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1 Introduction

Supersymmetry (SUSY) [1-9] is a theoretically favoured extension of the Standard Model (SM), which
for each degree of freedom of the SM predicts another degree of freedom with a different spin. These
degrees of freedom combine into physical superpartners of the SM particles: scalar partners of quarks
and leptons (squarks (§) and sleptons (£)), fermionic partners of gauge and Higgs bosons (gluinos (&),
charginos ( )Zii, with i = 1,2) and neutralinos ( )2? with i = 1,2,3,4)), all with identical quantum number
to their SM partners, except spin. Since no superpartner of any of the SM particles has been observed,
SUSY must be a broken symmetry, with a mechanism for breaking the symmetry being at some higher
energy scale.

The discovery (or exclusion) of weak-scale SUSY is one of the highest physics priorities for the LHC. The
primary target for early supersymmetry searches at the proton—proton (pp) collisions at centre-of-mass
energies of 13 TeV of the LHC, given their large expected cross-section, are the production of gluinos,
and first and second generation squarks. Under the hypothesis of R-parity conservation [10-13], SUSY
partners are produced in pairs and decay to the Lightest Supersymmetric Particle (LSP) which is stable
and in a large variety of models is assumed to be the lightest neutralino ( /\7?) that escapes detection.

The undetected )2(1) would result in substantial missing transverse momentum (If%‘iss), while the rest of the
cascade, originating from the decays of squarks and gluinos, would yield final states with multiple jets
and possibly leptons.

This note describes the first results related to the update of a series of previously reported searches for
new particles [14—17] in multijet+E¥liss final states. The most recent of those analyses was detailed in
a summer 2013 paper [17] based on data from the full Run-1 /s = 8 TeV dataset, corresponding to an
integrated luminosity of 20.3 fb~!.

The search channel is defined by the characteristic of looking for supersymmetric models which exhibit
longer decay chains such that the signature is of large jet multiplicity and E‘Tniss. In contrast to other strong
production searches here we concentrate on decays with low levels of EI"™* and do not use this as a major
discriminant against #7, W+jets and Z+jets backgrounds. As a consequence, the dominant background to
the search is Standard Model multijet events (denoted ‘QCD’ in the following). The processes leading to
high jet multiplicities in these events are such that a data-driven estimate yields a more precise background
prediction than one based on Monte Carlo (MC) simulation of these QCD processes. This note describes
and demonstrates a first implementation of this background estimate in very early Run-2 data.

2 Dataset, Triggers, Event Selection and Simulation

2.1 Dataset and Trigger

The dataset used for this note was collected by the ATLAS detector in proton—proton collisions at the
LHC with a bunch spacing of 50ns and at a centre-of-mass energy /s = 13 TeV, from 6" to 17" July
2015. After applying beam-, data- and detector-quality criteria, the total available integrated luminosity
is 72 pb~!. It is derived, following a methodology similar to that detailed in Ref. [18], from a preliminary
calibration of the luminosity scale using a pair of x-y beam-separation scans performed in June 2015. The
uncertainty on the integrated luminosity is + 9%.



The data were selected with a two-level trigger system that required 4 jets with ptr > 15 GeV at the
hardware level. At the software level, 5-jet and > 6-jet events were selected with a trigger that required
> 5 and > 6 jets respectively with pr > 45 GeV. For this data-taking period, the 5-jet trigger was
accepting only every 6™ event due to bandwidth considerations, resulting in an integrated luminosity of
12 pb~! for 5-jet events. The 6-jet trigger was unaffected by such considerations, so 6-jet and higher
multiplicity events have the full integrated luminosity of 72 pb~! available.

2.2 Object Definition and Event Selection

Jets are reconstructed using the anti-k, clustering algorithm [19, 20] and jet radius parameter R = 0.4.
Events with ‘bad’ jets (originating from cosmic rays, beam background and detector noise) are vetoed,
as are events with isolated leptons (e, u) with pr above 10 GeV. Following this, only well-measured and
isolated jets (as described in Ref. [21]), within || < 2.0 and with pr > 50, are considered - with the
additional constraint that they have a fraction of track pr matched to the primary vertex, JVE, > 0.25 in
order to reduce the effect of pileup. The regions of interest are then defined by the number of such jets
(5, 6 or 7). Jets with a looser definition, required to have pr > 40 GeV, [n| < 2.8 and the same JVF
requirement as above, are used to construct the variable Hy = }; p’ft '. This is used in the construction of
the discriminant E%‘iss / VHr - a proxy for the E%‘iss significance. The calculation of the missing transverse
momentum, E{P‘SS, is based on the vector sum of the calibrated pr of reconstructed jets (with pt > 20
GeV and || < 4.5), electrons, muons and photons and the inner-detector tracks not belonging to these
reconstructed objects - as described in Ref. [22].

Additionally to the Run-1 cuts a lower limit is placed on Ht of 600 GeV to simplify the multi-jet back-
ground estimation procedure, and while in Run-1 additional requirements were placed on b-jet multipli-
city, here no such requirements have been applied to increase statistics.

2.3 MC Background Estimation

In order to estimate the QCD background from the data, the contribution from other (‘leptonic’) back-
grounds must be subtracted. The Monte Carlo samples were generated with an expected pileup (mean
number of interactions per bunch crossing) distribution, and they have been re-weighted so that the mean
pileup distribution matches the observed distribution in the data. The MC samples used are as follows.

For the generation of ¢f and single top-quarks in the Wt and s-channels the PowHeg-Box v2 [23] generator
with the CT10 PDF sets in the matrix element calculations is used. Electroweak ¢-channel single top-
quark events are generated using the PowHeg-Box v1 generator. This generator uses the 4-flavour scheme
for the NLO matrix elements calculations together with the fixed four-flavour PDF set CT10f4. For this
process, the top quarks are decayed using MadSpin [24] preserving all spin correlations, while for all
processes the parton shower, fragmentation, and the underlying event are simulated using PYTHIA v6.428
[25] with the CTEQ6L1 PDF sets and the corresponding Perugia 2012 tune (P2012) [26]. The top mass is
set to 172.5 GeV. The EvtGen v1.2.0 program [27] is used for properties of the bottom and charm hadron
decays. The predicted ¢7 production cross section is calculated to NNLO in perturbative QCD, including
soft-gluon resummation to NNLL order (see [28] and references therein).

Events containing W bosons with associated jets are simulated using MadGraph v2.2.2 [29] at Leading
Order interfaced to the PYTHIA 8.186 [25, 30] parton shower model. The A14 tune is used together with



the NNPDF2.3LO PDF set [31]. The EvtGen v1.2.0 program [27] is used for properties of the bottom
and charm hadron decays. The W + jets events are normalised to NNLO cross sections.

Events containing Z bosons associated with jets are simulated using the SHERPA v2.1.1 [32] generator.
Matrix elements are calculated for up to two partons at NLO and four partons at LO using the Comix
[33] and OpenLoops [34] matrix element generators and merged with the SHERPA parton shower [35]
using the ME+PS@NLO prescription [36]. The CT10 parton distribution functions (PDF) [37] is used in
association to authors tuning. The Z + jets events are normalised to NNLO cross sections.

The benchmark signal model shown here is a ‘two step’ gluino decay model described in [17], i.e. pp —
83.8 = qq X7 X7 — Wi)zg,)zg - Z)Z(l); defined by mass parameters mg and mgo, with Myx = %(mg +
m)z?) and Mgy = %(m o + m)z?). The signal events are simulated in the same way as those of W + jets,

i.e. using MadGraph v2.2.2 at LO interfaced to PYTHIA 8.186, and are normalised to gluino production
cross-sections calculated to NLO + NLL (see [38]).

3 QCD Multijet Background Estimation

A data-driven estimate of the QCD multijet background is required in regions with very high jet multi-
plicities and hence very low event counts. To obtain a good estimate of this background it is necessary
to perform an extrapolation from low to high jet multiplicity. The principal discriminating variable in
Run-1 was E?i“ /VHr (constructed as described in section 2.2), with the signal regions defined with
EXSS/\Hr > 4GeV'/?. The shape of EI/+/Hy is largely independent of jet multiplicity (when jet
multiplicity is sufficiently high) [17]. In Run-1 a re-weighting of this template based on the amount of
low energy deposits in the calorimeter not clustered into jets was performed, however, due to the Hr cut
applied here this complication is not necessary.

Following the event selection described in section 2.2, an E%niss /VHr template is extracted from 5-
jet events. This is done by subtracting the MC prediction of the leptonic backgrounds (normalised to
predicted cross-sections, 72 pb~! and trigger live fraction of ~ 1/6) from the data, as shown in figure
1. This shape is then applied to 6-jet (figure 2) data by adding it to the MC predictions in this region
and normalising to data with E%‘iss /VHr < 1.5 GeV!'/2. The same procedure is performed for a 6-jet
to 7-jet extrapolation, the result of which is shown in figure 3. In contrast to the 5 — 6 and 6 — 7 jets
extrapolation shown here, the full Run-1 dataset search performed it from 6 — 8,9,> 10 jets to reach
these signal regions (which were defined with the one additional requirement of b-jet multiplicity slicing),
which we do not show here because there is insufficient data for a higher multiplicity extrapolation.
In both extrapolations performed here, good agreement is seen between the template and data within
statistical uncertainty.
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Figure 1: E}“i“ /VHt template (exactly 5 jets) in orange, labelled ‘Multi-jets’, taken as the difference between
data and the sum of expected ‘leptonic’ backgrounds. There are no data events in the overflow bins, i.e. with
E%‘iss /VHr > 20 GeV'/2. The blue hatched band shows the statistical uncertainty on the template. Systematic
uncertainties are not evaluated, but are expected to be of a similar magnitude or smaller. The black dashed line
shows the expectation for the ‘two-step’ signal point with (mg,m )2(1)) = (1300,200) GeV, scaled by a factor of 100.

The vertical red dashed line demarks the normalisation region of EX/ Hr < 1.5 GeV'/? |
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Figure 2: E‘T“iss/ VHr template (exactly 5 jets) applied to data with exactly 6 jets. Template normalised to data with
EMiss/ \[Hp < 1.5 GeV!/2. There are no data events in the overflow bins, i.e. with EM/ v/Hy > 20 GeV!/2. The
blue hatched band shows the statistical uncertainty on the template. Systematic uncertainties are not evaluated, but
are expected to be of a similar magnitude or smaller. The black dashed line shows the expectation for the ‘two-step’
signal point with (mg,m )2(1)) = (1300,200) GeV, scaled by a factor of 100. The vertical red dashed line demarks the

normalisation region of E%ﬂss /VHt < 1.5 GeV!/ 2,
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Figure 3: E‘T“iss/ vV Hr template (exactly 6 jets) applied to data with exactly 7 jets. Template normalised to data with
EMiss/ \[Hp < 1.5 GeV!/2. There are no data events in the overflow bins, i.e. with EM/ v/Hy > 20 GeV!/2. The
blue hatched band shows the statistical uncertainty on the template. Systematic uncertainties are not evaluated, but

are expected to be of a similar magnitude or smaller. The black dashed line shows the expectation for the ‘two-step’
signal point with (mg,m )2(1)) = (1300,200) GeV, scaled by a factor of 100. The vertical red dashed line demarks the

normalisation region of E%ﬂss /VHt < 1.5 GeV!/ 2,



4 Conclusion

The technique used for the estimation of the principal background to the SUSY Multijet search in 2012
v/s = 8 TeV data has been repeated in early 2015 +/s = 13 TeV data. Good agreement is seen between
the E‘TniSS /VHr template and data, building confidence that this method will be suitable for a similar
search in Run-2.
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