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Introduction 

The aim of this school was to give a panoramic view on the field of 
particle physics with its achievements and problems, successes and failures. 

The standard model of the electroweak and strong interactions is in per-
fect shape. Physics of the standard model and its precision tests have been 
extensively discussed during the school. 

What is next? Do we have a "standard model" of physics beyond the 
standard model? In this connection the status of low scale supersymmetry, 
supersymmetric Grand Unification and various flavor symmetries has been 
presented. Discovery of neutrino masses and mixing is probably the first 
experimental manifestation of new physics. 

Do we have a viable alternative of the (TeV scale) SUSY and GUT? 
Models with large, or infinite, or wrapped extra dimensions, the bulk-brane 
scenarios (widely discussed in series of lectures) may give some answers to 
this question. 

Is non-commutative field theory relevant for particle physics? Are the 
tools we have at hand enough to solve problems of particle physics? Is 
something fundamentally important missed in our approaches? These, and 
many other questions, were among the hot topics of the school. 

In this volume we publish four courses of lectures given by leading experts 
in the fields which represent two main areas of the research mentioned above: 
Physics of the standard model and Physics beyond the standard model. 

Both basic and advanced topics are presented in the lectures on non-
perturbative QCD and quark-gluon plasma. First results from heavy ion 
collider RHIC are discussed. Important recent progress in particle physics 
is related to operation of the B-factories. This subject is covered in lectures 
on B-physics and CP-violation. 

Physics beyond the standard model is represented by lectures on Grand 
Unification with emphasis on explanation of fermion masses, in particular 
neutrino masses and mixing, and on predictions for proton decay. Another 
course is devoted to the fascinating subject: physics of non-commutative 
field theories. 

In conclusion, we wish to thank all participants: lecturers, students and 
our staff, for their invaluable contribution to the success of the school. 

A.Yu. Smirnov 
June, 2002 
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Abstract 

These lectures provide a basic overview of topics related to the 
study of CP Violation in B decays. In the first lecture, I review the 
basics of discrete symmetries in field theories, the quantum mechanics 
of neutral but flavor-non-trivial mesons, and the classification of three 
types of CP violation [1], The actual second lecture which I gave will 
be separately published as it is my Dirac award lecture and is focussed 
on the separate topic of strong CP Violation. In Lecture 2 here, I 
cover the Standard Model predictions for neutral B decays, and in 
particular discuss some channels of interest for CP Violation studies. 
Lecture 3 reviews the various tools and techniques used to deal with the 
hadronic physics effects. In Lecture 4, I briefly review the present and 
planned experiments that can study B decays. I cannot teach all the 
details of this subject in this short course, so my approach is instead to 
try to give students a grasp of the relevant concepts and an overview 
of the available tools. The level of these lectures is introductory. I 
will provide some references to more detailed treatments and current 
literature, but this is not a review article so I do not attempt to give 
complete references to all related literature. By now there are some 
excellent textbooks that cover this subject in great detail [1]. I refer 
students to these for more details and for more complete references to 
the original literature. 
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B Physics and CP Violation 5 

1 Lecture 1: Preliminaries: Symmetries, Hermitic-
ity, Rephasing Invariance 

We begin with the basics of symmetries in Lagrangian Field Theory. Physi-
cists use the term symmetry to denote an invariance of the Lagrangian, and 
thus of the associated equations of motion, under some change of variables. 
Such changes can be local, that is coordinate dependent, or global; and they 
can be a continuous set or a discrete set of changes. The value of such 
symmetries lies in the simplification they achieve by limiting possible terms 
in the Lagrangian and by their relationship to conservation laws and the 
conserved quantum numbers that then characterize physical states. The in-
variance may be with respect to coordinate redefinitions, as in the case of 
Lorentz Invariance, or field redefinitions, as in the case of gauge invariance. 
The particular invariances of interest to us in these lectures are the global 
discrete invariances known as C. P, and T. These are charge conjugation or 
C (replacement of a field by its particle-antiparticle conjugate), parity or P 
(sign reversal of all spatial coordinates), and time reversal or T (sign reversal 
of the time coordinate, which reverses the role of in and out states). Table 
1 shows the effect of these operations on a Dirac spinor field tp, and Table 2 
summarizes the effect of the particular combination CP on some quantities 
that appear in a gauge theory Lagrangian. In Table 2, the symbol (—1)^ 
denotes a factor +1 fur // = 0 and -1 for // = 1.2.3. 

Table 1: The operation of P.O. and T on a Dirac spinor field 

Pip(t,x)P =7°4>(t,-x) , 

Tip(t, x)T = , 

CtHt,x)C =-i$(t,x) 7°72 )T 

When constructing a field theory we always require locality, the symme-
tries of Lorentz Invariance, and hermiticity of C. That is sufficient to make 
any field theory automatically also invariant under the product of operations 
CPT. In many theories, for example for QED with fermion masses included, 
the combination CP, and thus also T are also separately automatic. This is 
the reason why the experimental discovery that CP is not an exact symme-
try of nature caused such a stir. All the field theories that had been studied 
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Table 2: The effect of a C P transformation on various quantities 

term i t f i^t f j i ) i l l l l 

CP-transformed term ipjipi —iipj^ipi — tpi —(— 
term H /I W^ d^ 

CP-transformed term H -A - ( - l ) ' ^ 

up to that time had automatic C P conservation. So we need to examine 
how C P non-conservation manifests itself, and then ask what theories will 
give such effects. 

C P non-conservation shows up, for example, as a rate difference between 
two processes that are the C P conjugates of one-another. How can such a 
rate difference appear? Consider a particle decay for which two different 
terms in the Lagrangian (two different Feynman diagrams) give possible 
contributions. The amplitude for such a process can be written as 

A = A(A^B)= gme^ + g2r2e^ . (1) 

Here g\ and g2 are two different, possibly complex, coupling constants in 
the theory. The transition amplitudes corresponding to each coupling are 
written as re^ to emphasize that they too can have both a real part or 
magnitude and a phase or absorptive part. The physical source of this phase 
is that there may be multiple real intermediate states which can contribute to 
the process in question via rescattering effects. In the jargon of the field the 
phases <fi are called strong phases because the rescattering effects among the 
various coupled channels are dominated by strong interactions. These phases 
are the same for a process and its C P conjugate because the CP-related sets 
of intermediate states must contribute the same absorptive part to the two 
processes. The phases of the coupling constants are often called weak phases 
because, in the Standard Model, the relevant complex couplings are in the 
weak interaction sector of the theory. When we look at the amplitude for 
the C P conjugate process we find 

A = A(A ->• B) = j j n e ^ 1 + glr2ei4>2 . (2) 

Note that the phases of the coupling constants change sign between any 
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process and its CP conjugate process, while the strong phases, which arise 
from absorptive parts in the amplitudes, do not. 

So now let us calculate the CP-violating difference in rates for these two 
processes. With a little algebra we find 

\A\2 - \A\2 = 2rir2lmgigl sin(0i - <f>2) . (3) 

This shows that the effect will vanish if the two coupling constants can 
be made relatively real. In addition it depends on the difference of strong 
phases in the two amplitude contributions, and vanishes if this quantity is 
zero. Such a C P violation in the comparison of two CP-related decay rates 
is often called direct C P violation. I prefer the more descriptive term C P 
violation in the decay amplitudes. Whatever you choose to call it, this effect 
is characterized by the condition \A/A\ ^ 1. It is obvious that in any process 
where there is only a single contributing term in the decay amplitude the 
phase of the coupling constant is irrelevant and | A jA | = 1 is automatic. 
You need two different couplings contributing, with non-zero relative phase 
of the two couplings to see any C P violation. 

This statement applies for al types of C P violation. The phase of any sin-
gle complex coupling in a Lagrangian is not a physically meaningful quantity. 
In general it can be redefined, and even made to vanish by simply redefining 
some field or set of fields by appropriate phase factors. But such rephasing of 
fields can never change the relative phase between two couplings (or products 
of couplings) that contribute to the same process. Both contributing terms 
must involve the same nett set of fields, and hence both change in the same 
way under any rephasings of those fields. These rephasing-invariant quan-
tities are the physically meaningful phases in any Lagrangian, the existence 
of such a quantity signals the possibility of C P violation. 

The second feature we note is that the CP-violating rate difference in 
Eq. (3) also depends on a difference of strong phases. Typically, this makes 
it difficult to calculate. Strong phases are, in general, long-range strong in-
teraction physics effects, not amenable to perturbative calculation. One of 
the things that makes the decays of neutral but flavored mesons particularly 
interesting is that there we find other types of CP-violation effects where the 
role played here by the strong phases is replaced by other coupling constant 
phases, those relevant to the processes that mix the meson with its C P (and 
thus also flavor) conjugate meson. In such a case we may be able to relate a 
measured C P violation directly to phase-differences in the Lagrangian cou-
plings, with no need to calculate any strong-interaction quantities. Only in 
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the ease of neutral but flavor non-trivial mesons can such mixing-dependent 
effects occur. 

We have seen that only a theory with two coupling constants that are not 
relatively real can give CP violation. Thus we only can have CP violation in 
a theory where there is some set of couplings for which rephasing of all fields 
cannot remove all phases. CP conservation is automatic for any theory for 
which the most general form of the Lagrangian allows all complex phases 
to be removed by rephasing of some set of fields. Let us examine a few of 
the terms that occur in the QED Lagrangian to see why C P conservation 
is automatic in that theory. For the gauge coupling terms we have, after 
requiring hermiticity 

Thus hermiticity clearly makes the QED gauge coupling real, (g + g*), be-
cause the term it multiplies is itself a hermitian quantity. After imposing 
hermiticity you will find that the fermion mass term must take the form 

for any complex m. Hermiticity alone does not require that the fermion mass 
be real, but it does require that the imaginary part multiplies a factor of 75. 
But a chiral rephasing of the fermion field tp —> can be made. This 
does not change the kinetic or gauge coupling terms at all. In QED, one 
can always choose the angle <fi in this rotation in such a way that it makes 
m a real quantity. This tells us that, in such a theory, the phase of m is not 
a physically meaningful quantity. Hence the theory is indeed automatically 
CP conserving for any choice of m. (It is merely for convenience that we 
always choose to write QED with real particle masses; it is unnecessary to 
include additional parameters that you know are irrelevant to complicate 
your calculations.) Tomorrow we will see that this same rephasing is not so 
innocuous in QCD, and how this leads to the strong CP problem [2]. 

Given these examples you may be beginning to wonder how we ever get 
a CP violating coupling into a Lagrangian field theory. That is the question 
that puzzled everyone in 1964. The trick is to have a sufficient number of dif-
ferent terms in the Lagrangian involving the same set of fields. For example 
imagine a theory with multiple flavors of fermions and multiple scalar fields. 
In such a theory there can be Yukawa couplings of the form Yijkfaipiipj. 
Hermiticity then requires only that we also have a term Y^^ipjipi in the 
Lagrangian. Note that this is a different product of fields from the original 

(4) 

Re{m)ipip + ilm(m)^75^ (5) 
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term, so hermiticity does not disallow phases for the various Yijk in such 
a theory. But we still must ask whether we can make every such coupling 
real, by systematically redefining the phases of the various fields. That de-
pends on the details of the theory. As we add more fields of a given type, 
either fermions or scalars, the number of possible coupling terms grows more 
rapidly than total number of fields. With enough fields of the each type there 
will be more couplings that there are possible phase redefinitions, and then 
not all couplings can be made real by rephasing the fields. 

We can always make all couplings real by imposing C P invariance as a 
postulate, but it no longer an automatic feature of the theory. It turns out 
that the Standard Model with only one Higgs doublet and only two fermion 
generations has automatic CP invariance; all possible couplings can be made 
simultaneously real (ignoring for now the issue of strong CP-violation via a 
QCD-theta parameter). Adding one more generation of fermions or adding 
an additional Higgs doublet with no further symmetries imposed opens up 
the possibility of CP violating couplings [3]. The three generation Standard 
Model with a single Higgs doublet has only one CP-violating parameter, that 
is only one independent phase difference survives after as many couplings as 
possible are made real by field rephasing. This means that all CP-violating 
effects in this theory are related. That is what makes it so interesting to 
test the pattern of C P violation in B decays. Here there are many different 
channels in which possible CP-violating effects may be observed. In the 
Standard Model there are predicted relationships between these effects, and 
between C P violating effects and the values of other CP-conserving Stan-
dard Model parameters. Thus the patterns of the B decays, as well as their 
relationships to the observed C P violation in if-decays, provide ways to 
test for the effects of physics beyond the Standard Model. Such effects can 
disrupt the predicted Standard Model relationships between the different 
measurements. 

1.1 Quantum Mechanics of Neutral Mesons 

We now we turn to a general discussion of the physics of flavored neutral 
mesons, those made from different quark and antiquark types of the same 
charge. These are the i f , D. B& and Bs mesons, which we denote generically 
by M°. (I use the notation B^ as a reminder of the quark content, even 
though the official name of this particle is simply B°.) There is a beautiful 
quantum mechanical story here. In each case there are two CP-conjugate 
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flavor eigenstates, M° = qq' and M ° = q'q. In general CPM° = 
The phase £ is convention dependent and can be altered by redefining one 
or other of the quark fields by a phase. In much of the literature on this 
subject the convention £ = 0 is chosen without comment, but elsewhere 
£ = 7r is used. Physical results are convention independent, but only as long 
as you consistently use the same convention. You can get into trouble if you 
combine formulae taken from two different sources without first checking 
that both are using the same convention. From this point on I will use the 
convention £ = 0; if you want to see the equations with arbitrary phase 
factors explicitly displayed, go to the textbooks [1]. 

Let us for the moment assume that CP is a symmetry of our theory. 
What does this tell us about the neutral mesons? It says that the physical 
propagation-eigenstates of the system, that is the particles which propagate 
with a distinct mass (and lifetime), must be eigenstates of CP. These are 
the combinations (M° ± M )/-\/2. Particles produced by the strong interac-
tions are produced as flavor eigenstates. This means initially one always has 
a coherent superposition of the two CP eigenstates. Then as time goes on, 
because of the difference in masses of these two states, their relative phases 
change. Thus, if both states are long-lived enough, the flavor composition 
oscillates. However there is also a difference in lifetime of the two CP eigen-
states. If this is large then eventually the shorter-lived eigenstate decays 
away. Once one of the two mass eigenstates has decayed the other combi-
nation dominates, terminating the flavor oscillation and giving essentially a 
fixed admixture from that time on (in vacuum). For the kaon system the 
difference in lifetime is large compared to the difference in mass, so one does 
not talk about kaon oscillation, but rather about long-lived and short-lived 
states. Conversely for B& the mass difference is large compared to the width 
difference, and one can discuss either oscillating flavor states, or, discuss the 
same phenomena in the language of mass eigenstates, Bff=heavy and i?L=iight-
For the Bs both the mass and lifetime differences must be both be consid-
ered in analyzing the evolution of states. For the D mesons, in contrast, 
the mass and width differences are both small in the Standard model. Thus 
both mass eigenstates decay before any significant oscillation occurs. These 
particles are thus typically described in terms of flavor eigenstates. Exper-
imental searches for evidence of mixing (mass or width differences) for the 
D° states are another way to seek non-Standard Model physics effects, since 
the effect as predicted in the standard Model is small [4]. 

Notice that the peculiar phenomenon of oscillating particles, here and in 
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the neutrino ease as well, occurs only if you insist on describing the process 
in terms of flavor eigenstates. The more physical description is to use the 
mass eigenstates as the things you call particles (as we do for the quarks 
themselves). Then all that changes with time is the proportion of the two 
eigenstates that are present, because of their different half-lives, and the 
relative phase of the two states, because of their different masses. 

Now let us review the story of C P for neutral K mesons. The flavor quan-
tum number strangeness is conserved in strong interactions. Strangeness-
changing weak decays are suppressed by the Cabibbo factors tan(0cabibbo) 
compared to strangeness conserving u < — > d transitions. This first 
fact means strange mesons are typically pair produced, the second that 
they are relatively long lived. The assumption of CP-conservation in neu-
tral Kaon decays "explains" the observation of the two very different half-
lives for neutral kaons. If CP were exact, then only the CP-even state, 
Keven = (K° + K )/-\/2, can decay to two pions, since a spin zero neutral 
state of two pions can only be CP-even. (By Bose statistics, it can have 
no 1=1 part.) Three-pion final states can be either CP-even or CP-odd. 
But the phase space for the three pion decay of a neutral kaon is quite small 
compared to that for two pions. This predicts two very different half-lives for 
the two CP-eigenstates. They are different, in fact, by more than a factor 
of ten. 

This successful picture was challenged in 1964 by the discovery by Chris-
tensen, Cronin, Fitch and Turlay [5], that the long-lived (and hence puta-
tively CP-odd) kaon state did indeed sometimes decay into the CP-even 
two pion state. This result immediately shows that CP-invariance is vio-
lated. Comparison of the rates for charged and neutral pions further showed 
that the violation is principally in the fact that the mass eigenstate does not 
have a unique CP. This result was initially very puzzling. Until then almost 
any field theory that had been considered as a realistic physical theory had 
automatic C P conservation once the other desired symmetries of were im-
posed. Now, however, we know that the three generation Standard Model 
in its most general form includes one CP-violating parameter in the matrix 
of weak couplings, which is called the CKM matrix (for Cabibbo, Kobayashi 
and Maskawa). Thus C P violation per se is no longer a puzzle, but rather a 
natural part of the Standard Model. What we do not yet know is whether 
the Standard Model correctly describes the CP-violation found in nature. 
Exploration of that question is a major goal of the B-physics program. 

Any theory for physics beyond the Standard Model will have, in general, 
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possible additional CP-violating parameters. Any further fields, such as any 
additional Higgs fields, can introduce further CP-violating couplings. Such 
effects may then enter into B decay physics. For example, in manj models 
additional Higgs particles lead to additional contributions to B°-B mixing. 
This in turn gives possible deviations from the patterns predicted by the 
Standard Model for CP-violation in B decays. One of the motivations to 
search for such effects is that it is not possible to fit the observed matter-
antimatter imbalance (or rather the consequent matter to radiation balance) 
of the Universe with the CP-violation in the quark mixing matrix as the only 
such effect [6]. (This failure suggests that there must be additional sources 
of CP-violation beyond those in the quark coupling matrix of the Standard 
Model, but does not require that any such effects will be apparent in B 
decays.) 

Even with no other new particles, an extension of the Standard Model 
to include neutrino masses now appears to be needed. Then the weak cou-
plings of the neutrino mass eigenstates are given by a CKM-like matrix. 
This introduces the possibility of further CP-violating parameters. Indeed 
if the neutrinos have Majorana type masses there are more CP-violating 
parameters in this matrix than in the quark case [7]. These parameters will 
be very difficult to determine and they play essentially no role in B physics. 
However they may have played an important role in the early universe, giv-
ing the matter-antimatter imbalance via leptogensis [8]. I will not discuss 
neurtrino masses further in these lectures. 

As I will discuss tomorrow [2], once there is any C P violation in the 
Standard Model theory it becomes a problem to understand how it happens 
that C P is conserved in the strong interaction sector of the theory. Exper-
iment tells us this is so to very high accuracy, chiefly via the upper limit 
on the electric dipole moment of the neutron. This result tells us that, far 
as the CP-violating effects that we want to explore in B decays go, we can 
ignore strong C P violation. So apart from tomorrow's Dirac lecture, I will 
not discuss it further in this series of talks. 

1.2 General Formalism for Neutral Mesons with CP Viola-
tion 

Once we know that C P is not a symmetry of our theory we must allow a more 
general form for the two mass eigenstates of neutral but flavored mesons. In 
the following I use the convention that these two states are defined to be MJJ 
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and ML where the H and L stand for heavy and light, which really means 
heavier and less heavy, since the mass difference may indeed be quite tiny. 

I define the two eigenstates to be 

MH : pM° + qM° ML =pM —qM (6) 

where \p\2 + \q\2 = 1. Note that this equation is again convention dependent, 
I have not specified a sign or phase for </. but I have defined the more 
massive state to be the one with a plus sign before q. In combination with 
my convention that CPM° = M this makes the phase of q a meaningful 
quantity. (Be aware however that, once again, other conventions are also 
used in the literature.) 

The quantity q /p is determined from the mass and mixing matrix for the 
two-meson system, M = M + iT. This matrix is written in the basis of the 
two flavor eigenstates. Note that both M and T are complex 2x2 matrices, M 
is hermitian and T is anti-hermitian. The off-diagonal (or mixing) elements 
are calculated from Feynman Diagrams that can convert one flavor eigenstate 
to the other. In the Standard Model these are dominated by the one loop 
box diagrams, shown in Fig. 1. Actual calculation of such quantities will be 
discussed in later lectures, for now we simply note that they exist. Then 

AM-i/2AT Mi2-i/2Ti2 q/p (7) 2(M12-i/2T12) 2 ( A M — i/2AT) 
Notice that the two mass eigenstates of this mixed system do not have to be 
orthogonal, in fact in general they will not be so, unless \q/p\ = 1. 

(a) 

r W \ j 

u,c,t 

]r\f\f\J 

(b) 
b -

u,c,t 
-s 

u,c,t 

u,c,d 8-2001 
8614A1 

Figure 1: Leading Diagrams for BB Mixing in the Standard Model 

1.3 The Three Types of CP Violation 

In the above discussion we have already mentioned two possible ways that 
CP violation can occur. The first was CP violation in the decay, or direct 
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CP violation, which requires that two CP-conjugate processes to have dif-
fering absolute values for their amplitudes. A second possibility, seen for 
example in K decays, occurs if \q/p\ ^ 1. It is very clear in this case that no 
choice of phase conventions can make the two mass eigenstates be CP eigen-
states. This is generally called CP-violation in the mixing. As we will see 
later, in decays of the neutral mesons to a CP-eigenstate / , there is a third 
possibility. This can occur even when both the ratio of amplitudes and the 
quantity q/p have absolute value 1. The C P violation effects in such decays 
will be shown to depend only on the deviations from unity of the parameter 
Xf = (q/p)A(B° ->• f)/A(B° ->• / ) . The third option is C P violation in 
the interference between decays to / with and without mixing. This effect 
is proportional to the imaginary part of A/ and thus can be non-zero even 
when the absolute value satisfies |A/| = 1. Decays where this latter condi-
tion is true are particularly interesting. In such cases one can interpret any 
observed asymmetry as a direct measurement of some difference of phases 
of CKM matrix elements, with no theoretical uncertainties. We will see this 
in more detail in the next lecture. 

2 Lecture 2: Standard Model Predictions for 
CP Violations in B Decays 

2.1 C K M Unitarity 

The CKM matrix of quark weak couplings has been discussed in some detail 
in previous lecture series in this school. It can be written, in the Wolfenstein 
parameterization [9], as 

(Vud Vus Vuh 

V = Vcd Vcs Vch 

\vtd Vts Vth 

/ 1 — A2/2 A A\3(p-ir])\ 
- - A 1 - A2/2 AA2 + 0(A4 ) . (8) 

\A\3(l - p - irj) -AX2 1 / 

In the previous lecture I talked about the ability to remove, or move, a 
complex phase of a coupling by redefining the phase of any field involved. 
This parameterization corresponds to a particular choice of phase convention 
which eliminates as many phases as possible and puts the one remaining, 
possibly large, complex phase in the matrix elements VUh and Vfj. 
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In this convention the upper right off-diagonal elements define the pa-
rameters. The parameterization is a convenient way to make the unitarity 
of the matrix explicit, up to higher order corrections in powers of A = Vus. 
(The higher order terms may also have phases, as required by the unitar-
ity relationships, but bring in no new independent phase parameters.) The 
quantity A is essentially the sine of the Cabibbo angle. It is a small number, 
of order 0.2. Wolfenstein's parameterization uses powers of A is a convenient 
way to keep track of the relative sizes of the terms in the matrix. The other 
independent magnitude parameters A and p2 + rj2 are known to be roughly 
of order unity. There is no theory behind which powers of A enter each term. 
The Wolfenstein parameterization simply summarizes the observations in a 
neat way. The fact that VCh and VUh are both small (of order A2 and A3 re-
spectively in Wolfenstein's parameterization) is responsible for the relatively 
long lifetimes of B-mesons (and ^-containing baryons too). This is a fortu-
nate property; it is essential to the feasibility of most B-physics experiments 
because it allows us to identify B decays by the spatial separation of the 
decay vertex from the production point. It is an observational fact, not a 
theoretical prediction. 

Independent of the parameterization used, in the three generation Stan-
dard Model the CKM matrix must be unitary. This leads to a number of 
relationships among its elements of the form [(row)*x(column)]=0. Exam-
ples are 

vudv:s+vcdv:s+vtdvti = o o 
vusv:h + vcsv;h + vtsv;h = 0 6 (9) 
vuhv:d + vchv;d + vthvt} = 0 c. 

In the Wolfenstein parameterization the relationship that arises from uni-
tarity can be used to express the diagonal and lower left hand elements of 
the matrix in terms of the upper right elements, to any desired order in A. 
The form given above drops terms of order A4 and above. 

It is a trivial fact that any relationship of the form of a sum of three 
complex numbers equal to zero can be drawn as a closed triangle in the 
complex plane. Hence these, and the other similar relationships, are referred 
to as the Unitarity Triangle relationships. The fact that there is only one 
independent CP-violating quantity in the CKM matrix can be expressed 
in phase-convention-invariant form by defining the quantity J, called the 
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Jarlskog invariant for Cecilia Jarlskog who first pointed out this form [10], 

ImVijVklVuV£j = J^m,n=l€ikrnZjln (10) 

where i,j, k, I run over the values 1,2,3 and e ^ takes the value +1 if the 
three indices are all different and in cyclic order, and -1 if they are all different 
and in anti-cyclic order, but is zero if any two are the same. All the unitarity 
triangles have the same area, J/2. This area shrinks to zero if the CP-
violating phase differences in the matrix vanish. 

Notice however that, while the triangles have the same area, the three 
examples given above are triangles of very different shapes. Triangle a has 
two sides of order A and one of order A5. It would be very difficult to 
measure the area using such a triangle. Triangle b is a little better, but still 
a has one small angle, its larger sides are of order A2 while its small side 
is of order A4 giving an angle of order A2. Finally triangle c is the most 
interesting, because it has all three sides of order A3 so all three angles are 
a priori of comparable and large magnitude. The price one pays is that all 
the sides are small, but this is not as serious as the problem of measuring 
an asymmetry proportional to a very small angle. This triangle is the one 
most often discussed in relation to B-meson decays. Since these angles are 
large one expects some channels in both BD and BS decays with order 1 
CP-violating asymmetries . 

2.2 Fixing the Parameters 

The triangle is conventionally drawn by dividing all sides by VcbV*d, which 
gives a triangle with base of unit length whose apex is the point (p, rj) in 
the complex plane. Prior to considering the asymmetry measurements we 
can try to determine the shape of this triangle from measurements of CP-
conserving quantities which fix the sides, plus the measured C P violation in 
if-decays. Notice that this information is already sufficient (in principle) to 
over constrain the set of parameters. 

The quantity VCH is determined from B decays to charmed final states, 
Vuh from final states with no charm, while measurements of the Bd and 
BS mass differences constrain VTD- The C P violation in K —> 7T7T gives an 
allowed band for the apex of the triangle. In each case there is both an 
experimental uncertainty in the measurement and a theoretical uncertainty 
in the relationship between the measured quantity and the theoretical pa-
rameter (s). The theoretical uncertainties dominate. They are typically not 
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statistical in nature, but rather have to do with the part of the calculation 
which involves models or approximations needed to allow for strong interac-
tion physics effects. There is a large literature by now on the topic of how 
best to combine the various measurement and deal with both statistical and 
theoretical uncertainties [11]. 

New measurements from Belle and BaBar on a CP asymmetry in B-
decays constraining the angle at the lower left of the triangle have recently 
been announced [12]. This is one measurement where the theoretical uncer-
tainties are very small, so the constraint will improve as the statistics of the 
measurement improve for some time to come. So far all the various results 
give a consistent picture; the Standard Model fits the data. This means that, 
within the ranges of the various theoretical uncertainties, there is a region 
of possible choices for the Lagrangian parameters that are consistent with 
all data. 

One hope of many physicists involved in the large effort in B physics 
is that at some point some measurements will give discrepant answers for 
some Standard Model parameters or predictions. This would be evidence 
for physics beyond the Standard Model, and cause for much excitement 
in the physics community. If results for some set of measurements should 
begin to look discrepant, then the question of the statistical significance of 
the discrepancy will be much debated, as different treatments of theoretical 
uncertainties will give different conclusions on this point. 

Let us examine one of these quantities in a little more detail to see 
how the theoretical uncertainties arise. In each case there is a mix of weak 
interaction and short-distance strong-interaction physics, which both are 
perturbatively calculable and long range strong-interaction physics which 
is not perturbatively calculable. Tomorrow's lecture will introduce some 
of the methods that are used to deal with (or avoid) possible long-range 
strong interaction effects. Here I simply want to show how such effects can 
enter. Consider the question of the mass difference between the two mass 
eigenstates for B^. The two one-loop diagrams given in Fig. 1 are the 
dominant contribution to this effect. Each loop-diagram can have either a 
t-, o , or u-quark for each of the two internal quark lines. Calculation of the 
matrix element of these diagrams between a B° and a B meson would give 
M12 + iT12/2. 

The diagrams can be written as a local four-quark operator multiplied by 
a calculable coefficient which includes CKM factors. I will write the quark-
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propagator and coupling dependent part of this coefficient schematically as 

Q = WuV^Dt + vtcdv;hDc + vudv;lhDu |2 (11) 

where the Dq factors are the quark propagators. This expression is schematic 
because in writing it as a perfect square I ignored the differences in the 
momenta of the two quark lines in the diagram (which are typically small, 
0{mh/mw)y compared to the loop momentum itself). 

Notice that if all the quarks had equal mass then Dt = Dc = Du and the 
unitarity condition Eq. (10c) would say that this factor Q vanishes. Indeed 
we can use this condition to rewrite the expression as 

Q = \VuVtl(Dt - Du) + VcdV:h(Dc - Du)f. (12) 

Because of the two FF-propagators the loop integral is dominated by mo-
menta of order M\y, which is large compared to either the c or u quark 
masses. Thus the two quark propagators in the second term of Eq. (12) 
above essentially cancel one-another, so the term is suppressed by a factor 
of order (M2 — M — u2)/m2¥. Thus the mass difference is effectively pro-
portional to the square of the coefficient of the remaining term, which \Vtd\2 

(since V-y, is 1 up to order |A|4). (Note that this argument also shows why 
the mixing matrix is small in the D-meson case. There the three propaga-
tors are the down-type quarks, all three of which have masses that are small 
compared to Mw, so the Unitarity cancellations suppress the entire effect. 
Furthermore the contribution of the most-massive quark in this case, the 
6-quark, is Cabibbo-suppressed, further reducing the effect. ) 

To find the value of this Vtd by measuring the B meson mass differences 
we need to know the matrix element of the four quark operator between the 
B° and B meson states. This is where the long-distance hadronic physics 
sneaks into the problem, this matrix element depends on the form of the B 
wavefunction, including all effects of soft gluons. The best available method 
to determine it is to use lattice QCD calculation [13]. 

A measurement of the mass difference of the two Bd mass eigenstates thus 
gives a measurement of Vtd with a theoretical uncertainty that is dominated 
by the theoretical uncertainty in the lattice determination of the relevant 
four-quark matrix element. The result is usually written as some "known" 
factors times B s f l ( T h e "known" factors include quark masses, which are 
actually not so well-known and must be carefully defined.) Here the factor 

is the vacuum to one meson matrix element of the axial current which 
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arises in the naive approximation to the matrix element obtained by splitting 
the four-quark operator into two-quark terms and inserting the vacuum state 
between them. This is known as the vacuum-insertion approximation. The 
quantity BB is simply the correction factor between that approximate answer 
and the true answer. It can be estimated in various model calculations. 
The lattice calculation does not need to make this subdivision, it directly 
calculates the full matrix element. However the result is often quoted in 
terms of the Bb and f s parameters. Lattice methods can also directly 
calculate the latter. Eventually /& will be measured and that will provide a 
separate test of the lattice calculation. 

Once there is a good measurement of the Bs mass difference the ratio 
Amj/Am s will provide a better determination of Vu via the ratio Vu/Vts-
This mass ratio is relatively free of theoretical uncertainties, as most of these 
cancel in the ratio of matrix elements. The matrix elements for the Bd and 
the Bs mesons are similar. Only a small correction due to the difference of 
the s and d quark masses remains. The uncertainty in this correction gives a 
relatively small theoretical uncertainty in Vu- At present only a lower limit 
for the Bs mass difference is known; even this gives an important constraint 
(upper limit) on the range of V^. 

2.3 Time Evolution of the B States and Time-Dependent 
Measurements 

Now I turn to the topic of decays of neutral B mesons. What can we measure 
and what does it tell us? To discuss this we need to understand the time 
evolution of state which at time t = 0 is known to be a pure meson. This 
means that at t=0 we have 

Since the two mass states evolve with different time-dependent exponential 
prefactors we find 

where the functions g± are just the sums and differences of the exponential 
mass and lifetime factors 

B(t = 0) = (BH + BL)/2p . (13) 

B(t)=g+(t)BQ + (qlp)g^t)B" (14) 
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Here we introduce the notation M and T for the average mass and width 
and A M and A r for the differences between the two sets of eigenvalues. In 
the case of B d the width difference is small compared to the mass difference 
(and to the width itself) so to a good approximation we can neglect A r . 
Then the expressions for the g± simplify in an obvious way. For Bs it is 
likely that the width difference is comparable to the mass difference and the 
full expressions must be used. 

The time-dependent state that is a pure W at i = 0 can likewise be 
written in terms of these same functions 

B(t) = (p/q)g~ (t)B° + g+(t]B°. (16) 

It is now straightforward to derive the time-dependent rate to reach a par-
ticular C P eigenstate final state / with CP quantum number rjf. It is given 
by 

\A(B(i) jf = f)\2[\g+(t)\2 + \\fg-(t)\2 + 2Re\g*+(t)g-(t)\f]] 
(17) 

where the quantity 

= {q/p)J^7j = (18) 

In the second equality here we have used the fact that f is a CP eigenstate, 
CPf = f = rjff where rjf = ±1, to write the ratio of amplitudes in a form 
that shows explicitly that one amplitude is simply the CP conjugate of the 
other. 

The CP-violating asymmetry between the rates is defined to be 

= \A(B(t)^l)?-\A(B(t)^f)\2 

U \A(B(t) —>• /)|2 + \A(B(t) —>• /)|2 ' 1 ' 

(Note once again you must beware of conventions, some of the literature 
defines the asymmetry with the opposite sign.) 

If A r / r can be neglected, which is a very good approximation for B d 

decays, then \q/p\ = 1 and the asymmetry takes the form 

a(t) = - [ ( 1 - |A;|2)cos(AMt) + 2Im\/sin(AMt)]/(1 + |A/|2) . (20) 

As promised previously, this relationship shows that the CP-violating effects 
measure properties of A/, in particular its magnitude and imaginary part. 
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(In the more general ease the expressions are somewhat more complicated 
and depend also on the width difference.) In particular, if only the third 
type of CP violation is present, namely if in addition to \q/p\ = 1 we have 
\A/A\ = 1 so that |A/1 = 1, then this expression simplifies to 

a(t) = —ImXf sin(AMi)] . (21) 

The argument of A depends simply on weak phases, so that 

ImXf = yj sin(2^mixing - 2^decay) . (22) 

Here 2^>mjxjng is the phase oiq/p and 2̂ >decay is the phase of A(B —> /)/A(B —>• 
/ ) while rjf is the CP quantum number of the state / . These phases are each 
given by some combination of CKM matrix-element phases. While each of 
them separately can be changed by changes in phase convention (rephasing 
of quark fields) the difference is convention independent, as must be so for 
any physically measurable quantity. Thus the asymmetry directly measures 
the phase differences between particular CKM matrix elements with no un-
certainties introduced by our inability to calculate strong interaction physics 
effects such as the magnitude or strong phase of an amplitude. These strong 
interaction effects all cancel exactly when |A/| is 1. 

2.4 CP Eigenstate Channels for b ccs 

There are many possible channels to investigate. The interest lies not just 
in one measurement but in whether the pattern of CP-violating asymme-
tries fits the predictions of the Standard Model. What channels should we 
study? We need a final state of definite CP. In general for a multibody 
final state even when the particle content is CP-self conjugate there will 
be an admixture of CP-even and CP-odd contributions because of different 
possible orbital angular momenta among the particles. The simplest way to 
get a definite C P final state is to require that the B decay to a two-body or 
quasi-two body final state with only one allowed orbital angular momentum. 
(Quasi-two-body here simply means a two-body state with one or two unsta-
ble particles, such as a pit or pp. The actual observed final state is then three 
or four pions.) Given that the B has spin zero, the final state has a unique 
orbital angular momentum between the pair of particles if (and only if) at 
least one of the two particles has spin zero. For quasi-two body states where 
both particles have non-zero spin but at least one of them is unstable one 
can possibly separate out the CP-even and CP-odd final state contributions 
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using an angular analysis of the distribution of secondary decay products 
[14]. The price is that, in general, a larger data sample is needed to achieve 
the same accuracy on the CP asymmetry measurement. 

Note that the Feynman diagram structure is the same for all channels 
with the same quark content. Results from multiple channels can sometimes 
be combined to improve statistical accuracy. For example for the quark decay 
b ->• ccs the B° decay channels J/ipKs,ip'Ks,rjcKs J/ipKL,ip'KL,£cKL 

(etc.) all depend on the same set of quark diagrams. For the b —> uud (and 
ddd)quark content there are likewise many channels: 7T7T, pn, pp, etc. (The 
last of these needs angular analysis.) 

Let us then examine what the predicted CP asymmetry is in each of 
these two cases. We begin with the modes such as B —> J/ipKs. These have 
been called the golden modes for analyzing CP violation in B decay. For 
once we have a situation where the mode for which the theoretical analysis 
is straightforward is also one with good experimental accessibility. One still 
needs a large sample of B decays because the branching fraction to these 
channels is not large. (In B decays there are so many open channels that 
branching fractions are small and smaller: the "large" modes occur at the 
few percent level; J/ipKs and similar modes are about a tenth of a percent; 
a "rare" mode in this game has a branching fraction a few times 10 - 5 . ) 

First we need a little terminology. We use the term spectator quark for 
the quark other than the fr-type quark (or antiquark) that is present in the 
initial B meson, since it is generally not involved in the 6-decay diagram. 
There are two topologies of weak decay Feynman diagram that can con-
tribute to B decays to leading order in the weak interactions. These are 
called "tree" and "penguin" diagrams and are shown in Fig. 2. A tree di-
agram is one where the FF-boson creates or connects to a different quark 
line from the line that starts out as the 6-quark. I thus also include any 
annihilation diagram or any diagram where the FF-boson connects to the 
spectator quark as part of what I call the tree amplitude. Whenever such 
a diagram is allowed it will enter with the same CKM factors as the other 
tree diagram processes. A penguin diagram is a loop-diagram where the FF 
reconnects to the quark line from which it was emitted. Then a hard gluon 
is emitted from the quark line in the loop, and either makes a pair or is 
absorbed by the spectator quark. 

When higher order strong interaction rescattering effects are included 
the distinction between tree and penguin diagrams becomes blurred. How-
ever, it is useful (and standard) to start out by describing processes in this 
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(a) q' (b) 
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Figure 2: The (a) tree and (b) penguin weak decay processes at the quark level, 

language as it allows us to identify all the relevant CKM factors, and the op-
erators which they multiply. As we will shortly see, that is the essence of the 
story. Eventually we will group terms not by the diagrams, but by the CKM 
factors. That grouping is not blurred by any subsequent strong interactions. 
The language tree and penguin persists, but the "tree contribution", in my 
terminology will be taken to include not only the tree diagrams (including 
those that involve the spectator in the weak vertex), but also that part of 
the contribution from the penguin diagrams that has the same CKM factor 
as the tree diagrams. Obviously, if one wants to try to calculate the size 
of the contribution to the amplitude one must keep track of each diagram 
separately, but if we are only concerned with whether there is more than one 
CKM structure in the significant contributions we can lump together all the 
terms with a given CKM factor. 

The cleanest cases theoretically are those where we can make a prediction 
without knowing anything about the sizes of the amplitudes because we are 
looking at a ratio of rates where these cancel to a good approximation. The 
CP-violating asymmetry in channels arising from quark transition b —> ccs 
in a BD meson is just this type. The tree diagram has a CKM factor V^VCS. 
Any time that penguin diagrams contribute to an amplitude there are three 
terms, corresponding to the three different up-type quarks that inside the 
loop. Thus we can write the b to s penguin amplitude P in the form 

P = VttVtsf(mt) + VclVcsf(mc) + V:hVusf(mu) 
= v;hvcs[f(mc) - f(mt)} + v:hvus[f(mu) - f(mt)] (23) 

where the f(mq) is some function of the quark mass. In the second expres-
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sion I have once again used the Unitarity relationship Eq. (10c) to rewrite 
the three terms in P in terms of two independent CKM factors. Notice that 
the first of these is the same as that for the tree term, so for this discussion 
we call that contribution part of the "tree amplitude". The remaining term 
is CKM suppressed by an additional factor of A2. The two differences of 
quark-mass-dependent factors are expected to be comparable in magnitude. 
Furthermore, ignoring CKM factors, the penguin graph contribution is ex-
pected to be suppressed by about 0.3 compared to the tree graph, because it 
is a loop graph and has an additional hard gluon. This means the suppressed 
second term in Eq. (23) is negligible (a few percent) compared to the "tree 
amplitude" which here is the sum of the tree term and the dominant penguin 
term. 

Thus we have an amplitude that effectively has only a single CKM co-
efficient and hence one overall weak phase. This then ensures \A/A\ = 1, 
which means there is no decay-type (direct) CP violation. (You will recall 
we needed two terms with different weak phases to get such an effect. ) 
Remember too that for B& we expect \q/p\ = 1 to a good approximation. 
Thus we have a case where |A/| = 1 and the measured asymmetry arises 
purely from the interference of decay before and after mixing. We find 

aj/^Ks = ~ I m { X j m s ) sin(AMi) = sin(20) sin(AMt) . (24) 

Here the quantity j3 is the lower left-hand angle in the standard B physics 
Unitarity triangle (also sometimes called <fii). (The minus sign disappears 
because i]j = — 1 for / = J/ipKs.) Thus this asymmetry directly measure 
the phase of a rephasing-invariant combination of CKM elements. 

Furthermore all the channels in the ccs list above measure the same 
asymmetry, up to an overall sign, the i]j factor of the channel in question. 
For example Ks and R"/. are states of opposite CP, as are the tp and rjc• Care 
must be taken to include the correct rjf factor for each state in combining 
the results. One can also include a state such as J/ipK* provided the if* 
decays to a flavor-blind combination such as K$7r°, and angular analysis is 
used to separate CP-even and CP-odd contributions. 

One can apply this same diagrammatic analysis to the decays b —> ccs 
in a Bs meson. This gives a prediction for channels such as J/ixj) that the 
CP asymmetry is zero in the Standard Model, as the Bs mixing term is 
dominated by CKM factors with the same weak phase as this decay. Thus, 
in the Standard Model, only the CKM suppressed penguin terms which we 
neglected above can give CP violating asymmetries here, so at most a few 
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Figure 3: Possible two-meson tree-diagram decay processes showing color-flow loops as 
dotted lines. These are called (a) color-allowed tree contribution, and (b) color suppressed 
tree contribution. 

percent asymmetry is expected. Such predictions of small or vanishing asym-
metries give another way to examine the patterns of the Standard Model. 
Any theory of new physics effects which give additional mixing contribu-
tions could destroy the cancellation of mixing phase and decay phase which 
makes this asymmetry small in the Standard Model. However to interpret 
such a result one indeed needs some calculation of decay amplitudes, in or-
der to quantify more precisely how big the "few percent" Standard Model 
asymmetry could be. 

The trick of rewriting the sum of three penguin terms as two terms using 
the Unitarity relationships is a generally useful tool. In any channel one then 
has at most two CKM factors to consider. The next step is to get a rough 
estimate of the relative size of the two terms. This becomes important when 
\A/A\ + 1. 

2.5 Some further B Physics Jargon 

The B physics jargon distinguishes contributions by three attributes, because 
these three things give a first estimate of how big the contribution is. The 
first size factor is whether the diagram is tree or penguin. The penguin is 
suppressed relative to the tree because it is a loop diagram and because it 
involves a factor of a s t rong at a scale of order mi, due to the hard gluon, 
together this makes for a suppression factor of order about 0.3, all else being 
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equal. The next size factor is the powers of the Wolfenstein parameter A 
in the associated CKM factors. All B-decay amplitudes have at least two 
powers of A. Amplitudes with higher powers are called CKM-suppressed. 
The third size factor is the color flow pattern that forms the particular final 
state of interest. Diagrams where a quark-antiquark pair produced by a W 
finish up in the same meson are called color-allowed, because this pair is 
produced in the requisite color-singlet combination. In terms of color-flow 
diagrams there are two independent color-flow loops as shown in Fig. 3(a). 
When the quark and antiquark produced by the W end up in different final 
mesons the diagram is called color-suppressed (Fig. 3(b)). There is then 
only a single color-flow loop so that diagram is expected to be of the order 
of 1 /Nc smaller than the corresponding color-allowed diagram. 

Figure 4: Possible penguin-type two-meson decay processes showing color-flow loops as 
dotted lines. These are called (a) color allowed penguin, (b) naive color suppressed penguin 
process, vanishes exactly, and (c) allowed diagram with additional gluon for so-called color-
suppressed penguin process. (It has two color flow loops as does the "color-allowed", but 
an additional aqcti factor.) 
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For penguin diagrams color suppression, if it works at all, works the 
other way around. Diagrams where the quark and antiquark from the gluon 
end up in two different mesons, Fig. 4(a), are color allowed, and indeed 
can be seen to have two-color-flow loops just as do the tree color-allowed 
contributions. Diagrams where the flavor-structure says the quark and an-
tiquark produced by the hard gluon must be in the same meson are called 
color suppressed. In Fig. 4(b) there is only one color loop. However in this 
diagram the gluon makes a color singlet object. But a gluon is a color-octet 
state. Taken literally, the diagram vanishes. A second gluon must be ex-
changed here. If we were to count the extra gluon as a hard gluon, there 
would be an additional suppression factor of astrong> but no 1/Nc, because 
we would again see two color loops, Fig. 4(c). However the second gluon 
is not necessarily hard, so the relevant scale for the a strong is not large. In 
some estimates these contributions are treated as 1 /NQ suppressed terms, 
but there is no good argument that justifies this counting. As you can see 
from these arguments, the naive color-counting is not a very reliable measure 
of the relative strengths of the two types of penguin contributions. QCD-
improved operator-product expansion calculations at leading order in A/m^ 
[15, 16, 17] can be made. These treat the color factors correctly. We will 
return to this approach at later, in Lecture 3. However there is a large litera-
ture of estimates that use the language of color-allowed and color-suppressed 
contributions, so it is important to know how these terms arose and how they 
are used. 

All these size-counting factors are generally used to give first estimates of 
the order of magnitude of the various contributions. Clearly a more serious 
calculation can significantly change the relative sizes. The kinematics of the 
different diagrams are different. The matrix elements of the various oper-
ators are different. Indeed there is an interplay between the wave function 
of the mesons and the counting factors discussed above which in the end 
determines the size of an amplitude. Powers of AQCD/mh c a n arise from 
the wavefunction for particular kinematic configurations relative to others. 
Higher-order hard QCD effects can be systematically included, but the soft 
hadronization part of the calculation needs some additional input, either 
from a model or from some other measurement. 
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2.6 Another Sample Channel 

Now let us look at one more set of channels to see what happens when this 
size counting says two CKM factors can occur with comparable coefficients. 
The case I choose to examine is the decay Bd —> 7r+7r_. At the quark level 
this process is governed by decays b —>• uud. You can readily find from 
the diagrams of Fig. 2 that there are both tree and penguin contributions 
for this quark content. The tree diagrams have a CKM factor V*hVud- For 
the penguin contributions we can again use unitarity to rewrite the three 
different intermediate quark contributions as a sum of two terms. In this 
case all three CKM coefficients are of the same magnitude. I choose to 
eliminate V*hVcd because then the second penguin term (the one that does 
not have the same weak phase as the tree term) has the same weak phase 
as the mixing term in the Standard Model. Then only one difference of 
CKM phases will enter my eventual formulae for the asymmetry. However 
we cannot ignore the second penguin term. The only thing that makes it 
small compared to the "tree amplitude" (which includes the first penguin 
term as well as the contribution from the tree diagram) is the fact it is a 
penguin loop. That is not sufficient to completely discard it. 

So here we have a situation where there can be \A/A\ ^ 1 effects. We 
must use Eq. (20) to interpret the the measured asymmetry. One would like 
to extract from the measurement the CKM phase difference between mixing 
and tree decay contribution (which in this case is a = 7r — j3 — 7). One can 
measure two quantities, |A/| from the coefficient of cos(AMi), and ImA/ 
from the coefficient of sin(AMi). 

However three unknown quantities enter in the expressions for A/ in 
such a case. These are the relative weak phase of mixing and the tree decay 
amplitude a, and both the absolute value ratio, r, and the relative strong 
phase, 5 of the penguin and tree terms. We can write 

„. l_|_rei(<Ha) 
Xr = e fx , . (25) J 1 ri($-a) V > 

Here the phase A = TV — 7 — 0 is the angle at the top vertex of the standard 
B-physics unitarity triangle; it is the difference between the weak phases 
of the mixing and that of the tree contribution to the decay. Obviously, 
knowledge of both the real and imaginary parts of A/ is not enough to fix 
all three quantities. So we cannot extract a value of a from this asymmetry 
measurement alone. (Note, however that for very small r the expression 
simplifies so that the measurement of ImA determines sin2a.) We must use 
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further theory or measurement inputs (or both) to determine a if r is not 
small. (A note of warning here, one often sees the statement that one tests 
the Standard Model by testing the relationship a = ir — j3 — 7 between 
the angles in the triangle. The relationship is a definition. The tests of 
the Standard Model are tests of whether one finds the same result for the 
two independent angles, usually chosen to be j3 and 7, using a variety of 
independent ways to measure them.) 

Note also that the ratio, reJ(J, of the tree to the penguin amplitudes will 
be different for the different channels with the same quark content. The 
kinematics of the tree and penguin diagrams are different, and so are the 
wave functions for forming a 7r or a p, for example. Thus, unlike the ccs 
decays, we cannot simply combine channels to improve statistical accuracy. 
Instead we must devise methods to remove the dependence on the additional 
parameters; these methods are different for each set of final state particles. 

For the irir case there are two ways to proceed. One is to rely on isospin 
symmetry and isospin-related channels to give the needed additional infor-
mation. The second is to develop methods to calculate these various am-
plitudes more reliably. This may also involve using relationships to other 
channels where the tree and penguin amplitudes enter with different relative 
strengths because of different CKM structure. For example by using mea-
surements on Kir channels as well with those from irir channels one can gain 
some information on the size of the penguin amplitude which dominates the 
decay in the former case. One can then use SU(3) symmetry to relate that 
to the size of the penguin in the irir case. Eventually such methods can much 
reduce the theoretical uncertainty in the extraction of the CKM parameter 
7, or equivalently a = ir — j3 — 7. Tomorrow I will discuss both of these 
approaches in a little more detail. 

The set of all possible B decays can be summarized by reviewing all 
possible 6-quark decays and the channels to which they can contribute. A 
little care must be applied to this logic, as strong rescattering can turn one 
quark-antiquark combination into another, one must include this possibility 
in a full treatment. For example in any channel involving a ir° or p° meson 
the penguin diagrams for b —>• ddd must be added to the diagrams for b —>• 
uud. I refer you to the table in the Particle Data Book review on this 
topic [18] that summarizes the quark decays and gives the CKM factors 
that enter for each (after using the Unitarity trick to get two terms only.) 
Any time you start thinking about a specific process you will find you want 
this information. You can rederive it readily by drawing the allowed quark 
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diagrams and investigating their CKM factors. 

3 Lecture 3. Theorist's Tools for j3-physies 
Today's lecture will briefly introduce a number of theoretical tools for calcu-
lating B decay processes. There are only a few examples of measurements 
for which we do not need to know the relative magnitude of various contri-
butions to the decay amplitudes in order to relate the measurement to some 
parameters in the theory. We would like to go further and interpret the 
multitude of other measurements that are possible because of the many dif-
ferent B-decay channels. To do this we must devise methods to calculate or 
relate amplitudes. The available calculational methods all involve some mix 
of systematic expansion in powers of one or more small parameters, lattice 
calculation of matrix elements of operators, relationships based on symme-
tries of the strong interactions such as isospin and SU(3) flavor symmetry, 
and some input for transition matrix elements and or quark distribution 
functions. These last can be calculated reliably only in certain limits and 
in general require models and approximations. Alternately one can measure 
some of these quantities in one set of processes and use the measured values 
as input in the interpretation of other measurements. 

This lecture will give a general picture of the toolkit of approaches, what 
each tool is, and how it can be used. There will not be time here to teach 
the details of any of the methods. This lecture summarizes a large body 
of theoretical work. I will not attempt to reference all the relevant papers, 
but will include references to some current papers as examples of the type 
of work now underway. I apologize in advance to the many whose papers I 
do not mention. 

There are two small parameters in this game, namely AQco/mh and 
a s trong (MB)- Here MI, is the mass of the 6-quark and AQQD is the scale 
that defines the running of the strong interaction coupling. The detailed 
definition of each of these quantities is fraught with technical problems, but 
there is a clear physical meaning for the rough size of these parameters. 
Aq(7£) is related to the inverse size of a typical hadron while the 6-quark 
mass can be characterized as roughly the same scale as the mass of a B 
meson (up to corrections of order A Q C D / M B ) - The strong coupling as(mh) 
scales as a logarithm of AQco/'mb] we treat it as a separate small parameter 
because we can count powers of this parameter separately from the powers 
of AQCD/MBI they arise in different ways. 
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The fact that AQco/mh is indeed quite small leads to a simple intuitive 
picture of a B meson at rest. It is an essentially static b quark with the light 
quark forming a cloud around it. The light-quark distribution is sometimes 
called the brown muck, because we cannot reliably calculate the details of 
it. However we do know that certain properties are rigorously true in the 
limit m,h —> oo. For example in that limit the wavefunction does not depend 
on the spin orientation of the 6-quark and hence is the same for a spin 0 B 
meson and a spin 1 /?". A second way in which the large mass of the 6-quark 
simplifies the problem is that any gluon that carries off a significant fraction 
of the 6-quark mass is a hard gluon that can be treated perturbatively; it 
introduces the small parameter astrong (wty). 

In addition to these expansions there is another part of the picture that 
is true because rrih/Mw is small. This means that weak decays of the b-
quark are essentially local four-quark effects. Thus the B meson decay can, 
to a reasonable approximation, be thought of as proceeding in two stages: 
a 6-quark decays and then the remnants hadronize to give the final state 
under study. It is this second stage, the hadronization, that introduces all 
the uncertainties into the calculations. We have good methods for applying 
QCD to things like jet-formation for well-separated high momentum quarks, 
but a B decay does not give us large enough quark momenta to use this 
formalism reliably. Further, we want to know amplitudes for specific few-
body (quasi-two-body) final states (states of definite CP). Most likely these 
arise when the four quarks that are present after the b decay are not well-
separated (so even if the B mass were much larger a jet calculation would not 
provide the answer). We cannot calculate these amplitudes completely from 
first principles. So my purpose in this lecture is to review the tools that we 
do have and how they can be used to minimize the theoretical uncertainty 
on the extraction of the desired quantities, such as CKM parameters, from 
experiment. 

3.1 Operator Product Expansion 

The operator product expansion is a way to formalize the separation of hard 
or short-distance physics from soft or long-distance physics. It begins by 
rewriting the Feynman diagrams into the form of local operators, defined at 
a given scale, with calculable, scale-dependent coefficients. 

First we look at all the tree and penguin Feynman diagrams for the weak 
decay of the 6-quark. Each can be written as a sum of four quark operators 
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with definite coefficients at the scale Mw• This is the leading order operator 
product expansion. There are actually two types of penguin diagrams, those 
I mentioned earlier that involve a gluon, and a second set called electroweak 
penguins that involve a photon or a Z particle emitted from the loop. These 
last give an additional set of four-quark operators. At first glance one might 
guess that the electroweak penguin contributions are very small, with OLQED 

replacing the astrong of the gluon case. However it turns out there is a part 
of the Z-penguin contribution which is enhanced by a factor M 2 /M 2 V and 
so there are cases where these terms can be important too. 

Each class of diagrams corresponds to a distinct set of four quark op-
erators at leading order. When hard QCD corrections are included, one 
must introduce a new scale into the problem, which is the hard-soft sepa-
ration scale ji that defines which gluons are absorbed into the new scale-
dependent operator coefficients and which are defined to be included in the 
scale-dependent matrix elements of operators. In addition, these corrections 
can mix the operators, and thereby blur the distinction between tree and 
penguin contributions. Thus the labels of each operator as being tree or 
penguin type is a leading order distinction only. However they are usually 
listed in that way as it is a useful way to keep track of which operator arises 
with which CKM coefficients. In addition, if a hard gluon connects the weak 
decay vertex to the spectator quark this can also introduce additional local 
operators that involve six quark fields, again with calculable coefficients that 
begin at order as{mh). 

One must choose the p-scale that separates hard and soft physics. In 
principle no physics depends on this choice. In practice if one makes ap-
proximations for the matrix elements one does not usually get the correct 
scale-dependence in their values. So results do to some extent depend on the 
choice of scale. This dependence is minimized by doing higher order QCD 
calculations, but in general is not fully removed even with that laborious 
step. 

Each four-quark operator takes the form 

On = b T m q ^ T n ^ (26) 

where each Fnj denote a specific combination of gamma matrices and QCD 
color structure and the q% denote the relevant quark flavor (and color) con-
tent. The details of the color and flavor flow in the diagram can be read 
off once these operators are written. I do not include here the detailed list 
nor any discussion of the coefficients. That is available many places [1]; my 
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point here is not to discuss this well-developed technical subject, but rather 
to talk about the additional steps between writing down an operator and its 
coefficient and calculating an amplitude for any particular channel. 

The matrix elements of the operators between the initial B state and the 
final set of mesons are where hadronic physics enters the game. Our methods 
for calculating that physics are limited. We can however use information that 
we do have about symmetries of the strong interactions, for example, to tell 
us about the ratios of matrix elements that occur in different decays. 

3.2 The Factorization Approximation 

The simplest approach to the problem, for example for calculation of a color-
allowed tree diagram, is to approximate the matrix element in a two-hadron 
decay as the product of the transition matrix element of a two-quark weak 
current between the B meson and one final state meson (that can be mea-
sured in a semileptonic decay), times the matrix element for the W to create 
the second meson, which is also measured elsewhere. This approach is called 
factorization, (or sometimes "naive factorization") because it factorizes the 
four-quark hadronic operator matrix element into a product of two two-quark 
matrix elements. This idea can be generalized to divide any four-quark op-
erator into two two-quark operators, which can either be extracted from 
experiment or estimated using models for the quark distribution functions 
of the mesons. The approximation neglects any effect of interactions between 
the two mesons in the final state, effects known as final state interactions. 

Now we know that two mesons (for a concrete example think of two pions) 
colliding at the energy corresponding to a B-mass certainly do interact. So at 
first glance you may think this approximation has no reason to be accurate. 
It is certainly not rigorously true, except in a few special cases. However it 
is motivated by a reasonable physical picture, usually attributed to Bjorken 
[19] (although in this reference he says the argument is common knowledge). 

The idea is that the weak decay is a very local process which converts 
one quark to three. Only for the kinematic configuration where two of these 
quarks (or rather one quark and one antiquark) go off essentially together, 
with the third one recoiling in the opposite direction, is there any significant 
probability that the system will hadronize as a two-body final state. (All 
other configurations are assumed to make multi-body final states, for exam-
ple by fragmentation of the four final-state quarks.) In the special case that 
gives two-body states the quark and anti-quark that travel together start 
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out much closer together in the transverse direction than the size of a typ-
ical hadron. They get quite far from the region containing the other quark 
and the "brown muck" of the spectator quark before they evolve into the 
hadronic-sized meson that is observed. They must start out in a color-singlet 
state to form such a meson. In a local color-singlet configuration (small com-
pared to a meson) the strong interactions must cancel. So initially there are 
no strong interactions because the pair is in a local color-singlet configu-
ration. Later there is no strong interaction because the two mesons are 
well-separated and strong interactions are a short-range phenomenon. 

The justification of the factorization approximation, as described above, 
applies for a tree diagram with no direct involvement of the other valence 
quark of the B meson quark in the weak decay vertex. More generally one 
can try to factorize any four quark operator (possibly after making a Fierz 
rearrangement to group the relevant quark fields as flavor-flow dictates they 
must be grouped to form the mesons of interest). One then uses other mea-
surements, or possibly lattice calculations, to fix the two two-quark matrix 
elements. In the case of a color-suppressed contribution, or one arising from 
a penguin diagram the flavor-flow does not automatically match two color-
singlet quark pairings. However, if a color-singlet meson is to be formed 
then there must be a color-singlet piece of the amplitude, and for this piece 
the factorization argument applies. 

In some processes the flavor content of the final state allows a contri-
bution either from annihilation (in the case of a charged B meson) or from 
exchange of a W between the two initial state valence quarks (for neutral 
B1 s). Both processes are suppressed in the heavy quark limit by the quark-
mass dependence of the wave-function at the origin (the B to vacuum tran-
sition matrix element of a local two-quark current). These contributions are 
typically neglected in rough estimates of two-hadron decay rates. 

Despite all the caveats, the factorization approximation is generally used 
to make first guess estimates of the sizes of various partial rates. To de-
termine the reliability of this calculation one must look more carefully at 
what is being done here. I mentioned previously that the operator coef-
ficients can be calculated with hard QCD corrections taken into account. 
This introduces a scale dependence into their definition, the scale of the sep-
aration between hard and soft corrections in QCD. This is not a physical 
scale, but an arbitrarily chosen one, so the true answer cannot depend on it. 
Any scale-dependence in the coefficients must be compensated by cancelling 
scale-dependence in the matrix elements. But when we use measurement of 
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a semi-leptonic process to determine the matrix element there is no reference 
to any hard-soft division scale; the measured quantity is scale independent. 
So we clearly have a problem, even in the best cases, factorization cannot 
be quite correct. 

The naive way to deal with this problem is to say it is reasonable to pick 
a scale somewhere between m&/2 and 2m& since the mass of the 6-quark sets 
the typical momentum scale for the quarks arising from its decay. One then 
asks how the quantity in question varies as one changes the scale within 
this range and uses this variation to assign a central value and a theoretical 
uncertainty to the result. While this seems quite a plausible approach there 
is no way to be sure it is right. The problem is alleviated somewhat, though 
not completely removed, when higher order QCD calculations of the operator 
coefficients are used. It can only be dealt with correctly when a consistent 
treatment of higher order matrix elements is used, along with the higher 
order coefficients. Any finite order calculation, however, will typically have 
some residual scale-dependence problems. 

The issue of determining the theoretical uncertainty, that is the reason-
able range of values of a theoretical estimate, is one to which we will return 
again and again in this lecture. Our ability to test the Standard Model by 
comparing its predictions with experiment depends on our ability to deter-
mine how big the uncertainties in our theoretical calculation are. A clean 
result is one where we know that these uncertainties are very small, or at 
least where we know very well how big they can be. But more often than 
not we find a part of the calculation is not so clean. The methods of deter-
mining the possible range of the predictions of the Standard Model are all 
too often subjective and ill-defined. Theorists continue to work to remove 
such ambiguities, and to find those measurements, or sets of measurements, 
for which they are minimal. This is an important task. 

3.3 Heavy Quark Limit Relationships between B and D 
Mesons 

One powerful technique for dealing with B decays is use the fact that the 
6-quark mass is large compared to the QCD scale and to calculate quantities 
in terms of a power series expansion in that ratio. If one also treats the 
charm quark as heavy compared to the QCD scale then one has an even 
more powerful set of relationships. Then to leading order in AqcD/mq the 
distribution of the light quark in a heavy-light meson is independent of the 
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spin orientation or the mass of the heavy quark. This means it is the same 
for a B or a B* or a D or a D* meson. This is a very important statement 
because it gives us at least one limit in which we know the transition matrix 
element between a B and a D or D* meson. 

Consider for example the semi-leptonic decay B° —y D*tv. In the kine-
matic limit where the D* is at rest in the B rest frame the wave-function 
overlap is 1. There is a small but calculable QCD correction to the unit 
wave-function overlap. Then there are the corrections to the heavy-quark 
limit relationships, which in this case turn out to be quadratic in AQCD/mq-
This is reasonably small even for the charm quark. This means that we can, 
in principle, use a measurement of this quantity to extract the CKM matrix 
element Vch with very little theoretical uncertainty. The only problem is 
that the configuration where this relationship holds is, as I said, a kinematic 
limit. That means that the rate vanishes at that point! One must measure 
the rate as a function of </-. and use an extrapolation to extract the quantity 
of interest. The extrapolation requires some knowledge about the behavior 
of the form factor as one goes away from the perfect-overlap situation, and 
that introduces some theoretical uncertainty into the answer for V^. How-
ever as more data is collected one can measure the rate ever closer to the 
end point, thereby reducing the sensitivity to the extrapolation. 

There are some other technical issues that appear in this problem. One 
interesting one that crops up here, and in other problems too, is the choice 
of the definition of the quark mass toj, (or m c ) . If you remember from muon 
decay, the semileptonic decay rate for a fermion (here the fr-quark) goes like 
the fifth power of the mass of the decaying particle. Thus any uncertainty 
in the definition of the quark mass translates into a huge uncertainty in the 
predicted rate. But it is even worse than this. If you try to define the quark 
mass as the mass at the pole of the quark propagator this definition is scale 
dependent and even diverges as the scale is reduced (known as the renor-
malon problem). Clearly this is an unphysical effect, because you chose an 
unphysical definition of the quark mass. The problem is to find a definition 
that avoids this problem and leads to a well-controlled result. This can in-
deed be done. The full discussion of how one does it is beyond the scope 
of this lecture. I merely warn you that you can get into trouble by blithely 
assuming you know what someone means when they write toj,. This quan-
tity cannot be directly measured. It is dependent on definition convention 
and on renormalization scale. As you compare results of different calcula-
tions you must always be aware of the conventions and definitions that have 
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been used. Otherwise you will not be able to interpret and apply the results 
correctly. 

3.4 QCD-Improved Factorization 

The word picture explanation of factorization is to some extent confirmed by 
explicit calculation of QCD corrections up to order a$ and at leading order 
in A jm q . It is found that the color-singlet nature of the meson leads to can-
cellation of the soft-gluon exchange between the two final-state mesons. In 
general, particularly for processes dominated by penguin or color-suppressed 
diagrams, there are found to be additional contributions which cannot be de-
scribed by the simple factorization of a four-quark operator, but rather add 
to the picture a local six-quark operator. They arise because of a hard-gluon 
exchange between the so-called spectator quark (now no longer just a spec-
tator) and another quark within the same meson. The matrix elements of 
this operator can be approximated as the a product of three valence-quark-
distribution functions, one for each meson (one initial and two final) times 
the hard coefficient which begins in order as(m,b)- Uncertainties arise from 
limitations on our knowledge of the quark distribution functions. 

One has to be careful here when matching the calculated hard-quark 
coefficient with measured transition matrix elements and form factors. The 
scale-dependence matching must be done correctly. One must also ensure 
that one is not double counting contributions of hard quarks that are effec-
tively inside one of the measured quantities. But these are technical problems 
that can be dealt with correctly. 

This treatment is known as qcd-improved factorization [15]. Here the 
term factorization is used for the factorization of the hard and soft physics. 
This form of factorization has been demonstrated to work for the leading 
order in A/rrib and one order in as(m,b) corrections to the leading diagrams. 
The actual A/Mb power counting is dependent on the assumptions about 
quark distribution functions; it assumes they vanish as a power of x at their 
end-point. As the calculation includes all gluon energy scales it is argued 
that all final state interactions are included in the formalism. The question 
remains as to whether this argument applies to all orders. It has been proven 
true to all orders in as and leading order in A jm q for the special case of a 
DTT final state with flavor such that the spectator quark in the B ends up in 
the D and the charm quark is treated as a heavy quark in the A/MQ power 
counting [20]. 
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It turns out that the numerical results depend quite sensitively on the 
details of input assumptions on the quark distribution functions [16, 17]. 
A variant of the approach making quite different, and indeed additional, 
assumptions about the quark distribution function end-point behavior gets 
numerically very different results [17]. The second approach is called per-
turbative QCD by its proponents. It is claimed in this approach that the 
entire result is perturbatively calculable. While these claims are open to 
question [21], one can simply regard the results of this work as the output 
of a set of ansaetze for the distribution functions. The results raise issues 
that have contributed important points to the discussion. One is the ques-
tion of exactly how small some of the (A/mft)-suppressed contributions are 
in actuality. The annihilation-graph contribution, for example, is found to 
be significant, even though formally suppressed. 

The sensitivity of results to inputs is unfortunate. It means that even 
these more sophisticated calculations leave us with some significant theoret-
ical uncertainties. The best one can do to quantifying these uncertainties is 
to see how much the results change when one varies over some reasonable set 
of assumptions for the various inputs such as quark distribution functions 
and transition matrix elements. But how do you decide what is a reason-
able range? As the existing debates show, in many cases this comes down 
to some subjective choices, not all rigorously decidable! (Some choices are, 
however, quite clearly unreasonable and should be excluded from discussion, 
for example a calculation that sets the scale of transverse momenta in a 
hadron at k'j_ = Am,h> or a form-factor model that does not fit a rigorous 
theoretical limit relationship.) As data and calculations for multiple chan-
nels are obtained it is likely that we will develop a better understanding of 
such issues, and a more consistent view of what range of assumptions are 
reasonable will emerge. Meanwhile it is very important that any calculation 
reported should include an honest estimate of its uncertainties, and a clear 
explanation of the assumptions made and the ranges of input variables that 
were included in obtaining this estimate. 

3.5 Isospin 

Another useful tool for extracting clean results for strong decay amplitudes 
is the symmetries of the strong interactions. The best of these, in that it 
most close to a true symmetry of the hadronic decays, is Isospin symmetry. 
I find I must explain this symmetry from scratch for current students. It 
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is a piece of old fashioned physics knowledge which is not always taught 
in modern courses. Isospin is a symmetry under interchange of u and d 
quark flavors. It is called "iso", because atoms which differ by such an 
interchange (originally by replacing a neutron by a proton or vice versa) 
are called isomers because they have nearly equal mass, and "spin" because 
the two quarks form an SU(2) doublet and the mathematics of SU(2) is the 
familiar mathematics of spin doublets. Isospin has nothing to do with any 
angular momentum. Notice also that I do not here mean the weak isospin 
(so called because it is yet another SU(2)); the isospin doublet is truly u 
with d, not with some admixture of d,s, and b. 

Isospin is, quite obviously, broken by electromagnetic effects since these 
distinguish quark charges, and it is also broken by quark masses. Now the 
up and down quark mass are nowhere near the same, the ratio (m« — mj) / 
(m« + rrid) is not a small number. So why is Isospin ever a good symmetry? 
The answer is that in many cases, (including most but not all hadron decays) 
the relevant scale with which to compare the quark mass difference is not 
the quark mass sum but the hadron mass scale. That scale is set either by 
A-QCD or by some heavy quark mass. Then the corrections to isopin-based 
predictions are small. One must be careful, however, to look out for the cases 
where the effect is one that is "chirally enhanced" that is where the sum of 
up and down masses does appear in the denominator. (A similar issue may 
also arise when making a heavy-quark expansion; terms that behave like 
^-QC£>/m&(m« + md)y though formally suppressed in the large rrih limit, are 
not always numerically negligible.) 

How does isospin help clarify B decay processes? Its chief value is that it 
allows us to make an experimental separation of some tree and QCD-penguin 
type contributions. In some processes these have different isospin structure, 
as well as having different CKM structure. Let us take the example of B 
decaying to two pions. First let us look at the final states, two pions in 
a spin zero state. A pion has isopin 1. Naively there are three possible 
isospins for the two-pion states, 0, 1 and 2. However Bose statistics says 
the overall state must be even under pion interchange. Since the spin zero 
spatial state is even, the isopin state must be even too. This eliminates 
the 1 = 1 possibility. Now let us examine the quark decays. The tree 
b —> uud contribution contains both AI = 1/2 and AI = 3/2 contributions. 
These combine with the spectator quark to contribute to the 1 = 0 and 
1 = 2 final states respectively. But a gluon is an isosinglet particle—it has 
no isospin. Hence the b —> d QCD penguin graph is purely AI = 1 / 2 and 
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contributes only to the 1 = 0 final state. (In quark language the gluon makes 
uu+dd. ) We can use measurements of several isospin-related channels (Here 

B° T f V and B+ —y 7r+7r° and their CP conjugates) to 
isolate the 1 = 2 contribution [22]. Then we have found a pure tree process, 
which thus depends on only one weak phase (up to small corrections from 
electroweak penguin effects.) Thus the isospin analysis gives us a way to 
separate out the dependence on a, the difference of the weak phase of the 
mixing and the weak phase of the tree diagram, without having to calculate 
the relative strength of the penguin and tree contributions. 

The theoretical uncertainty that we found in the previous lecture in try-
ing to extract the CKM parameter A from the asymmetry in B —Y TT+IT^ 
decays can then be much reduced. If, in addition to measuring that time-
dependent asymmetry in that channel, one also measures the rates for the 
isospin related channels, one has, in principle, enough information to deter-
mine sin(2a). Unfortunately, the 7r07r° rate is expected to be small, so that 
it may be some time before the experimental uncertainties of this approach 
are small enough that the result is actually improved by it. However even 
an upper bound on the neutral pion rate can provide useful constraints [23]. 

Electroweak penguin effects can also be considered in an isospin analysis, 
by writing the isospin structure of the Z-boson decay. However, since this 
decay has isospin 1 as well as isospin 0 parts, there is a AI = 3/2, /gnai = 

2 contribution, and this cannot be separated from the tree term via any 
multichannel analysis. This results in some residual theoretical uncertainty 
in the extraction of a, but it is significantly smaller than that from the 
gluonic penguin contribution without isospin analysis. 

A similar situation makes isospin analysis useless in separating tree and 
penguin parts for b —y ccd channels such as D h D . Here both the tree and 
penguin contributions are pure A I = 1/2, so there is no way to distinguish 
them via their isospin structure. 

3.6 SU(3) Symmetry 

One can get further relationships between different processes if one extends 
the idea of isospin to the full flavor SU(3), which treats the three lightest 
quarks as a degenerate triplet. In particular the subgroup of SU(3) known as 
U-spin under which the down and strange quarks are a doublet gives lots of 
interesting relationships between amplitudes [24]. As with any approximate 
method, the challenge here is to estimate the size of possible corrections from 
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symmetry breaking effects, that is to estimate the theoretical uncertainty in 
the predictions. One can distinguish three different types of SU(3) breaking 
effects. First there are kinematic factors that occur because of the different 
quark (and hence different meson) masses give different phase space factors. 
These may be large but can be well-estimated and lead to small theoretical 
uncertainties for any given set of channels. Second there are the factors of Fv 

(or /,r) versus the similar factors for the kaon. These are measured numbers 
so, where a vector or pseudoscalar meson is directly produced by a W, they 
again lead to no significant uncertainties. However when the local operator 
that produces the light meson is not an axial current then the corresponding 
ratio is not so well determined. Calculations often use the known ratio of 
F (or / ) factors to estimate the SU(3) breaking in such cases also, but 
now the uncertainty is not so well-controlled. Finally there are cases where 
the prediction depends also on assuming an SU(3) relationship between the 
phases of decay amplitudes. Results sensitive to this assumption may have 
a larger theoretical uncertainty. 

The application of SU(3)symmetry can allow one to use measured penguin-
dominated amplitudes such as B —> Kir to constrain the penguin contri-
bution to a tree-dominated amplitude such as B —> tttt. This provides a 
collection of additional approaches to fix the CKM parameter 7 from the 
combined 7T7T and Kir data [25]. 

Another value of both Isospin and SU(3) relationships is that they pro-
vide a window to search for effects of physics beyond the Standard Model. 
There are a number of cases where possible new physics effects do not re-
spect the relationships predicted by these symmetries [26]. Tests of these 
relationships may then provide a window for new physics. 

3.7 Lattice Calculations 

Perhaps the best way to include hadronic physics and QCD effects in a calcu-
lation of the matrix element of any operator is to use lattice QCD methods. 
Methods to treat heavy-light mesons on the lattice have been developed and 
are steadily improving. There are a number of cases where this method will 
eventually yield theoretical predictions with well controlled errors. Lattice 
calculation is particularly useful for quantities such as the B-mixing matrix 
element which is a one-particle to one-particle transition, or f s , which is a 
one-particle to vacuum transition. For one particle to multiparticle transi-
tions (where multi here means two or more) the problem of including final 
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state interactions is not solved by lattice calculations. These calculations 
are performed in Euclidean space-time and require analytic continuation to 
give the actual physical result. The uncertainties introduced by this step are 
difficult to quantify and can be large. 

There are basically four sources of uncertainties in lattice of calculations 
of the one-particle to one-particle (or one to zero-particle) matrix elements. 
The first is the statistical reliability of the Monte-Carlo treatment. This is 
simply a matter of doing enough calculation, and is very well understood. 
Second there are the extrapolations and scale-matching to match the finite-
volume, finite-lattice-spacing parameters and results with the infinite-volume 
continuum quantities. Again the process is highly developed and for the most 
part in good control. Third are the methods of handling the heavy quark on 
the lattice, which are also now quite well-developed. The critical last ingre-
dient in this progression is for the lattice calculation to be "unquenched". 
This means that the lattice allows the development of virtual light quark-
antiquark loops. Such calculations require significantly more computer time 
than the corresponding "quenched calculation" which suppresses quark-loop 
effects. Unquenched calculations are beginning to appear, for example for 
the matrix element that is relevant to the mixing between B and B mesons. 
There then remains some extrapolation in the light quark masses and in 
the number and degeneracies of the light quarks. The prospect is that all 
sources of uncertainty can be investigated, and that, at least for some of the 
critical quantities, the lattice will eventually provide the most accurate and 
well-controlled estimates of the matrix elements. Well-controlled here means 
that the uncertainty in the estimate can be reliably constrained. 

3.8 Quark-Hadron Duality 

Even with all these methods we are again and again confronted with data 
that cannot be interpreted without further input. We are reduced to using 
models, or to making further assumptions. One commonly used assumption 
goes under the name of "quark-hadron duality". This is the assumption 
that if I can calculate a quantity, such as an inclusive rate, at the quark 
level then that calculation must also give the correct answer at the hadronic 
level. In a situation where we can average over a range of energies one can 
indeed prove that this must be true for certain averages, for example the 
energy-averaged total cross-section for electron-positron collisions to produce 
hadrons. On the other hand it is clear that if we look in detail at any process 
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the quark result, calculated at low order in QCD, can not reproduce all the 
details of the hadronic spectrum correctly. In particular, thresholds or end-
points of spectra are different for quarks and for mesons. Perturbative quark 
calculations know nothing about resonance masses, at least not in any fixed-
order calculation. 

In a B decay we cannot average over energies, the energy of the decay is 
set by the B mass. Even so it is popularly believed that inclusive B decays 
can be well-described using the assumption of quark hadron duality. At the 
quark level we can calculate the 6-quark decay. Now we assume that gives 
the inclusive meson decay correctly, because, if the quark has decayed it 
must hadronize to something. The level of assurance with which one can 
make an estimate for the corrections to this approximation varies with the 
process. For inclusive semi-leptonic decays integrating over lepton momenta 
provides integration over a range of hadron invariant mass. This can be 
expected to reduce the corrections. It has thus been argued that these are 
very small in the inclusive semileptonic case [27]. 

The demands of realistic measurements can also dilute the power of 
quark-hadron duality. Consider for example inclusive semi-leptonic decays of 
B mesons to hadrons that contain no charm. In principle the measurement 
of this total rate can be used to extract a value for the CKM parameter VUh, 
if we can calculate the expected rate. We assume quark-hadron duality gives 
an accurate result for the full inclusive rate, by the arguments given above. 
However in any experimental measurement, we must make some kinematic 
restriction in order to exclude backgrounds coming from the much larger rate 
of decays to hadrons containing charm quarks. This introduces dependence 
on details of the spectrum, rather than just a particular integral of it. 

There is more than one way to choose the kinematic cut: one can for 
example restrict the electron momentum to be large enough that charm 
production is excluded; or one can restrict the hadronic invariant mass to 
be small enough to exclude charm. Because of the unseen neutrino these 
restrictions are not identical. Each keeps some fraction of the total rate. 
To extract VUh we must know what that fraction is. But to calculate that 
fraction we are looking at details of the spectrum for which the use of a 
quark-level calculation may not be so safe. Recent work has suggested using 
some combination of cuts on hadron mass and on lepton invariant mass 
(which requires neutrino reconstruction). A carefully chosen combination 
can minimize sensitivity to the spectrum end-point details. One can also 
make some tests as to the stability of the result as the cut prescription is 
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varied [28, 29]. 

3.9 Models and Other Approximations 

In many other channels, even once one uses QCD-improved factorization cal-
culations one needs to know a meson-meson transition matrix and/or quark 
distribution functions for both initial and final state particles to calculate 
a rate. Lattice calculation, or measurement in a semi-Ieptonic decay, can 
be used to fix the transition matrix element. In certain cases one obtains 
self-consistent quark distribution functions using light-cone QCD arguments. 
Or one can parameterize these distributions, for example by their moments, 
and use some set of measurements to fix the set of parameters that domi-
nate an effect (making sure that such parameters are indeed carefully and 
consistently defined in both processes). 

Finally one can simply resort to making models for the unknown quan-
tities. One can using rigorous limits obtained from QCD sum rules [30] and 
from the heavy quark limit to constrain the models and reduce the num-
ber of independent inputs needed. However this is not sufficient to remove 
all model dependence of the results. There are often still large (and not 
well-constrained) uncertainties that arise in this stage of the calculation. 

3.10 Summary 

For two-body hadronic decays even QCD-improved calculations require some 
input of transition matrix elements and quark distribution functions for the 
mesons in question in order to calculate amplitudes. These input quantities 
can sometimes be constrained by symmetries. Rigorous limits for some can 
be derived for example from the heavy quark limit and from QCD (e.g. the 
QCD sum rule methods). Some of the quantities of interest can eventually be 
accurately calculated on the lattice. Some can be measured in semileptonic 
processes. Data on a great variety of decays will help refine our understand-
ing. This process has already begun. Data from CLEO and from the two 
asymmetric B factories gives us much to study, and will continue to do so. 

Our ability to see whether different measurements yield consistent or 
inconsistent values for the Standard Model parameters is only as good as 
our ability to constrain the theoretical uncertainties in a reliable fashion. 
As one applies any method to a multitude of channels one can learn from 
experience what accuracy is obtained and refine the method on the basis 
of that experience. Because there are indeed many possible quasi-two-body 
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B decays this process will eventually improve our ability to constrain the 
theoretical uncertainty of a given calculational method. To achieve this 
ability it is important for theorists to be as precise and as honest as possible 
about the sensitivity of any results to input assumptions or models, and to 
explore this sensitivity in some detail. Only in this way can we find those sets 
of measurements which truly give us sensitive tests of the Standard Model. 

4 Lecture 4. Experiments to Measure B Decays 
In this last lecture I will review how one goes about studying these questions 
experimentally. Even though you (in this audience) are mostly theory stu-
dents, it is important that you have some idea of how the measurements are 
made. The aim of the game is to make multiple measurements that can check 
Standard Model predictions in a redundant fashion. There are a number of 
ways that physics from beyond the Standard Model could show up. One 
could find inconsistent results for a particular Standard Model parameter 
(or set of parameters) when determining the same parameters by multiple 
independent methods. One could find a large CP-violating asymmetry in 
a mode for which the Standard model predicts a small or vanishing effect. 
One could find decay modes that are predicted to be rare present at a rate 
different from that expected or with a pattern of isospin or SU(3) symmetry 
violations that cannot be accommodated within the theoretical uncertainty 
of Standard Model predictions. Each of these possibilities requires ongoing 
work on both the theory front, to reduce theoretical uncertainties, and the 
experimental one, to make all the suggested measurements. I will focus on B 
decay experiments, but rare if-decay results also contribute to the picture, 
as do the existing results on CP-violation in K decays. 

4.1 Tagging B Flavor 

Up until now we have talked about various decays of an individual B meson 
as if we knew what meson we had at time t = 0. The flavor conservation 
of strong and electromagnetic interactions means that one produces a b-
quark and an anti-6-quark in the same event. In general one has no a priori 
knowledge of which type of neutral B meson was formed at production. One 
must use other properties of the total event in order to determine whether 
one had a or B meson at production (or at some other known time). 
This process is called tagging. For example one can tag a B meson when 
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another B meson in the same event decays in such a way that its fr-flavor 
is identifiable. An example of a tag is a semileptonic decay; the charge of 
the lepton then identifies whether it came from the weak decay of a b or 
a b quark. The tagging possibilities and efficiencies are quite different in 

collisions and in hadronic collisions, but the requirement for tagging is 
common to both types of experiments. 

In principle almost every event has some tagging information. Often 
this information is not precise. For example consider the lepton-charge tag 
suggested above. If the fr-quark decays hadronically to a c-quark which then 
decays semileptonically then the detected lepton comes from the decay of the 
c instead of that of the b. Assuming it came from the b will give a wrong sign 
tag. The spectrum of such secondary-decay leptons is different from that of 
the primary ones. One can use such additional information to improve the 
correctness of the tag. However the two spectra overlap, so there will still be 
cases where there is an ambiguity. Only a probability for each tag-type can 
be determined. Each type of tag event thus has two properties that must be 
understood, its efficiency, e, and the wrong tag fraction, w associated with 
it. Some methods have very high purity but low efficiency, others with much 
higher efficiency may have lower purity. The measure of tagging quality that 
eventually determines how well we can measure a CP-violating asymmetry 
is the product e(l — 2w)2. We will see below how this comes about. Both 
the efficiency and the wrong tag fraction are determined by a combination 
of Monte Carlo modelling of events and measurements, for example from 
samples of doubly tagged events. A significant systematic uncertainty in 
the result for any asymmetry arises from the uncertainty in determining the 
wrong tag fraction. Since that determination is at least in part data driven, 
this uncertainty will decrease as data samples increase. 

4.2 e+e~ Collisions 

In an electron-positron collider the most efficient way to produce B° mesons 
is to tune the energy to the T4S, since that large resonant peak in event 
rate is just above threshold to decay into either a B+ and a B or into a 
B° and a B . Hence the T45 decays essentially 50% to each of these states. 
Furthermore, the two neutral mesons are produced in a coherent state which, 
even though both particles are oscillating as described previously, remains 
exactly one and one B until such time as one of the particles decays. 
For studies of CP-violation this turns out to be either a disaster or a very 
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useful property depending on the design of your collider. 
To observe CP violation we must look for decays where one of the two 

neutral J3's decays in a way that identifies its flavor, so that it gives a good 
tag, and the other decays to the CP eigenstate of interest for the study. 
Then we examine the decay rate as a function of the time, i, between the 
tagging decay (defined to occur at t = 0) and the CP-eigenstate decay. 
When the tag is a this means that the particle which decayed to the CP 
eigenstate is known to have been a at time t = 0 (or, for t < 0, to be 
that combination which would have evolved to be a B° at time t = 0). We 
denote this state as B°(t). Its decay rate as a function of time is given by 

R(B°(i) ->•/) = \A(B° —>• / )|2e _ r ' * ' [ l+( l —|A/|2) cos(Ami)+Im\f sin(Amt)] 

( 2 7 ) 

where once again A/ = (q/p)[A(B —> f)/A(B° —> / ) ] . In this equation 
and all following discussion of B& decays we neglect A r , and, equivalently, 
assume \q/p\ = 1. (The corresponding formulae for Bs decays are a little 
more complicated as this approximation cannot be used in that case, you 
can find them in the textbooks [1]. ) Likewise, the rate when the tagging 
decay is a is 

R(B°(i) —>• /) = \A(B° / )| VrW[|A/|2 + (|A/|2 - 1) cos (Ami) 
—ImXf sin(Ami)] (28) 

Notice that if we were to integrate over all times, —oo < 0 < oo the 
term proportional to sin (A Mi) would integrate to zero. This would destroy 
our sensitivity to the CP-violating quantity ImA/. We must measure the 
asymmetry between B tags and B tags as a function of time to avoid this 
cancellation. For a symmetric electron positron collider running at the T4S 

this is essentially impossible. (This is the disaster referred to above.) The 
two B mesons are produced with small momenta. Even with the best de-
tectors one cannot accurately measure the difference in distance from the 
collision point of the two decays. Indeed the size of the beam-beam interac-
tion region is typically sufficient to destroy any possibility of resolving this 
difference. Hence cannot measure the time-difference between the decays. 
Pier Oddone suggested an idea that allowed B factories to be built to tackle 
CP violation [31]. The idea was to build two storage rings with different 
energies and collide the electrons and positrons so that the T4S, and likewise 
the pair of J3's to which it decays, are produced moving, with a significant 
relativistic gamma-factor. Then the physical separation of the decay vertices 
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of the two J3's is increased via the time dilation of the decay half-life. (A 
decay vertex is the point from which the tracks of the particles produced in 
the decay diverge.) In this case one can indeed, using a precision tracking 
device known as a vertex detector, resolve the two decay vertices and mea-
sure their separation with a resolution that is small compared to the average 
separation. Furthermore, since any transverse motion of the B mesons is 
small compared to the overall center-of-mass momentum, the distance be-
tween the decays (in the higher-energy beam direction) gives a good measure 
of the time between them. The uncertainty in the production point due to 
beam size is irrelevant for this measurement, as we are not concerned with 
time from production, but only the time between the two decays. Thus 
the initial coherent state gives a beautiful prediction for a measurable time-
dependent asymmetry. The experiment has many internal cross checks that 
can be made to confirm that the effect is seen as predicted. For a detailed 
discussion of the physics capabilities of such a facility see for example the 
BaBar Physics Book, which is available via the web [32]. 

To see how the tagging efficiency affects the result consider how the 
measured asymmetry is related to the actual asymmetry. The total number 
of events that we count as B-tagged events is e{Ns{ 1 — w) + N^w) where 
Nb and N-g are the actual numbers of B and B events produced. Likewise 
the total count of B events is e(Nsw + iVg(l — w)). Thus the measured 
asymmetry is 

where Otrue is the true asymmetry. In addition the total number of events 
included in the result scales with e, the tagging efficiency, since only tagged 
events can be used. Since statistical accuracy grows like the square root of 
the number of events, the accuracy of the measurement is proportional to the 
square root of epsilon. Combining these two facts gives you an understanding 
of the earlier statement that the quality measure for tagging is e(l — 2w)2. 
This is sometimes called the effective tagging efficiency. 

Both asymmetric B factory projects, one at SLAC [33] and the other at 
KEK [34]), have succeeded spectacularly in building and operating a two-
storage-ring facility together with a detector and computer system capable 
of detecting and recording all the relevant details of millions of BB events. 
Interesting data from these facilities is now beginning to be reported and will 
continue over the next several years to yield new insights. See the websites 

Gmeas — (1 - 2W)(N" = (1 - 2w)atrue (29) 
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of the BaBar [35] and Belle [36] experiments for details. 
In addition to measuring CP-violating asymmetries these facilities are 

also compiling and analyzing large data samples for a variety of B& decays. 
Together with measurements from the symmetric B factory at Cornell [37] 
and its detector CLEO [38], this data will considerably refine our ability to 
measure the CP-conserving parameters and to test theoretical calculations. 
I have talked in previous lectures about the uncertainties that plague many 
theoretical calculation methods, and in particular about the difficulty in 
quantifying these uncertainties. As data on multiple modes accumulates 
we can refine our understanding of the accuracy of various approaches by 
comparison with this data. 

4.3 Proton Colliders 

Because the R-factory machine's are optimized to run at the T4S they are 
below the threshold to produce any BS mesons. In principle they could do so 
by running at the T§s. The smaller peak height of this resonance, together 
with the fact that it has many possible decay channels combine to make the 
production rate for BSBS pairs significantly lower than that for BD at the 
T4S. The machines would have to be be re-optimized to run at this higher 
energy, which itself is not a simple change. All these factors combine to make 
it unlikely that this will be attempted any time soon, while there is still so 
much to learn about the BD decays. So for measurements of BS decays, and 
also for those of baryons containing 6-quarks, we need to look elsewhere, to 
hadron colliders. For the time being that means the Fermilab TeVatron [39], 
eventually it will also mean LHC [40] at CERN. 

At a hadron collider the b and b quarks hadronize independently and 
each B meson is part of a large jet of many particles. Many more J3's 
are produced in high energy hadron-hadron collisions than in an electron-
positron B factory. Hadronic collisions also produce many other types of 
events, with yet higher cross-sections. Thus, for these experiments, it is 
critical to devise ways to identify B-events fast enough to trigger the system 
to record the event. The trigger is typically two charged tracks emerging from 
a R-decay vertex that is separated from the beam-beam collision region. The 
design of the trigger and its efficiency is a very important and challenging 
feature of these experiments. The triggering requirements restrict the decay 
channels that can be studied in a hadronic environment. The methods and 
efficiencies for tagging the flavor of the produced B are also quite different 
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in the hadronie ease than in the electron-positron B factory environment. 
The tagging particle may be a charged B or a baryon, or it may be deduced 
from properties of the leading particles in the jet containing the neutral B. 
Furthermore, since the two 6-quark (or antiquark) containing particles are 
not in a coherent state, the time evolution of the CP-study particle (and 
also the tagging particle if it is a neutral B-meson) starts at production time. 
There are a number of interesting quantities that can only be studied in a 
hadron facility, others where the two types of machines are competitive, and 
some where the electron-positron machines have unique capabilities. Both 
approaches are needed to gather all the information we would like to have. 

An example of a quantity where hadron collider results will be important 
is the determination of the side Vu of the unitarity triangle. Currently this 
quantity is determined by measuring the B4 mass difference. However there 
is a significant theoretical uncertainty that arises when relating the measure-
ment to the parameter V^. Much of this uncertainty would be removed by 
a measurement of the Bs mass difference as well as that for Bd. The ratio of 
the two mass differences gives VtdjVts with relatively controlled theoretical 
uncertainties. If the value predicted by the Standard Model is correct this 
measurement can be done at Fermilab in the CDF experiment, probably 
within the next couple of years. 

There has been a detailed study of the opportunities for B physics in 
Run II at Fermilab [41]. The CDF [42] and D-Zero [43] detectors have 
just completed upgrades and are beginning to take data, including some B-
physics-triggered data. In addition a new experiment,known as BTeV, with a 
detector optimized for B-physics capability, is planned [44]. At CERN there 
is also such an experiment planned, known as LHCB [45]. These detectors 
will give expanded B physics capability and perhaps allow some rare modes 
to be studied, with branching fractions that are too small to measure in the 
current experiments. (After my talk I was told there is also a study underway 
of a possible future B experiment at HERA, a follow-up to the HERA-B 
experiment [46] using a wire target in the proton beam of that e-p collider.) 
Another future option is an intense ^-production facility at a linear collider, 
where study of Z —> bb decays can yield useful additional possibilities.) All 
in all, the problem has many aspects. The complementarity of the different 
experiments will allow a rich program of measurements. Eventually we will 
have a clear picture of whether the pattern of results matches the Standard 
Model or requires some physics beyond the Standard Model to describe the 
data. 
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4.4 Some Final Remarks 

As theorists search for ways to extract interesting information from B de-
cays they will often describe desired measurements that are beyond present 
capabilities. This is not new. When Bigi and Sanda [47] first talked about 
CP-violation in B decays we did not know the B lifetime, so the measure-
ments that they proposed seemed out of reach. Sometimes nature is kind 
and the numbers work out better than present knowledge suggests. Some-
times clever technical ideas, such as the asymmetric collider, extend 
our experimental reach. Improvements in the technology of particle tracking 
and particle identification have been essential in the B factory experiments 
and will continue to be so for BTeV and LHCB. The history of discovery 
in science continues because measurements deemed impossible in one era 
become feasible with new developments. Likewise new developments on the 
theory side, such as new techniques for unquenched lattice calculations are 
important, as they allow more measurements to be interpreted with good 
control of theoretical uncertainties. 

To conclude this lecture series I would like to remind you that the aim 
of the game in studying C P is to examine this least-explored corner of the 
Standard Model in two ways. The first is to pin down the value of the 
remaining Standard Model parameters. The second is to test whether mul-
tiple measurements give consistent answers, both for the parameters and for 
other Standard Model predictions. The hope is that any discrepancy will 
be a clue to the nature of physics beyond the Standard Model, physics that 
can, for example, change the relative phase of a mixing amplitude compared 
to a decay amplitude. Indirect searches for new physics, such as these B 
physics probes, are a blunt instrument. Many extensions of the Standard 
Model may predict similar effects, for example additional contributions to 
the mixing. The challenge to theorists is to reduce theoretical uncertainties 
to the point that we sharpen that instrument enough to see the effects if they 
are there, rather than losing them in the ranges of possible answers given by 
our poor control of hadronic physics effects. This work is well begun, but 
there is more to do. I hope some of the students here will make interesting 
contributions to it in the near future. 
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Abstract 

This is a brief written version of 5 lectures made at 2001ICTP Sum-
mer School on High Energy Physics in Triest. The lectures provide an 
overview of what we have learned about QCD vacuum, hadrons and 
hot/dense hadronic matter during the last 2 decades. Last two lectures 
contain discussion of heavy ion physics. We focus on the first surprising 
results from new heavy ion collider, RHIC, as well as recent develop-
ment toward understanding of the old problem of "soft pomeron" in 
high energy hadronic collisions and its connection to new heavy ion 
data. 
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1 Introduction 
1.1 A n outline 

In these lectures there are not so many formulae: I tried to clarify the 
main physics point instead, then jump over years of development to the 
main questions debated today, and show few recent examples. Systematic 
discussion of such vast range of subjects need a book1, not short lecture 
notes. Technical description of instantons can be found in review [2], and 
the correlation functions in [4]. 

We will start in Lecture 1 with the QCD vacuum structure, in Lecture 2 
we then proceed to the hadronic structure, discuss phases of hot/dense QCD 
in Lecture 3, and consider high energy collisions of heavy ions and hadrons 
in lectures 4 and 5, respectively. 

The main line in all discussion would be a systematic use of semiclassical 
methods, specifically the instantons. The reasons for that are: (i) They are 
the only truly non-perturbative effects understood by now; (ii) They lead to 
large and probably even dominant effects in many cases; (iii) Due to progress 
during the last decade, we have near-quantitative theory of instanton effects, 
solved numerically to all orders in the so called't Hooft interaction. 

Although we still do not understand confinement, its companion problem 
- chiral symmetry breaking in the QCD vacuum - is now understood to a 
significant degree. Not only we have simple qualitative understanding of 
where those quasi-zero modes of the Dirac operator come from, but we can 
calculate their density, space-time shape and eventually QCD correlation 
functions with surprising accuracy. So, in a way, the problem of hadronic 
structure is nearly solved for light-quark hadrons2. 

As we will see below, although the high density and temperature domain 
can be understood in the (re-summed) perturbation theory, the boundaries 
of the QCD phases is a matter of non-perturbative physics. I will argue 
that this phase diagram can also be understood based on the instanton 
framework. The of three basic phases of QCD: (i) hadronic phase, (ii) Quark-
Gluon Plasma (QGP) and (iii) Color Superconductor (CS) phases appear as 
a balance between three basic pairing channels, being (i) attraction in scalar 
colorless qq channel; (ii) instanton-antiinstanton pairing induced by light 
quark exchanges; and (iii) attraction in scalar but colored qq channels. 

11 wrote such a book in mid-80's, [1], and now am working at its new edition. 
2Medium-heavy-quark ones, such as cc, bb do care about confining potential, while 

(hypothetical) extremely heavy quarkonia would need only the Coulomb forces. 
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The last part deals with high energy collisions of hadrons and heavy ions: 
those are related to the rest of the lectures since this is how we try to access 
another QCD phase, the Quark-Gluon Plasma, experimentally. We will 
discuss first results coming from RHIC, show that matter produced seems to 
behave macroscopically (namely, hydrodynamically) with proper Equation 
of State. We will also try to connect rapid onset of QGP equilibration with 
existing ideas based on perturbative and non-perturbative mechanisms. We 
will argue that tunneling dynamics described by instantons not only play 
role in vacuum, but in collisions as well. In this case, however, quantum 
paths describing the process can transfer from Euclidean to Minkowski space, 
crossing the so called "turning states" on the way. A sphaleron known in 
electroweak theory is one of them, and we will argue that those states are 
physically produced in high energy collisions. 

1.2 Scales of Q C D 

Let me start with an introductory discussion of various "scales" of non-
perturbative QCD. The major reason I do this is the following: some naive 
simplistic ideas we had in the early days of QCD, in the 70's, are still alive 
today. I would strongly argue against the picture of non-perturbative ob-
jects as some structure-less fields with typical momenta of the order of 
p ~ KQCD ~ ( 1 / m ) - 1 . In the mid-70's people considered hadrons to be 
structure-less "bags" filled with near-massless perturbative quarks, with mild 
non-perturbative effects appearing at its boundaries and confining them at 
the scale of 1 fm. 

One logical consequence of this picture would be applicability of the 
derivative expansion of the non-perturbative fields or Operator Product Ex-
pansion (OPE), the basis of the QCD sum rules. However, after the first 
successful applications of the method [5] rather serious problems [7] have 
surfaced. All spin-zero channels (as we will see, those are the ones directly 
coupled to instantons) related with quark or gluon-based operators alike, 
indicate unexpectedly large non-perturbative effects and deviate from the 
OPE predictions at very small distances. 

It provided a very important lesson: the non-perturbative fields form 
structures with sizes significantly smaller than 1 fm and local field strength 
much larger than A2. Instantons are one of them: in order to describe many 
of these phenomena in a consistent way one needs instantons of small size 
[6] p ~ 1/3 fm. We have direct confirmation of it from the lattice, but not 
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real understanding of why there are no large-size instantons. 
Furthermore, the instanton is not the only such small-scale gluonic ob-

ject. We also learned from the lattice-based works that QCD flux tubes (or 
confining strings) also have small radius, only about rstring ~ 1/5 / t o . So, 
all hadrons (and clearly the QCD vacuum itself) have a substructure, with 
"constituent quarks" generated by instantons connected by such flux tubes. 

Clearly this substructure should play an important role in hadronic 
physics. We would like to know why the usual quark model has been so 
successful in spectroscopy, and why so little of exotic states have been seen. 
Also, high energy hadronic collisions must tell us a lot about substructure, 
since the famous Pomeron also belongs to a list of those surprisingly small 
non-perturbative objects. 

At the opposite end of the spectrum, people have found that QCD seem 
to have also surprisingly small energy /momentum scale, several times lower 
than A. It was found that behavior of the so called "quenched" and true 
QCD is very different, but only if the quark mass is below some scale of the 
order of 20-50 MeV. As we will see below, this surprising low scale has been 
explained by properties of the instanton ensemble. 

2 Lecture 1. The QCD vacuum 

2.1 Chiral symmetry breaking and instantons 

Let me start around 1961, when the ideas about chiral symmetry and what 
it may take to break it spontaneously have appeared. The NJL model [13] 
was the first microscopic model which attempted to derive dynamically the 
properties of chiral symmetry breaking and pions, starting from some hypo-
thetical 4-fermion interaction. 

LNJL = G{iF + A2) (1) 

where 7r, a denote the corresponding scalar isovector and scalar isoscalar 
currents. 

Let me make few comments about it. 
(i) It was the first bridge between the BCS theory of superconductivity and 
quantum field theory, leading the way to the Standard Model. It first showed 
that the vacuum can be truly nontrivial, a superconductor of a kind, with 
the mass gap A=330-400 MeV, known as "constituent quark mass". 
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(ii) The NJL model has 2 parameters: the strength of its 1-ferniion interac-
tion G and the cutoff A ~ .8 — 1 GeV. The latter regulates the loops (the 
model is non-renormalizable, which is OK for an effective theory) and is 
directly the "ehiral scale" we are discussing. We will relate A to the typical 
instanton size p, and G to a combination np2 of the size and density of in-
stantons. 
(iii) One non-trivial prediction of the NJL model was a the mass of the scalar 
is ma ~ 2mconst,qUark- Because this state is the P-wave in non-relativistic 
language, it means that there is strong attraction which is able to com-
pensate exactly for rotational kinetic energy. For decades simpler hadronic 
models failed to get this effect, and even now spectroscopists still argue that 
this (40-year-old!) result is incorrect. However, lattice results in fact show 
that it is exactly right and theoretically understood by instantons. More-
over, the phenomenological sigma meson is being revived now, so possibly it 
will even get back to its proper place in Particle Data Table, after decades 
of absence. 

Let me now jump to instantons. We will show below that they generate 
quite specific 4-fermion 't Hooft interaction [12] (for 2-flavor theory: for 
pedagogical reasons we ignore strange quarks altogether now). Furthermore, 
its Lagrangian includes the NJL one, but it also has 2 new terms: 

Lmooft = G{if2 + a2 - 7]2 - P) (2) 

with isosealar pseudoscalar rj and isovector scalar 5. T'Hooft's minus sign is 
crucial here: it shows that the axial U(l) symmetry (e.g. rotation of sigma 
into eta) is not a symmetry. That is why rj (actually?/ if strangeness is 
included) is not massless Goldstone particle like a pion. 

The most important next development happened in 1980's: it has been 
shown in [6, 14] that instanton-induced interaction does break spontaneously 
the SU(NF) chiral symmetry. Unlike the NJL model, the instanton-induced 
interaction has a natural cut-off parameter p, and the coupling constants are 
not free parameters, but determined by a physical quantity, the instanton 
density. That eventually allowed to solve in all orders in't Hooft interaction, 
and get quantitative results, see [2]. 

2.2 General things about the instantons 

I would omit from this paper general things about the instantons, well cov-
ered elsewhere. Let me just briefly mention that the topologically-nontrivial 
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4d solution was found by Polyakov and collaborators in[8], and soon it was 
interpreted as semi-classical tunneling between topologically non-equivalent 
vacua. The name itself was suggested by t Hooft, meaning "existing for an 
instant". Formally, instantons appear in the context of the semi-classical 
approximation to the (Euclidean) QCD partition function 

, Nf 
Z= DA„ exp ( -S ) J ] del (Jp + mf), (3) 

J f 

^ j d ' x G ^ G ^ . (4) 
1 

40 
Here, S is the gauge field action and the determinant of the Dirac operator 
]p = — iA^) accounts for the contribution of fermions. In the semi-
classical approximation, we look for saddle points of the functional integral 
(3), i.e. configurations that minimize the classical action S. This means that 
saddle point configurations are solutions of the classical equations of motion. 

These solutions can be found using the identity 
1 

S — ~ 77 I d x 4 g2 

i / ~ \ < 
±CjiuyCjiuy + 9 I F ^ ^J (5) 

where G ^ = 1/2€^vpaGpa is the dual field strength tensor (the field strength 
tensor in which the roles of electric and magnetic fields are reversed). Since 
the first term is a topological invariant (see below) and the last term is always 
positive, it is clear that the action is minimal if the field is (anti) self-dual 

= ±G%. (6) 
The action of a self-dual field configuration is determined by its topological 
charge 

Q = (7) 

From (5), we have S = (87r2|Q|)/g2. For finite action configurations, Q has 
to be an integer. The instanton is a solution with Q = 1 [8] 

2 ?]aiiv%v 
X2 + p-

where the't Hooft symbol is defined by 

» = W 

Vafif 
H,v = \, 2, 3, 

= 4, (9) 
-5avp = 4. 
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and p is an arbitrary parameter characterizing the size of the instanton. This 
original instanton has its non-trivial topology at large distances, but if we 
are to consider instanton ensemble, its another form, the so called singular 
gauge on is needed 

' {x2 + p2)x2' K ' 

because in this case the non-trivial topology is at the point singularity. 
The classical instanton solution has a number of degrees of freedom, 

known as collective coordinates. In addition to the size, the solution is char-
acterized by the instanton position z^ and the color orientation matrix Rab 

(corresponding to color rotations A£ —> R^A^). A solution with topological 
charge Q = — 1 can be constructed by replacing rjatll/ —> ?Ja(Uy, where fjaill/ is 
defined by changing the sign of the last two equations in (9). 

The physical meaning of the instanton solution becomes clear if we con-
sider the classical Yang-Mills Hamiltonian (in the temporal gauge, AQ = 0) 

where Ef is the kinetic and Bf the potential energy term. The classical vacua 
corresponds to configurations with zero field strength. For non-abelian gauge 
fields this limits the gauge fields to be "pure gauge" Ai = iU(x)diU(x)^. 
Such configurations are characterized by a topological winding number riw 
which distinguishes between gauge transformations U that are not continu-
ously connected. 

This means that there is an infinite set of classical vacua enumerated by 
an integer n. Instantons are tunneling solutions that connect the different 
vacua. They have potential energy B2 > 0 and kinetic energy E2 < 0, 
their sum being zero at any moment in time. Since the instanton action 
is finite, the barrier between the topological vacua can be penetrated, and 
the true vacuum is a linear combination 19) = S n e w 0 | n ) called the theta 
vacuum. In QCD, the value of 9 is an external parameter. If 9 ^ 0 the QCD 
vacuum breaks CP invariance. Experimental limits on CP violation require3 

9 < i(r9. 

3The question why 9 happens to be so small is known as the "strong CP problem". 
Most likely, the resolution of the strong CP problem requires physics outside QCD and we 
will not discuss it any further. 
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The rate of tunneling between different topological vacua is determined 
by the semi-classical (WKB) method. From the single instanton action one 
expects 

Ptunneling ~ exp(-87T2/g>2). (12) 

The factor in front of the exponent can be determined by taking into account 
fluctuations An = A^ + 5A^ around the classical instanton solution. This 
calculation was performed in a classic paper by ' t Hooft [12]. The result is 

0.47exp(—1.68iVc; , , . ... , 
dni = {Nc-l)\{Nc-2)\ 6XP 1 1 — ' (13) 

where g2 (p) is the running coupling constant at the scale of the instanton 
size. Taking into account quantum fluctuations, the effective action de-
pends on the instanton size. This is a sign of the conformal (scale) anomaly 
in QCD. Using the one-loop beta function the result can be written as 
dnj/(dAz) ~ dpp^5(pA)b where b = (lliV c /3) = 11 is the first coefficient 
of the beta function. Since b is a large number, small size instantons are 
strongly suppressed. On the other hand, there appears to be a divergence 
at large p. In this regime, however, the perturbative analysis based on the 
one loop beta function is not applicable. 

2.3 Zero Modes and the U(1)A anomaly 

In the last section we showed that instantons interpolate between different 
topological vacua in QCD. It is then natural to ask if the different vacua can 
be physically distinguished. This question is answered most easily in the 
presence of light fermions, because the different vacua have different axial 
charge. This observation is the key element in understanding the mechanism 
of chiral anomalies. 

Anomalies first appeared in the context of perturbation theory [9, 10]. 
From the triangle diagram involving an external axial vector current one 
finds that the flavor singlet current which is conserved on the classical level 
develops an anomalous divergence on the quantum level 

= (14) 

This anomaly plays an important role in QCD, because it explains the ab-
sence of a ninth goldstone boson, the so called U(1)A puzzle. 
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The mechanism of the anomaly is intimately connected with instantons. 
First, we recognize the integral of the RHS of (14) as 2NfQ, where Q is the 
topological charge. This means that in the background field of an instan-
ton we expect axial charge conservation to be violated by 2Nf units. The 
crucial property of instantons, originally discovered b y ' t Hooft, is that the 
Dirac operator has a zero mode iptpo(x) = 0 in the instanton field. For an 
instanton in the singular gauge, the zero mode wave function is 

p 1 7 * x 1 75 
) w (x2 ^2^3/2 2 ^ ^ ^ 

where cf)am = eam/%/2 is a constant spinor, which couples the color index a to 
the spin index TO = 1,2. Note that the solution is left handed, 75^0 = —ipo-
Analogously, in the field of an anti-instanton there is a right handed zero 
mode. 

We can now see how axial charge is violated during tunneling. For this 
purpose, let us consider the Dirac Hamiltonian id • D in the field of the 
instanton. The presence of a 4-dimensional normalizable zero mode implies 
that there is one left handed state that crosses from positive to negative 
energy during the tunneling event. This can be seen as follows: In the 
adiabatic approximation, solutions of the Dirac equation are given by 

1>i(x,t) = ipi(x, t = —00) exp J dt'e(t')J . (16) 

The only way we can have a 4-dimensional normalizable wave function is 
if ei is positive for t —> 00 and negative for t —> —00. This explains how 
axial charge can be violated during tunneling. No fermion ever changes its 
chirality, all states simply move one level up or down. The axial charge 
comes, so to say, from the "bottom of the Dirac sea". 

2.4 The effective interaction between quarks 

Proceeding from pure glue theory to QCD with light quarks, one has to 
deal with the much more complicated problem of quark-induced interac-
tions. Indeed, on the level of a single instanton we can not even understand 
the presence of instantons in full QCD. The reason is again related to the 
existence of zero modes. In the presence of light quarks, the tunneling rate 
is proportional to the fermion determinant, which is given by the product 
of the eigenvalues of the Dirac operator. This means that (as TO —> 0) the 
tunneling amplitude vanishes and individual instantons cannot exist! 
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This result is related to the anomaly: During the tunneling event, the 
axial charge of the vacuum changes, so instantons have to be accompanied 
by fermions. The tunneling amplitude is non-zero only in the presence of 
external quark sources, because zero modes in the denominator of the quark 
propagator can cancel against zero modes in the determinant. Consider the 
fermion propagator in the instanton field 

s{ } = mmm+E M*mv) (17) 
im f-fn A + im 

where ilpip\ = \tpx- For Nf light quark flavors the instanton amplitude is 
proportional to mNf. Instead of the tunneling amplitude, let us calculate a 
2iV/-quark Green's function (Hf f (xf)Ftpf (yf)}, containing one quark and 
antiquark of each flavor. Performing the contractions, the amplitude involves 
Nf fermion propagators (17), so that the zero mode contribution involves a 
factor mNf in the denominator. 

The result can be written in terms of an effective Lagrangian [12]. It 
is a non-local 2iV/-fermion interaction, where the quarks are emitted or 
absorbed in zero mode wave functions. The result simplifies if we take the 
long wavelength limit (in reality, the interaction is cut off at momenta k > 
p^1) and average over the instanton position and color orientation. For 
Nf = 1 the result is [12, 15] 

CNf= -- J dp no (p) (mp- ^ir2p3qRqi^J , (IB) 

where no(p) is the tunneling rate. Note that the zero mode contribution 
acts like a mass term. For Nf = 1, there is only one chiral U(l) symmetry, 
which is anomalous. This means that the anomaly breaks chiral symmetry 
and gives a fermion mass term. This is not true for more than one flavor. 
For Nf = 2, the result is 

CNf=2 = j dp no (p) J] (mp - ^tt2 pZqf,Rqf,hj (19) 

3 / 4 \ 2 
+ ™ o^V {uR\auLdR\adL - uRa^XauLdRa^XadL) 32 \3 

One can easily check that the interaction is SU(2) x SU(2) invariant, but 
U(1)A is explicitly broken. This Lagrangian is of the type first studied by 
Nambu and Jona-Lasinio [13] and widely used as a model for chiral symmetry 
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breaking and as an effective description for low energy chiral dynamics. It 
can be transformed to the form discussed above when we compared it to 
NJL interaction. 

2.5 The quark condensate in the mean field approximation 

We showed in the last section that in the presence of light fermions, tunneling 
can only take place if the tunneling event is accompanied by Nf fermions 
which change their chirality. But in the QCD vacuum, chiral symmetry is 
broken and the quark condensate {qq) = (<1LQR + QML) is non-zero. This 
means that there is a finite amplitude for a quark to change its chirality and 
we expect the instanton density to be finite. 

For a sufficiently dilute system of instantons, we can estimate the in-
stanton density in full QCD from the expectation value of the 2Nf fermion 
operator in the effective Lagrangian (19). Using the factorization assump-
tion [5], we find that the factor J]/ mf in the instanton density should be 
replaced by [ ] / m /> where the effective quark mass is given by 

This shows that if chiral symmetry is broken, the instanton density is finite 
in the chiral limit. 

This obviously raises the question whether the quark condensate itself 
can be generated by instantons. This question can be addressed using several 
different techniques (for a review, see [2, 3]). One possibility is to use the 
effective interaction (19) and to calculate the quark condensate in the mean 
field (Hartree-Fock) approximation. This correspond to summing the con-
tribution of all "cactus" diagrams to the full quark propagator. The result 
is a gap equation [14] 

which determines the constituent quark mass M(0) in terms of the instanton 
density (N/V). Here, M(k) = M(0)k2(p'2(k)/(2TTp) is the momentum de-
pendent effective quark mass and cp' (k) is the Fourier transform of the zero 
mode profile [14]. The quark condensate is given by 

(20) 

(21) 

(22) 
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Using our standard parameters (N/V) = 1 (hi 1 and p = 1/3 fm, one 
finds (qq) ~ - (255 MeV)3 and M(0) = 320 MeV. Parametrieally, (qq) ~ 
(N/V)1!2p^1 and M(0) ~ (N/V)l!2p. Note that both quantities are not 
proportional to (N/V), but to (N/V)1/2. This is a reflection of the fact that 
spontaneous breaking of chiral symmetry is not a single instanton effect, but 
involves infinitely many instantons. 

A very instructive way to study the mechanism for chiral symmetry 
breaking at a more microscopic level is by considering the distribution of 
eigenvalues of the Dirac operator. A general relations that connects the 
spectral density p(A) of the Dirac operator to the quark condensate was 
given by Banks-Casher relation 

(qq) = - M O ) . (23) 

This result is analogous to the Kondo formula for the electrical conductivity. 
Just like the conductivity is given by the density of states at the Fermi 
surface, the quark condensate is determined by the level density at zero 
virtuality A. For a disordered, random, system of instantons the zero modes 
interact and form a band around A = 0. As a result, the eigenstates are de-
localized and chiral symmetry is broken. On the other hand, if instantons are 
strongly correlated, for example bound into topologically neutral molecules, 
the eigenvalues are pushed away from zero, the eigenstates are localized and 
chiral symmetry is unbroken. As we will see below, precisely which scenario 
is realized depends on the parameters of the theory, like the number of light 
flavors and the temperature. Of course, for "real" QCD with two light flavors 
at T = 0, we expect chiral symmetry to be broken. This is supported by 
numerical simulations of the partition function of the instanton liquid, see 
[2]. 

2.6 The Qualitative Picture of the Instanton Ensemble 

Using basically such expressions and the known value of the quark conden-
sate it was pointed out in [6] that all would be consistent only if the typical 
instanton size happened to be significantly smaller than their separation4, 
R = n" 1 / 4 « 1/TO, namely pmSK ~ 1/3 fm. 

In Fig.(l) one can see lattice data on instanton size distribution, obtain 
by cooling of the original gauge fields. Similar distribution can also be 

4Derived in turn from the gluon condensate and the topological susceptibility. 
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Figure 1: The instanton density dn/dpd4z, [fm^5] versus its size p [fm]. The points are 
from the lattice work [11], for this theory, with fi—5.85 (diamonds), 6,0 (squares) and 6,1 
(circles). Their comparison should demonstrate that results are rather lattice-independent. 
The line corresponds to one of the proposed expression ~ eip(~2ir(rp2), 

obtained from fermionie lowest Dirae eigenmodes: in this ease no "cooling" 
is needed. 

Let me now show another evidence for this value of the instanton size, 
taken from the pion form-factor ealeulated[16] in the instanton model. In 
Fig. (2) we show how the experimentally measured pion size correlates with 
the input mean instanton size: one can see from it that the value .35 fm is 
a clear winner. 

With my current student, Pietro Faccioli, we are now working on the pion 
form-factor at larger momentum transfer, and have found that the agreement 
between the instanton-induced contribution and the monopole fit continues 
to at least Q2 ~ lOGeF2. At higher momentum transfers, the instanton 
term must die out, leaving the (probably undetectably small) perturbative 
asymptotics. 

In summary, the following qualitative picture of the QCD vacuum have 
emerged: 

1. Since the instanton size is significantly smaller than the typical separa-
tion R between instantons, p/R ~ 1/3, the vacuum is fairly dilute. The 
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Figure 2: The fitted parameter M of the pion form-factor / / ~ M2/(Q2 + M2) versus 
the inputed instanton size. 

fraction of spacetime occupied by strong fields is only a few percent. 

2. The fields inside the instanton are very strong, G^ A"QCD. This 
means that the semi-classical approximation is valid, and the typical 
action is large 

So = 8ir2/g2(p) ~ 10 — 15 1. (24) 

Higher order corrections are proportional to l/<So and presumably 
small. 

3. Instantons retain their individuality and are not destroyed by interac-
tions. From the dipole formula, one can estimate 

ISSint\ ~ (2 - 3) « So. (25) 

4. Nevertheless, interactions are important for the structure of the in-
stanton ensemble, since 

exp\5Sint\ ~ 20 > 1. (26) 

This implies that interactions have a significant effect on correlations 
among instantons, and the instanton ensemble in QCD is not a dilute 
gas but an interacting liquid. 

pion 3-point function 
electromagnetic formfactor 

R I L M . - I 
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The aspects of the QCD vacuum for which instantons are most important 
are those related to light fermions. Their importance in the context of chiral 
symmetry breaking is related to the fact that the Dirac operator has a chiral 
zero mode in the field of an instanton. These zero modes are localized quark 
states around instantons, like atomic states of electrons around nuclei. At 
finite density of instantons those states can become collective, like atomic 
states in metals. The resulting de-localized state corresponds to the wave 
function of the quark condensate. 

Direct tests of all these ideas on the lattice are possible. One may have 
a look at the lowest eigenmodes and see if they are related to instantons 
or something else (monopoles, vortices...) by identifying their shapes - 4d 
bumps (lines or 2-d sheets) respectively. So far, only bumps (that is the 
instantons) were seen. 

One may also test how locally chiral are the lowest eigenmodes. Just re-
cently lattice practitioners learned how to get very accurate massless fermions 
on the lattice, and in a variety of ways: the domain wall method, the "per-
fect" actions or just empirically improved ones based on Wilson-Ginsparg 
relation. Let me refer to just few papers [25] which discuss those results, 
confirming the instanton model in its central prediction, that the majority 
of lowest eigenvectors of the QCD vacuum are made of instanton zero modes. 

Let me now explain about the lowest QCD scale generated by instantons, 
mentioned above. The width of the zero mode zone of states is of the order of 
root-mean-square matrix element of the Dirac operator < I\/D\J p2/R3. 
Here states I, J are some instanton and anti-instanton zero modes, rho is the 
instanton size and R ~ n - 1 / 4 « 1 fm is the distance between their centers. 
Note small factor (p/R)2 ~ 1/10 here. The Dirac eigenvalues from the zone 
have similar magnitude. Now, the eigenvalues enter together with quark 
mass m: and so only when this quark mass is smaller than this scale we start 
seeing the physics of the zero mode zone. In particular, for quenched QCD 
(or instanton liquid) there is no determinant and the zone states have rather 
wrong spectrum. However, only if the quark mass is small compared to its 
width we start observing the difference. Only recently lattice practitioners 
were able to do so: indeed, quenched QCD results at small m start deviating 
from the correct answers quite drastically. 
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2.7 Interacting instantons 

In the QCD partition function there are two types of fields, gluons and 
quarks, and so the first question one addresses is which integral to take first. 

(i) One way is to eliminate gluonic degrees of freedom first. Physical 
motivation for this may be that gluonic states are heavy and an effective 
fermionic theory should be better suited to derive an effective low-energy 
fermionic theory. It is a well-trodden path and one can follow it to the 
development of a similar four-fermion theory, the NJL model. One can 
do simple mean field or random field approximation (RPA) diagrams, and 
find the mean condensate and properties of the Goldstone mesons[14]. The 
results for Color Super-conductors at high density reported below are done 
with the same technique as well. But nevertheless, not much can really be 
done in such NJL-like approach. In fact, multiple attacks during the last 40 
years at the NJL model beyond the mean field basically failed. In particular, 
one might think that since baryons are states with three quarks, and one 
may wonder if using quasi-local four-fermion Lagrangians for the three body 
problem is a solvable quantum mechanical problem, and one can at least tell 
if nucleons are or are not bound in NJL. In fact it is not: the results depend 
strongly on subtleties of how the local limit for the interaction is defined, 
and there is no clear answer to this question. Other notorious attempts to 
sum more complicated diagrams deal with the possible modification of the 
the chiral condensate. Some works even claim that those diagrams destroy 
it completely! 

Going from NJL to instantons improves the situation enormously: the 
shape of the form-factor is no longer a guess (it is provided by the shape 
of zero modes) and one can in principle evaluate any particular diagram. 
However summing them all up still seems like an impossible task. 

(ii) The solution to this problem was found. For that one has to follow 
the opposite strategy and do the fermion integral first. The first step is sim-
ple and standard: fermions only enter quadratically, leading to a fermionic 
determinant. In the instanton approximation, it leads to the Interacting 
Instanton Liquid Model, defined by the following partition function: 

describing a system of pseudo-particles interacting via the bosonic action 
and the fermionic determinant. Here dfli = dUi dAZi dpi is the measure in 

N++N_ NF 

I I [rfa d{pi)} exp(—Sjnt) n d e t ( ^ + mf), (27) 
i / 
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color orientation, position and size associated with single instantons, and 
d(p) is the single instanton density d(p) = dnTj/dpdz. 

The gauge interaction between instantons is approximated by a sum of 
pure two-body interaction £ j n t = | S i ^ j Sint(^u)- Genuine three body 
effects in the instanton interaction are not important as long as the ensemble 
is reasonably dilute. Implementation of this part of the interaction (quenched 
simulation) is quite analogous to usual statistical ensembles made of atoms. 

As already mentioned, quark exchanges between instantons are included 
in the fermionic determinant. Finding a diagonal set of fermionic eigenstates 
of the Dirac operator is similar to what people are doing, e.g., in quantum 
chemistry when electron states for molecules are calculated. The difficulty 
of our problem is however much higher, because this set of fermionic states 
should be determined for all configurations which appear during the Monte-
Carlo process. 

If the set of fermionic states is however limited to the subspace of instan-
ton zero modes, the problem becomes tractable numerically. Typical calcu-
lations in the IILM involved up to 100 instantons (+anti-instantons): 
which means that the determinants of N x N matrices are involved. Such 
determinants can be evaluated by an ordinary workstation (and even PC 
these days) so quickly that a straightforward Monte Carlo simulation of the 
IILM is possible in a matter of minutes. On the other hand, expanding the 
determinant in a sum of products of matrix elements, one can easily identify 
the sum of all closed loop diagrams up to order N in the't Hooft interaction. 
Thus, in this way one can actually take care of about 100 factorial diagrams! 

3 Lecture 2. Hadronic Structure and the QCD 
correlation functions. 

3.1 Correlators as a bridge between hadronic and partonic 
worlds 

Consider two currents separated by a space — like distance x (which can 
be considered as the spatial distance, or an Euclidean time) and introduce 
correlation functions of the type 

K(x) =< T(J(x)J(0)) > (28) 

with J(x) = ip(x)Ftp(x). The matrix T contains 7^ for vector currents, 75 
for the pseudoscalar or 1 for the scalars, etc, and also a flavor matrix, if 
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needed. 
We will start with isoveetor vector and axial currents, and then discuss 

4 sealar-pseudosealar channels: 7r (P=-l , 1=1), cr or /o (P=+1.1=0). rj (P=-
1,1=0) and 5 or a0 (P=+1,I=1). 

In a (relativistic) field theory, correlation functions of gauge invariant 
local operators are the proper tool to study the spectrum of the theory. 
The correlation functions can be calculated either from the physical states 
(mesons, baryons, glueballs) or in terms of the fundamental fields (quarks 
and gluons) of the theory. In the latter case, we have a variety of techniques 
at our disposal, ranging from perturbative QCD, the operator product ex-
pansion (OPE), to models of QCD and lattice simulations. For this reason, 
correlation functions provide a bridge between hadronic phenomenology on 
the one side and the underlying structure of the QCD vacuum on the other 
side. 

Loosely speaking, hadronic correlation functions play the same role for 
understanding the forces between quarks as the NN scattering phase shifts 
did in the case of nuclear forces. In the case of quarks, however, confine-
ment implies that we cannot define scattering amplitudes in the usual way. 
Instead, one has to focus on the behavior of gauge invariant correlation func-
tions at short and intermediate distance scales. The available theoretical and 
phenomenological information about these functions was recently reviewed 
in [4]. 

In all cases at small x we expect K(x) « KQ(X) where the latter cor-
responds to just free propagation of (about massless) light quarks. The 
zeroth order correlators are all just KQ(X) = 12/(7r4x6), basically the square 
of the massless quark propagator. 

The first deviations due to non-perturbative effects can be studied using 
Wilsonian Operator Product Expansion (OPE) in ref[5]. For all scalar and 
pseudoscalar channels the resulting first correction is 

Hr1+^<bG,2>+"' (29) 

The "gluon condensate" is assumed to be made out of a soft vacuum field, 
and therefore all arguments can be simply taken at the point x = 0. The 
so-called standard value of the "gluon condensate" appearing here was esti-
mated previously from charmonium sum rules: 

<(gGf >svz*-5GeV4 (30) 
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Thus, the OPE suggests the following scale, at which the correction becomes 
equal to the first term: 

This seems to be completely consistent with the approximation used. How-
ever, as Novikov, Shifman, Vainshtein and Zakharov soon noticed[7], this 
(and other OPE corrections) completely failed to describe all the J = 0 ± 

channels: we return to this issue after we consider vectors and axials. 

3.2 Vector and axial correlators 

The information available on vector correlation functions from experimental 
data on e + e - — > hadrons, the OPE and other exact results was reviewed 
in [4]. Since then, however, new high statistics measurement of hadronic r 
decays r —> vT + hadrons have been done. For definiteness, we use results of 
one of them, ALEPH experiment at CERN [17, 18]. 

The vector and axial-vector correlation functions are I l y ( i ) = 0)) 
and = (jla{x)jla{{))). Here, j£(x) = qj^Q, = QJul^q are 
the isotriplet vector and axial-vector currents. The Euclidean correlation 
functions have the spectral representation [4] 

where D(m, x) = m/(4ir2x)Ki (mx) is the Euclidean coordinate space prop-
agator of a scalar particle with mass m. We shall focus on the linear com-
binations n y + n^ and n y — n^. These combinations allows for a clearer 
separation of different non-perturbative effects. The corresponding spectral 
functions py ± pA measured by the ALEPH collaboration are shown in Fig. 
3. The errors are a combination of statistical and systematic ones (below we 
use them conservatively, as pure systematic): the main problem seems to be 
separation into V and A of channels with Kaons, which may affect V — A at 
s > 2 GeV at 10% level. None of our conclusions are sensitive to it. 

In QCD, the vector and axial-vector spectral functions must satisfy chiral 
sum rules. Assuming that py — PA = 0 at above s > m|, and using ALEPH 
data below it, one finds that all 4 of the sum rules are satisfied within 
the experimental uncertainty, but the central values differ significantly from 
the chiral predictions [17]. In general, both functions are expected to have 
oscillations of decreasing amplitude, and putting py — pA to zero at arbitrary 

XOPE = (384/ < {gGf >svz)1/4 » 1.0 fm (31) 

(32) 
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Figure 3: Spectral functions w(s) ± a ( s ) = 4ir2(pv(s) + PA(S)) extracted by the ALEPH 
collaboration from tau lepton hadronic decays. 
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point imply appearance of spurious dimension d = 2,4 operators in the 
correlation functions at small x. Therefore, we have decided to terminate 
the data above a specially tuned point, so = 2.5 GeV2, enforcing all 4 chiral 
sum rules. (The reader should however be aware of the fact that we have, in 
effect, slightly moved the data points in the small x region within the error 
band.) Finally we add the pion pole contribution (not shown in Fig. 3), 
which corresponds to an extra term IIJ (x) = / ^ ro jD(m f , x). The resulting 
correlation functions IIy(a;) ± IX4 (x) are shown in Figs. 4. 

We begin our analysis with the combination Ily —11 .̂ This combination 
is sensitive to chiral symmetry breaking, while perturbative diagrams, as 
well as gluonic operators cancel out. 

In Fig. 4 we compare the measured correlation functions with predictions 
from the instanton liquid model (in its simplest form, random instanton 
liquid with parameters n, p fixed in [6] and discussed above). 

The agreement of the instanton prediction with the measured V — A 
correlation is impressive: it extends all the way from short to large distances. 
At distances x > 1.25 fm both combinations are dominated by the pion 
contribution while at intermediate x the p, p' and a\ resonances contribute. 

We shall now focus our attention on the V + A correlation function. 
The unique feature of this function is the fact that the correlator remains 
close to free field behavior for distances as large as 1 fm. This phenomenon 
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x [fm] 

Figure 4: Euclidean coordinate space correlation functions I I f ( i ) ± I Ia(;e) normalized 
to free field behavior. The solid lines show the correlation functions reconstructed from 
the ALEPH spectral functions and the dotted lines are the corresponding error band. The 
squares show the result of a random instanton liquid model and the diamonds the OPE 
fit described in the text, 

was referred to as "super-duality" in [4]. The instanton model reproduces 
this feature of the V + A correlator. We also notice that for small x the 
deviation of the correlator in the instanton model from free field behavior 
is small compared to the perturbative 0(0.2/it) correction. This opens the 
possibility of precision studies of the pQCD contribution. But before we do 
so, let us compare the correlation functions to the OPE prediction 

1 + - —(a2G2 \xA 
+ 7T 384 

47T3 
—^«s(x)(qq)log(x2)x<i + ... (33) 

Note that the perturbative correction is attractive, while the power correc-
tions of dimension d = 4 and d = 6 are repulsive. Direct instantons also 
induce an 0(x4) correction 1 — f j ^ ^ x4 + ... , which is consistent with 
the OPE because in a dilute instanton liquid we have (g2G2) = 32TT2(N/V). 
This term can indeed be seen in the instanton calculation and causes the cor-

n y (a:) + 11,4 (a:) 
2n0(x) 
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relator to drop below 1 at small x. It is possible to extract the value of A-QCD 
(we find as(mT) = 0.35) and even clear indication of running coupling. It is 
only possible to do because the non-perturbative corrections (represented by 
instantons) are basically cancelling each other to very high degree, in V + A 
channel. 

Why is it happening? The first order in 't Hooft is indeed absent, 
due to chirality mismatch. There is no general theoretical reason why all 
non-perturbative of higher order should also do so: but ALEPH data used 
wrongly hint that they actually do so. 

3.3 Spin-zero correlation functions 

Now we will see cases which are completely opposite to those just considered: 
the instanton-induced effects would be large. Furthermore, the 4 channels 
actually show completely different non-perturbative deviation from KQ at 
small x: half of them (-tt, a) deviate upward, and another pair (rj, 8) deviate 
downward. 

But let me first demonstrate that the OPE scale determined above cannot 
be right. All we have to do is to evaluate the strength of the pion contribution 
to the correlator in question: 

=
 ( 3 4 ) 

The coupling constant is defined as X^ = < 0| J(0)\TT > and the rest is nothing 
more than the scalar massless propagator5. Because both the pion term 
and the gluon condensate correction happen to be l/x2, let us compare the 
coefficients. Ideal matching would mean they are about the same 

L2 _ < (GG)2 >SVZ 

The r.h.s. is about 0.0063 GeV4. However, phenomenology tells us that 
(unlike the better known coupling to the axial current /„-) the coupling X^ is 
surprisingly large6. The l.h.s. of this relation is actually A2 = (.48GeF)4 = 

5We can ignore the pion mass at the distances in question. We also ignore contributions 
of other states, which can only add positively to the correlator and made disagreement 
only worse, 

®The reason for that is the the pion is rather compact and also the wave function is 
concentrated at its center, so that its value at r = 0 is large. We return to this point in 
the discussion of the "instanton liquid" model. 
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Figure 5: Pion correlation function in various approximations and instanton ensembles. 
In the top figure we show the phenomenological expectation (solid), the OPE (dashed), 
the single instanton (dash-dotted) and mean field approximations (dashed) as well as data 
in the random instanton ensemble. In the bottom figure we compare different instanton 
ensembles, random (open squares), quenched (circles) and interacting (streamline: solid 
squares, ratio ansatz solid triangles), 

0.053 GeF4 , about 10 times larger than the r.h.s. It means much larger non-
perturbative effect is needed to explain the deviation from the perturbative 
behavior. 

Now, let us see why is it so. The instanton effects in spin-0 channels 
are in these cases much larger because effect o f ' t Hooft interaction appears 
in those cases in the first order. Furthermore, since it its flavor structure is 
non-diagonal (uu)(dd) the correlator of two tt° currents (uj^u^dj^d) have it 
with opposite sign as compared to the correlator of rj currents (u^u + d^d). 
What it means is that instantons are as attractive in the pion channel as 
they are repulsive in the rj case. The situation is reversed in the scalar 
channels: the isoscalar sigma is attractive and isovector is repulsive. 

Full results from versions of the instanton liquid model for pion correla-
tors are shown in fig.5. Different versions of the model (mentioned in figures 
below as IILM(rat) etc) differ by a particular ansatz for the gauge field used, 
from which the interaction is calculated. Note also, that these figures con-
tain also a curve marked "phen": this is what the correlator actually looks 
like, according to phenomenology. 

We simply show a few results of correlation functions in the different 
instanton ensembles (see original refs in[2]). Some of them (like vector and 
axial-vector ones) turned out to be easy: nearly any variant of the instanton 
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Figure 6: Eta prime meson correlation functions. The various curves and data sets are 
labeled as in Fig. 5. Note that random instanton liquid model (RILM) and quenched 
version (no fermionic determinant, only bosonic interactions) predict i]' correlator to go 
negative. The same unphysical behavior has been found on the lattice. 

model can reproduce the (experimentally known!) correlators well. Some 
of them are sensitive to details of the model very much: two such cases 
are shown in Figs. 5-6. The pion correlation functions in the different en-
sembles are qualitatively very similar. The differences are mostly due to 
different values of the quark condensate (and the physical quark mass) in 
the different ensembles. Using the Gell-Mann-Oaks-Renner relation, one can 
extrapolate the pion mass to the physical value of the quark masses. The 
results are consistent with the experimental value in the streamline ensemble 
(both quenched and unquenched), but clearly too small in the ratio ansatz 
ensemble. This is a reflection of the fact that the ratio ansatz ensemble is 
not sufficiently dilute. 

The situation is drastically different in the rj channel. Among the ~ 40 
correlation functions calculated in the random ensemble, only the rj and the 
isovector-scalar 6 were found to be completely unacceptable. The correlation 
function decreases very rapidly and becomes negative at x ~ 0.4 fm. This 
behavior is incompatible even with a normal spectral representation. The 
interaction in the random ensemble is too repulsive, and the model "over-
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explains" the U(1)A anomaly. 
The results in the unquenched ensembles (closed and open points) sig-

nificantly improve the situation. This is related to dynamical correlations 
between instantons and anti-instantons (topological charge screening). The 
single instanton contribution is repulsive, but the contribution from pairs 
is attractive. Only if correlations among instantons and anti-instantons are 
sufficiently strong are the correlators prevented from becoming negative. 
Quantitatively, the S and rjns masses in the streamline ensemble are still too 
heavy as compared to their experimental values. In the ratio ansatz, on the 
other hand, the correlation functions even show an enhancement at distances 
on the order of 1 fm, and the fitted masses are too light. This shows that the 
rj channel is very sensitive to the strength of correlations among instantons. 

In summary, pion properties are mostly sensitive to global properties of 
the instanton ensemble, in particular its diluteness. Good phenomenology 
demands p4n ~ 0.03, as originally suggested in[6]. The properties of the p 
meson are essentially independent of the diluteness, but show sensitivity to 
II correlations. These correlations become crucial in the rj channel. 

3.4 Baryonic correlation functions 

The existence of a strongly attractive interaction in the pseudoscalar quark-
antiquark (pion) channel also implies an attractive interaction in the scalar 
quark-quark (diquark) channel. This interaction is phenomenologically very 
desirable, because it immediately explains why the nucleon is light, while 
the delta (S=3/2,1=3/2) is heavy. 

The so called Ioffe currents (with no derivatives and the minimum num-
ber of quark fields) are local operators which can excite states with nucleon 
quantum numbers. Those with positive parity and spin 1/2 can also be 
represented in terms of scalar and pseudoscalar diquarks 

Nucleon correlation functions are defined by 11^(x) = (r]a(0)fj/j(x)}, where 
a, (5 are the Dirac indices of the nucleon currents. In total, there are six 
different nucleon correlators: the diagonal rjifji, 772̂ 2 and off-diagonal r]\f]2 
correlators, each contracted with either the identity or 7 • x. Let us focus 
on the first two of these correlation functions (for more detail, see[2] and 
references therein). 

(36) 
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Figure 7: Nucleon and delta correlation functions III' and 11̂ , Curves labeled as in 
Figs,on mesonic correlators. 

The correlation function II2 in the interacting ensemble is shown in 
Fig. 7. The fact that the nucleon in IILM is actually bound can also be 
demonstrated by comparing the full nucleon correlation function with that 
of three non-interacting quarks (the cube of the average propagator). The 
full correlator is significantly larger than the non-interacting one. 

There is a significant enhancement over the perturbative contribution 
which is nicely described in terms of the nucleon contribution. Numerically, 
we find7 tojv = 1.019 GeV. In the random ensemble, we have measured the 
nucleon mass at smaller quark masses and found mn = 0.96±0.03 GeV. The 
nucleon mass is fairly insensitive to the instanton ensemble. However, the 
strength of the correlation function depends on the instanton ensemble. This 
is reflected by the value of the nucleon coupling constant, which is smaller in 
the IILM. In[19] we studied all six nucleon correlation functions. We showed 
that all correlation functions can be described with the same nucleon mass 
and coupling constants. 

The fitted value of the threshold is EQ C^L 1.8 GeV, indicating that there is 
little strength in the "three quark continuum" (dual to higher resonances in 

7Note that this value corresponds to a relatively large current quark mass m — 30 MeV, 
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the nucleon channel). A significant part of this interaction was traced down 
to the strongly attractive scalar diquark channel. The nucleon (at least in 
IILM) is a strongly bound diquark, plus a loosely bound third quark. The 
properties of this diquark picture of the nucleon continue to be disputed by 
phenomenologists. We will return to diquarks in the next section, where 
they will become Cooper pairs of Color Super-conductors. 

In the case of the A resonance, there exists only one independent Ioffe 
current, given (for the A + + ) by 

4 = eabc(uaCjnUb)uc. (37) 

However, the spin structure of the correlator I I = {f)^a(0)fjfy(x)) is 
much richer. In general, there are ten independent tensor structures, but 
the Rarita-Schwinger constraint = 0 reduces this number to four. 

The mass of the delta resonance is too large in the random model, but 
closer to experiment in the unquenched ensemble. Note that,similar to the 
nucleon, part of this discrepancy is due to the value of the current mass. 
Nevertheless, the delta-nucleon mass splitting in the unquenched ensemble 
is to a — to/v = 409 MeV, larger but comparable to the experimental value 
297 MeV. It mostly comes from the absent scalar diquarks in A channel. 

4 Lecture 3. The Phases of QCD 
4.1 The Phase Diagram 

In this section we discuss QCD in extreme conditions, such as finite temper-
ature/density. Let me first emphasize why it is interesting and instructive to 
do. It is not simply to practice once again the semi-classical or perturbative 
methods similar to what have been done before in vacuum. What we are 
looking for here are new phases of QCD (and related theories), namely new 
self-consistent solutions which differ qualitatively from what we have in the 
QCD vacuum. 

One such phase occurs at high enough temperature T > Tc: it is known 
as Quark Gluon Plasma (QGP). It is a phase understandable in terms of 
basic quark and gluon-like excitations [38], without confinement and with 
unbroken chiral symmetry in the massless limit8. One of the main goals 

8It does not mean though, that it is a simple issue to understand even the high-T limit 
of QCD, related to non-perturbative 3d dynamics. 
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of heavy ion program, especially at new the dedicated Brookhaven facility 
RHIC, is to study transitions to this phase. 

Another one, which has been getting much attention recently, is the 
direction of finite density. Very robust Color Superconductivity was found 
to be the case here. Let me also mention one more frontier which has not 
yet attracted sufficient attention: namely a transition (or many transitions?) 
as the number of light flavors Nf grows. The minimal scenario includes a 
transition from the usual hadronic phase to a more unusual QCD phase, the 
con formal one, in which there are no particle-like excitations and correlators 
are power-like in the infrared. Even the position of the critical point is 
unknown. The main driving force of these studies is the intellectual challenge 
it provides. 

The QCD phase diagram as we understand it now is shown in Fig 8(a), 
in the baryonic chemical potential fi (normalized per quark, not per baryon) 
and the temperature T plane. Some part of it is old: it has the hadronic 
phase at small values of both parameters, and QGP phase at large T,//. 

The phase transition line separating them most probably does not really 
start at T = Tc, fi = 0 but at an "endpoint" E, a remnant of the so called 
QCD tricritical point which QCD has in the chiral (all quarks are massless) 
limit. Although we do not know where it is9, we hope to find it one day 
in experiment. The proposed ideas rotate around the fact that the order 
parameter, the VEV of the sigma meson, is at this point truly massless, and 
creates a kind of "critical opalecence". Similar phenomena were predicted 
and then indeed observed at the endpoint of another line (called M from 
multi-fragmentation), separating liquid nuclear matter from the nuclear gas 
phase. 

The large-density (and low-T) region looks rather different from what 
was shown at conferences just a year ago: two new Color Super-conducting 
phases appear there. Unfortunately heavy ion collisions do not cross this 
part of the phase diagrams and so it belongs to neutron star physics. 

Above I mentioned an approach to high density starting from the vac-
uum. One can also work out in the opposite direction, starting from very 
large densities and going down. Since the electric part of one-gluon exchange 
is screened, and therefore the Cooper pairs appear due to magnetic forces. 
It is interesting by itself, as a rare example: one has to take care of time 
delay effects of the interaction. The result is indefinitely growing gaps at 

9Its position is very sensitive to the precise value of the strange quark mass m s 
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Figure 8: Schematic phase diagram of QCD, in temperature T- baryon chemical po-
tential p plane, E and M show critical endpoints of first order transitions: M (from 
multi-fragmentation) is that for liquid-gas transition in nuclear matter. The color super-
conducting phases, CSC2 and CSC3 are explained in the text. 

4.2 Finite Temperature transition and Large Number of Fla-

There is no place here to discuss in detail the rather extensive lattice data 
available now, and I only mention some results related to instantons. In the 
vacuum a quasi-random set of instantons leads to chiral symmetry breaking 
and quasi-zero modes: but what in the same terms does the high-T phase 
look like? 

The simplest solution would be just suppression of instantons at T > 
Tc, and at some early time people thought this is what actually happens. 
However, it should not be like this because the Debye screening which is 
killing them only appears at T = Tc. Lattice data works have also found no 
depletion of the instanton density up to T = Tr. 

On the other hand, the absence of the condensate and quasi-zero modes 
implies that the "liquid" is now broken into finite pieces. The simplest of 
them are pairs, or the instanton-anti-instanton molecules. This is precisely 
what instanton simulations have found[2], see fig.9. Whether it is indeed so 
on the lattice is not yet clear: nice molecules were located, but the evidence 
for the molecular mechanism of chiral restoration is still far from being con-

large n > lOGeF, as [34] A ~ jiexp(—#7-7). 

vors 
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vincing. (No alternative I am aware of have been so far proposed, though.) 

0 1 3 3 

Figure 9: Typical configuration from instanton liquid simulation, at T > Tc, Lines indi-
cate the direction in which quark propagators are the largest. Clear pairing of instantons 
and instantons are observed: the pairs tend to have the same spatial position and being 
separated mostly by Euclidean time. 

The results of IILM simulations with variable number of flavors Nf = 
2,3,510 flavors with equal masses can be summarized as follows. For Nf = 
2 there is a second order phase transition which turns into a line of first 
order transitions in the m — T plane for Nf > 2. If the system is in the 
chirally restored phase (T > Tc) at m = 0, we find a discontinuity in the 
chiral order parameter if the mass is increased beyond some critical value. 
Qualitatively, the reason for this behavior is clear. While increasing the 
temperature increases the role of correlations caused by fermion determinant, 
increasing the quark mass has the opposite effect. We also observe that 
increasing the number of flavors lowers the transition temperature. Again, 
increasing the number of flavors means that the determinant is raised to a 
higher power, so fermion induced correlations become stronger. For Nf = 5 
we find that the transition temperature drops to zero and the instanton 
liquid has a chirally symmetric ground state, provided the dynamical quark 
mass is less than some critical value. Studying the instanton ensemble in 
more detail shows that in this case, all instantons are bound into molecules. 

Unfortunately, little is known about QCD with large numbers of flavors 
from lattice simulations. There are data by the Columbia group for Nf = 4. 
The most important result is that chiral symmetry breaking effects were 
found to be drastically smaller as compared to Nf = 0, 2. In particular, the 
mass splittings between chiral partners such as w^a, p—ai, —N(\ ), 

10The case Nf — 4 is omitted because in this case it is very hard to determine whether 
the phase transition happens at T > 0, 
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extrapolated to m = 0 were found to be 4-5 times smaller. This agrees well 
with what was found in the interacting instanton model: more work in this 
direction is certainly needed. 

4.3 High Density and Color Superconductivity 

Although the idea of color superconductivity originates from 70's, the field 
of high density QCD was in the dormant state for long time till two papers 
[20, 21] (posted on the same day) in 1998 have claimed gaps about 100 times 
larger than previously thought. The field is booming since, as one can see 
from about 250 citations in 2 years those papers got. 

Then-Princeton group (Alford-Rajagopal-Wilczek) have been thinking 
about different pairings from theory perspective, but our (Stony Brook) 
team (Rapp,Schafer,ES,Velkovsky) had started from the impressive qq pair-
ing phenomenon found theoretically [19] in the instanton liquid model inside 
the nucleoli. As explained above, we have found it to be, roughly speaking, 
a small drop of CS matter, made of one Cooper pair of sort (the ud scalar 
diquark) and one massive quark11 . T.Schafer heroically attempted numer-
ical simulations of the instanton liquid model at finite fi: although he was 
not very successful12 he found out strange "polymers" made of instantons 
connecting by 2 through going quark lines. It take us some time to realize 
we see paths of condensed diquarks! It was like finding superconductivity 
by watching electrons moving on your computer screen. 

The main point I would like to emphasize here is that the qq pairing 
of such diquarks have in fact deep dynamical roots: it follows from the 
same basic dynamics as the "superconductivity" of the QCD vacuum, the 
chiral (%-)symmetry breaking. These spin-isospin-zero diquarks are related 
to pions, as we will see below. 

The most straightforward argument for deeply bound diquarks came from 
the bi-color (Nc = 2) theory: in it the scalar diquark is degenerate with pions. 
By continuity from Nc = 2 to 3, a trace of it should exist in real QCD13. 

Instantons create the following amusing triality: there are three attrac-
tive channels which compete: (i) the instanton-induced attraction in qq chan-

11 As opposed to A (decuplet) baryons, which is a small drop of "normal" quark matter, 
without scalar diquarks, 

12for the same reason as lattice people cannot do it: the fermionic determinant is not 
real, 

13Instanton-induced interaction strength in diquark channel is 1/(NC — 1) of that for 
<]-:,<] one. It is the same at Nc — 2, zero for large Nc, and is exactly in between for Nc — 3, 
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nel leading to %-symmetry breaking, (ii) The instanton-induced attraction 
in qq which leads to color superconductivity, (iii) The light-quark-induced 
attraction of II, which leads to pairing of instantons into "molecules" and 
a Quark-Gluon Plasma (QGP) phase without any condensates. 

At very high density we also can find arbitrarily dilute instanton liquid, 
as shown recently in [35]. The reason it cannot exist in vacuum or high 
T is that if instanton density goes below some critical value, the cannot 
be any condensate. (The system then breaks into instanton molecules or 
other clusters and chiral symmetry is restored.) However at high density 
the superconducting condensate can be created perturbatively as well (we 
mentioned it above) and there is no problem. The dilute instantons interact 
by exchanging very light rj (which would be massless without instantons): 
one can calculate effective Lagrangian, theta angle dependence etc. 

Bi-color QCD: a very special theory One reason it is special (well 
known to to the lattice community): its fermionic determinant is real even 
for non-zero fi, which makes simulations possible. However the major interest 
in this theory is related the so called Pauli-Gursey symmetry. We have 
argued above that pions and diquarks appear at the same one-instanton level, 
and are so to say brothers. In bi-color QCD they becomes identical twins: 
due to the additional symmetry mentioned the diquarks are degenerate with 
mesons. 

In particular, chiral symmetry breaking is done like this SU(2Nf) 
Sp(2Nf), and for Nf = 2 the coset K = SU(4)/Sp(4) = SO(6)/SO(5) = S5. 
Those 5 massless modes are pions plus the scalar diquark S and its anti-
particle S. 

Vector diquarks are degenerate with vector mesons, etc. Therefore, the 
scalar-vector splitting is in this case about twice the constituent quark mass, 
or about 800 MeV. It should be compared to binding in the "real" Nc = 3 
QCD of only 200-300 MeV, and to zero binding in the large-Nc limit. 

The corresponding sigma model describing this %-symmetry breaking 
was worked out in[20]: for further development see[22]. As argued in [20], 
in this theory the critical value of the transition to Color Superconductivity 
is simply fi = mn/2, or zero in the chiral limit. The diquark condensate 
is just a rotated < qq > one, and the gap is the constituent quark mass. 
Recent lattice works [26] display it in great detail, building confidence for 
other cases. 

New studies reveal possible new crystalline phases. These phases 
still have somewhat debatable status, so I have not indicated them on the 
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phase diagram. 
Once again, there were two papers submitted by chance on the same 

day. The "Stony Brook" team[23] have found that a "chiral crystal" with 
oscillating < qq(x) > (similar to Overhouser spin waves in solid state) can 
compete with the BCS 2-flavor superconductor at its onset, or // « 400 MeV. 
The proper position of this phase is somewhere in between the hadronic phase 
(with constant < qq >) and color superconductor. 

The "MIT group" [24] have looked at the oscillating superconducting con-
densate < qq{x) >, following earlier works on the so called LOFF phase in 
usual superconductors. They have found that it is appearing when the differ-
ence between Fermi momenta of different quark flavors become comparable 
to the gap. The natural place for it on the phase diagram is close to the line 
at which color superconductivity disappears because the gap goes to zero. 

5 Lecture 4.High Energy Collisions of Heavy Ions 

5.1 The Little Bang: A G S , SPS and now the R H I C era 

Let me start with brief comparison of these two magnificent explosions: the 
Big Bang versus the Little Bang, as we call heavy ion collisions. 

The expansion law is roughly the Hubble law in both, v{r) ~ r although 
strongly anisotropic in the Little Bang. The Hubble constant tells us the 
expansion rate today: similarly radial flow tells us the final magnitude of 
the transverse velocity. The acceleration history is not really well measured. 
For Big Bang people use distance supernovae, we use il which does not 
participate at the late stages to learn what was the velocity earlier. Both 
show small dipole (quadrupole or elliptic for Little Bang) components which 
has some physics, and who knows maybe we will see higher harmonics fluc-
tuations later on, like in Universe. As we will discuss below, in both cases 
the major puzzle is how this large entropy has been actually produced, and 
why it happened so early. 

The major lessons we learned from AGS experiments (ELAB = 2 — 
12AGeV) are: 
(i) Strangeness enhancement over simple multiple NN collisions appear from 
very low energies, and heavy ion collisions quickly approach nearly ideal 
chemical equilibrium of strangeness. 
(ii) "Flows" of different species, in their radial,directed and elliptical form, 
are in this energy domain driven by collective potentials and absorptions: 
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they are not really flows in hydro sense. All of them strongly diminish by 
the high end of the AGS region, demonstrating the onset of "softness" of the 
EoS. Probably it is some precursor of the QCD phase transition. 

Several important lessons came so far from CERN SPS data: 
(i) Much more particle ratios have been measured there: overall those show 
surprisingly good degree of chemical equilibration: the chemical freeze-out 
parameters are tantalizingly close to the QGP phase boundary. 
(ii) Dileptons show that radiation spectral density is very different in dense 
matter compared to ideal hadronic gas. The most intriguing data are CERES 
finding of "melting of the p", which seem to be transformed into a wide con-
tinuum reaching down to invariant masses as low as 400 MeV. It puts in 
doubt "resonance gas" view of hadronic matter at these conditions. Inter-
mediate mass dileptons studied by NA50 can be well described by thermal 
radiation with QGP rates. 
(iii) The impact parameter of Jfip and ip' suppression in PbPb collisions 
studied by NA50 collaboration shows rather non-trivial behavior. More 
studies are needed, including especially measurements of the open charm 
yields, to understand the origin and magnitude of the suppression. 

However, during last several months those discussions have been over-
shadowed by a list of news from RHIC, Relativistic Heavy Ion Collider at 
Brookhaven National Laboratory. It had its first run in summer 2000 and 
reported recently at Quark Matter 2001 conference [27]: many details are 
discussed in Prof.M.Gylassy's lectures. 

A brief summary is as follows. These results have shown that heavy 
ions collisions (AA) at these energies significantly differ both from the pp 
collisions at high energies and the AA collisions at lower (SPS/AGS) ener-
gies. The main features of these data are quite consistent with the Quark-
Gluon Plasma (QGP) (or Little Bang) scenario, in which entropy is produced 
promptly and subsequent expansion is close to adiabatic expansion of equi-
librated hot medium. 

(Let me mention here two other pictures of the heavy ion production, 
discuss prior to appearance of these data. One is the string picture, used 
in event generators like RQMD and UrQMD: they predicted effectively very 
soft EoS and elliptic flow decreasing with energy. The other one is pure 
minijet scenario, in which most secondaries would come from independently 
fragmenting minijets. If so, there are basically no collective phenomena 
whatsoever.) 

Already the very first multiplicity measurements reported by PHOBOS 
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collaboration [47] have shown that particle production per participant nu-
cleon is no longer constant, as was the case at lower (SPS/AGS) energies. 
This new component may be due to long-anticipated pQCD processes, lead-
ing to perturbative production of new partons. Unlike high pt processes re-
sulting in visible jets, those must be undetectable "mini-jets " with momenta 
~ 1 — 2 GeV. Production and decay of such mini-jets was discussed in Refs 
[48], also this scenario is the basis of widely used event generator HIJING 
[46]. Its crucial parameter is the cutoff scale pmin: if fitted from pp data to be 
1.5-2 GeV, it leads to predicted mini-jet multiplicity dNg/dy ~ 200 for cen-
tral AuAu collisions at i / (s ) = 130 AG eV. If those fragment independently 
into hadrons, and are supplemented by "soft" string-decay component, the 
predicted total multiplicity was found to be in good agreement with the first 
RHIC multiplicity data. Because partons interact perturbatively, with their 
scattering and radiation being strongly peaked at small angles, their equi-
libration is expected to be relatively long [49]. However, new set of RHIC 
data reported in [27] have provided serious arguments against the mini-jet 
scenario, and point toward quite rapid entropy production rate and early 
QGP formation. 

(i) If most of mini-jets fragment independently, there is no collective phe-
nomena such as transverse flow related with the QGP pressure. However, it 
was found that those effects are very strong at RHIC. Furthermore, STAR 
collaboration have observed very robust elliptic flow [37], which is in per-
fect agreement with predictions of hydrodynamical model [43, 42] assuming 
equilibrated QGP with its full pressure p « e / 3 above the QCD phase tran-
sition. This agreement persists to rather peripheral collisions, in which the 
overlap almond-shaped region of two nuclei is only a couple fm thick. STAR 
and PHENIX data on spectra of identified particles, especially p,p, indi-
cate spectacular radial expansion, also in agreement with hydro calculations 
[43, 42]. (ii) Spectra of hadrons at large pt, especially the tt° spectra agree 
well with HIJING for peripheral collisions, but show much smaller yields for 
central ones, with rather different, (exponential-shaped) spectra. It means 
long-anticipated "jet quenching" at large pt is seen for the first time, with 
a surprisingly large suppression factor ~ 1/5. Keeping in mind that jets 
originating from the surface outward cannot be quenched, the effect seem to 
be as large as it can possibly be. For that to happen, the outgoing high-pt 
jets should propagate through matter with parton population larger than 
the abovementioned minijet density predicted by HIJING. 

(iii) Curious interplay between collective and jet effects have also been 
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studied by STAR collaboration, in form of elliptic asymmetry parameter 
V2 (pt)- At large transverse momenta pt > 2 GeV the data depart from hydro 
predictions and levels off. When compared to predictions of jet quenching 
models worked out in [50], they also indicate gluon multiplicity several times 
larger than HIJING prediction, and are even consistent with its maximal 
possible value evaluated from the final entropy at freeze-out, (dN/dy)w ~ 
1000. 

5.2 Collective flows and EoS 

If we indeed have produced excited matter (rather than just a bunch of 
partons which fly away and fragment independently), we expect to see certain 
collective phenomena. Ideally, those should be quantitatively reproduced by 
relativistic hydrodynamics which is basically just local energy-momentum 
conservation plus the EoS we know from the lattice and models. 

The role of the QCD phase transition in matter expansion is signifi-
cant. QCD lattice simulations [40] show approximately 1st order transition. 
Over a wide range of energy densities e = .5 — 1.4 GeV/ fm? the temper-
ature T and pressure p are nearly constant. So the ratio of pressure to 
energy density, pfe, decreases till a minimum at particular energy density 
esp « 1 .4GeV/ /m 3 , known as the softest point [41]. Near esp small pressure 
gradient can not effectively accelerate the matter and the evolution stag-
nates. However when the initial energy density is well above the QCD phase 
transition region, p/e « 1/3, and this pressure drives the collective motion. 
The energy densities reached at time ~ 1 fm/c at SPS(-\/iiVAr = 17GeV) 
and RHIC (-\fsNN = 130 GeV) are about 4 and 8 GeV/ /m 3 , respectively. 
We found that at RHIC conditions we are in the latter regime, and matter 
accelerates to v ~ .2c before entering the soft domain. Therefore by freeze-
out this motion changes the spatial distribution of matter dramatically: e.g. 
as shown in [36] the initial almond-shape distribution 10 fm/c later looks 
like two separated shells, with a little "nut" in between. 

The simplest way to see hydro expansion is in spectra of particles: on top 
of chaotic thermal distributions ~ exp(—mt/T), m\ = pf + m2 one expect to 
see additional broadening due to hydro outward motion. This effect is espe-
cially large if particles are heavy, since flow with velocity v add momentum 
mv. 

Derek Teaney [43] have developed a comprehensive Hydro-to-Hadrons 
(H2H) model combines the hydrodynamical description of the initial QGP/ 
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mixed phase (e > .5GeV/fm3) stages, where hadrons are not appropriate 
degrees of freedom, with a hadronic cascade RQMD for the hadronic stage. 
In this way, we can include different EoS displaying properties of the phase 
transition, and also incorporate complicated final state interaction at freeze-
out. The set of EoS used is shown in Fig.10. 

o 
0.5 

- Resonance Gas: RG EoS 

- Latent Heat 0.4 GeV/fm3 : LH4 EoS 

- Latent Heat 0.8 GeV/fm3 : LH8 EoS 

0.4 7 - - L a t e n t Heat 1.2 GeV/fm3 : LH12 EoS 

0.3 7 

0.2 -

0.1 •11 
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e (GeV/fm3) 

Figure 10: The EoSs in form squared speed of sound c2 — dp/dt with variable Latent 
Heats AGeV/fm?, .SGeV/frrilabeled as LH4, LH8,..versus the energy density. 

Radial flow is usually characterized by the slope parameter T: each 
particle spectra are fitted to the form dN/dp'jdy ~ exp(—mt/T),mf = 
pf + m2.Although we denoted the slope by T, it is not the temperature: it 
incorporates random thermal motion and collective transverse velocity. The 
SPS NA49 slope parameters for pion and protons are shown in Fig. 11(a). 
Parameter T grows with particle multiplicity due to increased velocity of the 
radial flow. Furthermore, the rate of growth depends on the EoS: the softer 
it is, the less growth. The SPS NA49 data correspond to two data points 
(our fits to spectra) favor the (relatively stiff) LH8 EoS. (Details of the fit, 
discussion of the b-dependence etc see in [43].) It is very important to get 
these parameters for RHIC, especially for heavy secondaries like nucleons 
and hyperons. 

For non — central collisions the overlap region in the transverse plane has 
an elliptic, "almond", shape, and larger pressure gradient force matter to ex-
pands preferentially in the direction of the impact parameter [39]. Compared 
to radial flow, the elliptic flow is formed earlier, and therefore it measures the 
early pressure. The elliptic flow is quantified experimentally by measuring 
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Figure 11: The transverse mass slope T (a) and elliptic flow parameter V2 (b) versus 
midrapidity (y=0) charged purticle multiplicity, for AuAu collisions with b—6. 

the azimuthal distributions of the produced particles and calculating the el-
liptic flow parameter V2 = (cos(2<fi)} where <fi angle is measured with respect 
to the impact parameter direction, around the beam axis. It appears due to 
the elliptic spatial deformation of the overlap region in the nucleus-nucleus 
collision, quantified by its eccentricity e2 =< y'2 ^ x'2 > / < x '2 + y '2 >, 
usually calculated in Glauber model. Since the effect ( v2) is proportional 
to the cause (ê K the ratio v2/e2 does not have strong dependence on the 
impact parameters b, and this ratio is often used for comparison. (We would 
not do that below, in the detailed comparison to data, because e2(b) is not 
directly measured. 

In figure 11(b) the elliptic flow of the system is plotted as a function 
of charged particle multiplicity at an impact parameter of 6 fm. Before 
discussing the energy dependence, let us quantify the magnitude of elliptic 
flow at the SPS. Ideal relativistic hydrodynamics used in earlier works [39, 42] 
generally over-predicts elliptic flow by about factor 2. Example of such kind 
is indicated by a star in figure 11(b): it is our hydro result (with LH8 EoS) 
which has been followed hydrodinamically till very late stages, the freeze-out 
temperature Tf = 120 MeV. By switching to hadronic cascade at late stages, 
we have more appropriate treatment of resonance decays and re-scattering 
rate, and so one can see that it significantly reduces V2, to the range much 
closer to the data points. 

One might thing that one can also do that by simply taking softer EoS, 
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e.g. increasing the latent heat. However, it only happens till LH16 and 
then v-2 start even slightly increase again. The explanation of this non-
monotonous behavior is the interplay of the initial "QGP push" for stiffer 
EoS, with longer time for hadronic stage available for softer EoS. We cannot 
show here details, but it turns out that a given (experimental) Vj value can 
correspond to two different solutions, one with earlier push and another with 
the later expansion dominating. Coincidentally, STAR data point happen 
to be right at the onset of such a bifurcation, close to LH16. The mul-
tiplicity dependence of Vj appears simple from figure 11(b): all curve show 
growth with about the same rate. Note however that such growth of Vj from 
SPS to RHIC (first predicted in [44] where our first preliminary results has 
been shown) Is not shared by most other models. In particular, string-based 
models like UrQMD predicts a decrease by a factor of « 2 [45]. It happens 
because strings produce no transverse pressure and so the effective EoS is 
super-soft at high energies. Models based on independent parton scatter-
ing and decay (such as HIJING) also predict basically vanishing (or slightly 
negative)[46] Vj. 
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F i g u r e 12: v2 versus impact parameter b, described experimentally by the number of 
participant nucleons, for RHIC STAR and SPS NA49 experiments. Both are compared to 
our results, for EoS LH8. 



Nonperturbative QCD and Quark-Gluon Plasm,a 97 

In Fig. 12 we show how our results compare with data as a function of 
impact parameter. One can see that the agreement becomes much better 
at RHIC. Furthermore, one may notice that deviation from linear depen-
dence we predict becomes visible at SPS for more peripheral collisions with 
Np/Npnax < 0.6 or so, while at RHIC only the most peripheral point, with 
Np/Npnax = 0.05 show such deviation. This clearly shows that hydrodynam-
ical regime in general works much better at RHIC. 

In summary, the flow phenomena observed at RHIC are stronger than at 
SPS. It is in complete agreement with the QGP scenario. All data on elliptic 
and radial flow can be nicely reproduced by the H2H model. Furthermore, we 
are able to restrict the EoS, to those with the latent heat about .8 GeV/ fm3. 

5.3 How Q G P happened to be produced/equilibrated so early? 

One possible solution to the puzzle outlined above can be a significantly 
lower cutoff scale in A A collisions, as compared to Pmin — 1.5 —2 GeV fitted 
from the pp data. That increases perturbative cross sections, both due to 
smaller momenta transfer and larger coupling constant. As I argued over 
the years, the QGP is a new phase of QCD which is qualitatively different 
from the QCD vacuum: therefore the cut-offs of pQCD may have entirely 
different values and be determined by different phenomena. Furthermore, 
since QGP is a plasma-like phase which screens itself perturbatively [38], one 
may think of a cut-offs to be determined self-consistently from resummation 
of perturbative effects. These ideas known as self-screening or initial state 
saturation were discussed in Refs. [49]. Although the scale in question grows 
with temperature or density, just above Tc it may actually be smaller than 
the value 1.5-2 GeV we observe in the vacuum. Its first experimental man-
ifestation may be dropping of the so called "duality scale" in the observed 
dilepton spectrum, see discussion in [52]. 

Another alternative to explain large gluon population at RHIC would be 
an existence of more rapid multi-gluon production processes. Let us consider 
an alternative non—perturbative scenario based entirely on non-perturbative 
processes involving instantons and sphalerons [51]. But before we do that, 
we have to take a look at hadronic collisions and briefly review few recent 
papers on the subject. 
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6 Lecture 5. Instanton-induced effects in high 
energy collisions 

6.1 W h y all hadronic cross sections grow with energy? 

At s > 10 sGeV2 hadronic cross sections as pp,pp,wp, Kp, 7N and even 77 
slowly grow with the collision energy s, approximately as a ~ sA. This 
behavior can be parameterized by Regge phenomenology, with the leading 
role plaied by the so called soft Pomeron. We cannot describe here its long 
history, starting from Pomeranchuck and Gribov in 1960's. Phenomeno-
logically it is still in very good shape, where a supercritical pole with the 
intercept A ~ 0.08. Below TeV energies such growth can be well described 
by a simple logarithmically growing term 

o-hh'(s) = a-hh'(s0) + log(s/s0)Xhh,A + ... (38) 

and we will concentrate on its origin, ignoring both the higher powers of 
log(s) and other, decreasing, Regge terms. We will use those two param-
eters from PDG-2000 recent fits, the intercept and its coefficient in pp,pp 
collisions, A = a(0) — 1 = 0.093(2), X^N = 18.951(27) mb. 

The physical origin of constant and logarithmically growing parts of the 
are different. The former can be explained by prompt color exchanges, as 
suggested by Low and Nussinov long ago. It nicely correlates with flux tube 
picture of the final state. 

The growing part of the cross section cannot be generated by t-channel 
color exchanges and is associated with processes promptly producing some 
objects, with log(s) coming from the longitudinal phase space. In pQCD it 
is gluon production, by processes like the one shown in Fig.l3(a). If iterated 
in the t-channel in ladder-type fashion, the result is approximately a BFKL 
pole [53]. Although the power predicted is much larger than A mentioned, 
it seem to be consistent with much stronger growth seen in hard processes 
at HERA: thus it is therefore sometimes called the "hard pomeron". 

At this point I has been frequently asked: why is it so difficult to under-
stand the growth of hadronic cross section, if HERA data shows spectacular 
increase of the gluonic number at small x? Shouldn't all these gluons collide 
with each other and naturally generate such growth? 

The issue is not that simple, and the first thing to do at this point is 
to remind the reader about the scales involved. At large Q2 we resolve the 
partons and see these magnificent rise toward the small x indeed: but high 
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energy hadron collisions do not proceed at such scale. In fact the scale is 
"semi-hard" Q2 ~ 1 GeV, as the Pomeron slope indicate. If we now go 
back to analysis of HERA/SLAC data and try to extract gluon density at 
this scale, we will not find a significant growth. What it indicates, is that 
all these multiple gluons actually add up into some coherent fields at such 
scale, which we do not yet understand. 

The second issue has to do with the mutual screening of all these gluons. 
If the effective size of the hadron would not grow with energy, any number of 
interaction can only produce constant cross section of a black disk, without 
growth. 

The physical origin of cross section growth remains an outstanding open 
problem: neither the perturbative resummations nor many non-perturbative 
models are really quantitative. It is hardly surprising, since scale at which 
soft Pomeron operates (as seen e.g. from the Pomeron slope a' (0) « 1/(2 GeV)2) 
is also the "substructure scale" mentioned above. 

There are basically three distinct approaches: 
(i) Minijet-based models use familiar formulae from pQCD [48]. They are 

well-tested in the domain of hard jets, but their application at the semi-hard 
scale is a drastic extrapolation. All of these models assume the existence of a 
non-perturbative momentum cutoff, pcutoff i i*1 order to render pQCD results 
finite. This cutoff is left unexplained, treated as a purely phenomenological 
parameter, and all results depend greatly on its value. 

(ii) Instanton-based dynamics, to be discussed below, have only recently 
been applied to high-energy scattering [28, 32, 29] and use insights obtained 
a decade ago in electroweak theory [33]. Particularly relevant for this work 
are the first two references, in which the growing part of the hadron-hadron 
cross sections is ascribed to multi-gluon production via instantons. 

(iii) The Color Glass Condensate, a classical Weitzecker-Williams field 
of gluons carried by interacting hadrons, can be excited to produce prompt 
gluons [58]. This is another example of a weakly-coupled system involving 
non-perturbative gauge field configurations. 

For long time people have constructed multi-peripheral models with lad-
ders made of hadrons. Recent story started with Kharzeev and Levin[30] 
who kept t-channel gluons but tried to substitute the gluonic "rungs" of the 
BFKL ladder by those with a pair of pions, or sigma meson, to increase the 
cross section. They used the gg-irw non-perturbative vertices known from 
the low energy theorem. Their estimated value for A was close to Aphen-
Introducing instantons into the problem, I re-analyzed [31] the contribution 
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of the colorless scalar channel generated by operator G ^ , using the gg-irw 
and gg^scalar — glueball couplings determined previously from the calcu-
lation of appropriate Euclidean correlators, see [2]. The result turns out to 
reduce those of the KL paper, with A « 0.05 only, and pions and glueball 
contributions being roughly equal. 

6.2 "Sof t " Pomeron from instantons 

We put "soft" in quotation marks here because we do not entirely agree 
with this terminology. It is now clear that the Pomeron itself is a small 
object, with its size represented by the slope of its trajectory, a'(t = 0) « 
1/(4 GeV2). The scale involved, 0.1 fm, is much smaller than hadronic radii, 
and so the Pomeron exchanges should in fact be treated on the level of 
individual partons, appropriately defined at the intermediate momentum 
scale of 1-2 GeV. For lack of a better standard term, we will refer to it as 
the semi-hard scale. 

More precisely, we will not consider the nature of the soft Pomeron in 
full either. The leading Regge pole, if it exists, is the analog of a single 
bound state appearing (in t-channel),as a result of a rather different inter-
actions14. Although existence of such pole is an attractive possibility, no 
general principles demand it to be true in real QCD. 

Recent application of the instanton-induced dynamics to this problem 
have been discussed in several papers [54]. Especially relevant for this Let-
ter are two last works which use insights obtained a decade ago in discussion 
of instanton-induced processes in electroweak theory [33], and the grow-
ing part of the hh cross sections were ascribed to multi-gluon production 
via instantons, see Fig. 13(b). Among qualitative features of this theory is 
the explanation of why no odderon appears (instantons are SU(2) objects, 
in which quarks and antiquarks are not really distinct), an explanation of 
the small power A (it is proportional to "instanton diluteness parameter" 
np4 mentioned above), the small size of the soft Pomeron (governed sim-
ply by small size of instantons p ~ 1/3 fm). Although instanton-induced 
amplitudes contain small "diluteness" factor, there is no extra penalty for 
production of new gluons: thus one should expect instanton effects to exceed 
perturbative amplitudes of sufficiently high order. This generic idea is also 
behind the present work, dealing with prompt multi-gluon production. 

14For example, J/tji is definite charmonium state, which appears as a result of an inter-
play of both perturbative and confining potentials. 
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Figure 13: (a) A typical inelastic perturbative process (two t-channel gluons collide, pro-
ducing a pair of gluons) to (b) non-perturbative inelastic process, incorporating collisions 
of few t-channel gluons with the instanton (the shaded circle), resulting in multi-gluon 
production. The bottom of the figure (c) shows the same process, but in a quantum me-
chanical way. The energy of Yang-Mills field versus the Chern-Simons number Ncs is a 
periodic function, with zeros at integer points. The instanton (shown by the lowest dashed 
line) is a transition between such points. However if some nonzero energy is deposited into 
the process during transition, the virtual path (the dashed line) leads to a turning points, 
from which starts the real time motion outside the barrier (shown by horizontal solid lines). 
The maximal cross section corresponds to the transition to the top of the barrier, called 
the sphaleron. 

Technical description of the process can be split into two stages. The 
first (at which one evaluates the probability) is the motion under the bar-
rier, and it is described by Euclidean paths approximated by instantons. 
Their interaction with the high energy colliding partons results in some en-
ergy deposition and subsequent motion over the barrier. Furthermore, the 
intermediate stage of the process (shown by the horizontal dashed lines) in-
dicate coherence of the outgoing gluons: they are first produced in the form 
of specific gluomagnetic field configuration, the turning states at the figure 
above, which we study right now [60]. 

The top point is known as the sphaleron15 configuration [55], first found 
in the context of electroweak theory. Intensive studies of the instanton-
induced processes also were done in this context in early 1990's, driven 
basically by possible observability of baryon number violating processes in 
electroweak theory [33]. The so called "holy grail function" showed that pro-
cesses with multiple quanta production indeed lead to growing cross section, 
reaching its maximum at the sphaleron mass and then decreasing. However, 

16Which means "ready to fall" in Greek, 
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since in electroweak theory the maximal cross section has been found to be 
still very far from observability, the interest to this direction have mostly 
disappeared around 1993 or so. 

At this second, Minkowski, stage the action is real, and the factor exp(iS) 
does not affect the probability, and we only need to consider it for final state 
distributions. The sphaleron mass in QCD is 

30 
Msph ~ ~ 2.5 GeV (39) g2(p)p 

Since those field configurations are close to classically unstable saddle point 
at the top of the barrier, they roll downhill and develop gluoelectric fields. 
When both become weak enough, solution can be decomposed into pertur-
bative gluons. This part of the process can also be studied directly from 
classical Yang-Mills equation: for electroweak sphalerons it has been done 
in Refs[56], calculation for its QCD version is in progress [60]. While rolling, 
the configurations tend to forget the initial imperfections (such as a non-
spherical shapes) since there is only one basic instability path downward: so 
the resulting fields should be nearly perfect spherical expanding shells. Elec-
troweak sphalerons decay into approximately 51 W.Z.H quanta, of which 
only about 10% are Higgs bosons, which carry only 4% of energy. Ignor-
ing those, one can estimate mean gluon multiplicity per sphaleron decay, 
by simple re-scaling of the coupling constants: the result gives 3-4 gluons. 
Although this number is not large, it is important to keep in mind that they 
appear as a coherent expanding shell of strong gluonic field. 

In [59] we have tried to formulate a phenomenological model which would 
reasonably well describe describe data on various hadronic processes. In par-
ticular, we have shown that with the cross section of "sphaleron production" 
(per unit rapidity) by two "effective quarks" 16 being aqq = 1.69 * 10 _ 3 /m 2 , 
one can understand data about the energy growth of NN, wN, 7 N , 77 cross 
sections. Furthermore, one can understand the effective power of the energy 
dependence versus impact parameter b, in pp collisions, see comparison in 
Fig. 14. 

The next issue we address is whether the instanton approach can explain 
difference is the growing parts for different hadrons. To check that we need 
first to get the number of "relevant partons" for the nucleon, pion, and pho-
ton are summarized below in Table 1. The references given in the table are 

16Those are defined as the number of quarks plus twice the number of gluons. Their 
number is evaluated from the structure functions. If integrated above the value of the 
Feynman x « 0.01 we get about 12 effective quarks/nucleon. 
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d ln(r)/d ln(s) 
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Figure 14: Effective power of the s-dependence of NN cross section, A(6), as a function 
of the impact parameter, b. Its decrease at small b is a consequence of "shadowing" of 
assumed instanton generated growing cross section by the ordinary color exchanges (with 
large but s-independent cross section). The squares marked "experiment" originate from 
the total and elastic amplitudes, those are taken from Kopeliovich et al. The line is our 
model. The agreement is not spectacular, but reasonable for a parameter-free model. 

revised GRV partem distributions evaluated at next-to-leading order (NLO), 
taken at the scale of Q2 = 1 GeV, which are then integrated over interval 
x = [0.01,1.0]. 

In principle, with more accurate parameterizations, we might try to test 
parton additivity by separately extracting, from the data of the growing part 
of hadronic cross section, the contributions of gg, qg, and gg to semi-hard 
processes. This was attempted, but with the accuracy at hand the differences 
between taking quarks and gluons is negligible. We are therefore forced to 
make a model-dependent assumption about their relative magnitude. 

The instanton model [59] leads to a simple rule: changing a quark to 
a gluon result in extra Casimir factor 2. (It is different from the usual 
SU(3) Casimir scaling because we deal with SU(2) instanton fields, basically, 
although derivation is rather involved.) Therefore one can simply take the 
effective number of partons to be Nq+2Ng, where Nq and Ng are the numbers 
of quarks and gluons, respectively, taken from Table 1. This leaves us with 
only one unknown: the growing part of the qq cross section. 

Combining the parton content with this simple recipe, one obtains the 
ratios of cross sections which may be compared to the coefficients of ln(s) 
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Proton, with NLO structure functions GRV 
Ng = 4.10 

Valence Nu = 1.70 
Valence Nd = 0.84 
Sea Nu+d = 1.16 

Pion, with NLO structure functions from GRV 
Ng = 3.1 

Valence N u + g = 1 . 8 
Sea Nu+d = 0.48 

Photon, with NLO structure functions from GRV 
Ng = 1.9 a 

Nu = Na = 0.87 a 
Nd = Nd = 0.30 a 

Table 1: Partonic content of scattered particles (a is the fine structure constant), 

extracted from experiment. The results, summarized in Table 2, are reason-
able, but cannot be taken as precise since shadowing corrections have not 
been considered here. 

Ratio Computed Part.Data Group 

0.43 

0.63 

0.68 

Table 2: Cross Section ratios as computed in the text and reported by the Particle Data 
Group, 

After detailed study of shadowing in pp, we determined the quark-quark 
cross section to be aqq = 1.69 x 10 - 3 fm2. We are now able to calculate the 
rising parts of total cross sections for other hadrons, and our precitions for 
pw, p7, and 77 are given in Table 3. We find reasonable agreement between 
these numbers and the data, having fixed only one free parameter, c. 

6.3 Instanton-induced production in heavy ion collisions 

It has been suggested in [51] that if sphaleron-type object are copiously 
produced they may significantly increase the entropy produced and speed up 

1 x y N 
a Xivat 
XjtN 
XNN 

kE: 
a X. •JN 

0.50 

0.73 

0.69 
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Part.Data Gr. 
0.111 

5.51 x 10-4 

1.45 x 10"6 

Table 3: Coefficients J y = dafp/dhx(s) in fm2 for different hadronic constituents. 

the equilibration process, as compared to mini-jet based scenarios considered 
previously. 

For symmetric, central AA collisions of two nuclei we use the simplest 
model, one of two spheres with homogeneously distributed partons. The 
total parton number is ANq, with N,t 12 being the number of "effective 
quarks" (quarks number plus twice gluons number) per nucleon17. 

The total number of qq collisions in this case is easily obtained from the 
follwing geometric integral: 

fR ( \ Ncoii = Siraqqiiq J^ drtrt \R2 - rt2J 

= 3</>2-°/>**nn° , (40) 

where the quark density is determined by the nuclear density to be nq — 
Nq x 0.16 fm"3 . 

With A — 197 (gold) and the value for the quark-quark cross section 
extracted above, aqq — 1.69 x 10 - 3 fm2, we have the following production 
rate per unit rapidity of sphaleron-like clusters: 

^ ^ « 76.5, (41) 
dy 

a number somewhat smaller than estimated in Ref. [51]. 
Each cluster will in turn decay into a number of quarks and gluons. 

Simply scaling of the couplings from the studies of sphaleron decay in elec-
troweak theory leads to about 3.5 gluons per cluster, with 0-6 quarks (up 
to a complete set of light quark-antiquark pairs, uuddss). As an average we 
tentatively take 3.5 gluons and 2.5 quarks, the latter obtained by applying 
a factor of one half for the suppression of strange quarks and another one 

17Of course, the clustering of partons into "constituent quarks" and nucleons increases 
the number of collisions, but we will ignore such correlations for now. 

Calculated 
Xpn 0.132 
XP1 5.65 x 10-4 

Xy~ 1.72 x 10"6 
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half to account for the possibly change in Chern-Simons number. This yields 
an average of six partons per cluster, or in central AuAu collisions at RHIC 
about 76.5 x 6 = 460 partons per rapidity from sphaleron production. This is 
roughly one half the maximal possible value, dNpartons/dy ~ dNhadrans/dy ~ 
1000, inferred experimentally from the final entropy limitations. 

This result is in good agreement with phenomenological studies of the 
energy and impact-parameter dependence of multiplicity [57], which have 
deduced that the contribution to multiplicity which scales as the number 
of parton collisions generates about half of the total, when calculated from 
the standard Glauber model and using the experimental nuclear density 
distribution for a gold nucleus. In this picture, the ~ 500 hadrons per unit 
rapidity are then a result of prompt production from QCD sphalerons. 

7 Brief Summary 
In Lecture 1 we have discussed QCD vacuum, and concluded that the most 
important part of quark vacuum states are those with very small Dirac 
eigenvalues, made of collectivized instanton zero modes. Those form the 
quark condensate and in general dominate quark propagators at not-too-
small distances. 

In Lecture 2 we have studied the Euclidean correlation functions, the 
best bridge between theory, experiment and numerical experiment (lattice). 
Phenomenology of correlators is based on hadronic phenomenology, but is 
more directly related to quark motion and interaction. Dramatic instanton 
effects has been discussed, and some examples of truly quantitative descrip-
tion of (the tau decay) data has been shown. Again, keeping quasi-zero 
modes in all propagators does the job. 

in Lecture 3 we learned that the QCD vacuum is not the only phase this 
theory may have. At least three directions are known, leading to quite dif-
ferent phases, and nearly all phase boundaries can be explained with instan-
tons. At high Tthe instantons and anti-instantons form closed pairs with the 
top.charge zero: this restores chiral symmetry and lead to semi-perturbative 
phase known as Quark-Gluon plasma. At high density or chemical poten-
tials, quark matter with intricate set of Color superconducting phases appear. 
In this case instantons and even one-gluon exchanges (at very high densi-
ties) create quark-quark Cooper pairs, which condense. Those play the role 
of composite Higgs scalar, and is in many respect similar to the Standard 
Model. 
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In Lecture 4 we discussed recent progress in heavy ion physics, devoted 
to experimental production of Quark-Gluon Plasma. New facility, RHIC, 
has just started, with many puzzling results. We have seen that its first 
data already show a spectacular explosion, driven by the predicted "QGP 
push". Many more puzzling phenomena, such as apparent jet disappearance 
in central collisions, are also discussed. 

Lecture 5 was based on more recent material, it is attempts to explain 
old Pomeron phenomenology in terms of instanton-induced dynamics. The 
main lesson is that glue can be produced, from unphysical Euclidean paths 
to physical Minkowski evolution, in forms of the static magnetic "turning 
states", the relatives of the sphaleron. It was also conjectured that those 
objects are important for explaining RHIC data, and puzzling rapid produc-
tion/equilibration of the QGP. 
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Abstract 

It is noted that one is now in possession of a set of facts, which may 
be viewed as the matching pieces of a puzzle; in that all of them can 
be resolved by just one idea - that is grand unification. These include: 
(i) the observed family-structure, (ii) quantization of electric charge, 
(iii) meeting of the three gauge couplings, (iv) neutrino oscillations; 
in particular the mass squared-difference Am2(v^ — vT) (suggested by 
SuperK), (v) the intricate pattern of the masses and mixings of the 
fermions, including the smallness of Vct> and the largeness of 0°scVt, and 
(vi) the need for B-L as a generator to implement baryogenesis (via 
leptogenesis). All these pieces fit beautifully together within a single 
puzzle board framed by supersymmetric unification, based on SO(IO) 
or a string-unified G(224)-symmetry. The two notable pieces of the 
puzzle still missing, however, are proton decay and supersymmetry. 

A concrete proposal is presented, within a predictive S0(10)/G(224)~ 
framework, that successfully describes the masses and mixings of all 
fermions, including the neutrinos - with eight predictions, all in agree-
ment with observation. Within this framework, a systematic study of 
proton decay is carried out, which (a) pays special attention to its de-
pendence on the fermion masses, including the superheavy Majorana 
masses of the right-handed neutrinos, and (b) limits the threshold cor-
rections so as to preserve natural coupling unification. The study up-
dates prior work by Babu, Pati and Wilczek, in the context of both 
MSSM and its (interesting) variant, the so-called ESSM, by allowing 
for improved values of the matrix elements and of the short and long-
distance renormalization effects. It shows that a conservative upper 
limit on the proton lifetime is about (1/3 - 2 )x l0 3 4 years, with V K + 

being the dominant decay mode, and quite possibly fj,+K° and e+n° 
being prominent. This in turn strongly suggests that an improvement 
in the current sensitivity by a factor of five to ten (compared to Su-
perK) ought to reveal proton decay. Otherwise some promising and 
remarkably successful ideas on unification would suffer a major set-
back. For comparison, some alternatives to the conventional approach 
to unification pursued here are mentioned at the end. 
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1 Introduction 

The standard model of particle physics, based on the gauge symmetry 
S U ( 2 ) L x U ( l ) y x SU(3)c [1, 2] is in excellent agreement with observations, 
at least up to energies of order 100 GeV. Its success in turn constitutes a tri-
umph of quantum field theory, especially of the notions of gauge invariance, 
spontaneous symmetry breaking, and renormalizability. The next step in 
the unification-ladder is associated with the concept of "grand unification", 
which proposes a unity of quarks and leptons, and simultaneously of their 
three basic forces: weak, electromagnetic and strong [3, 4, 5]. This concept 
was introduced on purely aesthetic grounds, in fact before any of the empir-
ical successes of the standard model was in place. It was realized in 1972 
that the standard model judged on aesthetic merits has some major short-
comings [3, 4]. For example, it puts members of a family into five scattered 
multiplets, assigning rather peculiar hypercharge quantum numbers to each 
of them, without however providing a compelling reason for doing so. It 
also does not provide a fundamental reason for the quantization of electric 
charge, and it does not explain why the electron and proton possess exactly 
equal but opposite charges. Nor does it explain the co-existence of quarks 
and leptons, and that of the three gauge forces—weak, electromagnetic and 
strong—with their differing strengths. 

The idea of grand unification was postulated precisely to remove these 
shortcomings. It introduces the notion that quarks and leptons are members 
of one family, linked together by a symmetry group G, and that the weak, 
electromagnetic and strong interactions are aspects of one force, generated 
by gauging this symmetry G. The group G of course inevitably contains 
the standard model symmetry G(213) = SU(2)L x U{l)y x SU(3)c as a 
subgroup. Within this picture, the observed differences between quarks and 
leptons and those between the three gauge forces are assumed to be low-
energy phenomena that arise through a spontaneous breaking of the unifi-
cation symmetry G to the standard model symmetry G(213), at a very high 
energy scale M » 1 TeV. As a prediction of the hypothesis, such differences 
must then disappear and the true unity of quarks and leptons and of the 
three gauge forces should manifest at energies exceeding the scale M. 

The second and perhaps the most dramatic prediction of grand unifi-
cation is proton decay. This important process, which would provide the 
window to view physics at truly short distances (< 10^30 cm), is yet to be 
seen. Nevertheless, as I will stress in this talk, there has appeared over the 
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years an impressive set of facts, favoring the hypothesis of grand unification 
which in turn suggest that the discovery of proton decay should be imminent. 
These include: 

(a) The observed family structure: The five scattered multiplets of 
the standard model, belonging to a family, neatly become parts of a whole (a 
single multiplet), with their weak hypercharges predicted by grand unifica-
tion, precisely as observed. It is hard to believe that this is just an accident. 
Realization of this feature calls for an extension of the standard model sym-
metry G(213) = SU(2)x xU( l )y x S U ^ ) ^ minimally to the symmetry group 
G(224) = SU(2)L x SU(2)ij x SU(4)C [3], which can be extended further into 
the simple group SO(IO) [6], but not SU(5) [4]. The G(224) symmetry 
in turn introduces some additional attractive features (see Section 2), in-
cluding especially the right-handed (RH) neutrinos (URS) accompanying the 
left-handed ones (UL S), and B-L as a local symmetry. As we will see, both of 
these features now seem to be needed, on empirical grounds, to understand 
neutrino masses and to implement baryogenesis. 

(b) Quantization of electric charge and the fact that Qeiectron = 
—Qproton: Grand Unification provides compelling reasons for both of these 
facts. 

(c) Meeting of the gauge couplings: Such a meeting is found to 
occur at a scale M j « 2 x 1016 GeV, when the three gauge couplings are 
extrapolated from their values measured at LEP to higher energies, in the 
context of supersymmetry [7]. This dramatic phenomenon provides a strong 
support in favor of the ideas of both grand unification and supersymmetry 
[8]. Both of these features in turn may well emerge from a string theory [9] 
or M-theory [10] (see discussion in Section 3). 

(d) Am2(i>M — vT) ~ ( l / 2 0 e V ) 2 : The recent discovery of at-
mospheric neutrino-oscillation at SuperKamiokande [11] suggests a value 
Am2(u^uT) ~ (1/20 eV)2. It has been argued (see e.g. Ref. [12]) that 
precisely such a magnitude of Am2(u^uT) can be understood very simply by 
utilizing the SU(4)-color relation m{vT)Dirac ~ ""Hop and the SUSY unifica-
tion scale M x , noted above (See Section 4). 

(e) Some intriguing features of fermion masses and mixings: 
These include: (i) the "observed" near equality of the masses of the b-quark 
and the r-lepton at the unification-scale (i.e. m| « and (ii) the observed 
largeness of the P^-VT oscillation angle (sin2 2 > 0.92) [11], together with 
the smallness of the corresponding quark mixing parameter Vcb(~ 0.04) [13]. 
As shown in recent work by Babu, Wilczek and me [14], it turns out that 
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these features and more can be understood remarkably well (see discussion 
in Section 5) within an economical and predictive S0(10)-framework based 
on a minimal Higgs system. The success of this framework is in large part 
due simply to the group-structure of SO(IO). For most purposes, that of 
G(224) suffices. 

(f) Baryogenesis: To implement baryogenesis [15] successfully, in the 
presence of electroweak sphaleron effects [16], which wipe out any baryon 
excess generated at high temperatures in the (B-L)-conserving mode, it has 
become apparent that one would need B-L as a generator of the underlying 
symmetry in four dimensions, whose spontaneous violation at high tempera-
tures would yield, for example, lepton asymmetry (leptogenesis). The latter 
in turn is converted to baryon-excess at lower temperatures by electroweak 
sphalerons. This mechanism, it turns out, yields even quantitatively the 
right magnitude for baryon excess [17]. The need for B-L, which is a gen-
erator of SU(4)-color, again points to the need for G(224) or SO(IO) as an 
effective symmetry near the unification-scale M j . 

The success of each of these six features (a)-(f) seems to be non-trivial. 
Together they make a strong case for both the conventional ideas on su-
persymmetric grand unification and simultaneously for the G(224)/S0(10)-
route to such unification, as being relevant to nature at short distances < 
(1016 GeV)^1, in four dimensions.1 However, despite these successes, as long 
as proton decay remains undiscovered, the hallmark of grand unification— 
that is quark-lepton transformability—would remain unrevealed. 

The relevant questions in this regard then are: What is the predicted 
range for the lifetime of the proton—in particular an upper limit—within 
the empirically favored route to unification mentioned above? What are the 
expected dominant decay modes within this route? Are these predictions 
compatible with current lower limits on proton lifetime mentioned above, 
and if so, can they still be tested at the existing or possible near-future 
detectors for proton decay? 

Fortunately, we are in a much better position to answer these questions 
now, compared to a few years ago, because meanwhile we have learnt more 
about the nature of grand unification, and also there have been improved 
evaluations of the relevant matrix elements and short and long-distance 
renormalization effects. As noted above (see also Section 2 and Section 4), 

1Por comparison, some alternative attempts, including those based on the ideas of 
(a) large extra dimensions, and (b) unification occurring only in higher dimensions, are 
mentioned briefly in Section 6 G. 
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the neutrino masses and the meeting of the gauge couplings together seem 
to select out the supersymmetric G(224)/SC>(10)-route to higher unification. 
The main purpose of my talk here will therefore be to address the questions 
raised above, in the context of this route. For the sake of comparison, how-
ever, I will state the corresponding results for the case of supersymmetric 
SU(5) as well. 

My discussion will be based on a recent study of proton decay by Babu, 
Wilczek and me [14], an update presented in the Erice talk [18], and a 
subsequent update of the same as presented here. Relative to other analyses, 
this study has four distinctive features: 

(i) It systematically takes into account the link that exists between pro-
ton decay and the masses and mixings of all fermions, including the neutri-
nos. 

(ii) In particular, in addition to the contributions from the so-called 
"standard" d = 5 operators [19] (see Section 6), it includes those from a new 
set of d = 5 operators, related to the Majorana masses of the RH neutrinos 
[20]. These latter are found to be generally as important as the standard 
ones. 

(iii) As discussed in the Appendix, the work also restricts GUT-scale 
threshold corrections, so as to preserve naturally coupling unification, in 
accord with the observed values of the three gauge couplings. 

(iv) Finally, the present update incorporates recently improved values of 
the matrix elements, and the short and long-distance renormalization effects, 
which significantly enhance proton decay rate. 

Each of these features turn out to be crucial to gaining a reliable insight 
into the nature of proton decay. Our study shows that the inverse decay rate 
for the ZAfC+-mode, which is dominant, is less than about 1.2 x 1031 years for 
the case of MSSM embedded in minimal SUSY SU(5), and that it is less than 
about 1033 years for the case of MSSM embedded in SO(IO). These upper 
bounds are obtained by making generous allowance for uncertainties in the 
matrix element and the SUSY-spectrum. Typically, the lifetime should of 
course be less than these bounds. 

Proton decay is studied also for the case of the extended supersym-
metric standard model (ESSM), that has been proposed a few years ago 
[21] on several grounds, based on the issues of (a) an understanding of the 
inter-family mass-hierarchy, (b) removing the mismatch between MSSM and 
string-unification scales, and (c) dilaton-stabilization (see Section 6 and the 
appendix). This case adds an extra pair of vector-like families at the TeV-
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scale, transforming as 16 + 1 6 of SO(IO), to the MSSM spectrum. While the 
case of ESSM is fully compatible with both neutrino-counting at LEP and 
precision electroweak tests, it can of course be tested directly at the LHC 
through a search for the vectorlike fermions. Our study shows that, with 
the inclusion of only the "standard" d = 5 operators (defined in Section 6), 
ESSM, embedded in SO(IO), can quite plausibly lead to proton lifetimes in 
the range of 1033 - 1034 years, for nearly central values of the parameters 
pertaining to the SUSY-spectrum and the matrix element. Allowing for a 
wide variation of the parameters, owing to the contributions from both the 
standard and the neutrino mass-related d = 5 operators (discussed in Sec-
tion 6), proton lifetime still gets bounded above by about 2 x 1034 years, for 
the case of ESSM, embedded in SO(IO) or a string-unified G(224). 

For either MSSM or ESSM, embedded in G(224) or SO(IO), due to con-
tributions from the new operators, the /J,+K°-mode is found to be prominent, 
with a branching ratio typically in the range of 10-50%. By contrast, min-
imal SUSY SU(5), for which the new operators are absent, would lead to 
branching ratios < 10^3 for this mode. It is stressed that the e+7r°-mode 
induced by gauge boson-exchange, in either SUSY SU(5) or SUSY SO(IO), 
could have an inverse decay rate as short as about (1 — 2) x 1034 years. 

Thus our study of proton decay, correlated with fermion masses, strongly 
suggests that discovery of proton decay should be imminent. Allowing for 
the possibility that the proton lifetime may well be closer to the upper bound 
stated above, a next-generation detector providing a net gain in sensitivity 
in proton decay-searches by a factor of 5-10, compared to SuperK, would 
certainly be needed not just to produce proton-decay events, but also to 
clearly distinguish them from the background. It would of course also be 
essential to study the branching ratios of certain sub-dominant but crucial 
decay modes, such as the /J,+K° and e+7r°. The importance of such improved 
sensitivity, in the light of the successes of supersymmetric grand unification, 
is emphasized at the end. 

2 Advantages of the Symmetry G(224) as a Step to Higher 
Unification 

As mentioned in the introduction, the hypothesis of grand unification was 
introduced to remove some of the conceptual shortcomings of the standard 
model (SM). To illustrate the advantages of an early suggestion in this re-
gard, consider the five standard model multiplets belonging to the electron-
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family as shown: 

\ - l 4 2 

2 ) L
; ( u r u y d r d y d b y * ; ( ? ) L
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Here the superscripts denote the respective weak hypercharges Yw (where 
Qem = HL + Yw/2) and the subscripts L and R denote the chiralities of 
the respective fields. If one asks: how one can put these five multiplets 
into just one multiplet, the answer turns out to be simple and unique. As 
mentioned in the introduction, the minimal extension of the SM symmetry 
G(213) needed, to achieve this goal, is given by the gauge symmetry [3]: 

G(224) = SU(2) l x SU(2)« X SU(4) c . (2) 

Subject to left-right discrete symmetry (L -H- R), which is natural to G(224), 
all members of the electron family become parts of a single left-right self-
conjugate multiplet, consisting of: 

pe L, R 
Ur Uy Ub Ug 
dr dy db (3) 

L, R 

The multiplets F[ and Fft are left-right conjugates of each other and trans-
form respectively as (2,1,4) and (1,2,4) of G(224); likewise for the muon and 
the tau families. Note that the symmetries SU(2)x and SU(2)n are just like 
the familiar isospin symmetry, except that they operate on quarks and well 
as leptons, and distinguish between left and right chiralities. The left weak-
isospin SU(2)i treats each column of F[ as a doublet; likewise SU(2)n for 
Ffi. The symmetry SU(4)-eolor treats each row of F[ and FJ. as a quartet; 
thus lepton number is treated as the fourth color. Note also that postulating 
either SU(4)-color or SU(2)n forces one to introduce a right-handed neutrino 
(UR) for each family as a singlet of the SM symmetry. This requires that there 
be sixteen two-component fermions in each family, as opposed to fifteen for 
the SM. The symmetry G(224) introduces an elegant charge formula: 

B — L 
Qem = hh + hn H g— (4) 

expressed in terms of familiar quantum numbers 1\u,. and -B-L, which 
applies to all forms of matter (including quarks and leptons of all six flavors, 
gauge and Higgs bosons). Note that the weak hypercharge given by Yw/2 = 
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h n + B 2 L n o w completely determined for all members of the family. 
The values of Yw thus obtained precisely match the assignments shown in 
Eq. (1). Quite clearly, the charges 1\u,. I3R and B-L, being generators 
respectively of SU(2)x, 811(2)^ and SU(4)C, are quantized; so also then is 
the electric charge Q e m . 

In brief, the symmetry G(224) brings some attractive features to particle 
physics. These include: 
(i) Unification of all 16 members of a family within one left-right self-
conjugate multiplet; 
(ii) Quantization of electric charge, with a reason for the fact that Qeiectron = 

~~ Qproton 
(iii) Quark-lepton unification (through SU(4) color); 
(iv) Conservation of parity at a fundamental level [3, 22]; 
(v) Right-handed neutrinos (u'Rs) as a compelling feature; and 
(vi) B-L as a local symmetry. 
As mentioned in the introduction, the two distinguishing features of G(224)— 
i.e. the existence of the RH neutrinos and B-L as a local symmetry—now 
seem to be needed on empirical grounds. Furthermore, SU(4)-color provides 
simple relations between the masses and mixings of quarks and leptons, while 
SU(2)xX SU(2)n relates the mass-matrices in the up and down sectors. As 
we will see in Sections 4 and 5, these relations are in good accord with 
observations. 

Believing in a complete unification, one is led to view the G(224) sym-
metry as part of a bigger symmetry, which itself may have its origin in 
an underlying theory, such as string theory. In this context, one may 
ask: Could the effective symmetry below the string scale in four dimen-
sions (see Section 3) be as small as just the SM symmetry G(213), even 
though the latter may have its origin in a bigger symmetry, which lives only 
in higher dimensions? I will argue in Section 4 that the data on neutrino 
masses and the need for baryogenesis provide an answer to the contrary, 
suggesting that it is the effective symmetry in four dimensions, below the 
string scale, which must minimally contain either G(224) or a close relative 
G(214) = SU(2) L xI 3 «xSU(4) c . 

One may also ask: does the effective four dimensional symmetry have to 
be any bigger than G(224) near the string scale? In preparation for an answer 
to this question, let us recall that the smallest simple group that contains 
the SM symmetry G(213) is SU(5) [4]. It has the virtue of demonstrating 
how the main ideas of grand unification, including unification of the gauge 
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couplings, can be realized. However, SU(5) does not contain G(224) as a 
subgroup. As such, it does not possess some of the advantages listed above. 
In particular, it does not contain the RH neutrinos as a compelling feature, 
and B-L as a local symmetry. Furthermore, it splits members of a family 
(not including UR) into two multiplets: 5 + 10. 

By contrast, the symmetry SO(IO) has the merit, relative to SU(5), that 
it contains G(224) as a subgroup, and thereby retains all the advantages of 
G(224) listed above. (As a historical note, it is worth mentioning that these 
advantages had been motivated on aesthetic grounds through the symmetry 
G(224) [3], and all the ideas of higher unification were in place [3, 4, 5], 
before it was noted that G(224) [isomorphic to SO(4)xSO(6)] embeds nicely 
into SO(IO) [6]). Now, SO(IO) even preserves the 16-plet family-structure of 
G(224) without a need for any extension. By contrast, if one extends G(224) 
to the still higher symmetry Eg [23], the advantages (i)-(vi) are retained, but 
in this case, one must extend the family-structure from a 16 to a 27-plet, 
by postulating additional fermions. In this sense, there seems to be some 
advantage in having the effective symmetry below the string scale to be 
minimally G(224) [or G(214)] and maximally no more than SO(IO). I will 
compare the relative advantage of having either a string-derived G(224) or 
a string-SO(lO), in the next section. First, I discuss the implications of the 
data on coupling unification. 

3 The Need for Supersyrrirrietry: M S S M versus String Uni-
fications 

It has been known for some time that the precision measurements of the 
standard model coupling constants (in particular sin2 6w) at LEP put severe 
constraints on the idea of grand unification. Owing to these constraints, 
the non-supersymmetric minimal SU(5), and for similar reasons, the one-
step breaking minimal non-supersymmetric S0(10)-model as well, are now 
excluded [24]. But the situation changes radically if one assumes that the 
standard model is replaced by the minimal supersymmetric standard model 
(MSSM), above a threshold of about 1 TeV. In this case, the three gauge 
couplings are found to meet [7], to a very good approximation, barring a few 
percent discrepancy which can be attributed to threshold corrections (see 
Appendix). Their scale of meeting is given by 

M x « 2 x 1016 GeV (MSSM or SUSY SU(5)) (5) 
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This dramatic meeting of the three gauge couplings, or equivalently the 
agreement of the MSSM-based prediction of sm20wKmz)th = 0.2315 ±0.003 
[25] with the observed value of sin2 8 w ( m z ) = 0.23124 ± 0.00017 [13], pro-
vides a strong support for the ideas of both grand unification and supersym-
metry, as being relevant to physics at short distances ;$ (1016 GeV)^1. 

In addition to being needed for achieving coupling unification there is of 
course an independent motivation for low-energy supersymmetry—i.e. for 
the existence of SUSY partners of the standard model particles with masses 
of order 1 TeV. This is because it protects the Higgs boson mass from get-
ting large quantum corrections, which would (otherwise) arise from grand 
unification and Planck scale physics. It thereby provides at least a technical 
resolution of the so-called gauge-hierarchy problem. In this sense low-energy 
supersymmetry seems to be needed for the consistency of the hypothesis of 
grand unification. Supersymmetry is of course also needed for the consis-
tency of string theory. Last but not least, as a symmetry linking bosons and 
fermions, it is simply a beautiful idea. And it is fortunate that low-energy 
supersymmetry can be tested at the LHC, and possibly at the Tevatron, and 
the proposed NLC. 

The most straightforward interpretation of the observed meeting of the 
three gauge couplings and of the scale M j , is that a supersymmetric grand 
unification symmetry (often called GUT symmetry), like SU(5) or SO(IO), 
breaks spontaneously at M j into the standard model symmetry G(213), and 
that supersymmetry-breaking induces soft masses of order one TeV. 

Even if supersymmetric grand unification may well be a good effective 
theory below a certain scale M Z M\ • it ought to have its origin within an 
underlying theory like the string/M theory. Such a theory is needed to unify 
all the forces of nature including gravity, and to provide a good quantum 
theory of gravity. It is also needed to provide a rationale for the existence of 
flavor symmetries (not available within grand unification), which distinguish 
between the three families and can resolve certain naturalness problems in-
cluding those associated with inter-family mass hierarchy. In the context 
of string or M-theory, an alternative interpretation of the observed meet-
ing of the gauge couplings is however possible. This is because, even if the 
effective symmetry in four dimensions emerging from a higher dimensional 
string theory is non-simple, like G(224) or even G(213), string theory can 
still ensure familiar unification of the gauge couplings at the string scale. 
In this case, however, one needs to account for the small mismatch between 
the MSSM unification scale M x (given above), and the string unification 
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scale, given by Mst « gst x 5.2 x 1017 GeV « 3.6 x 1017 GeV (Here we have 
put ast = c k g c / H M S S M ) « 0.04) [26]. Possible resolutions of this mismatch 
have been proposed. These include: (i) utilizing the idea of string-duality 
[27] which allows a lowering of Mst compared to the value shown above, or 
alternatively (ii) the idea of the so-called "Extended Supersymmetric Stan-
dard Model" (ESSM) that assumes the existence of two vector-like families, 
transforming as (16 + 16) of SO(IO), with masses of order one TeV [21], in 
addition to the three chiral families. The latter leads to a semi-perturbative 
unification by raising OCGUT to about 0.25-0.3. Simultaneously, it raises M\ • 
in two loop, to about (1/2 — 2) x 1017 GeV. (Other mechanisms resolving 
the mismatch are reviewed in Ref. [28]). In practice, a combination of the 
two mechanisms mentioned above may well be relevant. 2 

While the mismatch can thus quite plausibly be removed for a non-
GUT string-derived symmetry like G(224) or G(213), a GUT symmetry like 
SU(5) or SO(IO) would have an advantage in this regard because it would 
keep the gauge couplings together between Mst and M j (even if M j ~ 
Mjt/20), and thus not even encounter the problem of a mismatch between 
the two scales. A supersymmetric four dimensional GUT-solution [like SU(5) 
or SO(IO)], however, has a possible disadvantage as well, because it needs 
certain color triplets to become superheavy by the so-called doublet-triplet 
splitting mechanism (see Section 6 and Appendix), in order to avoid the 
problem of rapid proton decay. However, no such mechanism has emerged 
yet, in string theory, for the GUT-like solutions [29]. 3 

Non-GUT string solutions, based on symmetries like G(224) or G(2113) 
for example, have a distinct advantage in this regard, in that the dangerous 
color triplets, which would induce rapid proton decay, are often naturally 

2I have in mind the possibility of string-duality [27] lowering Mst for the case of semi-
perturbative unification in ESSM (for which a st ~ 0.25, and thus, without the use of 
string-duality, Mst would have been about 1018 GeV) to a value of about (1-2) xlO1 7 GeV 
(say), and semi-perturbative unification [21] raising the MSSM value of Mx to about 
5 x l 0 1 6 G e V « Mst( 1/2 to 1/4) (say). In this case, an intermediate symmetry like G(224) 
emerging at Mst would be effective only within the short gap between Mst and Mx, 
where it would break into G(213). Despite this short gap, one would still have the benefits 
of SU(4)-color that are needed to understand neutrino masses (see Section 4), and to 
implement baryogenesis via leptogenesis. At the same time, since the gap is so small, the 
couplings of G(224), unified at Mst would remain essentially so at Mx, so as to match 
with the "observed" coupling unification, of the type suggested in Ref. [21]. 

3Some alternative mechanisms for doublet-triplet splitting, and for suppression of the 
d = 5 proton decay operators have been proposed in the context of higher dimensional 
theories. These will be mentioned briefly in Section 6 G. 
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projected out for such solutions [30, 31]. Furthermore, the non-GUT solu-
tions invariably possess new "flavor" gauge symmetries, which distinguish 
between families. These symmetries are immensely helpful in explaining 
qualitatively the observed fermion mass-hierarchy (see e.g. Ref. [31]) and 
resolving the so-called naturalness problems of supersymmetry such as those 
pertaining to the issues of squark-degeneracy [32], CP violation [33] and 
quantum gravity-induced rapid proton decay [34]. 

Weighing the advantages and possible disadvantages of both, it seems 
hard at present to make a priori a clear choice between a GUT versus a non-
GUT string-solution. As expressed elsewhere [35], it therefore seems prudent 
to keep both options open and pursue their phenomenological consequences. 
Given the advantages of G(224) or SO(IO) in the light of the neutrino masses 
(see Sections 2 and 4), I will thus proceed by assuming that either a suitable 
four dimensional G(224)-solution [with the scale M j being close to Mst 
(see footnote 2)], or a realistic four-dimensional S0(10)-solution (with the 
desired mechanism for doublet-triplet splitting) emerges effectively from an 
underlying string theory, at the "conventional" string-scale Mst ~ 1017-1018 

GeV, and that the G(224)/S0(10) symmetry in turn breaks spontaneously 
at the conventional GUT-scale of Mx ~ 2 x 1016 GeV (or at Mx ~ 5 x 1016 

GeV for the case of ESSM, as discussed in footnote 2) to the standard model 
symmetry G(213). The extra dimensions of string/M-theory are assumed to 
be tiny with sizes < Mxl ~ 10 :!0 cm, so as not to disturb the successes of 
GUT. In short, I assume that essentially the conventional (good old) picture 
of grand unification, proposed and developed sometime ago [3, 5, 6, 7], 
holds as a good effective theory above the unification scale Mj and up to 
some high scale M ;$ Mst, with the added presumption that it may have 
its origin from the string/M-theory. Such a picture seems to be directly 
motivated on observational grounds such as those based on (a) coupling 
unification (discussed above), (b) neutrino masses including the (mass)2-
differenee of the V^-VT system and the near maximal V^-VT oscillation angle 
(see discussions in the next sections), and (c) the fact that spontaneous 
violation of B-L local symmetry at high temperatures, seems to be needed 
to implement baryogenesis via leptogenesis.4 

We will see that with the broad assumption mentioned above, an eco-
nomical and predictive framework emerges, which successfully accounts for 

Alternative scenarios such as those based on TeV-scale large extra dimensions [36], 
though intriguing, do not seem to provide simple explanations of these features: (a), (b) 
and (c). They will be mentioned briefly in Section 6 G. 
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a host of observed phenomena pertaining to the masses and the mixings of 
all fermions, including neutrinos. It also makes some crucial testable predic-
tions for proton decay. I next discuss the implications of the mass of vT, or 
rather of Am2(u^uT)} as revealed by the SuperK data. 

4 Arn2(i/Mi /T): Evidence In Favor of the G(224) Route 

One can obtain an estimate for the mass of in the context of G(224) or 
SO(IO) by using the following three steps (see e.g. Ref. [12]): 

(i) Assume that B—L and contained in a string-derived G(224) or 
SO(IO), break near the unification-scale: 

A/.v - 2 x 1016 GeV, (6) 

through VEVs of Higgs multiplets of the type suggested by string-solutions— 
i.e. ((1, 2,A)h) for G(224) or <16,/> for SO(IO), as opposed to 126,/ which 
seems to be unobtainable at least in weakly interacting string theory [37]. 
In the process, the RH neutrinos (z^), which are singlets of the standard 
model, can and generically will acquire superheavy Majorana masses of the 
type Mjf 

v)i C 1 b y utilizing the VEV of (16,/) and effective couplings 
of the form: 

CM ( 5 0 ( 1 0 ) ) = fij 1 6 j • 1 6 j 1 6 * • WH/M + h.c. ( 7 ) 

A similar expression holds for G(224). Here i,j = 1,2,3, correspond 
respectively to e, ji and r families. Such gauge-invariant non-renormalizable 
couplings might be expected to be induced by Planck-scale physics, involving 
quantum gravity or stringy effects and/or tree-level exchange of superheavy 
states, such as those in the string tower. With f i j (at least the largest 
among them) being of order unity, we would thus expect M to lie between 
Afpianck « 2 x 1018 GeV and Mstr jng « 4 x 1017 GeV. Ignoring for the present 
off-diagonal mixings (for simplicity), one thus obtains 5 : 

Mm » ~ / 3 3 (2 x 1 0 1 4 G e V ) p2 ( M P l a n c k / M ) (8) 

sThe effects of neutrino-mixing and of the more legitimate choice of M = Mstring ~ 
4 x 1017 GeV (instead of M = Mpianck) on the values of m(v}j) and of are considered 
in Ref. [14] and are reflected in our discussions in Section 5. The two effects together 
end up in yielding essentially the same mass for as obtained within the simplified 
picture presented in this section, together with a value for « (5-10) x 1014 GeV. 
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This is the Majorana mass of the RH tau neutrino. Guided by the value 
of M x , we have substituted (16//) = (2 x 1016 GeV) p ,where we expect 
p w 1/2 to 2 (say). 

(ii) Now using SU(4)-color and the Higgs multiplet (2, 2 , o f G(224) or 
equivalently 10// of SO(IO), one obtains the relation mT(Mx) = raj(Mj), 
which is known to be successful. Thus, there is a good reason to believe 
that the third family gets its masses primarily from the 10|f or equivalently 
(2,2, 1)H (see Section 5). In turn, this implies: 

m ( z / D i r a c ) ~ mtop{Mx) » (100-120) GeV . (9) 

Note that this relationship between the Dirac mass of the tau-neutrino and 
the top-mass is special to SU(4)-color. It does not emerge in SU(5). 

(iii) Given the superheavy Majorana masses of the RH neutrinos as well 
as the Dirac masses as above, the see-saw mechanism [38] yields naturally 
light masses for the LH neutrinos. For (ignoring flavor-mixing), one thus 
obtains, using Eqs.(8) and (9), 

m{vl ) « m ( ^ i r a c ) 2 « [(1/20) eV (1 - 1.44)//33 p2} (M/MP l a n c k ) . (10) 
A/3 R 

In the next section, we discuss the masses and mixings of all three neutri-
nos. As we will see, given the hierarchical masses of quarks and charged lep-
tons and the see-saw mechanism, we naturally obtain m(i/£) ~ (l/10)m(i/£). 
We are thus led to predict that Am2(u^uT)th = |m2(uj) — m2(uj)\th ~ 
m2(uj) th = square of the RHS of Eq. (10). Now Super K result strongly 
suggests that it is observing (rather than u^-ux) oscillation, with a 
Am2(u^vT)0bs ~ 3 x 10^3 eV2. It seems truly remarkable that the ex-
pected magnitude of Am2{vnVT)y given to a very good approximation by 
the square of the RHS of Eq. (10), is just about what is observed at Su-
perK, if/33 p2(Mpunck/M) « 1.3 to 1/2. Such a range for / 3 3 p 2 (M P l a n c k /M) 
seems most plausible and natural (see discussion in Ref. [12]). Note that 
the estimate (10) crucially depends upon the supersymmetric unification 
scale, which provides a value for M^R, as well as on SU(4)-color that yields 
m{v5jrac)- The agreement between the expected and the SuperK results thus 
clearly favors supersymmetric unification, and in the string theory context, 
it suggests that the effective symmetry below the string-scale should con-
tain SU(4)-color. Thus, minimally this effective symmetry should be either 
G(214) or G(224), and maximally as big as SO(IO), if not E6. 
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By contrast, if SU(5) is regarded as either a fundamental symmetry or as 
the effective symmetry below the string scale, there would be no compelling 
reason based on symmetry alone, to introduce a i/r, because it is a singlet 
of SU(5). Second, even if one did introduce u%R by hand, their Dirac masses, 
arising from the coupling hl would be unrelated to the up-flavor 
masses and thus rather arbitrary [contrast with Eq. (9)]. So also would be 
the Majorana masses of the ^ ' s , which are SU(5)-invariant, and thus can 
be even of order string scale . This would give extremely small values of 
m(uj) and to(i/£) and thus of Am2(u^uT)} which would be in gross conflict 
with observation. 

Before passing to the next section, it is worth noting that the mass of 
vT or of Am2(u^uT) suggested by SuperK, as well as the observed value 
of sin2 6w (see Section 3), provide valuable insight into the nature of GUT 
symmetry breaking. They both favor the case of a single-step breaking (SSB) 
of SO(IO) or a string-unified G(224) symmetry at a high scale of order Mx, 
into the standard model symmetry G(213), as opposed to that of a multi-step 
breaking (MSB). The latter would correspond, for example, to SO(IO) [or 
G(224)] breaking at a scale M\ into G(213), which in turn breaks at a scale 

-C M\ into G(213). One reason why the case of single-step breaking 
is favored over that of MSB is that the latter can accommodate but not 
really predict sin2$w, whereas the former predicts the same successfully. 
Furthermore, since the Majorana mass of vTR arises arises only after B-L and 
h n break, it would be given, for the case of MSB, by M^n ~ /33(M|/M), 
where M ~ Mst (say). I f M 2 « M j ~ 2 x 1016 GeV, and M > Mx, one 
would obtain too low a value (<C 1014 GeV) for M^n [compare with Eq. 
(8)], and thereby too large a value for m(i/£), compared to that suggested 
by SuperK. By contrast, the case of single-step breaking (SSB) yields the 
right magnitude for m{vT) [see Eq. (10)]. 

Thus the success of the results on m{vT) and thereby on Am2(u^uT) dis-
cussed above not only favors the symmetry SO(IO) or G(224) beging effective 
in 4D at a high scale, but also clearly suggests that B-L and I^R break near 
the conventional GUT scale Mx ~ 2 x 1016 GeV, rather than at an inter-
mediate scale < Mx- In other words, the observed values of both sin2 6w 
and Am2{v^vT) favor only the simplest pattern of symmetry-breaking, for 
which SO(IO) or a string-derived G(224) symmetry breaks in one step to the 
standard model symmetry, rather than in multiple steps. It is of course only 
this simple pattern of symmetry breaking that would be rather restrictive 
as regards its predictions for proton decay (to be discussed in Section 6). 
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I next discuss the problem of understanding the masses and mixings of all 
fermions. 

5 Understanding Aspects of Fermion Masses and Neutrino 
Oscillations in SO(IO) 

Understanding the masses and mixings of all quarks in conjunction with 
those of the charged leptons and neutrinos is a goal worth achieving by 
itself. It also turns out to be essential for the study of proton decay. I 
therefore present first a partial attempt in this direction, based on a quark-
lepton unified G(224)/S()(10)-framework, which seems most promising [14]. 
A few guidelines would prove to be helpful in this regard. The first of 
these is motivated by the desire for economy [see (11)], and the rest (see 
below) by the data. In essence, we will be following (partly) a bottom-up 
approach by appealing to the data to provide certain clues as regards the 
pattern of the Yukawa couplings, and simultaneously a top-down approach 
by appealing to grand unification, based on the symmetry G(224)/S0(10), 
to restrict the couplings by the constraints of group theory. The latter helps 
to interrelate the masses and mixings of quarks with those of the charged 
leptons and the neutrinos. As we will see, it is these interrelationships, 
which permit predictivity, and are found to be remarkably successful. The 
guidelines which we adopt are as follows. 

1) Hierarchy Through Off-diagonal Mixings: Recall earlier at-
tempts [39] that attribute hierarchical masses of the first two families to 
mass matrices of the form: 

for the (d, s) quarks, and likewise for the (u, c) quarks. Here e ~ 1/10. The 
hierarchical patterns in Eq. (11) can be ensured by imposing a suitable 
flavor symmetry which distinguishes between the two families (that in turn 
may have its origin in string theory (see e.g. Ref [31]). Such a pattern has 
the virtues that (a) it yields a hierarchy that is much larger than the input 
parameter e: (ma/nig) « e2 <C e, and (b) it leads to an expression for the 
Cabibbo angle: 

(11) 

(12) 
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which is rather successful. Using ^/md/ms « 0.22 and y/mu /m c « 0.06, we 
see that Eq. (12) works to within about 25% for any value of the phase <j>. 
Note that the square root formula (like \/rri(i/rris) for the relevant mixing 
angle arises because of the symmetric form of M in Eq. (11), which in turn 
is ensured if the contributing Higgs is a 10 of SO(IO). A generalization of 
the pattern in Eq. (11) would suggest that the first two families (i.e. the 
e and the n) receive masses primarily through their mixing with the third 
family (r), with (1,3) and (1, 2) elements being smaller than the (2,3); while 
(2,3) is smaller than the (3,3). We will follow this guideline, except for the 
modification noted below. 

2) The Need for an Antisymmetric Component: Although the 
symmetric hierarchical matrix in Eq. (11) works well for the first two fam-
ilies, a matrix of the same form fails altogether to reproduce for which 
it yields: 

Given that \/ms/mb « 0.17 and \/mcJmt « 0.0.06, we see that Eq. (13) 
would yield Vcb varying between 0.11 and 0.23, depending upon the phase 
X- This is too big, compared to the observed value of Vcb « 0.04 ± 0.003, 
by at least a factor of 3. We interpret this failure as a clue to the pres-
ence of an antisymmetric component in M, together with symmetrical ones 
(so that rriij ^ rriji), which would modify the relevant mixing angle to 
sjrrii/rrij ̂ Jmij/rriji, where m* and rrij denote the respective eigenvalues. 

3) The Need for a Contribution Proportional to B-L: The suc-
cess of the relations m| « m®, and raf « JTi(z/y)0irac (see Section 4), suggests 
that the members of the third family get their masses primarily from the 
VEV of a SU(4)-color singlet Higgs field that is independent of B-L. This 
is in fact ensured if the Higgs is a 10 of SO(IO). However, the empirical 
observations of mj ~ mjj/3 and md ~ 3rrig [40] call for a contribution pro-
portional to B-L as well. Further, one can in fact argue that understanding 
naturally the suppression of Vcb (in the quark-sector) together with an en-
hancement of 0°®Cj,T (in the lepton sector) calls for a contribution that is not 
only proportional to B-L, but also antisymmetric in the family space (this 
later feature is suggested already in item (2)). We show below how both of 
these requirements can be met in SO(IO), even for a minimal Higgs system. 

4) Up-Down Asymmetry: Finally, the up and the down-sector mass 
matrices must not be proportional to each other, as otherwise the CKM 
angles would all vanish. Note that the cubic couplings of a single 10* with 

(13) 
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the fermions in the 16's will not serve the purpose in this regard. 
Following Ref. [14], I now present a simple and predictive mass-matrix, 

based on SO(IO), that satisfies all four requirements (1), (2), (3) and (4). 
The interesting point is that one can obtain such a mass-matrix for the 
fermions by utilizing only the minimal Higgs system, that is needed anyway 
to break the gauge symmetry SO(IO). It consists of the set: 

-ffminimal = {45// , 16//, 16//, 10// } . (14) 

Of these, the VEV of (45//) - Mx breaks SO(IO) into G(2213), and those 
of (16//) = (16//) ~ Mx break G(2213) to G(213), at the unification-scale 
Mx- Now G(213) breaks at the electroweak scale by the VEV of (10^) to 
U ( l ) e m x SU(3)C. 

One might have introduced large-dimensional tensorial multiplets of SO(IO) 
like 126// and 120//, both of which possess cubic level Yukawa couplings 
with the fermions. In particular, the coupling 16^16^(120//) would give the 
desired family-antisymmetric as well as (B-L)-dependent contribution. We 
do not however introduce these multiplets in part because there is a general 
argument suggesting that they do not arise at least in weakly interacting het-
erotic string solutions [37], and in part also because mass-splittings within 
such large-dimensional multiplets could give excessive threshold corrections 
to «3(m z ) (typically exceeding 20%), rendering observed coupling unifica-
tion fortuitous. By contrast, the multiplets in the minimal set (shown above) 
can arise in string solutions. Furthermore, the threshold corrections for the 
minimal set are found to be naturally small, and even to have the right sign, 
to go with the observed coupling unification [14] (see Appendix). 

The question is: can the minimal set of Higgs multiplets [see Eq. (14)] 
meet all the requirements listed above? Now 10// (even several 10's) cannot 
meet the requirements of antisymmetry and (-B-L)-dependence. Further-
more, a single 10u cannot generate CKM-mixings. This impasse disappears, 
however, as soon as one allows for not only cubic, but also effective non-
renormalizable quartic couplings of the minimal set of Higgs fields with the 
fermions. These latter couplings could of course well arise through exchanges 
of superheavy states (e.g. those in the string tower) involving renormalizable 
couplings, and/or through quantum gravity. 

Allowing for such cubic and quartic couplings and adopting the guideline 
(1) of hierarchical Yukawa couplings, as well as that of economy, we are led 
to suggest the following effective lagrangian for generating Dirac masses 
and mixings of the three families [14] (for a related but different pattern, 
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involving a non-minimal Higgs system, see Ref. [41]). 

£ Y u k = hss I63 163 10,/ + [^23 I62 I63 10// + a23 162 I63 10,/ 4 5 H / M 

+ 223 162 I63 16H 1 6H/M] + {a12 16! 162 10H 4 5 H / M 

I f/i2 16] I62 16,/ 16 / / /A f } . (15) 

Here, M could plausibly be of order string scale. Note that a mass matrix 
having essentially the form of Eq. (11) results if the first term ^33(10^) 
is dominant. This ensures m| « m® and mf « m°(ui)jrac). Following the 
assumption of progressive hierarchy (equivalently appropriate flavor sym-
metries 6), we presume that ^23 ~ ^33/10, while ^22 and hu, which are 
not shown, are assumed to be progressively much smaller than 2̂3• Since 
(45,/) - (16,/) - Mx, while M ~ Mst ~ 10MX, the terms a23(45H}/M 
and g,23(16ir)/M can quite plausibly be of order ^33/10, if 023 ~ £23 ~ ^33-
By the assumption of hierarchy, we presume that 012 -C 023, and gn -C £23 

It is interesting to observe the symmetry properties of the 023 and $23-
terms. Although 10i/ x 45// = 10 + 120 + 320, given that (45H) is along 
B-L, which is used to implement doublet-triplet splitting (see Appendix), 
only 120 in the decomposition contributes to the mass-matrices. This con-
tribution is, however, antisymmetric in the family-index and, at the same 
time, proportional to B-L. Thus the 023 term fulfills the requirements of both 
antisymmetry and (B-L)-dependence, simultaneously 7 . With only hij and 
ajj-terms, however, the up and down quark mass-matrices will be propor-
tional to each other, which would yield VCKM = 1. This is remedied by the 
gij coupling, because, the 16// can have a VEV not only along its SM singlet 

6Although no explicit string solution with the hierarchy in all the Yukawa couplings in 
Eq. (15)—i.e. in hij, <7ij and fj;; exists as yet, one can postulate flavor symmetries of 
the type alluded to (e.g. two abelian U(l) symmetries), which assign flavor charges not 
only to the fermion families and the Higgs multiplets, but also to a few (postulated) SM 
singlets that acquire VEVs of order Mx • The flavor symmetry-allowed effective couplings 
such as l62l63lO.fr {S} /M would lead to A23 ~ {S} /M ~ 1/10. One can verify that the 
full set of hierarchical couplings shown in Eq. (15) can in fact arise in the presence of 
two such U(l) symmetries. String theory (at least) offers the scope (as indicated by the 
solutions of Refe. [31] and [30]) for providing a rationale for the existence of such flavor 
symmetries, together with that of the SM singlets. For example, there exist solutions with 
the top Yukawa coupling being leading and others being hierarchical (as in Ref. [31]). 

7The analog of IOjt • 45h for the case of G(224) would be \s = (2, 2, 1)jj • (1,1, 15)jt. 
Although in general, the coupling of XH to the fermions need not be antisymmetric, for a 
string-derived G(224), the multiplet (1,1,15)h is most likely to arise from an underlying 
45 of SO(IO) (rather than 210); in this case, the couplings of XH must be antisymmetric 
like that of IOjt • 45H-
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component (transforming as VR) which is of GUT-scale, but also along its 
electroweak doublet component—call it 16^—of the electroweak scale. The 
latter can arise by the the mixing of 16^ with the corresponding doublet 
(call it 10^) in the 10//. The MSSM doublet H^ which is light, is then 
a mixture of 10f/ and 16f/. while the orthogonal combination is superheavy 
(see Appendix). Since (16^) contributes only to the down-flavor mass matri-
ces, but not to the up-flavor, the $23 and <712 couplings generate non-trivial 
CKM-mixings. We thus see that the minimal Higgs system (as shown in Eq. 
(14)) satisfies a priori all the qualitative requirements (l)-(4), including the 
condition of VCKM 1- I now discuss that this system works well even 
quantitatively. 

With the six effective Yukawa couplings shown in Eq. (15), the Dirac 
mass matrices of quarks and leptons of the three families at the unification 
scale take the form: 

U 
( 0 0 e 

— e' 0 e + a | to/j, 
0 - e + a 1 

D 
( 0 e' + rf 0 \ 

— e' + rj' 0 e + i] 
0 — e + i] 1 j 

mD, 

N 
( 0 - 3e' 

3e' 0 
^ 0 3e + a 

0 
— 3e + a I TO//, 

1 

L 
0 - 3e' + rf 0 

3e' + rf 0 —3 € + rj 
0 3e + rj 1 

mD. (16) 

/ 
Here the matrices are multiplied by left-handed fermion fields from the left 
and by anti-fermion fields from the right. (U, D) stand for the mass matrices 
of up and down quarks, while (iV, L) are the Dirac mass matrices of the 
neutrinos and the charged leptons. The entries l,e,and a arise respectively 
from the ^33,023 and ^23 terms in Eq. (15), while rj entering into D and L 
receives contributions from both $23 and ^23; thus ij ^ a. Similarly rj' and e' 
arise from gn and an terms respectively. Note the quark-lepton correlations 
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between U and N as well as D and L arise because of SU(4)C?, while the 
up-down correlations between U and D as well as N and L arise because 
of SU(2)ixSU(2)ij. Thus, these correlations emerge just because of the 
symmetry property of G(224). The relative factor of —3 between quarks and 
leptons involving the e entry reflects the fact that (45H) is proportional to 
(B-L), while the antisymmetry in this entry arises from the group structure 
ofSO(lO), as explained above7. As we will see, this e-entry helps to account 
for (a) the differences between m s and m^, (b) that between jry and me, and 
most important, (c) the suppression of Vrj, together with the enhancement of 
the Vp-Vr oscillation angle. 

The mass matrices in Eq. (16) contain 7 parameters 8: e, <7, rj, md = 
h$$ (10d), mij = h$$ (10r/), rf and e'. These may be determined by using, for 
example, the following input values: mf)hys = 174 GeV, mc(mc) = 1.37 GeV, 
ms(l GeV) = 110-116 MeV [42], mu( 1 GeV) « 6 MeV and the observed 
masses of e, ji and r, which lead to (see Ref. [14], for details): 

a ~ 0.110, rj ~ 0.151, e ~ - 0.095, \rj'\ « 4.4 x 10^3 and e ' « 2 x 10^4 

mu ^ mt(Mu) ~ (100-120) GeV, mD ~ mb(Mu) ~ 1.5GeV. (17) 

Here, I will assume, only for the sake of simplicity, as in Ref. [14], that 
the parameters are real.9 Note that in accord with our general expectations 
discussed above, each of the parameters <r, rj and e are found to be of order 
1/10, as opposed to being 10 0(1) or 0(10^2), compared to the leading (3,3)-
element in Eq. (16). Having determined these parameters, we are led to a 
total of five predictions involving only the quarks (those for the leptons are 
listed separately): 

ml « m?( 1 - 8e2); thus mb(mb) ~ (4.6-4.9) GeV (18) 
8Of these, my « ml can in fact be estimated to within 20% accuracy by either using the 

argument of radiative electroweak symmetry breaking, or some promising string solutions 
(see e.g. Ref. [31]). 

9Babu and I have recently studied supersymmetric CP violation within the 
G(224)/S0(10) framework, by using precisely the fermion mass-matrices as in Eq. (16). 
We have observed [33] that complexification of the parameters can lead to observed CP 
violation, without upsetting in the least the success of Ref. [14] (i.e. of the fermion 
mass-matrices of Eq. (16)) in describing the masses and mixings of all fermions, including 
neutrinos. Even with complexification the relative signs and the approximate magnitudes 
of the real parts of the parameters must be the same as in Eq. (17), to retain the success. 

10This is one characteristic difference between our work and that of Ref. [41], where the 
(2,3)-element is even bigger than the (3,3). 
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\Vcb\ \<7 ~ 1]\ \J ms/mb 
rj + e 1/2 

sj mc/mt 
a + e 

7] — € 
sj mc/mt 

a — e 

1/2 

md (lGeV) ~ 8MeV 

0.045 

(19) 
(20) 

ec S - e%<^\jmu/mc 

\Vub/Vcb\ ~ sjmu/mc ~ 0.07. 

(21) 

(22) 

In making these predictions, we have extrapolated the GUT-scale values 
down to low energies using a%(mz) = 0.118, a SUSY threshold of 500 GeV 
and tan 0 = 5. The results depend weakly on these choices, assuming tan j3 « 
2-30. Further, the Dirac masses and mixings of the neutrinos and the mixings 
of the charged leptons also get determined. We obtain: 

mj?(Mu) 100-120GeV; m^{Mxj) 8 GeV, (23) 

<£t » - 3 e + V 1Jmjm 7 
— 3e + i] 
3e + i] 

1/2 
0.437 (24) 

~ [9e'2/(9e2 - a 2 ) ]mu ~ 0.4 MeV (25) 

sjme/mn ~ 0.85\frrhjm^ ~ 0.06 (26) 

C ^ s /m e /mT ( r%/m T ) ~ 0.0012. (27) 

In evaluating $1 , we have assumed e' and r/ to be relatively positive. 
Given the bizarre pattern of quark and lepton masses and mixings, it 

seems remarkable that the simple and economical pattern of fermion mass-
matrices, motivated in part by the assumption of flavor symmetries6 which 
distinguish between the three families and in large part by the group theory 
of G(224) /S0(10) , gives an overall fit to all of them [Eqs. (18) through (22)] 
which is good to within 10%. This includes the two successful predictions 
on m,b and Vcb [Eqs.(18) and (19)]. Note that in supersymmetric unified 
theories, the "observed" value of mb(mb) and renormalization-group studies 

Qln 
rf — 3e 
rf + 3e' 
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suggest that, for a wide range of the parameter tan 0, m| should in fact be 
about 10-20% lower than roj [43]. This is neatly explained by the relation: 
m| « 1 — 8e2) [Eq. (18)], where exact equality holds in the limit e —> 0 
(due to SU(4)-color), while the decrease of m| compared to ro" by 8e2 - 10% 
is precisely because the off-diagonal e-entry is proportional to B-L [see Eq. 
(16)]. 

Specially intriguing is the result on Vcb « 0.045 which compares well 
with the observed value of ~ 0.04. The suppression of Vcb, compared to the 
value of 0.17 ± 0.06 obtained from Eq. (13), is now possible because the 
mass matrices [Eq. (16)] contain an antisymmetric component oc e. That 
corrects the square-root formula 8sb = \fms/mb [appropriate for symmetric 
matrices, see Eq. (11)] by the asymmetry factor |(rj + e)/('Q — e)|^2 [see Eq. 
(19)], and similarly for the angle 6ct- This factor suppresses Vcb if rj and 
e have opposite signs. The interesting point is that, the same feature nec-
essarily enhances the corresponding mixing angle in the leptonic sector, 
since the asymmetry factor in this case is given by [(-3e + ??)/(3e + ^)]1/2 

[see Eq. (24)]. This enhancement of helps to account for the nearly 
maximal oscillation angle observed at SuperK (as discussed below). This in-
triguing correlation between the mixing angles in the quark versus leptonic 
sectors—that is suppression of one implying enhancement of the other—has 
become possible only because of the e-contribution, which is simultaneously 
antisymmetric and is proportional to B-L. That in turn becomes possible 
because of the group-property of SO(IO) or a string-derived G(224)7. 

Taking stock, we see an impressive set of facts in favor of having B-L 
as a gauge symmetry and in fact for the full SU(4)-color-symmetry. These 
include: (i) the suppression of Vcb, together with the enhancement of 
mentioned above; (ii) the successful relation m| « m°( 1 — Be2); (iii) the 
usefulness again of the SU(4)-color-relation JTi^g^)0 « raf in accounting 
for m(uj) (see Section 4); (iv) the agreement of the relation = 
|(e2 — r]2)/(9e2 — -q2) | with the data, in that the ratio is naturally less than 1, 
if rj ~ e [The presence of 9e2 in the denominator is because the off-diagonal 
entry is proportional to B-L.]; and finally (v), the need for (B-L)—as a local 
symmetry, to implement baryogenesis via leptogenesis, as noted in Section 1. 

Turning to neutrino masses, while all the entries in the Dirac mass ma-
trix N are now fixed, to obtain the parameters for the light neutrinos, one 
needs to specify those of the Majorana mass matrix of the RH neutrinos 

Guided by economy and the assumption of hierarchy, we consider 
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the following pattern [14]: 

M? = Mr . (28) 

As discussed in Section 4, the magnitude of MR « (5-10) x 1014 GeV 
can quite plausibly be justified in the context of supersymmetric unification5 

[e.g. by using M « MST w 4 x 1017 GeV in Eq. (8)]. To the same extent, the 
magnitude of m{vT) « (1/10-1/30) eV, which is consistent with the SuperK 
value, can also be anticipated by allowing for v^ — vT mixing [see Ref. [14]]. 
Thus there are effectively three new parameters: x, y, and z. Since there are 
six observables for the three light neutrinos, one can expect three predictions. 
These may be taken to be m f r tsee Eq- (10)], and for example . 

Assuming successively hierarchical entries as for the Dirac mass matrices, 
we presume that \y\ ~ 1/10, \z\ < |y | /10 and \x\ < z2. Now given that 
m{vT) ~ 1/20 eV [as estimated in Eq. (10)], the MSW solution for the 
solar neutrino puzzle [44] suggests that m(u^)/m(uT) « 1/8-1/20. With 
hierarchical neutrino masses, the higher value of the mass-ratio (like 1/8) 
holds only for the large angle MSW solution (see below). With the mass-
ratio being in the range of 1/8-1/20, one obtains: \y\ « (1/17 to 1/21), with 
y having the same sign as e [see Eq. (17)]. This solution for y obtains 
only by assuming that y has a hierarchical value 0(1/10) rather than 0(1). 
Combining now with the mixing in the ji-T sector determined above [see 
Eq. (24)], one can then determine the V^-VT oscillation angle. The two 
predictions of the model for the neutrino-system are then: 

m(uT) « (1/10-1/30) eV (29) 

C * €r ~ * 0-437 + A^p- . (30) TO "3 
Thus 

sin2 2d°sl = (0.99,0.975,0.92,0.87) (31) 
for 

to^/to^ = (1/8,1/10,1/15,1/20). (32) 
Both of these predictions are extremely successful.11 

n I n writing Eq. (31), the small angle approximation exhibited in Eq. (30) is replaced by 
the more precise expression, given in Eq. (12) of Ref. [14], with the further understanding 
that 1^Jm^jmr appearing in Eq. (12) (of Ref. [14]) is replaced by the fi-r mixing angle « 
0.437. 
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Note the interesting point that the MSW solution, and the requirement 
that \y\ should have a natural hierarchical value (as mentioned above), lead 
to y having the same sign as e. Now, that (it turns out) implies that the 
two contributions in Eq. (30) must add rather than subtract, leading to 
an almost maximal oscillation angle [14]. The other factor contributing 
to the enhancement of is, of course, also the asymmetry-ratio which 
increases \d̂ T\ from 0.25 to 0.437 [see Eq. (24)]. We see that one can 
derive rather plausibly a large v^-v? oscillation angle sin2 2 > 0.92, 
together with an understanding of hierarchical masses and mixings of the 
quarks and the charged leptons, while maintaining a large hierarchy in the 
seesaw derived neutrino masses (m„ 2 /m^ = 1/8-1/15), all within a unified 
framework including both quarks and leptons. In the example exhibited 
here, the mixing angles for the mass eigenstates of neither the neutrinos nor 
the charged leptons are really large, in that ~ 0.437 ~ 23° and ~ 
(0.22-0.35) « (13-20.5)°, yet the oscillation angle obtained by combining the 
two is near-maximal. This contrasts with most works in the literature in 
which a large oscillation angle is obtained either entirely from the neutrino 
sector (with nearly degenerate neutrinos) or almost entirely from the charged 
lepton sector. 

Small Versus Large Angle M S W Solutions 

In considerations of v^v^ and ve-vT oscillation angles, tiny intrinsic non-
diagonal Majorana masses ~ 10 - 3 eV of the LH neutrinos leading to vfv^ 
and vfv^-mixings, which can far exceed those induced by the standard see-
saw mechanism, can be rather important, especially for v^v^ mixing. As 
explained below, such intrinsic masses can arise quite naturally through 
higher dimensional operators and can lead to the large angle MSW solution 
of the solar neutrino puzzle. 

Let us first ignore the intrinsic Majorana masses of the LH neutrinos and 
include only those that arise through the standard see-saw mechanism, in-
volving the superheavy Majorana masses of the RH neutrinos, with a pattern 
given, for example, by Eq. (28). Note that, while MR « (5-15) x 1014 GeV 
and y « —1/20 are better determined, the parameters x and z can not be 
obtained reliably at present because very little is known about observables 
involving ve. Taking, for concreteness, m„e « (10 - 5 -10 - 4 ) (1 to few)) eV 
and « 0gT « 10 - 3±0.03 as inputs, we obtain: z ~ (1-5) x 10 - 3 and 
x ~ (1 to few)(10 -6-10 -5), in accord with the guidelines of \z\ ~ |y|/10 and 
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|x| ~ This in turn yields: 6™c » - » 0.06 ± 0.015. Note that the 
mass of fTii/ ~ 3 x 10 - 3 eV, that follows from a natural hierarchical value 
for y ~ —(1/20), and 0e(U as above, go well with the small angle MSW ex-
planation of the solar neutrino puzzle. In short the framework presented so 
far, that neglects intrinsic Majorana masses of the LH neutrinos altogether, 
generically tends to yield the small angle MSW solution. 

As alluded to above, we now observe that small intrinsic non-seesaw 
masses of the LH neutrinos ~ 10 - 3 eV, which could mix veL and v^l-, 
can, however, arise quite naturally through higher dimensional operators in 
the superpotential of the form 12: W D K, 216,16216/, 16 10 10 /MF-, ,. 

One can verify that such a term would lead to an intrinsic Majorana mix-
ing mass term of the form with a strength given by m ^ ~ 
K12((WH)/MGVT)2(175 G e V ) 2 / M G U T « (1-5-6) x lO^eF, where we have 
put (16H) « (1-2)MGUT aud M G U T ~ 2x 1016 GeV. Such an intrinsic Majo-
rana mixing mass ~ 10 - 3 eV, though small, is still much larger than what one 
would get for the corresponding term from the standard see-saw mechanism. 
Now, as discussed above, the diagonal {v jv i ) mass-term, arising from the 
standard see-saw mechanism can naturally be of order (3-8) x 10 - 3 eV (for 
\y\ « 1/20 to 1/15, say). In addition, the intrinsic contribution of the type 
mentioned above may in general also contribute to the diagonal (v^v^) mass 
(depending upon flavor symmetries) which can be ( few)xlO - 3 eV. Thus, 
taking the net values of TO22 « (6-7) x 10 - 3 eV (say), m ^ ~ (3-4) x 10 - 3 

eV, and m ^ ;$ (1-2) x 10 - 3 eV, which are all very plausible, we obtain 
mVfi » (6-7) x 10-3 eV, mVe ~ 1 x 10"3 eV, so that Am212 » (3.6-5) x 10"5 

eV2, and sin220°|c ~ 0.6-0.7. This goes well with the large angle MSW 
solution of the solar neutrino puzzle, which is now favored over the small 
angle solution by the SuperK data [45]. 

In summary, the intrinsic non-seesaw contribution to the Majorana masses 
of the LH neutrinos quite plausibly has the right magnitude for v^v^ mix-
ing, so as to lead to the rather large oscillation angle as mentioned above, in 
accord with the data. In contrast to the case of the P^-VT oscillation angle, 
however, given the smallness of the entries involving the first two families, 
the relatively large angle solution for ve — v*1 oscillation may not be regarded 
as a firm prediction of the S0(10)/G(224)-framework presented here. It is 

12 Such a term can be induced in the presence of, for example, a singlet S and a 
ten-plet (denoted by 10), both having GUT-scale masses, and possessing renormaliz-
able couplings of the form « ,16 ,16h 10, ftlOlOijS, MsSS and M10 . In this case, 
«i2 / M g U T = aia2bf(M2 Ms). 
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nevertheless a very reasonable possibility 
It is worth noting that although the superheavy Majorana masses of 

the RH neutrinos cannot be observed directly, they can be of cosmological 
significance. The pattern given above and the arguments given in Section 
3 and in this section suggests that M(vR) « (5-15) x 1014 GeV, M(vR) « 
(1-4) x 1012 GeV (for \y\ » 1/20); and M(veR) ~ (1/2-10) x 109 GeV (for 
x ~ (l/2-10)10"~6 > z2). A mass of vR ~ 109 GeV is of the right magnitude 
for producing vR following reheating and inducing lepton asymmetry in vR 

decay into H° + u%L, that is subsequently converted into baryon asymmetry 
by the electroweak sphalerons [16, 17]. 

In summary, we have proposed an economical and predictive pattern 
for the Dirac mass matrices, within the SO(10)/G(224)-framework, which 
is remarkably successful in describing the observed masses and mixings of 
all the quarks and charged leptons. It leads to five predictions for just the 
quark- system, all of which agree with observation to within 10%. The 
same pattern, supplemented with a similar structure for the Majorana mass 
matrix, accounts for both the nearly-maximal P^-VT- oscillation angle and a 
(mass)2-difference Ato2(i/(Ui/t) ~ (1/20 eV)2, suggested by the SuperK data. 
Given this degree of success, it makes good sense to study proton decay 
concretely within this SO(10)/G(224)-framework. The results of this study 
[14, 18] are presented in the next section, together with an update. 

Before turning to proton decay, it is worth noting that much of our 
discussion of fermion masses and mixings, including those of the neutrinos, 
is essentially unaltered if we go to the limit e' —> 0 of Eq. (28). This limit 
clearly involves: 

mu = 0, 0c - \Jmd/ms , m„e = 0 , 0^ = Qver = 0 

\Vub\ ~ / i ^ i ^mdlmb (m8/mb) ~ (2.1)(0.039)(0.023) ^ 0.0019. (33) y rj T € 
All other predictions remain unaltered. Now, among the observed quanti-
ties in the list above, 0c — \/md/ms is a good result. Considering that 
mulmt « 10-5, mu = 0 is also a pretty good result. There are of course 
plausible small corrections which could arise through Planck scale physics; 
these could induce a small value for mu through the (l,l)-entry 6 « 10 - 5 . 
For considerations of proton decay, it is worth distinguishing between these 
two extreme variants which we will refer to as cases I and II respectively 

Case I : e' » 2 x 10 -4 , 8 = 0 
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Case II: 5 » 1(T5 , e' = 0. (34) 

It is worth noting that the observed value of \Vub\ ~ 0.003 favors a non-
zero value of e' ( « (1-2) x 10 - 4 ) . Thus, in reality, e' may not be zero, but 
it may lie in between the two extreme values listed above. In this case, 
the predicted proton lifetime for the standard d = 5 operators would be 
intermediate between those for the two cases, presented in Section 6. 

6 Expectations for Proton Decay in Supersymmetric 
Unified Theories 

6.1 Preliminaries 

Turning to the main purpose of this talk, I present now the reason why 
the unification framework based on SUSY SO(IO) or G(224), together with 
the understanding of fermion masses and mixings discussed above, strongly 
suggest that proton decay should be imminent. 

Recall that supersymmetric unified theories (GUTs) introduce two new 
features to proton decay: (i) First, by raising M \ to a higher value of about 
2 x 1016 GeV (contrast with the non-supersymmetric case of nearly 3 x 1014 

GeV), they strongly suppress the gauge-boson-mediated d = 6 proton decay 
operators, for which e+7r° would have been the dominant mode (for this case, 
one typically obtains: -> e+7r°)|d=6 « 1035±1 years), (ii) Second, they 
generate d = 5 proton decay operators [19] of the form QiQjQkQi/M in the 
superpotential, through the exchange of color triplet Higginos, which are 
the GUT partners of the standard Higgs(ino) doublets, such as those in the 
5 + 5 of SU(5) or the 10 of SO(IO). Assuming that a suitable doublet-triplet 
splitting mechanism provides heavy GUT-scale masses to these color triplets 
and at the same time light masses to the doublets (see e.g, the Appendix), 
these "standard" d = 5 operators, suppressed by just one power of the heavy 
mass and the small Yukawa couplings, are found to provide the dominant 
mechanism for proton decay in supersymmetric GUT [46, 47, 48, 49, 50]. 

Now, owing to (a) Bose symmetry of the superfields in QQQL/M, (b) 
color antisymmetry, and especially (c) the hierarchical Yukawa couplings of 
the Higgs doublets, it turns out that these standard d = 5 operators lead 
to dominant VK+ and comparable VTT+ modes, but in all cases to highly 
suppressed e+7r°, e+K° and even fi+K° modes. For instance, for minimal 
SUSY SU(5), one obtains (with tan/3 < 20, say): 

[F(fj,+K0)/F(PK+) ] ^ ( 5 ) ~ [mu/(mc sin2 6C)]2 R » 10"3 , (35) 
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where R « 0.1 is the ratio of the relevant |matrix element|2x (phase space), 
for the two modes. 

It was recently pointed out that in SUSY unified theories based on SO(IO) 
or G(224), which assign heavy Majorana masses to the RH neutrinos, there 
exists a new set of color triplets and thereby very likely a new source of 
d = 5 proton decay operators [20]. For instance, in the context of the min-
imal set of Higgs multiplets 13 {45h, 16h, 16h and 10h} (see Section 5), 
these new d = 5 operators arise by combining three effective couplings in-
troduced before:—i.e., (a) the couplings / j j l 6 j l 6 j l 6 f r l 6 f r / M [see Eq. (7)] 
that are required to assign Majorana masses to the RH neutrinos, (b) the 
couplings <fcjl6jl6jl6frl6fr/M, which are needed to generate non-trivial 
CKM mixings [see Eq. (15)], and (c) the mass term MIQ16H16H. For 
the f i j couplings, there are two possible S0(10)-contractions (leading to a 
45 or a 1) for the pair 16,16/,, both of which contribute to the Majorana 
masses of the RH neutrinos, but only the non-singlet contraction (leading 
to 45), would contribute to d = 5 proton decay operator. In the presence 
of non-perturbative quantum gravity, one would in general expect the two 
contractions to have comparable strength. Furthermore, the couplings of 
45's lying in the string-tower or possibly below the string-scale, and likewise 
of singlets, to the 16, • 16,/-pair, would respectively generate the two con-
tractions. It thus seems most likely that both contractions would be present, 
having comparable strength. Allowing for a difference between the relevant 
projection factors for VR masses versus proton decay, and also for the fact 
that both contractions contribute to the former, but only the non-singlet one 
(i.e. 45) to the latter, we would set the relevant fij coupling for proton decay 
to be (fij)p = (fij)v • K-, where defined in Section 4 directly yields VR -
masses [see Eq. (8)]; and K is a relative factor, which generically is expected 
to be of order unity. 14 As a plausible range, we will take K « 1/5 to 2 (say). 
In the presence of the non-singlet contraction, the color-triplet Higginos in 
16/j and 16// of mass M\q can be exchanged between and qkQi-pairs 
(correspondingly, for G(224), the color triplets would arise from (1,2,4)ij 
and (1,2,4)H). This exchange generates a new set of d = 5 operators in the 

13The origin of the new d — 5 operators in the context of other Higgs multiplets, in 
particular in the cases where 126// and 126// are used to break B-L, has been discussed 
in Ref. [20]. 

14For the special case of K — 0 (which would arise if only the singlet-contraction of 
(16i • 16H ) contributes), the new d — 5 operators shown in Eq. (36) would not, of course, 
contribute to proton decay. 



Confronting the Conventional Ideas of Grand Unification 145 

superpotential of the form 

Wnew <x (fij),9kiK ( 1 6 , 1 6 j ) (16 f c 16 i ) ( 1 6 H ) ( 1 6 H ) / M 2 x (1/M16), (36) 

which induce proton decay. Note that these operators depend, through the 
couplings f i j and gm, both on the Majorana and on the Dirac masses of 
the respective fermions. This is why within SUSY SO(IO) or G(224), if 
the generic case of K ^ 0 holds, proton decay gets intimately linked to the 
masses and mixings of all fermions, including neutrinos. 

6.2 Framework for Calculating Proton Decay Rate 

To establish notations, consider the case of minimal SUSY SU(5) and, as an 
example, the process cd -> SPwhich induces p -> . Let the strength 
of the corresponding d = 5 operator, multiplied by the product of the CKM 
mixing elements entering into wino-exchange vertices, (which in this case is 
sin 6c cos 6c) be denoted by A. Thus (putting cos 6c = 1), one obtains: 

A5i(SU(b)) = (hu22hd12/MHc)Sm6c 

~ (mcms sin2 6c/v2) (tan(3/MHC 

(1.9 x l ( T 8 ) ( t a n P / M H C ) 

(2 x 1CT24 GeV - 1 ) (tan/0/2) (2 x 1016 GeV/MH( 

(37) 

c h 

where tan /3 = vu/vd, and we have put vu = 174 GeV and the fermion masses 
extrapolated to the unification-scale—i.e. m c ~ 300 MeV and m s ~ 40 MeV. 
The amplitude for the associated four-fermion process dus -> V^ is given by: 

A5(dus u^) = l £ i x (2 / ) (38) 

where / is the loop-factor associated with wino-dressing. Assuming m^ <C 
rtiq ~ TOp one gets: / ~ (m^/m~)(«2/47r). Using the amplitude for (du)(svi), 
as in Eq. (38), (t = fi or r), and the recently obtained matrix element and 
renormalization effects (see below), one then obtains [48, 49, 50, 14, 18]: 

r - 1 ( p -4 VrK+) » (0.15 x 1031) years x (Q.32/ALf (39) 

x 0.93 
As 

"0.014 GeV3" 
2 

[ (1/6) 1 
PH _(mw/mg)_ 

\ 2 

1.2 TeV. 
2 x 10~24 GeV 

, M 
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Here denotes the hadronic matrix element defined by /?frU£,(&) = 
ea/?7 While the range p H = (0.003-0.03) GeV3 has been 
used in the past [49], given that one lattice calculation yields = (5.6 ± 
0.5) x 10 - 3 GeV3 [51], and a recent improved calculation yields « 0.014 
GeV3 [52] (whose systematic errors that may arise from scaling violations 
and quenching are hard to estimate [52]), we will take as a conservative, but 
plausible, range for to be given by (0.014 GeV3) (1/2 — 2). (Compare this 
with the range for 0H = (0.006 GeV3)(l /2 - 2) as used in Ref. [14]). As de-
notes the short-distance renormalization effect for the d = 5 operator which 
arises owing to extrapolation between the GUT and the SUSY-breaking 
scales [47, 49, 53]. The average value of As = 0.67, given in Ref. [49] for 
nit = 100 GeV, has been used in most early estimates. For nit = 175 GeV, 
one would, however, have As « 0.93 to 1.2 [53]. Conservatively, I would use 
As = 0.93; this would enhance the rate by a factor of two compared with 
previous estimates. /!/, denotes the long-distance renormalization effect of 
the d = 6 operator due to QCD interaction that arises due to extrapola-
tion between the SUSY breaking scale and 1 GeV [47]. Using the two-loop 
expression for /!/, [54], together with the two-loop value for 03, Babu and 
I find: AL « 0.32, in contrast to AL « 0.22, used in previous works15. In 
what follows, I would use AL « 0.32. This by itself would also increase 
the rate by a factor of (0.32/0.22f »2 , compared to the previous estimates 
[47, 48, 49, 50, 14, 18]. Including the enhancements in both As and AL, we 
thus see that the net increase in the proton decay rate solely due to new 
evaluation of renormalization effects is nearly a factor of four, compared to 
the previous estimates (including that in Ref. [14]). 

Note that the familiar factors that appear in the expression for proton 
lifetime—i.e., MHc, (1 + ytc) representing the interference between the t and 
c contributions, and tan /3 (see e.g. Ref. [49] and discussion in the Appendix 
of Ref. [14])—are all effectively contained in A(p). In Ref. [14], guided by 
the demand of naturalness (i.e. absence of excessive fine tuning) in obtaining 
the Higgs boson mass, squark masses were assumed to lie in the range of 1 
TeV ( l /V2 - y/2), so that niq ^ 1.4TeV. Recent work, based on the notion 

15In most previous works starting with Ref. [47] through [50], as well as in Refs. [14] 
and [18], the one-loop value of AL was taken to be 0.22. It was, however, noted in Refs. 
[54] and [55] that there is a numerical error in the evaluation of the one-loop expression for 
A l [47], and that the correct value for At(one — loop) « 0.43 (this remained unnoticed 
by most authors). The two-loop value for AL (as stated above) is nearly 0.32, which is 
lower than 0.43 but higher that the previously used value of 0.22. 



Confronting the Conventional Ideas of Grand Unification 147 

of focus point supersymmetry however suggests that squarks may be consid-
erably heavier without conflicting with the demands of naturalness [56]. In 
the interest of obtaining a conservative upper limit on proton lifetime, we 
will therefore allow squark masses to be as heavy as about 2.4 TeV and as 
light as perhaps 600 GeV. 16 

Allowing for plausible and rather generous uncertainties in the matrix 
element and the spectrum we take: 

PH = (0.014 GeV3) (1 /2-2) 

nit,/nig = 1 /6 (1 /2 -2 ) , and nig « m~l « 1.2 TeV (1 /2 -2 ) . (40) 

Using Eqs. (39-40), we get: 

r _ 1 ( p - 4 VRK+) » (0.15xl031 years) [ 2 x l 0 - 2 4 G e V - 1 / ^ ? ^ ) ] 2 x { 6 4 - 1 / 6 4 } . 
(41) 

Note that the curly bracket would acquire its upper-end value of 64, which 
would serve towards maximizing proton lifetime, only provided all the uncer-
tainties in Eq. (41) are stretched to the extreme so that = 0.007 GeV3, 
mw/mq ~ 1/12 and nig « 2.4 TeV. This relation, as well as Eq. (39) are 
general, depending only on A(p() and on the range of parameters given in 
Eq. (40). They can thus be used for both SU(5) and SO(IO). 

16We remark that if the recently reported (g-2)-anonia!y for the muon [57], together 
with reevaluation of the contribution from light by light-scattering [58], is attributed to 
supersymmetry [59], one would need to have extremely light s-fermions [i.e. m[ « 200 -
400 GeV (say) and correspondingly, for promising mechanisms of SUSY-breaking, niq < 
300 — 600 GeV (say)], and simultaneously relatively large tan/3(« 6-24). However, not 
worrying about grand unification, such light s-fermions, together with large or very large 
tan f) would typically be in gross conflict with the limits on the edm's of the neutron and 
the electron, unless one can explain naturally the occurrence of minuscule phases (;$ 1/200 
to 1/500) and/or large cancellation. Thus, if the (g — 2)M-anomaly turns out to be real, 
it may well find a non-supersymmetric explanation, in accord with the edm-constraints 
which ordinarily seem to suggest that squarks are (at least) moderately heavy (niq £ 0.6 — 1 
TeV, say), and tan/3 is not too large (;$ 3 to 10, say). We mention in passing that the 
extra vector—like matter—specially a 16 + 16 of SO(IO)—as proposed in the so-called 
extended supersymmetric standard model (ESSM) [21, 60], with the heavy lepton mass 
being of order 200 GeV, can provide such an explanation [61]. Motivations for the case 
of ESSM, based on the need for (a) removing the mismatch between MSSM and string 
unification scales, and (b) dilaton-stabilization, have been noted in Ref. [21]. Since ESSM 
is an interesting and viable variant of MSSM, and would have important implications for 
proton decay, we will present the results for expected proton decay rates for the cases of 
both MSSM and ESSM in the discussion to follow. 
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The experimental lower limit on the inverse rate for the vK+ modes is 
given by Ref. [62], 

£ r(p V(K 
. e 

> 1.9 x 1033 years. (42) 
expt 

Allowing for all the uncertainties to stretch in the same direction (in this 
case, the curly bracket = 64), and assuming that just one neutrino flavor 
(e.g. vn for SU(5)) dominates, the observed limit (Eq. (42)) provides an 
upper bound on the amplitude17: 

A(Vi) < 0.46 x 10"24 GeV - 1 (43) 

which holds for both SU(5) and SO(IO). Recent theoretical analyses based 
on LEP-limit on Higgs mass (> 114 GeV), together with certain assumptions 
about MSSM parameters (as in CMSSM) and/or constraint from muon g-2 
anomaly [57] suggest that tan (3 > 3 to 5 [63]. In the interest of getting 
a conservative upper limit on proton lifetime, we will therefore use, as a 
conservative lower limit, tan f3 > 3. We will however exhibit relevant results 
often as a function of tan /3 and exhibit proton lifetimes corresponding to 
higher values of tan (3 as well. For minimal SU(5), using Eqs. (37) and (43) 
and, conservatively tan (i > 3. one obtains a lower limit on MHC given by: 

MHC > 13 x 1016 GeV (SUSY SU(5)) . (44) 

At the same time, gauge coupling unification in SUSY SU(5) strongly sug-
gests MHC < (1/2-1) x 1016 GeV. (See Ref. [64] where an even more strin-
gent upper bound on MHC is suggested.) Thus we already see a conflict, 
in the case of minimal SUSY SU(5), between the experimental limit on 
proton lifetime on the one hand, and coupling unification and constraint 
on tan /3 on the other hand. To see this conflict another way, if we keep 
MHC < 1016 GeV (for the sake of coupling unification) we obtain from Eq. 
(37): 1(SU(5)) > 5.7 x 10"24 GeV _ 1 ( tan0/3) . Using Eq. (41), this in turn 
implies that 

r _ 1 ( p vK+) < 1.2 x 1031 years x (3 / tan0f (SUSY SU(5)) . (45) 

For tan f3 > 3, a lifetime of 1.2 x 1031 years is thus a most conservative upper 
limit. In practice, it is unlikely that all the uncertainties, including these 

If there are sub-dominant 77, K+ modes with branching ratio R, the right side of Eq. 
(43) should be divided by \J 1 + R. 
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in MHC and tan /?, would stretch in the same direction to nearly extreme 
values so as to prolong proton lifetime. Given the experimental lower limit 
[Eq. (42)], we see that minimal SUSY SU(5) is already excluded by a large 
margin by proton decay-searches. This is in full accord with the conclusion 
reached by other authors (see especially Ref. [64]). We have of course noted 
in Section 4 that SUSY SU(5) does not go well with neutrino oscillations 
observed at SuperK. 

Now, to discuss proton decay in the context of supersymmetric SO(IO), 
it is necessary to discuss first the mechanism for doublet-triplet splitting. 
Details of this discussion may be found in Ref. [14]. A synopsis is presented 
in the Appendix. 

6.3 Proton Decay in Supersymmetric SO(IO) 

The calculation of the amplitudes and 4̂new for the standard and 
the new operators for the SO(IO) model, are given in detail in Ref. [14]. 
Here, I will present only the results. It is found that the four amplitudes 
Asi^(pTK+), Astl^(VtiK+), ANEVJ(VTK+) and Anew(i7tiK+) are in fact very 
comparable to each other, within about a factor of two to five, either way. 
Since there is no reason to expect a near cancellation between the standard 
and the new operators, especially for both VrK+ and VIIK+ modes, we ex-
pect the net amplitude (standard + new) to be in the range exhibited by 
either one. Following Ref. [14], I therefore present the contributions from 
the standard and the new operators separately. 

One important consequence of the doublet-triplet splitting mechanism 
for SO(IO) outlined briefly in the appendix and in more detail in Ref. [14] 
is that the standard d = 5 proton decay operators become inversely pro-
portional to Meg = [A(45fl-)]2/ Mio> ~ M f / M i o ' , rather than to MHc-
Here, MIQ> represents the mass of 10'n. that enters into the D-T splitting 
mechanism through effective coupling A10//45//10', , in the superpotential 
[see Appendix, Eq. (Al)]. As noted in Ref. [14], Mio> can be naturally 
suppressed (due to flavor symmetries) compared to M \, and thus Meg cor-
respondingly larger than M \ by even one to three orders of magnitude. It 
should be stressed that Meg does not represent the physical masses of the 
color triplets or of the other particles in the theory. It is simply a parame-
ter of order MJ-/M10'. Thus values of Meg, close to or even exceeding the 
Planck scale, do not in any way imply large corrections from quantum grav-
ity. Now accompanying the suppression due to Meg, the standard proton 
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decay amplitudes for SO(IO) possess an intrinsic enhancement as well, com-
pared to those for SU(5), owing primarily due to differences in their Yukawa 
couplings for the up sector (see Appendix C of Ref. [14]). As a result of this 
enhancement, combined with the suppression due to higher values of MEG, 
a typical standard d = 5 amplitude for SO(IO) is given by (see Appendix C 
of Ref. [14]) 

« (hh/Mee)(2 x 10-5), 

which should be compared with « (1.9 x 10_8)(tan(}/MHC) 
[see Eq. (37)]. Note, taking /i|3 « 1/4, the ratio of a typical SO(IO) over 
SU(5) amplitude is given by (Mfrc/Meff)(88)(3/tan/3). Thus the enhance-
ment by a factor of about 88 (for tan/3 = 3), of the SO(IO) compared to 
the SU(5) amplitude, is compensated in part by the suppression that arises 
from Meff being larger than MHc • 

In addition, note that in contrast to the case of SU(5), the SO(IO) ampli-
tude does not depend explicitly on tan /3. The reason is this: if the fermions 
acquire masses only through the 10// in SO(IO), as is well known, the up 
and down quark Yukawa couplings will be equal. By itself, it would lead 
to a large value of tan /3 = m t j « 60 and thereby to a large enhance-
ment in proton decay amplitude. Furthermore, it would also lead to the bad 
relations: mc/ms = NIT/NIT, and VCKM = 1- However, in the presence of ad-
ditional Higgs multiplets, in particular with the mixing of (16H)<I with 10// 
(see Appendix and Section 5), (a) tan/3 can get lowered to values like 3-20, 
(b) fermion masses get contributions from both (16^)^ and (10fr), which 
correct all the bad relations stated above, and simultaneously (c) the ex-
plicit dependence of A on tan /3 disappears. It reappears, however, through 
restriction on threshold corrections, discussed below. 

Although MEff can far exceed M \. it still gets bounded from above by 
demanding that coupling unification, as observed 18, should emerge as a nat-
ural prediction of the theory as opposed to being fortuitous. That in turn 
requires that there be no large (unpredicted) cancellation between GUT-
scale threshold corrections to the gauge couplings that arise from splittings 

18For instance, in the absence of GUT-scale threshold corrections, the MSSM value of 
a$(mz)MssM, assuming coupling unification, is given by a$(mz)°MssM = 0.125±0.13 [7], 
which is about 5-8% higher than the observed value: az(mz)°MssM = 0.118 ± 0.003 [13]. 
We demand that this discrepancy should be accounted for accurately by a net negative 
contribution from D-T splitting and from "other" threshold corrections [see Appendix, Eq. 
(A4)], without involving large cancellations. That in fact does happen for the minimal 
Higgs system (45,16,16) (see Ref. [14]). 
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within different multiplets as well as from Planck scale physics. Following 
this point of view, we have argued (see Appendix) that the net "other" 
threshold corrections to a ^ m z ) arising from the Higgs (in our case 45//, 
16// and 16//) and the gauge multiplets should be negative, but conserva-
tively and quite plausibly no more than about 10%, at the electroweak scale. 
This in turn restricts how big can be the threshold corrections to a ^ m z ) 
that arise from (D-T) splitting (which is positive). Since the latter is propor-
tional to ln(M e f fcos j/Mx) (see Appendix), we thus obtain an upper limit 
on Meff cos 7. For the simplest model of D-T splitting presented in Ref. [14] 
and in the Appendix [Eq. (Al)], one obtains: cos7 « (tan/3)/(nit/nit,). 
An upper limit on Meg cos 7 thus provides an upper limit on Meg which is 
inversely proportional to tan/3. In short, our demand of natural coupling 
unification, together with the simplest model of D-T splitting, introduces an 
implicit dependence on tan/3 into the lower limit of the S0(10)-amplitude— 
i.e. ^4(50(10)) oc 1/Meg > [(a quantity) oc tan/3]. These considerations are 
reflected in the results given below. 

Assuming tan/3 > 3 and accurate coupling unification (as described 
above), one obtains for the case of MSSM, a conservative upper limit on 
Mett < 2.7 x 1018 GeV (3/tan/3) (see Appendix and Ref. [14]). Using this 
upper limit, we obtain a lower limit for the standard proton decay amplitude 
given by 

A{VTK+)std > (7.8 x H T ^ G e V - 1 ; 
(3.3 x l O - ^ G e V - 1 ) 

(1 /6-1 /4) 
(1 /6-1 /2) 

case I 
case II 

S0(10)/MSSM, with 
tan /3 > 3 (46) 

Substituting into Eq. (41) and adding the contribution from the second 
competing mode 1 with a typical branching ratio R « 0.3, we obtain 

T-l{VK+)std < (0.18 x 1031 years) (1.6-0.7) 
(0.4 x 1031 years) (4-0.44) {64-1 /64} 

S0(10)/MSSM, with 
tan/3 > 3 (47) 

The upper and lower entries in Eqs. (46) and (47) correspond to the cases 
1 and II of the fermion mass-matrix with the extreme values of e'—i.e. e' = 
2 x 10 - 4 and e' = 0—respectively, (see Eq. (34)). The uncertainty shown 
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inside the square brackets correspond to that in the relative phases of the 
different contributions. The uncertainty of {64 to 1/64} arises from that 
in (3h, (myy/mq) and nig [see Eq. (40)]. Thus we find that for MSSM 
embedded in SO(IO), for the two extreme values of e' (cases I and II) as 
mentioned above, the inverse partial proton decay rate should satisfy: 

< 

0.20 x 1031-1'-7 years 
o 1 +2-4 

0.32 x 10 i-86 years 

0.2 x 1033 years 
1 x 1033 years 

S0(10)/MSSM, with \ 
tan /3 > 3 ) " 

(48) 

The central value of the upper limit in Eq. (48) corresponds to taking the up-
per limit on Megr < 2.7 x 1018 GeV, which is obtained by restricting threshold 
corrections as described above (and in the Appendix) and by setting (con-
servatively) tan/3 > 3. The uncertainties of matrix element, spectrum and 
choice of phases are reflected in the exponents. The uncertainty in the most 
sensitive entry of the fermion mass matrix—i.e. e'—is incorporated (as re-
gards obtaining an upper limit on the lifetime) by going from case I (with 
e' = 2 x 10 - 4) to case II (e' = 0). Note that this increases the lifetime by 
almost a factor of six. Any non-vanishing intermediate value of e' would only 
shorten the lifetime compared to case II. In this sense, the larger of the two 
upper limits quoted above is rather conservative. We see that the predicted 
upper limit for case I of MSSM (with the extreme value of e' = 2 x 10 - 4 ) 
is lower than the empirical lower limit [Eq. (43)] by a factor of ten, while 
that for case II, i.e. e' = 0 (with all the uncertainties stretched as mentioned 
above) is about two times lower than the empirical lower limit. 

Thus the case of MSSM embedded in SO(IO) is already tightly con-
strained, to the point of being disfavored, by the limit on proton lifetime. 
The constraint is of course augmented especially by our requirement of natu-
ral coupling unification which prohibits accidental large cancellation between 
different threshold corrections19 (see Appendix); and it will be even more 
severe, especially within the simplest mechanism of D-T splitting (as dis-
cussed in the Appendix), if tan/3 turns out to be larger than 5 (say). On 
the positive side, improvement in the current limit by a factor of even 2 to 

19Other authors (see e.g., Ref. [65]) have considered proton decay in SUSY SO(IO) by 
allowing for rather large GUT-scale threshold corrections, which do not, however, go well 
with our requirement of "natural coupling unification". 
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3 ought to reveal proton decay, otherwise the case of MSSM embedded in 
SO(IO), would be clearly excluded. 

6.4 The case of E S S M 

Before discussing the contribution of the new d = 5 operators to proton de-
cay, an interesting possibility, mentioned in the introduction (and in footnote 
16), that would be especially relevant in the context of proton decay, if tan (5 
is large, is worth noting. This is the case of the extended supersymmetric 
standard model (ESSM), which introduces an extra pair of vector-like fam-
ilies [16 + 16 of SO(IO)], at the TeV scale [21, 60]. Adding such complete 
S0(10)-multiplets would of course preserve coupling unification. Prom the 
point of view of adding extra families, ESSM seems to be the minimal and 
also the maximal extension of the MSSM, that is allowed in that it is com-
patible with (a) LEP neutrino-counting, (b) precision electroweak tests, as 
well as (c) a semi-perturbative as opposed to non-perturbative gauge cou-
pling unification [21, 60]. 20 The existence of two extra vector-like families 
of quarks and leptons can of course be tested at the LHC. 

Theoretical motivations for the case of ESSM arise on several grounds: 
(a) it provides a better chance for stabilizing the dilaton by having a semi-
perturbative value for a u n j f « 0.35-0.3 [21], in contrast to a very weak value of 
0.04 for MSSM; (b) owing to increased two-loop effects [21, 66], it raises the 
unification scale M \ to (1/2—2) x 1017 GeV and thereby considerably reduces 
the problem of a mismatch [28] between the MSSM and the string unification 
scales (see Section 3); (c) It lowers the GUT-prediction for a^(mz) to (0.112-
0.118) (in absence of unification-scale threshold corrections), which is in 
better agreement with the data than the corresponding value of (0.125-
0.13) for MSSM; and (d) it provides a simple reason for inter-family mass-
hierarchy [21, 60]. In this sense, ESSM, though less economical than MSSM, 
offers some distinct advantages. 

In the present context, because of (b) and (c), ESSM naturally enhances 
the GUT-prediction for proton lifetime, in full accord with the data [62]. As 
explained in the appendix, the net result of these two effects—i.e. a raising of 
M\ and a lowering of c t 3 ( m z ) E S S M — f ° r ESSM embedded in SO(IO), 
tan /3 can span a wide range from 3 to even 30, and simultaneously the value 

20Por instance, addition of two pairs of vector-like families at the TeV-scale, to the 
three chiral families, would cause gauge couplings to become non-perturbative below the 
unification scale. 
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or the upper limit on Megr can range from (60 to 6) x 1018 GeV, in full accord 
with our criterion for accurate coupling unification discussed above. 

As a result, in contrast to MSSM, ESSM allows for larger values of tan /3 
(like 10 or 20), without needing large threshold corrections, and simultane-
ously without conflicting with the limit on proton lifetime. 

To be specific, consider first the case of a moderately large tan/3 = 
10 (say), for which one obtains Meg w 1.8 x 1019 GeV, with the "other" 
threshold correction — 63 being about 5% (see Appendix for definition). In 
this case, one obtains: 

As before, the upper and lower entries correspond to cases I (e' = 2 x 10 - 4 ) 
and II (e' = 0) of the fermion mass-matrix [see Eq. (34)]. The uncertainty 
in the upper and lower entries in the square bracket of Eq. (49) corresponds 
to that in the relative phases of the different contributions for the cases I 
and II respectively, while the factor {64-1/64} corresponds to uncertainties 
in the SUSY spectrum and the matrix element (see Eq. (40)). 

We see that by allowing for an uncertainty of a factor of (30 — 100) jointly 
from the two brackets proton lifetime arising from the standard operators 
would be expected to lie in the range of (2.1 — 7) x 1033 years, for the case 
of ESSM embedded in SO(IO), even for a moderately large tan/3 = 10. Such 
a range is compatible with present limits, but accessible to searches in the 
near future. 

The other most important feature of ESSM is that, by allowing for larger 
values of Meff, especially for smaller values of tan/3 « 3 to 5 (say), the con-
tribution of the standard operators by itself can be perfectly consistent with 
present limit on proton lifetime even for almost central or "median" val-
ues of the parameters pertaining to the SUSY spectrum, the relevant matrix 
element, e' and the phase-dependent factor. 

For instance, for ESSM, one obtains MeS « (4.5 x 1019GeV)(4/tan/3), 
with the "other" threshold correction - S'3 being about 5% [see Appendix and 
Eq. (A6)]. Now, combining cases I (e' = 2 x 10 - 4) and II (e' = 0), we see that 
the square bracket in Eq. (49) which we will denote by [S], varies from 0.7 
to 10, depending upon the relative phases of the different contributions and 

r-^Fif+Jstd » (1(10-°1)7) ( 6 4 - 1/64} (7 xlO3 1 years) 

/ S0(10)/ESSM, with \ 
{ tan /3 = 10 J (49) 
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the values of e'. Thus as a "median" value, we will take [SJmed « 2 to 6. The 
curly bracket {64-1/64}, to be denoted by {C} , represents the uncertainty 
in the SUSY spectrum and the matrix element [see Eq. (40)]. Again as a 
"nearly central" or "median" value, we will take {C}m ed « 1/6 to 6. Setting 
Meff as above we obtain 

T - l ( i ? K + y ^ n " «[5]m e d{C}med(0.45xl03 3years)(4/tan/3)2(SO(10)/ESSM). 
(50) 

Choosing a few sample values of the effective parameters [S] and {C} , with 
low values of tan (3 = 3 to 5, the corresponding values of following 
from Eq. (50), are listed below in Table 1. 

Note that ignoring contributions from the new d = 5 operators for a 
moment21, the entries in Table 1 represent a very plausible range of values 
for the proton lifetime, for the case of ESSM embedded in SO(IO), with 
tan(3 « 3 to 5 (say), rather than upper limits for the same. This is because 
they are obtained for "nearly central" or "median" values of the parameters 
represented by the values of [S] and {C} , as discussed above. For instance, 
consider the cases { C } = 1 and { C } = l / 2 respectively, which (as may be in-
ferred from the table) can quite plausibly yield proton lifetimes in the range 
of (2 to 5)xl0 3 3 years Now { C } = 1 corresponds, e.g., to f3H = 0.014 GeV3 

(the central value of Ref. [52]) rtiq = 1.2 TeV and m^jniq = 1/6 [see Eq. 
(40)], while that of { C } = l / 2 would correspond, for example, to f3u = 0.014 
GeV3, with m,q « 710 GeV and m^/rriq « 1/6. In short, for the case of 
ESSM, with low values of tan (3 « 3 to 5 (say), squark masses can be well 
below 1 TeV, without conflicting with present limit on proton lifetime. This 
feature is not permissible within MSSM embedded in SO(IO). 

Thus, confining for a moment to the standard operators only, if ESSM 
represents low-energy physics, and if tan (3 is rather small (3 to 5, say), we do 
not have to stretch the uncertainties in the SUSY spectrum and the matrix 
elements to their extreme values (in contrast to the case of MSSM) in order 
to understand why proton decay has not been seen as yet, and still can be 
optimistic that it ought to be discovered in the near future, with a lifetime 
< 1034 years. The results for a wider variation of the parameters are listed 
in Table 2, where contributions of the new d = 5 operators are also shown. 

It should also be remarked that if in the unlikely event, all the parameters 
21 As I will discuss in the next section, we of course expect the new d — 5 operators 

to be important and significantly influence proton lifetime (see e.g. Table 2). Entries in 
Table 1 could still represent the actual expected values of proton lifetimes, however, if the 
parameter K defined in 6.1 (also see 6.5) happens to be unexpectedly small (<C 1). 
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(i.e. Ph, (rriyy/mq), wig and the phase-dependent factor) happen to be closer 
to their extreme values so as to extend proton lifetime, and if tan /3 is small 
( « 3 to 5, say) and at the same time the value of Meg is close to its allowed 
upper limit (see Appendix), the standard d = 5 operators by themselves 
would tend to yield proton lifetimes exceeding even (0.8 to 2.5) x 1034 years 
for the case of ESSM, (see Eq. (49) and Table 2). In this case (with the 
parameters having nearly extreme values), however, as I will discuss shortly, 
the contribution of the new d = 5 operators related to neutrino masses [see 
Eq. (36)], are likely to dominate and quite naturally yield lifetimes bounded 
above in the range of (1 — 10) x 1033 years (see Section 6.5 and Table 2). 
Thus in the presence of the new operators, the range of (1033 — 1034) years 
for proton lifetime is not only very plausible but it also provides a reasonable 
upper limit, for the case of ESSM embedded in SO(IO). 

6.5 Contribution from the new d = 5 operators 

As mentioned in Section 6.1, for supersymmetric G(224)/S0(10), there very 
likely exists a new set of d = 5 operators, related to neutrino masses, which 
can induce proton decay [see Eq. (42)]. The decay amplitude for these 
operators for the leading mode (which in this case is vtlK+) becomes pro-
portional to the quantity P = {(fw)v(l&u)/M}hz%K/(M\§ tan7), where 
(fss)^ a n d /133 are the effective couplings defined in Eqs. (7) and (15) re-
spectively, and Mi6 and tan 7 are defined in the Appendix. The factor K, 
defined by ( f ^ p = (fzz)vK, is expected to be of order unity (see Section 
6.1 for the origin of K). As a plausible range, we would take K « 1/5 to 
2. Using Mi6tan7 = A'(16fr) (see Appendix), and /133 « 1/2 (given by top 
mass), one gets: P « [(f^)v/M](l/2\')K. Here M denotes the string or the 
Planck scale (see Section 4 and footnote 2); thus M « (1/2 - 1) x 1018 GeV; 
and A' is a quartic coupling defined in the appendix. Validity of perturbative 
calculation suggests that A' should not much exceed unity, while other con-
siderations suggest that A' should not be much less than unity either (see Ref. 
[14], Section 6 E). Thus, a plausible range for A' is given by A' « (1/2 — y/2). 
(Note it is only the upper limit on A' that is relevant to obtaining an upper 
limit on proton lifetime). Finally, from consideration of vT mass, we have 
{hi)u » 1 (see Section 4). We thus obtain: P » (5 x l O ^ G e V ^ X l / ^ to 
4)K. Incorporating a further uncertainty by a factor of (1/2 to 2) that arises 
due to choice of the relative phases of the different contributions (see Ref. 
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[14]), the effective amplitude for the new operator is given by 

A{9llK+)new » (1.5 x 10_24GeV_1)(l/2"\/2 to 8 )K (51) 

Note that this new contribution is independent of Meg; thus it is the same 
for ESSM as it is for MSSM, and it is independent of tan 0. Furthermore, it 
turns out that the new contribution is also insensitive to e'; thus it is nearly 
the same for cases I and II of the fermion mass-matrix. Comparing Eq. (51) 
with Eq. (46) we see that the new and the standard operators are typically 
quite comparable to one another. Since there is no reason to expect near 
cancellation between them (especially for both and vrK+ modes), we 
expect the net amplitude (standard+new) to be in the range exhibited by 
either one. It is thus useful to obtain the inverse decay rate assuming as 
if the new operator dominates. Substituting Eq. (51) into Eq. (41) and 
allowing for the presence of the vrK+ mode with an estimated branching 
ratio of nearly 0.4 (see Ref. [14]), one obtains 

r"1(77iC+)new » (0.25 x 1031 years) [8-1/64] {64- 1/64}(JC~2 » 25 to 1/4). 
(52) 

The square bracket represents the uncertainty reflected in Eq. (51), while 
the curly bracket corresponds to that in the SUSY spectrum and matrix 
element (Eq. (40)). Allowing for the net uncertainty factor at the upper 
end, arising jointly from the three brackets in Eq. (52) to be 1000 to 4000 
(say), which can be realized for plausible range of values of the parameters 
(see below), the new operators related to neutrino masses, by themselves, 
lead to a proton decay lifetime given by: 

T ~ 1 ( v K + ) l ^ r » (2.5- 10) x 1033years (SO(IO) or string G(224)) 
(Indep. of tan 0) . (53) 

The superscript "upper" corresponds to estimated lifetimes near the upper 
end. For instance, taking the curly bracket in Eq. (52) to be « 8 to 16 (say) 
[corresponding for example, to 0h = 0.010 GeV3, {m^/mq) « 1/12 and 
nig « (1 to 1.4)(1.2 TeV)], instead of its extreme value of 64, and setting 
the square bracket in Eq. (52) to be « 6, and K « 20, which are quite 
plausible, we obtain: T~1(i/K+) new ~ (2.5 — 5) x 1033 years; independently 
of tan for both MSSM and ESSM. Proton lifetime for other choices of 
parameters, which lead to similar conclusion, are listed in Table 2. 

It should be stressed that the standard d = 5 operators [mediated by the 
color-triplets in the 10fr of SO(IO)] may naturally be absent for a string-
derived G(224)-model (see e.g. Ref. [30] and [31]), but the new d = 5 
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operators, related to the Majorana masses of the RH neutrinos and the 
CKM mixings, should very likely be present for such a model, as much as 
for SO(IO). These would induce proton decay 22. Thus our expectations 
for the proton decay lifetime [as shown in Eq. (53)] and the prominence of 
the mode (see below) hold for a string-derived G(224)-model, just as 
they do for SO(IO). For a string - G(224) - model, however, the new d=5 
operators would be essentially the sole source of proton decay21. 

Nearly the same situation emerges for the case of ESSM embedded in 
G(224) or SO(IO), with low tan /?(« 3 to 10, say), especially if the parameters 
(including m w / m q i phase-dependent factor as well as Megr) 
happen to be somewhat closer to their extreme values so as to extend proton 
lifetime. In this case, (that is for ESSM) as noted in the previous sub-section, 
the contribution of the standard d = 5 operators would be suppressed; and 
proton decay would proceed primarily via the new operators with a lifetime 
quite plausibly in the range of 1033 — 1034 years, as exhibited above. 

6.6 The Charged Lepton Decay Modes (p —> jj,+K0 and p —> 
e+7r°) 

I now note a distinguishing feature of the SO(IO) or the G(224) model pre-
sented here. Allowing for uncertainties in the way the standard and the 
new operators can combine with each other for the three leading modes i.e. 
VTK+, and we obtain (see Ref. [14] for details): 

B{n+KQ)std+new » [1% to 50%] k (SO(IO) or string G(224)) (54) 

where K denotes the ratio of the squares of relevant matrix elements for the 
fx+K° and VK+ modes. In the absence of a reliable lattice calculation for the 
v K + mode, one should remain open to the possibility of K « 1/2 to 1 (say). 
We find that for a large range of parameters, the branching ratio B(fx+K°) 
can lie in the range of 20 to 40% (if K « 1). This prominence of the fx+K° 
mode for the S0(10)/G(224) model is primarily due to contributions from 
the new d = 5 operators. This contrasts sharply with the minimal SU(5) 
model, in which the f i + K° mode is expected to have a branching ratio of only 
about 10 - 3 . In short, prominence of the fi+K° mode, if seen, would clearly 
show the relevance of the new operators, and thereby reveal the proposed 
link between neutrino masses and proton decay [20]. 

22In addition, quantum gravity induced d — 5 operators are also expected to be present 
at some level, depending upon the degree of suppression of these operators due to flavor 
symmetries (see e.g. Ref. [34]). 
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The d = 5 operators as described here (standard and new) would lead 
to highly suppressed e+7r° mode, for MSSM or ESSM embedded in SO(IO). 
The gauge boson-mediated d = 6 operators, however, still give (using the 
recently determined matrix element a n = 0.015 ± 0.001 GeV3 [52]) proton 
decaying into e+7r° with an inverse rate: 

T-I{p e+TT°)tfiS/SlJi5) » 1035±1years . (55) 

This can well be as short as about 1034 years. For the case of ESSM embed-
ded into SO(IO) [or for an analogous case embedded into SU(5)], there are 
two new features. Considering that in this case, both a u n j f and the unifica-
tion scale Mx (thereby the mass My of the (X , Y) gauge bosons) are raised 
by nearly a factor of (6 to 7) and (2.5 to 5) respectively, compared to those 
for MSSM (see discussions in Section 6.4), and that the inverse decay rate 
is proportional to (My/afmii), we expect 

r - i ( p - e M S ) / S U ( 5 ) * (1 to 17)r-i(p - e M K ) / S U { 5 ) • (56) 

The net upshot is that the gauge boson-mediated d = 6 operators can quite 
plausibly lead to observable e+7r° decay mode with an inverse decay rate 
in the range of 1034-1035 years. For ESSM embedded in SO(IO), there can 
be the interesting situation that both i>K+ (arising from d = 5) and e+7r° 
(arising from d = 6) may have comparable rates, with proton having a 
lifetime ~ (1/2-2) xlO34 years. It should be stressed that the e+7r°-mode is 
the common denominator of all GUT models (SU(5), SO(IO), etc.) which 
unify quarks and leptons and the three gauge forces. Its rate as mentioned 
above is determined essentially by the SUSY unification-scale, without the 
uncertainty of the SUSY-spectrum. I should also mention that the e+7r°-
mode is predicted to be the dominant mode in the flipped SU(5) x U(l)-
model [67]. For these reasons, intensifying the search for the e+7r°-mode 
to the level of sensitivity of about 1035 years in the next generation proton 
decay detector should be well worth the effort. 

Before summarizing the results of this section, I note below a few distinc-
tive features of the conventional approach adopted here compared to those 
of some alternatives. 

6.7 Conventional Versus Other Approaches 

In these lectures, as elaborated in Section 3, I have pursued systemati-
cally the consequences for fermion masses, neutrino oscillations and pro-
ton decay of the assumption that essentially the conventional picture of 
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SUSY grand unification [3, 4, 5, 6, 7] holds, providing a good effective 
theory in 4D between the conventional GUT-scale M \ ~ 2 x 1016 GeV 
(for ESSM, M x ~ (1/2-2) x 1017 GeV) and the conventional string scale 
MSt ~ (few to 10) x 1017 GeV. Believing in an underlying string/M-theory, 
and yet knowing that a preferred ground state of this theory is not yet in 
hand, the attitude, based on a bottom-up approach, has been to subject the 
assumed effective theory of grand unification to as many low-energy tests 
as possible, and to assess its soundness on empirical grounds. With this 
in mind, I have assumed that either a realistic 4D S0(10)-solution (with 
the desired mechanism of doublet-triplet splitting operating in 4D), or a 
suitable string-derived G(224)-solution (with M x ~ ( l /2)M s t , see footnote 
2) emerges effectively from an underlying string theory at the conventional 
string scale as mentioned above, and that the G ( 2 2 4 ) / S 0 ( 1 0 ) symmetry 
breaks into G ( 2 1 3 ) at the conventional GUT-scale M \. The extra dimen-
sions of string/M-theory are assumed to be tiny lying between the GUT-scale 
size ~ M v 1 and the string-size iVlSI 1. so as not to disturb the successes of 
GUT (see below). As mentioned before, this conventional picture of grand 
unification described above seems to be directly motivated on observational 
grounds such as those based on (a) coupling unification or equivalently the 
agreement between the observed and the predicted values of sin2 9w (see 
Section 3), (b) neutrino masses including A t o 2 ( i / ( U - i / t ) and (c) the fact that 
spontaneous violation of B-L local symmetry seems to be needed to im-
plement baryogenesis via leptogenesis [16, 17]. The relevance of the group 
theory of G(224)/S0(10)-Symmetry for the 4D theory is further suggested by 
the success of the predictions of the masses and the mixings of all fermions 
including neutrinos; these include m® « m®, wi(i/Qirac) « mt(Mx), and the 
smallness of Va, « 0.04 correlated with the largeness of sin2 20°®C„T « 1 (see 
Section 5). 

In contrast to this conventional approach based on a presumed string-
unified G(224) or an S0(10)-symmetry, there are several alternative ap-
proaches (scenarios) which have been proposed in the literature in recent 
years. Of importance is the fact that in many of these alternatives an at-
tempt is made to strongly suppress proton decay, in some cases exclusively 
the d = 5 operators (though not necessarily the d = 6), invariably utilizing 
a higher dimensional mechanism. Each of these alternatives is interesting in 
its own right. However, it seems to me that the collection of successes men-
tioned above is not (yet) realized within these alternatives. For comparison, 
I mention briefly only a few, leaving out many interesting variants. 
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One such alternative is based on the idea of TeV-scale large extra dimen-
sions [36]. Though most intriguing, it does not seem to provide simple expla-
nations for (a) coupling unification, (b) neutrino-masses (or their (mass)2-
differences) of the observed magnitudes23, (c) a large (or maximal) v^-vT os-
cillation angle, and (d) baryogenesis via leptogenesis that seems to require vi-
olation of B-L at high temperatures. Within this scenario, quantum-gravity 
induced proton decay would ordinarily be extra rapid. This is prevented, for 
example, by assuming that quarks and leptons live in different positions in 
the extra dimension. It appears to me that this idea (introduced just to pre-
vent proton decay) however, sacrifices the simple reason for the co-existence 
quarks and leptons that is provided by a gauge unification of matter within 
a family as in G(224) or SO(IO). 

There is an alternative class of attempts, carried out again in the context 
of higher dimensional theories, which, in contrast to the case mentioned 
above, assume that the extra dimensions (d > 4) are all small, lying between 
(or around) the conventional GUT and string scales. The approach of this 
class of attempts is rather close in spirit to that of the conventional approach 
of grand unification pursued here (see Section 3). As may be seen from 
the discussions below, they could essentially coincide with the string-unified 
G(224)-picture presented here if the effective symmetry in 4D, below the 
string (or compactification) scale, contains at least the G(224) symmetry 

Motivated by the original attempts carried out in the context of string 
theory [69] most of the recent attempts in the class mentioned above are 
made in the spirit of a bottom-up approach24 to physics near the GUT and 
the string scales. They assume, following the spirit of the results of Ref. [69], 
and of analogous results obtained for the free fermionic formulation of string 
theory [70] (for applications based on this formulation, see e.g., Ref. [71], 
[30], [31] and [72]), that grand unification occurs, through symmetries like 
Eg, SO(IO) or SU(5), only in some higher dimension (d > 4), and that the 
breaking of the unification gauge symmetry to some lower symmetry con-
taining the standard model gauge group as well as doublet-triplet splitting 
occurs in the process of compactification. More specifically the latter two 

23By placing the singlet (right-handed) neutrino in the bulk, for example, one can get 
a light Dirac neutrino [68] with a mass MV « KVEWM*/Mpi « « (2 x 10~5 eV), where 
M* « 1 TeV, Mpi « 1019 GeV (as in [68]), and « is the effective Yukawa coupling. To get 
m„ ~ 1/20 eV (for SuperK), one would, however, need too large a « ~ 2 x 103 and/or too 
large a value for M* > 100 TeV; which would seem to face the gauge-hierarchy problem. 

24This is of course also the case for the approach adopted here which is outlined in 
Section 3. 
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phenomena take place through either (a) Wilson lines [69], or (b) orbifolds 
[73] (for an incomplete list of recent attempts based on orbifold compactifica-
tion, see e.g., Refs. [74, 75, 76, 77, 79, 80, 81]), or (c) essentially equivalently 
by a set of boundary conditions together with the associated GSO projec-
tions for the free fermionic formulation (see e.g., [30, 31, 71, 72]), or (d) 
discrete symmetries operating in higher dimensions [82]. 

Most of these attempts end up not only in achieving (a) doublet-triplet 
splitting by projecting out the relevant color triplets from the zero mode-
spectrum in 4D, and (b) gauge symmetry breaking, as mentioned above, 
but also (c) suppressing strongly or eliminating the d = 5 proton decay 
operators. It should be mentioned, however, that in some of these attempts 
(see e.g., [75]), the mass of the X gauge boson is suggested to be lower than 
the conventional GUT-scale of 2xl01 6 GeV by about a factor of 3 to 8; 
correspondingly they raise the prospect for observing the d = 6 gauge boson 
mediated e+7r° mode, which is allowed in [75]. 

One crucial distinction between the various cases is provided by the na-
ture of the effective gauge symmetry that is realized in 4D, below the string 
(or compactification) scale. References [74, 75, 76, 77, 78, 79] assume a su-
persymmetric SU(5) gauge symmetry in 5D, which is broken down to the 
standard model gauge symmetry in 4D through compactification. Refer-
ences [80] and [81], on the other hand, assume a supersymmetric SO(IO) 
gauge symmetry in 6D and show (interestingly enough) that there are two 
5D subspaces containing G(224) and SU(5)xU(l) subgroups respectively, 
whose intersection leads to SU(3)xSU(2)xU(l)y xU( l )x in 4D, which con-
tains B-L. While it is desirable to have B-L in 4D, consistent breaking of 
U(l)x (or B-L) and generating desired masses of the right handed neutrinos, 
not to mention the masses and the mixings of the other fermions, is not yet 
realized in these constructions. 

For comparison, it seems to me that at the very least B-L should emerge 
as a generator in 4D to implement baryogenesis via leptogenesis, and also 
to protect RH neutrinos from acquiring a string-scale mass. This feature is 
not available in models which start with SU(5) in 5D. Furthermore, the full 
SU(4)-color symmetry, which of course contains B-L, plays a crucial role in 
yielding not only m® « m°T but also (a) wi(i^irac) ~ mt(Mx) that is needed 
to account for m{vT) or rather A t o 2 ( i / ( U - i / t ) , in accord with observation (see 
Section 4), and (b) the smallness of Vcb together with the near maximality 
of sin2 (see Section 5). The symmetry SU(2)i,xSU(2)# is also most 
useful in that it relates the masses and mixings of the up and the down 
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sectors. Without such relations, we will not have the predictivity of the 
framework presented in Section 5. 

In short, as mentioned before, certain intriguing features of the masses 
and mixings of all fermions including neutrinos, of the type mentioned above, 
as well as the need for leptogenesis, seem to strongly suggest that the effec-
tive symmetry below the string-scale in 4D should contain minimally the 
symmetry G(224) [or a close relative G(214)] and maximally SO(IO). The 
G(224)/SO(lO)-framework developed here has turned out to be the most 
predictive, in large part by virtue of its group structure and the assump-
tion of minimality of the Higgs system. Given that it is also most suc-
cessful so far, as regards its predictions, derivation of such a picture from 
an underlying theory, especially at least that based on an effective G(224)-
symmetry25 in 4D leading to the pattern of Yukawa couplings presented here 
remains a challenge.26 Pending such a derivation, however, given the empir-
ical support it has received so far, it makes sense to test the supersymmetric 
G(224)/SO(10)-framework, and thereby the conventional picture of grand 
unification on which it rests, thoroughly. There are two notable missing 
pieces of this picture. One is supersymmetry which will be probed at the 
LHC and a future NLC. The other, that constitutes the hallmark of grand 
unification, is proton decay. The results of this section on proton decay are 
summarized below. 

6.8 Section Summary 

Given the importance of proton decay, a systematic study of this process has 
been carried out within the supersymmetric SO(10)/G(224)-framework27, 
with special attention paid to its dependence on fermion masses and thresh-

25For this case, following the examples of Refs. [30] and [31], the color triplets in the 
10 a of SO(IO) would be projected out of the zero-mode spectrum, and thus the standard 
d — 5 operators which would have been induced by the exchange of such triplets would 
be absent, as in Refs. [74, 75, 76, 77, 78, 79, 80, 81, 82]. But, as long as the Majorana 
masses of the RH neutrinos are generated as in Section 4, the new neutrino-mass related 
d — 5 proton decay operators would generically be present (see Section 6 E). 

26In this regard, three-generation solutions containing the G(224)-symmetry in 4D have 
been obtained in the context of the fermionic formulation of string theory in Ref. [30], 
within type-I string vacua with or without supersymmetry in [83, 84, 85] in the context 
of D-brane inspired models in [86], within type-I string-construction or string-motivated 
models obtained from intersecting D-branes (with G(224) breaking into G(213) at Mx ~ 
Mst) in [87, 88], in string model with unification at the string scale in [89], and in other 
contexts (see e.g. [90] and [91]). 

2 7 A S described in Sections 3 , 4 and 5 . 
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old effects. A representative set of results corresponding to different choices 
of parameters is presented in Tables 1 and 2. Allowing for the ESSM-variant, 
the study strongly suggests that an upper limit on proton lifetime is given 
by 

V o t o n < (1/3-2) x 1034 years, (57) 
with VK+ being the dominant decay mode, and quite possibly and 
e+7r° being prominent. Although there are uncertainties in the matrix ele-
ment, in the SUSY-spectrum, in the phase-dependent factor, tan (3 and in 
certain sensitive elements of the fermion mass matrix, notably e' (see Eq. 
(48) for predictions in cases I versus II), this upper limit is obtained, for 
the case of MSSM embedded in SO(IO), by allowing for a generous range 
in these parameters and stretching all of them in the same direction so as 
to extend proton lifetime. In this sense, while the predicted lifetime spans 
a wide range, the upper limit quoted above, in fact more like 1033 years, is 
most conservative, for the case of MSSM (see Eq. (48) and Table 1). It is 
thus tightly constrained already by the empirical lower limit on r - 1 ( l~'K+ ) 
of 1.9 x 1033 years to the point of being disfavored. For the case of ESSM 
embedded in SO(IO), the standard d = 5 operators are suppressed compared 
to the case of MSSM; as a result, by themselves they can naturally lead to 
lifetimes in the range of (1 — 10) x 1033 years, for nearly central values of the 
parameters pertaining to the SUSY-spectrum and the matrix element (see 
Eq. (50) and Table 1). Including the contribution of the new d = 5 opera-
tors, and allowing for a wide variation of the parameters mentioned above, 
one finds that the range of (1033 — 2 x 1034) years for proton lifetime is not 
only very plausible but it also provides a rather conservative upper limit, for 
the case of ESSM embedded in either SO(IO) or G(224) (see Section 6.5 and 
Table 2). Thus our study provides a clear reason to expect that the discovery 
of proton decay should be imminent for the case of ESSM, and even more so 
for that of MSSM. The implication of this prediction for a next-generation 
detector is emphasized in the next section. 

7 Concluding Remarks 

The preceding sections show that, but for two missing pieces—supersymmetry 
and proton decay—the evidence in support of grand unification is now 
strong. It includes: (i) the observed family-structure, (ii) quantization 
of electric charge, (iii) the meeting of the gauge couplings, (iv) neutrino-
oscillations as observed at SuperK, (v) the intricate pattern of the masses 
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and mixings of all fermions, including the neutrinos, and (vi) the need for 
B-L as a generator, to implement baryogenesis. Taken together, these not 
only favor grand unification but in fact select out a particular route to such 
unification, based on the ideas of supersymmetry, SU(4)-color and left-right 
symmetry. Thus they point to the relevance of an effective string-unified 
G(224) or S0(10)-symmetry in four dimensions, as discussed in Sections 3 
and 4. 

Based on a systematic study of proton decay within the supersymmet-
ric SO(10)/G(224)-framework, that (a) allows for the possibilities of both 
MSSM and ESSM, and (b) incorporates the improved values of the matrix 
element and renormalization effects, I have argued that a conservative upper 
limit on the proton lifetime is about (1/3-2) xlO34 years. 

So, unless the fitting of all the pieces listed above is a mere coincidence, 
it is hard to believe that that is the case, discovery of proton decay should 
be around the corner. In particular, as mentioned in the Introduction, one 
expects that candidate events should very likely be observed in the near 
future already at SuperK, if its operation is restored. However, allowing for 
the possibility that proton lifetime may well be near the upper limit stated 
above, a next-generation detector providing a net gain in sensitivity by a 
factor five to ten, compared to SuperK, would be needed to produce real 
events and distinguish them unambiguously from the background. Such an 
improved detector would of course be essential to study the branching ratios 
of certain crucial though (possibly) sub-dominant decay modes such as the 
FI+K° and e+7r° as mentioned in Section 6.6. 

The reason for pleading for such improved searches is that proton decay 
would provide us with a wealth of knowledge about physics at truly short 
distances (< 10 - 3 0 cm), which cannot be gained by any other means. Specif-
ically, the observation of proton decay, at a rate suggested above, with VK+ 

mode being dominant, would not only reveal the underlying unity of quarks 
and leptons but also the relevance of supersymmetry. It would also confirm 
a unification of the fundamental forces at a scale of order 2 x 1016 GeV. Fur-
thermore, prominence of the f i + K ° mode, if seen, would have even deeper 
significance, in that in addition to supporting the three features mentioned 
above, it would also reveal the link between neutrino masses and proton 
decay, as discussed in Section 6. In this sense, the role of proton decay in 
probing into physics at the most fundamental level is unique. In view of how 
valuable such a probe would be and the fact that the predicted upper limit 
on the proton lifetime is at most a factor of three to ten higher than the em-
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pirical lower limit, the argument in favor of building an improved detector 
seems compelling. 

To conclude, the discovery of proton decay would undoubtedly constitute 
a landmark in the history of physics. It would provide the last, missing piece 
of gauge unification and would shed light on how such a unification may be 
extended to include gravity in the context of a deeper theory. 
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A P P E N D I X : A Natural Doublet-Triplet Splitting Mechanism 
in SO(IO) 

In supersymmetric SO(IO), a natural doublet-triplet splitting can be achieved 
by coupling the adjoint Higgs 45H to a 10H and a 10^. with 45H ac-
quiring a unification-scale VEV in the B-L direction [92, 93]: (45H) = 
(a, a, a, 0,0) x T2 with a ~ Mi •-. As discussed in Section 5, to generate CKM 
mixing for fermions we require (16H)<Z to acquire a VEV of the electroweak 
scale. To ensure accurate gauge coupling unification, the effective low energy 
theory should not contain split multiplets beyond those of MSSM. Thus the 
MSSM Higgs doublets must be linear combinations of the SU(2)x, doublets 
in 10H and 16H- A simple set of superpotential terms that ensures this and 
incorporates doublet-triplet splitting is [14]: 

WH = A 1 0 h 4 5 h 1 0 h + M i o 1 0 ' h 2 + A ' l 6 f f l 6 f f 10 H + MI616HT6H. 

_ (Al) 
A complete superpotential for 45h, 16h, 16h, 10//, 10',, and possibly other 
fields, which ensure that (a) 45h , 16h and 16h acquire unification scale 
VEVs with (45H) being along the (B-L) direction; (b) that exactly two 
Higgs doublets (Hu, Ha) remain light, with H,/ being a linear combination of 
(IOh)^ and (16H )d ; and (c) there are no unwanted pseudoGoldstone bosons, 
can be constructed. With (45H) in the B-L direction, it does not contribute 
to the Higgs doublet mass matrix, so one pair of Higgs doublet remains light, 
while all triplets acquire unification scale masses. The light MSSM Higgs 
doublets are [14] 

Hu = 10u , Ha = cos 7 10d + sin 7 16,/. (A2) 

with tan7 = A'<16h)/-Mi6- Consequently, <10)d = (cosj)va, (16a) = 
(sin7)vd, with {Ha) = and (16^) and (10^) denoting the electroweak 
VEVs of those multiplets. Note that Hu is purely in 10// and that (lO^)2 + 
(16d)2 = This mechanism of doublet-triplet (DT) splitting is the sim-
plest for the minimal Higgs systems. It has the advantage that it meets the 
requirements of both D-T splitting and CKM-mixing. In turn, it has three 
special consequences: 

(i) It modifies the familiar S0(10)-relation tan/3 = vu/va = mt/mb « 60 
to 28: 

t a n / 3 / c o s 7 « mt /ni f , « 60 . (A3 ) 
28It is worth noting that the simple relationship between cos 7 and tan (3—i.e. cos 7 « 

tan f3/(m,t/m,b)—would be modified if the superpotential contains an additional term like 
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As a result, even low to moderate values of tan (3 « 3 to 10 (say) are perfectly 
allowed in SO(IO) (corresponding to cos7 « 1/20 to 1/6). 

(ii) The most important consequence of the DT-splitting mechanism out-
lined above is this: In contrast to SU(5), for which the strengths of the stan-
dard d = 5 operators are proportional to (Mij c ) _ 1 (where MHc ~ few x 1016 

GeV (see Eq. (44)), for the S0(10)-model, they become proportional to 
M^1 , where MeS = (\a)2/Mi0> ~ Mf /Muy . As noted in Ref. [14], M10> 
can be naturally smaller (due to flavor symmetries) than M \ and thus Megr 
correspondingly larger than M \ by even one to three orders of magnitude. 
Now the proton decay amplitudes for SO(IO) in fact possess an intrinsic 
enhancement compared to those for SU(5), owing primarily due to differ-
ences in their Yukawa couplings for the up sector (see Appendix C in Ref. 
[14]). As a result, these larger values of Mefj ~ (1018 — 1019) GeV are in fact 
needed for the S0(10)-model to be compatible with the observed limit on 
the proton lifetime. At the same time, being bounded above by considera-
tions of threshold effects (see below), they allow optimism as regards future 
observation of proton decay. 

(iii) Meff gets bounded above by considerations of coupling unification 
and GUT-scale threshold effects as follows. Let us recall that in the absence 
of unification-scale threshold and Planck-scale effects, the MSSM value of 
a^{mz) in the MS scheme, obtained by assuming gauge coupling unification, 
is given by = 0.125 — 0.13 [7]. This is about 5 to 8% higher than 
the observed value: a%{mz) = 0.118 ±0.003 [13]. Now, assuming coupling 
unification, the net (observed) value of 03, for the case of MSSM embedded 
in SU(5) or SO(IO), is given by: 

az(mz)net = az(mz)MssM + a « 3 ( « ^ ) d t S M + A 3 ( A 4 ) 

where Aa3(m^)DT and A3 represent GUT-scale threshold corrections re-
spectively due to doublet-triplet splitting and the splittings in the other 
multiplets (like the gauge and the Higgs multiplets), all of which are eval-
uated at mz- Now, owing to mixing between 10,/ and 16,/ [see Eq. (A2)], 
one finds that Aa3(m^)DT is given by [a3{mz)2/27r](9/7) ln(Mefjcos j / M x ) 
[14]. 

As mentioned above, constraint from proton lifetime sets a lower limit 
A" l6 i j • 16h • 1 0 , which would induce a mixing between the doublets in 10'd, 1 6 a n d 101(. 
That in turn will mean that the upper limit on Meg cos 7 following from considerations of 
threshold corrections (see below) will not be strictly proportional to tan /S. I thank Kaladi 
Babu for making this observation. 



Confronting the Conventional Ideas of Grand Unification 169 

on Meff given by Megr > (1 — 6) x 1018GeV. Thus, even for small tan/3 « 2 
(i.e. C0S7 « tan(/3/60) « 1/30), A o ^ t o ^ d t is positive; and it increases 
logarithmically with Meg. Since is higher than «3(wiz)obs) and 
as we saw, A o ^ t o ^ d t is positive, it follows that the corrections due to other 
multiplets denoted by c)̂  = A'3/as(mz) should be appropriately negative so 
that as (mz) net would agree with the observed value. 

In order that coupling unification may be regarded as a natural prediction 
of SUSY unification, as opposed to being a mere coincidence, it is important 
that the magnitude of the net other threshold corrections, denoted by be 
negative but not any more than about 8 to 10% in magnitude (i.e. — Sf3 < 
(8 — 10)%). It was shown in Ref. [14] that the contributions from the gauge 
and the minimal set of Higgs multiplets (i.e. 45H, 16//. 16// and 10//) leads 
to threshold correction, denoted by which has in fact a negative sign and 
quite naturally a magnitude of 4 to 8%, as needed to account for the observed 
coupling unification. The correction to 03 (mz) due to Planck scale physics 
through the effective operator F^F^^H/M does not alter the estimate of 
S'3 because it vanishes due to antisymmetry in the SO(IO)- contraction. 

Imposing that Sf3 (evaluated at mz)he negative and not any more than 
about 10-11% in magnitude in turn provides a restriction on how big the 
correction due to doublet-triplet splitting—i.e. Aa 3 (mz)nf—can be. That 
in turn sets an upper limit on Meg cos 7, and thereby on Meg for a given 
tan/3. For instance, for MSSM, with tan/3 = (2,3,8), one obtains (see Ref. 
[14]): Meg < (4,2.66,1) x 1018 GeV. Thus, conservatively, taking tan/3 > 3, 
one obtains: 

MeS < 2.7 x 1018GeV (MSSM) (tan/3 > 3) . (A5) 

Limit on M e f f For The case of E S S M 

Next consider the restriction on Meg that would arise for the case of the ex-
tended supersymmetric standard model (ESSM), which introduces an extra 
pair of vector-like families (16 + 16) of SO(IO)) at the TeV scale [21] (see also 
footnote 16). In this case, aunjf is raised to 0.25 to 0.3, compared to 0.04 
in MSSM. Owing to increased two-loop effects the scale of unification Mx 
is raised to (1/2 — 2) x 1017 GeV, while a3(m^)gSSM is lowered to about 
0.112-0.118 [21, 66]. 

With raised Mx, the product Meg cos 7 « Mefj(tan/3)/60 can be higher 
by almost a factor of five compared to that for MSSM, without altering 
Aa3(mz)DT- Furthermore, since a3(wi^)^SSM is typically lower than the 
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observed value of a%(mz) (contrast this with the case of ESSM), for ESSM, 
MEff can be higher than that for MSSM by as much as a factor of 2 to 3, 
without requiring an enhancement of £3. The net result is that for ESSM 
embedded in SO(IO), tan/3 can span a wide range from 3 to even 30 (say) 
and simultaneously the upper limit on MEG can vary over the range (60 to 
6)xl01 8GeF, satisfying 

MES < (6 x 1018GeV)(30/tan0) (ESSM), (A6) 

with the unification-scale threshold corrections from "other" sources denoted 
by £>3 = A'3/a^(mz) being negative, but no more than about 5% in mag-
nitude. As noted above, such values of SF3 emerge quite naturally for the 
minimal Higgs system. Thus, one important consequence of ESSM is that 
by allowing for larger values of MEG (compared to MSSM), without entailing 
larger values of £>3, it can be perfectly compatible with the limit on proton 
lifetime for almost central values of the parameters pertaining to the SUSY 
spectrum and the relevant matrix elements (see Eq. (40)). Further, larger 
values of tan/3 (10 to 30, say) can be compatible with proton lifetime only 
for the case of ESSM, but not for MSSM. These features are discussed in 
the text, and also exhibited in Table 2. 

• Since we are interested in exhibiting expected proton lifetime near the 
upper end, we are not showing entries in Table 2 corresponding to values 
of the parameters for the SUSY spectrum and the matrix element [see Eq. 
(40), for which the curly bracket {C} appearing in Eqs. (47), (49), (52)] 
would be less than one (see however Table 1). In this context, we have 
chosen here "nearly central", "intermediate" and "nearly extreme" values 
of the parameters such that the said curly bracket is given by 2, 8 and 32 
respectively, instead of its extreme upper-end value of 64. For instance, 
the curly bracket would be 2 if H„ = (0.0117) GeV3, nig » 1.2 TeV and 
m^/rrig « (1/7.2), while it would be 8 if p H = 0.010 GeV3, nig « 1.44 TeV 
and rriyy/mq « 1/10; and it would be 32 if, for example, (3h = 0.007 GeV3, 
rriq « \/2(1.2 TeV) and m^/rrig « 1/12. 

f All the entries for the standard d = 5 operators correspond to taking an 
intermediate value of e' « (1 to 1.4) x 10 - 4 (as opposed to the extreme values 
of 2 x 10 - 4 and zero for cases I and II, see Eq. (34)) and an intermediate 
phase-dependent factor such that the uncertainty factor in the square bracket 
appearing in Eqs. (47) and (49) is given by 5, instead of its extreme values 
of 2 x 4 = 8 and 2.5 x 4 = 10, respectively 

ff For the new operators, the factor [8-1/64] appearing in Eq. (52) is 
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taken to be 6, and K d e f i n e d in Section 6.1, is taken to be 25, which are 
quite plausible, in so far as we wish to obtain reasonable values for proton 
lifetime at the upper end. 

• The standard d = 5 operators for both MSSM and ESSM are evaluated 
by taking the upper limit on Meg (defined in the text) that is allowed by 
the requirement of natural coupling unification. This requirement restricts 
threshold corrections and thereby sets an upper limit on Meg, for a given 
tan /3 (see Section 6 and Appendix). 

• For all cases, the standard and the new d = 5 operators must be 
combined to obtain the net amplitude. For the three cases of ESSM marked 
with an asterisk, and other similar cases which arise for low tan (3 « 3 to 
6 (say), the standard d = 5 operators by themselves would lead to proton 
lifetimes typically exceeding (0.25-4) x 1034 years. For these cases, however, 
the contribution from the new d = 5 operators would dominate, which quite 
naturally lead to lifetimes in the range of (1033 —1034) years (see last column). 

• As shown above, the case of MSSM embedded in SO(IO) is tightly 
constrained to the point of being disfavored by present empirical lower limit 
on proton lifetime Eq. (42) [see discussion following Eq. (48)]. 

• Including contributions from the standard and the new operators, the 
case of ESSM, embedded in either G(224) or SO(IO), is, however, fully con-
sistent with present limits on proton lifetime for a wide range of parameters; 
at the same time it provides optimism that proton decay will be discovered 
in the near future, with a lifetime < 1034 years. 

• The lower limits on proton lifetime are not exhibited. In the presence 
of the new operators, these can typically be as low as about 1029 years (even 
for the case of ESSM embedded in SO(IO)). Such limits and even higher are 
of course long excluded by experiments. 
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Table 1: Proton lifetime, based on contributions from only the standard operators for the case of ESSM 
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Table 2: Values of proton lifetime (F 1 (p —>• f / i ' + ))for a wide range of parameters. 
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(spectrum/Matrix 

element) 
tan/3=3 tan/3=10 tan/3=5 tan/3=10 Independent of tan (3 

Nearly "central" 
{C}=2 

0.2 x 1032 

yrs 
1.6x 103U 

yrs 
0.25 xlO34 

yrs* 
0.7xl033 

yrs 
0.50 x 1033 

y r S t t 

Intermediate 
{C}=8 

0.7xl032 

yrs 
0.6x 103i 

yrs 
lxlO34 

yrs* 
2.8xl033 

yrs 
2 xlO33 

y r s t t 

Nearly Extreme 
{C}=32 

0.3xl033 

yrs 
2.6x 1031 

yrs 
4xl034 

yrs* 
l.lxlO34 

yrs 
8xl033 

y r S t t 

*In this case, l i fet ime is given by the last column. 

(M 00 
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Abstract 

These Lecture Notes give an intuitive introduction to noncommu-
tative field theory with an emphasis on the physics ideas and methods. 
We pay special attention to those aspects of noncommutative field the-
ory that represent genuine novelties from the physical point of view, 
such as the UV/IR mixing. We also include brief discussions of possible 
applications of these ideas to phenomenology as well as the connection 
to string theory. 
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1 Introduction 
Noncommutative Field Theory (NCFT) is a field theory defined over a 

space-time endowed with a Noncommutative Geometry (NCG) (c.f. [1, 2, 3]). 
Although the motivations for considering NCG are mostly mathematical, 

aspects of the formalism do show up in various physical situations and, in 
priciple, it is a relevant generalization of the standard framework of local 
quantum field theory. Indeed, the existence of a nonlocal, and yet tractable, 
generalization of quantum field theory is a highly non-trivial fact of great 
intrinsic interest. This is not only linked to interesting mathematics but it 
is also related to the non-locality present in string theory [4]. 

In this vein, the recent discovery of subtle quantum mechanical effects in 
NCFT, having to do with the interplay between locality and renormalization 
(c.f. [5]), has prompted a wide interest in NCFT as a toy model for the most 
widely studied nonlocal theory: string theory. Other potential applications 
of the formalism to the study of large-N limits of ordinary gauge theories 
(c.f. [2, 6, 7]), as well as the Quantum Hall Effect [8], only add to the interest 
of these ideas. 

Here we give a very basic introduction to NCFT, emphasizing the phys-
ical methods and motivations, at the price of being considerably sloppy on 
the mathematical niceties of the subject. Other reviews with a much more 
comprehensive scope exist. See for example [9]. Reviews with a more math-
ematical outlook are for example [10, 11]. 

In preparing these notes, no attemp has been made of giving a careful set 
of references. Rather complete sets of references can be found in the reviews 
just quoted. In the text, we will only refer explicitly to some works that are 
particularly relevant to the discussion. 

1.1 Noncommutative Geometry 

Intuitively, NCG is the generalization of standard geometry ideas, such 
as manifolds, metrics and fiber bundles, to spaces where the "coodinates" 
are operators rather than c-numbers. In particular, they do not commute, 
but satisfy some operator algebra 

[x\xj] = Cnj(x). (1) 

It is useful to think of the operators xk as "generators" of an algebra A, 
in the sense that the general element of A can be thought of as a function 
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of the basic variables, f (x ) , satisfying certain constraints. In this case, the 
functions C(x) acquire the interpretation of "structure functions", general-
izations of the notion of structure constants for ordinary Lie algebras. The 
basic idea of the development of NCG is then the recovery of geometrical no-
tions about the "base space" (the space parametrized by the "coordinates" 
Xk) in terms of the algebra A of functions on that space, where this algebra 
is required to be associative but in general non-commutative. 

1.1.1 Examples 

Rather than developing these ideas in full generality, here we collect some 
simple examples that are motivated by the applications of the formalism to 
physics. 

• The trivial example is C^ = 0, a commutative algebra. Then A is 
the algebra of (say smooth) functions C(M) on the base manifold 
parametrized by the c-numbers xk. 

• The next example in order of triviality is when the noncommutative 
algebra is a direct product of a commutative algebra and a finite-
dimensional noncommutative algebra, such as some Lie algebra Q: 

This is the case of ordinary gauge theory, where fields are just matrix-
valued functions. 

• Another simple, albeit somewhat exotic example is the "fuzzy sphere". 
If we define S2 as the solution in R 3 of 

the obvious definition of the fuzzy sphere whould be in terms of three 
non-commuting operators x\,x2,xs that satisfy 

A = C{M)®g. (2) 

.RF + X22 + ./-'J = I?2, (3) 

x\ + xl + xl = R2 1, (4) 

with 1 the unit operator of the algebra. An obvious choice is 

(5) 
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where Ja are SU(2) angular momenta in the spin-j representation. 
Hence, this is the particular choice 

R 
Cabix) = i , E (6) 

V J U + 1 ) c 

for the structure "constants". Notice that the resulting operator space 
respects the 50(3 ) isometry that characterizes S2 . The space is "dis-
crete" in some sense, because the spectrum of eigenvalues of any po-
sition operator xa has dimension 2j + 1. So, it looks like some kind 
of "lattice approximation" to S2. Strictly speaking, we cannot build a 
quantum field theory with an infinite number of degrees of freedom on 
such space. In the limit j —> oo at fixed R, the number of degrees of 
freedom does diverge, but then we recover the commutative algebra of 
functions on S2. 

• In the previous examples, the noncommutative character of A was 
"finite-dimensional", which leads to somewhat trivial examples. The 
next step in complexity is to regard Xj as operators represented in some 
infinite-dimensional Hilbert space, with continuous spectrum, i.e. we 
want to regard their eigenvalues are parametrizing standard flat space 
R''. Then the simplest choice of structure constants is a simple central 
extension: 

[xj,xk] = iejk7 (7) 

with e j k an antisymmetric matrix of constants with length-dimension 
two. This defines noncommutative flat space or and an obvious 
restriction to periodic angular coordinates defines the noncommutative 
torus Tj| = Rj|/Zd. 

1.2 Examples from Physics 

NCG may arise in physical systems when some effective position operator 
becomes non-commutative as a result of interactions. 

[ 1 ^ , 1 ^ 0 . (8) 

This involves typically non-relativistic systems in first-quantization and the 
non-commutatitivity of the position operator may or may not vanish in the 
classical limit h —> 0. We will illustrate this with two examples: electrons in 
a strong magnetic field and D-branes. 
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1.2.1 Electrons in a Strong Magnetic Field 

Let us consider planar electrons in a strong uniform magnetic field Bij, 
with Hamiltonian 

where 
A t = ^ B t j x i (10) 

in an appropriate gauge. Defining 

V 2 n 

and the operators 

elBl'x + iy) ( 1 1) 

a = dg + ~, J = -0z + ~. (12) 

one finds a harmonic oscillator system 

[a, a] = [af, a f] = 0, [a, a f] = 1, (13) 

and the Hamiltonian 
H = hu> c(a*a + ± y (14) 

with spectrum Ei = hu>c(£ + £ Z, where u>c = e\B\/me denotes the 
cyclotron (Larmor) frequency. Each energy (Landau) level has an infinite 
degeneracy; the ground states satisfy: 

a${z,z)= (dz- + 0 # M ) = O. (15) 

A basis of the lowest Landau level (LLL) can be chosen as 

= (16) 
y m ! 

We can concentrate on the LLL wave functions if the magnetic field is 
large enough, so that mixing with the higher Landau levels is suppressed 
by the high cyclotron frequency gap. The interesting feature of the LLL 
wave functions is that they are almost analytic. We can consider analytic 
functions vm(z) by stripping off the exponential term: 

vm(z) = el-zl^2tpm(z,z). (17) 
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If we further define a specific inner product on the LLL: 

Onbm) = J d/J,(z,z) Vn(z) Vm(z) = (lpn\lpm) (IB) 

with the non-holomorphic exponential term in the measure: 
1 12 

djj,(z7z) = • dzdz, (19) 

then we have, integrating by parts: 
(f\dz\g) = (f\z\g), (20) 

so that, on the LLL: 
(9Z)LLL = (Z)LLL- ( 21 ) 

Hence, [dz,z\ = 1 implies 
[z,z]LLL = 1 (22) 

or, back to the original variables 

[X,V]LLL = IOS, 8 B = r̂ Ti" • (23 ) e\iS\ 

Thus, the motion of electrons in the lowest Landau level is effectively 
described by a noncommutative plane. NCG is relevant to the physics of the 
Quantum Hall Effect. 

It is worth deriving this result in a more heuristic fashion, using a La-
grangian argument. The Lagrangian of the system is 

L = hfnex - | Btj x1' xj. (24) 

In a situation where the kinetic energy term is negligible \mex%\ <C \BijX^\, 
we may approximate the dynamics by the degenerate Lagrangian 

L k ^ - B ^ x K (25) 

The canonical momenta are proportional to the coordinates themselves: 
dL 
dxi = S = (26) 

Upon canonical quantization 

3 
and finally: 

[71-j, xl] = -ih Sj = —e Bjk [xk, xl], (27) 

kl 
[xk,xl] = ih(^w) . (28) 
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1.2.2 D-branes 

Dp-branes are specific states of string theory that resemble non-relativistic 
solitons extended in p spatial dimensions [12]. For the case of D-particles, 
their low-energy dynamics is primarily characterized by the position collec-
tive coordinates. For a system of distant N D-particles, we have a collection 
N vectors of positions Xi,i = 1 , . . . , N. When the D-particles' separation is 
in the stringy domain, |.r,; — ,7j\ < £$, with is the string length, new light 
degrees of freedom appear, corresponding to open strings stretched between 
neighboring D-particles. Therefore, the number of collective coordinates is 
enlarged to N2 and we may assemble them into a hermitian matrix X ^ . 

Thus, the notion of positon becomes "fuzzy" at short distances. An 
operational definition of the i-th particle position is 

(X), = <i|X|i) = Xii. (29) 

With this definition, any non-diagonal matrix of collective coordinates as-
signs a nonvanishing dispersion to the possition of the i-th particle: 

(AX)? = (X2), - <X>? = £ |Xy|2 > 0. (30) 

Once the positions are promoted to a matrix, the statistical permuta-
tion group of N particles, SN, is naturally promoted to U(N), whose Weyl 
subgroup is precisely SM-

In fact, for a one-dimensional system we just have a single "position 
matrix" and we can always agree to define the positions in terms of the 
eigenvalues of this matrix. Starting with two spatial dimensions we have 
more than one position matrix and it is not possible to diagonalize all of them 
in the same basis, unless they commute. In D-brane theory, this condition 
is selected dynamically by the minima of the static interaction potential of 
a system of D-particles: 

V(X) = ~ £ (31) 
9sts a,6=1 

Thus, in this case the noncommutativity survives the classical limit of 
the theory. In fact, taking into account the "statistical symmetry" U(N) we 
are just constructing a U(N) gauge theory with Higgs fields in the adjoint 
representation, and interpreting the expectation values of these scalar fields 
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as generalized position coordinates of the soliton. Thus, from the point of 
view of the earlier list of simple NCG examples, the D-branes represent the 
noncommutative algebra C(M) x U(N). Notice however that here M is 
only the world-volume of the D-brane, whereas the space transverse to the 
D-brane is constructed out of the matrix degrees of freedom, via the Higgs 
fields Xa in the adjoint of U(N). 

In certain situations, the interaction potential depends on a background 
field through a "dielectric coupling" [13]: 

5V(X) = ifeabctr XaXbXc. (32) 

In this example, it depends on a single constant parameter / and we take 
d = 3. The equations of motion become 

[[Xa,Xb},Xb]+ifeabc[Xb,Xc}. (33) 

Although commuting (diagonal) matrices are still a solution, we see that the 
fuzzy sphere (6) is a solution with 

A"„ = / . / „ . (34) 

and Ja in the spin-j representation of SU(2). 

2 Noncommutative Field Theory 
In constructing NCFT we go one step further. As in the D-brane ex-

ample, the underlying NCG is taken as a passive "arena", or background 
choice, for the dynamics, but we formally generalize the noncommutativity 
to infinite matrices, i.e. operator algebras. In these lectures we concentrate 
on the simple example of The nontrivial structure 

[xj,xk]=iejk (35) 

can be interpreted by regarding xk as phase-space variables represented on 
a Hilbert space Tig. This Hilbert space has nothing to do with the standard 
Quantum Hilbert space that arises upon quantization. In fact, H$ is 
part of the specification of the classical field theory, i.e. the classical field 
configurations are functions <f>(xk) on the algebra of operators A$ that are 
represented on HQ. 
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It is clear that such a structure imposes a physical nonlocality on length 
scales of 0(Vd). There is a minimal area unit of O{0) in the sense of the 
Heisenberg uncertainty relation: 

Axj Axk >hdjk\. (36) 
£J 

Thus, we may hope that \[Q is an interesting physical cutoff in quantum 
field theory, presumably with interesting applications to the quantum gravity 
realm. Meanwhile, if space-time satisfies (35) at short distances, the most 
characteristic hint at low energies would be the short-distance breakdown of 
Lorentz invariance, a very well-tested symmetry. 

2.1 Elementary Construction of Classical N C F T 

For simplicity, we begin with a single noncommutative plane with coor-
dinates x, y satisfying 

[x,y]=i6. (37) 

We consider the standard representation on "wave functions" on L 2 (R) . 
The operator x is diagonal and represented multiplicatively, whereas y is 
the corresponding 'conjugated momentum': 

xip{x) = xip{x), yil>{x) =—iddxi>{x). (38) 

We have then the standard operator identities: 

etpi>f(x) =f{x^Pe)etp\ (39) 

so that y generates translations o f f eigenvalues. Straightforward application 
of the Baker Campbell Hausdorff formula yields the plane-wave composition 
rule: 

where we have returned to a general matrix and defined 

pxq = piid^vqv. (41) 

A convenient way of manipulating the operator algebra is to map it to 
some deformed function algebra. This in turn allows a much more intuitive 
development of the physical set up for NCFT. 
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The basic idea is to work with the "components" of the operators in a 
conventionally chosen basis. This is the infinite-dimensional generalization 
of the standard choice of a basis in a finite-dimensional U(N) Lie algebra: 

N2 

4 = (42) 
o=1 

In this case, we say that the hermitian matrix A has "vector components" 
A" in the basis of generators {Ta}. For a general operator O acting on Ti$ 
the "vector of components" in a given basis is in general a function of a 
continuous label f^x^). This establishes a map from the operator algebra 
to the space of ordinary functions: 

0 = J ddxfd(x»)Tx», (43) 

where Txn is a basis of the operator algebra. Associated to this choice of 
basis, there is a representation of the operator product "in components". 
This is a product in the space of component functions, the "star product", 
defined by the identity: 

fd&W = foW * f&W- ( 4 4 ) 

For illustrative purposes, it is interesting to work out the star product in the 
finite-dimensional U(N) Lie algebra. In a conventional basis of generators 
Ta we have 

r , T b = j 2 c f ' r (45) 
c 

for some constants Cf. Given two hermitian matrices A = aAaTa,B = 
Ysa BaTaj the product can be written as 

AB = J2AaBbJ2 c f T° = J2(AB)c T'- (10) 
a,b c c 

So that the definition of "star product" is simply 

AC*BC = (AB)c = Cf Aa Bb. (47) 
a,b 

A convenient choice for Rj| is the so-called Weyl map, defined by choosing 
the operator basis as 

( 4 8 ) 
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with inverse 

/ d ( s " ) = / - ^ j d •Ere^C®-*)" O ( ^ ) . (49) 

The specific property of the Weyl map that makes it useful is that the 
plane-wave operator 

exp (ip • x) (50) 

is associated to the plane-wave function 

exp(ip-x). (51) 

In particular, the composition law (44) holds for the star product of the 
component functions: 

;PXQ J(j>+q)-x (52) 

A general expression for arbitrary functions can be obtained by simple su-
perposition of plane waves: 

f(x) * g(x) = f(x) exp Q da>3 ^ g{x). (53) 

This associative, but noncommutative product is known as the Moyal prod-
uct of functions. In this language, NCG amounts to a smooth deformation of 
the classical algebra of functions, i.e. we just change the composition rules, 
but not the elements of the algebra. 

Since A$ can be viewed as a deformation of the ordinary algebra of 
functions on R'' , we can construct NCFT by deforming action functionals 
in a straightforward way. 

Therefore, a prescription to construct NCFT's is to exercise a "correspon-
dence principle" in terms of the noncommutativity deformation parameter 
03k: one just replaces ordinary products by Moyal products all over the 
place, i.e. for a scalar field: 

= jddx (ldrf*d»<l>-^m2<l>*<l>-±<l>*<l> (54) 

An important property of any such action is the cyclic property of the 
Moyal product inside integrals: 

J dAx f (x)-k g(x)-k h(x) = J ddxg(x) *h(x) * f(x), (55) 
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provided one can neglect boundary terms at infinity. In particular, under 
the same conditions one can remove one Moyal product inside integrals: 

J ddxf(x) *g{x) = J ddx f(x)g(x). (56) 

As with any correspondence principle, the noncommutativity of products 
implies some ambiguities in translating actions. For example, for fields with 
indices, the interaction term 

J ddx </>i*ft* * 4? (57) 

is not equivalent to 
j dtxfc + fa *<?*<!?. (58) 

2.2 Noncommutative Gauge Theories 

The previous construction of a classical scalar field theory admits straight-
forward generalizations to other theories with polynomial interactions involv-
ing fermions and scalars with Yukawa-type couplings. Special features arise 
in the case of gauge fields. 

Starting from an ordinary gauge theory based on a Lie group G, the 
naive correspondence principle yields 

< § n c y m = " 4 ^ 2 J ddxtr F„v * F^, (59) 

where 
FIJa, = dltAv-dvAlt + iAlt*Av-iAv*Alt, (60) 

with infinitesimal gauge transformations acting as 

bAil = Dil<L = dil<L + iAil*<L-i<L*Ail. (61) 

Notice that taking the gauge fields valued on the standard Lie algebra of G 
is not in general consistent with the noncommutative deformation. Let us 
write A(x) = ^aAa{x)Ta for some basis of Q. Then the non-commutative 
character of the Moyal product implies that gauge transformations depend 
on the anticommutator {Ta,Tb}, together with the usual commutator terms 
[Ta, Tb]. In general, the anticommutator of two generators belongs to the Lie 
algebra only in the case of U(N) in the fundamental representation. Thus, 
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the discussions of NCYM theories are normally restricted to U(N) groups. 
In principle, other options are possible (such as working with the univeral 
enveloping algebra that contains the products of all generators [14]) at the 
price of working with a theory whose degree of non-locality is considerably 
larger than that implied by the Moyal product. 

Restricting the generators to the fundamental representation of U(N) 
yields further constraints on the possible matter representations. These are 
restricted to the adjoint, the fundamental, ip, and the antifundamental, 
•ip. If g(x) is an N x N matrix-valued function satisfying 

g{x) * g{x)^ = g{x)^ * g(x) = 1, (62) 

the finite gauge transformations are 

An g + iAp-idJ-kg*, Vg*V*g*, ip g-ktp, tp^tp-kg^. 
(63) 

An important property that follows from these expressions is the non-
existence of naive local gauge-invariant operators, i.e. F2 —> g * F2 * g^ 
under gauge transformations, but in order to cancel out g(x) against g(x)t 
we need to use the cyclic property of the trace. Since the "trace" for the 
Moyal product includes the ordinary integral, we conclude that standard 
local operators must be integrated over in order to remain gauge-invariant 
after the noncommutative deformation. 

On can do slightly better and define quasi-local operators by using the 
so-called "open Wilson lines". Consider a Wilson line operator associated 
to the path jx with initial point x: 

W(7x) = P*exp (if A), (64) 

with P„ denoting the instruction of path-ordering with respect to the Moyal 
product. Then, given any local operator O(x), formally constructed out 
of the field strength and covariant derivatives, the noncommutative Fourier 
transform 

6{k) = J ddx tr 0{x) * W(-yx) * elkx (65) 

is gauge-invariant provided the endpoint of the path lies at the point 
x^ + kvQiw (c.f. for example [15]). 

There are some interesting consequences of these algebraic restrictions 
when considering the rank-one NCYM theory, i.e. the one based on aU{ 1) 
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gauge fields". Notice that this theory contains non-linear interactions much 
like any other non-abelian gauge theory, such that the theory becomes free 
in the classical commutative limit 8 —> 0. Once the Yang-Mills coupling 
e is fixed, the restriction on the matter representations implies that the 
charge of the matter fields cannot be adjusted further. Thus, the f7(l) 
charge assignments of the Standard Model are not easily implemented in a 
noncommutative deformation (c.f. for example [16], and [17] for alternative 
constructions). 

2.3 Perturbative Quantization 

In carrying the quantization of the classical theory (54) we may proceed 
with a formal canonical quantization provided 80t = 0. Otherwise, the infi-
nite number of time derivatives in the action makes the canonical program 
rather ackward. 

An alternative is to write down a formal path integral 

Z[J] = J dfi[</>] elSM e ? / d d x J^ (66) 

with some specification of the integration measure. For the time being, we 
will restrict ourselves to the perturbative evaluation of Z[J]. 

The crucial observation is that the free approximation is locally 8-indepen-
dent: 

S[#ree = ^jddx (d»<j> *&*<!> - m2<j>*<j>) = ^ J ddx (d^d^cj) - ™V) . 
(67) 

Therefore, in evaluating perturbation-theory integrals, we can consider the 
standard Gaussian ^-independent measure. This prescription gives a set of 
Feynman rules. We have standard propagators 

i 
p2 ^ m2 + i 0' 

and non-standard interaction terms. Upon Fourier transformation: 

I ddx 4>(x) * ... * 4>(x) = I ddp (2n)d S(J2p) 4>(pi) • • • 4>(Pn) W(pi, 

where 
W(pi,... ,pn) = exp - % - J^Pi x Pj 

(68) 

(69) 

(70) 
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is the so-called Moyal phase. Thus, we are led to a simple Feynman rule for 
the interactions. We just need to "decorate" the standard Feynman vertex 
with the non-local Moyal phase: 

-i Xn—>-i\nW(p!,...,pn). (71) 

Notice that the Moyal phase spoils the Bose symmetry of the vertex, the 
noncommutative vertex being only cyclically symmetric. This modifies the 
symmetry factors associated to the Feynman rules. 

Since the vertices written as in (71) are only cyclically symmetric, they 
satisfy the same topological properties as planar vertices in 't Hooft's double 
line notation for gauge-theory Feynman rules [18]. Thus, diagrams in non-
commutative field theories admit a similar topological classification by the 
genus of the surface on which they can be drawn. 

Using simple topological arguments, plus momentum conservation at 
each vertex, one can prove a general result regarding the ^-dependence of 
the Feynman diagram integrands: the class of planar diagrams has a in-
dependence saturated by the external legs, i.e. the overall Moyal phase of 
the diagram with a given set of external legs equals the phase of a single-
vertex diagram with the same external legs (c.f. [19]). 

For nonplanar diagrams, the ^-dependence remains in non-trivial phases 
in the integrand. Nonplanar loop integrations are then sensitive to the Moyal 
phases. 

2.3.1 Two Examples 

Having noticed that the bosonic Feynman vertices are not Bose-symmetric 
in general, it is still useful in practice to symmetrize them in order to ma-
nipulate them in a standard fashion, without paying special attention to the 
different topological classes of diagrams. We can illustrate this with two 
examples. 

Consider first <fi3 theory. The vertex can be obtained directly by consid-
ering the Moyal product of two plane-waves 

4(pi)etpiX e%P2X = 4{pi)4{p2) e^ipiXp2 e^pi+p^x. (72) 

Since the momentum variables p\, p2 are integrated over in writing the in-
teraction action, they are dummy variables can be switched over. So we can 
symmetrize the Moyal product above and write 

4 ( P I ) H P 2 ) COS ( ^ p ) ei(pi+p2)® ( 7 3 ) 
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Therefore, we can use the Feynman rule 

Vertex = —i A eos(pi x P2/2), (74) 

where Bose symmetry is restored. Consider now the one-loop contribution 
to the two-point function. It contains a factor of cos2(pi x p2 j2) from the 
vertices. The two structures, planar and non-planar, arise upon writing: 

2 [ P i ><P2\ 1 1 / v x cos ( — - — J = - + - cos (pi x P2). (75) 

The first term, 8 independent, yielding the planar part. 
A second example of the same nature involves the Feynman rules of a 

U(N) NCYM theory. Let us write for the plane-wave field: 
N2 

A l i(x) = J 2 A - l ( p ) T a e ^ (76) 
0=1 

and reduce the commutator: 

= \ T " } 4 ] * + ^ E t T ° ' T " ] 4 K (77) 
a,b a,b 

Defining now the usual symmetric and antisymmetric tensor structures: 

[Ta, Tb] = i Y^ fabc Tc, {Ta, Tb} = ^ dabc T c , (78) 
c c 

one obtains 

[ / V Av]+ = E (* dabC T°sin (Pi x P2/2) + i fabc Tc cos (pi x p2/2)) 
c 

xA^(pi)Abv(p2) (79) 

It follows that the Feynman rule for a U(N) noncommutative gauge theory 
can be constructed from the Feynman rule of the ordinary SU(N) theory by 
the substitution of the structure constants: 

tabc . tabc {Pa Pb\ , ,abc • f Pa ^ Pb\ /on\ J y jaui, cog I I ^auc gm I I _ ^gQJ 

where now the group indices a, 6, c include also the diagonal U(\) subgroup 
of U(N). For example, the noncommutative rank-one theory, U(l), has a 
three-point coupling of the photon given by 

F 7 r y = -2g sin ^ElJiF^j [ ( p i _ + _ ^ 

+(P3 - P i ) " 2 » y ' 4 1 ' 4 8 ] • (81) 



202 J.L.F. Barbon 

2.3.2 Asymptotically Free Photons 

As an example of the peculiar new features introduced by noncommuta-
tivity we make a heuristic discussion of a surprising fact: the rank-one non-
commutative Yang-Mills theory (pure noncommutative photons) is asymp-
totically free (see for example [20]). According to the previous paragraph, 
the perturbative structure of this theory is rather similar to that of SU(N) 
Yang-Mills theory in the limit N —> 1. The perhaps surprising fact is that 
a characteristic dynamical feature such as asymptotic freedom does survive 
in the limit. 

Consider the ordinary SU(N) Yang-Mills theory with Wilsonian cutoff 
A and bare coupling g\ (we now switch to Euclidean signature): 

S = 4 - t f A tr |F|2. (82) 4<?i J 

Integrating out quantum fluctuations in a momentum slice \k\ < \q\ < A, 
the operator \F\2 is renormalized as 

^ f ? ^ * - . < 8 3 ) 

where the effective coupling is given, with logarithmic precission, by 

•m ~ k + W ? l o g ( | f c | 2 / A 2 , + f l m t e ( 8 4 ) 

For SU(N) gauge group, we have /?o = 22/3, the usual one-loop beta func-
tion coefficient. Notice that the effective coupling corrected by the effect of 
quantum fluctuations grows towards the infrared, the behaviour that signals 
asymptotic freedom. Perturbation theory is then expected to break down at 
scales of order 

A g c D - A e x p ^ - ^ ) . (85) 

For an ordinary U(N) gauge theory, the same running takes place, except 
for the coupling of the global U(\) subgroup, that remains decoupled. Sep-
arating this part through the identity 

tr F2 = l ( t r F ) 2 + trF;V ( ,V) (86) 
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we end up with a one-loop corrected effective action: 

^ = i f 
- ^ ^ ^ ( l ^ l ' / A ' l l t r ^ , (87) 

where the second term subtracts the running of the f7(l) coupling. It can 
be thought of as the contribution of the one-loop non-planar diagram to the 
two point function of the field strength. 

We now consider the noncommutative theory with 8 ^ 0 . The integrand 
has a factor of 

sin2 = I - I sin (* x q) (88) 

from (88). The planar diagram contribution is identical to the first term in 
(87), since ^-dependence only affects external legs. On the other hand, the 
nonplanar contribution has a surviving factor of 

sin (k x q) 

from the Feynman rules. This factor oscillates very fast for large values of 
the loop momentum \q\. Thus, the loop momentum integral in the nonplanar 
graph is effectively cut-off at 

where we have defined 
kP = kvff'». (90) 

In other words, for \k\28 1 the effective coupling runs only at the planar 
level, with 

S(\k\2V » l)eff « I ( j - + log(|fe|2/A2)) tr \F\2. (91) 

This still makes sense for N = 1, so we learn that the NC f7(l) theory is 
asymptotically free! The NC U(N) theory has in fact the same beta function 
as the ordinary SU(N) theory: 
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In particular, this would suggest that the NC U( 1) theory becomes 
strongly coupled for 

A s t r o n g ~ A e x p ^ • ( 9 3 ) 

On the other hand, perhaps we should expect some kind of threshold effect 
at the classical scale of noncommutativity \k\28 ~ 1. In fact, this is the case. 
Recall that the effective ultraviolet cutoff of the nonplanar diagram was 
Aeff = 1/I^P- So, for \k\28 < 1 the logarithmic divergence in the nonplanar 
diagram gives a term proportional to 

log = log(|fc|2|fc|2), (94) 

and we obtain 

S(\k\2e < l)ef f « 4 I ' ( 4 + M . log (|fc|2/A2)j t r |f|2 

log(\k\2\k\2) |tr(dA)\2 (95) 

In the second term we have written dA instead of F because the effective 
action is evaluated at quadratic order only, and in fact the gauge-invariant 
completion of (95) cannot be written entirely in terms of the field strength 
F (c.f. [21]). For us, the important point about (95) is that the second term 
grows at low energies and produces screening rather than the antiscreening 
that is characteristic of asymptotic freedom. Thus, we can combine these 
results and extract the effective coupling of the diagonal U(\) degrees of 
freedom with running 

The result is that the effective U(\) coupling grows towards the infrared, with 
the running induced by the planar contribution, as in an SU(N) theory in 
the formal N —> 1 limit, up to energies of order l/y/8. At this threshold, 
the screening effects start to dominate and the effective coupling grows back 
up. At energies of order 1/A8 the effective coupling has again the ultraviolet 
value gA and ceases to run. In principle, one can still have an infrared Landau 
pole in the pure U( 1) noncommutative theory provided Astrong%/0 > 1-
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The phenomenon just discussed is the first example of a "mild" UV/IR 
effect, since we see that, after removal of the UV cutoff A, the 8 —> 0 limit 
of the theory is no longer the ordinary free f7(l) Maxwell model. 

2.4 Physical Interpretation of the Moyal Product 

Consider a particle described by a noncommutative field <fr(x), interacting 
with a fixed external potential V(x) by a term 

j ddx (V(x) * <f>(x) - <f>(x) * V(x)). (97) 

For a plane wave configuration <f>(x) ~ ew'x we have 

V(x) * etp'x - etp'x * V(x) = (V(x + p • 8/2) 8/2)) etp'x. (98) 

Thus, the noncommutative interaction is exactly reproduced by that of a 
rigid dipole oriented along the vector 

Ltl = 6 t w P v , (99) 

interacting ordinarily through the end-points, exactly like a rigid open string. 
This analogy is actually rather literal, as we will see in the next section. 

Fields interacting in the "fundamental representation" as 

j ddx V(x) * <f>(x) (100) 

behave as half-dipoles of length L̂ 1 /2 (c.f. [22]). 
Therefore, the non-locality of the noncommutative theories constructed 

out of Moyal products amounts to reinterpreting the elementary excitations 
as extended rigid objects [23]. This leads to an interesting extension of 
the heuristic Heisenberg principle. The effecive size of a noncommutative 
particle grows linearly with the momentum at very high velocity: 

Leff = max • (101) 

This type of relation is known to appear in string theory with the noncom-
mutativity scale replaced by the Regge slope parameter a' (c.f. for example 
[24]). This is essentially the reason why NCFT is an interesting toy model of 
string dynamics; it combines some essential features of strings with a much 
simpler dynamics with finite particle degrees of freedom. 
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2.5 Connection to String Theory 

The dipole picture implies that elementary quanta of NCFT are analo-
gous to open strings. This analogy is actually the source of one of the most 
important recent developments in the subject. 

Indeed, oriented open strings are naturally dipoles. The coupling of an 
electromagnetic U(\) vector potential to an open string is given by a Wilson 
line coupling to the end-points of the string. Consider a string worldsheet 
with proper time r and string coordinate <7, the endpoints given by a = 0 
and a = tt. The U(\) coupling is then 

Sum = [ Afidx^ - [ Afidx^ = [ Afidx^ = \ [ F^dx" A dxv. 
Ju=0 Ja=w JdE 2 JE 

(102) 
The complete sigma-model action for a string moving in a background metric 
g^v and background magnetic field Bij is 

s = i h L 9 ^ d x i t dx"+\LBfiu d x i t A ( 1 0 3 ) 

where (2-Tra')^1 is the tension of the string. 
Let us now suppose that B^ is constant and moreover \gij\ <C \a'Bij|, so 

that we can approximate the action by 

S ~ I J dx1 A dxj = \Bv JQ x"dr (104) 

Thus, we see that the endpoints of the open string behave like electrons in 
the LLL in this limit! The same arguments as in the electron case yield then 

[xj7xk]dE = i8jk (105) 

with 

(io6) 

In order to obtain a NCFT of rigid dipoles we would like to project out all 
the massive (oscillatory) degrees of freedom of the open string theory, i.e. we 
would like to take the zero-slope limit a' —> 0. But we just have learnt that 
at the same time we must keep 8 ~ 1/B constant and also \gij\ <C \a'Bij\. A 
scaling limit that satisfies these constraints and produces NCFT interaction 
Lagrangians out of the open-string perturbative interactions is the so-called 
Seiberg-Witten limit [25]: 

gtj ~ (a'f BtjB*i ^ 0 (107) 
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at fixed Bij = (1 /$)ij. Physically, what is being stated is very simple. In 
order to make the open string into a rigid dipole, we must take the nomi-
nal tension to infinity to decouple all oscillator modes (rigidity). Normally 
this produces the effective collapse of the open string to a pointlike object. 
However, if the magnetic field is kept large in the scaling limit, the Lorentz 
force tending to stretch the open string endpoints can compensate for this 
effect and one reaches a rigid open string of finite extent given bv L ~ dp. 

2.6 The U V / I R Mixing 

The phenomenon of UV/IR mixing represents the most radical departure 
of NCFT from the standard behaviour of ordinary field theories. It occurs 
in perturbation theory, so that it can be studied with considerable detail, 
and represents the fact that the two deformation operations: the noncom-
mutative deformation 8 ^ 0, and the quantum deformation h 41 0, do not 
commute [5]. 

The UV/IR mixing is a lack of Wilsonian decoupling between UV and 
IR scales, even in the presence of explicit masses. Technically, it comes 
about in a rather elementary fashion. Recall that nonplanar diagrams have 
improved convergence properties because of Moyal phases that depend on 
loop momenta. For example, two loop momenta q, q' tied by a Moyal phase 

will introduce an effective cutoff in the diagram at the scale Aeff ~ 
On the other hand, a loop momentum q tied to an exteral momentum p will 
introduce 

which in turn gives an effective cutoff Aeff ~ l/\p-8\. Since the corresponding 
UV divergences are absent, they are not explicity subtracted in the renor-
malization procedure. However, since the effective cutoff is non-analytic in 
0, these singularities in physical quantities show up in the 8 —> 0 limit. Al-
ternatively, in Green's functions depending on external momenta, they show 
up in the limit \8-p\ —> 0. This may be interpreted as non-analytic behaviour 
in the 8 —> 0 limit at finite or as an infrared singularity at fixed 8. 

Therefore, we see that in general the noncommutative quantum field 
theory is not a smooth deformation of the ordinary 8 = 0 theory, even if it 
was so in the classical approximation. We also learn that, at fixed non-zero 
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8, the NCFT is IR singular as a result of divergences that originally had an 
UV interpretation, hence the name UV/IR mixing. 

2.6.1 A Simple Example 

In order to illustrate this important phenomenon, we consider the sim-
plest setting in which it arises: the one-loop mass renormalization of the 
model in four dimensions (in this section we work in Euclidean signature): 

In the ordinary (8 = 0) model the leading mass renormalization comes from 
the normal-ordering diagram contribution to the self-energy: 

in terms of the ultraviolet cutoff A. We find the standard quadratic renor-
malization together with a subleading logarithmic piece. 

In the noncommutative theory, we have two contributions, planar and 
nonplanar. The planar diagram gives exactly the contribution (109), except 
for the different symmetry factor of the diagram, which is 1/3 instead of 1/2. 
On the other hand, the nonplanar diagram has a surviving Moyal phase that 
makes it finite: 

In order to compare the planar and nonplanar parts, we introduce an ultra-
violet cutoff via a Schwinger proper-time parametrization: 

(108) 

(109) 

(110) 

(111) 

We find 
(112) 

where the effective cutoff is given by 

A2IT = - . elt 02 ^ / (113) 
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Notice that Aeg- « A for \p\ <C 1/A0, whereas Aeg- « l/|p| for \p\ 1/A0. 
So, if we renormalize the theory at fixed p and fixed 8, by subtracting the 
planar divergence in the A —> oo limit: 

m 2 M 2 = m2 + (A2 - m2 log (A 2 /m 2 ) ) + constant (114) 

we have a quadratic 1PI effective action: 

T i p i = J d4p<f>(^p) r (2)(p) 0(p) + . . . (115) 

with 

rP>(p) = / + M* + ^ - ^ log ( i / m ¥ ) + . . . d i e ) 

Thus, as promised, the effective action has a singularity at p = 0 that can 
be interpreted either as an IR singularity at fixed 8 or as a non-analiticity 
as a function of 8 at fixed p. 

We may wonder to what extent the leading IR-singular term 

\P\ 

can be reliably calculated in perturbation theory. An indication is given 
by the following estimation. Higher-order perturbative corrections to the 
leading 1/p2 behaviour have the form 

A [ A l o g ( M V ) ] \ 

These corrections are significant only for momenta such that the term in 
brackets is of 0(1) . Thus, we see that perturbation theory will break down 
at nonperturbatively small momenta of order 

I.P I breakdown ~ -^Q e • ( H ' O 

For the present model, we can give a simple physical interpretation of 
the UV/IR mixing provided the noncommutativity is purely spatial, i.e. 
80t = 0. Notice that the just computed 1PI effective action implies a modified 
dispersion relation for the ^-quanta of the form: 



210 J.L.F. Barbon 

After Wick rotation back to ( — b + + ) signature one finds: 

w = ( 1 1 9 ) 

where c = A/967r2 and pg is the projection of the spatial momentum onto 
the plane of noncommutativity. 

This expression shows dramatically the UV/IR mixing effects, since the 
entire energy spectrum below noncommutative momenta of order x ^ / V e 
has been removed! 

2.6.2 The Case of Gauge Theories 

The UV/IR mixing in the case of gauge theories shows some specific 
features of interest [26]. Consider the polarization tensor of the NC f7(l) 
theory: 

£(2) = A^{k) Wv{k) Av(—k). (120) 

In the ordinary (or planar) case, gauge invariance together with Lorentz 
invariance forbids a quadratic divergence in the polarization 11^ ~ 'Q̂ V A2. 
It would violate transversality. In fact 

I W * ) (kft ^V VlItv k2) n(k), (121) 

where 

n(k) ~ log + finite. (122) 

The nonplanar contribution has the standard effective cutoff Aeff = min (A, 
l/\k\). Because of gauge invariance at 8 = 0, we would expect that UV/IR 
phenomena would only appear at logarithmic level ~ log (\k\2\k\2)} 

and indeed we found such terms in the previous section in our discussion of 
asymptotic freedom. 

However, the explicit breaking of Lorentz symmetry allows now for other 
kinematical structures with IR singularity stronger than logarithmic and still 
transverse. In particular, quadratic divergences do appear with the structure 

= ^ 2 C k - f - A2ff = C « * - . (123) 
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Notice that transversality is ensured by k^k^ = k^d^ky = 0. At one-loop, 
the constant C has been calculated to be 

where N is from the U(N) gauge group, ns is the number of complex scalars 
in the adjoint representation and n/ is the number of Majorana fermions 
also in the adjoint representation. Notice that C = 0 for supersymmetric or 
soflty broken supersymmetric spectra. 

Thus, we learn that the strength of the UV/IR mixing responds to the 
naive power-counting rather than to the effective divergence structure of the 
8 = 0 model. In particular, one finds unstable dispersion relations in NC 

with low-momentum tachyonic excitations as soon as C > 0. 

2.6.3 Heuristic Explanation of the U V / I R Mixing 

The dipole picture of NCFT that was developed before provides a simple 
heuristic explanation of the UV/IR mixing. Since a virtual loop of momen-
tum p carries dipoles of transverse length \6-p\, we understand that the loop 
corrections to the Green's functions will have strong ^-dependence down to 
arbitrarily low energies, unless these effects are cancelled by some mechanism 
(such as enough amount of supersymmetry). 

Notice that, if an explicit UV cutoff is present, A, it sets the maximum 
possible momentum of the virtual dipoles circulating in the loop. This in 
turn means that significant ^-dependence only appears down to momenta of 
order 1/K8. 

Thus, we have the following general hierarchycal structure. NCFT with 
ultraviolet cutoff Ay/d 1 has significant classical effects (tree level) associ-
ated to noncommutativity up to length scales of 0(V9). However, one-loop 
effects "transport" the effects of noncommutativity to the larger length scale 
of O(A0). This larger length scale is true dynamical scale of noncommuta-
tivity. Of course, this picture would be invalidated if perturbation theory 
would break down at some intermediate scale. For example, if we insist 
on removing the ultraviolet cutoff A —> oo at fixed 0, necessarily A8 —> oo 
and perturbation theory is bound to break down before we reach the deep 
infrared domain. 

C = — (2 + n s ^ 2 n / ) , 
7T 

(124) 

U( 1) 

(125) 
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2.6.4 U V / I R Mixing and Unitarity 

There is an interesting interplay between the UV/IR mixing and the 
violation of unitarity in the ease that the noneommutativity affects time. 
Instead of developing the general theory we will simply explain the basic 
phenomena by looking at a simple example. Let us consider a noncommu-
tativity matrix of the skew-diagonal form (8^) = i diag (02 8e, 02 8m). That 
is, we have the noncommutativity relations: 

[t,x]=ide, [y, z] = i8m. (126) 

We return now to the <f>4 theory studied in the previous section and we 
consider the massless model for simplicity. The normal-ordering tadpole di-
agram has no interesting dynamical interpretation in the ordinary theory, 
simply inducing the quadratic renormalization of the mass parameter. How-
ever, this is no longer the case for the noncommutative theory, since the 
nonplanar tadpole diagram does have an interesting singularity structure 
when interpreted as a 1 — 1 scattering amplitude: 

iM(p -+p) = f T T T T i e ^ = - t * J (127) v ; 6 J (2tt)4 q2 + 24?r2 - p 2 + v ; 

The striking fact about this explicit expression is that the imaginary part of 
the amplitude is a non-trivial distribution, i.e. 

2lmM{p) = ^~ 8(^p2). (128) 
127r 

Therefore, if unitarity is to be satisfied, this imaginary part should be un-
derstadable in terms of a product of on-shell amplitudes corresponding to 
all the non-trivial cuttings of the diagram. Since the tadpole has no on-shell 
cuttings, it seems that we find a violation of unitarity [27]. 

Despite this fact, one can still manipulate Im M in a purely formal fash-
ion so that it looks like a contribution from the optical theorem. Take 8m = 0 
and 8e ^ 0, and introduce 

1 = J d4k S(p - k) 

to obtain 

(129) 
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This formula can be interpreted as the amplitude for the mixing of the 4> 
quanta with particle states |x) with dispersion relation = The <f>~x 
coupling is given by 

x / M 5 m m 

Thus, it seems that we can save unitarity at the expense of enlarging the 
Hilbert space of asymptotic states, just like one can make the S-matrix of 
open-string theory unitary by introducing the closed-string states. In fact, 
while this is true at a formal level, it turns out that the added Hilbert space of 
'closed-string' states |x) does not satisfy appropriate physical conditions. In 
particular these states come with a continuous spectrum, they are tachyonic 
and moreover have negative norm in general. 

For example, just considering the more general case with 8m ^ 0 in our 
example above yields 

= J j^i^w) *<>-»• (131» 
where the frequency of the x particles is: 

= y W ^ f f b m l 2 - (132) 

This dispersion relation shows clearly that the x particles have an unbounded-
below spectrum of tachyonic excitations [28]. Thus, timelike noncommuta-
tive theories are generically inconsistent in perturbation theory, at least to 
the extent that UV/IR mixing is present. 

2.7 Remarks on ^-Phenomenology 

The most obvious application of NCFT is to entertain the possibility that 
the noncommutativity of spacetime might be real and could be detected ex-
perimentally. In such a situation the most notorious feature of the physics 
is the breakdown of Lorentz invariance. Even if = 0, the spatial noncom-
mutativity 6%i = e%ik6k determines a privileged direction in vacuo 8 = (8 k)-
Thus, collider experiments put a bound of order 

8\ < (100 G e V n 2 (133) 
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to begin with. In fact, it is not easy to be more specific since the Stan-
dard Model doesn't fit naturally into a NCFT with Lorentz violation (re-
call the problem of U{\) charge assignments). For this reason, most of the 
phenomenological discussions of NCG effects have been carried out in the 
noncommutative generalization of the QED sector. 

The bound (133) can be improved by application of some elementary 
constraints from atomic physics. Because of the dipole picture given before, 
the leading interaction of electrons with the field of the atomic nucleus has 
a dipole moment induced by the substitution 

s" —• s" - \pa 6ati, 
LI 

so that the Coulomb potential has terms: 

(Xem^ OLpm.Z 1 (Xpm.Z 

\J(x — \p)2 1X1 2 lX 

/1-» i -* f̂ix "cm-" . j? ? . /ntril 4\ noA\ Vc(\x^±p-61) = » —r + -—-rd-L + 0{6 p ), (134) 

where L = x A p. Thus, this term induces a "noncommutative hyperfine 
splitting" [29]. From limits on the Lamb shift we can put a bound of order 

\9\ < (10 T e V r 2 - (135) 

Constraints from collider experiments are not actually much better than this, 
if evaluated at tree level. Dependence on the noncommutativity parameter 
in the vertices comes with two powers of momenta (derivatives) and thus 
it corresponds generally to dimension five or six effective operators. For 
example, a leading correction to the e+ije~ vertex is given by the operator 

6*0 da drf. (136) 

Corrections from such operators are or relative order 0 (8E 2 ) for processes 
at typical energies of 0{E). Thus, collider physics at E ~ 100 GeV, known 
to within a few percent errors, give bounds of order 

101 < M F ~ ( T e V r 2 " ( 1 3 7 ) 

When quantum corrections are considered, the situation changes dra-
matically. The UV/IR mixing arising at one-loop order implies that non-
commutative effects show up at energies much below l /Vd . In fact, noncom-
mutative QED has tachyonic photon excitations induced at one-loop order 
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and therefore it is incompatible, not only with experiments, but with simple 
observations of everyday life. This means that, in exploring applications of 
NCG to phenomenology in the context of weakly coupled NCFT, we must 
assume the existence of an UV cutoff beyond which the effects of UV/IR 
mixing dissappear. 

Since UV/IR mixing affects dispersion relations, this means that the 
breakdown of Lorentz symmetry is not restricted to (nonrenormalizable) 
operators of high dimension, but rather creeps in the operators of dimen-
sion two and three at the one-loop level. Correspondingly, the violations of 
Lorentz symmetry that affect dispersion relations are the subject of fantastic 
constraints from both low and high energy physics (see for example [30]). 

Consider, for example, the dispersion relation of photons corrected at 
one loop in the pure NC f7(l) theory. The leading terms in the polarization 
tensor at low momentum are (we neglect the logarithmic corrections that 
only renormalize the coupling): 

I V = (PM Pv ~ P2 + PtiPv n n c (138) 

where 

n „ c = - S p (139) 
\P\ 

Considering transverse photons with polarization A^ ~ p^ we obtain a mass-
shell condition 

„2 
IP I 

Since C > 0 we find tachyonic excitations at low momentum. Therefore, we 
must assume some UV cutoff that eliminates the UV/IR mixing due to very 
long dipoles in the virtual loop. One such cutoff is provided for example by 
a softly broken supersymmetric spectrum broken at scale As. Then, we have 
an effective cutoff for the nonplanar diagram given by 

Aeff = ^—02 + 1 / A 2 ) 2 ( 1 4 1 ) 

and a corrected dispersion relation for photons polarized 
^ P[t given 

by 
2 _ , - 2 _ Cg2\p\2d2 

where we assume that the photon propagates parallel to the noncommutative 
directions. Expanding this dispersion relation around low momenta we see 

p2 - ^ r f = 0. (140) 
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that it produces a correction to the speed of light for these photons given by 

cs = 1 -Cg282A4s. (143) 

This means, in particular, that we must have Asy/d 1 in order not to con-
flict with observations. So we actually have an inverted hierarchy in which 
the noncommutativity scale is forced to be much higher than the supersym-
metry breaking scale. Even in this situation, a variety of phenomenological 
constraints put bounds of order 

\c8 - 1| < 1(T15 (144) 

or even stronger, depending on how model-independent we wish to be (see 
for example [31]). This translates into bounds on the hierarchy between As 

and 8 that easily render the classical bounds irrelevant. 
In any case, the lesson to be learned from these considerations is that 

noncommutative phenomenology is probably a premature exercise. The ab-
sence of natural models and the strong bounds to be put on 8 at the level of 
perturbative dynamics are rather neat arguments against the prospects of 
such phenomenonlogical exercises. 

Acknowledgments 
I would like to thank the organizers of the Trieste Summer School for 

their kind hospitality at the ICTP while these lectures were delivered. 



Introduction to Noncommutative Field Theory 217 

References 
[1] A. Connes, Noncommutative Geometry, Academic Press (1994). 

[2] A. Gonzalez-Arroyo and C.P. Korthals Altes, Phys. Lett. B131 ( 1983) 
396. 

[3] A. Connes and M. Rieffel, Contemp. Math. Oper. Alg. Math. Phys. 62, 
AMS (1987) 237. 

[4] A. Connes, M.R. Douglas and A. Schwarz, J. High Energy Phys. 9802 
(1998) 003, hep-th/9711162. M.R. Douglas and C. Hull, J. High 
Energy Phys. 9802 (1998) 008, hep-th/9711165. 

[5] S. Minwalla, M. Van Raamsdonk and N. Seiberg, J. High Energy Phys. 
0002 (2000) 020, hep-th/9912072. 

[6] Z. Guralnik and J. Troost, J. High Energy Phys. 0105 (2001) 022, 
hep-th/0103168. 

[7] L. Alvarez-Gaume and J.L.F. Barbon, Nucl. Phys. B623 (2002) 165 
hep-th/0109176. 

[8] L. Susskind, hep-th/0101029 . A.P. Polychronakos, J. High Energy 
Phys. 04 (2001) 011 hep-th/0103013. 

[9] M.R. Douglas and N. Nekrasov, hep-th/0106048 . A. Konechny and A. 
Schwarz, hep-th/0012145 . R.J. Szabo, hep-th/0109162. 

[10] A. Connes, hep-th/0003006. 

[11] J. Gracia Bondi'a, J.C. Varilly and H. Figueroa, Elements of Noncom-
mutative Geometry. Birkhauser, Boston (2001). 

[12] J. Polchinski, hep-th/9611050. 

[13] R.C. Myers, J. High Energy Phys. 9912 (1999) 022 hep-th/9910053. 

[14] B. Jurco, S. Schraml, P. Schupp and J. Wess Eur. Phys. J. C17 (2000) 
521 hep-th/0006246. 

[15] D.J. Gross, A. Hashimoto and N. Itzhaki, Adv. Theor. Math. Phys. 4 
(2000) 893 hep—th/0008075. 



218 J.L.F. Barbon 

[16] M. Chaiehian. P. Presnajder, M.M. Sheikh-Jabbari, A. Tureanu. Phys. 
Lett. B526 (2002) 132 hep-th/0107037. 

[17] C.-S. Chu. V.V. Khoze and G. Travaglini, hep-th/0112139. 

[18] G. 't Hooft, Nucl. Phys. B75 (1974) 461. 

[19] A. Gonzalez-Arroyo and M. Okawa, Phys. Lett. B120 (1983) 174; 
Phys. Rev. D 2 7 (1983) 2397. T. Filk, Phys. Lett. B376 (1996) 53. 

[20] C.P. Martin and D. Sanchez-Ruiz, Phys. Rev. Lett. 83 (1999) 476, 
hep-th/9903077 . M.M Sheikh-Jabbari, J. High Energy Phys. 9906 
(1999) 015, hep-th/9903107. T. Krajewski and R. Wulkenhaar, 
hep-th/9903187. 

[21] M. van Raamsdonk, J. High Energy Phys. 11 (2001) 006 
hep-th/0110093. A. Armoni and E. Lopez, hep-th/0110113. 

[22] L. Alvarez-Gaume and J.L.F. Barbon, Int. J. Mod. Phys. A 1 6 (2001) 
1123 hep-th/0006209. 

[23] C.-S. Chu and P.-M. Ho, Nucl. Phys. B550 (1999) 151, 
hep-th/9812219. M.M. Sheikh-Jabbari, Phys. Lett. B455 (1999) 129, 
hep-th/9901080. D. Bigatti and L. Susskind, hep-th/9908056 . Z. 
Yin, Phys. Lett. B466 (1999) 234, hep-th/9908152. 

[24] T. Yoneya, Prog. Theor. Phys. 103 (2000) 1081 hep-th/0004074. 

[25] N. Seiberg and E. Witten, J. High Energy Phys. 9909 (1999) 032, 
hep-th/9908142. 

[26] M. Hayakawa, Phys. Lett. B478 (2000) 394 hep-th/9912094, 
hep-th/9912167. A. Matusis, L. Susskind and N. Toumbas, J. High 
Energy Phys. 12 (2000) 002 hep-th/0002075. 

[27] J. Gomis and T. Mehen, Nucl. Phys. B591 (2000) 265, 
hep-th/0005129. 

[28] L. Alvarez-Gaume, J.L.F. Barbon and R. Zwicky, J. High Energy Phys. 
0105 (2001) 057 hep-th/0103069. 

[29] M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu Phys. Rev. Lett. 86 
(2001) 2716 hep-th/0010175. 



Introduction to Noncommutative Field Theory 219 

[30] A. Anisimov, T. Banks, M. Dine and M. Graesser, hep-ph/0106356. 

[31] S.R. Coleman and S.L. Glashow, Phys. Rev. D59 (1999) 116008 
hep-ph/9812418. 


