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Abstract: A single photon can be coupled to collective 
charge oscillations at the interfaces between metals and 
dielectrics forming a single surface plasmon. The electro-
magnetic near-fields induced by single surface plasmons 
offer new degrees of freedom to perform an exquisite 
control of complex quantum dynamics. Remarkably, the 
control of quantum systems represents one of the most 
significant challenges in the field of quantum photon-
ics. Recently, there has been an enormous interest in 
using plasmonic systems to control multiphoton dynam-
ics in complex photonic circuits. In this review, we dis-
cuss recent advances that unveil novel routes to control 
multiparticle quantum systems composed of multiple 
photons and plasmons. We describe important proper-
ties that characterize optical multiparticle systems such 
as their statistical quantum fluctuations and correlations. 
In this regard, we discuss the role that photon-plasmon 
interactions play in the manipulation of these fundamen-
tal properties for multiparticle systems. We also review 
recent works that show novel platforms to manipulate 
many-body light-matter interactions. In this spirit, the 
foundations that will allow nonexperts to understand 
new perspectives in multiparticle quantum plasmonics 
are described. First, we discuss the quantum statistical 
fluctuations of the electromagnetic field as well as the 
fundamentals of plasmonics and its quantum properties. 
This discussion is followed by a brief treatment of the 
dynamics that characterize complex multiparticle inter-
actions. We apply these ideas to describe quantum inter-
actions in photonic-plasmonic multiparticle quantum 
systems. We summarize the state-of-the-art in quantum 

devices that rely on plasmonic interactions. The review is 
concluded with our perspective on the future applications 
and challenges in this burgeoning field.

Keywords: quantum plasmonics; nonclassical states 
of light; multiparticle interactions; nanophotonics; 
near-field effects; surface plasmons.

1  �Introduction
Plasmonics studies the science and applications of 
surface plasmon polaritons (SPPs), which are coupled 
excitations comprising a charge density wave at the 
surface of a metal and an electromagnetic field. SPPs are 
optical surface waves that can propagate along the inter-
face between a metal and a dielectric. These surface waves 
can also exist in metallic nanoparticles, where they take 
the form of standing excitations localized to the nano-
particle and are referred to as localized surface plasmons 
(LSPs). The remarkable properties of plasmonic systems, 
such as subwavelength field confinement [1, 2], large field 
enhancement [3–5], and large sensitivity to the surround-
ing environment [6–9], have been exploited for a variety of 
applications, including biochemical sensing, nanoscopic 
lasers, nonlinear nanophotonic devices, and optical 
metamaterials [10–19]. Surface plasmons (as we will refer 
collectively to as both SPPs and LSPs) behave similar to 
bosons, and their classical properties can be described by 
Maxwell’s equations with the appropriate boundary con-
ditions. However, their intriguing quantum properties are 
revealed, for instance, when the coupled excitation occurs 
at the single-photon level [20] or in metallic nanostruc-
tures whose dimensions lead to quantum behavior of the 
charge density through quantum size effects [21–23].

Recently, there have been efforts to achieve a new 
degree of control of quantum systems through the manip-
ulation of electromagnetic near-fields via surface plas-
mons [24–26]. The advancement in fabrication techniques 
and the availability of powerful computers for simulation 
have enabled strong light confinement to induce novel 
light-matter interactions, in nanostructures, which cannot 
be achieved in traditional free-space quantum optics 
[1, 2, 12, 27–29]. This kind of platforms offers the possibility 
of using near-field effects to control scattering processes, 
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coherence, the propagation direction of light, and exotic 
light-matter interactions at the level of a single particle 
[30–33]. Although surface plasmons are known to suffer 
from losses, the underlying scattering processes among 
photons and plasmons provide additional quantum inter-
ference paths that can be used to control quantum mechan-
ical systems. Indeed, the lossy nature of surface plasmons 
offers additional mechanisms for controlling dissipative 
dynamics behind decoherence. These possibilities have 
opened up new research directions in which the quantum 
properties of plasmons are used to manipulate many-body 
systems of photons in applications ranging from quantum 
sensing to quantum networks [1, 2, 12, 27, 33–41].

We start our review with a discussion on the 
quantum properties of photonic and plasmonic systems. 
In Sections 2 and 3, we describe the quantum proper-
ties of plasmonic fields that have been used to control 
multiparticle systems. In Section 4, we review the recent 
findings related to the preservation of quantum statistics 
in plasmonic systems. We then discuss recent progress 
on quantum control through the use of electromagnetic 
near-fields in Section 5. A review of quantum hybrid 
devices that use nonclassical evanescent near-fields 
will be presented in Section 6. Finally, we conclude our 
review by providing the reader with the most representa-
tive challenges in the field of multiparticle quantum 
plasmonics.

2  �Fundamentals of quantum optics

2.1  �Quantum properties of the 
electromagnetic field

In this section, we review the quantization of Maxwell’s 
equations. The reader can find additional discussions 
and details in Refs. [42–45]. Our treatment assumes the 
absence of sources of radiation and vacuum propagation 
only, where Maxwell’s equations read as
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Here, c is the speed of light in vacuum and E and B 
represent the electric and magnetic fields, respectively.

Then considering a one-dimensional cavity of length 
L with perfectly conducting walls, we obtain the single-
mode field solution,
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where we have taken the wave’s propagation along the 
z direction and polarization along the x direction. More-
over, V represents the effective volume of the cavity and 
Q(t) defines a canonical position. In addition, here k and 
ω are the wavenumber and frequency of the mode, respec-
tively. As the one-dimensional boundary condition must 
be met, where k = jπ/L(j = 1, 2, 3, …), the magnetic field in 
the cavity is
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Then, the classical field energy of the single-mode 
field, i.e. the Hamiltonian H, is given by
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where = �;p q  these are canonical variables for classical 
systems. Then, it is clear that the single-mode field is 
equivalent to a harmonic oscillator of unit mass. To quan-
tize the single-mode field, one can then introduce the 
canonical commutation relation,

	 = �ˆ ˆ[ , ] ,q p i � (5)

where ℏ = h/2π. Then, by convention, we introduce the 
annihilation â and creation †â  operators

	
ω
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2
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The annihilation operator â and the creation operator 
†â  satisfy the commutation relation

	 =†ˆ ˆ[ , ] 1.a a � (8)

Therefore, the Hamiltonian can be written as

	
ω
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This description enables us to quantize the 
electromagnetic field.

2.2  �Quantum states of light

The annihilation and creation operators can be used to 
describe quantum states of light. Remarkable examples 
include Fock states, coherent states, squeezed states, and 
thermal states. The possibility of preparing light in these 
states has been extensively used to prepare many-body 
systems of photons.

2.2.1  �Fock states

We will start this section by describing a particular family 
of nonclassical states of light known as Fock or photon 
number states. These are eigenstates of the Hamiltonian 
ˆ ,H  and we denote them as |n⟩. In this case, n represents 

the number of photons in a single mode of the electromag-
netic field. Interestingly, Fock states have a well-defined 
number of particles. Thus, we can define the particle 
number operator as = †ˆ ˆ ˆ,n a a  which satisfies

	 〉 = 〉ˆ | | .n n n n � (10)

Moreover, the action of the creation and annihilation 
operators on the Fock state |n⟩ is given by

	 〉 = + + 〉†ˆ | 1 | 1 ,a n n n � (11)

	 〉 = − 〉ˆ | | 1 .a n n n � (12)

The number state |n⟩ can be obtained from the vacuum 
state |0⟩ as

	
〉 = 〉

†ˆ( )| |0 .
!

nan
n

� (13)

From Eq. (13), we can also derive some properties of 
these quantum states. Fock states are orthonormal:

	
δ〈 〉 =| ,nmn m � (14)

and the Fock state basis is complete

	 =0
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n n I
∞
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2.2.2  �Coherent states

Coherent states can be used to describe photons in an 
ideal laser beam. These are quantum mechanical states 
with classical noise properties [42]. The definition of a 
coherent state |α⟩ is given by the annihilation operator

	 α α α〉 = 〉ˆ | | .a � (16)

Therefore, a coherent state is an eigenstate of the 
annihilation operator. Similarly to Fock states, coherent 
states form a complete set of basis. Thus, one can repre-
sent coherent states in the number basis as
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It is worth noting that coherent states do not have a 
definite photon number. Rather, their photon number 
follows a Poissonian statistical distribution,

	
α α−=

22| | | |( ) ,
!

n
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with standard deviation of ∆ α= = 〈 〉| | .n n  Hence, the 
average photon number of coherent states is

	 α α α〈 〉 = 〈 〉 = | |† 2ˆ ˆ ˆ| | .n a a � (19)

Moreover, coherent states have equal uncertainties in 
both quadratures 1X̂  and 2

ˆ ,X  where
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Here, 1X̂  and 2X̂  are defined as
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2.2.3  �Squeezed states

Squeezed states represent an important family of nonclas-
sical states that have been extensively used for quantum 
sensing [46–52]. This is due to the possibility of reducing 
quadrature fluctuations beyond those that character-
ize states with classical noise properties [53]. Generally, 
squeezed states can be generated through parametric 
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processes in nonlinear materials, including parametric 
down-conversion (PDC) [54] and four-wave mixing [55]. 
For sake of completeness, we describe single-mode 
squeezed vacuum states, which could be expanded in the 
Fock state basis as

	

θξ
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where r is the squeezing parameter and θ represents the 
angle in the quadrature space. Another relevant squeezed 
state is the two-mode squeezed vacuum (TMSV) state, 
which is given by
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The average photon number in each mode of the 
TMSV state is given by

	
〈 〉 = 〈 〉 = 2ˆ ˆ sinh .a bn n r � (25)

Furthermore, the photon number fluctuations of 
TMSV states can be described as

	
∆ ∆〈 〉 = 〈 〉 =2 2 21ˆ ˆ( ) ( ) sinh (2 ),

4a bn n r � (26)

consequently, both modes of TMSV states exhibit super-
Poissonian photon statistics.

TMSV states cannot be written as the product of 
states describing photons in modes a and b. Instead, 
these states exhibit nonclassical correlations between 
the two modes. We can see in Eq. (24) that photons in 
the two modes show perfect photon-number correlations 
and are entangled. As described below, these unique 
properties have been used in photonic and plasmonic 
systems. If the squeezing r is weak, then the prominent 
terms in Eq. (24) are vacuum state |00⟩ab and the bipho-
ton state |11⟩ab. For this reason, TMSV states have been 
used as single-photon sources, where one mode is used 
as a heralding mode, whereas the other mode is used as 
the source of single photons.

2.2.4  �Thermal state

Now, we will focus our attention to the description of 
thermal states. This family of states describes common 
light sources such as sunlight. These sources of light 
are characterized by classical noise properties that can 

be mathematically described by statistical mixtures of 
number states as

	
th

=0
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ρ
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Here, n̅ represents the mean photon number of the 
thermal field. Furthermore, the photon number fluctua-
tions of the thermal state can be described as

	 ∆〈 〉 = 〈 〉 − 〈 〉 = +2 2 2 2ˆ ˆ( ) ,n n n n n � (28)

which is larger than the mean photon number n̅. Thus, 
thermal states show super-Poissonian photon statistics.

2.3  �Classical and quantum coherence

The advent of the laser gave an enormous impulse to 
the development of the theory of optical coherence [56]. 
Nowadays, photonic technologies depend to an important 
extent on our ability to manipulate the coherence proper-
ties of the electromagnetic field. In this regard, plasmonic 
systems have been extensively used to engineer the spatial 
and temporal properties of photons. In this section, we 
provide a brief review of the concept of spatial coherence, 
a property that will be used in several parts of this review. 
We illustrate this concept through the famous Young’s 
two-slit experiment (see Figure 1).

The double-slit experiment was introduced by Thomas 
Young to illustrate the wave nature of light. This beautiful 
experiment has also been used to quantify spatial coher-
ence of light. We show a simplified version of this experi-
ment in Figure 1. We assume that a double-slit structure is 
illuminated with a quasi-monochromatic source of light. 

r1 d1

d2r2

Source

D

Figure 1: Schematic of Young’s double-slit setup.
Here, r1 and r2 represent the distances from the source to the 
upper and lower slits, respectively. The distances from the upper 
and lower slits to the detector D are represented by d1 and d2, 
respectively.
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At time t, the total electric field at the detector Ed(r, t) is 
given by

	
= +0 1 0 2

1 1 1 2 2 2( , ) ( , ) ( , ) ,ik d ik d

dE r t a E r t e a E r t e � (29)

which is the sum of the field amplitudes E(r1, t1) and E(r2, 
t2) produced by each of the slits. Here, t1 = t − d1/c and 
t2 = t − d2/c represent the times at which the photons leave 
the slits, and k0 = ω/c is the wavenumber in vacuum. The 
values for a1 and a2 are defined by the geometry of the 
slits. Then, the intensity Id measured by the detector D is 
given by
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where I1 = ⟨E  *(r1, t1)E(r1, t1)⟩ and I2 = ⟨E  *(r2, t2)E(r2, t2)⟩. The 
notation ⟨ · · · ⟩ represents an ensemble average. These 
quantities can be used to introduce the mutual coherence 
function

	
(1)
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Indeed, it is possible to express Eq. (30) as
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The first two terms in Eq. (32) are transmission contri-
butions from the first and second slits, respectively. Fur-
thermore, the last term in Eq. (32) describes interference. 
The intensities I1(r1, t1) and I2(r2, t2) provide information 
about self-field correlations. These can be described by 
the functions of first-order coherence Γ(1)(r1, r1, t1, t1) and 
Γ(1)(r2, r2, t2, t2). Similarly, the mutual-field correlations can 
be described by the function of first-order coherence Γ(1)(r1, 
r2, t1, t2). It is worth noting that the interference fringes are 
formed when the length of the spatial coherence of the 
illuminating beam is larger than the separation between 
the slits. In other words, interference fringes are produced 
when the properties of light are similar at the spatial loca-
tions defined by the two slits. The quality of the formed 
fringes can be quantified through Rayleigh’s definition of 
fringe visibility,

	
= − +max min max min( ) /( ),I I I IV � (33)

where Imax and Imin are the maximum and minimum inten-
sity values in the interference pattern, respectively. The 

visibility V is equal to zero for incoherent sources. Further-
more, = 1V  describes a coherent source. Also, sources of 
light characterized by visibilities in the range ≤ ≤0 1V  are 
considered partially coherent.

A quantum formulation of coherence can be con-
structed using similar ideas to those described above. In 
this regard, we introduce the general first-order correla-
tion function [42, 44, 45],

	 ρ − +=(1) ( ) ( )
1 2 1 2 1 1 2 2

ˆ ˆˆ( , , , ) { ( , ) ( , )},G r r t t Tr E r t E r t � (34)

where ρ̂ is the density matrix of a quantum state, and 
+( )Ê  is the electric-field operator and − +=( ) ( ) †ˆ ˆ[ ] .E E  In addi-

tion, the normalized first-order correlation function is 
defined as

	
=

(1)
(1) 1 2 1 2

1 2 1 2 (1) (1) 1/2
1 1 1 1 2 2 2 2

( , , , )
( , , , ) .

[ ( , , , ) ( , , , )]
G r r t t

g r r t t
G r r t t G r r t t � (35)

As discussed above, the first-order coherence func-
tion can be used to determine the spatial coherence of the 
electromagnetic field. However, additional information 
can be gained through the implementation of intensity 
correlations. In this regard, in 1956, Hanbury Brown and 
Twiss (HBT) performed a novel interference experiment 
through the use of measurements of intensity correlation 
[57]. The original HBT stellar interferometer was designed 
to determine diameters of stars [58]. This experiment used 
two detectors located at different positions on Earth that 
collected light produced by independent sources on the 
disc of a star.

A simplified schematic of the HBT experiment is 
shown in Figure 2. Here, two detectors D1 and D2 are placed 
at the same distance from the beam splitter. The setup 
measures intensity correlations as a function of the time 
delay between the signals generated by the two detectors. 
Here, the coincident count rate is given by

	
= 〈 〉1 2 1 2( , ) ( ) ( ) ,C t t I t I t � (36)

where I(t1) and I(t2) are the intensities measured by the two 
detectors D1 and D2. The generic function for second-order 
coherence is defined as

	
Γ ∗ ∗= 〈 〉(2)

1 2 1 1 2 2( , ) ( ) ( ) ( ) ( )t t E t E t E t E t � (37)

which describes a statistical average of the product 
of intensities associated to the fields E(t1) and E(t2). In 
general, the fields are detected at two different spatial and 
temporal positions. For practical purposes, we use the 
normalized version of the classical second-order coher-
ence function
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where τ = t1 − t2 is the time delay between the two light 
beams, and it is smaller than the coherence time of the 
source.

Similar to the first-order quantum coherence function, 
we can introduce the second-order quantum coherence 
function [42, 44, 45],

	 ρ − − + +=(2) ( ) ( ) ( ) ( )
1 2 2 1 1 2 2 1

ˆ ˆ ˆ ˆˆ( , ; , ) { ( ) ( ) ( ) ( )},G t t t t Tr E t E t E t E t � (39)

and the normalized second-order quantum coherence 
function, g(2), is given by

	
=

(2)
(2) 1 2 2 1

1 2 2 1 (1) (1)
1 1 2 2

( , ; , )
( , ; , ) .

( , ) ( , )
G t t t t

g t t t t
G t t G t t � (40)

Notably, for a single-mode field, it is possible to 
reduce Eq. (40) to

	

∆
τ

〈 〉 − 〈 〉= +
〈 〉

2
(2)

2

ˆ ˆ( )( ) 1 .
ˆ

n ng
n � (41)

We can observe that Eq. (41) does not depend on the 
time difference τ. The second-order quantum coherence 
function thus becomes a powerful tool to probe the under-
lying statistical properties of light.

It is worth noting the values of g(2)(0) for different 
light sources. For an attenuated laser, which is described 
by coherent states |α⟩, g(2)(0) = 1. Furthermore, a single-
mode thermal state ρthˆ  is characterized by g(2)(0) = 2. 
Indeed, any classical electric field satisfies g(2)(0) ≥ 1. 
For photon number states (Fock states) represented by 
|n⟩, for a situation in which n ≥ 1, it can be shown that 
g(2)(0) = 1 − 1/n. Particularly, for a single-photon state |1⟩, 

one expects g(2)(0) = 0. By comparing the aforementioned 
examples, we conclude that the measurement of g(2) can 
be used to characterize nonclassical properties of light 
[59]. Later in this review, we will discuss how recent work 
on quantum plasmonic relies on the measurements of 
first- and second-order quantum coherence.

2.4  �Hong, Ou, and Mandel (HOM) 
interference

In 1987, Hong, Ou and Mandel, unveiled the fundamental 
physics behind bosonic interference through an emblem-
atic experiment that cannot be explained using the clas-
sical theory of light [60]. As illustrated in Figure 3, in this 
experiment, two indistinguishable photons are injected 
into the input ports of a beam splitter. The pair of photons 
is described by the state 〉 = 〉† †

in in in in
ˆˆ|1, 1 |0, 0 ,a b  where †

inâ  
and †

inb̂  denote the two modes of the injected photons. Fol-
lowing the transformation of a 50/50 beam splitter, we 
have

	

〉 → + + 〉

= + 〉

= 〉 + 〉

BS
† † † †

in out out out out out

† † † †
out out out out out

out out

1 ˆ ˆˆ ˆ|1, 1 ( )( ) |0, 0
2

ˆ ˆˆ ˆ( ) |0, 0
2

(| 2, 0 |0, 2 ).
2

a ib ia b

i a a b b

i
� (42)

According to Eq. (42), the two interfering photons are 
expected to emerge through the same output port of the 
beam splitter if these were simultaneously injected. Thus, 
one should observe photon bunching and the absence of 
simultaneous photon events. It is worth noting that the 

Source

BS D1

D2 Time delay &
coincidence

Figure 2: Diagram of the HBT interferometer.
A pseudothermal beam of light is passed through a beam splitter 
(BS) and measured by two detectors D1 and D2. The time delay 
between the two detectors is controlled in this experiment, and 
the output signals produced by both detectors are correlated. This 
measurement is equivalent to the implementation of correlations of 
intensity fluctuations.

BS

D2

D1

Correlator

|1〉

|1〉

τ

Figure 3: Schematic representation of the HOM two-photon 
interference experiment.
Two single photons with a relative time delay τ are injected into 
the input ports of a 50/50 beam splitter (BS) and measured by two 
detectors D1 and D2. The signals produced by the two detectors are 
analyzed using a correlation circuit.
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bunching effect depends on the degree of indistinguish-
ability of the interfering photons. In the famous HOM 
experiment, the single-photon pairs were generated 
through spontaneous PDC (SPDC) in a source with a spec-
tral bandwidth Δω. In this case, the coincidence probabil-
ity as a function of time delay τ is given by

	
∆ω τ∝ − − 2 2

11 1 exp( ).P � (43)

At τ = 0, the two single photons are perfectly indis-
tinguishable and the HOM dip is observed. Nowadays, 
the HOM experiment represents one of the basic tools to 
control multiphoton processes. In addition, it also serves 
as a platform to test indistinguishability among photons.

2.5  �Quantum entanglement

Entanglement constitutes one of the most remarkable 
consequences of quantum mechanics. This interesting 
property of quantum mechanical systems was used as an 
argument to question the validity of quantum mechanics. 
Indeed, its origin can be traced back to 1935  when Ein-
stein, Podolsky, and Rosen (EPR) pointed out its nonlo-
cal nature [61]. The arguments presented by EPR aimed to 
demonstrate that quantum mechanics was an incomplete 
theory. In their seminal paper, EPR analyzed a system of 
two distant particles entangled simultaneously in their 
position and momentum properties. They pointed out 
that, in a system with these properties, one could perform 
a measurement of either position or momentum of one of 
the particles and infer, with complete certainty, either the 

position or the momentum, respectively, of the unmeas-
ured particle. In their emblematic “gedanken” experi-
ment, the two distant particles do not interact; thus, the 
possibility of inferring information of a distant particle 
would imply that the position and momentum of the 
unmeasured particle were simultaneous realities, leading 
to a violation of Heisenberg’s uncertainty principle. 
Remarkably, over the past 25 years, a series of systemati-
cal experimental tests have demonstrated that entangle-
ment is in fact a real property of quantum mechanical 
entities such as molecules, atoms, and photons [62–64].

Notably, SPDC offers the possibility of generat-
ing pairs of entangled photons optically [62, 63, 65]. As 
depicted in Figure 4, SPDC is a χ(2) nonlinear process in 
which one pump photon is annihilated to generate entan-
gled photon pairs [63]. In Figure 4B and C, linear momen-
tum and energy are conserved in this nonlinear process. 
As shown in Figure 4A, a pair of entangled photons is 
generated at the same crystal position; consequently, the 
photons are correlated in the variable of linear position. 
In Figure 4A and B, the conservation of linear momentum 
forces the two beams to propagate with opposite spatial 
frequencies [67]. Thus, SPDC photons are characterized 
by opposite transverse wavevectors that induce anticor-
relations in linear momentum. In Figure 4C, the energy 
conservation results in the wavelengths of the pump, 
signal, and idler photons satisfying 1/λp = 1/λs + 1/λi. These 
conditions enable the generation of photons entangled in 
multiple degrees of freedom, such as in energy and time, 
angular position, and orbital angular momentum and 
polarization [68]. Below, we discuss experiments that rely 
on these forms of entanglement.

Figure 4: Spontaneous parametric down-conversion (SPDC) process and the conservation of momentum and energy.
(A) The process of SPDC is produced by pumping a χ(2) nonlinear crystal. SPDC photons are generated at the same spatial position in the 
crystal; consequently, photon pairs are correlated in the variable of spatial position. The conservation of linear momentum shown in (B) 
forces a pair of SPDC photons to be anticorrelated in the variable of linear momentum; consequently, photons located in opposite positions 
of the down-conversion cone show nonclassical correlations. (C) The process of SPDC satisfies the conservation of energy; in this case, a 
blue photon is annihilated to create two red photons. Reproduced from Ref. [66].
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3  �Elements of plasmonics

3.1  �Classical picture

As indicated earlier, surface plasmons are surface elec-
tromagnetic waves formed at the interface between a 
metal and a dielectric due to the interaction of surface 
charges and an electromagnetic field. These waves can 
propagate along the surface of a metal (SPPs) or can be 
localized to metallic nanoparticles (LSPs). For instance, 
consider the SPP of a single planar interface between 
a metal and a dielectric with permittivities, εm and 
εd, respectively, as shown in Figure 5A and B. Solving 
Maxwell’s equations with the appropriate boundary 
conditions yields the following expression for the SPP 
wavenumber [69],

	

ε ε

ε ε
=

+0 ,m d

m d

K k � (44)

where k0 = ω/c is the magnitude of the wavevector in 
free space. K is a complex quantity because εm is generally 
a complex quantity. The real and imaginary parts of K can 
be approximated as
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where the prime and double prime symbols indicate real 
and imaginary parts, respectively. The approximation is 
valid when | | | |,m mε ε′ ′′�  which is a reasonable approxi-
mation for noble metals in the visible and near-infrared 
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Figure 5: Electromagnetic properties of plasmonic structures.
(A) Illustration of the electric field lines and surface charge distribution associated with the SPP supported by a metal-dielectric interface. 
(B) Magnitude of the electric field across the interface showing the extend of electric field confinement. The penetration depth into the 
metal (δm) and dielectric (δd) characterize the SPP mode confinement. (C) Dispersion relations of SPPs (red line) and photons (blue line). The 
wavenumber of an SPP is larger than that of a photon in the dielectric medium and can acquire large values near the resonance frequency 
asymptote, ωas. (D) Illustration of the electric field lines, E, associated with the LSP excited on a metallic nanosphere by an incident electric 
field, E0. (E) Schematic illustration of the charge distribution in a metal disk (top) and a circular aperture (bottom) due to an incident 
electric field, E0. (F) Calculated near-field distribution in the x, y-plane for a gold disk (top row) and a circular aperture (bottom row) having 
a diameter of 150 nm and a thickness of 30 nm. The calculations were carried out using the finite-difference time-domain method using a 
y-polarized plane wave excitation at a wavelength of 750 nm. The white circle indicates the position of the nanostructures.
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region of the spectrum (away from interband transi-
tions). The real part, K′, is related to the phase evolu-
tion of the SPP and hence defines its dispersion relation 
(Figure 5C). The expression for K′ predicts a significant 
increase in the SPP momentum at frequencies near the 
resonance-frequency asymptote ωas, which is the fre-
quency at which ε ε= −′ ,m d  i.e. the frequency at which the 
denominator in Eq. (45) vanishes. Also, note that because 
of their surface-wave nature, SPPs possess wavenum-
bers that are larger than those of photons in the dielec-
tric for a given frequency. Hence, momentum matching 
mechanisms, such as grating coupling or prism cou-
pling, are required to excite them with photons. In con-
trast, the imaginary part K″ is associated with the SPP 
field attenuation, which limits the propagation range of 
the wave. The propagation length of the SPP is defined 
as the distance over which the field intensity is reduced 
by a factor of e−1 and is given by = ′′�S 1 / 2 .PP K

The SPP electric field is p-polarized [electric field 
oscillation confined to (z-x) plane] and its distribution has 
the form

	
ω= ( ) − −,0, exp( ( ))exp( ),j xj zj zjE E i Kx t k zE � (46)

where the subindex j ε {m, d} identifies the medium. Here, 
we have taken z as the direction normal to the metal-die-
lectric interface and x as the propagation direction. Note 
that the fields decay exponentially away from the interface 
and have their maximum amplitude right at the interface 
(Figure 5B). The degree of confinement to the metal-dielec-
tric interface is determined by the penetration depth into 
the two media, δj = 1/kzj. Here, kzj is the normal wavevector 
component in medium j and is given by
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ε ε
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2
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zj

m d
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Near the resonance-frequency asymptote, the 
magnitude of kzj can be very large, resulting in a sub-
wavelength mode confinement. The degree of mode 
confinement is only limited by the losses of the system, 
which increase significantly near the resonance-fre-
quency asymptote.

Variants of this single-interface plasmonic structure 
described here may include metal films or stripes bounded 
by dielectrics [70, 71]. Such variants support SPP modes 
that share similar characteristics to the single-interface 
SPP discussed here. Nevertheless, the additional degrees 
of freedom associated with those structures allow them to 
support various modes with particular field symmetries 
[72–75].

For metallic nanoparticles with dimension smaller 
or comparable to the skin depth of the metal, the electric 
field can penetrate the nanoparticle and excite directly 
LSPs [69]. As these nanoparticles typically have dimen-
sions much smaller than the wavelength, their electro-
magnetic response is well described by the first-order 
dipolar contribution. Furthermore, their excitation can be 
described under the quasi-static approximation, in which 
retardation effects are neglected and a constant phase 
over the particle is assumed. Using this approximation, 
the electromagnetic response of the particle takes the form 
of a static electric dipole with a harmonic time depend-
ence [76]. The dipolar charge distribution (see Figure 5D) 
induced in the particle by the external electric field, E0, is 
described by the electric dipole moment p = αεdE0, where 
α is the electric polarizability of the particle. For the case 
of a spherical nanoparticle, one obtains [76]

	

ε ε
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ε ε

−
=

+
3 ,

2
m d

m d
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where V is the volume of the nanoparticle. In this case, 
the LSP resonance occurs at the frequency that satisfies 
the relation ε ε= −′ 2 .m d  Clearly, for the case of a spherical 
nanoparticle, the resonance frequency only depends on 
the material properties. This is not the case for other par-
ticle shapes. For instance, the electric polarizability of a 
prolate ellipsoidal nanoparticle is given by [76]
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where Lj is a function of the aspect ratio (the ratio of the 
long axis to the short axis) of the nanoparticle along the 
axis j ε {x, y, z}. Hence, its resonance frequency depends on 
the aspect ratio through Li. In general, the LSP resonance 
frequency critically depends on the shape and dimensions 
of the nanoparticle, enabling a broad tunability across the 
visible and near-infrared spectrum [77].

At the LSP resonance frequency, a large electric field 
develops in the nanoparticle due to the large polarizability. 
Similar to the SPP, the LSP fields peak at the metal surface 
and decay exponentially away from it. The field enhance-
ment factors exhibited by single nanoparticles, due to this 
resonant behavior, can vary significantly depending on 
their shapes. These range from a modest enhancement in 
gold nanospheres to an enhancement of several orders of 
magnitude in particles with sharp edges.

LSPs can also exist in subwavelength apertures con-
structed on thin metallic films. These plasmonic modes 
are similar to the LSPs supported by nanoparticles in 
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the sense that their electromagnetic response depend 
critically on geometrical factors. For example, size and 
shape of the aperture as well as the thickness of the metal 
film and the surrounding dielectric. The near fields of 
LSPs supported by planar particles and apertures can 
be qualitatively related by Babinet’s principle of comple-
mentarity [78, 79], which results in electric and magnetic 
near-fields with complementary distributions for both 
types of structures. For instance, Figure 5E shows sche-
matically the charge distribution induced by a y-polarized 
electric field, E0, on a metallic disk and a circular aper-
ture. Dipole moments with opposite directions develop in 
the nanostructures because the field lines in the metallic 
region oppose the external field E0. Figure 5F shows the 
magnitude of the main electric and magnetic field com-
ponents, Ey and Hx, of the LSPs supported by a gold disk 
and a circular aperture with the same diameter (150 nm) 
and thickness (30  nm). These results clearly show the 
complementarity of the spatial distribution of electric and 
magnetic fields [79]. For a more detailed review on the 
electromagnetic properties of plasmonic nanoholes, the 
readers are referred to Refs. [80, 81].

3.2  �Quantization of surface plasmons

Various methods to quantize surface plasmon fields have 
been proposed in the past. Elson and Ritchie [82] devel-
oped the first quantum theory for SPPs. The first micro-
scopic theory to quantize the matter field and the light 
field was given by Huttner and Barnett [83], extending the 
Hopfield approach [84] to include material losses. Also, a 
macroscopic quantization method was recently proposed 
by Philbin [85] using Green’s functions. Here, we briefly 
describe two basic quantization methods for SPPs and 
LSPs [86, 87], which start from the classical macroscopic 
description of the fields accounting for the dispersive 
nature of plasmonic material systems. We consider first 
the case of an SPP mode supported by the metal-dielectric 
interface illustrated in Figure 5A. Using Coulomb’s gauge, 
the electric and magnetic fields can be obtained from the 
vector potential, A(r, t), which can be cast in the following 
form:

	
α ω

π
= ⋅ − +∫

2

2( , ) ( )exp( )exp( ) c.c.
(2 ) K
dt z i i tK
KA r u K r � (50)

Here, K is the SPP wavevector and αK is the correspond-
ing complex amplitude associated with each of the K 
vectors. At this point, we ignore the losses of the system 
and assume that K is a real valued quantity. The effect of 

losses will be incorporated later in this procedure, render-
ing K a complex quantity as it is physically required. The 
vector, uK, which represents the plasmonic mode, can be 
written as

	 ω

 
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( )K zj
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Kik z
kL
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where L(ω) is a normalization constant with dimensions 
of length. K̂ and ẑ are unit vectors along the x and z axes, 
respectively. Now, consider a square of sides Lx and Ly in 
the x-y plane whose area, S = Lx × Ly. This leads to quan-
tized values of wavevector Kx = nx2π/Lx and Ky = ny2π/Ly, 
where nx, ny ∈ ℤ; now, Eq. (50) can be cast into a summa-
tion as

	
ω= ⋅ − +∑( , ) ( )exp( )exp( ) c.c..t z i i tK K

K
A r A u K r � (52)

Using this expression and recasting the electric and 
magnetic fields in the expression for free space energy 
density [76], u = 1/2(ε0E(r, t)2 + 1/μ0B(r, t)2), gives the total 
energy of the surface wave [86]
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Note that, for each of the modes labeled by K, the 
energy of the surface wave has the same form as that of 
the energy of a harmonic oscillator. Hence, by mapping 
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Sε ω

→k K
�  and using the Hamil-

tonian of a harmonic oscillator, we obtain the Hamiltonian  

of the system 
ω= +∑ � † †ˆ ˆ ˆ ˆ ˆ[ ].
2

H a a a aK K K KK  As in the formalism 

of the harmonic oscillator [43], âK is the annihilation and 
†âK is the creation operators as defined in Eq. 11 and Eq. 12, 

such that 〉 = + + 〉†ˆ | 1 | 1a n n nK k K k  and 〉 = − 〉ˆ | | 1 .a n n nK k K k  

The fields can now be written as operators acting on the 
eigenstate |nk⟩ as
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K
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where γ= + ×ˆ( )iK Kb K z u  and H.c is the Hermitian 
conjugate.

The effect of losses due to material dispersion 
can be incorporated into the formalism by including 
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interactions of the SPP with a continuum of bath modes 
[20]. Here, the interaction of the SPP with the bath 
modes upon propagation modifies the SPP wavevector, 
K, such that it accounts for the complex permittivity of 
the metal [20].

The quantization of LSPs in metallic nanospheres is 
carried out by considering a nanoparticle as an optical 
resonator and by finding its quantized optical modes. 
The discrete modes are identified as localized solutions 
of Maxwell’s equations [87]. For instance, the electric 
field distribution associated with the resonant modes of a 
nanosphere with permittivity εm and radius d, at position r 
with respect to its center, is given by
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where = { }ˆ ˆ ˆ ˆ, , i x y z  represents the unit vector along differ-
ent coordinates. The quantized electric field operator is
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Here, iâ  is the bosonic field operator [87] and
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is the mode volume, which depends on the dimensions 
and material properties of the nanosphere. As for the 
SPP case, the losses of the system can be incorporated 
in the quantization through the interaction of the fields 
with a reservoir of bath modes. Other more rigorous 
approaches based on Green’s function formalism have 
been proposed, enabling the quantization of surface 
plasmons in more general three-dimensional systems, 
including the effect of losses, dispersion, and material 
inhomogeneities [88, 89].

3.3  �Quantum effects in plasmonic systems

An important property of plasmonic systems is their 
capacity to enhance the spontaneous emission rate of 
quantum emitters, such as molecules or quantum dots. 
This enhancement, known as the Purcell effect, results 
from the large density of electromagnetic states existing 
in the close vicinity of plasmonic structures [90–94]. The 

Purcell enhancement factor, which is inversely propor-
tional to the mode volume, can be extremely large in plas-
monic structures because of their ability to confine the 
fields to subwavelength dimensions [95–97]. As a result, 
plasmonic systems have been recognized as important 
candidates for developing novel single-photon sources 
with enhanced efficiency [98–100]. Within this context, 
a recent analysis reported that the theoretical limit for 
photon-rate enhancement in plasmonic systems can be 
two orders of magnitude larger than those in their pho-
tonic counterparts (i.e. dielectric cavities) [101]. Indeed, 
these results together with the recent demonstration of 
room-temperature strong coupling between quantum 
emitters and LSPs [102] suggest an exciting road ahead 
for the development of efficient single-photon sources. 
Although the topic of plasmon-enhanced single-photon 
emission is quite relevant in quantum plasmonics, a 
review of this topic is beyond the scope of this work. For 
more details about this subject, we refer the reader to 
the following references [23, 95, 103–106].

It has also been demonstrated over the past decades 
that surface plasmons show exotic quantum properties 
just like photons. Remarkable examples include wave-
particle duality [107], nonlocality [108–114], entanglement 
[115, 116], tunneling [117–119], bunching and antibunch-
ing [120, 121], etc. However, the possibility of preserving 
quantum mechanical properties in scattering interactions 
among photons and plasmons has attracted particular 
attention from multiple research communities in recent 
years. As described below, this peculiar feature of hybrid 
photonic-plasmonic systems offers new mechanisms to 
control fundamental properties of quantum many-body 
systems [115, 116, 122].

The wave-particle duality is one of the fundamen-
tal properties of quantum mechanical systems. In this 
regard, plasmons have shown self-interference and 
antibunching effects that demonstrate their undulatory 
and corpuscular behaviors, respectively [107]. Further-
more, plasmons have also shown wave-particle duality 
simultaneously [120]. Last but not least, quantum tun-
neling has been observed in plasmonic systems, for 
cases in which the separation between nanoparticles 
is of the order of few angstroms. It has also been 
shown that tunneling effects can modify the optical 
response of plasmonic nanogaps in dramatic fashions 
[21]. There has been an enormous interest in exploring 
wave-particle duality and quantum tunneling in plas-
monic systems. The reader can find additional discus-
sions in the review articles by Zhu et al. [22] and by Xu 
et al. [23].

C. You et al.: Multiparticle quantum plasmonics 1253



4  �Quantum statistics in multiparticle 
photonic-plasmonic systems

4.1  �Multiphoton and multiparticle 
interactions

As illustrated in Figure 6A, multiparticle scattering can be 
controlled through electromagnetic near-field effects [32, 
33, 123–126]. Remarkably, the possibility of manipulating 
quantum systems at this fundamental level represents 
one of the most important motivations behind the field 
of quantum plasmonics and, in general, behind the field 
of quantum optics [31, 127]. Indeed, the performance of 
a significant number of quantum protocols depends on 
the control of complex quantum interactions in systems 
composed of multiple particles [128–133]. In fact, the 
future of multiple quantum photonic technologies for 
information processing depends, to an important extent, 
on the level of control of quantum effects in multiphoton 
systems [134]. In this regard, photonic-plasmonic systems 
provide a flexible platform to investigate quantum multi-
particle dynamics. The interest in these hybrid platforms 
has been triggered by recent progress in the generation 
of nonclassical multiphoton sources [32, 33, 115, 116, 
135–145]. Although, the losses in plasmonic systems 

and the low photon fluxes that characterize typical 
quantum sources of light impose challenges to the field 
of quantum plasmonics. Hitherto, these problems have 
been partially alleviated using multiple single-photon 
sources. However, there have been recent breakthroughs 
in the development of nonclassical single-photon and 
multiphoton sources. Indeed, the improvement in the 
generation and engineering of mesoscopic states of light 
have enabled the investigation of quantum properties of 
hybrid photonic-plasmonic systems at the mesoscopic 
scale. For example, in 2016, Harder et al. demonstrated a 
source for mesoscopic quantum optics with mean photon 
numbers above 20. This source used SPDC processes in 
nonlinear waveguides [146]. Later, Magaña-Loaiza et  al. 
demonstrated a tunable multiphoton source that enabled 
the engineering of quantum statistics and nonclassical 
correlations of entangled multiphoton states [147].

The large variety of scattering events that can take 
place in many-body systems of photons offers new paths 
to perform quantum information processing. Interest-
ingly, the complexity and control of underlying scattering 
events can be boosted through the enhancement of elec-
tromagnetic near-fields by means of surface plasmons. In 
general, surface plasmons offer the possibility of achiev-
ing novel light-matter interactions [127]. Below, we review 
recent research achievements along this research line. 
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Figure 6: Multiparticle scattering in hybrid photonic-plasmonic systems.
(A) Concept behind the control of multiphoton dynamics through the manipulation of electromagnetic near-fields. Interestingly, multiphoton 
interference in multiport devices can be used to investigate fundamental physics behind multiparticle scattering. (B) Summary of the 
importance of indistinguishability and the overall phase ϕ for two- and three-photon interactions. (i) Concept of indistinguishability for two 
photons. (ii) A simplified version of the HOM experiment. (iii and iv) Process of three-photon interference and the idea behind the collective 
phase ϕ, respectively. Reproduced from Ref. [123]. (C) Remarkably, these effects can be manipulated in plasmonic nanostructures through 
the engineering of metallic gratings and slits. This hybrid quantum device enables the possibility of engineering multiparticle scattering 
and consequently multiparticle interference. (D) Photon-plasmon scattering has been demonstrated in hybrid photonic-plasmonic tritters 
[(i) and (ii)]. The plasmonic tritter couples a photonic mode â to two plasmonic modes 1b̂  and 3

ˆ .b  Reproduced from Ref. [33].
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However, for the sake of clarity, we first describe underly-
ing ideas behind multiparticle interactions.

In Section 2.4, we revisited the HOM experiment, 
where two photons injected into the input ports of a 50/50 
beam splitter interfere and exhibit photon bunching. As 
illustrated in Figure 6B (i), the distinguishability of two 
photons in states |φi⟩ and |φj⟩ can be quantified through 
the inner scalar product of the two states as 

ϕ
φ φ〈 〉 =| .

i ij
i j ijr e  

Here, the modulus of rij can be interpreted as a measure of 
distinguishability between the two photons. The probabil-
ity of detecting one photon in each of the output ports of 
a beam splitter only depends on the degree of distinguish-

ability as = − 2
11

1 (1 ).
2 ijP r  In general, the argument 

ϕi ije  does 
not play a relevant role in two-photon interference. Sur-
prisingly, quantum interactions in systems with more than 
two photons cannot be exclusively described by the degree 
of indistinguishability between pairs of photons [125, 148, 
149]. In 2017, Menssen et  al. demonstrated that particle 
indistinguishability is not enough to describe multipho-
ton interactions involving more than two photons [123]. 
In this work, the team unveiled the complexity behind 
multiphoton interference in a quantum mechanical tritter, 
a multiport device with three inputs and three equally 
likely outputs. As shown in Figure 6B (iii), three-photon 
interference shows a strong dependence on the collective 
triad phase defined as ϕ = ϕ12 + ϕ23 + ϕ31 [Figure 6B (iv)]. 
Generally, three-photon interference can be described as

	
ϕ= + − − −2 2 2

111 12 23 31 12 23 31
1 [2 4 cos( ) ].
9

P r r r r r r � (59)

These quantum interactions in photonic systems can 
be controlled through plasmonic effects. As illustrated in 
Figure 6C, the series of scattering events induced by photon-
plasmon-photon conversions can be used to control global 
phases and thus multiphoton interference in quantum 
many-body systems. These ideas have been discussed in 
the context of plasmonic multiport devices in metallic slits 
(see Figure 6D). As discussed below, these mechanisms 
also offer the possibility to preserve and manipulate mul-
tiphoton coherence [121, 127, 150–154]. Later in this review, 
we will describe recent demonstrations of quantum control 
in hybrid photonic-plasmonic systems.

4.2  �Quantum statistics of photonic-
plasmonic systems

As previously discussed, plasmonic effects can be used 
to control the quantum interactions in quantum systems.  

Despite the inherent losses that characterize quantum 
plasmonic systems, properties in photon-plasmon scat-
tering  processes offer new mechanisms to exert control 
of multiparticle systems [115, 116, 136, 141]. For example, 
in 2009, Huck et  al. demonstrated that quadrature 
squeezing was preserved in the photon-plasmon-photon 
process even in the presence of linear loss and deco-
herence [137]. In their experimental setup (Figure 7A), 
squeezed light was generated in an optical parametric 
oscillator and then coupled to a gold stripe. Then, the 
scattered photons from the plasmonic setup were col-
lected and analyzed to certify squeezing. In Figure 7B, 
one can observe that, although quadrature squeezing 
is degraded, the squeezing was coherently transferred 
through the photon-plasmon-photon process. It was 
further confirmed that plasmonic interactions can be 
described by an unitary beam splitter transformation 
[20, 137].

More recently, Martino et  al. characterized the role 
that losses play in the quantum statistics of the electro-
magnetic field in plasmonic waveguides [138]. In their 
setup (Figure 7C), a type I SPDC source was used to gener-
ate entangled photon pairs. The team used one of the gen-
erated modes to excite an SPP mode in the thin metallic 
stripe waveguide. By measuring the photon number dis-
tribution of multiple output states and the second-order 
quantum coherence functions g(2)(τ) (Figure 7D), it was 
demonstrated that losses in quantum plasmonic systems 
behave similarly to that predicted by the classical theory 
of uncorrelated Markovian linear loss. Furthermore, due 
to the fact that photon-plasmon-photon processes do not 
modify the second-order coherence function g(2)(τ), it is 
possible to fabricate larger SPP waveguide structures for 
quantum control.

Undoubtedly, the phase associated to quantum states 
plays a fundamental role in multiple applications [156]. 
In the context of quantum control, the manipulation 
of sequential photon-plasmon scattering processes in 
plasmonic gratings has enabled the control of geometric 
phases in single-plasmon systems. The phase of quantum 
systems plays an important role in quantum interactions, 
particularly in interference effects [123]. In this regard, 
Daniel et  al. showed that photon-plasmon-photon pro-
cesses preserve the well-known Pancharatnam-Berry 
geometric phase [155]. This study was carried out through 
a Mach-Zehnder interferometer (Figure 7E). The aver-
aged and fitted data for different polarization states are 
shown in Figure 7F. These figures illustrate that the shifts 
of the peaks are proportional to the change in polariza-
tion, which is an indication of the conservation geometric 
phase in photon-plasmon-photon processes.
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4.3  �Preservation of entanglement in 
plasmonic systems

Entanglement is one of the most remarkable consequences 
of quantum physics [68]. In addition, it constitutes a critical 

resource for multiple applications, including quantum 
imaging [66, 157–160], quantum key distribution [161–165], 
quantum computation [166–168], and quantum communi-
cation [169, 170]. Given the potential of entanglement for 
the development of quantum technologies, it is always 

Figure 7: Experiments that demonstrate the preservation of quantum statistics in hybrid photonic-plasmonic systems.
(A) Schematic of the experimental setup used for demonstration of quadrature squeezing preservation. OPO, optical parametric oscillator; 
PPKTP, periodically poled potassium titanyl phosphate crystal; SV, squeezed vacuum. (v) Experimentally generated and transmitted 
squeezed vacuum states after a photon-plasmon-photon process. The quadrature of the electric field, absolute values of the reconstructed 
density matrices, Wigner functions, and noise power relative to the shot noise level of input and output are also presented. (A and B) 
Reproduced from Ref. [137]. (C) Schematic of the setup used for the experimental demonstration of the preservation of quantum statistics 
in plasmonic waveguides. (D) Conditional second-order quantum coherence functions g(2)(τ) for light with nonclassical and classical 
statistical properties. The dotted blue line illustrates the classical limit. Right, corresponding two-photon number distributions. (c and d) 
Reproduced from Ref. [138]. (E) Schematic of the experimental setup for plasmonic control of the Pancharatnam-Berry geometric phase. 
This is demonstrated through the interference patterns in (F). The shift of interference fringes unveils the possibility of preserving geometric 
phases in plasmonic systems. AP, aperture; BS, 50/50 beam splitter; L, lens; M, mirror; ND, neutral density filter; OB, microscope objective; 
P, linear polarizer; SP, spatial filter; Q, quarter-wave plate. (e and f) Reproduced from Ref. [155].
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desirable to investigate paths to preserve it in complex pro-
cesses involving light-matter interactions. The possibility 
of preserving quantum entanglement in photon-plasmon-
photon interactions makes quantum plasmonic systems 
a promising platform for quantum technologies [23, 171, 
172]. In this regard, Altewischer et  al. [115] initiated the 
field of quantum plasmonics with their experimental veri-
fication of the preservation of polarization entanglement 
in plasmonic systems. This seminal work demonstrated 
the possibility of preserving polarization entanglement in 
photon-plasmon-photon conversion processes. As shown 
in Figure 8A, correlated photon pairs generated through 
SPDC were transmitted through an array of holes in a 
gold film where the photon-plasmon-photon conversion 
takes place. The team certified entanglement between 
two detected light beams. This experiment demonstrated 
the possibility of generating entanglement between plas-
monic and photonic modes. Although entanglement is 

preserved, the team also showed that, when focusing one 
of the beams onto a single hole in the metallic structure, 
the degree of entanglement decreased. This was observed 
through a reduction in the visibility associated to bipho-
ton interference.

This work stimulated new fundamental research. For 
example, Moreno et al. [173] reported a quantum descrip-
tion of the underlying physics behind plasmon-assisted 
transmission. They theoretically showed that the degrada-
tion of entanglement arose from the polarization sensitiv-
ity of gold gratings. Furthermore, the scattering theory of 
plasmon-assisted entanglement transfer and distillation 
was introduced by van Velsen et al. [174]. Since then, the 
preservation of entanglement has been further explored 
by different groups under multiple experimental condi-
tions [136, 140, 175]. Fakonas et al. showed path entangle-
ment between surface plasmons [176]. Ren et  al. further 
demonstrated that entanglement based on orbital angular 
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Figure 8: Experiments demonstrating entanglement preservation in plasmonic systems.
(A) First experiment that demonstrated plasmon-assisted transmission of entangled photons. This was confirmed through the measurement 
of two-photon quantum interference after photon-plasmon-photon conversion, which demonstrated the preservation of entanglement. 
The experimental setup used a β barium borate (BBO) nonlinear crystal to generate entangled photon pairs that were passed through an 
array of gold. The generated light beams were detected by two single-photon detectors. C, compensating crystals; HWP, half-wave plate; 
IF, interference filters; L, lens; P1 and P2, polarizers; TEL, confocal telescope. Reproduced from Ref. [115]. (B) Schematic of the experimental 
setup demonstrating energy-time entanglement in a plasmonic system. APD, avalanche photodiode; DM, dichroic mirror; NL, nonlinear 
crystal; PC, polarization controller; TAC, time to analogue converter. (C) Schematic of the LR-SP waveguide. BCB, benzocyclobutene. (D) 
Experimental interference fringes produced by the setups shown in (B) and (C). Vp represents the visibility of the interference fringes after 
plasmonic conversion. Furthermore, Vnet describes the visibility in the absence of plasmonic conversion, and T is the transmittance of the 
plasmonic setup. (B–D) Reproduced from Ref. [116].
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momentum is preserved in photon-plasmon-photon pro-
cesses [139]. Last but not least, Asano et al. showed that 
plasmonic metamaterials can be used for entanglement 
distillation [177].

Particularly, in 2005, Fasel et  al. showed that 
energy-time entanglement was also persevered in pho-
ton-plasmon-photon scattering processes [116]. In their 
experiment, the preservation of energy-time entangle-
ment was demonstrated using subwavelength metal-
lic hole arrays and long-range surface plasmons (LR-SP) 
propagating in metallic waveguides. Their setup shown 
in Figure 8B used two different wavelengths of 810 and 
1550 nm. The metallic hole arrays were carefully designed 
to maximize photon-plasmon-photon conversion. In addi-
tion, the setup for LR-SP waveguide shown in Figure 8C 
was used to confirm photon-plasmon-photon scattering. 
This arrangement enabled the induction of time delays 
that are essential to test energy-time entanglement. The 
interference visibility shown in Figure 8D demonstrated 
preservation of energy-time entanglement in photon-plas-
mon-photon processes.

The experiments described above exploited quantum 
interactions among photons in plasmonic structures 
with overall sizes larger than their wavelengths λ. More 
recently, smaller metallic structures with sizes compara-
ble to λ have been used to perform quantum plasmonics. 
Li et  al. experimentally demonstrated that polarization 
entanglement can be maintained in these metallic struc-
tures [178]. Their setup shown in Figure 9A used a type 
I SPDC source and a nanoscale hybrid plasmonic wave-
guide to preserve quantum polarization entanglement. 
The generated polarization entangled two-photon Bell 
state | 1 / 2(| | )HH VVΦ+ 〉 = 〉 + 〉  was tuned to achieve an 
output fidelity of 0.932 after the photon-plasmon-photon 
conversion. Additionally, the team verified entanglement 
by performing a series of projective measurements. This 
was confirmed by the measured fourth-order quantum 
interference structure shown in Figure 9B. This work 
was further explored through a demonstration of the 
propagation of polarization entangled two-photon 
N00N states in a nanowire [179]. In their work, Chen 
et  al. generated the polarization entangled N00N state 

〉 = 〉 − 〉|N00N 1 / 2(| 2 ,0 |0 , 2 ),H V H V  which was coupled 
into a nanowire. The team verified the preservation of the 
N00N state using two-photon HOM interference shown 
in Figure 9C. The team was able to observe visibilities of 
0.737 ± 0.007 and 0.880 ± 0.013 for single- and two-photon 
N00N state input, respectively. In Figure 9D, it is possible 
to identify the doubled oscillation period produced by 
particles prepared in a N00N state, where N = 2.

Furthermore, Büse et al. demonstrated symmetry pro-
tection of quantum entanglement through the interaction 
with a single nanoaperture [180]. As shown in Figure 9E, 
the group of scientists used Bell states that were strongly 
focused on a metallic nanoaperture to demonstrate the 
potential of dissipative near-fields to preserve quantum 
coherence.

Indeed, the protection of two-photon entangled 
states based on polarization exploited the polarization 
sensitivity of a metallic nanoaperture. Interestingly, this 
simple system acts as a lossy beam splitter that endowed 
this protocol with a unique sensitivity to the relative 
quantum phase between the entangled modes [127, 181, 
182]. The experimental results that demonstrate symme-
try protection are presented in Figure 9F. The quantum 
tomography of the transmitted state suggests that the 
state |Ψ−⟩ is unaffected, whereas the state |Ψ+⟩ is mixed 
with |Ψ0⟩, where
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ˆ |0 | / .a R L

5  �Quantum interactions in quantum 
plasmonics

5.1  �Multiparticle quantum interference in 
photonic-plasmonic systems

Quantum interference has been extensively used as a 
tool to manipulate quantum mechanical systems [183]. 
Interestingly, the conditions under which multiparticle 
interference occurs can be controlled through photon-
plasmon scattering. In 2013, Heeres et al. demonstrated 
the first quantum interference experiment in a plas-
monic platform [151]. As shown in Figure 10A, the team 
used a free-space source of SPDC, a plasmonic direc-
tional coupler as beam splitter, and on-chip detectors to 
perform HOM interference. The ideal HOM dip visibility 
for their SPDC source is estimated to be V = 0.92 ± 0.01. 
The excited single plasmons interfere on the chip leading 
to HOM dips with visibilities of the order of V = 0.43 ± 0.02 
and V = 0.39 ± 0.01 for two different plasmonic devices. 
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Figure 9: Experiments that demonstrate the preservation of entanglement in plasmonic systems.
(A) Experimental setup used for polarization entanglement in a nanoscale hybrid plasmonic waveguide. In this case, one of the correlated 
photon pairs is sent to a silver nanowire, whereas the other photon partner is sent to a module for structures state tomography (QST). 
(B) Quantum interference structures observed through correlation measurements demonstrate the preservation of entanglement. Blue 
and red dots represent coincidence rates for photons projected onto different polarization states. (A and B) Reproduced from Ref. [178]. 
(C) Experimental setup for the demonstration of quantum plasmonic N00N states in a silver nanowire. The generated N00N state is 
transmitted and preserved in the nanowire. The transmitted photons are then forced to interfere in an HOM setup (ii). The arrangement 
used to measure the de Broglie wavelength of biphotons (iii). The transmitted two-photon entangled state is characterized by quantum 
state tomography (ii). (D) Two-photon coincidence counts and single-photon counts of the plasmonic N00N state transmitted in (C). The 
red curve represents the two-photon coincidence, whereas the blue curve represents single-photon counts. (C and D) Reproduced from 
Ref. [179]. (E) Schematic of the experimental setup for the symmetry protection of entanglement in a single nanoaperture. (F) Quantum 
tomography of the state |Ψ+⟩ and |Ψ−⟩ with and without the nanoaperture interaction. (E and F) Reproduced from Ref. [180].
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Typically, the asymmetric losses in photonic-plasmonic 
systems will decrease the second-order quantum inter-
ference visibility. However, careful symmetric designs 
of plasmonic nanostructures enables one to preserve 
indistinguishability that leads to high visibilities. As dis-
cussed in Section 2.4, the visibility is determined by the 
degree of indistinguishability between two photons. In 
this case, reduced visibility was attributed to the exci-
tation of long-range plasmon modes, which are loosely 
confined plasmonic modes [184].

Despite the fundamental relevance of this experi-
ment, the nonclassical nature of the interference patterns 
remains unclear. This is due to the fact that the measured 
interference patterns did not exceed a visibility of 50%. 
Nevertheless, this pioneering experiment motivated the 
development of hybrid quantum networks on chip [185, 
186]. Later in 2014, Fakonas et al. used a dielectric-loaded 
SPP waveguide (DLSPPW; Figure 10C) to achieve an HOM 
visibility of 0.932 ± 0.01 [152]. In addition, Martino et al. 
also certified the nonclassical nature of interference 
effects in plasmonic systems [121]. Similar to Ref. [151], 
Martino et  al. used an X-shaped plasmonic beam split-
ter to demonstrate an HOM visibility of V = 0.72 ± 0.13 
(see Figure 10D). These works were followed by multiple 
experiments that aimed to validate quantum interference 
in a large variety of plasmonic platforms. For example, 
Cai et al. observed a visibility of 0.957 ± 0.089 in a similar 
DLSPPW platform (Figure 10E) [153]. Recently, Fujii et al. 
observed a visibility of 0.843 ± 0.091 in long-range SPP 
(LRSPP) waveguides (Figure 10F) [154]. These beauti-
ful experiments indicate that, although surface plas-
mons are formed from photons (bosons) and electrons 
(fermions), they indeed exhibit bosonic behaviors in 
the limit of many-electron regimes. Moreover, quantum 
plasmonic systems have shown potential for quantum 
metrology, this due to the importance of quantum inter-
ference for metrology. In fact, quantum plasmonic tech-
nologies offer a solid platform to implement quantum 
metrology on chip. Interestingly, the additional quantum 
interference paths, provided by photon-plasmon scatter-
ing processes, have been used to demonstrate coales-
cence and anticoalescence of a pair of bosons. In 2016, 
Dheur et  al. experimentally verified the wave-particle 
duality for a single surface plasmon [150]. This experi-
ment made use of asymmetric 11-groove gratings as those 
illustrated in Figure 10G. By measuring the intensity cor-
relation function of heralded SPPs, they observed single 
SPPs antibunching in the single-photon-level regime, 
showing the particle-like nature of SPPs. Moreover, they 
observed single SPP interference, which certified the 

wave-like properties of the SPP. This experimental work 
also revealed fundamental similarities between plas-
mons and photons.

5.2  �Controlling quantum multiparticle 
interactions

As previously discussed, the control of quantum inter-
ference in plasmonic systems has been improved 
through the use of multiple degrees of freedom of 
photons and SPPs. Although surface plasmons are well 
known to suffer from losses, the underlying scatter-
ing processes among photons and plasmons provide 
additional quantum interference paths that are of fun-
damental importance for controlling decoherence of 
quantum systems.

Until recently, researchers started to exploit the 
design of nanostructures as well as their inherent losses to 
control scattering processes [30, 172, 187–189]. Inspired by 
their previous research [150], Vest et al. recently modified 
the reflection and transmission coefficients of a surface 
plasmonic beam splitter (SPBS) to demonstrate coales-
cence and anticoalescence of single SPPs [127]. As shown 
in Figure 11A, the change in the width w, metal gap g, and 
groove depth h led to different reflection and transmis-
sion factors r and t. Furthermore, the parameters r and t 
provide a unique control of the phase difference between 
the reflected and transmitted plasmons. Remarkably, the 
phase in the system leads to exotic interactions that were 
measured through the implementation coincidence meas-
urements P(1, 1). Indeed, the coincidence detection prob-
ability can be modeled as

	 = + + ℜ4 4 2 2(1,  1) | | | | 2 ( ) .P t r t r I � (61)

where 2 2 2 2 2 22 ( ) * * ,t r t r t rℜ = +  and I is the overlap between 
two particles’ wave packets, similar to the modulus of 
rij described in Figure 6B (i). When two particles’ wave 
packets overlap (I = 1), and when the SPBS is 50/50 (t = ± ir 
and 1/ 2t = ), the coincidence P(1, 1) = 0.

In this case, the completely vanished coincidence 
resembles the HOM interference effect discussed in 
Section 2.4, where two single photons coalesce on a loss-
less beam splitter. Additionally, when the two particles’ 
wave packets are independent (I = 0), the coincidence 
probability resembles the classical case, where

	
= +4 4

cl (1, 1) | | | | .P t r � (62)
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For the case in which |t | = | r | = 1/2 and t = ± r, the 
coincidence probability P(1, 1) = 2Pcl(1, 1). This suggests 
that, instead of getting a dip in the coincidence prob-
ability, one would instead get a peak, which indicates 
the anticoalescence of SPPs. As shown in Figure  11B, 

two samples of SPBS exhibit coalescence and anticoa-
lescence of SPPs. Particularly, this experiment dem-
onstrated that, although the surface plasmons are 
typically treated as bosons, they can exhibit fermionic 
properties.

10 µm
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Detection
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C

F G

D E
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Figure 10: HOM interference with different plasmonic structures for beam splitters.
(A) On-chip HOM interference with single plasmons. The team used photon pairs generated through SPDC to excite single plasmons that 
were forced to interfere in a plasmonic directional coupler. The scanning electron microscope (SEM) image of the gold plasmonic directional 
coupler device is also shown. (B) HOM interference dip of the photon pair source and quantum interference traces of single plasmons in two 
devices. (A and B) Reproduced from Ref. [151]. (C) DLSPPWs patterned by polymethyl methacrylate (PMMA) used in Ref. [152]. Reproduced 
from Ref. [152]. (D) Optical image of the plasmonic beam splitter used in Ref. [121]. The coupling and decoupling gratings of the plasmonic 
beam splitter consist of 11 ridges. Reproduced from Ref. [121]. (E) SEM image of part of a typical plasmonic DC structure used in Ref. [153]. 
Reproduced from Ref. [153]. Reproduced from Ref. [154]. (F) Microscope image of the fabricated LRSPP device used in Ref. [154]. (G) SEM top 
view of the photon-to-SPP launcher used in Ref. [150]. Reproduced from Ref. [150].
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Additionally, single plasmons can also modulate 
spatial coherence of optical fields [190–195]. Using 
this feature, Li and Pacifici recently achieved continu-
ous modulation of the degree of spatial coherence with 
amplitudes ranging from 0 to 80% [31]. By varying the 
slit’s separation, wavelength, and polarization of the 
incident light beam, they demonstrated the possibil-
ity of transforming incoherent optical fields to partially 
coherent fields and vice versa. As shown in Figure 11C, 
surface plasmons are generated in a metallic double-
slit structure when this is illuminated by light polarized 
along the incidence plane. These near fields induce a 
change in the interference pattern formed in the far 
field of the double slit. These interesting effects dem-
onstrated that, despite the losses in metallic nano-
structures, plasmons can be used to enhance spatial 
coherence of optical fields. Interestingly, the gratings 
in plasmonics systems can induce phase shifts that can 
be used to control quantum interactions. Undoubtedly, 
this possibility enables the control quantum many-body 
systems of photons.

6  �Quantum plasmonic devices 
and networks for multiparticle 
systems

The experimental realization of multiphoton quantum 
protocols relies on the fundamental tenants of quantum 
mechanics. Interestingly, there have been recent break-
throughs in physics that have unveiled the existence of 
novel quantum processes [32, 196]. Naturally, these new 
interactions have extended our understanding of funda-
mental principles of quantum mechanics such as super-
position and particle indistinguishability. For example, 
Born’s rule bounds the complexity of any effect involving 
superpositions of an arbitrary number of wavefunctions 
to a sum of ters denoting the interference between pairs of 
wavefunctions. Thus, in accordance with Born’s rule, the 
interference pattern obtained in a three-slit experiment 
can be described by the following probabilities

	
= + + − − − ,ABC AB BC AC A B CP P P P P P P � (63)

Figure 11: Control of quantum multiparticle interactions.
(A) (i) SEM image of an integrated plasmonic beam splitter. (ii) Cross-section diagram of the integrated plasmonic beam splitter showing 
the photon-plasmon-photon process. The photons are converted to plasmon on the left, then launched into the plasmonic beam splitter 
(enclosed by black dashed line), and converted back into photons in the silica substrate. (iii, inset) Grating parameters that are used to 
control the transmission and reflection of photons in the plasmonic beam splitter. (B) Experimental observation of the plasmonic HOM 
coalescence/anticoalescence effects. (A and B) Reproduced from Ref. [127]. (C) Control of spatial coherence through surface plasmons in a 
metallic slit. Reproduced from Ref. [31].
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where the slits are denoted by letters A to C. Note that 
Eq. (63) does not include a probability term that involves 
three slits but is entirely described by probabilities involv-
ing only one and two slits. Surprisingly, it was recently 
predicted that a particle in a three-slit experiment has a 
finite probability of traveling forward through one slit, 
then loop around and travel back through another slit, 
and then loop around again and travel forward through 
a third slit [32]. In general, the probability of observing a 
photon following a trajectory such as the one depicted in 
Figure 12A is extremely small. Such an exotic trajectory 
would require the occurrence of unlikely scattering events 

in the vicinity of the slits. Interestingly, these exotic inter-
actions could lead to an apparent violation of Born’s rule 
and consequently of the superposition principle.

In 2016, Magaña-Loaiza et  al. observed looped tra-
jectories of photons for the first time. The team found out 
that looped trajectories exist due to near-field effects and 
that these can be amplified through the excitation of SPPs 
in metallic slits. In addition, they confirmed the validity 
of the superposition principle. More specifically, it was 
demonstrated that strong confinement of the electro-
magnetic field in the vicinity of the slits produces a dra-
matic increase in the probability of occurrence of looped 

Figure 12: Hybrid photonic-plasmonic multiport devices.
(A) Looped and straight trajectories of photons in a three-slit interferometer. (B) Magnitude of the Poynting vector P in the vicinity of 
metallic slits for a case in which a single slit is illuminated with photons polarized along the x-direction. (C) Measured far-field distributions 
of single photons for the case studied in (B). The appearance of fringes is attributed to interference among photons traveling in straight 
and looped trajectories. (D) Parameter κ, which quantifies the complexity of the process. (A–D) Reproduced from Ref. [32]. (E) Photon-
plasmon scattering processes in a plasmonic tritter and the schematic diagram of the triple-slit structure when each slit is a tritter. (F) 
Far-field interference patterns from the three different slit structures. Only the photons with y polarization excite SPPs (green), whereas no 
interference occurs for x polarization (red). (E and F) Reproduced from Ref. [33].
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trajectories. In general, these fields exist in the vicinity of 
any structure. However, their contribution to other physi-
cal processes is always negligible, thus rendering exotic 
effect such as looped trajectories. Furthermore, Magaña-
Loaiza et  al. discovered that such exotic dynamics lead 
to more complicated interference processes that require 
sophisticated applications of the superposition principle.

In the experiment, they used the polarization of 
single photons to control the strength of near-fields in 
the vicinity of slits, in a gold film, through the excita-
tion of surface plasmons. As shown in Figure 12B, the 
exact solution of Maxwell equations predicts curvy tra-
jectories for the Poynting vector when one of the slits is 
illuminated by photons polarized along the x-direction 
but not for those polarized in the y-direction. This due 
to the strong electromagnetic near-fields confined in the 
former case. In fact, the geometry of the slits allows for 
the design of specific looped trajectories. Interestingly, 
this near-field coupling produces fringes in the far-field. 
As shown in Figure 12C, this effect enables the use of 
near-fields to induce or destroy spatial coherence. This 
is an example in which dissipative near-field dynamics 
are exploited to improve coherence. The contributions 
from looped trajectories were quantified through the 
parameter κ, and this parameter is expected to be zero 
for a situation in which near-fields are negligible and dif-
ferent from zero if the contributions from near-fields are 
significant, see Figure 12D.

In addition, the complex photon dynamics observed 
in the three-slit structure described above shows enor-
mous potential to control interference in quantum net-
works. It was recently demonstrated by Safari et al. that a 
quantum mechanical tritter can be implemented through 
a single plasmonic slit [33]. In addition, they developed 
a technique to characterize quantum processes in plas-
monic networks. Remarkably, the robustness of this tech-
nique enabled the first measurement of the phase shift 
acquired by single photons participating in photon-plas-
mon scattering processes. In contrast to Feynman’s path 
integral formalism, this technique enables the practical 
design and characterization of complex plasmonic net-
works for multiparticle applications in quantum informa-
tion science.

7  �Conclusions
The rapid development of quantum plasmonics has 
enabled new platforms to prepare quantum many-body 
systems in complex superpositions and controlling their 

evolution. The combination of photonic with plasmonic 
systems has opened up new alternatives to implement 
control on multiparticle quantum systems. The underly-
ing scattering processes among photons and plasmons 
provide additional quantum interference paths that are 
of fundamental importance for controlling quantum 
systems. In addition, the lossy nature of plasmons 
offers additional mechanisms for controlling dissipative 
quantum dynamics through the suppression of environ-
mental decoherence; this possibility represents one of the 
main goals of quantum optics. Last but not least, quantum 
plasmonics has unveiled the existence of exotic quantum 
interactions, which have extended our understanding of 
fundamental quantum dynamics. All of these new phe-
nomena have triggered interests in the development of 
hybrid quantum networks for applications in quantum 
sensing, quantum metrology, quantum simulation, and 
information processing.
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