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Container evolution and dynamics of cluster formation
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Abstract. We introduce the so-called Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function to describe var-
ious nuclear cluster states. Its importance, applicability, and usefulness are extensively discussed in this report.
It is demonstrated that the THSR wave function provides a “container” picture for cluster structures and even
an evolution of the container, for a couple of typical examples, such as *°Ne, 2C, and '°O nuclei.

1 Introduction

The cluster formation plays an important role in light nu-
clei. The 3« cluster structure in 2C, a + '2C cluster struc-
ture in '°0 and @ + '°O cluster structure in *°Ne are the
typical examples and extensively studied by using vari-
ous cluster models [1]. In the past two decades, alpha-
particle condensation has been extensively studied theo-
retically and experimentally. Although providing direct
observatory evidence is still an open question [2—4], many
theoretical calculations predict the existence of the 3« and
4a condensate states in '>C and '°0, respectively, in which
all a clusters weakly interact with each other with a dilute
gaslike configuration, and occupy an identical orbit of a
meanfield-like potential [5—12].

On the other hand, the ordinary non-gaslike cluster
states like the a + 1°0, @ + '2C inversion doublets, linear-
chain a-cluster states, etc. are completely different from
the gaslike cluster states. They had been understood by
a concept of localized clustering, in which all clusters are
in a geometric arrangement. However, more recent works
have required us to modify the basic idea of understanding
the ordinary cluster states. In Ref. [13], we introduced a
microscopic @ + %0 cluster model wave function, which
demonstrates a nonlocalized motion of the a and '°0 clus-
ters. They proved that the model wave function coincides
with the full solution of @+ '®0 Resonating Group Method
(RGM) equation of motion for all the @ + '°O inversion
doublet band states. Similar results are also obtained for
3a and 4« linear-chain states [14]. All these results lead
to the idea that dynamically mutual clusters are confined
in a “container”, whose shape and size are flexibly con-
formed, in a nonlocalized way. This new concept of the
so-called “container” picture modifies the preceding un-
derstanding of nuclear clustering, since the localized clus-
tering has been an important basis to understand the ordi-
nary (non-gaslike) nuclear cluster structures. The spatial
localization of clusters seems to appear when the size of
container is very small, due to the effect of Pauli principle
acting on clusters in between, as a kinematical effect.
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In this contribution, the study of *’Ne, which urges
us to introduce the container picture, is briefly reported,
in which the so-called Tohsaki-Horiuchi-Schuck-Ropke
(THSR) ansatz is extended. The extended THSR ansatz is
applied to the excited states above the Hoyle state in '>C,
in the following section [15-17]. Finally the same ansatz
is applied to '°0 and the cluster evolution in '°O, from the
ground state, @ + 2c clustering, to the 4« clustering, is in-
vestigated with a new concept, “container evolution” [18].

2 “Container” picture in 2’Ne

20Ne nucleus is one of the most typical clustered nuclei,
where the observed ground-state band and K™ = 07 band
are considered to form the inversion doublet band aris-
ing from the hetero-polar di-nucleus configuration [19] of
a + '°0 cluster structure. The observed large o reduced
width and degenerate nature of both bands cannot be ex-
plained without assuming a parity violating spatial local-
ization of @ and '°0 clusters. The inversion doublet band
states of @ + '°O cluster structure are therefore best de-
scribed by the microscopic @ + 'O cluster model, i.e.
a + '°0 RGM, or equivalently  + 'O Brink-Generator
Coordinate Method (Brink-GCM). The latter is to solve
the following Hill-Wheeler equation,

D UL RA = B0 (R)FR) =0, (1)
J

where, CDJJ;rink(R) denotes the Brink wave function pro-

jected onto J™ angular momentum and parity, with R the
relative distance parameter between the  and '°0 clusters.
The Brink-GCM wave function is expressed as follows:

®fey = Z FR)YDE . (R)). )

On the other hand, in Ref. [13], a hybrid-Brink-THSR
wave function wave function was proposed as follows:
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where P’" the projection operator onto the angular mo-
mentum and parity J”, B,% = b+ 2,8%, k = xy,2), r
the dynamical relative coordinate between the two clus-
ters. All calculations are performed with restriction to ax-
ially symmetric deformation, that is, 8, = B, # B; and
$=(0,0,5)).

Table 1. Er’n"m is the energy to give minimum in parameter space,
Bx = By, B, with S . — 0. The corresponding values of 8 and S,
in the hybrid model and the squared overlaps between the
(normalized) hybrid wave functions (D%LSR and the (normalized)
Brink GCM wave functions are also listed.

J* (BX = ﬁy’ﬁz) E[‘Z]n [MeV] |<(D"{“’I(-ISR|(DgCM>|2

0+ (0.9,2.5) —-159.85 0.9929
2% (0.0,2.2) —158.53 0.9879
4* (0.0, 1.8) -155.50 0.9775
1” (3.7,1.4) —-155.38 0.9998
3" (3.7,0.0) -153.07 0.9987

In Refs. [13, 20], the authors found that the energy is
most favoured when S, — 0 in two parameter space of S,
and B, = 8, = ., for all J” states. Since the hybrid Brink-
THSR wave function in Eq. (3) contains both limits of the
Brink and THSR wave function, which are characterized
by the parameters S, and B, respectively. The fact that
S, — 0is energetically favored means that the pure THSR
wave function is selected, i.e. strongly indicating that the
“container” picture is favored, without giving any optimal
relative distance between the two clusters. The variational
calculations are furthermore put forward and they found
that the pure THSR wave function gives almost 100 %
squared overlap with the Brink-GCM wave function for
all the J™ states of the inversion doublet band states. The
results are summarized in Table 1, where the single con-
figuration of the pure THSR wave function giving the min-
imum energy in 8, = B,,[5, parameter space with the
limit S, — 0, is taken. Actually, the table shows that
the squared overlap values are 99.29%, 98.79%, 97.75%,
99.98%, and 99.87% for J™ = 0%, 2%, 4%, 17, and 3 states,
respectively. These almost 100 % squared overlap values
of course mean that the single THSR wave functions are
almost 100 % equivalent to the corresponding RGM/GCM
wave functions, and thus they can accurately describe the
inversion doublet band states in 2’Ne. We should then
note that the THSR wave function never seems to provide
any geometric configuration, like giving an optimal spatial
placement of the two clusters, but gives rather a delocal-
ized motion in a meanfield-like potential, which is referred
to as a “container” picture.

Now many other studies show the correctness of this
concept in other systems, which had been (before the ad-
vent of this new concept) considered to have localized
clustering structures, such as the 3a- and 4a-linear chain
structure states, & + @ + A structure state in (/’\Be, etc. In
our new interpretation, the linear chain states have a struc-
ture that the a clusters are confined in a prolately deformed
container, and in ?\Be, in which the density is made much
higher than that of 8Be, due to the A particle, the three
clusters are confined in a small size container with defor-
mation [21]. The concept has also been examined in many

other systems, including neutron-rich nuclei, like °Be [22],
10Be, 12Be [23], /1\3C [24], °B [25].

3 Excited states above the Hoyle state in
IZC

The Hoyle state is the famous example of the @ conden-
sate state, in which the 3« clusters weakly interact with
each other and are condensed into the lowest energy or-
bit. We here argue that there exist a number of other «
cluster states above the Hoyle state, which we can qual-
ify as the excited states of the Hoyle state. We investigate
them by using the following extended THSR wave func-
tion (€THSR),

32°(B1. )
2
=1

. 267 T
= POA [ exp(-m Y —b2+2ﬁ2}| [ #@n], @
i ik i=1

i k=x.y,z

in which the two different width parameters 8, and 8, are
associated to the two Jacobi coordinates &, and &,, corre-
sponding to @-a and 2a-a motions, respectively.

With this eTHSR wave function, one can get a much
richer spectrum of '2C by solving the Hill-Wheeler equa-
tion, with axial symmetry assumed and the four 8 param-
eters taken as generator coordinates. In this calculations
we effectively remove spurious continuum components by
using a method of the so-called radius constraint method
(see Refs. [16, 26-28] for details). In Fig. 1, the calcu-
lated energy spectrum is shown. One can see that besides
the ground state band, there are many J” states obtained
above the Hoyle state. All these states turn out to have
large rms radii (3.7 ~ 4.7 fm), and therefore can be con-
sidered as excitations of the Hoyle state. The Hoyle state
can thus be considered as the “ground state” of a new class
of excited states in '2C. In particular, the nature of the se-
ries of states (03, 27, 47) and the 03’ and O states have
recently been much discussed from the experimental side.
The 27 state that theoretically has been predicted at a few
MeV above the Hoyle state already in the early works of
3a Brink-GCM [29, 30] and 3¢ RGM [31] was recently
confirmed by several experiments [32-37]. A strong can-
didate for a member of the Hoyle family of states with
J* = 4% was also reported by Freer et al. [38]. Itoh et al.
recently pointed out that the broad 0* resonance at 10.3
MeV should be decomposed into two states: 05 and 0
[39]. This finding is consistent with theoretical predictions
where the 0] state is considered as a breathing excitation
of the Hoyle state [16, 17, 40, 41] and the Oj{ state as the
bent arm or linear chain configuration [17, 42, 43].

In Fig. 1, the E2 transition strengths between J and
J + 2 states and monopole transitions between 0" states
are also shown with corresponding arrows. We can note
the very strong E2 transitions inside the Hoyle band,
B(E2;4; — 2%) = 591 ¢*fm® and B(E2;2] — 0}) =
295 ¢*fm*. The transition between the 27 and 0f states
is also very large, B(E2;2; — 0f) = 104 fm*. In
Fig. 2, the calculated energy levels are plotted as a func-
tion of J(J + 1), together with the experimental data. There
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Figure 1. (Color online). Calculated energy levels and electric
transition strengths are shown and compared with experiments.
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Figure 2. (Color online). The observed energy levels for the 03,
07, and 27 states in Ref. [32], and the 2} [37] and 4; [38] states
are denoted by black circles and black squares, respectively. The
calculated energy levels for the five states are denoted by red
diamonds.

have been attempts to interpret this as a rotational band of
a spinning triangle as this was successfully done for the
ground state band [44, 45]. However, the situation may
not be as straightforward as it seems. This is because the
two transitions 25 — 03 and 25 — 07 are of similar mag-
nitude, and hence no clear band head can be identified. It
was also pointed out in Refs. [42, 43] that the states 27,47
form a rotational band not with the 03 but with the 07 state.
The line which connects the two other hypothetical mem-
bers of the rotational band, in Fig. 2, has a slope, which
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Figure 3. (Color online) S? factors of the excited states.

points to somewhere in between of the 07 and 07 states.
The similar effect is also argued in the study of the 4«
condensate and '>C(03)+a rotational band in '°O [46, 47].
Furthermore we show in Fig. 3 the S factors of the *Be+a
components, which are defined below,

St = f dr(rY ., (NP, 5)
where Y|;, is the reduced width amplitudes of the
12C(Jj{) states in the Be(l) + a(l) channel. Except for
the OZ state, all the states have dominant components from
the channels [0, J];, which is consistent with 3Be(0*) and
« rotation. However, in the 23 and 4] state, the mixtures
of the other components are also found to be large. These
suggest that to conclude from there this gives rise to a sim-
ple rotational band, is premature [16].

4 Container evolution for clusters in 10O

The situation in °O is more complicated than in 12C | since
even if one « cluster is knocked out, the remaining core
configuration is not unique, i.e. many varieties IZC(OT),
12C(03) (3a), etc., are present. Then the special interest is
of how these complex cluster states are formed as the in-
crease of excitation energy. The a+'>C cluster structure in
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Table 2. Maxima of the squared overlaps in Eq. (7) for the 0 - 05, states, in the four-parameter space (81.,81:,82.,052.). The
corresponding parameter values (B, ., B|., B, , B,.) are also shown. Those for '>C are also shown, in two-parameter space 3, and §.,
with 8, = B,. The corresponding B, and B, values are also shown.

Omax (ﬂlJ_s ﬂlzs ﬁZJ.ﬂZz) (BIJ_s Blzs B2J_9 BZz) Omax (ﬁlJ.s Blz) (BlJ_s Blz)
0y 098 (1.3,0.1, 0.1, 2.6 fm) (2.3, 1.4, 1.4, 3.9 fm) 12C(OT) 093 (1.9, 1.8fm) (3.0, 2.9 fm)
0, 094 (18, 18,35 3.6fm) (29,29,52 53fm) '2C2H) 090 (1.9, 0.5fm) (3.0, 1.6 fm)
05, 076 (2.1,07,51,01fm) (33,17, 74, L4fm) 2C0) 099 (5.6, 1.4fm) (8.0, 2.4 fm)
07, 0.84 (25,1.3,83,78fm) (3.8, 23, 11.8, 11.1 fm)
0y 0.78 (5.3, 1.9, 5.3, 1.8 fm) (7.6, 3.0, 7.6, 2.9 fm)
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Figure 4. (Color online) “Container” evolution picture for clus-
ter structures in '°O.

160 is formed by the activation of cluster degree of free-
dom in the ground state having a dual property [50, 51],
i.e. the excitation of relative motion between the o and
12C clusters. The gaslike 4« cluster state is then formed as
a result of further excitation of the '?C core to the 3 clus-
ter state, i.e. to the Hoyle state. The path of this cluster
evolution is to be shown by the Ikeda diagram. We show
in Fig. 4 a schematic picture for the path of cluster evolu-
tion along the excitation energy in '°0, in terms of the size
and shape evolution of containers.

In order to describe the cluster evolution in '°0, we
employ the following eTHSR wave function, which is a
natural extension of what is adopted for the 3a system in
the previous section,

0381, B)

XY,z 2 2 2 4
L CHED) (”'g"‘B;ka”‘ - “;Zk)} [ ] ]

(6)

Figure 5. Energy spectra of the low-lying J* = 0" states cal-
culated with the extended THSR ansatz. The corresponding ob-
served spectrum (Exp.) [48, 49] and result by the 4o OCM [11]
are also shown.

where &, is again the Jacobi coordinates between the @ par-
ticles, and y; = i/(i + 1), fori = 1,2, 3. While the parame-
ter b characterizes the size of the constituent « particle, the
parameters 3, and B, characterize the size and shape of a
container, in which the «a clusters are confined. We also
assume the axial symmetry 8;; = Bix = Bi, 50 as to deal
with the four parameters, 831, B1;, 821, 52;, in the practical
calculations.

In Fig. 5, the calculated energy spectrum for J* = 0*
states is shown. The corresponding experimental data and
result by the 4a Orthogonality Condition Model (OCM)
calculation [11] are also shown. The solution of Hill-
Wheeler equation with the radius constraint method is
shown.

The 4a OCM calculation gives six 0 states. The 0f
state has the 4@ condensate character and the 03 - 07 states
all have @ + '2C cluster structures. i.e. a(S) + ISC(OI*),
a(D)+ 12C(ZI“), a(S)+ 12C(OT), and a(P) + '2C(17) cluster
structures, respectively. Since in the present eTHSR wave
function of Eq. (6) the @ clusters occupy positive parity or-
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bits, such a state as having the a(P)+'2C(17) cluster struc-
ture, like the 0 state in the OCM calculation, is missing.

We calculate the r.m.s. radii for the five states, whose
values are 2.7, 3.2, 3.3, 4.9, and 4.9 fm, respectively from
the ground state to the 0, state, and namely as the states are
excited, the r.m.s. radius becomes larger. This indicates
that the higher the excitation energy is, the more evolved
the clustering is. The evolution of the clustering can be
described by solving the Hill-Wheeler equation concern-
ing the model parameters 8, and 3.

This respect is made much clearer by calculating the
following squared overlap:

O1(B1,B5) = KOT(B,, BIIY VP, ©)

with W, the Ath eigenfunction and 5/!120([31, B>) normal-
ized single eTHSR wave function in a space orthogonal to
the lower eigenstates, i.e.

OB B = NP0 BB ®)

where Py = 1 — Y5 W)W with A = I,---,1V, and
Py =1- ?:1 [W:){(¥;l, and N, are the corresponding
normalization constants. This quantity shows how these
states ¥, (4 = I, ---, V) are represented by single eTHSR
configurations, and therefore, gives direct information of
whether the container structure is realized and what kind
of containers are realized.

In Table 2, the maximal values and B, and B, pa-
rameter values to give the maxima in the squared overlap
are listed. The corresponding B; and B, values are also
shown. It is now well known that the single 3 THSR
wave function can very precisely describe the ground state
and excited states of '2C. Then we also show the maxi-
mum values of the squared overlap of the 07, 21 and 0]
states in '>C with the single 3& THSR configuration in
B = B, parameter space.

In the ground state, 3 clusters are in an oblately de-
formed and very compact container with 81, > (3., while
the remaining « cluster is in a prolately deformed and very
compact container with 85, < .. This means that the
first 3 clusters move in a xy-plane and the last one moves
in z-direction. This supports the idea that the ground state
has a tetrahedral shape of the 4« clusters proposed by sev-
eral authors [52, 53]. Our calculation indicates that this
configuration is contained in the 0} state by 98 %.

In the 07, state, the 3« clusters are in a spherical con-
tainer with 81, ~ ;. The fourth « cluster is put into
a larger size container with spherical shape, i.e. (5, ~
B2z > Pir ~ Pi,- In particular, the parameter set
B11,PB1;) = (1.8,1.8 fm) is almost the same as that for
2¢ je. BL,B;) = (1,9,1.8 fm). This means that the first
3a clusters are confined in a compact container to form
the ground state of '>C, since the 12C(OT) state can be very
precisely described by the single configuration with these
parameter values. The fourth @ cluster moves in a larger
spherical container, because of (8,,,8;) = (3.5,3.6 fm),
which gives the largest squared overlap 94 %. This is the
new interpretation of the a + 12C cluster structure, which
is consistent with the traditional understanding that the «
cluster orbits in an S -wave around the '2C(0}) core.

The 05, state is similar to the 0;, state but both con-
tainers are not spherical but deformed. The B, param-
eter takes almost the same value as that of the isolated
12C(2+) state, which means that the first 3a clusters form
the '2C(2") state, since the state is described by the single
parameter value of B. The configuration of the remain-
ing « cluster (82,,82;) = (5.1,0.1 fm), giving the largest
value 76 %, means that the @ cluster moves in a deformed
and larger container. This is present understanding of the
0;’ state, which is conventionally considered to have the
a(D) + '2C(2%) structure.

In the 05, state one can see that the 3a clusters are put
in slightly larger container than that for the 12C(Of) state,
which is slightly deformed in a oblate shape. The fourth «
cluster, however, moves in a much larger and almost spher-
ical container, like a satellite. This configuration expresses
the 07, state dominantly by 84 %. This means that the sec-
ond container characterized by B, is further evolved from
that in the 07, state. We can say that this state corresponds
to the OI state in the former 4a OCM calculation, which
predicts the @+ 12C(OT) higher nodal structure for the state.

The Of, state is the most interesting. All the @ clus-
ters occupy an identical orbit, with (81.,81;,521,82;) =
(5.3, 1.9, 5.3, 1.8 fm). This is qualified to call the @ con-
densation. This configuration is contained in this state by
78 %, which is still very large. Furthermore, this con-
tainer is very close to the one of the Hoyle state, with
(BiL,P1z) = (5.6, 1.4 fm) . This means that the 0;, state
is regarded as the Hoyle analog state, in which the fourth
a cluster is also put into the container occupied with the
3a clusters in the Hoyle state. The large size of this con-
tainer indicates that the 4« clusters are loosely coupled
with each other and configured like a gas. Note that the
4a condensate state is also predicted by the 4o OCM cal-
culation slightly above the 4« threshold, as the 0 state.

These results tell us that the evolution of cluster struc-
tures is described by the container evolution with respect
to its size and shape. The reason why the container evolu-
tion arises is the orthogonality to the lower states, which is
explicitly taken into account in the definition of the single
configuration (D,{:O in Eq. (7). The orthogonality condi-
tion prevents a higher state configuration from overlapping
with the lower-states more compact configurations. It thus
plays a role as a repulsive core and is considered to give
the container evolution.

5 Conclusion

We proposed a new concept, “container” picture, to de-
scribe general cluster structures. This idea comes with the
so-called THSR ansatz, which was originally introduced
to explain the gaslike cluster states like the @ conden-
sates. We further proposed a “container evolution” picture,
in which the cluster evolution is caused by the container
evolution. We demonstrated this idea in '°O nucleus and
showed that the cluster formation, from the ground and
a+'2C cluster states to the 4a gaslike state, is nicely repro-
duced by the eTHSR wave function. This idea is promis-
ing for heavier nuclei and is to deepen the understanding
of cluster formation described by the Ikeda diagram.
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