
Container evolution and dynamics of cluster formation

Yasuro Funaki,∗

1College of Science and Engineering, Kanto Gakuin University, Yokohama 236-8501, Japan

Abstract. We introduce the so-called Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function to describe var-
ious nuclear cluster states. Its importance, applicability, and usefulness are extensively discussed in this report.
It is demonstrated that the THSR wave function provides a “container” picture for cluster structures and even
an evolution of the container, for a couple of typical examples, such as 20Ne, 12C, and 16O nuclei.

1 Introduction
The cluster formation plays an important role in light nu-
clei. The 3α cluster structure in 12C, α + 12C cluster struc-
ture in 16O and α + 16O cluster structure in 20Ne are the
typical examples and extensively studied by using vari-
ous cluster models [1]. In the past two decades, alpha-
particle condensation has been extensively studied theo-
retically and experimentally. Although providing direct
observatory evidence is still an open question [2–4], many
theoretical calculations predict the existence of the 3α and
4α condensate states in 12C and 16O, respectively, in which
all α clusters weakly interact with each other with a dilute
gaslike configuration, and occupy an identical orbit of a
meanfield-like potential [5–12].

On the other hand, the ordinary non-gaslike cluster
states like the α + 16O, α + 12C inversion doublets, linear-
chain α-cluster states, etc. are completely different from
the gaslike cluster states. They had been understood by
a concept of localized clustering, in which all clusters are
in a geometric arrangement. However, more recent works
have required us to modify the basic idea of understanding
the ordinary cluster states. In Ref. [13], we introduced a
microscopic α + 16O cluster model wave function, which
demonstrates a nonlocalized motion of the α and 16O clus-
ters. They proved that the model wave function coincides
with the full solution of α+16O Resonating Group Method
(RGM) equation of motion for all the α + 16O inversion
doublet band states. Similar results are also obtained for
3α and 4α linear-chain states [14]. All these results lead
to the idea that dynamically mutual clusters are confined
in a “container”, whose shape and size are flexibly con-
formed, in a nonlocalized way. This new concept of the
so-called “container” picture modifies the preceding un-
derstanding of nuclear clustering, since the localized clus-
tering has been an important basis to understand the ordi-
nary (non-gaslike) nuclear cluster structures. The spatial
localization of clusters seems to appear when the size of
container is very small, due to the effect of Pauli principle
acting on clusters in between, as a kinematical effect.
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In this contribution, the study of 20Ne, which urges
us to introduce the container picture, is briefly reported,
in which the so-called Tohsaki-Horiuchi-Schuck-Röpke
(THSR) ansatz is extended. The extended THSR ansatz is
applied to the excited states above the Hoyle state in 12C,
in the following section [15–17]. Finally the same ansatz
is applied to 16O and the cluster evolution in 16O, from the
ground state, α+ 12C clustering, to the 4α clustering, is in-
vestigated with a new concept, “container evolution” [18].

2 “Container” picture in 20Ne
20Ne nucleus is one of the most typical clustered nuclei,
where the observed ground-state band and Kπ = 0−1 band
are considered to form the inversion doublet band aris-
ing from the hetero-polar di-nucleus configuration [19] of
α + 16O cluster structure. The observed large α reduced
width and degenerate nature of both bands cannot be ex-
plained without assuming a parity violating spatial local-
ization of α and 16O clusters. The inversion doublet band
states of α + 16O cluster structure are therefore best de-
scribed by the microscopic α + 16O cluster model, i.e.
α + 16O RGM, or equivalently α + 16O Brink-Generator
Coordinate Method (Brink-GCM). The latter is to solve
the following Hill-Wheeler equation,

∑
j

〈ΦJπ
Brink(Ri)|Ĥ − E|ΦJπ

Brink(Rj)〉 f (Rj) = 0, (1)

where, ΦJπ
Brink(R) denotes the Brink wave function pro-

jected onto Jπ angular momentum and parity, with R the
relative distance parameter between the α and 16O clusters.
The Brink-GCM wave function is expressed as follows:

ΦJπ
GCM =

∑
i

f (Ri)ΦJπ
Brink(Ri). (2)

On the other hand, in Ref. [13], a hybrid-Brink-THSR
wave function wave function was proposed as follows:

ΦJπ
THSR(β, S)

∝ P̂JπA{exp[−
∑

k=x,y,z

8(rk − S k)2

5B2
k

]φ(α)φ(16O)}, (3)
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where P̂Jπ the projection operator onto the angular mo-
mentum and parity Jπ, B2

k = b2 + 2β2
k , (k = x, y, z), r

the dynamical relative coordinate between the two clus-
ters. All calculations are performed with restriction to ax-
ially symmetric deformation, that is, βx = βy � βz and
S ≡ (0, 0, S z).

Table 1. EJπ
min is the energy to give minimum in parameter space,

βx = βy, βz, with S z → 0. The corresponding values of β and S z

in the hybrid model and the squared overlaps between the
(normalized) hybrid wave functions ΦJπ

THSR and the (normalized)
Brink GCM wave functions are also listed.

Jπ (βx = βy, βz) EJπ
min [MeV] |〈ΦJπ

THSR|ΦJπ
GCM〉|2

0+ (0.9, 2.5) −159.85 0.9929
2+ (0.0, 2.2) −158.53 0.9879
4+ (0.0, 1.8) −155.50 0.9775
1− (3.7, 1.4) −155.38 0.9998
3− (3.7, 0.0) −153.07 0.9987

In Refs. [13, 20], the authors found that the energy is
most favoured when S z → 0 in two parameter space of S z

and βx = βy = βz, for all Jπ states. Since the hybrid Brink-
THSR wave function in Eq. (3) contains both limits of the
Brink and THSR wave function, which are characterized
by the parameters S z and β, respectively. The fact that
S z → 0 is energetically favored means that the pure THSR
wave function is selected, i.e. strongly indicating that the
“container” picture is favored, without giving any optimal
relative distance between the two clusters. The variational
calculations are furthermore put forward and they found
that the pure THSR wave function gives almost 100 %
squared overlap with the Brink-GCM wave function for
all the Jπ states of the inversion doublet band states. The
results are summarized in Table 1, where the single con-
figuration of the pure THSR wave function giving the min-
imum energy in βx = βy, βz parameter space with the
limit S z → 0, is taken. Actually, the table shows that
the squared overlap values are 99.29%, 98.79%, 97.75%,
99.98%, and 99.87% for Jπ = 0+, 2+, 4+, 1−, and 3− states,
respectively. These almost 100 % squared overlap values
of course mean that the single THSR wave functions are
almost 100 % equivalent to the corresponding RGM/GCM
wave functions, and thus they can accurately describe the
inversion doublet band states in 20Ne. We should then
note that the THSR wave function never seems to provide
any geometric configuration, like giving an optimal spatial
placement of the two clusters, but gives rather a delocal-
ized motion in a meanfield-like potential, which is referred
to as a “container” picture.

Now many other studies show the correctness of this
concept in other systems, which had been (before the ad-
vent of this new concept) considered to have localized
clustering structures, such as the 3α- and 4α-linear chain
structure states, α + α + Λ structure state in 9

Λ
Be, etc. In

our new interpretation, the linear chain states have a struc-
ture that the α clusters are confined in a prolately deformed
container, and in 9

Λ
Be, in which the density is made much

higher than that of 8Be, due to the Λ particle, the three
clusters are confined in a small size container with defor-
mation [21]. The concept has also been examined in many

other systems, including neutron-rich nuclei, like 9Be [22],
10Be, 12Be [23], 13

Λ
C [24], 9B [25].

3 Excited states above the Hoyle state in
12C

The Hoyle state is the famous example of the α conden-
sate state, in which the 3α clusters weakly interact with
each other and are condensed into the lowest energy or-
bit. We here argue that there exist a number of other α
cluster states above the Hoyle state, which we can qual-
ify as the excited states of the Hoyle state. We investigate
them by using the following extended THSR wave func-
tion (eTHSR),

ΦJ=0
3α (β1,β2)

= P̂J=0A
[ 2∏

i=1

exp
{
− µi

∑
k=x,y,z

2(ξix)2

b2 + 2β2
ik

} 3∏
i=1

φ(αi)
]
, (4)

in which the two different width parameters β1 and β2 are
associated to the two Jacobi coordinates ξ1 and ξ2, corre-
sponding to α-α and 2α-α motions, respectively.

With this eTHSR wave function, one can get a much
richer spectrum of 12C by solving the Hill-Wheeler equa-
tion, with axial symmetry assumed and the four β param-
eters taken as generator coordinates. In this calculations
we effectively remove spurious continuum components by
using a method of the so-called radius constraint method
(see Refs. [16, 26–28] for details). In Fig. 1, the calcu-
lated energy spectrum is shown. One can see that besides
the ground state band, there are many Jπ states obtained
above the Hoyle state. All these states turn out to have
large rms radii (3.7 ∼ 4.7 fm), and therefore can be con-
sidered as excitations of the Hoyle state. The Hoyle state
can thus be considered as the “ground state” of a new class
of excited states in 12C. In particular, the nature of the se-
ries of states (0+2 , 2+2 , 4+2 ) and the 0+3 and 0+4 states have
recently been much discussed from the experimental side.
The 2+2 state that theoretically has been predicted at a few
MeV above the Hoyle state already in the early works of
3α Brink-GCM [29, 30] and 3α RGM [31] was recently
confirmed by several experiments [32–37]. A strong can-
didate for a member of the Hoyle family of states with
Jπ = 4+ was also reported by Freer et al. [38]. Itoh et al.
recently pointed out that the broad 0+ resonance at 10.3
MeV should be decomposed into two states: 0+3 and 0+4
[39]. This finding is consistent with theoretical predictions
where the 0+3 state is considered as a breathing excitation
of the Hoyle state [16, 17, 40, 41] and the 0+4 state as the
bent arm or linear chain configuration [17, 42, 43].

In Fig. 1, the E2 transition strengths between J and
J ± 2 states and monopole transitions between 0+ states
are also shown with corresponding arrows. We can note
the very strong E2 transitions inside the Hoyle band,
B(E2; 4+2 → 2+2 ) = 591 e2fm4 and B(E2; 2+2 → 0+2 ) =
295 e2fm4. The transition between the 2+2 and 0+3 states
is also very large, B(E2; 2+2 → 0+3 ) = 104 e2fm4. In
Fig. 2, the calculated energy levels are plotted as a func-
tion of J(J+1), together with the experimental data. There
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where P̂Jπ the projection operator onto the angular mo-
mentum and parity Jπ, B2

k = b2 + 2β2
k , (k = x, y, z), r

the dynamical relative coordinate between the two clus-
ters. All calculations are performed with restriction to ax-
ially symmetric deformation, that is, βx = βy � βz and
S ≡ (0, 0, S z).

Table 1. EJπ
min is the energy to give minimum in parameter space,

βx = βy, βz, with S z → 0. The corresponding values of β and S z

in the hybrid model and the squared overlaps between the
(normalized) hybrid wave functions ΦJπ

THSR and the (normalized)
Brink GCM wave functions are also listed.

Jπ (βx = βy, βz) EJπ
min [MeV] |〈ΦJπ

THSR|ΦJπ
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most favoured when S z → 0 in two parameter space of S z

and βx = βy = βz, for all Jπ states. Since the hybrid Brink-
THSR wave function in Eq. (3) contains both limits of the
Brink and THSR wave function, which are characterized
by the parameters S z and β, respectively. The fact that
S z → 0 is energetically favored means that the pure THSR
wave function is selected, i.e. strongly indicating that the
“container” picture is favored, without giving any optimal
relative distance between the two clusters. The variational
calculations are furthermore put forward and they found
that the pure THSR wave function gives almost 100 %
squared overlap with the Brink-GCM wave function for
all the Jπ states of the inversion doublet band states. The
results are summarized in Table 1, where the single con-
figuration of the pure THSR wave function giving the min-
imum energy in βx = βy, βz parameter space with the
limit S z → 0, is taken. Actually, the table shows that
the squared overlap values are 99.29%, 98.79%, 97.75%,
99.98%, and 99.87% for Jπ = 0+, 2+, 4+, 1−, and 3− states,
respectively. These almost 100 % squared overlap values
of course mean that the single THSR wave functions are
almost 100 % equivalent to the corresponding RGM/GCM
wave functions, and thus they can accurately describe the
inversion doublet band states in 20Ne. We should then
note that the THSR wave function never seems to provide
any geometric configuration, like giving an optimal spatial
placement of the two clusters, but gives rather a delocal-
ized motion in a meanfield-like potential, which is referred
to as a “container” picture.

Now many other studies show the correctness of this
concept in other systems, which had been (before the ad-
vent of this new concept) considered to have localized
clustering structures, such as the 3α- and 4α-linear chain
structure states, α + α + Λ structure state in 9

Λ
Be, etc. In

our new interpretation, the linear chain states have a struc-
ture that the α clusters are confined in a prolately deformed
container, and in 9

Λ
Be, in which the density is made much

higher than that of 8Be, due to the Λ particle, the three
clusters are confined in a small size container with defor-
mation [21]. The concept has also been examined in many

other systems, including neutron-rich nuclei, like 9Be [22],
10Be, 12Be [23], 13

Λ
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3 Excited states above the Hoyle state in
12C

The Hoyle state is the famous example of the α conden-
sate state, in which the 3α clusters weakly interact with
each other and are condensed into the lowest energy or-
bit. We here argue that there exist a number of other α
cluster states above the Hoyle state, which we can qual-
ify as the excited states of the Hoyle state. We investigate
them by using the following extended THSR wave func-
tion (eTHSR),

ΦJ=0
3α (β1,β2)

= P̂J=0A
[ 2∏

i=1

exp
{
− µi

∑
k=x,y,z

2(ξix)2

b2 + 2β2
ik

} 3∏
i=1

φ(αi)
]
, (4)

in which the two different width parameters β1 and β2 are
associated to the two Jacobi coordinates ξ1 and ξ2, corre-
sponding to α-α and 2α-α motions, respectively.

With this eTHSR wave function, one can get a much
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using a method of the so-called radius constraint method
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Figure 1. (Color online). Calculated energy levels and electric
transition strengths are shown and compared with experiments.
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are denoted by black circles and black squares, respectively. The
calculated energy levels for the five states are denoted by red
diamonds.

have been attempts to interpret this as a rotational band of
a spinning triangle as this was successfully done for the
ground state band [44, 45]. However, the situation may
not be as straightforward as it seems. This is because the
two transitions 2+2 → 0+2 and 2+2 → 0+3 are of similar mag-
nitude, and hence no clear band head can be identified. It
was also pointed out in Refs. [42, 43] that the states 2+2 , 4

+
2

form a rotational band not with the 0+2 but with the 0+3 state.
The line which connects the two other hypothetical mem-
bers of the rotational band, in Fig. 2, has a slope, which
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Figure 3. (Color online) S 2 factors of the excited states.

points to somewhere in between of the 0+2 and 0+3 states.
The similar effect is also argued in the study of the 4α
condensate and 12C(0+2 )+α rotational band in 16O [46, 47].
Furthermore we show in Fig. 3 the S 2 factors of the 8Be+α
components, which are defined below,

S 2
[I,l](J+λ ) =

∫
dr[rY[I,l]J (r)]2, (5)

where Y[I,l]J is the reduced width amplitudes of the
12C(J+λ ) states in the 8Be(I) + α(l) channel. Except for
the 0+4 state, all the states have dominant components from
the channels [0, J]J , which is consistent with 8Be(0+) and
α rotation. However, in the 2+2 and 4+2 state, the mixtures
of the other components are also found to be large. These
suggest that to conclude from there this gives rise to a sim-
ple rotational band, is premature [16].

4 Container evolution for clusters in 16O

The situation in 16O is more complicated than in 12C, since
even if one α cluster is knocked out, the remaining core
configuration is not unique, i.e. many varieties 12C(0+1 ),
12C(0+2 ) (3α), etc., are present. Then the special interest is
of how these complex cluster states are formed as the in-
crease of excitation energy. The α+12C cluster structure in
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Table 2. Maxima of the squared overlaps in Eq. (7) for the 0+I - 0+V states, in the four-parameter space (β1⊥, β1z, β2⊥, β2z). The
corresponding parameter values (B1⊥, B1z, B2⊥, B2z) are also shown. Those for 12C are also shown, in two-parameter space β⊥ and βz,

with β1 = β2. The corresponding B⊥ and Bz values are also shown.

Omax (β1⊥, β1z, β2⊥ β2z) (B1⊥, B1z, B2⊥, B2z) Omax (β1⊥, β1z) (B1⊥, B1z)
0+I 0.98 (1.3, 0.1, 0.1, 2.6 fm) (2.3, 1.4, 1.4, 3.9 fm) 12C(0+1 ) 0.93 (1.9, 1.8 fm) (3.0, 2.9 fm)
0+II 0.94 (1.8, 1.8, 3.5, 3.6 fm) (2.9, 2.9, 5.2, 5.3 fm) 12C(2+1 ) 0.90 (1.9, 0.5 fm) (3.0, 1.6 fm)
0+III 0.76 (2.1, 0.7, 5.1, 0.1 fm) (3.3, 1.7, 7.4, 1.4 fm) 12C(0+2 ) 0.99 (5.6, 1.4 fm) (8.0, 2.4 fm)
0+IV 0.84 (2.5, 1.3, 8.3, 7.8 fm) (3.8, 2.3, 11.8, 11.1 fm)
0+V 0.78 (5.3, 1.9, 5.3, 1.8 fm) (7.6, 3.0, 7.6, 2.9 fm)

EE

Figure 4. (Color online) “Container” evolution picture for clus-
ter structures in 16O.

16O is formed by the activation of cluster degree of free-
dom in the ground state having a dual property [50, 51],
i.e. the excitation of relative motion between the α and
12C clusters. The gaslike 4α cluster state is then formed as
a result of further excitation of the 12C core to the 3α clus-
ter state, i.e. to the Hoyle state. The path of this cluster
evolution is to be shown by the Ikeda diagram. We show
in Fig. 4 a schematic picture for the path of cluster evolu-
tion along the excitation energy in 16O, in terms of the size
and shape evolution of containers.

In order to describe the cluster evolution in 16O, we
employ the following eTHSR wave function, which is a
natural extension of what is adopted for the 3α system in
the previous section,

ΦJ=0
4α (β1,β2)

= P̂J=0A
[

exp
{
− 2

x,y,z∑
k

(µ1ξ
2
1k + µ2ξ

2
2k

B2
1k

−
µ3ξ

2
3k

B2
2k

)} 4∏
i=1

φ(αi)
]
,

(6)
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Figure 5. Energy spectra of the low-lying Jπ = 0+ states cal-
culated with the extended THSR ansatz. The corresponding ob-
served spectrum (Exp.) [48, 49] and result by the 4α OCM [11]
are also shown.

where ξi is again the Jacobi coordinates between the α par-
ticles, and µi = i/(i + 1), for i = 1, 2, 3. While the parame-
ter b characterizes the size of the constituent α particle, the
parameters β1 and β2 characterize the size and shape of a
container, in which the α clusters are confined. We also
assume the axial symmetry βi⊥ ≡ βix = βiy, so as to deal
with the four parameters, β1⊥, β1z, β2⊥, β2z, in the practical
calculations.

In Fig. 5, the calculated energy spectrum for Jπ = 0+

states is shown. The corresponding experimental data and
result by the 4α Orthogonality Condition Model (OCM)
calculation [11] are also shown. The solution of Hill-
Wheeler equation with the radius constraint method is
shown.

The 4α OCM calculation gives six 0+ states. The 0+6
state has the 4α condensate character and the 0+2 - 0+5 states
all have α + 12C cluster structures. i.e. α(S ) + 12C(0+1 ),
α(D)+ 12C(2+1 ), α(S )+ 12C(0+1 ), and α(P)+ 12C(1−) cluster
structures, respectively. Since in the present eTHSR wave
function of Eq. (6) the α clusters occupy positive parity or-
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Table 2. Maxima of the squared overlaps in Eq. (7) for the 0+I - 0+V states, in the four-parameter space (β1⊥, β1z, β2⊥, β2z). The
corresponding parameter values (B1⊥, B1z, B2⊥, B2z) are also shown. Those for 12C are also shown, in two-parameter space β⊥ and βz,

with β1 = β2. The corresponding B⊥ and Bz values are also shown.

Omax (β1⊥, β1z, β2⊥ β2z) (B1⊥, B1z, B2⊥, B2z) Omax (β1⊥, β1z) (B1⊥, B1z)
0+I 0.98 (1.3, 0.1, 0.1, 2.6 fm) (2.3, 1.4, 1.4, 3.9 fm) 12C(0+1 ) 0.93 (1.9, 1.8 fm) (3.0, 2.9 fm)
0+II 0.94 (1.8, 1.8, 3.5, 3.6 fm) (2.9, 2.9, 5.2, 5.3 fm) 12C(2+1 ) 0.90 (1.9, 0.5 fm) (3.0, 1.6 fm)
0+III 0.76 (2.1, 0.7, 5.1, 0.1 fm) (3.3, 1.7, 7.4, 1.4 fm) 12C(0+2 ) 0.99 (5.6, 1.4 fm) (8.0, 2.4 fm)
0+IV 0.84 (2.5, 1.3, 8.3, 7.8 fm) (3.8, 2.3, 11.8, 11.1 fm)
0+V 0.78 (5.3, 1.9, 5.3, 1.8 fm) (7.6, 3.0, 7.6, 2.9 fm)

EE

Figure 4. (Color online) “Container” evolution picture for clus-
ter structures in 16O.

16O is formed by the activation of cluster degree of free-
dom in the ground state having a dual property [50, 51],
i.e. the excitation of relative motion between the α and
12C clusters. The gaslike 4α cluster state is then formed as
a result of further excitation of the 12C core to the 3α clus-
ter state, i.e. to the Hoyle state. The path of this cluster
evolution is to be shown by the Ikeda diagram. We show
in Fig. 4 a schematic picture for the path of cluster evolu-
tion along the excitation energy in 16O, in terms of the size
and shape evolution of containers.

In order to describe the cluster evolution in 16O, we
employ the following eTHSR wave function, which is a
natural extension of what is adopted for the 3α system in
the previous section,

ΦJ=0
4α (β1,β2)

= P̂J=0A
[

exp
{
− 2
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2
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2
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2
3k

B2
2k

)} 4∏
i=1

φ(αi)
]
,

(6)

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

[MeV]

4α

α+
12C

eTHSR

0I

+

0II

+

0III

+

0IV

+

0V

+

4α OCM

01
+

02
+

03
+

04
+
05

+

06
+

EXP.

Figure 5. Energy spectra of the low-lying Jπ = 0+ states cal-
culated with the extended THSR ansatz. The corresponding ob-
served spectrum (Exp.) [48, 49] and result by the 4α OCM [11]
are also shown.

where ξi is again the Jacobi coordinates between the α par-
ticles, and µi = i/(i + 1), for i = 1, 2, 3. While the parame-
ter b characterizes the size of the constituent α particle, the
parameters β1 and β2 characterize the size and shape of a
container, in which the α clusters are confined. We also
assume the axial symmetry βi⊥ ≡ βix = βiy, so as to deal
with the four parameters, β1⊥, β1z, β2⊥, β2z, in the practical
calculations.

In Fig. 5, the calculated energy spectrum for Jπ = 0+

states is shown. The corresponding experimental data and
result by the 4α Orthogonality Condition Model (OCM)
calculation [11] are also shown. The solution of Hill-
Wheeler equation with the radius constraint method is
shown.

The 4α OCM calculation gives six 0+ states. The 0+6
state has the 4α condensate character and the 0+2 - 0+5 states
all have α + 12C cluster structures. i.e. α(S ) + 12C(0+1 ),
α(D)+ 12C(2+1 ), α(S )+ 12C(0+1 ), and α(P)+ 12C(1−) cluster
structures, respectively. Since in the present eTHSR wave
function of Eq. (6) the α clusters occupy positive parity or-

bits, such a state as having the α(P)+12C(1−) cluster struc-
ture, like the 0+5 state in the OCM calculation, is missing.

We calculate the r.m.s. radii for the five states, whose
values are 2.7, 3.2, 3.3, 4.9, and 4.9 fm, respectively from
the ground state to the 0+V state, and namely as the states are
excited, the r.m.s. radius becomes larger. This indicates
that the higher the excitation energy is, the more evolved
the clustering is. The evolution of the clustering can be
described by solving the Hill-Wheeler equation concern-
ing the model parameters β1 and β2.

This respect is made much clearer by calculating the
following squared overlap:

Oλ(β1,β2) = |〈Φ̃J=0
λ (β1,β2)|Ψλ〉|2, (7)

with Ψλ the λth eigenfunction and Φ̃J=0
λ (β1,β2) normal-

ized single eTHSR wave function in a space orthogonal to
the lower eigenstates, i.e.

Φ̃J=0
λ (β1,β2) = NλP̂λΦJ=0

4α (β1,β2), (8)

where P̂λ = 1 − ∑λ−1
i=1 |Ψi〉〈Ψi| with λ = I, · · · , IV , and

P̂V = 1 − ∑6
i=1 |Ψi〉〈Ψi|, and Nλ are the corresponding

normalization constants. This quantity shows how these
states Ψλ (λ = I, · · · ,V) are represented by single eTHSR
configurations, and therefore, gives direct information of
whether the container structure is realized and what kind
of containers are realized.

In Table 2, the maximal values and β1 and β2 pa-
rameter values to give the maxima in the squared overlap
are listed. The corresponding B1 and B2 values are also
shown. It is now well known that the single 3α THSR
wave function can very precisely describe the ground state
and excited states of 12C. Then we also show the maxi-
mum values of the squared overlap of the 0+1 , 2+1 and 0+2
states in 12C with the single 3α THSR configuration in
β1 = β2 parameter space.

In the ground state, 3α clusters are in an oblately de-
formed and very compact container with β1⊥ � β1z, while
the remaining α cluster is in a prolately deformed and very
compact container with β2⊥ � β2z. This means that the
first 3α clusters move in a xy-plane and the last one moves
in z-direction. This supports the idea that the ground state
has a tetrahedral shape of the 4α clusters proposed by sev-
eral authors [52, 53]. Our calculation indicates that this
configuration is contained in the 0+I state by 98 %.

In the 0+II state, the 3α clusters are in a spherical con-
tainer with β1⊥ ∼ β1z. The fourth α cluster is put into
a larger size container with spherical shape, i.e. β2⊥ ∼
β2z > β1⊥ ∼ β1z. In particular, the parameter set
(β1⊥, β1z) = (1.8, 1.8 fm) is almost the same as that for
12C, i.e. (β⊥, βz) = (1, 9, 1.8 fm). This means that the first
3α clusters are confined in a compact container to form
the ground state of 12C, since the 12C(0+1 ) state can be very
precisely described by the single configuration with these
parameter values. The fourth α cluster moves in a larger
spherical container, because of (β2⊥, β2z) = (3.5, 3.6 fm),
which gives the largest squared overlap 94 %. This is the
new interpretation of the α + 12C cluster structure, which
is consistent with the traditional understanding that the α
cluster orbits in an S -wave around the 12C(0+1 ) core.

The 0+III state is similar to the 0+II state but both con-
tainers are not spherical but deformed. The β1 param-
eter takes almost the same value as that of the isolated
12C(2+) state, which means that the first 3α clusters form
the 12C(2+) state, since the state is described by the single
parameter value of β. The configuration of the remain-
ing α cluster (β2⊥, β2z) = (5.1, 0.1 fm), giving the largest
value 76 %, means that the α cluster moves in a deformed
and larger container. This is present understanding of the
0+3 state, which is conventionally considered to have the
α(D) + 12C(2+) structure.

In the 0+IV state one can see that the 3α clusters are put
in slightly larger container than that for the 12C(0+1 ) state,
which is slightly deformed in a oblate shape. The fourth α
cluster, however, moves in a much larger and almost spher-
ical container, like a satellite. This configuration expresses
the 0+IV state dominantly by 84 %. This means that the sec-
ond container characterized by β2 is further evolved from
that in the 0+II state. We can say that this state corresponds
to the 0+4 state in the former 4α OCM calculation, which
predicts the α+12C(0+1 ) higher nodal structure for the state.

The 0+V state is the most interesting. All the α clus-
ters occupy an identical orbit, with (β1⊥, β1z, β2⊥, β2z) =
(5.3, 1.9, 5.3, 1.8 fm). This is qualified to call the α con-
densation. This configuration is contained in this state by
78 %, which is still very large. Furthermore, this con-
tainer is very close to the one of the Hoyle state, with
(β1⊥, β1z) = (5.6, 1.4 fm) . This means that the 0+V state
is regarded as the Hoyle analog state, in which the fourth
α cluster is also put into the container occupied with the
3α clusters in the Hoyle state. The large size of this con-
tainer indicates that the 4α clusters are loosely coupled
with each other and configured like a gas. Note that the
4α condensate state is also predicted by the 4α OCM cal-
culation slightly above the 4α threshold, as the 0+6 state.

These results tell us that the evolution of cluster struc-
tures is described by the container evolution with respect
to its size and shape. The reason why the container evolu-
tion arises is the orthogonality to the lower states, which is
explicitly taken into account in the definition of the single
configuration Φ̃J=0

k in Eq. (7). The orthogonality condi-
tion prevents a higher state configuration from overlapping
with the lower-states more compact configurations. It thus
plays a role as a repulsive core and is considered to give
the container evolution.

5 Conclusion

We proposed a new concept, “container” picture, to de-
scribe general cluster structures. This idea comes with the
so-called THSR ansatz, which was originally introduced
to explain the gaslike cluster states like the α conden-
sates. We further proposed a “container evolution” picture,
in which the cluster evolution is caused by the container
evolution. We demonstrated this idea in 16O nucleus and
showed that the cluster formation, from the ground and
α+12C cluster states to the 4α gaslike state, is nicely repro-
duced by the eTHSR wave function. This idea is promis-
ing for heavier nuclei and is to deepen the understanding
of cluster formation described by the Ikeda diagram.
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