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Abstract

We analyze scalar field dark energy models minimally and non-minimally
coupled to gravity, postulating that a Yukawa-like interacting term is in form
equivalent for general relativity, teleparallel and symmetric-teleparallel theor-
ies. Our analysis is pursued within two scalar field representations, where a
quintessence and phantom pictures are associated with quasiquintessence and
quasiphantom exotic fields. In the latter, we suggest how the phion-pressure can
be built up without exhibiting a direct kinetic term. Accordingly, the stability
analysis reveals that this quasiquintessence field provides a viable description
of the Universe indicating, when minimally coupled, how to unify dark energy
and dark matter by showing an attractor point where wy = 0. Conversely,
in the non-minimally coupling, the alternative field only leaves an attractor
where dark energy dominates, mimicking de facto a cosmological constant
behavior. A direct study is conducted comparing the standard case with the
alternative one, overall concluding that the behavior of quintessence is well
established across all the gravity scenarios. However, considering the phantom
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field non-minimal coupled to gravity, the results are inconclusive for power-law
potentials in Einstein theory, and for the inverse square power potential in both
teleparallel and symmetric-teleparallel theories. Finally, we study the growth
of matter perturbations and establish that only the fifth power and quadratic
potentials, when used to describe quasiphantom field minimally coupled to
gravity, exhibit behavior similar to the ACDM model.

Keywords: dark energy, stability, quintessence, phantom,
non-minimal coupling

1. Introduction

The cosmological standard model is currently based on the ACDM back-
ground, in which a (bare) cosmological constant, A, drives the cosmic speed
up, and CDM stands for cold dark matter [1-4]. The model appears particularly elegant,
encompassing the majority of experimental tests [5-9], despite recently puzzled by rough
evidences that may favor an evolving dark energy term [10-20].

Accordingly, the revived interest in dark energy models, i.e. models in which dark energy
is time-evolving may shed light on worrisome inconsistencies, such as cosmological tensions
[21-27], physical interpretations of A [28-37], existence of early dark energy [38—40], match-
ing between dark energy and inflationary models [41-44], and so forth, see e.g. [45-54].

In that matter, the preliminary release of the DESI collaboration has unexpectedly high-
lighted that a possible wow, CDM model appears more compatible than the ACDM paradigm
by considering new baryonic oscillation data catalogs [10], by reinterpreting dark energy in
terms of an evolving scalar field [14]. However, it seems that the simplest evolving scalar field
models do not alleviate the H, tension, as described in [55].

In this respect, although theoretically well-established, non-minimally coupled scalar field
dark energy scenarios have not been extensively explored at late-time [56—58], but most of the
analyses have been pursued at early times® [61-64].

Although not conclusive evidence for inflation, recent findings from the Planck satellite sug-
gest that a non-minimal coupling between scalar fields and curvature significantly enhances
the viability of chaotic potentials, which would otherwise be ruled out by observational data
[65-70]. Remarkably, in the context of Higgs inflation, a fourth-order potential non-minimally
coupled to the curvature leads to the Starobinsky potential, shifting to the Einstein frame [71—
73]. To put into perspective, non-minimal couplings may help in both alleviating the cosmolo-
gical tensions, being quite important even at late-time [64, 74] and not only immediately after
the Big Bang.

Hence, embracing the idea of exploring possible couplings between dark energy fields and
curvature, at both late and intermediate times, would therefore open new avenues toward the
fundamental properties related to dark energy, among which its evolution [75], a possible inter-
action with other sectors, its form, and so on [76, 77]. Motivated by the above points, we here
focus on scalar field dark energy models, highlighting the main differences when coupling
dark energy with curvature, R, torsion, 7, and non-metricity, Q, scalars.

6 Non-minimal couplings introduce a further fifth force, allowing the interaction between curvature and scalar field
[59]. Further, excluding Jordan or Einstein worsens the use of non-minimal couplings that may appear complicated
to interpret [60].
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We explore six quintessence scenarios and five phantom potentials of dark energy, whose
evolution has not been ruled out by observations yet, but rather can revive as due to the last
findings presented by the DESI collaboration. For the sake of completeness, we additionally
seek for dust-like scalar fields, namely for alternative version of scalar field description, that
is divided into quasiquintessence and quasiphantom field [78], respectively. Precisely, in both
the so-cited representations, we analyze the corresponding modified Friedmann equations and
study the cosmological dynamics by computing autonomous systems of first-order differential
equations. Reliably, in formulating the dynamical variables, in lieu of using the widely-used
exponential and power-law potentials [14, 63], whose advantage only lies in reducing the over-
all complexity, we select more appropriate dimensionless functions that may work regardless
the types of involved potentials. To this end, we explore the critical exponents and fix the
free parameters for each potential. Our main findings suggest that, under minimal coupling,
the quasiquintessence model reveals a critical point where the Universe behaves like dust.
This critical point does not appear in the standard scalar field approach, indicating that an
alternative framework, in the form of quasiquintessence, could properly unify dark energy and
dark matter under the same scenario. This dust-like characteristic disappears when coupling
is introduced, hiding the differences between the standard and alternative descriptions. Here,
our results show that, while it is possible for dark energy to couple with curvature, torsion,
or non-metricity scalars, not all the paradigms appear viable. Notably, in the phantom field
scenario, numerical analysis yields inconclusive results for power-law potentials within the
curvature-coupling framework. In contrast, only the inverse square potential is not supported
in the teleparallel and symmetric-teleparallel dark energy.

The paper is structured as follows. In section 2, we introduce the non-minimally couplings
within the theories of gravity and analyze the modified cosmological equations. In section 3,
we study the modified cosmological equations and present the autonomous systems for both
minimally and non-minimally coupled cosmologies. Last but not least, we also introduce all the
potentials used for quintessence and phantom field. Then, in section 4, we perform a stability
analysis for the minimally and non-minimally coupled scenarios, identifying the critical points
for all the potentials and computing the cosmological quantities within them. In section 5,
we consider the growth of matter perturbations comparing our dark energy models with the
concordance paradigm. Finally, in section 6, we present the conclusions and perspectives of
our work.

2. Non-minimal couplings of dark energy models

In this section, we report the different geometrical quantities to describe gravity, i.e. curvature,
R, torsion, 7, and non-metricity, Q, scalars. Moreover, we introduce below the non-minimal
couplings between the scalar field, acting as dark energy, and gravity, under the form of R, T,
and Q, properly chosen to describe each background distinctly. The non-minimal coupling
between gravity and scalar fields is a subject of great speculation and study. Understanding
a priori how to make a non-minimal coupling up is a complicated task and, so, in analogy
to quantum field theory, likely the simplest approach lies in considering a Yukawa-like inter-
action. The latter consists of a coupling between two fields, whose interaction is short-range,
providing a non-dimensional coupling constant that, in principle, would guarantee that renor-
malization works. The original idea to characterize such an interaction deals with the coupling
between fermions and bosons, whereas the analogy is based on substituting to one field the
Ricci curvature and to the other the phion associated with dark energy. This procedure, widely
adopted in the literature, see e.g. [60, 79], and references therein, opens new avenues toward

3
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the frame problem, but presents probably the simplest way to model a non-minimal coupling,
compatible with the recipe argued from field theories.

2.1. Background

At the background, action for non-minimally coupled theories of gravity is given by

r 2

Sz/d“x,/—g %—@2@5 +£m+£¢], 1)
- 2

S:/d4x\/—g T;—gz(b +£m+£¢,], 2)
0 £os

S:/d‘lx\/—g e +£m+£¢]. 3)

Therefore, in our context, it would be convenient to set the general action, S, depending on R,
T and Q, as

sz/d“x\/fg []:(2[22”’5)+£m+£4, 4)
where k> = 87 G and F(U,¢) = U — k*¢ U#?, whereas U = {R, T, Q}.

This notation is used to represent extended theories of gravity; however, it is also useful for
expressing the non-minimal coupling between the scalar field and gravity.

Indeed, equation (4) represents an auxiliary functional, depending on the scalar field and on
the ‘gravity function’, identified in the set U. Clearly, U singles out one type of gravitational
interaction, among the three and, moreover, in F, the coupling constant, £, represents the
strength of the particular fifth force between ¢ and U. Accordingly, we implicitly refer to the
tenet that, for R, T and Q, the interaction strength remains unaltered.

Further, £,, and L, denote the matter and scalar field sectors, respectively, indicating the
kind of non-gravitational contributions entering the energy-momentum tensor.

We below derive the corresponding cosmological equations for a non-minimally coupled
scalar field, adopting the spatially flat version of the Friedmann—Robertson—Walker (FRW)
metric,

ds? = di? —a(r)” (d? + 7dQ?), (5)

where in the above-adopted radial coordinates, the angular part reads dQ2? = d6? + sin® 0d¢?.

Under this scenario, we consider a dark energy field constructed by two different repres-
entations, i.e. the standard one and an alternative view, with the great advantage to mime dust,
having that the sound speed identically vanishes’ [60, 78, 81, 82, 86].

Quite remarkably, we here observe that moving beyond general relativity into F (U, ¢) the-
ories disrupts the equivalence described by the geometrical trinity of gravity. In other words,
the non-minimal coupling acts to modify the backgrounds, breaking the equivalence among
the three descriptions that, as well-known, are fully-equivalent in the minimal case. This may

7 The importance of alternatives to standard cases is a recent development [16, 76, 77, 80-82]. Essentially, it lies on
guaranteeing structures to form at all scales, as certified by observations [83]. Conversely to standard scalar field,
behaving as stiff matter, a zero sound speed enables the Jeans length to be zero, making structures possible at wider
scales, see [84, 85].
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occur since the auxiliary function 7 (U, ¢) can be mapped onto the well-known f(R), f(T), and
f(Q) theories, where the scalar field dynamics acts to modify the background itself. Clearly,
as £ — 0, the geometrical trinity of gravity is recovered, namely the physical equivalence
among backgrounds is restored. The non-equivalence, however, has consequences on the sta-
bility, showing that the three theories deserve more investigation, taken case by case. This
fact is also in conflict with the issue of passing from the Jordan to the Einstein frames, show-
ing different physical descriptions for different theories in alternative frames, see e.g. [79, 87,
88]. Limiting to the Jordan frame, we will focus on this problem later in the text, developing
small perturbation analysis and checking the goodness of each model in different background
scenarios.

In our work, we consider therefore three main cases, corresponding to three different back-
ground scenarios. Indeed, identifying gravity with the curvature suggests a naive interpretation
of gravity as curvature spacetime, i.e. permits one to recognize the gravitational phenomena
by having a curved spacetime, in fulfillment of the equivalence principle.

The latter implies that the particles move as due to geometrical properties imposed by pos-
tulating a given spacetime.

In this respect, invoking the equivalence principle, one can wonder whether equivalent man-
ners can be used to geometrize gravity since it is possible to recall that a given spacetime is
endowed with a metric and an affine structure, determined by

8uv, Metric
F;‘V Connection. (6)

That turn out to be completely independent between them.

For example, this point is evident while in extended theories of gravity one can argue dif-
ferent equations of motion in the Palatini formalism, i.e. by varying the action with respect to
Fij, instead of g,,,,.

In this respect, we can admit that if the connection is not metric, then we account for non-
metricity theories. On the other side, when the antisymmetric part of the connection is present

we define the torsion. Respectively, we have:

Qaﬂ’y = vagﬁ'w (7)
Tay =215 ®)

At this stage, one can consider then, among all possible connections that can be defined
on a spacetime, the Levi—Civita connection. This appears the unique connection both sym-
metric and metric-compatible. Hence, to describe gravity adopting a given metric, in our case
using the maximally-symmetric FRW, it is possible to invoke the standard procedure permits
to rewrite the torsion and non-metric theories using a given metric. For example, in the case of
torsion, invoking the vierbein field, related to the spacetime metric. This enables one to use the
FRW, without making the overall analysis made for stability unphysical. In other words, it is
possible to choose a given spacetime and to use it even for 7 and Q, as established in [89-94],
avoiding de facto gauge choices on I'g_ that would imply unphysical results, see [95].

2.2. Scalar field dark energy

As above claimed, it would be interesting to work two forms of scalar fields out, in order to
describe dark energy.
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We hereafter summarize them by:

- the Barrow representation, representing the standard scalar field picture, characterized by a
density, ps, and a pressure, pg, is given by [14]

¢’ ¢’
po =€+ V(0), po=c ~V(9), ©a)
where conventionally e = -1 denoting quintessence and phantom field, respectively.
- the alternative scalar field picture is given by [81, 82]

2
po =2 +V(9), po=—V(6), (10a)

where ¢ = £1 indicates as above.

Both the representations are included by displaying the following generic Lagrangian,

L=K-V(¢)+ Y [X,v ()], (11)

where X = e%z and K = K(X, ¢), while X is a Lagrange multiplier, i.e. zero for the standard
case and nonzero for the alternative one [80, 81]. Here, v/(¢) represents the chemical potential
and Y a generic functional of it.
Thus, selecting K = X, from equation (11), and A = 0, for the standard case, we end up with
gz.52
£:67—V(¢), (12)

while, restoring A\, we obtain

P2
E:e%—v(qb)—&—)\Y, (13)
that generically refers to the alternative description, yielding a quasiquintessence fluid when
€ = +1 and a quasiphantom fluid for e = —1.

To comprehend the idea behind the names quasiquintessence and quasiphantom, one can
investigate the corresponding properties. In particular, the last form in equation (13), with
€ = +1, can be arguable either from modifying the Einstein equations by hand, see [80], or
by invoking an energy constraint imposed by virtue of ¥ [81]. The scenario yields a dust-like
behavior of dark energy, in fact, from equations (12) and (13), computing the sound speed,

=% we immediately find,
s dp

op ap

2 _YPe ¢\ _

Coo= X /< 3X) 1, (14a)
op ap

2 _ Yo S

€500 = X /( 3X) 0, (14b)

respectively for quintessence, ¢y o and quasiquintessence, ¢, g. Interestingly, the same can be
generalized for the quasiphantom case, by simply invoking e = —1 since the very beginning.
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In the quintessence case, then, dark energy behaves as stiff matter, as the sound speed is
unitary, i.e. resembles the speed of light, whereas in the quasiquintessence or quasiphantom
cases, dark energy acts as a matter-like fluid, since the sound speed identically vanishes, as for
dust® [60, 82].

In addition, under particular circumstances, the quasiquintessence naturally arises to heal
the cosmological constant problem, as shown in [81, 97], while being able to drive inflation as
well, throughout the existence of a metastable phase, see [60, 82].

2.3. Non-minimally coupled cosmology in Einstein’s theory

In general relativity, gravity is described with the scalar curvature, so we select U =R.

Considering here the non-minimal coupling scenario [56, 57, 98—102], the field equations
obtained by varying the modified Hilbert-Einstein action in equation (4) with respect to a
generic spacetime read

1
G F + (040 — 8 0u0") Fi = 5 g [F — RFi] = e (7%;;) n m«y) (15

Here, G, is the Einstein tensor, the subscript R denote the derivatives with respect to the

scalar curvature and Tﬂ'f,) and Tﬁff,) represent the energy-momentum tensor for matter and scalar
field, respectively.
At this stage, assuming equation (5), we obtain the modified Friedmann equations, i.e.

1 RFx—F . .
H=— i ——— —3H. 1
3fR (k pt"'_ P 3 JT:R) ) ( 6)
) .. . B
2H+3H2:7k D+ Fr+2HFRr+ (1/2) (F — RFRr) a7

Fr ’

in which H = % is the Hubble parameter, p; and p; are the total density and pressure, respect-
ively given by: p, = pg + p,, and pg + p.n, Whereas the dot indicates the derivative with respect
to the cosmic time ¢.

By substituting the explicit form of F (R, ¢) and recalling moreover that R = 6 (H + 2H2)
in a homogeneous and isotropic Universe [103], equations (16) and (17) can be rewritten as

k2
=2 ). i
2H+3H? = -k (p‘:;)ff +Pm) (19)

yielding the net effective density and pressure,

p5 = po +6EHO O+ 3EH G, (20)
P =py— 266 —26$* — 4HE b — & (2H + 3H?) ¢7, @1

provided pg and p from equations (9a) and (10a), for both € = +1.

8 These properties show severe implications in matter creation throughout the Universe evolution, see [96, 97].

7
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Hence, by varying equation (4) with respect to the scalar field, we find two modified Klein—
Gordon equations, both exhibiting a source term,

b+ %H(]B+6V,¢ = —6¢¢ (H+2H?) ¢, 22)

in which o = 1 and o =2 select the kind of field, namely are given for equations (9a) or (10a),
respectively.
Remarkably, combining equations (16) and (17) provides the Raychaudhuri equation,
2 )
H= k (e —20¢) %

_ (L +wm)
14 £ (66 — 1) (ko)

2 Pm | ,
(23)

+AEHOD + 1262 H2 " + EpeV y +

where w,, is conventionally the barotropic factor for matter®.

2.4. Non-minimally teleparallel and symmetric-teleparellel cosmology

Compactly the non-minimally teleparallel and symmetric-teleparellel cases can be treated in
the same way, from the mathematical viewpoint, once the coincidence gauge is optioned for
the latter treatment [104]. Even though aware of the conceptual difficulties related to the coin-
cident gauge stability [105], we focus on this case only in order to show the formal degeneracy
between 7" and Q in framing the non-minimal coupling.

Below we treat in detail both the cases.

The teleparallel case. In teleparallel gravity [106-111], the metric g,,,, is explicitly expressed
in terms of the vierbein field e’; by g, = 6’26577,43, where 5 = diag(1,—1,—1,—1), and the
determinant of the vierbein is e = det(e},) = /=¢.

By introducing the spin connection w?, ,.» which governs the rule of parallel transportation,
we can determine the torsion tensor and the corresponding contorsion tensor as follows

TA;W (eA;L’WAB;L) = a/JeAIJ - aVeA,u + wAB,ueBy - o')AByeB,uv (24)

v ] v v
K'Y =S (T + T = T75). (25)

Here, the Lagrangian density is characterized by the torsion scalar 7, in contrast to R used
in general relativity. The torsion scalar T is thus given by T="T",,8,*, in which S/ =
efS = K"} — !, T+ &', T". Now, the vierbein field ¢}, = (1, —a*,—a*,—a?), which is in
the Weitzenbock gauge with a vanishing spin connection, is the only choice that ensures both
the vierbein field and the teleparallel connection respect the cosmological symmetries for a
flat FRW metric [106]. Then, by varying equation (4) with respect to the tetradal ¢}, we end
up with the modified Einstein’s equations

1 k2
6718M (eeZS,,W)]:T — EQTPH,\SPV#]:T—F EZS/,”D (8MT) Frr+ ZelA/]: = Eeﬁ (T(m) + T((z))> v,
p

(26)

9 For the sake of completeness, the matter sector is not specified yet at this stage. It appears clear that dust provides
wy = 0, albeit other kinds of matter contribution may furnish different barotropic factor. In general, the term w,, may
also indicate a barotropic fluid satisfying the Zeldovich conditions on the equation of state.

8
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where the subscript T represents the derivatives with respect to the torsion scalar, and the
modified Friedmann equations become [103, 112-114],

1
6H> Fr+ 5]—" =K pp, (27)
. . 1
2Fr (3H* —H) +2HFr + 5]—' = —kpp. (28)

Therefore, by substituting the explicit form of F and recalling that T = —6H? in the flat
FRW metric, we can rewrite the above equations as

2 k2 ff
H = ? (p?z; + pm) ) 29
2H+3H = =K (p +p) , (30)

where the effective density and pressure for the scalar field are given by

Py = po+3HEY, 3D
P =py —4HE G — (3H* +2H) £ 7. (32)

Furthermore, by varying equation (4) with respect to the scalar field ¢, we get the modified
Klein—Gordon equation

b+ gHé + €V 4 = 6H>E ¢, (33)

and by combining equations (29) and (30), we obtain the explicit Raychaudhuri equation

_k2 (e% —4HE G+ (1 +w,n)pm)

"= 21— Ela)

(34)

The symmetric-teleparallel case. All these equations are in form even valid for the non-
minimally symmetric-teleparallel coupled cosmology, in the coincident gauge [91, 94, 104],
as stated in the beginning of this subsection. Particularly, in symmetric-teleparellel theory of
gravity the connection is based only on the non-metricity, without any torsion [93, 115-120].
This implies that the connection is symmetric, and the torsion tensor vanishes, as well as the
Riemann tensor. The non-metricity tensor, given by Q,,,, = V ,8,,.,, is used to write the dis-
formation

1
Lopw = 2 (Qp;w = Qupv — Qupu) ) (33)

a part of the general affine connection.
Here, we can derive the invariant, i.e. the non-metricity scalar,

1

0= EPMWQP;U/’ (36)
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where PP# is called superpotential, provided by
1 ~ 1
PPHY = [ PPV Egl“’ (QP _ Qp) + Z (g’OMQV —|—gp”Q”) , 37)

with Q p=0,and 0, =0 PLL , dubbed the non-metricity traces.
At this point, varying the action in equation (4) with respect to the metric yields

2 1
— 0 - po PO n) ®)
7\/_7gvp (\/ g}"QPW) + 2guy]:+]:Q (PupaQy 2Qp(qu v ) k2 (T;(w + TEW) ’
(38)

where the subscript Q denotes derivatives with respect to the non-metricity scalar.
In addition, varying equation (4) with respect to the symmetric flat connection gives the
equation of motion for the connection,

V.V, (V—gFoP) =0, (39)

which is identically satisfied in the coincident gauge [121].

In this gauge, for FRW metric, the scalar takes the simple form Q = —6H?, which formally
resembles the torsion case. However, it is ‘easier’ than general relativity due to the absence of
the dynamical term ~ H.

Consequently, we recover the same modified Friedmann equations along with the Klein—
Gordon equation as in the non-minimally teleparallel framework-namely, equations (29), (30),
and (33)-as observed in [91, 94, 104, 116].

3. Autonomous systems of dark energy models

In this section, we present the autonomous systems for minimally and non-minimally coupled
dark energy models. Specifically, the minimal case is considered with the alternative scalar
field only, as it has not yet been studied. Additionally, for the non-minimally coupled frame-
work, we focus on potentials that have not been extensively analyzed in the literature, high-
lighting the differences between the standard and alternative scalar field scenarios. The
autonomous systems are described by first-order differential equations without explicit time-
dependent terms.
Hence, the following path is worked out.

- First, we consider the generic scenario of minimally coupled cosmology involving an altern-
ative scalar field, which includes quasiquintessence and quasiphantom models. To account
for all possible potentials, we employ a general analytical framework'”. In this context, min-
imal coupling emerges as the limiting case of a non-minimally coupled framework where
¢ < 1, recovering the standard Friedmann equations. Following this, we compare the results
for the alternative scalar field with those derived for the standard minimally coupled scalar
field, emphasizing the distinctions between the two approaches. Additionally, we expand our
analysis to encompass all viable dark energy potentials that remain consistent with the most
recent observational constraints on dark energy evolution.

10 The dynamics of the standard scalar field minimally coupled to gravity have been extensively studied in the lit-
erature, see, e.g. [14, 63]. However, investigations of the alternative scalar field have largely been limited to the
quasiquintessence case, often utilizing the exponential potential, as discussed in [80].

10
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- Second, we examine systems with non-minimal coupling to gravity, focusing on their effects
on stability analysis. Specifically, we introduce a Yukawa-like coupling, assuming its applic-
ability extends beyond general relativity to frameworks such as teleparallel and symmetric-
teleparallel gravity, see [122].

The potentials, considered below, being not ruled out from observations, are thus used in order
to explain late-time dark energy phenomenology. We include also phantom fields in our ana-
lysis, as they remain consistent with the recent DESI 2024 results. This is due to the fact that
the (wo,w,) parameters derived from the data provide no direct insight into the microphys-
ics of the dark energy model. Distinguishing whether the model is phantom or not requires
extending the best-fit w(a) well beyond the redshift range used for parameter determination,
as reported in [20].

3.1 Quintessence-like potentials of dark energy

Regarding quintessence, the potentials studied, which are shown in figure 1, are listed below.

- Sugra potential: the simplest positive scalar potential model, derived from supergravity, is
known as the Sugra potential and has the form

2

44x
AT e
)
X

with y,y > 0. This potential form is often used to address the cosmological constant problem
[37]. In the context of quintessence, the equation of motion with this potential leads to tracker
solutions [123-125].

- Barreiro—Copeland—Nunes (BCN) potential: this is a double exponential potential
defined as

V(9) (40)

V(6) = A (e 4 em9) 1)

where [,m >0 . In particular, a constraint arising from nucleosynthesis requires that
1>35.5, while m < 0.8 is needed to obtain a barotropic factor w < —0.8 in the quintessence
scenario [126].

Albrecht—Skordis (AS) potential: the AS potential takes the form

V(g) = A (ko — B’ +A) e, “2)

where A > 0, B > 0 and p > 0. It belongs to a class of scalar field models that may natur-
ally arise from superstring theory, explaining the acceleration observed in the present epoch
[127]. Additionally, we include the case where A =0 and B =0, as described in supergravity
models, see e.g. [128].

Urena—Lopez—Matos (ULM) potential: the quintessence potential given by

V(¢) = A*(sinh" (Ckgb)), (43)

where ¢ >0 and n < 0, is denoted as ULM potential. This potential acts as a tracker solution
[129], which may have driven the Universe into its current inflationary phase. The ULM
potential exhibits asymptotic behavior, resembling an inverse power-law potential in the
early Universe and transitioning to an exponential potential at late times.

1
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----- Sugra.

8 —— BCN

V(e)/A!

k¢

(a) Sugra potential with x =1 and v = 1, and  (b) AS potential with A =0, B =0, and p = 1;
BCN potential with m =6 and { = 1. ULM potential with n = —z and { = 1; IE
potential; and CS potential with 7 = 1.

Figure 1. Behavior of quintessence potentials with fixed free parameters. The Sugra
potential makes a significant contribution at both small and large field values, while the
BCN potential is dominant only at large field values. For the Sugra potential, the offset
is chosen as the Planck mass. All other potentials exhibit the same decreasing behavior
as the field value increases.

- Inverse exponential (IE) potential: the IE potential assumes the form

V(o) :A4eﬁ, (44)

and it appears in [125], where it is proposed as a tracker model, without a zero minimum.
- Chang—Scherrer (CS) potential: the CS potential is a modified exponential potential assum-
ing the form

V(g)=A*(1+e ), (45)

where 7 > 0. In contrast to models with a standard exponential potential, this approach even
captures the features of early dark energy and may help to alleviate the coincidence problem,
as shown in [130].

3.2. Phantom-like potentials of dark energy

Conversely to quintessence-like behavior, for phantom field, we employ the following
potentials, which are represented in figure 2.

- Power law potentials: the expression for these types of potentials is given by

V() =A* (ko) (46)

and these potentials are well-fitted by the wow, parametrization at redshifts z < 1, as reported
in [131, 132]. Power-law potentials are divided into two classes: those with o > 4, which
lead to ‘Big Rip’ singularity, and those with av < 4, which avoid it. In our work, we study
a =5,2,—-2, since they are not ruled out by observations.

12
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10, 10 R .
----- ISP
8 —— IHC
= = 6
= = ! b
S S : ]
~ S Fifth power -1
-5 — Quadratic 27 ' ‘ ]
- Exponential /'/\\
% -1 0 1 2 % -1 0 1 2
ko ko
(a) Power law potentials with @ = 5,2 and the (b) Power law potential with o = —2, i.e., ISP
exponential potential with 5 = 1. potential, and the IHC potential with o = 1.

Figure 2. Behavior of phantom field potentials with fixed free parameters. The poten-
tials that increase as the field grows are shown on the left, while those that decrease as
the field increases are depicted on the right. The fifth-power potential is the only one
that allows negative values.

- Exponential potential: it is the usual exponential potential, i.e.

V(g) = A*e*?, (47)

with 5 > 0. This model, as for the power law potentials, is well approximates by the wow,
parametrization, and it leads to a ‘Big Rip’ singluarity [131, 132].
- Inverse hyperbolic cosine (IHC) potential: the THC potential takes the following form

V(¢) = A* (cosh™" (ake)), (48)

with a > 0. Here, the phantom field, when released from a point away from the origin with
no initial kinetic energy, gravitates towards the peak of the potential, crosses it, and then
reverses direction to undergo a damped oscillation around the potential’s maximum [133].

3.3. Minimally coupled cosmology

We analyze the dynamics of scalar field by rewriting the Klein—Gordon equation in terms of a
set of dimensionless variables that, in general, are arbitrarily chosen.

In particular, to determine the dynamics of the scalar field, we might solve an autonom-
ous system composed of first-order differential equations, involving dimensionless variables
evolution.

In this subsection, we analyze the alternative scalar field description minimally coupled to
gravity. To do so, we consider the dimensionless variables given by [14, 63, 80, 134]

k¢ k ky/Dm
= ¢, y57\/‘77 y= ,0’ (49)
V6H V3H V3H
v VV,0
A= —— =22
kV7 v, (50)
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Table 1. Quintessence and phantom field potentials in minimally and non-minimally coupled
cosmologies.

Potential Expression A I'—1

Type: Quintessence/Quasiquintessence

Sugra [15,123-125]  V(¢) = A F ek’ _zz(/:q; +§¢ b4
BCN [15, 126] V(p) = A ( Ik 4 emk¢) _ lee]k(;jrr:’;em5 _ (1+>\))52m+>\)
- _ A=) (575 —A+u

AS[15, 127] V(6) = A (ko — B 4 A4) e pp 2ol ( iz )
ULM 15, 129] V(g)=A* (sinh” (Cke)) —nCcoth(Ckg)  —1 + 1

— 1 2
IE [15, 125] V() = Aters k o %
CS [15, 130] V() = A* (e 4+1) = I

Type: Phantom/Quasiphantom field

Fifth power [15, 1311 V(¢) = A* (k¢)’ i = -1
ISP [15, 131] V(g) = A* (k¢p) ™ o !
Exponential [15, 131]  V(¢) = A%e?*¢ -8 0
Quadratic [15, 131] V(p) = A* (k¢)* -3 -1 2
IHC [15, 133] V(¢) = A* (cosh™" (ckg))) atanh (ak) 1-2

The constraint equation in terms of these variables is rewritten as

1 =ex? +y* +12, (51)

y2
ey "
The presence of variable I' is fundamental if A is not a constant!!, so in the general case,
the autonomous system reads

x' =37+ e\/g)\yz,
¥ =Py (1-2), (52)
—\/6f()\)x,

where, prime represents derivatives with respect to the number of e-folding N = Ina and f(\) =
A% (T — 1). The potentials that we want to analyze are resumed in table 1. Here, we can see the
explicit expression for A and I' — 1, i.e. to solve the system, we need to rewrite the function
I' — 1 in terms of the dimensionless variable A. We can also determine I' — 1 as a function of
A for the Sugra and AS potentials. In this context, we derive the expressions that relate # and

1—A(A— A—p)—1
A, namely u; , = % for the Sugra potential and u; , = e ( “) +B( ) for

the AS potential. In the specific case of the AS potential where A = B =0, the parameter r—1
simplifies to —(1 4 2/\)?/2. Finally, after solving the system in equation (52), we can also
obtain the evolution of matter by considering equation (51).

and the dark energy equation of state takes the following form wy = —

' The case of constant )\ is limited to either a constant or an exponential potential.

14
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3.3.1. Constraints on dimensionless variables. =~ The dimensionless variables introduced in
equations (49) and (50) for the analysis of dynamical systems are not well-defined for all values
of the potential. To ensure their proper definition, the conditions V >0 and V4 # 0 should be
fulfilled for the variables y, A, and I". These requirements impose specific constraints on the
functional forms of the potentials, as detailed below:

For the Sugra potential, is required the condition x # 2vk*@?, which implies ¢ # \/%/\iﬁk'

The BCN potential is well-defined for all values of the parameters m and /. The AS potential

. 2(B—k¢) — B> 2Bk —2B— > pup® +2kp £/ 1-Ap? +kpe —1
requires u % ~ ATE —2Bkp TR A £ " , and B # — Y

. /I — AR 2+ Bkp+k
leading to ¢ # = szj REELY
The ULM potential imposes no restrictions on the parameters ¢ and n, and the /E potential

remains unrestricted as well. For the Fifth power potential, ¢ > 0 holds, while the Quadratic
and THC potentials require ¢ # 0. Finally, the CS, inverse square power (ISP), and Exponential
potentials do not have any additional constraints.

5

3.4. Non-minimally coupled cosmology

In the non-minimally coupled scenario, the Klein-Gordon equation has a source term,
see equation (22), implying the presence of a new dimensionless variable, i.e. u = k¢.
Consequently, to find the dynamical behavior of a specific dark energy model, it may be con-
venient to introduce the following dimensionless variables

ko kvVV
= —— = — 53
V6H' Y V3H' ©3)
_ kP w=ko. (54)

v_ )
V3H

Even though these variables are the most prominent in the non-minimally coupled scenario
[91, 92], we here seek a more general approach characterizing all the critical points and sta-
bility, without fixing a potential a priori. To achieve it, we introduce a further term, ), in the
set of previous variables, including its evolution in the autonomous system. Accordingly, the
model will influence the variables themselves plus the Klein—Gordon dynamics as, therein, it
furnishes the term V.

Adopting the above strategies, we can now explore how the underlying autonomous systems
vary accordingly with a different choice of U.

3.4.1. Einstein theory. ~ In the context of general relativity, employing the FRW curvature
scalar, R = 6(H + 2H2), the constraint equation, equation (18), turns out to be

l:ex2+y2+v2+2\/8£ux+§u2, (55)
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and the parameter s = — % is given by!?
1 3 2 22 >, 3L +wa) 5
§= m {U (e—208)x +4V6E xu+ 126217 — 3e€ Auy® + — V|
(56)
where, again, A = —%. Thus, the system becomes
x'=(s—2)x+V6elu(s—2)+ \/ge)\yz,
y'ZSy—\/g)\xy, (57)
u' =+/6x,
N = —V6f(\)x.

Again, for what concerns the evolution of matter, it can be derived by solving equation (55)
and, in fact, from it, the dimensionless densities are determined as

Qm:\)27 Q¢:€x2+y2+2\/6§ux+£u2, (58)
and the effective dark energy equation of state reads

(37’]6)(2 —3y? —2tu (73\/6x+ 6Esu— 126u+ 3€/\y2) — 126X —4V/6Exu — £ (=254 3) uz)

3ex? 4 3y2 + 6+/6€ xu + 3¢ u?

eff
We
(59)

where n = 1,0 for standard and alternative scalar field, respectively.

3.4.2. Teleparallel and symmetric-teleparallel theories.  As already stressed, we remark that
the non-minimally coupled symmetric-teleparallel picture is investigated imposing the coin-
cident gauge, see [104]. Then, these two descriptions of gravity can be unified under the same

analysis since the scalar yields the same value in flat FRW, i.e. T=Q = —6H?. Here, consid-
ering equations (53) and (54), the constraint equation becomes

1:ex2+y2+v2+§u2, (60)

and the autonomous system is now rewritten in terms of these variables as

x'=(s— %)x+e\/6§u+ \/ge)\yz,

y'=sy— %My, (61)
u' =+/6x,
A= _\/gf()\)xa

12 This term resembles the deceleration parameter, widely used in late time cosmology [135] and in cosmographic
reconstructions [18, 136—139], as well as a slow roll parameter, adopted in inflationary scenarios [140]. Accordingly,
it clearly implies how to quantify the corresponding dynamics associated with the autonomous system under exam
[141].
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where the parameter s = — % acquires the form

_ %exz — 2\@fo+ %vz

1—&u? 62)
The effective dark energy equation of state becomes
nex? —y* — Eu® + %gsuz — 4\/25)(14
wol = . (63)

€x2+y2+£u2

In addition, in view of the fact that equation (60) is different from equation (55), the dimen-
sionless densities are now

Q=12 Q¢:ex2+y2+§u2. (64)

4. Stability analysis and physical results

In this section, we conclude with the stability analysis of the dark energy potentials presented
above for the different gravity scenarios. Here, we examine the stability of the alternative
scalar field description for minimal and non-minimally coupled frameworks, highlighting the
differences with the standard scalar field. In this way, we can observe whether the properties
of the alternative dark energy alter the cosmological background.

Particularly, we look for the presence of attractors, which are specific critical points char-
acterized by [91, 92]:

- Stable node, occurring if the eigenvalues of the Jacobian matrix are all negative.
- Stable spiral, arising if the real parts of the eigenvalues are negative and the determinant of
the matrix computed at the critical point is negative.

In the opposite case, the critical point could be a saddle point, i.e. an unstable node or an
unstable spiral.
More precisely, following [14], we classify

- a saddle point to have at least one negative and one positive eigenvalue;
- a unstable node to have all positive eigenvalues;
- a unstable spiral to have critical points with eigenvalues that have positive real parts.

In all these cases, the point is called hyperbolic, and linear stability analysis is sufficient to
determine its stability.

However, if one eigenvalue of the Jacobian matrix has a zero real part, the point is classified
as non-hyperbolic, and different methods, beyond linear theory, are thus mandatory in order
to determine the stability properties, since the linear theory alone fails to be predictive.

To address such conceptual issues, we apply the center manifold theory [142], and in case
this approach would fail for specific potentials, we then resort to numerical simulations of the
systems in equations (52), (57) and (61), essentially following the procedure underlined in
[143].
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4.1 Minimally coupled scenario

In this subsection, we apply the standard stability analysis technique, typically used in the con-
text of a scalar field, to our alternative description, i.e. to quasiquintessence and quasiphantom
fields. First, we identify the critical points of the system, and then we compute the eigenvalues
at these points to assess stability.

The critical points for the alternative scalar field, minimally coupled with gravity, are detec-
ted by setting to zero the derivative with respect to N of the x and y variables, if A = —% is
constant.

Here, to study the dark energy dynamics, we analyze the small perturbations over these

variables, i.e.
ox’ ox

where 7 is the Jacobian matrix.
Specifically, the small perturbations dx and dy are determined by the Jacobian matrix

ox’ ox!
Ox Ay

T=1 & o : (66)
Ox Oy (x=xc,y=Yc)

in which X, = (x.,y.) represents the critical point, indicated by the subscript c.
However, if A\ is no longer a constant, it is necessary to include it as well. Hence,
equation (65) becomes

ox' ox
oy | =T & |, (67)
¥ oA
with J given by
Ox’ Ox’ ox’
8):/ 6}" 8)\/
s-| & 2 2 , )

Ox Oy N/ (x=xy=yeoA=Ac)

where, this time, the critical point turns out to be X, = (x¢, e, Ac)-

Working this way, we then developed a general approach for the alternative scalar field
scenarios, namely a treatment that turns out to be valid for all the types of involved potentials.

In addition, the above technique allows us to highlight the main expected differences among
the standard and alternative descriptions of the scalar field [63].

Precisely, the main difference is that, in the alternative scalar field case, there are two critical
points where wy = 0, see table 2. This implies that, as dynamics ends, dark energy mimes dust,
physically interpreting the quasiquintessence field to behave as a unified dark energy-dark
matter fluid at least for what concerns a pure dynamical perspective, as also confirmed in [80],
adopting a different path. Afterwards, to investigate the stability of the systems, it behooves
us to study the eigenvalues computed at the critical points, as reported in table 3.

We then observe that the non-hyperbolicity prevents us from determining the stability of

points P, and P4 when % — \/g)\*x < 0and )&I‘,’Fx > 0, and f(0) = 0, respectively. Here, \, is

18
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Table 2. The critical points of the system representing the alternative scalar field, minimally coupled to
gravity, are given along with their existence conditions and cosmological values. The value A, is any
zero of the function f(A) = A2(I' — 1).

Point x y A Existence we Accel. Qg
Py 0 0 Any Always 0 No 0
Py Any 0 A A =0 0 No ex?
P, Any 0 As A £0 0 No ex’
Ps Vi - N<3 1A X<l
Py 0 1 0 Always -1 Yes 1

Table 3. Stability properties of the critical points for the alternative scalar field minimally coupled to
gravity.

Point Eigenvalues Hyperbolicity  Stability

Py {0,0,3} No Unstable
P, {0,0,3} No Unstable

P {0, —V6X2T!x, % — \/gk*x} No Indeterminate if
3-/Irx<0and

NTIx>0

Unstable if

% — \/g)\*x > 0 and

MNTIix<0

Saddle if § —/3Ax <0

and —\2I'/x > 0 or

viceversa

P3 {—2AIT,, =3+ 22, -3 +2)%} Yes Stable iff\/g <A <0,
I <0o0r0< A <4/3,
T'l>0
Unstable if A, < —/3,
I',>00r\ > %,

Tl <0
Saddle otherwise

P4 {—3,—%—,/%—3f(0),—f¢+\/19—6—3f(0)} Yes if f(0) # 0  Stable if f(0) > 0

Saddle if f(0) < 0

any zero of function f(\) = A?(I' — 1) and I'_ is the derivative of I" with respect A computed
in A\,

Thus, to determine whether these points can be attractors for the system, we need to select
a specific potential and assess the stability of the model under examination by applying center
manifold theory or numerical analysis.

For what concerns the critical point P,, the center manifold theory does not provide use-
ful information for analyzing the behavior around the critical point, and we have to rely on
numerical methods to establish whether the point is an attractor. It is important to note that if

19
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one or both of the eigenvalues are negative, the point cannot be an attractor and is classified as
an unstable or saddle point, as for the CS model. The condition on the free parameter for this
potential ensures that at least one eigenvalue is positive. In contrast, for the Sugra potential,
A« 1s imaginary, which means that this critical point does not exist.

In addition, since the dimensionless scalar field density is modeled by Q4 = ex?, the
phantom field appears unphysical as it provides a negative density value. For the sake of
completeness, negative densities in cosmology are not fully-excluded yet. Examples are fur-
nished by [144—146]. However, the conservative approach is to work positive densities only,
as claimed throughout this work.

Thus, the numerical techniques is applied for BCN, AS and ULM potentials imposing v, =
0.999 at z = 107 as a realistic initial condition for matter, see [89, 91, 92].

The dynamical system is then solved for each potential by setting xi,, yin, and A;, to ensure
convergence to the critical point itself, and the results are displayed in figures 3(a)—(c).

Thus, we can conclude that, for these potentials, the critical point, P,, behaves as an
attractor. This indicates a scenario where, within the critical point, dark energy may exhibit
dark matter characteristics, i.e. dust-like properties, since the corresponding equation of state
tends to vanish there.

At this stage, we subsequently analyze the critical point Py4. In the first instance, we observe
that, if det7 < 0 and % —3f(0) < 0, the point is a stable spiral, yielding an attractor behavior.
Conversely, if f{0) = 0, the critical point is non-hyperbolic and, so, we require alternative tech-
niques to study the stability. We first apply the center manifold theory, and the critical point
is an attractor if I'(0) > 1, as reported in appendix A. However, if I'(0) diverges, we cannot
deduce anything about this point using the center manifold theory and we recur to numerical
computation. This is the case of IE and CS potentials. Again, we use v2, = 0.999 at z = 102
as realistic initial conditions to obtain the numerical solution, and the results are represented
in figure 4. Then, we can conclude that, only for BCN, ULM and IHC, the critical point P4
is a saddle point, due to the fact that f{0) < 0. For the other potentials, the critical point is an
attractor in which dark energy behaves as a cosmological constant, dominating the Universe.
In all the scenarios, conventionally to let the field evolve up to future times, we single out
N¢=1In(a) ~ 10;25;50, where Ny = 0 indicates today, i.e. a=1.

4.2. Non-minimally coupled scenario

In this subsection, we analyze the stability of systems involving non-minimally coupled stand-
ard and alternative scalar field models, proposing a generalized approach to derive critical
points without indicating the potential a priori. The use of gauge in the geometrical trinity of
gravity is specifically associated with the case of & = 0. We remark that the non-minimal coup-
ling, i.e. £ # 0, in principle, suggests that the gauge is no longer valid a priori and may differ.
However, in alignment with [89-94], we use the same gauge, intentionally departing from the
original trinity of gravity. As aresult, we refer to this as the ‘modified trinity of gravity’, where
the latter is due to the non-minimal coupling.

Here, we obtain the same critical points for both the standard and alternative scalar field
descriptions, indicating that the presence of coupling between dark energy and gravity unifies
these two different types of scalar field. In particular, the dust-like behavior of the alternative
scalar field disappears in favor of a typical dark energy description. To study the stability of
these point, we study again the behavior of small perturbations. This time, the system has an
additional variable due to the source term in the Klein—Gordon equation, so we consider the
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Figure 3. Phase-space trajectories on y — A plane for AS, BCN and ULM potentials,
where the red lines represent the solution of the dynamical systems. The initial con-
ditions are set as xj, = 0.03, yi, = 1073 for all potentials, with A\;, = —7 for the BCN
potential and i, = 1 for the AS and ULM potentials. From the numerical analysis, we
observe that point P; is stable, i.e. an attractor, in all cases.
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Figure 4. Phase-space trajectories on x —y plane for IE and CS potentials, where the
red line represents the solutions of the dynamical systems. The free parameter for the
CS potential is selected as 7 = 1. The initial conditions are set as xi, = 0.03, yin = 1073,
and Aip = 107'°. Under these conditions, the solutions for the IE and CS potentials are
identical, so they are represented on a single graph. Point Pj is stable, i.e. an attractor,

in both cases.

following linear evolution of perturbations

ox’
oy’
ou’
SN

ox
dy
ou
o\

with the Jacobian matrix determined as

ox’ ox’
Oox Oy
oy’ oy’
_ Ox o
J = ou’ 8uy !
Ox Jy
N AN’
Ox oy

The critical points and

ox’
Ou
ay’
ou
ou’
ou
N’
ou

ox’
oA
122N
oA
2N
oA
2N
oA

(X=X, y=Ye,u=ttc,A=X;)

(69)

(70)

corresponding eigenvalues for non-minimally coupled and

teleparallel/symmetric-teleparallel dark energy are presented tables 4, 5 and 6, 7, respect-
ively. From these tables, we observe that the main difference between the gravity frameworks
lies in the existence of a saddle critical point where dark energy behaves as radiation in non-
minimally coupled dark energy, which is absent in both teleparallel and symmetric-teleparallel
dark energy. This behavior is similar to the results found in [141], albeit apparently it does not
furnish new physics but just a convergence point.

Furthermore, as anticipated, the tables reveal no distinction between the standard and altern-
ative descriptions of scalar field at critical points, since as stated above, the non-minimal coup-
ling tends to hide the different characteristics of the potentials.
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Table 4. Critical points of the system with existence condition and cosmological values for non-minimal
coupling cosmology. These points are the same for the standard and alternative scalar field descriptions.
For the points P, and Ps3, the acceleration condition is determined by setting the correct value of £ if
e=—1.

Point x y u A Existence wf;f Accel. Q;ff
Py 00 + % Any £>0 1 No 1
P, 00 Always g Indeter. O

2 4 1— —8& (e—1)—1 8y2€ (e—1)+1
P2 0 0<y < i\/ Tl 3 Tmeten Foré>0ife=1 REEHT — Re(e 1

F0r0<$<ﬁ *

ife=—1
2 2
P 0>l Eematen B ematen Foré<0ife=1 SESIH — S
For £ <0 or
£>ife=—1
Py 01 0 0 Always —1 Yes 1

Table 5. Stability properties for the critical points of the non-minimal coupled standard scalar field sys-
tem. The eigenvalues of P, and P3 are of the same kind as P4, but they depend on the explicit form of y
and I'.

Point Eigenvalues Hyperbolicity ~Stability

Standard scalar field

Py {0,3,3(-3—V9—48€L), 1 (—3+9—48c€)} No Saddle

Py {-1,0,2,¢} No Saddle

Py {3, o,g( 3— O —48e8), (-3 + No Saddle if /9 — 48¢€ > 3
9 —48¢8)} Indeterminate otherwise

Alternative scalar field
Py {0,3 5, —iv/3e€,i/3e€)} No Unstable
P {021 (—\/462 F20c+1+2e+1), No Saddle
L (VA T20c+ T+ 26+ 1)}

Py {=3,0,5(=3—0—T192e0), 1 (-3 + No Saddle if \/9 — 192¢€ > 3

9—192¢8)} Indeterminate otherwise

However, a subtle difference emerges when calculating the eigenvalues at the critical points,
as shown in tables 5 and 6. The linear stability analysis confirms that all the critical points are
non-hyperbolic. The candidate attractor points are P, P3, and P4 for non-minimally coupled
dark energy, and P, and P; for teleparallel and symmetric-teleparallel dark energy. Due to the
large number of free parameters in this case, we perform a numerical analysis to determine the
behavior of the dark energy systems.

In this respect, to numerically solve the systems, it is convenient to not consider the equation
related to \’. In fact, by explicitly expressing the potential, we can rewrite A in terms of u,
allowing us to solve each system with fewer variables. To evaluate the dynamics of dark energy,
we assume that the Universe is initially dominated by matter, setting v, = 0.999 at z = 10°
[89, 91, 92]. With this assumption, we let the system evolve by changing the potential and
the initial conditions associated with it. In particular, the initial conditions are chosen in the
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Table 6. Critical points of the teleparallel and symmetric-teleparallel dark energy systems with existence
condition and cosmological values. These points are the same for the standard and alternative scalar field
descriptions.

Point x y u A Existence w;ff Accel. Qiff
Py 0 O 0 Any Always % Indeterminate 0
2 0 0<y <l +/12  FX /2 >0 1 Yes 1
P, 0 y¥>1 /12 FE /I <o —1  Yes 1
P3 0 1 0 0 Always -1 Yes 1

Table 7. Stability properties for the critical points of the teleparallel and symmetric-teleparallel dark
energy systems. The eigenvalues of P; and P, are of the same kind as P3, but they depend on the explicit
formof yand I'.

Point Eigenvalues Hyperbolicity Stability

Standard scalar field

Py {0, gg( 3—V9+96C€),; (—34+v9+96L€)} No Saddle
Py {-3,0,5(-3—+9+24E¢),5 (-3+9+24€e)} No Saddle if /9 +24fe > 3

Indeterminate otherwise

Alternative scalar field

Py {0,3,v/6e€,—/6e€} No Saddle
Py {-3,0,5(-3—+3+96C¢), 5 (-3+/3+96e)} No BudrikrifigBeiotied wise3

range yi, € [107%,1072] and u;, € [107%,107!] to reach the convergence. Then, the value x;,
is determined by solving the constraint equation. Among all the models, the only one that does
not admit negative values of the field (i.e. negative values of u) is the fifth potential, as for such
values, the potential becomes negative, leading to an imaginary dimensionless variable y.

Finally, in figure B1 are prompted our findings for non-minimal coupled standard scalar
field, while in figure B2 are displayed the results for teleparallel and symmetric-teleparallel
standard scalar field in the coincident gauge. All these results are also valid for the alternat-
ive scalar field description, suggesting that the coupling between the scalar field and gravity
masks the differences between the two types of scalar fields, as it dominates over the potentials
themselves for given values of the field.

5. Growth of matter perturbations

In this section, we examine the influence of corrections introduced by our dark energy models
within the non-minimally coupled theories of gravity on the dynamics of the Universe at high
redshifts. Specifically, we focus on density perturbations, which provide a robust framework
for assessing the efficacy of cosmological models in describing the early Universe [16].

When dark energy is non-minimally coupled to gravity, the growth of matter perturbations
is governed by the equation

6+ 2Hb — 47 Gegrpmd = 0, (71)
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where the density contrast is defined as § = d,,/ pm, and the effective gravitational constant is
given by G = aGy. The parameter « is determined by the specific theory of gravity under
consideration. Notably, a =1 in the minimally coupled regime, while in R and T gravity, it
takes the following forms:

- for Einstein theory [147, 148]

2eFp+4F7
I (5 s 73 DO R 2
Fa \2eFx+3F3, )~ Fx  1-&i2

where the simplification holds as F3 = 4*Eu* < 1.
- for teleparallel theory [149, 150]

1 3ex?
- ). (73)

Here, equation (73) is also applicable to describe the effective gravitational constant in the
symmetric-teleparallel theory, as we adopt the coincident gauge [151, 152].

To analyze the perturbation equation, we rewrite equation (71) in terms of the growth index
f =49 where N = Ina. This reformulation leads to

«

=N >
df 2 1 dInE 3 Geff
= Z(1- =-—0,, 74
dN+f+2< dN)f Xen (714)
with E = H/H, defined as
1 1+w2)ff
E= Qmoa*3+ﬂ¢oexp 3/ ; da’ |, (75)
. a

where Q40 =1 — 0, the subscript 0 refers to our time and W’ =wy in the minimally
coupled scenario. We impose the realistic boundary condition f{arss) = 1, where arss = (1 +
zLss) ! represents the scale factor at the last scattering surface, approximated as z; ss ~ 1089.
The growth history of our models is compared to that of the ACDM model, in order to under-
line the differences. In particular, we define a region of +10% deviations from ACDM, as
shown in figures 5—7. We observe that the only potential fitting within this =10% range is the
quasiphantom field minimally coupled to gravity with fifth power and quadratic potentials,
while the other models exceed this limit.

6. Outlooks and perspectives

Motivated by the revived interest in evolving dark energy models, as recently claimed by
the DESI collaboration, we reconsidered whether minimal and non-minimal coupled scalar
field dark energy models can suitably behave from a dynamical viewpoint. Particularly, the
DESI collaboration has pointed out that an evolving dark energy contribution can be due to
a unknown scalar field dynamics that, only in the simplest scenario, reduces to an effective
wow, CDM model [10].
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— ACDM
%2 _HC
- Exponential
0.0
0.2 0.4 0.6 0.8 1.0
a a

(a) Growth index for the non-minimally coupled  (b) Growth index for the non-minimally coupled
quintessence. phantom fields.

Figure 5. Growth index for the non-minimally coupled standard scalar field compared
to the ACDM model with ¢ = —10~"! for IE, £ = 102 for other quintessence models
and ¢ = —0.5 for phantom fields. The boundary conditions are imposed as v, = 0.999,
Uin € [10’2, 1071],ym € [1072, 10’1] ,Ni = Inarss and Ny = 0. The behavior does not
change if we consider the alternative scalar field. The gray band represents 4+10% depar-
tures from ACDM.

To this end, we computed the stability and the dynamical systems associated with the most
popular forms of dark energy models, characterized by viable scalar field potentials.

Moreover, to extend the findings indicated by DESI, we did not limit our analysis to quint-
essence only, but considered phantom regimes, as well as alternative field representations,
dubbed quasiquintessence and quasiphantom pictures, conceptually derived as possible gen-
eralizations of K-essence models, but with the great advantage to furnish an identically zero
sound speed, namely behaving as dust-like fluids.

We provided, for the alternative scalar field representations, robust arguments in their favor,
remarking their use to guarantee inflationary stability, or in erasing the excess of cosmological
constant contribution throughout a metastable phase.

In addition, to check the goodness of each dark energy model, we ensured their suitability
switching the theoretical background to alternatives to general relativity. Hence, we focused
on general relativity first and then on its equivalent versions, offered by the teleparallel and
symmetric-teleparallel formalism, by using Lagrangian densities, R, T and Q, respectively.

More in detail, for each gravitational background and for the set of dark energy potentials,
we investigated minimal and non-minimal couplings between the scalar field and the gravity
sector, adopting Yukawa-like interacting terms.

In so doing, we checked the main consequences of coupling dark energy with gravity, under
the form of curvature, torsion or non-metricity and, moreover, in the case of non-minimal
coupling, while the limiting case, £ — 0, leading to minimal coupling is also studied.

Nevertheless, even in the minimally coupled scenario, we developed a general approach to
study the stability of the alternative scalar field. In particular, considering quasiquintessence,
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(a) Growth index for teleparallel and symmetric-  (b) Growth index for teleparallel and symmetric-
teleparellel quintessence. teleparellel phantom fields.

Figure 6. Growth index for teleparallel and symmetric-teleparallel standard scalar field
compared to the ACDM model with £ € [71073, 71071} for quintessence and £ €
[10727 1071] for phantom fields. The boundary conditions are imposed as vZ, = 0.999,
Uin € [10727 1], YVin € [1072, 1071], N; =Inarss and Ny= 0. The behavior does not
change if we consider the alternative scalar field. The gray band represents +10% depar-
tures from ACDM.

we discovered that there exists a critical point where dark energy exhibits dust-like character-
istics. This is a non-hyperbolic point since one of the eigenvalues is zero, so we do not infer the
stability limiting to the linear analysis. In this respect, we applied the center manifold theory
and numerical methods, and, fixing free parameters, we conclude that it is an attractor for AS,
BCN and ULM potentials, suggesting that these potentials in the context of quasiquintessence
determine a unified dark energy-dark matter fluid.

In addition, another critical point can be an attractor under specific conditions. This point is
also given in the approach that generalizes stability for the standard scalar field, and it describes
a scenario in which the Universe is fully dominated by dark energy in the form of a bare
cosmological constant, i.e. wg = —1.

We extended the generalize method to study the stability in the context of non-minimal
coupling scenarios, without expliciting the relation between u and . Here, we analyzed the
standard and alternative forms of the scalar field, both yielding the same critical points, con-
trary to the minimal coupled framework. This result indicates that the presence of coupling
tends to hide the differences between these two scalar field descriptions, leading only a subtle
differences in the form of eigenvalues. This finding confirms the results obtained for non-
minimal couplings in inflationary regimes, suggesting that possible non-minimal couplings
may be under different forms than Yukawa-like, but are in tension with the Higgs inflation and
the Starobinky potential schemes, where, instead, the Yukawa-like term appears essential.
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(a) Growth index for the minimally coupled (b) Growth index for the minimally coupled
quasiquintessence. quasiphantom fields.

Figure 7. Growth index for the minimally coupled alternative scalar field compared
to the ACDM model. The boundary conditions are imposed as vizn =0.999, u;, €
[10_1 , 1] ,Vin € [10_27 10_]] ,Ni = Inagss and Ny = 0. The gray band represents £10%
departures from ACDM.

Moreover, with the given set of variables, all the critical points are non-hyperbolic, requiring
a numerical approach to determine whether a critical point with three eigenvalues having neg-
ative real parts is an attractor. In any case, all points candidate as attractors lead to a Universe
dominated by dark energy under the form of a cosmological constant, and the unified dark
energy-dark matter framework found in the minimally coupled scenario is lost.

In the non-minimal usual general relativity framework, the phantom field power-law poten-
tials are excluded from the analysis for both types of scalar fields, as they are ruled out by our
computation.

Further, we analyzed teleparallel and symmetric-teleparallel dark energy within coincident
gauge at the same time, by virtue of the mathematical degeneracy between the two frameworks.

Here, we derived again that the standard and alternative scalar field descriptions give the
same results, leading to attractor points where dark energy dominates the Universe with wg =
—1. Notably, in the case of teleparallel and symmetric-teleparallel dark energy, only for the
ISP potential we did not find the correct conditions to determine the behavior of the critical
point.

Thus, we conclude that the quintessence and quasiquintessence models emerge as the most
promising dark energy candidates, as they exhibit attractor points across all the gravity scen-
arios considered. Additionally, our analysis of the growth of matter perturbations at early times
reveals that, among all the gravity frameworks studied, only the quasiphantom field minimally
coupled to gravity with fifth power and quadratic potentials remains within +10% deviations
from ACDM.

In conclusion, we observe that:
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- Quasiquintessence provides two interesting critical points in minimally coupled cosmology.
One showing a unified dark energy-dark matter scenario, whereas the other leading to the
standard framework, where dark energy dominates the Universe under the form of a cosmo-
logical constant.

The stability analysis in non-minimally coupled dark energy framework confirms that
phantom fields are disfavored compared to quintessence, and this is confirmed for qua-
siphantom field too.

For teleparallel and symmetric-teleparallel dark energy models, phantom fields are not fully-
excluded, suggesting either the need for further investigation into the validity of Yukawa-like
coupling in these gravity scenarios or possible differences among the background gravity
theories.

Regarding matter perturbations, all the models analyzed in non-minimally coupled scenarios
show disagreement with the ACDM model. In contrast, in the minimally coupled framework,
only the quasiphantom field represented by the fifth power and quadratic potentials aligns
with the concordance paradigm.

Looking ahead, we will single out the best potentials exploring their consequences in various
non-minimal coupling settings, utilizing the new releases from the DESI collaboration and
investigating the growth of matter perturbations. Moreover, it would be interesting to study
the same in the context where spatial curvature is not set to zero, to check if its influence is
relevant. Last but not least, our approach would be useful to clarify whether these potentials
can be even generalized for early dark energy contexts, in view of a possible resolution of the
cosmological tensions [38, 43].
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Appendix A. Center manifold theory

The non-hyperbolicity of a critical point arises when the Jacobian matrix, evaluated at that
point, yields null eigenvalues. In such cases, the stability of the point cannot be determined
using linear theory if all the non-zero eigenvalues have negative real parts. Thus, alternative
techniques are needful, such as center manifold theory. This approach reduces the dimension-
ality of the system near the critical point, allowing the stability of the reduced system to be
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analyzed [142]. Below, we outline how the center manifold theory is applied throughout the
text, following reference [153].

- We first rewrite the system in terms of new variables by shifting the critical point to the origin
of phase-space.
- Second, the dynamical system is split into a linear and a nonlinear part, say

q'=Aq+f(q,p), (A.1)
p'=Bp+g(q.p), (A.2)

where (¢g,p) € R® x R®, whereas the functions f and g satisfy the conditions

£(0,0)=0, Df(0,0)=0, (A.3)
2(0,0)=0, Dg(0,0)=0. (A.4)

Here, the critical point is at the origin, with Df denoting the matrix of first derivatives of f.
The matrix A is a ¢ X ¢ matrix whose eigenvalues have zero real parts, while B is an s X s
matrix with eigenvalues having negative real parts.

If the system is not in this appropriate form, a further change of variables is performed,
determining the eigenvectors and eigenvalues of the Jacobian matrix.
Next, we introduce a function /(q) and expand it in a Taylor series around the origin as 4(q) =
aq® + bq® + O(q*). The coefficients a and b are determined by solving the quasilinear partial
differential equation

Dh(q)(Aq+£(q,h(q))) —Bh(q) —g(q,h(q)) =0, (A.5)

where 7(0) = Dh(0) = 0.
- Once the coefficients are determined, we can analyze the dynamics of the original system,
restricted to the center manifold, by writing

q' =Aq+f(q,h(q)). (A.6)

If at least one of the coefficients is non-zero, this equation reduces to g’ = vq", where v is a
constant, and n is a positive integer representing the lowest order in the expansion. If v <0
and 7 is odd, the system is stable, and the critical point is an attractor. Otherwise, the critical
point is unstable.

Now, we apply this technique to the critical point P4, = (0, 1,0), identified for the alternative
scalar field model minimally coupled to gravity. We first shift the coordinates asx =X,y — 1 =
Y, and A = A, and rewrite the system in terms of these new variables. Thus, the dynamical
system becomes

X' =-3x(y—1)° +e\/§A(Yf 1)?,

Y = _\/gmy_ D+3(r—1) (1 — (Y- 1)2), (A7)
A = —V6A2(T(A)—1)X.
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We compute the eigenvector matrix of the new system’s Jacobian and introduce a new set of
coordinates as follows

; 01 0 X
wl={10 -/2|[r]. (A8)
z 00 1 A

Thus, withv=Y, w=X— \/gA, and z = A, we rewrite the system in linear and nonlinear
parts

v/ -3 0 0 v
w' =0 =3 0] [w]+ (nonlinear part), (A.9)
z' 0 0 0/ \z

where the matrix represents the eigenvalue matrix.

At this stage, we compare our system with the dynamical system defined by equations (A.1)
and (A.2). We generalize it by setting ¢ =z and p = (v,w), and apply center manifold theory.
This gives

A=0, B—<_3 0), (A.10)

f=V62(T'(z)—1) <W+ 3z> , (A.11)

g:

H(-30 =32 VBl —1wz-3(v—1)2)
%(_6W<(V_2)V+22’> —\@Z(S(v—l)2+6z%

Dl

)) . (A.12)

To analyze the dynamics of the system, we replace p with A, assumed under the form,

2 3 4
=(nainelol) a1
Solving equation (A.5), we find
a3 =by =0, azzé, b3_\/§—\£c. (A.14)
The system restricted to the center manifold is then
Z=-22(0)-1)+0 ("), (A.15)

indicating that the critical point Py is stable if I'(0) > 1, and unstable if I'(0) < 1.
Appendix B. Phase-space numerical analysis for dark energy non-minimally

coupled to gravity

In this appendix, we present the phase-space analysis for non-minimally coupled scalar fields.
The figures B1 and B2 are obtained by fixing the free parameters of the potentials and the
coupling constant.
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Figure B1. Phase-space trajectories on the x — y plane for non-minimally coupled stand-
ard scalar field models. The coupling constant and initial conditions are also valid for
the alternative scalar field description. Red lines indicate the solutions of the dynamical
systems.

All the critical points depicted in the figures B1 and B2 are attractor points, where the
dynamics of the systems reaches a stable state.

In the context of non-minimally coupled dark energy in Einstein’s theory, phantom fields
are mostly excluded from the analysis, allowing us to identify attractor points only for the
exponential and IHC potentials.
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Figure B1. (Continued.)

In contrast, for teleparallel and symmetric-teleparallel dark energy, phantom field scenario
is almost reaffirmed, say it cannot be ruled out, with the only exception of the inverse power
law potential.

Thus, using these variables, quintessence and quasiquintessence turn out to be favored at
least from a numerical viewpoint, however still degenerating between them.

Specifically, setting an appropriate coupling constant, standard and alternative scalar field
descriptions give the same outcomes.
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Figure B2. Phase-space trajectories on the x — y plane for teleparallel and symmetric-
teleparallel standard scalar field. The coupling constant and initial conditions are chosen
to be valid for both the standard and alternative scalar field descriptions. Red lines indic-
ate the solutions of the dynamical systems.

Finally, it is remarkable to stress that the coupling hides the dust-like characteristics of the
alternative scalar field, dominating over it through the squared term coupled to U.
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