A fixed by different conditions are not related by a simple homogeneous
gauge transformation as shown in Eq. (2.20).

Since the different proposals are not gauge equivalent, one may think that
there are an infinite number of ways to decompose the proton spin, and there is
no first principle telling us which one has the most physical meaning. The gauge-
invariant gluon spin operator defined in Eq. (1.21) [56] also can be regarded as one
of them if

A (z) = —% /_Z e(y~ — a7 )Pexp (—ig /yI_ A*(y’,aﬂ)dy’) EM(y=, %) .
" (B.6)

The common feature of these proposals is that one achieves manifest gauge-
invariance at the cost of locality. Furthermore, as has been demonstrated by our
example of the photon propagator, they lead to gauge-invariant results which are
exactly the same as what one obtains in the gauge that fixes A". In general, the
gluon spin is not a gauge-invariant quantity, and all the above discussions are merely
manipulating the gauge field so that one extends the result in a specific gauge to
all. This idea is called gauge-invariant extension (GIE) [24] as it transcends the
traditional sense of gauge symmetry. Therefore, Chen et al.’s decomposition can be

considered as the GIE of the generalized Coulomb gauge, while the Jaffe-Bashinsky
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decomposition is the GIE of the light-cone gauge.

It should be pointed out that the GIE of a gauge-dependent quantity is in fact
not gauge invariant. Besides, there are also problems with this idea [24]:

First, operators constructed from GIE are in general nonlocal. In quantum
field theory, locality is a fundamental property of the fields, while A/ and Aﬁ are
constructed to be nonlocal quantities. The nonlocality of the GIE operators makes
it hard to interpret their physical meaning, although the latter becomes clear in a
fixed gauge condition. While local gauge-invariant operators often have simple clas-
sifications in terms of representations of the Lorentz group, the nonlocal operators
usually involves geometric lines or space integrals that do not transform in a proper
way as tensors.

Second, the gauge conditions where GIE starts from can be frame dependent,
which does not satisfy the requirement for physical observables in special relativity.
For example, the Coulomb gauge condition is not Lorentz invariant, which means
that under a boost transformation A, will transform into a quantity that is different
from the A | defined in the new frame.

Third, the scale evolution of the nonlocal operators is complicated. The renor-
malization of Wilson lines is a highly nontrivial task in quantum field theory [122],
and the difficulty increases exponentially as the geometric lines in the GIE operators
can be arbitrary. Besides, since there are an infinite number of nonlocal operators
that have the same quantum number, they can mix under scale evolution, which
becomes intractable for perturbative calculations.

Finally, the GIE operators are in general not measurable. So far, the only
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example is offered in high-energy scattering where certain partonic GIE operators—
such as the gluon polarization—may be measured. For GIE operators in the Coulomb

gauge, there is no known physical measurement for any of them.
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Appendix C

Photon spin and orbital angular momentum in atomic physics

It has often been claimed that the photon spin and OAM in electromagnetism
can be separately defined and measured, and therefore must be individually gauge
invariant. This has served as another important motivation to look for a gauge-
invariant definition of the gluon spin. In this section, we discuss the examples in
optics, pointing out that this is possible only for optical modes with a fixed frequency.

We first recall a bit of history about photon’s angular momentum. For a
circularly polarized plane wave, R. Beth [123] was the first to measure its spin
angular momentum by measuring the torque exerted on the quartz wave plate it
passed through. As we explained above, this is simply the gauge-invariant helic-
ity. In 1992, L. Allen et al. pointed out that Laguerre-Gaussian laser modes also
have a well-defined orbital angular momentum [124]. Based on this, several ex-
periments [125-127] have been set up to observe and measure the orbital angular
momentum of a Laguerre-Gaussian photon.

For radiation field with e~ time-dependence, using Maxwell’s equation,

7 -

B = ——VxE, (C.1)

w

one always has the gauge-invariant decomposition

L1 S = ==
J - 5/d%[gz><(E*><B+ExB*)]
— _o d3x[E:<$XV)Ez+E*XE] (C 2)
w



The two terms may be identified as the orbital and spin angular momentum, re-
spectively, and are manifestly gauge invariant. In particular, this is true for photon
electric and magnetic multipoles which are often used in transitions between atomic
or nuclear states. The photon OAM can be defined without referring to the gauge
potential at all [69].

It can be easily checked from the above equation that the spin equals F1 for
left-handed or right-handed circularly polarized light, and 0 for linearly polarized
light. In paraxial approximation, a Laguerre-Gaussian mode with azimuthal angular
dependence of exp(il¢) is an eigen mode of the operator L, = —id/0¢, and carries
OAM of [h. Tt is remarkable that the experimentalists are able to find ways to detect
the effects of the OAM alone in recent years [125-127].

Clearly, the above procedure only applies to a specific type of radiation field.
In the case of QCD, the gluons in the nucleon cannot be of this type. In particular,
they are off-shell and do not satisfy the on-shell equations of motion. The best one
can do is to go to the IMF where the gluons appear as on-shell radiation; in this
way, the gluon helicity and OAM could be defined and measured “naturally” in the

light-cone gauge. Thus we are back to the previous discussions.
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Appendix D

Gluonic matrix element of the gluon spin in the light-cone gauge
In this appendix we display some intermediate steps leading to the result in
Eq. (3.34). We treat the external gluon to be off-shell P? < 0. After some algebra,

the one—loop matrix element in the light—cone gauge reduces to (see, also, Ref. [78])

(Ph|e7F™ AT|Ph), higzNC Ak 2K P — k(P + k)? — 2Bk (k2 — P?)

2P+ P+ | (2n) K2k2(P — k)2

(D.1)
We use the Mandelstam—Leibbrandt prescription for the pole in the last term of the

numerator 1/k* — 1/(k™ + iek™). The following formulas are useful:

ddk 1 i 2
/ (2m)? k2(P — k)2(P+ — k+) - (47T)2P+E 5 (D.2)

/ dk 1 B —1 i (D.3)
(2m)® kK2k2(P — k)?2(P+ — k) a (4m)2P+P? €1’ )

where €, is an IR regulator.
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Appendix E
Matrix elements of parton spin and OAM

E.1 The quark spin

The quark spin operator is
2 3 TES 1 3, TaBn5
S, = d:cwzw:§ A’z Yy, (E.1)

which is gauge invariant and the same as that in the Jaffe-Manohar form of spin

sum rule. Therefore, there is no need of matching for the quark spin.

E.2  The gluon spin

au
7
a p by by cp

Figure E.1: Vertices from the gluon spin operator.

The quasi gluon spin operator
S, = / dPrE, x A% (E.2)

includes two- and three-gluon vertices as shown in Fig. E.1, and their Feynman rules
are:
6 eiim (i g7 g — ikC g gTH — ik g™ g + ik g% o) | (E.3)
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geimf (9" g g = g GG + g™ g g T = g g g+ g7 g T — g% g g )
(E.4)
where, 7,7,m = 1,2,3, and ¢/”(k) is a projection operator that projects any four-

vector to its transverse components with respect to k*,

ntk? +n'k* kPEY ntntk?
wv W
gJ_ (k) =g n k Ez + EQ + EQ ) (E5)

with n* = (1,0,0,0).

E.2.1 Matrix element in the quark state

To extract out the 2y, factor, we need to calculate the matrix element of Sy in

a free quark state, as shown in Fig. E.2.

Figure E.2: Matrix element of Sy in a free quark state.
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This diagram gives

s ISilp) = i) [ (i) D)
x[ik%(g" g7 — g"*g7") —ig" (k' g — k*g")]
X1 Dy (k) (—igy*T*)u(p)
+U(p)/%( iy’ 1) — : — 1D (k)

[’Lk’o( Ml v2 gfg”l) +2g”0(k1 /{32 )]

X100 (k) (—igy*T)u(p) ,

where

. 1 » ntn’k?
D (k) = k2+’i€ gJ_ (k)+ /;2

(E.7)

The second term in the square brackets of Eq. (E.7) is the instantaneous Coulomb
interaction.

With a massless external quark state, we expect to encounter collinear diver-
gence in the one-loop integral. As we work in the dimensional regularization scheme,
for a scaleless integral, the UV and collinear poles cancel each other and the result
is zero. However, for our purpose we need to separate the UV divergence from the
collinear divergence, and therefore we introduce an arbitrary “mass” parameter m

to regularize scaleless integrals. For example,

/% - /(k?—wj?dﬁmp)?_mQ/k%k?—z;k)(mp)?
N (i_é) , (E.8)

where ey > 0, and €,z < 0.
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Since the operator Ea X ff‘i is frame dependent, its matrix element should also
be frame dependent. Actually, when evaluating the loop integral in Eq. (E.6), we

encounter noncovariant integrals such as

d
k2(k 4 p)2k?

To regularize this type of integrals, we adopt the split dimensional regular-
ization used in Ref. [128] to achieve the one-loop renormalization of QED in the
Coulomb gauge. In practice, we choose the time and space dimensions to be 1 and
d — 1, and integrate over the time and space loop momentum separately. A more
systematic treatment of split dimensional regularization is provided by Ref. [129].

In our calculation, the integral in Eq. (E.9) is evaluated as

/ dk 1
I = _ -
(2m) k2(k + p)2k?
B / /dk4dd 1k 1
Tk + k2)2(k — xp)?
4 7d—1
1
- /d:p/dy? /dkzddk . ;
(2m) [(1 —yki+k +2?y(1 - y)p?
dkp 1
= 1 d:p/ dy2\/1—y/
/0 0 (2m) k2, + 22y(1 — y)p?)°

B i ! ! - I'(1+e)
e R K e

—y)p?)' e

1 1
= — —1 —2—-2In2| . E.10
167’(’ |: €IR B np n :| ( )

The result of Eq. (E.6) is

Cr(51 3 4 @ 8 64
SElps)® = BE(2 22 L S P Oy 2
(.15 p.5) ir \3ey, dn 3023

x(p, s|%%|p, 5)"" (E.11)
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Figure E.3: Diagrams contributing to one-loop gluon matrix element of gluon spin.

where p is the renormalization scale.
According to Ref. [93], the corresponding IMF (or light-cone) matrix element

18

(p, s

p,s

/ BPr(E x A)?

E.2.2 Matrix element in the gluon state

>(1) _ OCSCF|: 3 3

el P KXl A E)
v 6

A+=0 Cuv IR

To extract out the matching factor zy4,, we need to calculate the matrix ele-

ments of S, in the free gluon state. The relevant Feynman diagrams are shown in

Fig. E.3.
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Fig. E.3(a) gives

d4
(R A[S2 RN = ek, 2) / oL (=g ety
x [Q”X(% —q)" — g (k+q)" + 9" (2q — k)" | iDys(q)
<lig° (9" g — g*9\") —ig" (¢ 97 — ¢*9)") — a > ]
XiDpa(q)(—g**)
X [¢"N2k — q)° + g (—=k — q)* + ¢”*(2q — k)]

XiD)\)\/(k — q) € (E].?))

b
oo
where €], (k, \) is the polarization vector of a gluon with color a and polarization .
The momentum of the gluon is along the z direction, i.e., k* = (k°,0,0,k°). For
physical polarizations, the Lorentz indices p and v are restricted to run over 1, 2.
We will encounter the same types of integrals in the calculation of the Feynman
diagram in Fig. E.2, but the structure of the integrand is much more complicated

in this case. Here we show how to caclulate the most difficult one:

dq A
Iy = — . E.14
/ (2m)* g2(q — k)2 (7 — k)? .

We call this a four-point integral where four means the total power of quadratic

terms in the denominator. One can first integrate over ¢° and get

dd it
= / (27T>dq2(q—k)2cfz(cf— @)2
- %/(;iw)d? (§2)3/2(F — k[ } (E.15)

Then without loss of generality one can choose k= (0,0, k%) and integrate over ¢*

(of dimension 1) and then integrate over ¢ (of dimension d — 2) to obtain the final
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result:

1 a2 (14e) T[T[-26] =
fo = (4m)2 (1 + 2¢) r[—1/2—2e](k) ' (E-16)

For integrals of more than four points, we can use integration by parts and
tensor reduction to reduce them into simpler forms including Iy. In this way, we

calculate the Feynman diagram in Fig. E.3(a):

(kLS5 RN = ek A) [20K0(g" g = 9" ")) €k )

3 2 1 e
—+ 5t — —21n—2—2’yE—|—2
€uv  €gr  €IR T

-, 2 -,
+1k2+ 51k2+ T2 47
n—s; — n—s — = —
2 e T2 e 6" 3

(E.17)

a;Chy
47

The Feynman diagrams in Fig. E.3(b) gives

PG L UL
(kLS5 RN, = 2- 26 (k,A)/(QW)4(gfb )

v o v 1o 2 o 2v
% (gO glpgi _90 gl gJ_P+90pgl gi

_g0pglugi¢7 + 900911/93_[7 _ gOoglpgiIJ — 1 2)
XiDpo(k = q)iDop(q)(—g.f*™)
x (9" (k 4+ p)* + ¢°*(k — 2p)" + g™ (p — 2k)°] €%k, ) |

(E.18)
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where the 1/2 is a symmetry factor. The result is

NSz R WY = ek, ) [20k0(g" 972 — 971 g")] €0 (k, )

LoCa | 8 1 +8 | k2 . 104
—= - | In— - — .
3epvy 3 T2 e 9

47

(E.19)

Fig. E.3(c) vanishes at the integrand the level because the inserted operator
contracts with anti-symmetrized Lorentz indices while the four-gluon vertex con-
tracts with symmetrized ones.

To renormalize the gluonic matrix elements of E, x ff‘i we need to know the
wavefunction renormalization of the gluon field in the Coulomb gauge. Since the
matrix elements are evaluated onshell, we calculated the wavefunction renormal-
ization factor as the residue of the gluon propagator at k> = 0, where k* is the
momentum of the gluon.

Because of the noncovariant nature of the Coulomb gauge condition, the gluon

self-energy 1" (k) is highly nontrivial,
(k) # TI(k?) (kg™ — k"E") . (E.20)
Instead, it satisfies the Ward identity that includes the ghost contribution [129]:
BATIE () + (kg — hyuk JHP (k) = 0, (E21)

where H*% (k) corresponds to the diagram in Fig. E.4.
In our calculation, we evaluated the gluon self-energy as
—ill9(k) = —i |AK%, K67 + B(K, E)K'K | (E.22)
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b U, a

Figure E.4: Ghost-loop needed for the Ward identity.

where A and B depend on k? and k2. The gluon propagator with its one-loop

correction is

iDY(k) = —5g (k) + (—k%gﬁ(k)) =) [A(k?,fé?)alm +B(/<2,E2)klkm]

i A(k2, k?)
SO 4 (N (E.23)
k? + A(k2, k?)
Gauge invariance requires that
AR =0,k = 0. (E.24)
Therefore, the onshell gluon wavefunction renormalization factor
o\ -1 . .
A(k?, k%) A(k? k%) dA(k?, k?)
ZA—<1—T e T I
k2:0 k’2=0 k2:0
(E.25)

In the Coulomb gauge, we calculate the gluon self-energy that comes from
Fig. E.3(d) and the tad-pole and ghost-loop diagrams. To be noted, the ghost-loop
diagrams contributes an energy-divergent integral whose integrand has no depen-

dence on the time component of the loop momentum, e.g.,

/ g L (E.26)

) 27+ B2
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Such type of integrals cannot be regularized by the split dimensional regularization
we have used. The energy-divergent integrals also exist in Fig. E.3(d) and the tad-
pole diagram. Nevertheless, in a more generalized version of the split dimensional
regularization, Leibbrandt showed that they can be consistently regularized [129].
Meanwhile, it is shown in Refs. [130,131], and also confirmed by our calculation,
that such energy divergences get cancelled among contributions from gluon and
ghost loops at the integrand level.

The gluon wavefunction renormalization also receives gauge-invariant contri-
butions from the quark loops, which can be found in standard textbooks. The result

for 674 1s

- - 2
asC 1 2 1 k2 17 k?

47 €UV E%R €IR e 3

L k2 o\ LT 158 as2np (1 1
— [ In— - - — —_— | — ] .
3\ M2 ") g 9 | "4 3 \av en

Combining the results from Egs. (E.17), (E.19), and (E.27), we obtain the

one-loop onshell gluonic matrix element of S, as

(kN |82 B VY = %[4014_27%” 1 11Ca—2n; 1

41 3 €y 3 €
7k 14 121 i ree

(E.28)

According to Ref. [93], the corresponding IMF (or light-cone) matrix element
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18

Qg 11(2;——2nf 1 11CL1—-2nf 1
4T 3 €y 3 €

x (ke A |82 B A)

</€7)\‘/d3x(ﬁ>< 1)3 kD =

At=0

(E.29)
E.3 The quark orbital angular momentum
The Quark OAM operator is
L, = /d% WIT X (—iV — e A (E.30)

At tree level, the matrix element of L, can be evaluated umambiguously in a wave

packet

v = [ 3Xewh, (E31)

and its matrix element is

i) = [ 82 ST @em)p] [ Er vt x (9 - Ayl . ©3
’ (2m)? (27)3 AR
In the Coulomb gauge, /T” = 0, and the above matrix element reduces to

i) = [ 600 (<990 - ) x ') 7o)

=[5 (9 0)ew)

x ul(p) P u(p)

(2m)° 7=F
+/ (;lw];q)*(p)q)(p)m(p) 5% (=iVp)u(p) , (E.33)

where the second equality is obtained through integration by parts. The first term

is called a nonlocal contribution, while the second term a local one [132]. The
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nonlocal term contributes to the OAM only, while the local term contributes to
both the quark spin and OAM at higher orders. To ensure that the quark OAM
operator is multiplicatively renormalizable, both the local and nonlocal terms should

contribute the same to the quark OAM.

E.3.1 Matrix element in the quark state

Let us first calculate the one-loop quark matrix element of the local term,

4 .
(1) _ dk— . a. [ ? 0

Dy S| Lg|Ps 8)ioeal = /—up —1igT"y v

(p. 5ILlp, )it ) oy

(F— k) x (—zvpt,g)];j - 7 (=197 )iD ()u(p)
) k1 41
=g CF/ (2w)4“(p)p—k7 ¥
X (' — k) x ZﬁVDW(k)U(p)
S T

(E.34)

One can prove that

(E.35)
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Using this trick, we get

Cr[ 21 2 4 P’ 64
I Ly _ Gbr| < i (5 PR 2=
<p78| q|p7 S>local A 3€UV + €IR 3 n7r,u +7E *

xul (p)Su(p)

LaCe[ 11 21 (P 17
—_ e — n_ —_ —
47 3eyy  3€rr T2 e

xul (p) SPu(p)

aCpf1 1 2 1 7 23
S TR () § P =
* 4 |:3€UV+E%R+€[R ( n7r,u2 e+ 3

-2 2 -2
7 100
(o) s (2 ) __Wu_]
T T 6 3

-

xul (p)p < (=iVy)u(p) ,

(E.36)

where the first line comes from the first term of Eq. (E.34), and the second and
third lines come from the second term of Eq. (E.34).

The one-loop quark matrix element of the nonlocal term is

4 .
o) _ [ 4k N S TS

D, 8| Lg|Ps S)nontocal = /—UP —igT V(P —k

< |Q| > local (27T)4()( 7)}/5—% ( )p_%
(—igr*y")iD,u (k)u(p)
aCpr 11 2 1 7 23

— S S S O S

4 {3€UV+6§R+QR ( DWMQ et 3>

) 2 0
P P 7 , 100
In 2 8 (= SRS
+(nw2+’m) (nw2+%) 6" 3
xul(p) 7 u(p) ,
(E.37)

which is exactly the same as the contribution to the quark OAM from the local

term.
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The wavefunction renormalization of quarks is highly nontrivial in the Coulomb
gauge. To obtain the onshell wavefunction renormalization factor, we employed the

conservation of the vector current

* =y, (E.38)
so that the first-order renormalization constant is

s 1 2 1 5>
57, = 2Cr [___2_+— (21np——|—2”yE—5)
47 €UV €p  €IR 2

-2 2 )
7
() +6(1np_2+7,5)+_72_24] |
T T 6

(E.39)

Combining the above results in Egs. (E.36), (E.37), and (E.39), we have

<p73|Lq|paS>(1) = 47_[_ ——+————1D——

a,Cp 1 4 1 1. p? 21112_{_13
v S€p 3 p? 3 9

x(p, 5|57, 5)""°

Cr[ 21 81 > 28

a F[——, +—/——21np—2—41n2+—}

dm ey 3€rn W 3
X (p, 5| Ly|p, 5)"

(E.40)

According to Ref. [93], the corresponding IMF (or light-cone) matrix element

18

— 3
v aCpr 41 41 ,
<p,81/d3:v P (x X 7) w p,s)V = d { +—,—] (p. s|%°|p, s)"

47 _§€,UV 3€n

At=0

QSC&“{ 8 1 8 1 } ¢
Y t 55 <p,8‘Lz‘p, 3> e
47 Jeyy  3€R a

(E.41)
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E.3.2 Matrix element in the gluon state

Now let us look at the one-loop matrix elements of the quark operator in free

gluon states. The Feynman diagrams are shown in Fig. E.5.

Figure E.5: Diagrams contributing to one-loop gluon matrix element of quark OAM.

Since only quark propagators are involved in the loop, the integrals arising
from these diagrams are scaleless and no logarithmic dependence on k2 will show

up. As a consequence, the result is frame independent and must be the same as

that in the IMF limit [93]:

2ny 1 2n
B ML, WO = S (222 2 ) e \|S, |k, AY e
(kML N = 32 (g == o ) A8k )
2 1 2 1
v (Gt - Bt ) Lk
dr \ 3 eyy 3 €
(E.42)
E.4 The gluon OAM
The gluon OAM operator is
L, = / BPrEYE x VA (E.43)

The Feynman rule of the gluon orbital angular momentum can also be obtained

from the wave packet interpretation.

105



For the two-gluon vertex,

d3k:d3k’ -
i) = 3 | v i)
x (k' Ay(amo AL — gfele ADANE x VA |k, \)

3 1.3 1./
_ Z/d kd°k /; (I)(/;)
|:. (—klogj_ (k)gw + klng(k)QOV) <6]_€,6(3)(E_ E/)) « E)

(RO (F)g™ + kgl (§)g") (Vo (F = k) x ¥
et (K, Nea(k, \) . (E.44)

For the three-gluon vertex, the Feynman rule is

gf™ [(91” (k1)g™ g — g (k1)g*g™) (%15(3’@1 +ky + Es)) x ki
+ (g% (k2)g™ g™ — g (k2)g™g") (%25(3)(1% + ke + Eg)) x ky

+ (7 (k)™ g™ = g (ks)g™ g™) (V09 (i + iz + Fiy) ) x s
(E.45)

E.4.1 Matrix element in the quark state
The matrix element of the gluon OAM operator in a free quark state has been

calculated following similar procedure to that for the quark OAM. The Feynman

diagram we consider is the same as Fig. E.2, and is divided into local and nonlocal
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parts:

<p,S|L ’pv >local
d*k 8

_ _QZCFﬁ(p)/ (2m)4 k4 (p — k)2

k2 = v i Ov 7
x Kgéy(k) — ﬁnﬁnu) Vigl' (k) (K°g" — K'g™) x kg, (k)

— 95, (k) Vgl (k) (kg™ — k'g™) x k <gta<k) - %”una>] (p — )7 u(p)

o d*k 78
-9 CFu(p)/ (27‘(’)4 k4(p . k)2

k2 7 i\
X {(géy(k‘) — Enﬁny) (kﬂgf(k‘)gl ) V,;gja(k‘) X k

~ Vs (K) < K|

o\ d*k 7P
g Crup) / @n) K — )
X Kgéy(@ — %nﬁn) (K9 (k)g™) gpa(k)
€ 0 iv m L k? o
—gb (k) (K (k)g™) (gm<k> - k—nn)] (5 — B0 x V()

(kg (k)g™) (gia%) - ;nw)} (p — k)7 u(p)

(E.46)
Using the same trick in Eq. (E.35), we get
OCSCF 1
ol st = B o[ ulp)
oeal am Uy R
SO [11 21 D2 17
e o — D _oma
dr [3eyy € e 3
u' (p, 5)Z%ulp, )
s 2 1 1 52 2
Lol |2 1 §—+21np—+41nz— 2
4 [3eyy  3€gR w? 3
ul(p)i x (=iVp)u(p) ,
(E.47)
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where the first line comes from the first two integrals in Eq. (E.46), and the second
and third lines come from the last.

The nonlocal part of the matrix element is

Il e = —s7Criy) [
<[ (80~ Sman, ) (05100 g0
k) (K 199%) (550 — e )|
x(p — )k ulp)
a,Cp {2 1 81 P2 28}

—— —-—+2In—=5 +4In2 - —
A |3 ey 361R+ nu A 3

ul(p) P ulp) ,

(E.48)

which is exactly the same as the local contribution to the quark OAM. Therefore,

combining the above results, we have

(p,s|Lzlp, s)) =

21 1 P2 1
asCr [—— - —|—§——ln——21n2—|— 7}
4 Jeyy  3€R (2 3

><<p, 8‘23|p, S>tree
a,Cr |2 1 8 1 P> 28
dr | 3eyy  3€R u 3

x(p, s|L;|p, sytree

(E.49)

According to Ref. [93], the corresponding IMF (or light-cone) matrix element
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18

o, I Cr 51 51
d3 Ebeg x VA 1 Qs v e 23 tree
(p,SI/ rE"T o P, s) = | 3a0 T3, (p,s|X7Ip, 5)
OéSCF 8 1 81
- - L tree .
47 |:36/UV 3€en }(p,s| alp: 3)

(E.50)

E.4.2 Matrix element in the gluon state

The matrix element of the gluon OAM operator in a free gluon state is also
divided into local and nonlocal parts. The same Feynman diagrams as shown in

Fig. E.3 are calculated. For the diagram in Fig. (E.3(a)),

d*q g™
(2m)* gi(k — q)?
% [9”/(% — )" + ¢ (=k— )" + ¢V (2¢ - k)y}

(ky M| Lk, N2 — 220, (k, A) /

local

np/nﬁq2 /0 zﬁ 1 08

 (ans(0) = 20 ) (0~ ') @200

X [g"N2k — ¢') + g"*(=k — ) + ¢"Nq + ¢ — k)"]}
VISNIBN 2

X <9L,>\X(Q) - Aqé a ) eZ(k, A)

d'q g™

(2m)* g*(k — q)?

N o vp! N Np! v
<97 @k = @) + ¢ (=k = ) + 9" (20— k"]

/ —

q9=q

+26°Cae’(k, \) /

2
nyngq ; ; o
X <gj_7p/5(q) — quﬁ) <qog B8 _ q go,B>gJ_ (q)ngpa(q)
0
X {9+ 1 = ) + (s — 0) + ™20 — K]

OO
‘ (gw@— o )e;z(k:,w} |

(E.51)
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where [,m = 1,2, and €19 = —€y1 = 1.

d4q € qm
ko MLk A = 2g° *”k:)\/ -
< ’ | g| ) >nonlocal g CAG,,( ) ) (271')4 4(]{7 _ q)2

X [g (2k — )" + g (=k — ) + ¢ (2q — k)”}

_ npngq i i io
x (gL p5(q) — = j ) (@°9" — 4'9"") g (0) 9.1 pa(q)
x [¢"N2k — q) + g (—=k — )" + ¢"*(2q — k)]

OO
X (gL,Mq) - =2 62 a )e,i(lc, M)

(E.52)
By applying the identities
ke (k,\) = 0, e, (ky N) + p Oye(k,A) = 0, (E.53)
we obtain
<k A‘L |k >\>local - €:a(k>/\) [2Zk0( ,U~1 2 — ]
aCu | 161 111 1
X

+ €k, A) (—2iK0g" g7 K x Vet (k, A)

COal7 1 2 1 ;2 17
Ot 2 1R, )
47 12

____|_____3 lnﬁ—i— +£7
41 15 €y 3 €IR 5 T2 e 25

2
5‘5UV €IR €IR

- 2 .
N 06 (R 7, 6362
n—: —— [ In— — =t —
2 F TR G 225
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(R ALl Niomtoca = € (ks A) (=20R09") F €, (k, A)

7.2
asCa |7 1 —I—zi—L 2lnk—+2’yE—1—7
ir |5 €vy  €jp  €IR 2 3
. 2 o
+ lnk—Q—i— _ 106 lnk—Q—i— —Zﬂz—i-@
T2 e 15 T2 e 6 225
(E.55)
For the diagram in Fig. (E.3(b)),
1 0 d*q €
k, | Lglk, A = 2. ¢ —e (kA m
< | | >local g OA (akl € ( )) / (27T)4 q2(k' N q)g
% g Oa ZB QOB gza )k,m . 2 io/ (k?) (g(]ﬁ gw . g()z/giﬁ/)qmi|
NaNaq ngng (k —q)*
X aao’ - BB k— q) — ——=——————
(gl = ) (m s (k= q) i
< [9"°(2p — k)™ + g7 (2k — p)* — g*"(p + k)°] €%(k, A) .
(E.56)

1 dq €
k, N Lg|k, A = 2.-¢%C *b/m/ m
< ’ ’ >nonlocal 29 AEV ( ) (271') (k _ q>2

> gﬁi/(k) (gOa’gz,B’ 90[3 gza )km o za (k) <90ﬁ gu/ g(JngB’)q :|

X (QL,aa'(Q) - nana/(f) <9L,Bﬂ/(k —q) - %W)

x ["%(2p — k)* + g7 (2k — p)* — g™ (p + k)°] €5k, N) .

(E.57)
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By applying the same identities in Eq. (E.53), we obtain

(R ALy Ik Mgt = e (ks V) [2iK°(g" g — ¢ 9"*)] € (R, A)

LoCa| 41 LA k2 . 188
—_—— —— JE— n_ _— —
dr | ey 15\ D2 TP T 905

+ ek, ) (—2iK0g"g7) K x Vet (k, A)

aCa| 121 12 k2 - 268
—— = — | In— - — .
it | By 5\ w2 TE]T o5
(E.58)
<k )\lL ’k >\>nonloca1 6z>tCL(l€ )\ ( QZkO w Z/’L) E
aOr | 121 12 /22 268
X - —— | In— stV — 5| -
4 D ey D 2 25
(E.59)

After including the self-energy corrections, we obtain

OéSOA
41

X (k, A|Sy|k, A)tree

<k’ )‘|Lg|k7 )‘>(1) =

7
_Z L P i
Sev B3ér 3 @2 3 9

41 111 2 14In2 121]

ozs[ 2ny 1 +2nf 1

kM| Lglk, Ay . E.
o JRERIAS (E.60)

3 ey 3 €r
According to Ref. [93], the corresponding IMF (or light-cone) matrix element
1s

Ip, s)V)

AtT=0

} (k, A|S, |k, A)iree

(p, s /deEi’“f x VA

a,Cy 11 1 11 1
47 3 ey 3¢ €rr

Qg 2ns 1 2ny 1

as [_ g 1o 2y

kA Lok, A)™ee .
o e RSy

!
3 eyy 3 €g

(E.61)
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One can check that all the one-loop matrix elements add up to zero, and
thus verify that the total angular momentum of QCD is conserved and needs no

renormalization.
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Appendix F

Factorization formulas for the polarized and transversity

distributions

Here we present the results for the polarized and transversity distributions. For

the polarized quark distribution, the quasi distribution Ag(Y)(z) can be obtained by

replacing v* with v*+° in Eq. (1). The one-loop result then reads

/

a2 z(A(z)—zP?) _ zP*

e M anaa-o+r =) T 1T @
_{_IA(I—(;T)_-;gé]—Df)A(w) , rz>1 R
1422 1, P2 | 1422 dz(A(z)—xP?)

- 1n % + S5 n (I—2)(A(1—z)+(1—2z)P%)

i 208 = 4G+ S, 0<a <L
1+a? (z—D(A(@)=zP?) | _ xP?

11—z In z(A(1—z)+(1—z)P?) 1 A(z)

| eAl—n)+(1-2)A(@) r<0.

(1—:8)2]32 )
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Taking the limit A — oo yields

(

1—x xr—

1+x2ln%+l+ﬁ, x>1,

1422 P2 1+22 4z
In =% + 5 In %

Agu)(x):o‘;cF e e (F.2)
T 4 A

—E+21‘+3+m, O<x<1,

1422 7. z—1 A

\
The result for the light-cone distribution is again given by taking P* — oo,

_ agCr 0, z>lorax <0,

2

AGV ()

Lea? | IMIZ a2y (1 — )2 — 12+ 22, O<a<l1.

(F.3)
Note that as in the unpolarized case, the collinear singularity in the quasi polarized
quark distribution is exactly the same as in the light-cone distribution.

Similarly, for the transversity distribution, the quasi distribution g™ (x) is

obtained by replacing v* with 4*yt+5 in Eq. (1). The one-loop result is

(

2% z(A(z)—xP?) zA(1—z)+(1—z)A(z)
M e haa e T (1—2)2P> ;x> 1,
2 P2 2 dz(A(z)—zP?)
530 () = LC8 Y T Iz 15 I = aa-ara-ar
- (1)_155132)/‘( ) O<z<l1,
2z (z—1)(A(z)—zP?) zA(1—z)+(1—z)A(x)
Tz M SRt ps T (1—x)2P> ; r<0.

(F.4)
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The limit A — oo gives

¢

5 n gt + =2)2P" > r>1,
~(1) — aSOF 2z pP? 2z 4x 4x A
6q (Jf) ot — lnm 1w In T2 1-=m + —(l_m)QPZ s O<zr<l1 s (FS)
T L x<0,

\

and the result in the IMF is

_ a,Cr 0, r>1lorx<0,
o7

0" (x) (F.6)

2ol 2 (1) - 22 g<az<],
One can construct similar matching conditions as in Eq. (4.34) for the polarized
and transversity distributions. We just list the results for the matching factors here,

noting that the quark self-energy is the same. For the polarized quark distribution,

one has for £ > 1,

) _(1+¢& £ 1A

Azl(g)/CF_(1_£>ln5_1+1+<1_€)2pz, (F.7)

while for 0 < £ < 1,

0 _ (L8N B <1+’52) I A

Azl(g)/cp_<1_§)lnu2+ ¢ In [4£(1 = )] 1_§+3+(1_€)2P2,
(F.8)

and for £ < 0,

1 2 —1 A

The linearly divergent term is the same as in the unpolarized case.
Finally, in the factorization formula for transversity distribution, one has the

matching factor for £ > 1,

2 1 A
6ZM(€)/Cr = (1 i) 1n§f1 + TP (F.10)
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whereas for 0 < £ < 1,

6ZM(€)/Cr = (i) m%2 + (2—5> In [4€(1 - €)] - 2 4 A

-¢ ¢ I-¢ " T—¢pP
(F.11)
and for £ < 0,
6ZM(&)/Cr = (12_§£> lngg ! + a —Q)QPZ . (F.12)

One again has an linearly divergent contribution. Near £ = 1, one needs to include

an extra contribution from self energy just like in the unpolarized case.
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