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Two-component spinors and Pauli matrices can usefully be applied to classical problems of rotations in three
dimensions. In particular, they constitute a concise method of analyzing problems of spin motion in storage rings
and accelerators. An elementary treatment of spinor algebra is developed and applied to some fundamental kine-
matics of polarized beams in storage rings and to the basic configuration of the Siberian Snake scheme. Further

possibilities of the formalism are indicated.

1. INTRODUCTION

Polarized beams in accelerators and storage rings
can be studied largely on the basis of classical
equations of motion. Much of the analysis then
consists of the rotation of ordinary real vectors
in three-dimensional space, exactly as in the ki-
nematics of rigid body motion. Such rotations are
commonly described by linear transformations
using real orthogonal 3 X 3 matrices; although
this method has a direct physical appeal, it is
rather cumbersome for detailed analysis since the
nine matrix elements contain only three inde-
pendent parameters to describe an arbitrary ro-
tation.

The algebra of two-component spinors and
Pauli matrices, which form part of the SU(2)
group, provides a much more compact and ele-
gant formalism for describing classical rotations
in real three-dimensional space. Although spinor
notation is normally associated with quantum
mechanics, in particular to describe the internal
degree of freedom of the electron known as the
spin, it is very closely related to the quaternions
(hypercomplex numbers) used by Hamilton over
a century ago.' Although spinors might at first
sight appear to be somewhat abstract entities to
use in classical physics, they are hardly more so
than complex numbers used in electrical engi-
neering. Furthermore, the transformations of spin-
ors retain to a considerable extent the physical
picture, in much the same way as the operators
of quantum mechanics are closely analogous to
the dynamical variables of classical mechanics.
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The algebra of spinors can readily be related to
other ways of describing rotations, such as the
Euler angles and the Cayley-Klein parameters.?

The purpose of this report is to describe the
basic properties of two-component spinors and
their transformations, and to illustrate their ap-
plication to the study of classical spin motion of
particles in storage rings and accelerators. To this
end, a few special examples of an elementary
nature are invoked, but no attempt is made here
to treat spin motion generally. A considerable
amount of literature exists on this subject, much
of which is cited in review papers, for example,
those of Baier® and of Derbenev et al.*

2. BASIC SPINOR ALGEBRA

2.1 The Pauli Matrices

A conventional definition of the Pauli matrices
is

they are used together with the identity (unit)
matrix

The Pauli matrices have zero trace, minus-unity
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determinant, and the simple commutation prop-
erties

OOy = 0O, = 0;0; = 1

0.0y = — 0,0, = IO, .1
0,0, = —0.0, = IOy

0.0y = —00; = 0y

We use the notation * for the complex conjugate
(c.c.) and 1 for the Hermitian conjugate (c.c. of
the transpose).
It is easy to show that the Pauli matrices are
i) Unitary; gioif =1
i=x,y,2.
i) Hermitian; ot = o

2.2 Matrix vectors

Let x, y, z be orthogonal unit vectors in Cartesian
three-dimensional space. Then we can define a
matrix vector (or vector matrix), i.e., a vector
o whose components are Pauli matrices,

o = X0, + yo, + zo, 2.2)

and apply standard vector operations. The scalar
product becomes

O F =X XO0, +Yy" Y0,0, + 2 20.0;
=3/, (2.3)

where we have used the obvious property that
the x, y, z commute with the o;.

It is not really necessary to write the unit vec-
tors x, y, z explicitly, and the o, can be formally
manipulated as if they were components of a
three-vector. In fact the o; are often called the
unit rotators for their respective axes.

Since the ¢; are Hermitian we have also

of =0

and hence

1

ot-o=0-0of=0of -af
=g -0 =3l (2.4)

A vector product can also be formed according

to the normal rules of vector algebra, taking ac-
count of the commutation properties of Eq. (2.1).
Thus

o X 0 = [xo, + yo, + z0.] X [x0, + yo, + 20.]
= x(o,0. — 0.0,) + y(0.0, — 0.0;)
+ z(o0, — 0,0y)
= 2ilxo: + yo. + z20:];
SO

g X ¢ = 2ic. (2.5)

The scalar product may be formed also with
any arbitrary real three-vector b:

S=0"b=b0‘ = bx0x+ bycry +b2'.0-£',9
or in full:

b, b, — ib, }
S = (2.6)
be + ib, —b

7/

using the definition of the Pauli matrices; S is
Hermitian, traceless, and has determinant

[S] = =1b2 + b2+ b2l = -b> 2.7

Powers of S can be formed:

§2 =88 =(h2+ b2+ b2 =b1, (2.8)
and in general
S" = b"I, neven
2.9)
= p"" 'S, nodd

The product of two matrices §; = o - b, and
S, = o - by is given by

$182 = (0 - b1 )(o - b2)
l(bl : b2) + 12 O E E_[kltlbll<b2/11,
J

km

S k.m=ux,y,2, (2.10)

where €, is the Levi-Civita density, sometimes
called the antisymmetric Kronecker symbol, and
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is defined by:

0 if any two indices
are identical,
+1 for even permutations

Eikm = of the indices,
—1 for odd permutations
of the indices.
Then, since

E E_/'/\‘mbI/\me = (b, X bZ)ja

ko
Eq. (2.10) can be written
S182 = Iby - by) + io - (b; X b2). (2.11)

The commutator of S, and S, follows imme-
diately from Eq. (2.11);

[S1, 821 = 85152 — 528

= 2io - (by X by). (2.12)
2.3 Spinors
We consider a two-component column vector
4
b= ;
U2

where {s;, , are in general complex numbers.
Such a state vector is called a spinor in the con-
text of quantum mechanics for spin one-half par-
ticles. The Hérmitian conjugate

b= (W, 42™)

is formed consistently with the concepts of ma-
trix algebra, i.e., by taking the complex conjugate
of the transpose.

A scalar P, may be formed as follows:

0 1\/{
P.=ytod = (™, P2*)
I 0/ \ip
U7}
= (I*, d2*)
Yy

= Yifde + 4. (2.13)

Clearly P.* = P,; hence P, is real.
Similarly,

P, = ¢to, b = —iy"d — W*l) (2.14)
and

P,o=Ytoy = b [P = [P (215

are both real. We make the hypothesis that P,,
P,, P_are components of a real three-vector:

P = xP. + yP, + zP,
xPtod + ybio + zdto.f,
Uiog.

P (2.16)

The square of the modulus of P can be expressed
in terms of the components of W, using Egs.
(2.13), (2.14) and (2.15), as

|[PP=P-P=pP>2+P2+ P2
= (0¥ + GF ) = (¥ — 4 )?
+ (P
=414 Pl P+ (o =6 ?
= (L P+ e ),

whence

[P = P+ | =¢fb. (2.17)
The hypothesis is confirmed if Eq. (2.17) is in-
variant under transformation, which will be es-
tablished in Sections 2.4 and 2.5.

We shall interpret P as a spin vector (or po-
larization vector) of unit length, which implies a
normalization condition

U
I%P+Iwﬁ=(wﬂwﬂ( )=1.(2m)
b2
From Eq. (2.15) we then have
P.o= 1 P =Wl =24 -1
=1 -2 Q19
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and note that

ity P=1 P, = +1
(2.20)
ifllll||2=0 P;= -1
Furthermore,

P>+ P?=1-P2=1-Q|WL]-17
=41 Pa =)
=410 Pl P,

whence

VP2 + P2= 2|0 ||l (201

2.4 Differential equation of spinor
transformation

We examine the properties of the equation

dys i

70 5 (o - b)vs (2.22)
where b is an arbitrary real three-vector and 0 is
an independent variable which, for the moment,
we do not need to define further. For constant
b we can write a formal solution satisfying Eq.
(2.22)

U(O) = exp [— %(a : b)e]q,m). (2.23)

The complex matrix exponential may be inter-
preted by a generalization of the normal expan-
sion. We write S = o - b as in Eq. (2.6), put b
=|b|= b+ b?+ b?*)", and use Eq. (2.9).
Then

.. 0
exp [—zS 2]

SEC RGN,
)-8

or

exp [— %(0 . b)B]
bo i . [ bB
= ] cos <7> - E(U - b) sin <7> (2.24)

It can readily be verified by putting Eq. (2.24)
into Eq. (2.23), differentiating, and using Eq.
(2.8), that Eq. (2.22) is satisfied by this form.

If | satisfies Eq. (2.22), ¢ty is invariant, for

dle lb

(dmb) U+ M

= JUH(@ b)Y — S Uie b = 0.

2.5 Equation of three-vector P
Differentiating Eq. (2.16) yields

PV gt

2.25
do de 2.25)

With b real, the Hermitian conjugate of Eq. (2.22)
is
dbt _

~¢T(o - b),

- 2
do 2 (2:20

since o is Hermitian, and the Hermitian conju-
gate of a product is the product of the Hermitian
conjugates taken in reverse order. Then Eq.
(2.25) becomes

dP i

— = EM(O‘

]
S “b)oy — -z-llﬂ“(r(o - b)Us

- édﬂ‘[(o bo - o@ b, (227

From the vector triple product identity
(AXB)xC=(C-AB - A(C:B),
we have
(o xag)Xb=(b oo —-acb- o)),

whence

Z—l;= —éll!ﬂb X (o X o)l
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= ¢t(b X o), from Eq. (2.5)
=b X (yTow), since band i commute.
Hence,
dP
_d—B =bh X P, (2.28)

which is the familiar three-vector precession
equation.
The invariance of | P |* = P - P follows from

—(P P) = 2P Zg—2P'(bXP):0,

which establishes that P is a vector and that Eqgs.
(2.22) and (2.28) are equivalent representations.

3. SPIN MOTION IN AN
ELECTROMAGNETIC FIELD

The kinematics of classical spin motion in an
electromagnetic field are governed by the equa-
tion

dp

= P, .
a = Q X (3.1

where the axial vector £ is given by

Q———[(l+va)B—(v—l) viv - B)
my v?

1 > E x v]
vy + 1 c? (3.2)
Here e, m are the charge and mass of the particle,
v is the Lorentz energy factor, v is the velocity,
¢ the speed of light, B and E the magnetic and
electric fields, and a = (g — 2)/2 is the gyro-
magnetic anomaly. The vector Pcanbe considered
either as the polarization of an ensemble of par-
ticles or as a classical representation of the spin
of an individual particle. Equation (3.2) is fre-
quently called the BMT equation® although its
essentials are due to L. H. Thomas. A particu-
larly clear derivation is given by J. S. Bell®:

For E = 0, Eq. (3.2) becomes, for a longitu-
dinal magnetic field B, (B X v = 0):

+y<a+

Q=-<0+aB=----2B, (33
my my 2

and for a transverse field B, (B - v = 0)
Q=--0+~yaB.. (3.4)
my

In cyclic accelerators and storage rings it is
convenient to use a Cartesian coordinate system
moving with the particle, the y coordinate lying
along the direction of the ideal orbit. In this sys-
tem, which rotates at the local relativistic cyclo-
tron frequency Q. = —eB,/my, Eq. (3.4) be-
comes

Q= - = Q.(ya). (3.5)

For a planar orbit B, = (0, 0, B.) is the bending
field normal to the plane of the orbit. If in Eq.
(2.28) we take the independent variable 8 to be
the bending angle, comparison with Egs. (3.1)
and (3.5) shows that b has the direction of — B,
and a magnitude (vya), since | Q.| = d0/dt. Over
a length / of a magnet, a bending angle 6 of the
orbit is accompanied by a precession angle ¢ of
P (around B,), given by

6= —bo = (v = —(ya) - 2L 36)

mcRy

The corresponding spinor transformation of Eqs.
(2.23) and (2.24) contains only the z component,
and becomes

U(8) = [1 COS%)' — {0 sin 9]\11(0) (3.7)

The parameter (ya) is very important in spin
motion and will occur repeatedly in subsequent
sections.

4. TRANSFORMATION THROUGH
PIECEWISE-CONSTANT ELEMENTS
4.1 Basic properties

A solution (2.23) of the spinor equation (2.19)
through a constant element may be written in the
form

() = M(0), 4.1

where the matrix M may be written in an ex-
panded form from Eq. (2.24)

M =1IC, - ioc,C, — io,C, — ic.C.. (4.2)
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An important property of the coefficients C; is
obtained in multiplying Eq. (4.1) by its Hermitian
conjugate:

UHOW(O) = GTOMTMUO).

Since the normalization condition of Eq. (2.18)
is invariant, it follows that

MM = I, (4.3)

and that M is therefore unitary. By forming from
Eq. (4.2),

MM = [ICy* + io.C* + io,C\* + io.C.*]

X [ICy = io.C, — I'O'yCy - io.C.]
(since the Pauli matrices are Hermitian), and
using the commutation rules of Eq. (2.1), it is
easily shown that the necessary and sufficient
conditions for Eq. (4.3) to be satisfied are that

Cd +C2+C2+C2=1 4.4)

and that the C; be real. This is also evident if Eq.
(4.2) is written with the explicit form of the Pauli
matrices:

Co —iC, -C, — iC;
M = 4.5
C_y - le CO + ICZ

and multiplied by its Hermitian conjugate M7. It
is also clear that M is not Hermitian, i.e., M7
# M, in contrast to the matrix S of Eq. (2.6).

4.2 Interpretation of the coefficients

The transformation matrix of Eq. (4.2) can be
written in yet another form

M = Icos 9
2
(4.6)
— isin % (0, CcOS ay + 0, COS @, + 0. COS a-),
where
Cy = cos%
C: = sinicos o, [ =X,Y,2.

In order that Eq. (4.4) be satisfied,
cos? a, + cos’a, + cos?a, = 1, (4.7)

which is the case if the cos «; are the direction
cosines of some vector with respect to the ap-
propriate axes. This form is implicit in Eq. (2.6),
where the components b, are proportional to the
corresponding direction cosines and in fact equal
to these if b2 = 1.

The spinor matrix M therefore represents a
rotation (or precession) by an angle ¢ around the
axis defined by the direction cosines cos a;. It
1s characteristic of spinor algebra that the preces-
sion angles always appear as half angles in the
arguments. This is closely connected with the
physical properties of spin one-half particles, and
results in the M matrix being a two-valued func-
tion of the corresponding real orthogonal matrix
in three-dimensional space (see Ref. 2, Section
4-5). The two sets of matrices are isomorphic
however, i.e., to a transformation in one set cor-
responds one in the other set.

4.3 Transformation through several elements

Equation (3.7) is a simple example of a rotation
around the z-axis by an angle ¢; here cos o, =
1 and cos o, = cos a, = 0. The form of a simple
rotation around the x or the y axis is obvious.

Successive transformations with different axes
are readily generated, as in the example

$(0,) = | I cos il — i, sin Rl $(0)
L 2 2 -
P(62) = Icos%E — o sin% y(61)
= _I cos@ — [0y sinf’2
i 2 ' 2 ]
_ o @ﬂ
X _1 cos 5 io. sin 2 | W(0)
= ¥Icos@cos® — i <:os@sin91
| 2 2 : 2 2
— i, sin @ cos &
Re 2 2

R S 1
0.0 SN 5 sin 2]nJJ(O)
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and, using the commutation properties of the
Pauli matrices in Eq. (2.1),

U(62) = Ao —

where:

io-A:1W(0)

ic, A, — io,A, —

Ao = cos%cos%

. b2 [l
sin == cos —

—sin @ sin E
2 2

>
I

Te
Il

b2 .
cos —- sin —.

A,
) 2 2

Il

It is evident that any succession of transforma-
tions can be reduced to the canonical form of Eq.
(4.2) by suitable substitution of coefficients, and
that the resulting transformation can be repre-
sented by an equivalent rotation around a spec-
ified axis as in Eq. (4.6). Four parameters are
present, namely ¢, o, ,, a., and the constraint
of Eq. (4.7) leaves three free parameters to de-
scribe the rotation. The condition in Eq. (4.4) is
automatically satisfied.

4.4 Polarization projection in real space

The components of a real three-vector P in terms
of the spinor notation have been given in Egs.
(2.13) to (2.15) and in the three-vector form in
Eq. (2.16). If the spinor has been transformed
between two points of a system by a matrix M,
one can write

W(0) = M(0)
and the Hermitian conjugate
Yt(8) = $T(0)MT.

The transformed expression of Eq. (2.16) is there-
fore

P(6) = ll’T(O)O'\b(e) (4.8)
= YT(0)MToMi(0)

Although the three-vector form is perfectly well
defined, the reduction is rather cumbersome and
it is easier to evaluate the components separately.

For the x component,
P.(0) = UT(0MTo M0). (4.9)
The matrix Mto M is Hermitian, since
(Mto M)t = Mo T(MT)T = Mto, M.
Expanding, one has
MtoM = [ICy + io.Cy + io,Cy + io.C;]
o [ICy — ioCy — io,C, — ico.C.]
which, after a little algebra, reduces to
MtoM = o {Cy + C - C,2 — C7}
+ 0, {2(CCy = CoC>)}
+ 0.{2(CoC, + C.C.)}. (4.10)

Similarly, one obtains for the other components
MTO’V\:M = O'x{2(COC; + CXC.V)}

+ 0, {Cs* + C, — C — C.2}

+ 0{2(C,C: — CoCy)} 4.11)
Mio.M = c.{2(C.C. — CoC,)}

+ 0_\1{2(C()C.\’ + C\CZ)}

+ ()'Z{C()2 + sz — sz — C372}(412)
Thus, in the development of Eq. (4.8), the final
coefficients of the unit matrix / vanish for all
three components, which reflects the Hermitian
property. Using a compacted notation for the

coefficients of the Pauli matrices in Eq. (4.10),
the x component of Eq. (4.9) becomes

P(0) = $1(0) [T + Toyoy + Tiz0:10(0)
= T4 T(0)oU(0) + T,y (0)oyU(0)
+ T (0)o:0(0),
or
P(8) = T P (0) + T, Py(0) + T P:(0).  (4.13)

The other components can be similarly expressed
and Eq. (4.8) can then be written as a 3 X 3
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matrix transformation

P(8) T Toy Ti:\ [Px(0)
Py®) =T Tyy T |[P0)]|, (4.14)
P(8) Te Ty T:f \P.(0)

where the elements of the T matrix are given in
full in the table below.

The T matrix is real and orthogonal, i.e.,

2 TiTw = 8 ijk =x,y,2,

where 8 is the Kronecker 8-symbol. This is eas-
ily verified using the normalization condition of
the spinor-matrix coefficients in Eq. (4.4). These
coefficients appear in quadratic form in the T,
elements because the characteristic half-angles
of spinors must transform to full angles in the
real three-space of the T matrix.

The elements of the T matrix can be used to
impose conditions on the coefficients C; of the
M matrix in order to obtain a desired relation
between P(8) and P(0). For example, if P,(0) =
+ 1, and one requires P.(§) = —1, the minimum
constraint is

T.. = AC.C. + CoC,) = —1.

It follows from the orthogonal property that 7T,,
and T, must then both vanish, i.e.,

2C,C, — CoCy) = 0
and
Co® +C2—-C2?~-C2=0.
Simple examples like this can be readily inferred
directly from the spinor matrix M, but in more

complicated cases the use of the T-matrix ele-
ments may be more direct.

5. SPIN MOTION IN A STORAGE RING

Particles moving along a given closed orbit in a
storage ring (or accelerator) experience magnetic
fields which are periodic at revolution frequency,
and the corresponding axial vector Q in Egs.
(3.1) and (3.2) is therefore also periodic. One then
expects to find a periodic solution of the spin
motion corresponding to the given closed orbit.
Because the representations in real three-space
and in the complex two-space of spinors are iso-
morphic, there must also be periodic spinor so-
lutions.

5.1 FEigenvalues and eigenvectors

We now consider the M matrix, in the form given
by Eq. (4.5), to represent the spinor transfor-
mation around one full revolution at some arbi-
trary azimuth of the machine. Instead of ¢ we
use k, (L = a, b) to represent the two eigenvec-
tors (closed spinor solutions) of the equation

(M — N Dk, = 0. (5.1
Since M is unitary, i.e., MtM = I, the eigen-
values A, lie on the unit circle. The secular equa-
tion is

IM - N|=N-\TrM+ |M| =0,

whence, from Eq. (4.5),

M —-2Co+1=0
with eigenvalues

Ao = Co £ iVI1 — Co? (5.2)

which can be written

Ao = cos% + isin% =2 (5.3)

Here, as in Section 4.2, the coefficient Cy, =
1/2 Tr M is associated with a rotation ¢, which

Co> + C2 — G2 — C2 | 2ACCy — CoC2)

2(C.\'C: + C()C)')

2( Cny + COCZ)

C02 + Cyz - sz - Cz_z Z(C)sz - COCX)

2(Czcx - C()Cy)

2C,C; + CoCy)

C()2 + C;z - sz - C_\vz
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is the precession angle of a polarization vector
in one revolution.

If Cy> = 1 the two eigenvalues are equal and
real, A\, = =1, M = =1, and Eq. (5.1) is satisfied
by any arbitrary spinor k. This degenerate situ-
ation corresponds to an integral spin resonance;
any arbitrary solution is periodic but there is no
stability against perturbations.

For Cy* # 1 the eigenvectors k, can be found
from the cofactors of the first row of the matrix

M -\
Co — iC, — A\, —-C, — iCy
= > (5.4)
C, — iCy Co + iC, — N\
and are given in unnormalized form by
Co +iC, — A,
k. =
-C, + iCy
iC,*1 V1 - Coz
= (5.5

-C, + iC,

where the two eigenvectors k,, k, are distin-
guished by the sign of the square root. For nor-
malization the eigenvectors are divided by
(k,tk,)'"? where, from Eq. (5.5),

kotk, = 2(1 — Co?) ¥ 2C. V1 = Co*.  (5.6)

It is also easily verified that the eigenvectors are
orthogonal, i.e., k, Tk, = 0 for p # v.

5.2 Periodic solution n in real space

To the periodic solutions &, in spinor space cor-
respond periodic spin solutions in real three-
space, which can be evaluated by the methods
of Sections 2.3 and 4.4. It is convenient to dis-
tinguish these real periodic solutions from arbi-
trary spin (polarization) vectors by using the no-
tation n instead of P. For the x component, one
first forms the un-normalized product:

kotocky = {—(C. F VT = Cob), —(Cy + iC)}
(C, 7 V1 = Cod)

(—(cy — iCy)

= 2C(C. 7 V1 - Co).

01
X
1 0

This can also be obtained directly from the spinor
components using Eq. (2.13). For normalization
we must divide by Eq. (5.6), whence
kp.TO'xka ZCX(CZ FVI - C02)
Hy = = s
kutk, 21 = Co®) ¥ 2C, V1 — C?

which reduces to
¥C,

Hy = —————=, (5.7)
V1 - Co?
Similarly one can obtain
*C,
Hy = ———= (5.8)
| Vi1 - Co?
and
*C,
n, = ————. (5.9)
V1 — Co?

It is evident thatn - n = n,* + n,*> + n,> = L.
Furthermore, in the case of degeneracy when C,’
= 1, the components of n are not defined.

The periodic solution n plays an important role
in the calculation of spin kinetics, since it is the
(local) direction about which other spin solutions
precess. Corresponding to each closed orbit in
a storage ring there is a periodic spin solution n
which is, in general, a function both of the azi-
muth 6 and of the energy v defining the closed
orbit, i.e., n = n(0, y). It is evident that n is the
spin analogue of the closed orbit itself, through
which it is determined. Pursuing the analogy fur-
ther, it is clear that the local direction of n is the
polarization projection of an ensemble of parti-
cles whose individual spins are precessing around
n, in the same way that a closed orbit represents
the average trajectory of an ensemble of particles
with betatron oscillations.

The vector n provides a suitable basis for the
detailed analysis of spin motion in storage rings
using perturbation theory; it acts as a reference
vector’ for calculating perturbed motion arising
from betatron and synchrotron oscillations and,
in the case of electron storage rings, from the
kinetics of quantum emission and synchrotron-
radiation damping. In the present context we re-
strict ourselves to the behaviour of the closed
solution n, for which the use of two-component
spinor algebra is particularly convenient.

In an ideal storage ring in which the closed
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orbit lies everywhere in the median plane, the
only magnetic field component at the orbit is B,.
The spinor transformation around one revolution
is then given by Eq. (3.7), with 8 = 27 in Eq.
(3.6), and can be written

My = I cos (mya) — io, sin (wya). (5.10)

Comparison with Egs. (5.7) to (5.9) shows that
C.=C, =0,Cy= cos (wya), C, = sin (wya),
and n, = =1, independent of vy. The closed so-
lution is thus either parallel or antiparallel to the
magnetic field at all energies for which Cy? # 1.
If (va) is integer, Cy, = =1 and n, is not defined;
this is the case of an integer (or impertection)
spin resonance as previously noted.

If the closed orbit deviates from the median
plane, either by accident or design, radial fields
are present and the coefficients C,, C, do not
generally vanish. It is then instructive to examine
the characteristics of a simple model consisting
of a perfect machine of the form of Eq. (5.10)
containing a single local perturbation represented
quite generally by the spinor transformation

M, = 1A, — io A, — io, A, — ig.A.. (5.11)
In order to evaluate the parameters at an arbi-
trary azimuth in the unperturbed part of the ma-
chine, the latter is divided into two parts with
matrices

M, = Icos (M) — o sin (A—X (5.12)
2 2
and

M, = I cos {“—;—m}

— i sin {W} (5.13)

respectively. Here x = 2mya and \ is a parameter
(0 = N = 1) defining the azimuth (in bending
angle) at which the matrix for one revolution is
evaluated. This matrix is

M = MIM(IM2

[ro() )

X [IA(, — o A — i Ay — iG;A:]

A= x| JE = X
X[lcos{ 5 } zcr;sm{ 5 }]

which, after multiplying out, can be expressed
in canonical form as

M = IC() - IG\C\ - IO-\C\ - iU:C\' y
with
_ X _ o X
C, = A, cos 5 A sin 5
X . X
C. = A, cos 2\ — 1)5 + A,sin (2N = 1) >

C, = A, cos 2\ — l)%( — Acsin 2N — |)§

_ X X

C. = A, sin 5 + A:cos 5
{5.14)
For a vanishing perturbation A, = 1, A, = A,

= A. = 0 and Egs. (5.14) and (5.10) become
identical.

As a simple example of a local perturbation,
we can consider a solenoid field parallel to the
beam direction; the corresponding spinor matrix
is
M, = 1A, — io,A,

= [ cos L iay sing (5.15)

2 2
where ¢ is the precession angle around the field
due to the solenoid. An extreme case of this
arises if & = w, which makes A, = 0, A, = 1;
Egs. (5.14) then become

C()=0

o
Il

sinn — N X
2 (5.16)

C, = cos 2\ - l))2—<

C.=0.

This is the basis of the proposal, by Derbenev
and Kondratenko*, now known as the Siberian
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Snake; it is characterized by the vanishing of Co,
independently of energy, provided the condition
¢ = m is maintained. Since the Pauli matrices
are traceless, the only contribution to the trace
of M comes from the coefficient Cy of the unit
matrix I, and we can write quite generally

1TrM = Cy = cos (mv),

> (5.17)

where v is the effective precession wave number
(or spin ‘tune). For the unperturbed machine of
Eq. (5.10), v = va and is therefore proportional
to energy. If C, = 0 however, cos (wv) = 0 and
v is half integer. This scheme makes it possible,
in principle, to accelerate polarized beams over
a wide energy range at a fixed spin tune, thus
avoiding the crossing of resonances.

It can also be seen from Egs. (5.16) that dia-
metrically opposite the Snake, where A = 0.5,
C, = 0 and C, = 1. At this position the closed
solution n has only the y-component =1 of Eq.
(5.8). Elsewhere around the machine, n lies in
the median plane with an orientation depending
on the azimuth.

Transformations of the type indicated by Eq.
(5.15) can be obtained using only transverse-field
magnets*® and variants using two Snakes of dif-
ferent types'® can avoid some of the drawbacks
of the simplest version. Such schemes can readily
be analysed by the same methods as are dis-
cussed here. In a similar way, we can examine
the effects of unintentional perturbations, such
as closed-orbit deviations or incompletely com-
pensated solenoid fields, which can in general
modify the projections of n on the three axes as
well as change the spin tune.

5.3 Variation of n with energy

The energy dependence of n is most clearly pre-
sented in the form y(on/dy), which represents
the fractional change in n for a given fractional
change in energy, n being of unit magnitude. In
terms of the components, Eqgs. (5.7) to (5.9) yield

on; _ d [ C: ] ( )
— =+ Y — | Y 1=X,Y,
Yoy T Yy [ Vit oo e
— 27T'ya 2 aCl aCO
= F i [(1 Co )_ax + CoC; Gx ]
(5.18)

since X = 2mvya. In the above it is assumed that
the local perturbation contributes only a small
fraction of the total precession around the ma-
chine, and that the variation of the coefficients
Ao, Ay, A,, A, with energy may therefore be ne-
glected. From Eq. (5.14) we can then write

aC I : ]
7)(92 —E[A()smg-l-Azcosg]
__&
2
aCx: _M[Axsin(b\— l)X
ax 2 2
— A, cos 2\ — l)%]
= 2\ — 1)% L(5.19)
aCy @2r = 1) . X
Yoo o _ = 7 v _ 1 [AS
o > [A_ sin (2A )2
X
+ A cos (2N — 1)5]
Cx
= —(2\ — 1)7
8. _1 X _ 4 sinX| =S
™ —2[Aocos2 A151n2] =5

Using these expressions in Eq. (5.18) for the cor-
responding components results in

ony m™ya

Y a,y (l . COZ)3/2
X [N = D — C?) C, — CoCC:]

L S s L S 3
Y a,y (1 _ C02)3/2

X [(27\ - D — C()z) C. + C()Cycz]

an; . 'n"yaCu

- = ) sz + \v2 .
- dy (1 - Coh)m[ ¢l

(5.20)
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The term (1 — Cy?)¥? common to all three com-
ponents constitutes a resonance denominator
since, from Eq. (5.17), it can be written

(1 — Cy*)¥? = sin® (mv). (5.21)
Depending on the nature and strength of the per-
turbation, y(dn/dy) can become very large in the
vicinity of a spin resonance, where v approaches
integer values. If, for example, in the third of
Egs. (5.20) we replace C,, C, from Eqgs. (5.14),
the z component becomes

on. _ mya cos (mv)
ay sin® (mv)

(A2 + A%), (5.22)

from which it follows that the presence of ap-
preciable x or y components in the perturbation
matrix can result in a large energy dependence
of n near a resonance. For an unperturbed ma-
chine, A, = A, = 0, hence C, = C, = 0 and
v(dn/dy) vanishes.

The quantity y(dn/dy), which has been given
the name ‘‘spin chromaticity’’ by Buon,'' is of
particular importance in electron storage rings.
It can give rise to both depolarizing and polar-
izing effects® in conjunction with synchrotron-
radiation energy loss, and is an important ingre-
dient in a possible method of polarizing electrons
by collision with soft photon beams.'? It should
be noted that the simple Siberian Snake repre-
sented by Eq. (5.16) has intrinsically a large value
of spin chromaticity, which makes it unsuitable
for electron machines in the high-energy range.

The depolarizing effects® of spin chromaticity
appear in the form (ydn/6y)?, which can be eval-
uated for a local perturbation from Egs. (5.20).
Using also Eqgs. (5.14) one obtains

m\>  w(ya)?
A) - TD (42 44,
(‘Y 6y> 1 — Cy? (4 »)

C()z
2N — 1)+ ——— .
X [( A 1) - C()Z]

If v is half-integer, Cy = cos (wv) = 0; this is the
case for a normal machine mid-way between two
integer resonances, or for a Siberian Snake
scheme with nominal parameters. Then, at a po-
sition A = Y4 diametrically opposite the pertur-
bation, the spin chromaticity vanishes. This fea-
ture is of importance in determining the position
of high-field magnetic elements with strong quan-

(5.23)

tum excitation, such as wigglers, in a machine
with a known systematic local perturbation.

For a storage ring with isomagnetic bending
fields, the average of Eq. (5.23) around the cir-
cumference is a measure of the depolarizing ef-
fect of a single perturbation in the presence of
quantum excitation. Integrating with respect to
\ from 0 to 1 yields

(3)) = s
Yov) / T30 = co)p

X (sz + Ayz)(l + 2C()2).

(5.24)

A low depolarization rate requires that Eq. (5.24)
be small compared with unity, which puts upper
limits on acceptable values of (A,> + A, %) as a
function of the energy and the exact value of the
spin tune.

6. CONCLUDING NOTES

This paper has been written as an elementary
introduction to the use of spinor algebra for treat-
ing problems of beam polarization in storage
rings. In the interests of simplicity, the scope has
been restricted to quasi-static situations and
piecewise-constant transformations, but the for-
malism is equally applicable to more complicated
problems where the parameters may vary in time,
or may have a less simple space variation. The
dynamic crossing of spin resonances was first
investigated by Froissart and Stora'? using spinor
notation.

The spinor transformations used here corre-
spond to the solutions of pairs of linear, first-
order differential equations in two complex var-
iables, the components {5, U5, of the spinor s, but
problems can also be formulated and solved in
terms of one linear, second-order differential
equation of a single spinor component, as in Ref.
13.

It will have been noticed that the spinor { has
a rather ephemeral existence in this treatment,
like the wave function or state vector in quantum
mechanics. It does not appear to be useful to seek
a relation between the spinor components and
the polarization vector, although in Ref. 1, Ap-
pendix 1V, some geometric properties of quar-
ternions can be discerned.

Apart from the formal elegance of spinor al-
gebra there is the practical advantage that prob-
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lems can be treated with a near-minimum redun-
dancy of parameters whilst still retaining a large
degree of physical insight. Despite the use of
complex numbers, only four real coefficients are
required to describe classical spin motion in an
element. For numerical computation, the trans-
formation properties of the Pauli matrices can be
represented simply by real operations on these
coefficients, and the invariant normalization
property can be used for checking.
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