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Abstract: A single photon can be coupled to collective
charge oscillations at the interfaces between metals and
dielectrics forming a single surface plasmon. The electro-
magnetic near-fields induced by single surface plasmons
offer new degrees of freedom to perform an exquisite
control of complex quantum dynamics. Remarkably, the
control of quantum systems represents one of the most
significant challenges in the field of quantum photon-
ics. Recently, there has been an enormous interest in
using plasmonic systems to control multiphoton dynam-
ics in complex photonic circuits. In this review, we dis-
cuss recent advances that unveil novel routes to control
multiparticle quantum systems composed of multiple
photons and plasmons. We describe important proper-
ties that characterize optical multiparticle systems such
as their statistical quantum fluctuations and correlations.
In this regard, we discuss the role that photon-plasmon
interactions play in the manipulation of these fundamen-
tal properties for multiparticle systems. We also review
recent works that show novel platforms to manipulate
many-body light-matter interactions. In this spirit, the
foundations that will allow nonexperts to understand
new perspectives in multiparticle quantum plasmonics
are described. First, we discuss the quantum statistical
fluctuations of the electromagnetic field as well as the
fundamentals of plasmonics and its quantum properties.
This discussion is followed by a brief treatment of the
dynamics that characterize complex multiparticle inter-
actions. We apply these ideas to describe quantum inter-
actions in photonic-plasmonic multiparticle quantum
systems. We summarize the state-of-the-art in quantum
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devices that rely on plasmonic interactions. The review is
concluded with our perspective on the future applications
and challenges in this burgeoning field.
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1 Introduction

Plasmonics studies the science and applications of
surface plasmon polaritons (SPPs), which are coupled
excitations comprising a charge density wave at the
surface of a metal and an electromagnetic field. SPPs are
optical surface waves that can propagate along the inter-
face between a metal and a dielectric. These surface waves
can also exist in metallic nanoparticles, where they take
the form of standing excitations localized to the nano-
particle and are referred to as localized surface plasmons
(LSPs). The remarkable properties of plasmonic systems,
such as subwavelength field confinement [1, 2], large field
enhancement [3-5], and large sensitivity to the surround-
ing environment [6-9], have been exploited for a variety of
applications, including biochemical sensing, nanoscopic
lasers, nonlinear nanophotonic devices, and optical
metamaterials [10-19]. Surface plasmons (as we will refer
collectively to as both SPPs and LSPs) behave similar to
bosons, and their classical properties can be described by
Maxwell’s equations with the appropriate boundary con-
ditions. However, their intriguing quantum properties are
revealed, for instance, when the coupled excitation occurs
at the single-photon level [20] or in metallic nanostruc-
tures whose dimensions lead to quantum behavior of the
charge density through quantum size effects [21-23].
Recently, there have been efforts to achieve a new
degree of control of quantum systems through the manip-
ulation of electromagnetic near-fields via surface plas-
mons [24-26]. The advancement in fabrication techniques
and the availability of powerful computers for simulation
have enabled strong light confinement to induce novel
light-matter interactions, in nanostructures, which cannot
be achieved in traditional free-space quantum optics
[1, 2, 12, 27-29]. This kind of platforms offers the possibility
of using near-field effects to control scattering processes,
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coherence, the propagation direction of light, and exotic
light-matter interactions at the level of a single particle
[30-33]. Although surface plasmons are known to suffer
from losses, the underlying scattering processes among
photons and plasmons provide additional quantum inter-
ference paths that can be used to control quantum mechan-
ical systems. Indeed, the lossy nature of surface plasmons
offers additional mechanisms for controlling dissipative
dynamics behind decoherence. These possibilities have
opened up new research directions in which the quantum
properties of plasmons are used to manipulate many-body
systems of photons in applications ranging from quantum
sensing to quantum networks [1, 2, 12, 27, 33-41].

We start our review with a discussion on the
quantum properties of photonic and plasmonic systems.
In Sections 2 and 3, we describe the quantum proper-
ties of plasmonic fields that have been used to control
multiparticle systems. In Section 4, we review the recent
findings related to the preservation of quantum statistics
in plasmonic systems. We then discuss recent progress
on quantum control through the use of electromagnetic
near-fields in Section 5. A review of quantum hybrid
devices that use nonclassical evanescent near-fields
will be presented in Section 6. Finally, we conclude our
review by providing the reader with the most representa-
tive challenges in the field of multiparticle quantum
plasmonics.

2 Fundamentals of quantum optics

2.1 Quantum properties of the
electromagnetic field

In this section, we review the quantization of Maxwell’s
equations. The reader can find additional discussions
and details in Refs. [42-45]. Our treatment assumes the
absence of sources of radiation and vacuum propagation
only, where Maxwell’s equations read as

oB
VXE = —,

ot

1 0E
VxB = ——,

c* ot
V-B =0,
V-E = 0. 6))]

Here, c is the speed of light in vacuum and E and B
represent the electric and magnetic fields, respectively.
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Then considering a one-dimensional cavity of length
L with perfectly conducting walls, we obtain the single-
mode field solution,

E.(z.)= /zv%o(t)sin(kz), @

where we have taken the wave’s propagation along the
z direction and polarization along the x direction. More-
over, V represents the effective volume of the cavity and
Q(t) defines a canonical position. In addition, here k and
o are the wavenumber and frequency of the mode, respec-
tively. As the one-dimensional boundary condition must
be met, where k=jz/L(j=1, 2, 3, ...), the magnetic field in
the cavity is

f;:z %cos(kz). 3)

0

1
By(Z, t):?

Then, the classical field energy of the single-mode
field, i.e. the Hamiltonian H, is given by

H=1 iBZ+eOE2 dV:l(p2+w2q2), (4)
27\ u, 2

where p=g; these are canonical variables for classical
systems. Then, it is clear that the single-mode field is
equivalent to a harmonic oscillator of unit mass. To quan-
tize the single-mode field, one can then introduce the
canonical commutation relation,

(g, p]=in, (5)

where h=h/2z. Then, by convention, we introduce the
annihilation @ and creation @' operators

o 1 ~  n
=, [—— ) s 6
a 4/2hw (wg+ip) (6)

v 1

“\ 27 (0g—ip). @)

a

The annihilation operator a and the creation operator
a' satisfy the commutation relation

[a,a']=1. (8)
Therefore, the Hamiltonian can be written as

N a1
H=ha)(a a+2j. )
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This description enables us to quantize the
electromagnetic field.

2.2 Quantum states of light

The annihilation and creation operators can be used to
describe quantum states of light. Remarkable examples
include Fock states, coherent states, squeezed states, and
thermal states. The possibility of preparing light in these
states has been extensively used to prepare many-body
systems of photons.

2.2.1 Fock states

We will start this section by describing a particular family
of nonclassical states of light known as Fock or photon
number states. These are eigenstates of the Hamiltonian
H, and we denote them as [n). In this case, n represents
the number of photons in a single mode of the electromag-
netic field. Interestingly, Fock states have a well-defined
number of particles. Thus, we can define the particle
number operator as i=da'd, which satisfies
n|ny=n|n). (10)
Moreover, the action of the creation and annihilation
operators on the Fock state |n) is given by

a'|n)y=vn+1|n+1), (11)
a|ny=-/n|n-1). (12)

The number state |n) can be obtained from the vacuum
state |0) as

@y

m="0

|0). (13)

From Eq. (13), we can also derive some properties of
these quantum states. Fock states are orthonormal:

(nlmy=6,,, (14)
and the Fock state basis is complete

Y Inynl=1. (15)

n=0
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2.2.2 Coherent states

Coherent states can be used to describe photons in an
ideal laser beam. These are quantum mechanical states
with classical noise properties [42]. The definition of a
coherent state |«) is given by the annihilation operator

alay=ala). (16)

Therefore, a coherent state is an eigenstate of the
annihilation operator. Similarly to Fock states, coherent
states form a complete set of basis. Thus, one can repre-
sent coherent states in the number basis as

la)= EXP(—IGIZJZ(W

It is worth noting that coherent states do not have a
definite photon number. Rather, their photon number
follows a Poissonian statistical distribution,

17)

e |a |2"

P(n)=e ,
n!

(18)

with standard deviation of An=|«|=+/(n). Hence, the
average photon number of coherent states is

(My=(ald'alay=|al. (19)

Moreover, coherent states have equal uncertainties in
both quadratures X ,and X ,, Where

- - 1
(AX)))=((AX,)")= W (20)
Here, X \ and X’z are defined as
- a+a'
X = 5 (21)
- a-a'
X = 22
= 22)

2.2.3 Squeezed states

Squeezed states represent an important family of nonclas-
sical states that have been extensively used for quantum
sensing [46-52]. This is due to the possibility of reducing
quadrature fluctuations beyond those that character-
ize states with classical noise properties [53]. Generally,
squeezed states can be generated through parametric
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processes in nonlinear materials, including parametric
down-conversion (PDC) [54] and four-wave mixing [55].
For sake of completeness, we describe single-mode
squeezed vacuum states, which could be expanded in the

Fock state basis as
it [ e’ tanh rJ |2n),

(23)

0.6 -
10,8)= ,/coshrz

where r is the squeezing parameter and 6 represents the
angle in the quadrature space. Another relevant squeezed
state is the two-mode squeezed vacuum (TMSV) state,
which is given by

| §>ab

Z( 1)"e”tanh"r[n,n),,. (24)

cosh

The average photon number in each mode of the
TMSYV state is given by

(R,)=(A,)=sinh’r. (25)

Furthermore, the photon number fluctuations of
TMSV states can be described as

(AR ) =((AR, ) = %sinhz(Zr), (26)

consequently, both modes of TMSV states exhibit super-
Poissonian photon statistics.

TMSV states cannot be written as the product of
states describing photons in modes a and b. Instead,
these states exhibit nonclassical correlations between
the two modes. We can see in Eq. (24) that photons in
the two modes show perfect photon-number correlations
and are entangled. As described below, these unique
properties have been used in photonic and plasmonic
systems. If the squeezing r is weak, then the prominent
terms in Eq. (24) are vacuum state [00),, and the bipho-
ton state [11) ,. For this reason, TMSV states have been
used as single-photon sources, where one mode is used
as a heralding mode, whereas the other mode is used as
the source of single photons.

2.2.4 Thermal state

Now, we will focus our attention to the description of
thermal states. This family of states describes common
light sources such as sunlight. These sources of light
are characterized by classical noise properties that can
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be mathematically described by statistical mixtures of
number states as

Pu= ZO(M] |m)¢nl.

Here, n represents the mean photon number of the
thermal field. Furthermore, the photon number fluctua-
tions of the thermal state can be described as

((An)*)=(n*)—(n)’ =n+n",

@27)

(28)

which is larger than the mean photon number n. Thus,
thermal states show super-Poissonian photon statistics.

2.3 Classical and quantum coherence

The advent of the laser gave an enormous impulse to
the development of the theory of optical coherence [56].
Nowadays, photonic technologies depend to an important
extent on our ability to manipulate the coherence proper-
ties of the electromagnetic field. In this regard, plasmonic
systems have been extensively used to engineer the spatial
and temporal properties of photons. In this section, we
provide a brief review of the concept of spatial coherence,
a property that will be used in several parts of this review.
We illustrate this concept through the famous Young’s
two-slit experiment (see Figure 1).

The double-slit experiment was introduced by Thomas
Young to illustrate the wave nature of light. This beautiful
experiment has also been used to quantify spatial coher-
ence of light. We show a simplified version of this experi-
ment in Figure 1. We assume that a double-slit structure is
illuminated with a quasi-monochromatic source of light.

Source

Figure 1: Schematic of Young’s double-slit setup.

Here, r, and r, represent the distances from the source to the
upper and lower slits, respectively. The distances from the upper
and lower slits to the detector D are represented by d, and d,,
respectively.
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At time ¢, the total electric field at the detector E (r, ) is
given by

E (r,t)=aE(r, l‘l)eik"d1 +a,E(r, tz)eikodz, (29)

which is the sum of the field amplitudes E(r, t,) and E(r,,
t) produced by each of the slits. Here, t,=t-d /c and
t,=t-d,/c represent the times at which the photons leave
the slits, and k,=w /c is the wavenumber in vacuum. The
values for a, and a, are defined by the geometry of the
slits. Then, the intensity I, measured by the detector D is
given by

I(r) =(E* (r, t)E_(r, t))
=a12[1(r1’ t1)+a2212(r2’ tz)

—ik (d —d.)
01 2
+aal(r,r,t,t)e +c.c.,

(30)
where I =(E*(r, t)E(r,, t)) and L=(E*(r,, t )E(r,, t,)). The
notation (---) represents an ensemble average. These
quantities can be used to introduce the mutual coherence
function

I, r, t, t)=(E*(r, t)E@, t,)). €))

Indeed, it is possible to express Eq. (30) as

I,(r)=(E* (r, )E,(r, t))
=al(r, t)+aL(r, t,)+2]a |la,|Rell(r, 1, t, t,)].

(32)

The first two terms in Eq. (32) are transmission contri-
butions from the first and second slits, respectively. Fur-
thermore, the last term in Eq. (32) describes interference.
The intensities I(r,, t) and L(r,, t,) provide information
about self-field correlations. These can be described by
the functions of first-order coherence T'(r, r,, ¢, t) and
I'%r,r,t, t). Similarly, the mutual-field correlations can
be described by the function of first-order coherence I'(r,,
I, b tz). It is worth noting that the interference fringes are
formed when the length of the spatial coherence of the
illuminating beam is larger than the separation between
the slits. In other words, interference fringes are produced
when the properties of light are similar at the spatial loca-
tions defined by the two slits. The quality of the formed
fringes can be quantified through Rayleigh’s definition of
fringe visibility,

v = (Imax - Imin) / (I + Imin)’ (33)

max

whereI andI  are the maximum and minimum inten-
sity values in the interference pattern, respectively. The
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visibility Vis equal to zero for incoherent sources. Further-
more, V=1 describes a coherent source. Also, sources of
light characterized by visibilities in the range 0 <)V <1 are
considered partially coherent.

A quantum formulation of coherence can be con-
structed using similar ideas to those described above. In
this regard, we introduce the general first-order correla-
tion function [42, 44, 45],

GO(r, 1, t, ) =Tr{pE (1, t JEX(r,, t,)}, (34)

where ) is the density matrix of a quantum state, and
E™ s the electric-field operator and £ =[E™”]'. In addi-
tion, the normalized first-order correlation function is

defined as

G“)(Tl, r, tl’ tz) )
rl’ tl’ tl)G(l)(rz’ rz’ tz’ tz)]l/z

g, 1, t,t,)= (35)

6" (r,

As discussed above, the first-order coherence func-
tion can be used to determine the spatial coherence of the
electromagnetic field. However, additional information
can be gained through the implementation of intensity
correlations. In this regard, in 1956, Hanbury Brown and
Twiss (HBT) performed a novel interference experiment
through the use of measurements of intensity correlation
[57]. The original HBT stellar interferometer was designed
to determine diameters of stars [58]. This experiment used
two detectors located at different positions on Earth that
collected light produced by independent sources on the
disc of a star.

A simplified schematic of the HBT experiment is
shown in Figure 2. Here, two detectors D, and D, are placed
at the same distance from the beam splitter. The setup
measures intensity correlations as a function of the time
delay between the signals generated by the two detectors.
Here, the coincident count rate is given by

C(t,, ) =(I(t)I(E,)), (36)
where I(t) and I(t,) are the intensities measured by the two
detectors D, and D,. The generic function for second-order
coherence is defined as

T9(t, t,)=(E"(t )E(t )E"(t,)E(t,)) (37)
which describes a statistical average of the product
of intensities associated to the fields E(t) and E(t)). In
general, the fields are detected at two different spatial and
temporal positions. For practical purposes, we use the
normalized version of the classical second-order coher-
ence function



1248 =— C.You et al.: Multiparticle quantum plasmonics

BS D,
- N >
% >
Source
D
2 Time delay &
coincidence

Figure 2: Diagram of the HBT interferometer.

A pseudothermal beam of light is passed through a beam splitter
(BS) and measured by two detectors D, and D,. The time delay
between the two detectors is controlled in this experiment, and

the output signals produced by both detectors are correlated. This
measurement is equivalent to the implementation of correlations of
intensity fluctuations.

_(ET(t)E(t)E (t))E(,))
(E"(t)E(t))’

Y2 (x) , (38)

where 7=¢ —t, is the time delay between the two light
beams, and it is smaller than the coherence time of the
source.

Similar to the first-order quantum coherence function,
we can introduce the second-order quantum coherence
function [42, 44, 45],

G2(t,, t,; b, t)=Tr{PEV(t )EQ (¢ )EV(L,)EV (¢}, (39)
and the normalized second-order quantum coherence
function, g@, is given by

(w3} .
Gt tst,t)
(0] () :
G"(t,, t)G"(t,, t,))

g2, t;t,t)= (40)

Notably, for a single-mode field, it is possible to
reduce Eq. (40) to

(AR)) ()

O(r) =148 i "
go()=1+ T (41)

We can observe that Eq. (41) does not depend on the
time difference 7. The second-order quantum coherence
function thus becomes a powerful tool to probe the under-
lying statistical properties of light.

It is worth noting the values of g?(0) for different
light sources. For an attenuated laser, which is described
by coherent states |«), g?(0)=1. Furthermore, a single-
mode thermal state p, is characterized by g?(0)=2.
Indeed, any classical electric field satisfies g®(0)>1.
For photon number states (Fock states) represented by
|n), for a situation in which n>1, it can be shown that
g@(0)=1-1/n. Particularly, for a single-photon state [1),
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one expects g?(0)=0. By comparing the aforementioned
examples, we conclude that the measurement of g® can
be used to characterize nonclassical properties of light
[59]. Later in this review, we will discuss how recent work
on quantum plasmonic relies on the measurements of
first- and second-order quantum coherence.

2.4 Hong, Ou, and Mandel (HOM)
interference

In 1987, Hong, Ou and Mandel, unveiled the fundamental
physics behind bosonic interference through an emblem-
atic experiment that cannot be explained using the clas-
sical theory of light [60]. As illustrated in Figure 3, in this
experiment, two indistinguishable photons are injected
into the input ports of a beam splitter. The pair of photons
is described by the state |1, 1), =&:ﬂl§; |0, 0), , where d
and Bi*n denote the two modes of the injected photons. Fol-
lowing the transformation of a 50/50 beam splitter, we
have

)ia' , +b!

out

)10, 0)

out out out

BSl R N
11,1), —>§(a* +ib"

+b b

out  out

)10, 0),, (42)

out out

It
:7(a+ at
2

+]0, 2) ).

out

-L(20
5020,

According to Eq. (42), the two interfering photons are
expected to emerge through the same output port of the
beam splitter if these were simultaneously injected. Thus,
one should observe photon bunching and the absence of
simultaneous photon events. It is worth noting that the

11)

5

v

TR

BS

\ 4
e,

Figure 3: Schematic representation of the HOM two-photon
interference experiment.

Two single photons with a relative time delay 7 are injected into
the input ports of a 50/50 beam splitter (BS) and measured by two
detectors D, and D,. The signals produced by the two detectors are
analyzed using a correlation circuit.

Correlator
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bunching effect depends on the degree of indistinguish-
ability of the interfering photons. In the famous HOM
experiment, the single-photon pairs were generated
through spontaneous PDC (SPDC) in a source with a spec-
tral bandwidth Aw. In this case, the coincidence probabil-
ity as a function of time delay 7 is given by
P, o<1-exp(—-Aw’t?). (43)
At =0, the two single photons are perfectly indis-
tinguishable and the HOM dip is observed. Nowadays,
the HOM experiment represents one of the basic tools to
control multiphoton processes. In addition, it also serves
as a platform to test indistinguishability among photons.

2.5 Quantum entanglement

Entanglement constitutes one of the most remarkable
consequences of quantum mechanics. This interesting
property of quantum mechanical systems was used as an
argument to question the validity of quantum mechanics.
Indeed, its origin can be traced back to 1935 when Ein-
stein, Podolsky, and Rosen (EPR) pointed out its nonlo-
cal nature [61]. The arguments presented by EPR aimed to
demonstrate that quantum mechanics was an incomplete
theory. In their seminal paper, EPR analyzed a system of
two distant particles entangled simultaneously in their
position and momentum properties. They pointed out
that, in a system with these properties, one could perform
a measurement of either position or momentum of one of
the particles and infer, with complete certainty, either the

Pump

Type-| /

x%crystal

Spontaneous parametric down-conversion
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position or the momentum, respectively, of the unmeas-
ured particle. In their emblematic “gedanken” experi-
ment, the two distant particles do not interact; thus, the
possibility of inferring information of a distant particle
would imply that the position and momentum of the
unmeasured particle were simultaneous realities, leading
to a violation of Heisenberg’s uncertainty principle.
Remarkably, over the past 25 years, a series of systemati-
cal experimental tests have demonstrated that entangle-
ment is in fact a real property of quantum mechanical
entities such as molecules, atoms, and photons [62-64].

Notably, SPDC offers the possibility of generat-
ing pairs of entangled photons optically [62, 63, 65]. As
depicted in Figure 4, SPDC is a y® nonlinear process in
which one pump photon is annihilated to generate entan-
gled photon pairs [63]. In Figure 4B and C, linear momen-
tum and energy are conserved in this nonlinear process.
As shown in Figure 4A, a pair of entangled photons is
generated at the same crystal position; consequently, the
photons are correlated in the variable of linear position.
In Figure 4A and B, the conservation of linear momentum
forces the two beams to propagate with opposite spatial
frequencies [67]. Thus, SPDC photons are characterized
by opposite transverse wavevectors that induce anticor-
relations in linear momentum. In Figure 4C, the energy
conservation results in the wavelengths of the pump,
signal, and idler photons satisfying 1/lp =1/A_+1/A,. These
conditions enable the generation of photons entangled in
multiple degrees of freedom, such as in energy and time,
angular position, and orbital angular momentum and
polarization [68]. Below, we discuss experiments that rely
on these forms of entanglement.

Momentum conservation

ks k;

kpump

Energy conservation

@ pump

Figure 4: Spontaneous parametric down-conversion (SPDC) process and the conservation of momentum and energy.

(A) The process of SPDC is produced by pumping a @ nonlinear crystal. SPDC photons are generated at the same spatial position in the
crystal; consequently, photon pairs are correlated in the variable of spatial position. The conservation of linear momentum shown in (B)
forces a pair of SPDC photons to be anticorrelated in the variable of linear momentum; consequently, photons located in opposite positions
of the down-conversion cone show nonclassical correlations. (C) The process of SPDC satisfies the conservation of energy; in this case, a
blue photon is annihilated to create two red photons. Reproduced from Ref. [66].
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3 Elements of plasmonics

3.1 Classical picture

As indicated earlier, surface plasmons are surface elec-
tromagnetic waves formed at the interface between a
metal and a dielectric due to the interaction of surface
charges and an electromagnetic field. These waves can
propagate along the surface of a metal (SPPs) or can be
localized to metallic nanoparticles (LSPs). For instance,
consider the SPP of a single planar interface between
a metal and a dielectric with permittivities, ¢, and
&, respectively, as shown in Figure 5A and B. Solving
Maxwell’s equations with the appropriate boundary
conditions yields the following expression for the SPP
wavenumber [69],

A , B
WAVAVAWT .
909\)/ @@@\( 999\»/@@@\_

D E
T oio
¥ 0o

€q

Figure 5: Electromagnetic properties of plasmonic structures.

DE GRUYTER

(44)

& &
K=k, |nfe

E +¢&

m d

where k =w/c is the magnitude of the wavevector in
free space. K is a complex quantity because ¢, is generally
a complex quantity. The real and imaginary parts of K can
be approximated as

7 7
k\ee,l€ +e,,
e’¢
k. e'e e +¢ [md}
0 m- d m d ’ ’ ’
2¢’ (e +e,)

where the prime and double prime symbols indicate real
and imaginary parts, respectively. The approximation is
valid when |¢/ |<|e” |, which is a reasonable approxi-
mation for noble metals in the visible and near-infrared

K’

0

45
K (45)

0

Photon

as

IEI i

(A) Illustration of the electric field lines and surface charge distribution associated with the SPP supported by a metal-dielectric interface.
(B) Magnitude of the electric field across the interface showing the extend of electric field confinement. The penetration depth into the

metal (0,) and dielectric () characterize the SPP mode confinement. (C) Dispersion relations of SPPs (red line) and photons (blue line). The
wavenumber of an SPP is larger than that of a photon in the dielectric medium and can acquire large values near the resonance frequency
asymptote, o . (D) Illustration of the electric field lines, E, associated with the LSP excited on a metallic nanosphere by an incident electric
field, E . (E) Schematic illustration of the charge distribution in a metal disk (top) and a circular aperture (bottom) due to an incident
electric field, E,. (F) Calculated near-field distribution in the x, y-plane for a gold disk (top row) and a circular aperture (bottom row) having
a diameter of 150 nm and a thickness of 30 nm. The calculations were carried out using the finite-difference time-domain method using a
y-polarized plane wave excitation at a wavelength of 750 nm. The white circle indicates the position of the nanostructures.
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region of the spectrum (away from interband transi-
tions). The real part, K’, is related to the phase evolu-
tion of the SPP and hence defines its dispersion relation
(Figure 5C). The expression for K’ predicts a significant
increase in the SPP momentum at frequencies near the
resonance-frequency asymptote w_, which is the fre-
quency at which ¢/ =—¢_, i.e. the frequency at which the
denominatorin Eq. (45) vanishes. Also, note that because
of their surface-wave nature, SPPs possess wavenum-
bers that are larger than those of photons in the dielec-
tric for a given frequency. Hence, momentum matching
mechanisms, such as grating coupling or prism cou-
pling, are required to excite them with photons. In con-
trast, the imaginary part K” is associated with the SPP
field attenuation, which limits the propagation range of
the wave. The propagation length of the SPP is defined
as the distance over which the field intensity is reduced
by a factor of e? and is given by /_,, =1/2K".

The SPP electric field is p-polarized [electric field
oscillation confined to (z-x) plane] and its distribution has
the form

E =(E,O0, Ezj)exp(i(Kx - wt))exp(—kzjz), (46)
where the subindex j e {m, d} identifies the medium. Here,
we have taken z as the direction normal to the metal-die-
lectric interface and x as the propagation direction. Note
that the fields decay exponentially away from the interface
and have their maximum amplitude right at the interface
(Figure 5B). The degree of confinement to the metal-dielec-
tric interface is determined by the penetration depth into
the two media, 6].: 1/ kzj. Here, kzj is the normal wavevector
component in medium j and is given by

k. =k i (47)
7 %e, +e,
Near the resonance-frequency asymptote, the

magnitude of kzj can be very large, resulting in a sub-
wavelength mode confinement. The degree of mode
confinement is only limited by the losses of the system,
which increase significantly near the resonance-fre-
quency asymptote.

Variants of this single-interface plasmonic structure
described here may include metal films or stripes bounded
by dielectrics [70, 71]. Such variants support SPP modes
that share similar characteristics to the single-interface
SPP discussed here. Nevertheless, the additional degrees
of freedom associated with those structures allow them to
support various modes with particular field symmetries
[72-75].
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For metallic nanoparticles with dimension smaller
or comparable to the skin depth of the metal, the electric
field can penetrate the nanoparticle and excite directly
LSPs [69]. As these nanoparticles typically have dimen-
sions much smaller than the wavelength, their electro-
magnetic response is well described by the first-order
dipolar contribution. Furthermore, their excitation can be
described under the quasi-static approximation, in which
retardation effects are neglected and a constant phase
over the particle is assumed. Using this approximation,
the electromagnetic response of the particle takes the form
of a static electric dipole with a harmonic time depend-
ence [76]. The dipolar charge distribution (see Figure 5D)
induced in the particle by the external electric field, E , is
described by the electric dipole moment p=ae E , where
« is the electric polarizability of the particle. For the case
of a spherical nanoparticle, one obtains [76]

g —¢

a=3V—m 4
e, +2¢,

(48)
where V is the volume of the nanoparticle. In this case,
the LSP resonance occurs at the frequency that satisfies
the relation ¢/ =—2¢,. Clearly, for the case of a spherical
nanoparticle, the resonance frequency only depends on
the material properties. This is not the case for other par-
ticle shapes. For instance, the electric polarizability of a
prolate ellipsoidal nanoparticle is given by [76]
e —¢

4=V e ta-Lye,
].sm+(1— ;)8,1

(49)
where Lisa function of the aspect ratio (the ratio of the
long axis to the short axis) of the nanoparticle along the
axisje{x, y, z}. Hence, its resonance frequency depends on
the aspect ratio through L. In general, the LSP resonance
frequency critically depends on the shape and dimensions
of the nanoparticle, enabling a broad tunability across the
visible and near-infrared spectrum [77].

At the LSP resonance frequency, a large electric field
develops in the nanoparticle due to the large polarizability.
Similar to the SPP, the LSP fields peak at the metal surface
and decay exponentially away from it. The field enhance-
ment factors exhibited by single nanoparticles, due to this
resonant behavior, can vary significantly depending on
their shapes. These range from a modest enhancement in
gold nanospheres to an enhancement of several orders of
magnitude in particles with sharp edges.

LSPs can also exist in subwavelength apertures con-
structed on thin metallic films. These plasmonic modes
are similar to the LSPs supported by nanoparticles in
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the sense that their electromagnetic response depend
critically on geometrical factors. For example, size and
shape of the aperture as well as the thickness of the metal
film and the surrounding dielectric. The near fields of
LSPs supported by planar particles and apertures can
be qualitatively related by Babinet’s principle of comple-
mentarity [78, 79], which results in electric and magnetic
near-fields with complementary distributions for both
types of structures. For instance, Figure 5E shows sche-
matically the charge distribution induced by a y-polarized
electric field, E, on a metallic disk and a circular aper-
ture. Dipole moments with opposite directions develop in
the nanostructures because the field lines in the metallic
region oppose the external field E . Figure 5F shows the
magnitude of the main electric and magnetic field com-
ponents, E and H,, of the LSPs supported by a gold disk
and a circular aperture with the same diameter (150 nm)
and thickness (30 nm). These results clearly show the
complementarity of the spatial distribution of electric and
magnetic fields [79]. For a more detailed review on the
electromagnetic properties of plasmonic nanoholes, the
readers are referred to Refs. [80, 81].

3.2 Quantization of surface plasmons

Various methods to quantize surface plasmon fields have
been proposed in the past. Elson and Ritchie [82] devel-
oped the first quantum theory for SPPs. The first micro-
scopic theory to quantize the matter field and the light
field was given by Huttner and Barnett [83], extending the
Hopfield approach [84] to include material losses. Also, a
macroscopic quantization method was recently proposed
by Philbin [85] using Green’s functions. Here, we briefly
describe two basic quantization methods for SPPs and
LSPs [86, 87], which start from the classical macroscopic
description of the fields accounting for the dispersive
nature of plasmonic material systems. We consider first
the case of an SPP mode supported by the metal-dielectric
interface illustrated in Figure 5A. Using Coulomb’s gauge,
the electric and magnetic fields can be obtained from the
vector potential, A(r, t), which can be cast in the following
form:

A(r,t)= f(‘zi;l;aku ((2)exp(iK-r)exp(—iwt)+c.c. (50)

Here, K is the SPP wavevector and «, is the correspond-
ing complex amplitude associated with each of the K
vectors. At this point, we ignore the losses of the system
and assume that K is a real valued quantity. The effect of
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losses will be incorporated later in this procedure, render-
ing K a complex quantity as it is physically required. The
vector, u,, which represents the plasmonic mode, can be
written as

u = \/%a)) exp(ikziz)(f( - Iﬁ:i], (51)

where L(w)A is a normalization constant with dimensions
of length. K and Z are unit vectors along the x and z axes,
respectively. Now, consider a square of sides L _and L in
the x-y plane whose area, S =L xL. This leads to quan-
tized values of wavevector K =n 27/L_and Kyznyzn/Ly,
where n, n, € Z; now, Eq. (50) can be cast into a summa-
tion as

A(r, t)=> A, u, (z)exp(iK-r)exp(-iwt)+c.c.. (52)
K
Using this expression and recasting the electric and
magnetic fields in the expression for free space energy
density [76], u=1/2(¢ E(r, )*+1/u B(x, t)?), gives the total
energy of the surface wave [86]

U=Ye o S[AAY +A% A (53)
K
Note that, for each of the modes labeled by K, the
energy of the surface wave has the same form as that of
the energy of a harmonic oscillator. Hence, by mapping

/N /]
A —> |[——a,andAT —
k \/2800)5 K ANEA \’280(1)5

d, and using the Hamil-
tonian of a harmonic oscillator, we obtain the Hamiltonian

A At

~ hw at A
of the system H =" KT[CIKGK +a,a, ). As in the formalism
of the harmonic oscillator [43], 4, is the annihilation and
[1;( is the creation operators as defined in Eq. 11 and Eq. 12,

such thata; |n )=\/n +1|n +1yand a,|n)=./n,|n, —1).

The fields can now be written as operators acting on the
eigenstate |n,) as

i(r, )=i¥ %ul((z)&l( exp(iK r)exp(~iot)+He  (54)
K 0

B(r, =i |~ b, (2)a, exp(iK-r)exp(-iwt)+H.c, (55)
X\ 2e w8

where bK=(K+yii)><uK and H.c is the Hermitian
conjugate.

The effect of losses due to material dispersion
can be incorporated into the formalism by including
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interactions of the SPP with a continuum of bath modes
[20]. Here, the interaction of the SPP with the bath
modes upon propagation modifies the SPP wavevector,
K, such that it accounts for the complex permittivity of
the metal [20].

The quantization of LSPs in metallic nanospheres is
carried out by considering a nanoparticle as an optical
resonator and by finding its quantized optical modes.
The discrete modes are identified as localized solutions
of Maxwell’s equations [87]. For instance, the electric
field distribution associated with the resonant modes of a
nanosphere with permittivity e _and radius d, at position r
with respect to its center, is given by

i r<d

S U 56
L i pi-D) rod 6)
r

where i={X, ¥, z} represents the unit vector along differ-
ent coordinates. The quantized electric field operator is

A hw G, " A
E= o i (a +a)). (57)
zi’\l 2,V \2(e, +1)
Here, a, is the bosonic field operator [87] and
4 2e +1
V="nd’~—m
3 e, +1 (58)

is the mode volume, which depends on the dimensions
and material properties of the nanosphere. As for the
SPP case, the losses of the system can be incorporated
in the quantization through the interaction of the fields
with a reservoir of bath modes. Other more rigorous
approaches based on Green’s function formalism have
been proposed, enabling the quantization of surface
plasmons in more general three-dimensional systems,
including the effect of losses, dispersion, and material
inhomogeneities [88, 89].

3.3 Quantum effects in plasmonic systems

An important property of plasmonic systems is their
capacity to enhance the spontaneous emission rate of
quantum emitters, such as molecules or quantum dots.
This enhancement, known as the Purcell effect, results
from the large density of electromagnetic states existing
in the close vicinity of plasmonic structures [90-94]. The

C.You et al.: Multiparticle quantum plasmonics = 1253

Purcell enhancement factor, which is inversely propor-
tional to the mode volume, can be extremely large in plas-
monic structures because of their ability to confine the
fields to subwavelength dimensions [95-97]. As a result,
plasmonic systems have been recognized as important
candidates for developing novel single-photon sources
with enhanced efficiency [98-100]. Within this context,
a recent analysis reported that the theoretical limit for
photon-rate enhancement in plasmonic systems can be
two orders of magnitude larger than those in their pho-
tonic counterparts (i.e. dielectric cavities) [101]. Indeed,
these results together with the recent demonstration of
room-temperature strong coupling between quantum
emitters and LSPs [102] suggest an exciting road ahead
for the development of efficient single-photon sources.
Although the topic of plasmon-enhanced single-photon
emission is quite relevant in quantum plasmonics, a
review of this topic is beyond the scope of this work. For
more details about this subject, we refer the reader to
the following references [23, 95, 103-106].

It has also been demonstrated over the past decades
that surface plasmons show exotic quantum properties
just like photons. Remarkable examples include wave-
particle duality [107], nonlocality [108-114], entanglement
[115, 116], tunneling [117-119], bunching and antibunch-
ing [120, 121], etc. However, the possibility of preserving
quantum mechanical properties in scattering interactions
among photons and plasmons has attracted particular
attention from multiple research communities in recent
years. As described below, this peculiar feature of hybrid
photonic-plasmonic systems offers new mechanisms to
control fundamental properties of quantum many-body
systems [115, 116, 122].

The wave-particle duality is one of the fundamen-
tal properties of quantum mechanical systems. In this
regard, plasmons have shown self-interference and
antibunching effects that demonstrate their undulatory
and corpuscular behaviors, respectively [107]. Further-
more, plasmons have also shown wave-particle duality
simultaneously [120]. Last but not least, quantum tun-
neling has been observed in plasmonic systems, for
cases in which the separation between nanoparticles
is of the order of few angstroms. It has also been
shown that tunneling effects can modify the optical
response of plasmonic nanogaps in dramatic fashions
[21]. There has been an enormous interest in exploring
wave-particle duality and quantum tunneling in plas-
monic systems. The reader can find additional discus-
sions in the review articles by Zhu et al. [22] and by Xu
et al. [23].
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4 Quantum statistics in multiparticle
photonic-plasmonic systems

4.1 Multiphoton and multiparticle
interactions

Asillustrated in Figure 6A, multiparticle scattering can be
controlled through electromagnetic near-field effects [32,
33, 123-126]. Remarkably, the possibility of manipulating
quantum systems at this fundamental level represents
one of the most important motivations behind the field
of quantum plasmonics and, in general, behind the field
of quantum optics [31, 127]. Indeed, the performance of
a significant number of quantum protocols depends on
the control of complex quantum interactions in systems
composed of multiple particles [128-133]. In fact, the
future of multiple quantum photonic technologies for
information processing depends, to an important extent,
on the level of control of quantum effects in multiphoton
systems [134]. In this regard, photonic-plasmonic systems
provide a flexible platform to investigate quantum multi-
particle dynamics. The interest in these hybrid platforms
has been triggered by recent progress in the generation
of nonclassical multiphoton sources [32, 33, 115, 116,
135-145]. Although, the losses in plasmonic systems
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and the low photon fluxes that characterize typical
quantum sources of light impose challenges to the field
of quantum plasmonics. Hitherto, these problems have
been partially alleviated using multiple single-photon
sources. However, there have been recent breakthroughs
in the development of nonclassical single-photon and
multiphoton sources. Indeed, the improvement in the
generation and engineering of mesoscopic states of light
have enabled the investigation of quantum properties of
hybrid photonic-plasmonic systems at the mesoscopic
scale. For example, in 2016, Harder et al. demonstrated a
source for mesoscopic quantum optics with mean photon
numbers above 20. This source used SPDC processes in
nonlinear waveguides [146]. Later, Magafia-Loaiza et al.
demonstrated a tunable multiphoton source that enabled
the engineering of quantum statistics and nonclassical
correlations of entangled multiphoton states [147].

The large variety of scattering events that can take
place in many-body systems of photons offers new paths
to perform quantum information processing. Interest-
ingly, the complexity and control of underlying scattering
events can be boosted through the enhancement of elec-
tromagnetic near-fields by means of surface plasmons. In
general, surface plasmons offer the possibility of achiev-
ing novel light-matter interactions [127]. Below, we review
recent research achievements along this research line.
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Figure 6: Multiparticle scattering in hybrid photonic-plasmonic systems.

(A) Concept behind the control of multiphoton dynamics through the manipulation of electromagnetic near-fields. Interestingly, multiphoton
interference in multiport devices can be used to investigate fundamental physics behind multiparticle scattering. (B) Summary of the
importance of indistinguishability and the overall phase ¢ for two- and three-photon interactions. (i) Concept of indistinguishability for two
photons. (ii) A simplified version of the HOM experiment. (iii and iv) Process of three-photon interference and the idea behind the collective
phase ¢, respectively. Reproduced from Ref. [123]. (C) Remarkably, these effects can be manipulated in plasmonic nanostructures through
the engineering of metallic gratings and slits. This hybrid quantum device enables the possibility of engineering multiparticle scattering
and consequently multiparticle interference. (D) Photon-plasmon scattering has been demonstrated in hybrid photonic-plasmonic tritters
[()) and (ii)]. The plasmonic tritter couples a photonic mode d to two plasmonic modes b1 and b3. Reproduced from Ref. [33].
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However, for the sake of clarity, we first describe underly-
ing ideas behind multiparticle interactions.

In Section 2.4, we revisited the HOM experiment,
where two photons injected into the input ports of a 50/50
beam splitter interfere and exhibit photon bunching. As
illustrated in Figure 6B (i), the distinguishability of two
photons in states |¢) and |¢].) can be quantified throuigh
the inner scalar product of the two states as (¢, |¢ ) =r.e i,
Here, the modulus of r;can be interpreted as a measure of
distinguishability between the two photons. The probabil-
ity of detecting one photon in each of the output ports of
a beam splitter only depends on the degree of distinguish-
ability as P, = %(1—@2)- In general, the argument e 7 does
not play a relevant role in two-photon interference. Sur-
prisingly, quantum interactions in systems with more than
two photons cannot be exclusively described by the degree
of indistinguishability between pairs of photons [125, 148,
149]. In 2017, Menssen et al. demonstrated that particle
indistinguishability is not enough to describe multipho-
ton interactions involving more than two photons [123].
In this work, the team unveiled the complexity behind
multiphoton interference in a quantum mechanical tritter,
a multiport device with three inputs and three equally
likely outputs. As shown in Figure 6B (iii), three-photon
interference shows a strong dependence on the collective
triad phase defined as p=¢ ,+¢, +¢, [Figure 6B (iv)].
Generally, three-photon interference can be described as

1
Pm = §[2 + 4"12”23”31 COS((p) - r122 - "223 - r321 1 (59)

These quantum interactions in photonic systems can
be controlled through plasmonic effects. As illustrated in
Figure 6C, the series of scattering events induced by photon-
plasmon-photon conversions can be used to control global
phases and thus multiphoton interference in quantum
many-body systems. These ideas have been discussed in
the context of plasmonic multiport devices in metallic slits
(see Figure 6D). As discussed below, these mechanisms
also offer the possibility to preserve and manipulate mul-
tiphoton coherence [121, 127, 150-154]. Later in this review,
we will describe recent demonstrations of quantum control
in hybrid photonic-plasmonic systems.

4.2 Quantum statistics of photonic-
plasmonic systems

As previously discussed, plasmonic effects can be used
to control the quantum interactions in quantum systems.
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Despite the inherent losses that characterize quantum
plasmonic systems, properties in photon-plasmon scat-
tering processes offer new mechanisms to exert control
of multiparticle systems [115, 116, 136, 141]. For example,
in 2009, Huck et al. demonstrated that quadrature
squeezing was preserved in the photon-plasmon-photon
process even in the presence of linear loss and deco-
herence [137]. In their experimental setup (Figure 7A),
squeezed light was generated in an optical parametric
oscillator and then coupled to a gold stripe. Then, the
scattered photons from the plasmonic setup were col-
lected and analyzed to certify squeezing. In Figure 7B,
one can observe that, although quadrature squeezing
is degraded, the squeezing was coherently transferred
through the photon-plasmon-photon process. It was
further confirmed that plasmonic interactions can be
described by an unitary beam splitter transformation
[20, 137].

More recently, Martino et al. characterized the role
that losses play in the quantum statistics of the electro-
magnetic field in plasmonic waveguides [138]. In their
setup (Figure 7C), a type I SPDC source was used to gener-
ate entangled photon pairs. The team used one of the gen-
erated modes to excite an SPP mode in the thin metallic
stripe waveguide. By measuring the photon number dis-
tribution of multiple output states and the second-order
quantum coherence functions g?(zr) (Figure 7D), it was
demonstrated that losses in quantum plasmonic systems
behave similarly to that predicted by the classical theory
of uncorrelated Markovian linear loss. Furthermore, due
to the fact that photon-plasmon-photon processes do not
modify the second-order coherence function g®(z), it is
possible to fabricate larger SPP waveguide structures for
quantum control.

Undoubtedly, the phase associated to quantum states
plays a fundamental role in multiple applications [156].
In the context of quantum control, the manipulation
of sequential photon-plasmon scattering processes in
plasmonic gratings has enabled the control of geometric
phases in single-plasmon systems. The phase of quantum
systems plays an important role in quantum interactions,
particularly in interference effects [123]. In this regard,
Daniel et al. showed that photon-plasmon-photon pro-
cesses preserve the well-known Pancharatnam-Berry
geometric phase [155]. This study was carried out through
a Mach-Zehnder interferometer (Figure 7E). The aver-
aged and fitted data for different polarization states are
shown in Figure 7F. These figures illustrate that the shifts
of the peaks are proportional to the change in polariza-
tion, which is an indication of the conservation geometric
phase in photon-plasmon-photon processes.
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Figure 7: Experiments that demonstrate the preservation of quantum statistics in hybrid photonic-plasmonic systems.

(A) Schematic of the experimental setup used for demonstration of quadrature squeezing preservation. OPO, optical parametric oscillator;
PPKTP, periodically poled potassium titanyl phosphate crystal; SV, squeezed vacuum. (v) Experimentally generated and transmitted
squeezed vacuum states after a photon-plasmon-photon process. The quadrature of the electric field, absolute values of the reconstructed
density matrices, Wigner functions, and noise power relative to the shot noise level of input and output are also presented. (A and B)
Reproduced from Ref. [137]. (C) Schematic of the setup used for the experimental demonstration of the preservation of quantum statistics
in plasmonic waveguides. (D) Conditional second-order quantum coherence functions g?(z) for light with nonclassical and classical
statistical properties. The dotted blue line illustrates the classical limit. Right, corresponding two-photon number distributions. (c and d)
Reproduced from Ref. [138]. (E) Schematic of the experimental setup for plasmonic control of the Pancharatnam-Berry geometric phase.
This is demonstrated through the interference patterns in (F). The shift of interference fringes unveils the possibility of preserving geometric
phases in plasmonic systems. AP, aperture; BS, 50/50 beam splitter; L, lens; M, mirror; ND, neutral density filter; OB, microscope objective;
P, linear polarizer; SP, spatial filter; Q, quarter-wave plate. (e and f) Reproduced from Ref. [155].

4.3 Preservation of entang[ement in resource for multiple applications, including quantum
plasmon ic systems imaging [66, 157-160], quantum key distribution [161-165],
quantum computation [166-168], and quantum communi-

Entanglement is one of the most remarkable consequences cation [169, 170]. Given the potential of entanglement for
of quantum physics [68]. In addition, it constitutesacritical the development of quantum technologies, it is always
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desirable to investigate paths to preserve it in complex pro-
cesses involving light-matter interactions. The possibility
of preserving quantum entanglement in photon-plasmon-
photon interactions makes quantum plasmonic systems
a promising platform for quantum technologies [23, 171,
172]. In this regard, Altewischer et al. [115] initiated the
field of quantum plasmonics with their experimental veri-
fication of the preservation of polarization entanglement
in plasmonic systems. This seminal work demonstrated
the possibility of preserving polarization entanglement in
photon-plasmon-photon conversion processes. As shown
in Figure 8A, correlated photon pairs generated through
SPDC were transmitted through an array of holes in a
gold film where the photon-plasmon-photon conversion
takes place. The team certified entanglement between
two detected light beams. This experiment demonstrated
the possibility of generating entanglement between plas-
monic and photonic modes. Although entanglement is
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preserved, the team also showed that, when focusing one
of the beams onto a single hole in the metallic structure,
the degree of entanglement decreased. This was observed
through a reduction in the visibility associated to bipho-
ton interference.

This work stimulated new fundamental research. For
example, Moreno et al. [173] reported a quantum descrip-
tion of the underlying physics behind plasmon-assisted
transmission. They theoretically showed that the degrada-
tion of entanglement arose from the polarization sensitiv-
ity of gold gratings. Furthermore, the scattering theory of
plasmon-assisted entanglement transfer and distillation
was introduced by van Velsen et al. [174]. Since then, the
preservation of entanglement has been further explored
by different groups under multiple experimental condi-
tions [136, 140, 175]. Fakonas et al. showed path entangle-
ment between surface plasmons [176]. Ren et al. further
demonstrated that entanglement based on orbital angular
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Figure 8: Experiments demonstrating entanglement preservation in plasmonic systems.

(A) First experiment that demonstrated plasmon-assisted transmission of entangled photons. This was confirmed through the measurement
of two-photon quantum interference after photon-plasmon-photon conversion, which demonstrated the preservation of entanglement.

The experimental setup used a 8 barium borate (BBO) nonlinear crystal to generate entangled photon pairs that were passed through an
array of gold. The generated light beams were detected by two single-photon detectors. C, compensating crystals; HWP, half-wave plate;

IF, interference filters; L, lens; P1and P2, polarizers; TEL, confocal telescope. Reproduced from Ref. [115]. (B) Schematic of the experimental
setup demonstrating energy-time entanglement in a plasmonic system. APD, avalanche photodiode; DM, dichroic mirror; NL, nonlinear
crystal; PC, polarization controller; TAC, time to analogue converter. (C) Schematic of the LR-SP waveguide. BCB, benzocyclobutene. (D)
Experimental interference fringes produced by the setups shown in (B) and (C). V, represents the visibility of the interference fringes after
plasmonic conversion. Furthermore, V  describes the visibility in the absence of plasmonic conversion, and Tis the transmittance of the

plasmonic setup. (B-D) Reproduced from Ref. [116].



1258 =— C.You et al.: Multiparticle quantum plasmonics

momentum is preserved in photon-plasmon-photon pro-
cesses [139]. Last but not least, Asano et al. showed that
plasmonic metamaterials can be used for entanglement
distillation [177].

Particularly, in 2005, Fasel et al. showed that
energy-time entanglement was also persevered in pho-
ton-plasmon-photon scattering processes [116]. In their
experiment, the preservation of energy-time entangle-
ment was demonstrated using subwavelength metal-
lic hole arrays and long-range surface plasmons (LR-SP)
propagating in metallic waveguides. Their setup shown
in Figure 8B used two different wavelengths of 810 and
1550 nm. The metallic hole arrays were carefully designed
to maximize photon-plasmon-photon conversion. In addi-
tion, the setup for LR-SP waveguide shown in Figure 8C
was used to confirm photon-plasmon-photon scattering.
This arrangement enabled the induction of time delays
that are essential to test energy-time entanglement. The
interference visibility shown in Figure 8D demonstrated
preservation of energy-time entanglement in photon-plas-
mon-photon processes.

The experiments described above exploited quantum
interactions among photons in plasmonic structures
with overall sizes larger than their wavelengths 1. More
recently, smaller metallic structures with sizes compara-
ble to 4 have been used to perform quantum plasmonics.
Li et al. experimentally demonstrated that polarization
entanglement can be maintained in these metallic struc-
tures [178]. Their setup shown in Figure 9A used a type
I SPDC source and a nanoscale hybrid plasmonic wave-
guide to preserve quantum polarization entanglement.
The generated polarization entangled two-photon Bell
state |[®")=1/ \/E(I HH)+|VV)) was tuned to achieve an
output fidelity of 0.932 after the photon-plasmon-photon
conversion. Additionally, the team verified entanglement
by performing a series of projective measurements. This
was confirmed by the measured fourth-order quantum
interference structure shown in Figure 9B. This work
was further explored through a demonstration of the
propagation of polarization entangled two-photon
NOON states in a nanowire [179]. In their work, Chen
et al. generated the polarization entangled NOON state
INOON)=1/~/2(12,,0,)—10,,2,)), which was coupled
into a nanowire. The team verified the preservation of the
NOON state using two-photon HOM interference shown
in Figure 9C. The team was able to observe visibilities of
0.737£0.007 and 0.880 + 0.013 for single- and two-photon
NOON state input, respectively. In Figure 9D, it is possible
to identify the doubled oscillation period produced by
particles prepared in a NOON state, where N=2.
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Furthermore, Biise et al. demonstrated symmetry pro-
tection of quantum entanglement through the interaction
with a single nanoaperture [180]. As shown in Figure 9E,
the group of scientists used Bell states that were strongly
focused on a metallic nanoaperture to demonstrate the
potential of dissipative near-fields to preserve quantum
coherence.

Indeed, the protection of two-photon entangled
states based on polarization exploited the polarization
sensitivity of a metallic nanoaperture. Interestingly, this
simple system acts as a lossy beam splitter that endowed
this protocol with a unique sensitivity to the relative
quantum phase between the entangled modes [127, 181,
182]. The experimental results that demonstrate symme-
try protection are presented in Figure 9F. The quantum
tomography of the transmitted state suggests that the
state |¥ ) is unaffected, whereas the state |¥,) is mixed
with [¥ ), where

I‘I’+>—>%(IR>1IR>2+IL>1IL>2),

1
W )——=(R),|R),~|L),|L),),
|’>_>\5(| % 1R, =1L}, |L),)

1

I‘I’O>—>$(I R),1L),+L),[R),), (60)

and d,, |0)—|R/L).

5 Quantum interactions in quantum
plasmonics

5.1 Multiparticle quantum interference in
photonic-plasmonic systems

Quantum interference has been extensively used as a
tool to manipulate quantum mechanical systems [183].
Interestingly, the conditions under which multiparticle
interference occurs can be controlled through photon-
plasmon scattering. In 2013, Heeres et al. demonstrated
the first quantum interference experiment in a plas-
monic platform [151]. As shown in Figure 10A, the team
used a free-space source of SPDC, a plasmonic direc-
tional coupler as beam splitter, and on-chip detectors to
perform HOM interference. The ideal HOM dip visibility
for their SPDC source is estimated to be V=0.92+0.01.
The excited single plasmons interfere on the chip leading
to HOM dips with visibilities of the order of V=0.43+0.02
and V=0.39+0.01 for two different plasmonic devices.
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Figure 9: Experiments that demonstrate the preservation of entanglement in plasmonic systems.

(A) Experimental setup used for polarization entanglement in a nanoscale hybrid plasmonic waveguide. In this case, one of the correlated
photon pairs is sent to a silver nanowire, whereas the other photon partner is sent to a module for structures state tomography (QST).
(B) Quantum interference structures observed through correlation measurements demonstrate the preservation of entanglement. Blue
and red dots represent coincidence rates for photons projected onto different polarization states. (A and B) Reproduced from Ref. [178].
(C) Experimental setup for the demonstration of quantum plasmonic NOON states in a silver nanowire. The generated NOON state is
transmitted and preserved in the nanowire. The transmitted photons are then forced to interfere in an HOM setup (ii). The arrangement
used to measure the de Broglie wavelength of biphotons (iii). The transmitted two-photon entangled state is characterized by quantum
state tomography (ii). (D) Two-photon coincidence counts and single-photon counts of the plasmonic NOON state transmitted in (C). The
red curve represents the two-photon coincidence, whereas the blue curve represents single-photon counts. (C and D) Reproduced from
Ref. [179]. (E) Schematic of the experimental setup for the symmetry protection of entanglement in a single nanoaperture. (F) Quantum
tomography of the state ['\¥',) and |'¥_) with and without the nanoaperture interaction. (E and F) Reproduced from Ref. [180].
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Typically, the asymmetric losses in photonic-plasmonic
systems will decrease the second-order quantum inter-
ference visibility. However, careful symmetric designs
of plasmonic nanostructures enables one to preserve
indistinguishability that leads to high visibilities. As dis-
cussed in Section 2.4, the visibility is determined by the
degree of indistinguishability between two photons. In
this case, reduced visibility was attributed to the exci-
tation of long-range plasmon modes, which are loosely
confined plasmonic modes [184].

Despite the fundamental relevance of this experi-
ment, the nonclassical nature of the interference patterns
remains unclear. This is due to the fact that the measured
interference patterns did not exceed a visibility of 50%.
Nevertheless, this pioneering experiment motivated the
development of hybrid quantum networks on chip [185,
186]. Later in 2014, Fakonas et al. used a dielectric-loaded
SPP waveguide (DLSPPW; Figure 10C) to achieve an HOM
visibility of 0.932+0.01 [152]. In addition, Martino et al.
also certified the nonclassical nature of interference
effects in plasmonic systems [121]. Similar to Ref. [151],
Martino et al. used an X-shaped plasmonic beam split-
ter to demonstrate an HOM visibility of V=0.72£0.13
(see Figure 10D). These works were followed by multiple
experiments that aimed to validate quantum interference
in a large variety of plasmonic platforms. For example,
Cai et al. observed a visibility of 0.957 + 0.089 in a similar
DLSPPW platform (Figure 10E) [153]. Recently, Fujii et al.
observed a visibility of 0.843+0.091 in long-range SPP
(LRSPP) waveguides (Figure 10F) [154]. These beauti-
ful experiments indicate that, although surface plas-
mons are formed from photons (bosons) and electrons
(fermions), they indeed exhibit bosonic behaviors in
the limit of many-electron regimes. Moreover, quantum
plasmonic systems have shown potential for quantum
metrology, this due to the importance of quantum inter-
ference for metrology. In fact, quantum plasmonic tech-
nologies offer a solid platform to implement quantum
metrology on chip. Interestingly, the additional quantum
interference paths, provided by photon-plasmon scatter-
ing processes, have been used to demonstrate coales-
cence and anticoalescence of a pair of bosons. In 2016,
Dheur et al. experimentally verified the wave-particle
duality for a single surface plasmon [150]. This experi-
ment made use of asymmetric 11-groove gratings as those
illustrated in Figure 10G. By measuring the intensity cor-
relation function of heralded SPPs, they observed single
SPPs antibunching in the single-photon-level regime,
showing the particle-like nature of SPPs. Moreover, they
observed single SPP interference, which certified the
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wave-like properties of the SPP. This experimental work
also revealed fundamental similarities between plas-
mons and photons.

5.2 Controlling quantum multiparticle
interactions

As previously discussed, the control of quantum inter-
ference in plasmonic systems has been improved
through the use of multiple degrees of freedom of
photons and SPPs. Although surface plasmons are well
known to suffer from losses, the underlying scatter-
ing processes among photons and plasmons provide
additional quantum interference paths that are of fun-
damental importance for controlling decoherence of
quantum systems.

Until recently, researchers started to exploit the
design of nanostructures as well as their inherent losses to
control scattering processes [30, 172, 187-189]. Inspired by
their previous research [150], Vest et al. recently modified
the reflection and transmission coefficients of a surface
plasmonic beam splitter (SPBS) to demonstrate coales-
cence and anticoalescence of single SPPs [127]. As shown
in Figure 11A, the change in the width w, metal gap g, and
groove depth h led to different reflection and transmis-
sion factors r and t. Furthermore, the parameters r and ¢
provide a unique control of the phase difference between
the reflected and transmitted plasmons. Remarkably, the
phase in the system leads to exotic interactions that were
measured through the implementation coincidence meas-
urements P(1, 1). Indeed, the coincidence detection prob-
ability can be modeled as

P, D) =|t[* +|r* 2R )1 (61)

where 2R(£*r*) =t’r** +t ** r*, and I is the overlap between
two particles’ wave packets, similar to the modulus of
r, described in Figure 6B (i). When two particles’ wave
packets overlap (I=1), and when the SPBS is 50/50 (t=+ir
andt=1/ \/5), the coincidence P(1, 1)=0.

In this case, the completely vanished coincidence
resembles the HOM interference effect discussed in
Section 2.4, where two single photons coalesce on a loss-
less beam splitter. Additionally, when the two particles’
wave packets are independent (I=0), the coincidence
probability resembles the classical case, where

P, D=[t]" +]r[. (62)
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Figure 10: HOM interference with different plasmonic structures for beam splitters.

(A) On-chip HOM interference with single plasmons. The team used photon pairs generated through SPDC to excite single plasmons that
were forced to interfere in a plasmonic directional coupler. The scanning electron microscope (SEM) image of the gold plasmonic directional
coupler device is also shown. (B) HOM interference dip of the photon pair source and quantum interference traces of single plasmons in two
devices. (A and B) Reproduced from Ref. [151]. (C) DLSPPWs patterned by polymethyl methacrylate (PMMA) used in Ref. [152]. Reproduced
from Ref. [152]. (D) Optical image of the plasmonic beam splitter used in Ref. [121]. The coupling and decoupling gratings of the plasmonic
beam splitter consist of 11 ridges. Reproduced from Ref. [121]. (E) SEM image of part of a typical plasmonic DC structure used in Ref. [153].
Reproduced from Ref. [153]. Reproduced from Ref. [154]. (F) Microscope image of the fabricated LRSPP device used in Ref. [154]. (G) SEM top
view of the photon-to-SPP launcher used in Ref. [150]. Reproduced from Ref. [150].

For the case in which |t|=|r|=1/2 and t=%*r, the two samples of SPBS exhibit coalescence and anticoa-
coincidence probability P(1, 1) =2P_(1, 1). This suggests lescence of SPPs. Particularly, this experiment dem-
that, instead of getting a dip in the coincidence prob- onstrated that, although the surface plasmons are
ability, one would instead get a peak, which indicates typically treated as bosons, they can exhibit fermionic
the anticoalescence of SPPs. As shown in Figure 11B, properties.
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(A) (i) SEM image of an integrated plasmonic beam splitter. (ii) Cross-section diagram of the integrated plasmonic beam splitter showing
the photon-plasmon-photon process. The photons are converted to plasmon on the left, then launched into the plasmonic beam splitter
(enclosed by black dashed line), and converted back into photons in the silica substrate. (iii, inset) Grating parameters that are used to
control the transmission and reflection of photons in the plasmonic beam splitter. (B) Experimental observation of the plasmonic HOM
coalescence/anticoalescence effects. (A and B) Reproduced from Ref. [127]. (C) Control of spatial coherence through surface plasmons in a

metallic slit. Reproduced from Ref. [31].

Additionally, single plasmons can also modulate
spatial coherence of optical fields [190-195]. Using
this feature, Li and Pacifici recently achieved continu-
ous modulation of the degree of spatial coherence with
amplitudes ranging from O to 80% [31]. By varying the
slit’s separation, wavelength, and polarization of the
incident light beam, they demonstrated the possibil-
ity of transforming incoherent optical fields to partially
coherent fields and vice versa. As shown in Figure 11C,
surface plasmons are generated in a metallic double-
slit structure when this is illuminated by light polarized
along the incidence plane. These near fields induce a
change in the interference pattern formed in the far
field of the double slit. These interesting effects dem-
onstrated that, despite the losses in metallic nano-
structures, plasmons can be used to enhance spatial
coherence of optical fields. Interestingly, the gratings
in plasmonics systems can induce phase shifts that can
be used to control quantum interactions. Undoubtedly,
this possibility enables the control quantum many-body
systems of photons.

6 Quantum plasmonic devices
and networks for multiparticle
systems

The experimental realization of multiphoton quantum
protocols relies on the fundamental tenants of quantum
mechanics. Interestingly, there have been recent break-
throughs in physics that have unveiled the existence of
novel quantum processes [32, 196]. Naturally, these new
interactions have extended our understanding of funda-
mental principles of quantum mechanics such as super-
position and particle indistinguishability. For example,
Born’s rule bounds the complexity of any effect involving
superpositions of an arbitrary number of wavefunctions
to a sum of ters denoting the interference between pairs of
wavefunctions. Thus, in accordance with Born’s rule, the
interference pattern obtained in a three-slit experiment
can be described by the following probabilities

P

ABC:PAB+PBC+PAC_PA_PB_PC’ (63)
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where the slits are denoted by letters A to C. Note that
Eq. (63) does not include a probability term that involves
three slits but is entirely described by probabilities involv-
ing only one and two slits. Surprisingly, it was recently
predicted that a particle in a three-slit experiment has a
finite probability of traveling forward through one slit,
then loop around and travel back through another slit,
and then loop around again and travel forward through
a third slit [32]. In general, the probability of observing a
photon following a trajectory such as the one depicted in
Figure 12A is extremely small. Such an exotic trajectory
would require the occurrence of unlikely scattering events
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in the vicinity of the slits. Interestingly, these exotic inter-
actions could lead to an apparent violation of Born’s rule
and consequently of the superposition principle.

In 2016, Magafia-Loaiza et al. observed looped tra-
jectories of photons for the first time. The team found out
that looped trajectories exist due to near-field effects and
that these can be amplified through the excitation of SPPs
in metallic slits. In addition, they confirmed the validity
of the superposition principle. More specifically, it was
demonstrated that strong confinement of the electro-
magnetic field in the vicinity of the slits produces a dra-
matic increase in the probability of occurrence of looped
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1.0
038
0.6
04
02
0.0

038
0.6
04
02
0.0

— s e

V ﬂ\
y-polarization

0 100 200 300

Position on camera (pixel)

500

(A) Looped and straight trajectories of photons in a three-slit interferometer. (B) Magnitude of the Poynting vector P in the vicinity of
metallic slits for a case in which a single slit is illuminated with photons polarized along the x-direction. (C) Measured far-field distributions
of single photons for the case studied in (B). The appearance of fringes is attributed to interference among photons traveling in straight
and looped trajectories. (D) Parameter k, which quantifies the complexity of the process. (A-D) Reproduced from Ref. [32]. (E) Photon-
plasmon scattering processes in a plasmonic tritter and the schematic diagram of the triple-slit structure when each slit is a tritter. (F)
Far-field interference patterns from the three different slit structures. Only the photons with y polarization excite SPPs (green), whereas no
interference occurs for x polarization (red). (E and F) Reproduced from Ref. [33].
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trajectories. In general, these fields exist in the vicinity of
any structure. However, their contribution to other physi-
cal processes is always negligible, thus rendering exotic
effect such as looped trajectories. Furthermore, Magafia-
Loaiza et al. discovered that such exotic dynamics lead
to more complicated interference processes that require
sophisticated applications of the superposition principle.

In the experiment, they used the polarization of
single photons to control the strength of near-fields in
the vicinity of slits, in a gold film, through the excita-
tion of surface plasmons. As shown in Figure 12B, the
exact solution of Maxwell equations predicts curvy tra-
jectories for the Poynting vector when one of the slits is
illuminated by photons polarized along the x-direction
but not for those polarized in the y-direction. This due
to the strong electromagnetic near-fields confined in the
former case. In fact, the geometry of the slits allows for
the design of specific looped trajectories. Interestingly,
this near-field coupling produces fringes in the far-field.
As shown in Figure 12C, this effect enables the use of
near-fields to induce or destroy spatial coherence. This
is an example in which dissipative near-field dynamics
are exploited to improve coherence. The contributions
from looped trajectories were quantified through the
parameter k, and this parameter is expected to be zero
for a situation in which near-fields are negligible and dif-
ferent from zero if the contributions from near-fields are
significant, see Figure 12D.

In addition, the complex photon dynamics observed
in the three-slit structure described above shows enor-
mous potential to control interference in quantum net-
works. It was recently demonstrated by Safari et al. that a
quantum mechanical tritter can be implemented through
a single plasmonic slit [33]. In addition, they developed
a technique to characterize quantum processes in plas-
monic networks. Remarkably, the robustness of this tech-
nique enabled the first measurement of the phase shift
acquired by single photons participating in photon-plas-
mon scattering processes. In contrast to Feynman’s path
integral formalism, this technique enables the practical
design and characterization of complex plasmonic net-
works for multiparticle applications in quantum informa-
tion science.

7 Conclusions

The rapid development of quantum plasmonics has
enabled new platforms to prepare quantum many-body
systems in complex superpositions and controlling their
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evolution. The combination of photonic with plasmonic
systems has opened up new alternatives to implement
control on multiparticle quantum systems. The underly-
ing scattering processes among photons and plasmons
provide additional quantum interference paths that are
of fundamental importance for controlling quantum
systems. In addition, the lossy nature of plasmons
offers additional mechanisms for controlling dissipative
quantum dynamics through the suppression of environ-
mental decoherence; this possibility represents one of the
main goals of quantum optics. Last but not least, quantum
plasmonics has unveiled the existence of exotic quantum
interactions, which have extended our understanding of
fundamental quantum dynamics. All of these new phe-
nomena have triggered interests in the development of
hybrid quantum networks for applications in quantum
sensing, quantum metrology, quantum simulation, and
information processing.
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