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Abstract: The symmetric Landau–Lifshitz and Weinberg energy–momentum complexes are utilized
in order to determine the energy distribution in a four-dimensional, static and spherically symmetric
regular Simpson–Visser space-time geometry. For different values of the metric parameter a, the
static Simpson–Visser space-time geometry corresponds to the Schwarzschild black hole solution,
to a regular black hole solution with a one-way spacelike throat, to a one-way wormhole solution
with an extremal null throat, or to a traversable Morris–Thorne wormhole solution. Both symmetric
prescriptions yield a zero momentum, while the energy distributions calculated have an expression
dependent on the mass m, the radial coordinate r, and the metric parameter a. Some special limiting
cases of the results derived are considered, while a possible astrophysical application to questions of
gravitational lensing is indicated.

Keywords: Simpson–Visser static solution; energy–momentum localization; symmetric Landau–
Lifshitz energy–momentum complex; symmetric Weinberg energy–momentum complex

1. Introduction

The energy–momentum localization of the gravitational field belongs to the oldest
but still unresolved problems in classical general relativity. Indeed, given any space-time
geometry, we are lacking a proper definition for the energy density of the gravitational
field. In 1915, Einstein was the first to attack the problem (see [1,2]) by introducing a
so called energy–momentum complex, i.e., a pseudo-tensorial quantity for which there
exists a local conservation law. Since then, Einstein’s attempt was followed by a num-
ber of various but similar pseudo-tensorial prescriptions of which we notice the com-
plexes of Landau and Lifshitz [3], Papapetrou [4], Bergmann and Thomson [5], Møller [6],
and Weinberg [7]. An essential common ingredient of these pseudotensorial definitions,
except Møller’s pseudo-tensorial definition, is their dependence on the coordinate system
used for their application.

Indeed, Cartesian or quasi-Cartesian coordinates are required, while for the implemen-
tation of the Møller energy–momentum complex any coordinate system can be employed,
given any four-dimensional space-time. This coordinate dependence has raised a lot of
criticism [8,9]. Nevertheless, an abundance of physically reasonable and persuasive re-
sults [10–24] obtained by using different localization prescriptions for the gravitational field
of various (d + 1)-dimensional gravitational backgrounds, where d = 1, 2, 3, has led to the
revival as well as rehabilitation of the energy–momentum complexes in the past decades.
At this point, a significant result must be stressed according to which the application of
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different energy–momentum complexes yields the same energy–momentum distribution
for any metric belonging to the Kerr–Schild class but also for more general metrics [25–27].
The Landau–Lifshitz and Weinberg definitions, also yielded several physically meaningful
results for various space-time geometries [23,28,29]. Being symmetric energy–momentum
complexes, both the Landau–Lifshitz and Weinberg energy–momentum complexes are
shown to be suitable tools for defining the angular momentum.

Besides the energy–momentum complexes, other approaches have also been applied
to the problem of energy–momentum localization. Two of them stand out: the method of
super-energy tensors [30–32] and the quasi-local mass approach [33–36]. In fact, results
derived by the Einstein, Landau–Lifshitz, Papapetrou, Bergmann–Thomson, Weinberg,
and Møller energy–momentum complexes agree with those obtained by the application
of the quasi-local mass approach. Worth noticing are the investigations based on the
notion of a quasi-local energy–momentum with respect to a closed 2-surface bounding a
3-volume in space-time. Within this framework, the main role is played by the concept of
the Wang–Yau quasi-local energy [37]. Another remarkable attempt to revive the use of
energy–momentum complexes is associated the so called covariant Hamiltonian approach.
In this context, a Minkowski reference geometry is isometrically matched on the 2-surface
boundary and it is found that quasi-local superpotentials stemming from various energy–
momentum complexes linearly conform with the Freud superpotential, thus yielding the
same quasi-local energy for any closed 2-surface (see, e.g., [38]).

Before concluding this part, it should be indicated that the effort to avoid the coordinate
dependence of the energy–momentum complexes has opened the way to the development
of alternative calculation techniques within the framework of the Teleparallel Equivalent
of General Relativity and several outcomes showing a resemblance to results obtained by
the general-relativistic energy–momentum localization methods have been produced (see,
e.g., [39–47]).

This paper is organized as follows: We introduce the geometry of the static, regular
Simpson–Visser space-time and present the line element of the metric in Section 2. Section 3
consists of the definitions and the basic properties of the symmetric Landau–Lifshitz com-
plex and the general analytic formulae for the calculation of the energy and momentum
distributions. We present the calculated superpotentials, energy, and momenta together
with the graph showing the behavior of the energy with the radial coordinate r, near the
origin, for various values of the parameter of the metric a. In Section 4, the symmetric
Weinberg energy–momentum complex is presented, together with the computed super-
potentials, energy, and momenta and the graph of the energy distribution near the origin.
Section 5 Concluding Remarks encompasses a discussion of the obtained results including
some comments on their conjectured applicability in astrophysical contexts. Further, focus-
ing on some rather interesting limiting values of the metric parameter a, and of the radial
coordinate r, we give the corresponding energies. Geometrized units (c = G = 1) have
been utilized and the metric signature is (+,−,−,−). In both symmetric prescriptions we
have used Schwarzschild Cartesian coordinates (t, x, y, z), while Greek indices run from
0 to 3 and Latin indices range from 1 to 3.

2. The Simpson–Visser Gravitational Background

This section is devoted to the description of the Simpson–Visser gravitational back-
ground. The Simpson–Visser space-time has been shown to play an important role in
various studies dedicated to the understanding of the gravitational lensing of light rays
reflected by a photon sphere of black holes and wormholes [48–50]. The Simpson–Visser
metric is characterized by a parameter a > 0 which is responsible for the regularization
of the central singularity and the ADM mass m ≥ 0. Depending on the values of the
positive metric parameter a > 0 the static Simpson–Visser solution can describe: (a) a
Schwarzschild metric in the case a = 0 and m 6= 0, (b) a non-singular black hole metric
for a < 2 m, and in this case the singularity is replaced by a bounce to a different uni-
verse, e.g., a “black-bounce” or a “hidden wormhole”. The solution describes a regular
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black hole space-time which does not belong to the traditional family of regular black
hole solutions, while it yields the ordinary Schwarzschild solution as a special case, (c) a
one-way traversable wormhole metric with a null throat in the case a = 2 m, (d) a two-way
traversable wormhole metric space-time of the Morris–Thorne type when the mathematical
condition a > 2 m is met, and (e) an Ellis–Bronnikov wormhole metric for a 6= 0 and m = 0.

Regarding the massless Ellis–Bronnikov wormhole it is worth noticing that it is an
exact solution with zero ADM mass but having a positive ”Wheelerian mass” (the latter
was introduced by J.A. Wheeler for his geon, see, e.g., [51]) that is considered responsible
for the gravitational reaction of this wormhole. Indeed, massless wormholes of this kind
can have as a source (rather exotic) fields, such as a ghost scalar field (which has a negative
energy density) or a dilaton field. These fields can assign a non-zero mass to the wormhole
thus imparting to the latter the ability to exhibit a strong lensing behavior (see, e.g., [52,53]).

Regular black holes and traversable wormholes have been the subject of various
studies of an apparent mathematical as well as astrophysical interest. Despite this purely
theoretical motivation connected with a unified handling of such objects that has led to
the Simpson–Visser solution and has stimulated our study of its energy, the formulation,
in this context, of associated phenomenological models is conceivable in the near future.

The Simpson–Visser static and spherically symmetric gravitational background is
described by the line element

ds2 = B(r)dt2 − A(r)dr2 − (r2 + a2)(dθ2 + sin2 θdφ2), (1)

where B(r) = f (r), A(r) = 1
f (r) , while the metric function is given by

f (r) = 1− 2m
(r2 + a2)1/2 . (2)

Note that the r coordinate can take positive as well as negative real values r ∈ (−∞,+∞).
In this paper, as we consider a classical spherically symmetric black hole, we are physically
allowed to restrict our calculations to only positive-definite values of the r coordinate,
starting with the value r = 0 at the center of the black hole.

Further, in their interesting paper Mazza, Franzin, and Liberati [54] have elaborated
a novel family of rotating black hole mimickers and developed a proposal for a spinning
generalisation of the Simpson–Visser space-time metric that can be used for comparisons
with future observational data on strong-field gravitational lensing [55]. To develop this
spinning generalization of the Simpson–Visser metric they used the Newman–Janis proce-
dure. The rotating Simpson–Visser metric reduces to the Simpson–Visser metric in the case
of a vanishing value of the parameter l = 0 and to the Kerr metric for a = 0.

3. Energy-Momentum Distribution of the Simpson–Visser Space-Time in the
Landau–Lifshitz Prescription

In this section, we present the symmetric Landau–Lifshitz energy–momentum complex
and the general analytic formulae for the calculation of the energy and momentum distributions.

The Landau–Lifshitz energy–momentum complex is given by [3]

Lµν =
1

16π
Sµνρσ

, ρσ . (3)

The Landau–Lifshitz superpotentials are

Sµνρσ = −g(gµνgρσ − gµρgνσ). (4)

Note that L00 and L0i components represent the energy and the momentum densities,
respectively. For the Landau–Lifshitz pseudotensorial definition the local conservation
law holds

Lµν
, ν = 0. (5)
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By integrating Lµν over the 3-space, one obtains the expressions for the energy
and momentum:

Pµ =
∫∫∫

Lµ0 dx1dx2dx3. (6)

Using Gauss’ theorem one obtains

Pµ =
1

16π

∫∫
Sµ0iσ

, σ nidS =
1

16π

∫∫
Uµ0inidS. (7)

In the Landau–Lifshitz prescription, the calculations have to be made using the line
element (1) which is transformed into Schwarzschild Cartesian coordinates with the aid of
the coordinate transformation x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. Using these
coordinate transformations the metric (1) becomes

ds2 = B(r)dt2 − (dx2 + dy2 + dz2)− A(r)− 1
r2 (xdx + ydy + zdz)2. (8)

The non-vanishing components of the the Landau–Lifshitz superpotentials are
given by

U001 = x
r2 + a2

r3

[
1

1− 2m(r2 + a2)−1/2 +
a2 − r2

r2

]
, (9)

U002 = y
r2 + a2

r3

[
1

1− 2m(r2 + a2)−1/2 +
a2 − r2

r2

]
, (10)

U003 = z
r2 + a2

r3

[
1

1− 2m(r2 + a2)−1/2 +
a2 − r2

r2

]
. (11)

Using (9)–(11) and setting µ = 0 in (7), we obtain the energy

ELL =
r2 + a2

2r

[
1

1− 2m(r2 + a2)−1/2 +
a2 − r2

r2

]
. (12)

Taking into account that Uµ0i = 0 for µ 6= 0 and applying Equation (7) we obtain that
all the momentum components vanish:

Px = Py = Pz = 0. (13)

Figure 1 shows the Landau–Lifshitz energy distribution given by (12) as a function of
the radial coordinate r near the origin for four values of the metric parameter a and m = 1.
For the case a = 0, the energy is very low and almost coincides with the r-axis.

Figure 1. Landau-Lifshitz energy distribution vs. the radial coordinate r near the origin.
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4. Energy-Momentum Distribution of the Simpson–Visser Space-Time in the
Weinberg Prescription

This section is devoted to the introduction of the the symmetric Weinberg energy–
momentum complex, together with the computed superpotentials, energy, and momenta.

The Weinberg energy–momentum complex [7] is given by

Wµν =
1

16π
Dλµν

, λ . (14)

The corresponding superpotentials are

Dλµν =
∂hκ

κ

∂xλ
ηµν − ∂hκ

κ

∂xµ
ηλν − ∂hκλ

∂xκ
ηµν +

∂hκµ

∂xκ
ηλν +

∂hλν

∂xµ
− ∂hµν

∂xλ
, (15)

with
hµν = gµν − ηµν. (16)

The W00 and W0i components are the energy and the momentum densities, respec-
tively. In the Weinberg prescription the local conservation law is respected:

Wµν
, ν = 0. (17)

The expression for the energy–momentum is obtained by integrating Wµν over the
3-space

Pµ =
∫∫∫

Wµ0 dx1dx2dx3. (18)

with the aid of Gauss’ theorem and integrating over the surface of a sphere of radius r,
the energy–momentum distribution has the expression:

Pµ =
1

16π

∫∫
Di0µnidS. (19)

In the case of the Weinberg prescription, in order to compute the energy–momentum
the metric given by (1) has also to be converted into Schwarzschild Cartesian coordinates
using the coordinate transformation x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, thus
the metric is given by (8).

The nonvanishing superpotential components are as follows:

D100 =
x
r

[
1

1− 2m(r2 + a2)−1/2 +
a2 − r2

r2

]
, (20)

D200 =
y
r

[
1

1− 2m(r2 + a2)−1/2 +
a2 − r2

r2

]
, (21)

D300 =
z
r

[
1

1− 2m(r2 + a2)−1/2 +
a2 − r2

r2

]
. (22)

Substituting these expressions into (19), the expression for the energy distribution
inside a 2-sphere of radius r is given by

EW =
r
2

[
1

1− 2m(r2 + a2)−1/2 +
a2 − r2

r2

]
. (23)

The vanishing of the spatial components of the superpotential leads to the vanishing
of all momentum components, and we have:

Px = Py = Pz = 0. (24)
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Figure 2, exhibits the behavior of the Weinberg energy distribution given by (23) as a
function of the radial coordinate r near the origin, for four values of the metric parameter a
and m = 1. For the case a = 0, the energy is very low and almost coincides with the r-axis.

Figure 2. Weinberg energy distribution vs. the radial coordinate r near the origin.

5. Concluding Remarks

In this work, we have investigated the energy–momentum distribution for the static
Simpson–Visser space-time. The Landau–Lifshitz and Weinberg prescriptions have been
employed for the calculations of energy distribution and momenta. We found that both
prescriptions yield the same result regarding the momentum components, namely that
all the momenta vanish. In fact, the momenta also vanish using the Einstein and Møller
energy–momentum complexes, as shown in [56]. This means that the specific metric does
not “allow” the existence of any momentum density. It is not a result depending on the
choice of the energy–momentum complex and certainly it is not always expected though it
is often obtained. The expressions of the energy distribution are well-defined and physically
meaningful presenting a dependence on the mass m, the metric parameter a, and on the
radial coordinate r.

In Table 1, we present the limiting behavior of the energy for r → ∞ and r → 0, and in
the particular cases a = 0 and m 6= 0, a = r and m 6= 0, and a 6= 0 and m = 0.

Table 1. Landau-Lifshitz energy ELL and Weinberg energy EW for limiting values of r and specific
values of a and m.

Energy r → ∞ r → 0 a = 0, m 6= 0 a = r, m 6= 0 a 6= 0, m = 0

ELL m ∞
m

1− 2m
r

r
1− 2m/

√
2r

a2

2r3 (r
2 + a2)

EW m ∞
m

1− 2m
r

r
2[1− 2m/

√
2r]

a2

2r

We notice that the behavior of the energy distribution for the Simpson–Visser gravi-
tational background is a very interesting one and is strongly affected by the value of the
metric parameter a. For a = 0 and m 6= 0 the Simpson–Visser solution corresponds to the
Schwarzschild metric and the expression of the energy distribution in both Landau–Lifshitz
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and Weinberg pseudotensorial prescriptions is equal to m
1− 2m

r
. This expression of the energy

distribution is in perfect agreement with the result obtained by Virbhadra for the energy
distribution of the Schwarzschild metric [26]. Figure 3 shows the energy in this case for
m = 1.

Figure 3. Energy distribution (ELL = EW ) vs. r for m = 1 and a = 0.

In the cases a = 0, m 6= 0 (Schwarzschild black hole metric) and a < 2 m (which
corresponds to the regular black hole metric), the Landau–Lifshitz ELL and Weinberg EW
energy distributions exhibit a discontinuity for r = (−a2 + 4m2)1/2 whose values depend
on the values of the mass m and the metric parameter a. The Landau–Lifshitz ELL and
Weinberg EW energy distributions are positive and monotonically decreasing near the
origin until they vanish to become negative, then exhibiting a discontinuity, and after this
point they become positive and are decreasing again as r increases and finally they reach the
value of the ADM mass m for r → ∞. In Figure 4, both energy functions (Landau–Lifshitz
in red and Weinberg in green) are presented for a = 1 and m = 1. The aforementioned
discontinuity which appears relatively close to the origin is a feature of the particular
space-time metric and it does not cause any particular problem to our current interpretation
of the results obtained.

In the case of a one-way traversable wormhole metric with a null throat characterized
by a = 2 m, the Landau–Lifshitz ELL and Weinberg EW energy distributions take only
positive values and decrease from a maximum value to the ADM mass m. The two-way
traversable wormhole metric space-time of the Morris–Thorne type obtained for a > 2 m
presents also only positive values for the Landau–Lifshitz ELL and Weinberg EW energy
distributions, that in this case are also decreasing functions from a maximum value to the
ADM mass m.
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Figure 4. Energy distribution vs. r for m = 1 and a = 1 (ELL in red and EW in green).

Note that for a = r and m 6= 0 one obtains ELL = r
1−2m/

√
2r

= 2EW . In the particular
case of the Ellis–Bronnikov wormhole metric with a 6= 0 and m = 0 the calculations show
that ELL = a2

2r3 (r2 + a2) > 0 and EW = a2

2r > 0.
In Figures 5 and 6, respectively, we plot the energy distributions in the Landau–Lifshitz

and Weinberg prescriptions in the particular case of the Ellis–Bronnikov wormhole metric
for three different values of the metric parameter a 6= 0 and m = 0. The Landau–Lifshitz
ELL energy takes only positive values and is equal to EW

r2 (r2 + a2). Note that in this case
the Weinberg EW energy is equal to the Einstein energy EE that we obtained in [56], being
always positive and equal to a2/2r.

Figure 5. ELL vs. r for a 6= 0 and m = 0.
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Figure 6. EW vs. r for a 6= 0 and m = 0.

The results obtained by applying the Landau–Lifshitz and Weinberg prescriptions
come to support the use of energy–momentum complexes for the determination of the
energy of a four-dimensional gravitational background. In an astrophysical context, a pos-
itive energy region could possibly serve as a convergent gravitational lens, while a neg-
ative energy region could play the role of a divergent gravitational lens [57]. Overall,
the Simpson–Visser metric and its possible generalizations appear to provide a rather
advantageous point of view for an enhanced understanding of strong-field gravitational
lensing of light reflected by a photon sphere of black holes and wormholes [55,58,59].
However, one can remark that, in the application to gravitational lensing of light rays in a
Simpson–Visser space-time, for very large values of a the corresponding photon sphere can
become very large. Thus, from observations in usual gravitational lensing, for example in
cases of micro-lensing, a possible restriction can be put on the value of a in the study of the
photon sphere stability and deflection angle issues (see, e.g., [60]).

In general, for all tested values of the pair (a, m) in the cases a = 0 and m 6= 0
and a < 2 m, there appears a small region of negativity for the energy near the origin.
Indeed, we have found that both the Landau–Lifshitz and Weinberg prescriptions exhibit a
discontinuity when r =(−a2 + 4m2)1/2 thus leading to some difficulty in order to provide
a physically meaningful interpretation of the energy in specific regions near the origin
of the space-time geometry considered. Thus, for example, for a < 2 m, corresponding
to the space-time geometry exterior to a regular black hole, we see that, for the pair of
values a = 1, m = 1, the discontinuity appears at r = 1.73. Overall, the behavior of the
energy starts decreasing from positive values, then it becomes negative until it comes to a
point of discontinuity, and after this point it decreases again from positive values. For the
special case a = 0, the discontinuity point is slightly shifted to a larger value of r (i.e., to
r = 2), while for m = 0 there is no discontinuity but only a monotonically decreasing
positive energy. Further, in the cases a = 2 m and a > 2 m, that describe a a one-way
traversable wormhole metric and a two-way traversable wormhole metric space-time of
the Morris–Thorne type, respectively, both Landau–Lifshitz and Weinberg prescriptions
give only positive values for the energy distribution. Figure 7 shows both energies as a
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function of r in the case a = 2 m, while Figure 8 shows an example of the case a > 2 m.
In both figures the Landau-Lifshitz energy is plotted in red while the Weinberg energy is
plotted in green.

Figure 7. Energy distribution vs. r for a = 2 m (ELL in red and EW in green).

Figure 8. Energy distribution vs. r for a > 2 m (ELL in red and EW in green).

To our knowledge there is still no direct way of measuring the energy density of the
gravitational field for a given space-time. The superpotentials in the Landau–Lifshitz and
Weinberg prescriptions are constructed entirely from the space-time metric. Hence, a pos-
sible way of determining the energy for a given space-time would rely on the space-time
curvature obtained from astronomical observations (see, e.g., Pirani’s thought experiment
based on the notion of geodesic deviation [61]). Indeed, Pirani’s idea is simply illus-
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trated in https://www.esa.int/ESA_Multimedia/Images/2015/09/Measuring_spacetime_
curvature (accessed on 21 April 2022). In a more recent context, the space-time curvature
could be determined by combining cosmic microwave background measurements with
galaxy clustering data (see, e.g., [62] for a nice review). Another possible way of deter-
mining the geometry of space-time based on quantum measurements is suggested very
recently in [63]. By using the curvature thus obtained and after coping with the relevant
differential-geometric difficulties since this subtle question touches upon the non-trivial
“equivalence problem” of metrics (see, e.g., [64]), and possibly by applying the Cartan–
Karlhede algorithm [65], it could be theoretically possible to determine the metric and from
it obtain the energy–momentum of the gravitational field.

As a future work, we consider to apply the other two notable energy–momentum
complexes, namely those of Bergmann–Thomson and Papapetrou, for the Simpson–Visser
metric and find out if there appear regions of space-time that can, due to their energy,
act as regions of strong convergent (in the case of positive energy) or divergent (in the
case of negative energy) gravitational lensing (as an example see our references [57,60,66].
Such space-time regions would be associated, for example, with supermassive black holes
or supermassive exotic objects consisting of dark matter/energy or even strongly naked
singularities (see, e.g., [67]).
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