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Abstract

Quantum field theory in curved spacetimes (QFTCS) and semi-classical gravity are the
best frameworks we have for understanding the interplay between gravitational physics and
quantum theory. Here we study one well-known effect derived from QFTCS, namely, the Un-
ruh effect. Our focus is on how the Unruh effect is required for the internal consistency of
quantum field theories and how it may be experimentally probed in the near-future. Specif-
ically, we focus on showing that the Unruh effect is perfectly compatible with mixing neutri-
nos and on how it can be observed using classical electromagnetic radiation. For complete-
ness, we also present a spin-off work dealing with phenomenological flavor neutrino states
which arose from our study of this subject in the context of the Unruh effect.

This doctoral thesis is mainly based on the following original work published by the au-

thor:

Phys. Rev. Lett. 118, 161102 (2017) in collaboration with André G. S. Landulfo, George
E. A. Matsas and Daniel A. T. Vanzella [1]";

Int. J. of Mod. Phys., Vol. 27, No. 11, 1843008 (2018) in collaboration with André G. S.
Landulfo, George E. A. Matsas and Daniel A. T. Vanzella [2];

Phys. Rev. D 97, 105022 (2018) in collaboration with Stephen A. Fulling, André G. S.
Landulfo, George E. A. Matsas and Daniel A. T. Vanzella [3];

Phys. Rev. D 98, 096010 (2018) in collaboration with Carlo Giunti [4].

Key-words: Quantum field theory, curved spacetimes, Unruh effect, neutrinos.
Field of knowledge: Particle physics, high-enegy physics, gravitation.

"Highligthed in a press report by Science, https://www.sciencemag.org/news/2017/04/does-space-
heat-when-you-accelerate-physicists-propose-test-controversial-idea, and also by Revista FAPESP,
https://revistapesquisa.fapesp.br/en/2018/09/05/when-vacuum-is-hot/.






Abstract in Portuguese

A teoria quantica de campos em espacgos-tempos curvos (TQCEC) e a gravitacdao semi-
cldssica sdao os melhores arcaboucos tedricos que temos atualmente para entender feno-
menos que envolvam a interacdo entre a fisica gravitacional e a teoria quantica. Nesta tese
focamos em um fend6meno bem conhecido derivado destes arcaboucos, o efeito Unruh.
Nosso interesse € em como o efeito Unruh é necessério para a consisténcia interna de teorias
quanticas de campos e como isso pode ser observado experimentalmente no futuro pro-
ximo. Mais especificamente, mostramos que o efeito Unruh é perfeitamente compativel
com neutrinos com mistura de sabor e como o efeito pode ser observado utilizando radi-
acdo eletromagnética cldssica. Por questdao de completude, também apresentamos um es-
tudo correlato tratando de estados fenomenolégicos de neutrinos de sabor, resultado dos
nossos estudos sobre este tema no contexto do efeito Unruh.

Esta tese de doutorado é baseada principalmente nos seguintes trabalhos realizados pelo

autor:

Phys. Rev. Lett. 118, 161102 (2017) em colaboracdo com André G. S. Landulfo, George
E. A. Matsas e Daniel A. T. Vanzella [1]';

Int. J. of Mod. Phys., Vol. 27, No. 11, 1843008 (2018) em colaboracao com André G. S.
Landulfo, George E. A. Matsas e Daniel A. T. Vanzella [2];

Phys. Rev. D 97, 105022 (2018) em colabora¢do com Stephen A. Fulling, André G. S.
Landulfo, George E. A. Matsas e Daniel A. T. Vanzella [3];

Phys. Rev. D 98, 096010 (2018) em colabora¢dao com Carlo Giunti [4].

Palavras-chaves: Teoria quantica de campos, espagos-tempo curvos, efeito Unruh, neutri-
nos.

Areas do conhecimento: Fisica de particulas, fisica de altas-energias, gravitacao.

IDestacado em uma reportagem pela Science, https://www.sciencemag.org/news/2017/04/does-space-
heat-when-you-accelerate-physicists-propose-test-controversial-idea, e também pela Revista FAPESP,
https://revistapesquisa.fapesp.br/en/2018/09/05/when-vacuum-is-hot/.
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A harmonious synthesis (and an understanding thereof) between quantum theory and
relativity has arguably been one of the major undertakings of theoretical physics since the
beginning of the 20th century. While special relativity and quantum mechanics together
gave birth to the framework of quantum field theory (QFT), with astonishing experimental
success, the situation regarding general relativity and quantum mechanics is less satisfying.

Initial attempts to apply lessons learned from quantizing the electromagnetic field to the
gravitational one failed due to the issue of non-renormalizability [5]. Despite being possible
to quantize linear perturbations of the gravitational field and interpret them in the frame-
work of effective field theories (as it is done with most QFTs nowadays) [6], simple questions
such as what is the spacetime resulting from a spatial superposition of a massive particle
are still hard to answer due to the unique fact that the gravitational field is not simply a
field living in a spacetime, but part of spacetime itself (along with the underlying manifold).
Moreover, since it endows spacetime with a causal structure, the physical content of a fully
non-perturbative quantum theory of gravity probably will be very hard to grasp [7].

Progress, we hope, can be made by better understanding phenomena at the low-energy
level' on the interface between gravity and quantum mechanics: we begin with a quantum
field theory initially defined over flat spacetime and consider it instead on a fixed curved
background in such a way as to include at least some gravitational phenomena. This pro-
cedure gives us a quantum field theory in curved spacetime (QFTCS) [8, 9, 10, 11, 12, 13]. A
further (and more ambitious) step, including how quantum matter fields influence the grav-
itational field (i.e., back-reaction), takes us into the realm of semi-classical gravity (8, 14].

While several frameworks for a theory of quantum gravity were created in the last decades
[15], none has any kind of strong experimental support or can claim to be agreed by the
majority of the high-energy physics community. For this reason, QFTCS and semi-classical
gravity can be argued to be the safest bets in uncovering phenomena that a full theory of
quantum gravity must eventually reproduce in its low energy limit. This is the case for the
most preeminent example of such phenomena, Hawking radiation [16].

Along with Hawking radiation and particle creation in inflationary universes, another im-
portant discovery stemming from the framework of QFTCS is the Unruh effect [17]. Originally
discovered in the context of better understanding Hawking radiation in curved spacetimes,
the Unruh effect is applicable even in flat Minkowski spacetime, where it says that while
inertial observers see no particles when fields are in their inertial vacuum state, uniformly lin-
early accelerated observers (also called Rindler observers) see a thermal state of particles at a

temperature Ty, proportional to their proper acceleration a, i.e.,

hia

Ty = ,
v 2nkgc

(1.1)

in standard units.

ICompared to the Planck scale.
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Pictorially, this means that while inertial observers may freeze to death at 0 K, Rindler
ones may instead burn to death (at high enough accelerations)! Initially unveiled in 1976
(although already communicated previously in a talk one year before, see [18]), the Unruh
effect has garnered steadily increasing attention during the ensuing years. It is easy to see
why: the Unruh effect teaches us, in the simplest setting possible (Minkowski spacetime),
that even for free quantum fields the vacuum is non-unique, that what a particle is turns out
to be an observer-dependent concept [19], that particles can have non-zero momenta even
with zero energy [20], among other fascinating things (see [21] for an extensive review).

Alot has been and still is debated about the “reality” of the particles seen by accelerated
observers!!. However, despite the counter-intuitive phenomena seen in the Rindler frame
associated with the Unruh thermal bath, the Unruh effect is as essential to the consistency
of quantum field theory as inertial forces are to the consistency of classical mechanics. Theo-
retical agreement between inertial and accelerated observers predictions has been shown to
hold in a myriad of physical settings, from simple massless scalar fields to mixing neutrinos
[3] and extensive bodies [22].

On the other hand, in contrast to inertial forces, observing the Unruh effect directly is a
daunting task: from Eq. (1.1) we see that a thermal bath of 1 K requires an acceleration of

02°m/s?, which no macroscopic material known today would be able to withstand.

order 1
For this reason, we believe that there are two reasonable strategies that can be adopted to
gather experimental evidence for the Unruh effect.

The first is the use of analogue systems to probe the Unruh thermal bath (see, e.g., [23]).
The advantages of this strategy are that (i) the speed of light appearing in Eq. (1.1) ceases
to be the relevant speed scale, being substituted by the speed of small perturbations (com-
monly called sound) in the material medium, which, being much smaller than c, boosts Ty
and (ii) higher “analogue” accelerations can be achieved in the laboratory.

The second strategy, which is more in line with the work presented here, is to find real
(i.e., non-analogue) physical phenomena that can be easily and demonstrably interpreted
in terms of the Unruh effect. Since the advent of analogue models is a recent development,
this has been the path historically trod, an early example being interpreting depolarization
of electrons’ spins in storage rings in terms of the Unruh thermal bath [24].

With today’s acceleration and optical technology, both these strategies present reason-
able chances of claiming an experimental observation of the Unruh effect in the near and
mid-term future. For this very reason, a thorough understanding of what the Unruh effect is,

111

whatit predicts™ and what are the requirements and limitations involved in experimentally

observing it is needed.

I'The news report by Science mentioned in the abstract contains a small sample of different opinions on
this subject.
Mfaybe even more importantly, what it does not.
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The purpose of this thesis is to probe different aspects of the Unruh effect, paying partic-
ular attention to how it is needed for consistency of the QFT framework and how it can be

experimentally observed. Specifically, we show in this doctoral thesis that:

e The Unruh effect is perfectly compatible even with more “exotic” fields such as mixing
neutrino fields [3], contrary to claims made previously in the literature (see, e.g., [25],
for the work which brought our attention to this topic).

* Signs of the Unruh effect can already be seen at the classical level in Larmor radiation.
Moreover, we propose a conceptually simple experiment that may evidence this in the

near future [1, 2].

For completeness, we also present a spin-off work, [4], which sprung from our studies
of mixing neutrinos in the context of quantum field theory, where the phenomenological
definition of flavor neutrino states is generalized to more complicated interaction processes

involving multiple neutrinos. The outline of this thesis is as follows:

* Chapter 2 gives a brief introduction to the relevant tools of QFTCS necessary for un-
derstanding the Unruh effect, whose derivation is shown here. We also present the

Unruh-DeWitt particle detector model.

e Chapter 3 discusses the application of the Unruh effect to multiple mixing neutrino

fields and sheds light over controversies recently sparked on the literature.

* Chapter 4 discusses the Unruh effect and its relation to classical electrodynamics, with
the aim of presenting a conceptually simple experimental proposal whose output could
be clearly interpreted in terms of the Unruh effect. We also discuss some challenges of

actually carrying out the experiment.
* Chapter 5 includes our conclusions and a discussion about future work.

In Appendix A we present a generalization of flavor neutrino states discussed in chapter
3, in Appendix B we present the Mathematica® code used for some calculations presented
in this thesis and, finally, in Appendix C we discuss the physical meaning of an important

mathematical identification made in Chapter 4.



CHAPTER 2

The Unruh effect
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In this introductory chapter we give a short review of the Unruh effect. To this end, we
first outline relevant aspects of quantum field theory in curved spacetimes (QFTCS), mainly
focusing on how the particle notion in QFT is observer dependent and, therefore, not unique
[19]. Afterwards, we show the Unruh effect for a massive scalar field in 3+1 dimensional
flat spacetime and then apply all concepts discussed to the important case of the Unruh-
DeWitt detector, which is a simplified model of a particle detector where directional degrees
of freedom may be discarded.

Besides introducing the basic physics that pervades the work presented in this thesis
and also setting our notation, this chapter (especially its last section) serves the important
purpose of exemplifying some recurring techniques we will use in the following chapters,
but which already appear here, although in simpler settings. The first section of this chapter
is based mainly on Ref. [26] and the remaining ones on Ref. [21], where the interested reader
can find a more thorough discussion of the topics presented here.

We assume the reader to have basic knowledge of quantum field theory in flat spacetime
and general relativity. For a good introduction to the former, see Ref. [5], and for the latter,
see Ref. [7].

2.1 Quantum field theory and Bogoliubov transformations

The starting point of most quantum field theories is a classical field theory to which a
suitable quantization method is applied. The classical theory is usually defined in terms of
a local Lagrangian (density), Z, which preserves covariance explicitly. We consider here,
without loss of generality, a minimally coupled massive scalar field, whose Lagrangian is
given by

L= % (V, OVFD - m*®?). 2.1)

The two most common methods of quantization are the canonical one, where the field
and its conjugate momentum are promoted to operators satisfying canonical commutation
relations, and the path integral method, where we perform a functional integration over the
exponential of the action associated with Z. Both methods give us the same results, but
different physical aspects may be more easily extracted from the theory using one or the
other. In particular, a particle interpretation of field excitations is very simple to obtain in
the canonical quantization method and for this reason we shall use it here.

The Euler-Lagrange equation derived from the Lagrangian in Eq. (2.1) is the Klein-Gordon

equation in curved spacetime, i.e.,
(g"'V,Vy + m*)® =0, (2.2)

whose general solution depends on the form of the metric and boundary conditions and

usually has no easily expressed closed analytical form.
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However, for Minkowski spacetime, on which we shall focus for now, we can write a gen-
eral solution for Eq. (2.2) in terms of the well-known plane wave normal modes (and their

complex conjugates), i.e.,
—iwr+ik-®

[, %) = (27[)3/—2\/%, (2.3)

where the vector k = (ky, ky, k;) indexes the mode and w satisfies the usual dispersion rela-

tion, i.e., w = +1/ |k|2 + m2. The field then is given by the Fourier expansion

a3k 1
(27-[)3/2 /_

where c.c. stands for the complex conjugate of the preceding term. We choose the normal

(1, %) = ( e—"“”””+c.c.), 2.4)

modes to be orthonormalized according to the Klein-Gordon inner product

(f,g) = —ide“(fVHg* - g'Vuf), (2.5)

where dX* is the future-oriented volume element of a Cauchy surface. They satisfy

o fo) = =5, [5) =82k - R, (2.6)
for all k and k. In possession of the classical field solution, we promote now the coefficients

ay and az in Eq. (2.4) to operators 4;. and d; which satisfy the usual harmonic-oscillator

commutation relations, i.e.,

A

[

e,

[a% al, ] 0, 2.8)

D
i

83 k-k 2.9)

Q)
[l

and we define a vacuum state of the field, called the Minkowski vacuum state, |0,s), as the

state satisfying
al0y) =0, Vk. (2.10)

This is the usual departure point of QFT in Minkowski spacetime. Particles are obtained
by the action of creation operators over this vacuum state and interactions can be studied,
e.g., using perturbation theory over the free Lagrangian to calculate scattering amplitudes or
decay rates. For now let us explore the free theory in more detail.

From the functional form of f;, we see that these modes satisfy an eigenvalue equation,
namely

i0,f;=+wf;, (2.11)

where 0, is a Killing field associated with the time-translation symmetry of Minkowski space-
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time and also the generator of inertial observers’ trajectories'. For this reason they are called
positive frequency modes with respect to d;. Their complex conjugate are then called nega-
tive frequency modes. This division is relevant because the coefficients of the positive modes
are the ones promoted to annihilation operators (and those of the negative modes to creation
operators). A clear separation between positive and negative frequency modes is what allow
us to have a well defined particle concept (in the sense outlined in the previous paragraph)
and it is intimately linked to the existence of time-translation symmetries in spacetime.

As the coefficients associated with the normal modes give rise to particles when pro-
moted to operators, one may ask if the field expansion given by Eq. (2.4) is unique, since it
seems we could then obtain a different particle interpretation of our theory if we use another
set of modes to expand our solutions of the Klein-Gordon equation!’. Suppose that instead
of f; we had a different set of orthonormalized normal modes, g5, indexed by another set of
quantum numbers, ¢, which we can also use to Fourier expand our field. Instead of Eq. (2.4)
we would obtain

(1, %) :fdsq(bgg,7+c.c.). (2.12)

When quantizing the field now, bz and its conjugate would be promoted to operators
satisfying the same commutation relations as &% and d%, but the operators 15,7, in principle,
do not necessarily define the same vacuum state as d;. Since particles are given by excita-
tions of the vacuum state, this implies that particle definitions may differ between different
constructions of the field expansion. As we shall see explicitly in the next section, differ-
ent observers have different natural field constructions and, therefore, different definitions
of what particles are.

111

Not everything is devoid of absolute™ meaning, though. Since we are describing the

same field @, it must be possible to find a relation between these different constructions.

This relation is known as a Bogoliubov transformation [27]. Using this fact, we have that

o(t, %) :fd3k(a%f%+a£fg):fdgq(b;,g5+b2g$), (2.13)

Since both sets of normal modes (and their conjugates) must be able to express all so-
lutions to the Klein-Gordon equation (i.e., be complete), they must be able to express one

another. Therefore we can write
_ 3 *
gii—fd kagifi+Barti) (2.14)

and
_ 3 * %
f’?_fd q(“a.%gﬁ_ﬁcﬁcga)- (2.15)

TA Killing field éH is such that Vuév) =0, where () is the symmetrization procedure.
T'we take this opportunity to highlight the fact that particles are a global concept, depending on the solu-
tions of the field equation over all spacetime.
11 e., non-observer dependent.
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The complex numbers « ., ik and ,B 1 are termed Bogoliubov coefficients. By use of the or-

thonormality relations of the modes, Egs. (2.6) and (2.7), we can express them in terms of
Klein-Gordon products between the different sets of modes. This gives

= (gq;fk), (216)

ﬁ =—(83 f)- 2.17)

Using Eq. (2.13) we can relate both sets of expansion coefficients a; and by. In terms of their

respective annihilation operators, we have
a; :fd3q(a(7'%bg,+,6;%bg), (2.18)
. 3 * A px AT
by = f dk(a; ag - B at), (2.19)

with the relation for creation operators being easily obtained by complex conjugation. For
completeness, we note that from the orthonormality relations we can also obtain two con-

straints on the Bogoliubov coefficients, namely

3 -a* _p* s

fd k( 5% gk - B kﬁg §)—5q,q'» (2.20)
3 —

fd @G %k~ PyiPy, %)—0 (2.21)

Notice that annihilation operators associated with one set of modes are written in terms
of both creation and annihilation operators of the other set. Ifany of the Gk coefficients is
non-zero then both sets of annihilation operators do not annihilate the same vacuum state.
Putting it in another way, if there is any mixing between negative and positive frequency
modes, the vacuum states associated with these modes are inequivalent and, as explained

above, so is the definition of what is a particle. As the set { fi fki“ } is naturally associated with

inertial observers (by being eigenfunctions of 9;), the set { 84 gS} may, perhaps, be naturally
associated with a different class of observers. If this is the case, then, particles are an observer
dependent concept. This gives credence to the adage that quantum field theory really is a
theory of fields, not particles.

This fact, although following directly from the mathematical structure of free quantum
field theory, is not as widely known as one may expect. Historically, QFT arose to explain
phenomena seen from the point of view of (approximately) inertial observers on Earth. As
it so happens, all inertial observers agree on their vacuum and particle definitions (thanks to
Poincaré invariance), rendering the previous discussion innocuous. However, changing the
background spacetime or considering different classes of observers forces us again to think
carefully about how we define particles.

The formalism presented here is applicable to a wide range of different phenomena such
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as superconductivity [27]"

, inflation [10] and, most famously, the Hawking effect [16]. Al-
though both in inflationary scenarios and in the Hawking effect we deal with curved space-
times, as we shall see now, even in the simpler setting of flat spacetime the concept of a
particle may be treacherous, being dependent on the state of motion of the observer. This

leads us directly to the Unruh effect.

2.2 The Unruh effect in flat spacetime

Here we focus on deriving the Unruh effect in flat spacetime since it is in this arena we will
work on in later chapters. The Unruh effect [17], succinctly, expresses the fact that while in-
ertial observers see no particles in their vacuum state, uniformly accelerated observers (Rindler
observers) see a thermal bath of particles with a temperature proportional to their proper ac-
celeration a, i.e., Ty = al2m.

This thermal bath can be interpreted as a specific type of particle-populated quantum
state, which must be related to the no-particles Minkowski vacuum state somehow. Find-
ing what is this relation amounts to finding what is the Bogoliubov transformation between
normal modes associated with Rindler observers and inertial ones.

Since we already presented the normal modes obtained by inertial observers in flat space-
time, given by Eq. (2.3) (along with their complex conjugates), we shall concern us here
with modes associated with observers following uniformly accelerated trajectories. For this
reason we begin by writing the Klein-Gordon equation in coordinates more appropriate to

them. The trajectories of Rindler observers are given by the orbits generated by the four-

velocity
ut(r) = (az(7,$),0,0,at(t,{)), (2.22)
with
1(1,&) = a 'e® sinh (ar), (2.23)
2(1,&) = a”'e™ cosh (ar), (2.24)

where 7 € (—o0,+00) is proportional to the proper time of these observers, ¢ € (—oo, +00)
characterizes the trajectory and a is an acceleration scale, fixed by being the proper acceler-

ation of the observer at { = 0. We can invert Egs. (2.23) and (2.24) to obtain

7(t,2) = a 'tanh™ (¢/2), (2.25)
&(t,2) = 2a) 'n[(az)? - (an)?l. (2.26)

Note that the (7,¢) set of coordinates only covers the region |f| < z. This region is called

VIn fact, although commonly used in high-energy physics, the idea of a Bogoliubov transformation arose
originally in this context.



CHAPTER 2. THE UNRUH EFFECT 12

\.

N

EDK

LR RR

/"

CDK

Figure 2.1: The left and right Rindler wedges (LR/RR), along with the expanding/contracting de-
generate Krasner universes (EDK/CDK). Figure taken from [21] with permission.

the right Rindler wedge. We can cover the |f| < —z region, i.e., the left Rindler wedge, by a sim-
ilar set of coordinates, (1/,¢’), but with the substitution z — —z in Eq. (2.24). Both wedges are
needed to obtain a Cauchy surface for the whole Minkowski spacetime, allowing us to quan-
tize the field over the whole spacetime and compare it with the quantization made by iner-
tial observers over a Cauchy surface ¢ = 0. The remaining regions of Minkowski spacetime
(called expanding/contracting degenerate Krasner universes) cannot contain uniformly accel-
erated time-like trajectories as the ones generated by the four-velocity given in Eq. (2.22). A
depiction of these regions is shown in Fig. 2.1. Let us focus on the right Rindler wedge for
now.
In the (7,¢) coordinates, the four-velocity of our observers is simply ;. The line element
is given by
ds? = &% (dr? - d&?) —dx® — dy?, (2.27)

and the Klein-Gordon equation, Eq. (2.2), can be written as
02 - 07 — &> (0% + 05— m*) | D(1,£,%1) =0, (2.28)

where we have denoted (x, y) as X,. The symmetries of Eq. (2.28) suggest an ansatz of the
form
83(1,&,%1) o hy(&)etkrrikyy-ion, (2.29)

where ¢ = (@, ky, ky), @ € [0,00). Inserting it in Eq. (2.28) we obtain

|02 - (@12 - 02| ny) =0, (2.30)

where we have defined I = |/ k2 + k2 + m2 = \/ |kL |2 + m?, with k; = (ky, ky).

To find an unique solution to the above equation we impose two additional conditions:

first that h;($) should not diverge as { — oo and second that it must be normalized according
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to the Klein-Gordon scalar product, Eq. (2.5), in such a way that (g3, g5/ = 53(G — g"). This
final condition requires us to choose a Cauchy surface to define dX¥. We can do so by defin-
ing g5 = 0 on the left Rindler wedge and consider the ¢ = 0 surface. Eventually, we extend the
modes to cover the whole spacetime as explained in [8] or [21]. Imposing these conditions,
the transformation p = (I/a)e® reduces Eq. (2.30) to Eq. (8.494.1) of Ref. [28], giving us

sinh (m®@/a)

1/2 1 - L
iria Kiola (Eea‘r) elkriL—ion (2.31)

85(1,¢,X1) =

where the term in brackets comes from normalizing gz. In the same way that the modes
given by Eq. (2.3) are positive frequency modes with respect to d;, the modes g are positive
frequency modes with respect to the generator of Rindler observers’ trajectories, i.e., they
satisfy

i0:85=+0g5. (2.32)

Another noteworthy feature of the modes g5 is that Eq. (2.28) does not impose a disper-
sion relation between @ and the transverse momentum k. Since @ is the energy measured
by a Rindler observer for a particle with quantum numbers g = (@, k ), we can have a mode
with arbitrarily low energy and arbitrary transverse momenta, independent from one an-
other. In particular, a Rindler particle may have zero energy with non-zero momenta". Al-
though this may sound very counter-intuitive, the existence of such particles have profound
physical consequences as we shall explore in more detail in Chapter 4.

Rindler modes on the left wedge, g%, can be obtained from Eq. (2.31) by the substitution
(1,&) — (7/,&"). Both sets g5 and g’ﬁ taken together enable us to expand ® as

& o 2 e * 7T 17 s 214
q>_f0 da)fd k. [gqbq+gﬁbﬁ+gﬁbﬁ+gé b, (2.33)

where the creation and annihilation operators satisfy the usual commutation relations, with
commutators between primed and unprimed operators vanishing. In the same way as the
Minkowski vacuum state, the Rindler vacuum state, |0g), is defined as the state which satis-

fies

b;l0R) =0, V4§, (2.34)
15%,|0R>:0» v§. (2.35)

We emphasize that although we are quantizing the same field, in principle, |0ys) # |0g). This

can only be decided by computing the Bogoliubov coefficients, a task to which we turn now.

First, we note that we have four types of coefficients, a aP a’Z] o Bk and /3'67 o Let us
focus first on the unprimed ones (relative to the right Rindler wedge modes). Since both sets
+ikyex

of modes contain exponentials of the type e and e**vY, we see that a ik (and B (ﬂ) are

VNote that this is independent of the mass.



CHAPTER 2. THE UNRUH EFFECT 14

zero unless the transverse momenta is the same for k and 4. Because of this, we simplify our

notation for the coefficients to « ok and . From Eq. (2.14) we obtain

‘D;kz;%l
. /2
sinh(m@/a) 1! l A
gi=|———| Kiora —e% | gikr-i-ior (2.36)
4dn%a a
e—iwt+ikzz eiwt—ikzz

f el%J_'._fJ_
dkz (04 A —+ ﬁ 7 —
27 okzske e kzke e

To obtain the coefficients it is useful to study the behavior of the preceding equation at
the t — z surface. Note that in this limit 7 — oo and { — —oco. Being both divergent they
are not the best set of coordinates to analyze Eq. (2.36). To this end, we introduce light-cone
type coordinates u = 7 — ¢ and v = 7 +¢£. In the limit above, we have that u — oo and v may
have any finite value v — @~ In(2az). Using the small argument limit of the modified Bessel
function (Eq. (A10) of Ref. [21]), we obtain that

i (l/za)l’@/ae*iwu _ (l/za)*ili)/ae*iwv]
2[asinh (t@/ a)]'"? Ir+io/a) Tl-io/a)
e—i(w—kz)z ei(a)—kz)z

J k|0 Porit

The first term on the left-hand side is zero in a distributional sense due to its infinitely many

iw-k)z

= (2.37)

u—oo,v—a-1Inaz) B

oscillations. Multiplying both sides by e , where @’ = [2 + k2 and integrating over z

we obtain (after getting rid of the primes)

o l((u - kz) fm d
g =T “
@,kz; k1 2 [wasinh (H(D/d)]l/z 0

(1/2a)" i@/ api@=-k)z p=i@a”!In2az)

Ii-iol/a

) (2.38)

where we have used the fact that the right Rindler modes have no supportin the z < 0 region.

Eliminating [ in favor of w and k., we can solve the integral and find that

w+k —-io/2a
Xy ik, = € (dnwasinh(r@/ a) ™' w—kz) (2.39)
— Rz
A similar procedure gives us
w+k —io/2a
Boii, = —¢ "'*(4nwasinh(na/a) ™' (w—kz) (2.40)
— Rz

To obtain the primed Bogoliubov coefficients (i.e., between f and g’), we use that the in-
tegrals for calculating them are the same as the previous ones if we make the substitution

— ! = - ! = - -
k; k. Therefore, ozd),kz;%l =0y 1R and ﬁa),kz;h B Ok From the form of the Bo
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goliubov coefficients, we note that they satisfy the relations

/ _ _nolapgx*
alDykz;%L - e ﬁa)ykz;%L’ (241)
_ _adlapg'x
aa),kz;h =€ ﬁa),kz;h' (2.42)

By using the above relations, together with Eq. (2.36) and its primed counterpart, and

noticing that the Bogoliubov coefficients are the same for k. and -k, we see that

_ . -nola '
Upk, = 8o, T€ gtDy—h’ (2.43)
and
/ ! —n@la
T =81 T z 2.44
u‘D!kJ_ gw)kl € g(D,—kJ_ ( )

are both positive frequency modes with respect to 0;. Inverting the above relations, we can
expand Eq. (2.33) in terms of the u and #' modes and see that the Minkowski vacuum is

annihilated by the following combinations of Rindler annihilation and creation operators:

5

b

S
4

L

el “B'T . ] 104,) =0, (2.45)

e Jlow = (2.46)
By multiplying by the left the first equation above by a right Rindler wedge creation op-
erator, multiplying also by the left the second equation by a left Rindler wedge creation op-

erator and considering it for k L — —k 1, after subtracting one from the other we obtain

b bt B
b&),hb@rh b@,—k @,k 100 = (2.47)

This equation says that the Minkowski vacuum can be expanded in terms of the Rindler Fock

space as a state with an equal number of left and right particles, i.e.,

106r) = ®ZC” no 1 - (2.48)

@kln 0

By plugging this ansatz in Egs. (2.45) and (2.46) and taking into account the normalization
condition (0ps|05s) = 1, we find explicitly that

C". =V1-e2n0lag—nrola (2.49)

o,k1

The state given by Eq. (2.48), however, is not the state observers restricted to either the
right Rindler wedge or to left Rindler wedge must use to make physical predictions. From

Figure 2.1 we see that no information from the region ¢ > z can reach the right Rindler wedge.
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In the same way, no information from the region ¢ > —z may reach the left Rindler wedge.
Physically, this means that all phenomena restricted to one wedge must be described by
tracing out information regarding the other wedge. Tracing out, for instance, the left Rindler

wedge we obtain a mixed state given by

[e.0]
A n 2
PR = @ Z IC(D,%J_' |n(D,]?IL><na)jc.l|) (2.50)
(D,kL n=0
which written in full is
o0
Pr= ® (1 _ e—ZmD/a) Z e—Znnw/a|n@,%l><nm’%l|' 2.51)
(D,%J_ n=0

The same result (with »’ instead of n) would be obtained by tracing out the right Rindler
wedge. Thus, we arrive at the conclusion that the Minkowski vacuum, restricted to the right

(left) Rindler wedge, is seen by Rindler observers as a thermal state with a temperature

a
Ty=—. (2.52)

This is the Unruh effect.

Since both sets of observers, inertial and uniformly accelerated, although in very different
ways, describe the same quantum state, all physical phenomena (restricted to the Rindler
wedges) must be consistently described by either set of observers if the Unruh effect is taken
into account. We give a simple example of this fact in the next section, while more elaborate
phenomena are treated in Chapters 3 and 4.

Before doing so, however, let us briefly show a property of thermal states we will use
throughout this thesis. Consider a thermal state of a single bosonic mode with energy @.
Suppose that we evolve this state by an evolution operator which at first order in a perturba-

tive expansion is of the form I+ V, where V can be written as
V=Vi_ga+Vy_ia". (2.53)
IfVis self-adjoint, this imposes that Vj_.; = (V1_.¢)*. Also,
Vo1 = (1|V|0). (2.54)

For this kind of operator, the probabilities of finding the evolved state with an additional

boson or one fewer boson are given by

piﬂ :an<n+1|V|n)(n|V‘L|n+1>, (2.55)
n

pY =Y pu(n—1VIny(n|Vin-1), (2.56)
n
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respectively, where

e—ﬁnw
Pn= S o (2.57)
Expanding Egs. (2.55) and (2.56) we obtain
PP = Voo P11+ np(@)], (2.58)
Pl = 1VinolPny(@) = Vo1 P np(@), (2.59)
where
np(@) = o] (2.60)

is the Bose-Einstein thermal factor. From this we see that the probability of emitting one
particle or absorbing one particle depends mainly on the matrix element Vj_.;, which is the
amplitude of transition from the vacuum to the first excited state, the rest being automati-
cally obtained from the structure of the thermal state. This property will appear many times

in the following chapters. For the fermionic case, a similar result can be obtained, i.e.,

pl. = Voo P11 - np(@)], (2.61)
Pl =VimolP (@) = Vo1 Pns(@), (2.62)
where
0)=——— 2.63
@) = —5— (2.63)

is the Fermi-Dirac thermal factor. These results can also easily be extended for the multiple
particle case (as long as the interaction is only linear in all creation/annihilation operators
involved). We shall make use of this in the next chapter. Before proceeding, let us see an

example where the previous concepts can be applied.

2.3 The Unruh-DeWitt detector

One important application of the Unruh effect is exemplified by the Unruh-DeWitt de-
tector [17, 29]. This detector models a way of probing the field locally (avoiding, in principle,
referring to global constructs such as particles) and also reasonably approximates the in-
teraction of an atom with an electromagnetic field, which is useful in quantum optics. In
recent years it also has become the major workhorse for studying phenomena in relativistic
quantum information (see, e.g., [30, 31], for recent examples).

Although all observables regarding the detector (e.g., its excitation rate) can be derived
solely applying usual inertial QFT, the Unruh effect is fundamental to understand how con-
sistency between results obtained by inertial and accelerated observers is achieved and thus

guarantee covariance of the theory. In this section we define the detector’s model, calcu-



CHAPTER 2. THE UNRUH EFFECT 18

late its excitation rate from both points of view and use the opportunity to dispel a common
misconception regarding the relation of the Unruh effect with thermal baths of Minkowski

particles.

2.3.1 The detector as a two-level system

The Unruh-DeWitt detector is usually constructed first by defining a free two level sys-
tem. The Hilbert space of this system is spanned by the ground and excited energy eigen-

states, {|g),|e)}, of the free Hamiltonian
Hypw = Ale)el, (2.64)

where A is the detector’s energy gap (and we conveniently shifted the ground state energy
to zero). The next step is defining an interaction between the free system and the field. We

couple both via a linear interaction action
S :fdrc(r)m(r)ﬁb(xg(r)), (2.65)

where ¢(7) is called the switching function, controlling for how long the detector interacts
with the field, xg (7) is the detector’s trajectory parameterized by its proper time and 7 is a

monopole operator coupling the excited and unexcited states, i.e.,

M) =e 276 + 276, (2.66)
where 0~ = |g){(e| and ¢ = o~T. More complicated versions of this model may be used,

such as those including smearing, which are physically more realistic [32]. For our purposes,

however, the simple model presented above will suffice.

2.3.2 Excitation rate according to Minkowski observers

We will take the detector trajectory to be uniformly accelerated with proper acceleration
a in Minkowski spacetime, i.e., Eqs. (2.23) and (2.24) with ¢ = 0, located at X; = 0. We also
assume that the interaction between the detector and the field is always turned on in such
a way that c(t) can be regarded as constant'!. We will comment on the consequences of
this assumption shortly. If we assume the field state to be the Minkowski vacuum, [0y;),
the only way the detector can excite according to inertial observers is by emitting a scalar
particle (there is nothing to be absorbed). From their point of view, the energy for exciting

the detector and emitting a particle can be easily attributed to the external agent accelerating

VIA realistic detector would interact with the field only for a finite amount of time. If the total time of inter-
action is large with respect to a~! and A~!, the expression obtained for constant c gives a reasonable approxi-
mation of this situation. See [33] for a thorough discussion about this.
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the detector via the work done over it.

The amplitude for the process described above, at first order in perturbation theory, is
Apem =—i{k; elS1101; 8)- (2.67)
By expanding the field as in Eq. (2.4) over the detector’s trajectory we obtain that

, (2.68)

. ”
o sinh (at) — 1R cosh(ar)
a a

ic ;
Ar :——fdre’ATex
T em3izvae P

where for simplicity we have absorbed (e|72(0)|g) in the definition of c. Squaring the ampli-

tude and making the transformations 7 = s+ ¢ /2 and v’ = s — g /2 gives

2

2
|AI,em| =

. 2i
—fdsfdae’A”exp{—lsinh(aU/Z) [wcosh(as)—kzsinh(as)]}. (2.69)
1673w a

As we are not interested in what happens to the field, we integrate over the scalar quanta

tri-momenta k to obtain the total probability of excitation as

Cz dsk iAo 2i . .
Prexce=——=| — | ds | doe'”” exp{ —sinh(ao/2) [wcosh (as)— k,sinh(as)] ;. (2.70)
’ 1673 ) a

Since we assumed c to be constant, the situation is stationary and the probability of emis-
sion itself diverges due to the infinite total proper time of the interaction. The meaningful
physical quantity then is the probability of excitation per unit of proper time. Before obtain-
ing it we must first make the divergence in Eq. (2.70) explicit. To do so we make a boost in

the z direction, i.e.,

w' = wcosh (as) — k,sinh (as), (2.71)
k., = k. cosh (as) — wsinh (as). (2.72)

This transformation is such that dk,/w’ = dk,/w, due to the dispersion relation. Therefore,

the probability in Eq. (2.70) can be rewritten as
¢t [d’k -
Prexc= (fds) 16Hsfjfdaem”exp

——
where we have already relabelled the prime quantities to non-primed ones. With the infinite

2iw .
7s1nh(a0/2) , (2.73)

ATR

total proper time over the accelerated trajectory At extracted, the excitation rate, I'y ¢x¢, can
be defined as

p c? a3k ;
rI,exc = I,exc — f — deelAU exp

210 b (a0 /2) (2.74)
A‘[R 167‘[3 a S1n ao . .
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Let us separate the transverse and z directions in the integration measure by writing the

transverse part in polar coordinates. Since w? =k |+ kg = ki + kg this gives us

2 o) dk .
Fl,ex,;:#/; dkﬂﬂf wzfdaem”exp

2iw .
——sinh(ao/2)]. (2.75)
a

Following Ref. [21] we solve the innermost double integral by first making the substitu-

tions A = e%'2 and ( = (‘”2+—kZ) to obtain

2
ki +m

A A [ dA sina c7.2 2\1/2 -1 -1
Tfexc= —f dkﬂﬂf —f —A exp [i(k] +m*) " A-A"H{(+{ )/ Ra)].
’ 4m2a Jo o ¢Jo A
(2.76)
Further making a = A{, g = % and using the residue theorem to go to the complex positive
axis along with Eq. (8.432.7) of Ref. [28] we obtain the excitation rate as

2
2 2
\/kL+m
P .

c

2e—nA/a fo's)
1—‘I,exc = 7](; ko_kJ_ Kinia (2.77)

Note that the result given in Eq. (2.77) goes to 0 for a — 0 as it should be and also de-
creases with a larger A (the bigger the gap, the harder it is to excite the detector). More im-
portantly, if we calculate the de-excitation rate, I'; 4., the result is the same except for the

sign in the exponential. This means that the rates satisfy the detailed balance condition, i.e.,

1—‘I,exc

1—‘I,dex

=exp(—2nA/a). (2.78)

This is also valid, as we shall see below, for a static detector in flat spacetime immersed
in a thermal bath of field quanta (if the gap satisfies A > m). This is a further hint at a con-
nection between thermality and interaction rates obtained for an uniformly accelerated de-
tector. As one may expect, from the uniformly accelerated view this can be attributed to the

Unruh effect. We show this explicitly now.

2.3.3 Excitation rate according to Rindler observers

A naive expectation is that we could calculate the excitation rate of the detector in the
same way as from the inertial point of view but using Rindler modes. However, it is easily
seen that this cannot be the case.

Due to energy conservation in their frame (where the detector is static), differently from
the inertial point of view, there cannot be simultaneously an excitation and an emission of
a particle. However, Rindler observers co-accelerated with the detector, according to the
Unruh effect, see a thermal bath of particles at temperature a/2n as discussed in Section

2.2. The only available physical process, then, is for the detector to absorb a Rindler par-
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ticle and excite. This is an instance of a more general result that shows that each emission
of a Minkowski particle (i.e., seen by inertial observers) corresponds to either an emission
or absorption of a Rindler particle (i.e., seen by Rindler observers) [34]. Therefore we shall
calculate the amplitude

AR abs = —i{Or; €1S11G; 8), (2.79)

where § = (@, k. ). Note that, as discussed at the end of Section 2.2, here we are calculating

the amplitude using the Rindler vacuum, |0z), as an intermediate step to calculate the total

probability of absorption (which must then be weighted by an appropriate thermal factor).
Expanding the field in terms of Rindler modes, Eq. (2.31), and remembering that / =

+1/ ki + m?, we write the amplitude as

sinh (m®/a)
mta

1/2
AR aps = —27mic

l
Kiora (5) 0(@—-A), (2.80)

where we have again absorbed (e|#1(0)|g) in the definition of c. The same caveat as before re-
garding the total duration of the interaction applies, so instead of calculating the probability

of excitation we calculate the rate of excitation. Using the prescription

+00
2716(0) :f dt = Atp, (2.81)
—00

we can write 5

sinh (JT(D/LZ) (5((1) _ A), (282)

| AR, abs!? _ 2
2n3a

ATR B

l
Kiora (5)

which, taking into account the existence of the Unruh thermal bath in the uniformly accel-

erated frame, allow us to write the total rate of excitation according to Rindler observers as
(o) |A |2
I'Rexc = f d@f d’k, Rabs’ np(@), (2.83)
0 AT R

where nj,(®) is given in Eq. (2.60). Plugging Eq. (2.82) into Eq. (2.83), going to polar coordi-

nates in the transverse momenta and integrating we have

CZe—nA/a 00 \ /ki + m2
TRexe=——3 j(‘) dkiki | Kiaa — || (2.84)

which is exactly the same as Eq. (2.77), i.e., I'1exc = I'rexc = Lexc. This is true only due to
the Unruh effect being taken into account in the uniformly accelerated framevia ny(®). Were
this not the case, the excitation rate would be identically zero according to Rindler observers,
which would be a contradiction, since the excitation rate is a physical observable. Itis also in-
teresting to note how the calculation is drastically easier in the uniformly accelerated frame

due to the presence of the § function.



CHAPTER 2. THE UNRUH EFFECT 22

Before going to the next chapter, let us highlight an important point. Taking the m — 0
limit, a nice closed expression can be found by using Eq. (6.521.3) of [28] (in the a — b limit),
giving
2 A
E e2nAla _ 1"

Let us now briefly calculate the excitation rate of an inertial detectorimmersed in a ther-

(2.85)

l—‘exc,m:O =

mal bath at a temperature numerically equal to Ty = a/2n. It is a common misconception
that this result will be the same as the one obtained using the Unruh effect, Eq. (2.84). As we
shall see, this is not true in general.

The excitation rate in this case can be obtained ab initio by using the trajectory xg (1) =
(t = 7,X = 0) and repeating the same procedure as in Section 2.3.2. It can also be quickly
obtained as the a — 0 limit of Eq. (2.74) with a thermal factor, Eq. (2.60), to account for the
different field state and the substitution A — —A since now we must absorb a particle to

excite the detector. This gives

¢ [dk 5(A-w)
rexc,TU - 8772 w e2rwla_1 (2.86)
2
_ 2 2172 (A —m)
_E(A —m’) e2nhla _ 1’

which is clearly different from Eq. (2.84), except in the limit m — 0, giving Eq. (2.85). This is
enough to show that, in general, the Unruh effect does not say that an uniformly accelerated
detector behaves in the same way as an inertial detector in a thermal bath at temperature
Ty = al2n, although some aspects of both situations are clearly the same due to the thermal
character involved.

This ends our exposition of the basics regarding the Unruh effect. In the following chap-
ters we apply this formalism to study two situations. First, whether the Unruh effect can
be applied to mixing neutrino fields, a point of contention in the recent literature [25]. The

study of the relation between the Unruh effect and Bremsstrahlung comes next.






CHAPTER 3

The Unruh effect for mixing neutrinos
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In the preceding chapter we derived the Unruh effect for a free massive scalar field. How-
ever, the result is much more general: it is valid for any “reasonable” interacting QFT'. The
equivalence between physical observables such as detector excitation rates has also been
shown in more general settings, in particular for neutrino fields without mixing [35].

The behavior of neutrinos is probably the surest hint we have for physics beyond the
Standard Model (SM). This rests on the fact that in the SM neutrinos are massless, while
experiments, however, give resounding evidence that they are massive [36, 37]. When ex-
tending the SM to account for these experiments, however, we must also guarantee that this
extension is also compatible with previous results from different areas of physics such as, of
particular interest to us, the Unruh effect.

In this chapter we discuss a controversy sparked in the literature when trying to under-
stand particle decays from the accelerated observers’ point of view when mixing neutrinos
are involved [25, 38]. We begin by laying out the interaction process we will be interested
on, namely, the inverse beta decay. Then, we discuss what states we must use to describe
neutrinos involved in the process. Finally, we show that when due care is taken, there is no
incompatibility between inertial and accelerated observers’ conclusions regarding the inter-

action rate for the inverse beta decay with multiple neutrinos.

3.1 The inverse beta decay

An important phenomenon in particle physics is the beta decay, namely

n’ = pt+e +v,, 3.1)
where 1, p*,e” and v, stand for the neutron, proton, electron and electron neutrino (usu-
ally taken to be massless in calculations) respectively, since it was responsible for the discov-
ery of the neutrino and for the development of one of the first models of the weak interaction,
namely Fermi theory (later supplanted by electroweak theory) [5].

A less known process is the inverse beta decay,

pt—=nl+et +v,. (3.2)

This decay, in contrast to Eq. (3.1), is not kinematically allowed if the proton is at rest, as
the mass of the proton is smaller than the mass of the neutron. This process may happen,
however, if the proton is uniformly accelerated, since an external agent may do work over
the proton and this work ensures energy conservation.

It is interesting to analyze this process from the point of view of an observer riding along

with the proton. In this case there is no work done (there is no displacement from this ob-

"Where by reasonable we mean satisfying the Wightman axioms.
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server’s point of view: the proton is always at rest). Since a decay is an event in spacetime and
all observers must agree if it happened or not, how does this observer explains the decay?

This is exactly the same behavior seen with the Unruh-deWitt detector model presented
in Section 2.3. By analogy, we see that the Unruh effect must come to the rescue: an uni-
formly accelerated observer sees the proton interacting with a thermal bath of particles (in
this case, of electrons and neutrinos) in such a way that the total interaction rate from this
point of view is exactly the same as the one that an inertial observer would obtain. Despite
a completely different physical description, both sets of observers must agree regarding any
physical observable.

This has been shown previously by Ref. [35] using numerical methods and later on, build-
ing over this work, analytically in Ref. [39]. All calculations were done using the (reasonably)
approximation where only the electron neutrino is involved.

We know from experimental observations, however, that there are at least three differ-
ent types of neutrinos and, moreover, none of them can be considered in isolation if we
want to include neutrino mixing in our description of reality. Attempts to extend the above
mentioned calculations to the case with multiple neutrinos, where mixing occurs, obtained,
at first, strange results. For instance, Ref. [25] declares that rates obtained by both set of
observers disagree when multiple mixing neutrinos are taken into account and this charac-
terizes a paradox that can only be experimentally solved. Later on, Ref. [38] tried to better
understand this result, but in their framework they obtain strange conclusions such as the
vacuum states associated with flavor and massive neutrinos being orthogonal to one an-
other. This implies that a massive neutrino detector would, in principle, be able to see a
flavor neutrino in its vacuum state and vice versa, which seems non-physical. This point has
already been previously debated, see, e.g., Ref. [40].

The correct way out of this conundrum is to be careful when working with neutrino fields.
By careful here we mean focusing mainly on massive neutrino fields, which satisfy the mas-
sive Dirac equation. Flavor neutrinos have properties difficult to associate with fundamental
particles (e.g., they do not have a definite mass, not being able to exist “on-shell”). Also, they
only arise in specific experiments (such as neutrino oscillations), where there is uncertainty
regarding energy and momentum which is comparably large with respect to the neutrinos’
masses, requiring a wave-packet treatment to make sense [41].

For this reasons flavor neutrinos should not be seen as fundamental fields. Since, as we
showed in the previous chapters, the Unruh effect is defined for fundamental fields having
a well-defined equation of motion, we must try not to incur into the Procrustean mistake of

fitting phenomenological definitions in this framework. Let us discuss this now.



CHAPTER 3. THE UNRUH EFFECT FOR MIXING NEUTRINOS 27

3.2 Fermi theory and the decay rate for the inverse beta de-
cay

We consider the proton and the neutron as a semi-classical two-state system similar to

the one describing the Unruh-deWitt detector of Section 2.3. Their Hamiltonian satisfy

H\p) = my|p), (3.3)
Hiny = my|n), (3.4)

with m,, < m,, where m, and m,, are the proton and neutron masses respectively. For sim-
plicity, we also define Am = m, — m,,. Being semi-classical, the proton-neutron system has

a well-defined trajectory and can be described by a semi-classical current

@) = q—__(;)uou”(ng’(f—fo(T)), (3.9)
where §(7) is given by
4(r) =" g0y, (3.6)

u%(7) is the time component of the proton four-velocity and X, (t) is the spatial trajectory of
the proton, everything being parameterized by the proton’s proper time 7. We identify the
Fermi constant, Gr, in this model with [(n|§(0)|p)|, giving a measure of the strength of the
weak interaction, and take the proton-neutron trajectory to be the same as in Sec. 2.3.

The Fermi action we consider is given by

A 1 N A 2
Slzfd‘lx,/—gﬁ( Y Vet (1-7°) laju+h.c.) (3.7)
a=e,u,1t

1 R A

Efd“x\/—g— Yoo Y Ui viy*(1—v®) laju+ hec.|,
V2 \adepriZips

where U, ; is an element of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [42, 43],

v; is the neutrino-field with mass m;, [, is an electrically charged lepton field with flavor a

(and mass mg), Yo = wLyo, and y* are given by

I 0 ; 0 oy 0 I
0 i i 5 .. 0.1.2 3 2x2
_ ; _ : =i - _ (3.8)
Y (0 —I) Y (—Ui 0) Yy =wrvry (Isz 0 )
Note that we have defined the flavor neutrino field

i=1,2,3

as a simple mathematical shortcut for writing the Fermi action. In particular, we do not
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quantize the field ¥, nor associate quanta to it. As discussed in Appendix A, this procedure
does not lead to a physically meaningful Fock space. One may wonder, then, what state we
associate to the end particle present in a decay such as the one given in Eq. (3.2) and how
can we calculate the interaction rate. We present how to construct this state explicitly in

Appendix A, but highlight a few relevant points here:

* For our purposes, as proven by Eq. (A.15), it is important to notice that, when due care
is taken, the inverse beta decay interaction rate will be given as an incoherent sum over

the three different massive neutrino channels, i.e.,

+_, 7+ +_, T+ A/
PP =nleveas N pponlavi (3.10)
i=1,2,3

* This is not in conflict with neutrino mixing experiments as explained in the aforemen-
tioned appendix. The main reason this is so is that these experiments are localized in
space and time, which inherently means uncertainty in the energy and momenta of
the resulting neutrino, both in the source and in the detector. This means that only a
wave-packet description makes sense in this setting [41, 44]. In fact, observing particle
decays with higher precision in determining energy and momenta is one way to pin-
point the mass of a single massive neutrino (see, e.g., [44] for mentions of this type of

experiments).

For this reason, we focus on calculating the decay rate for one massive neutrino, with the

total rate being obtained by summing over the three channels.

3.3 Inertial point of view

Our first step will be to calculate the inverse -decay rate as seen by inertial observers.
We follow here the notational conventions adopted in Ref. [39]. The fermionic fields (the

electron and massive neutrino fields) can be expanded in terms of plane waves as

=3 fd?’k(ahu%‘uiai u-® ) (3.11)
o=% ’

[ ko k-0

where the normal modes u%w, solutions of the standard Dirac equation,
O

(iy#0,—m)y =0, (3.12)

are given by

= o), (3.13)

where
(kyyH+£mlI)
> Do, (3.14)

" Row+m]V
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with
1 0
R 0 R 1
v+ = ; vV_ = . (3.15)
0 0
0 0
In inertial coordinates, Eq. (3.5) reduces to
jH(r) = ?u”(r)c‘)‘(x)c‘)‘(y)é (z -V i2- a‘z) , (3.16)
z

with ut(7), t(r) and z(7) being given in Eqgs. (2.22), (2.23) and (2.24) with ¢ = 0, respectively.
By inspection of Eq. (3.7) we see that the inverse f-decay from the inertial point of view

happens via only one type of interaction, namely
pt—n+l}+v;, (3.17)

with a = e, i, 7, labelling the flavor, and i = 1,2, 3, labelling the mass. We start by calculating
the amplitude
Api =—iI5vi;nlSil0; p), (3.18)

which when expanded using Egs. (3.7), (3.16) and (3.11) gives

_iGFU; i o iAmt i . i 3 3
Api= —f dt e exp{—(wa +w;) sinh (at) — —(k, + k;) cosh (ar)} (3.19)
2m)3v2 J- a a

—+W; —Wq o —+Wj —Wq
COSh(aT)uki,a,-Mluka,—aa smh(ar)ukiygngu

X
ka,—0q |’

where, for simplicity, we have defined the matrices

1 0 -1 O -1 01 0
01 0 -1 0 1 0 -1
Ml = , Mg = (320)
1 0 -1 O -1 01 O
01 0 -1 0 1 0 -1
The differential probability of decay will be given by
dppi—nlvi )
= ) lALil*. (3.21)

kg ki o5,

After squaring Eq. (3.19) we perform the spin-sums in Mathematica®!!. For the same reasons
as discussed in Sec. 2.3 we must extract a divergence in the total proper time of the proba-

bility and obtain an interaction rate instead. To do so, we first make a standard change of

I'The code is shown in Appendix B.
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coordinates

s=(T+1)/2, (3.22)
2=0=1-1 (3.23)

and perform a boost in the z direction [Egs. (2.71) and (2.72)] with regard to both the neu-
trino and the electron momenta. After dividing by the total proper time and cleaning up the

resulting expression, we obtain a differential interaction rate given by

drP = nlivi 2GE|Uql?
A3k, d3k;  (2m)b
x (Wiwg)~ [kzkz +wiwg + f(kF

foo déexp{(2i[Amé + a (wq + w;) sinh aél)} (3.24)

k! I,

ia’

where f (kl o
decay rate when integrated over the momenta. Let us use spherical coordinates for both the

k) ; ,) isan odd function of each of its arguments which will not contribute to the

neutrino (indexed by i) and charged lepton (indexed by ) momenta and make an additional

coordinate change for ¢, i.e.,

kl?fa = ki ¢ SINO; o COSP; 4, (3.25)
k!, = Kijasiniqsing; q, (3.26)
kl o = Ki,acos0; q, (3.27)

A=e®, (3.28)

with w; ¢ = 1/ II_élf’a +m . Integrating over the angular variables we get

. iy G2|U ,|2 00 fo'e) 00
rp—n Iy vi — F 4“’1 f dAf dka,f dki (3.29)
2n*a 0 0 0
y Aziﬁm_1ea*1(wa+wi)(/l—/l’l)k(Zxkl?.

Performing the A-integral (Eq. (8.432.7) of Ref. [28]) we are left with

. G2|U, =zam
rrionlsvi_ M : f dkasz dklkz (3.30)

x Kainmia (a(wa +w;)].

For comparison with the accelerated result it proves useful to use the same techniques of
Ref. [39] to transform this integral in a double integral over complex variables. To this end,

we begin by expressing the modified Bessel function K, (x) as

ds ( )m”, (3.31)

1
Kp(x):ifc z—mF( SI(=s—p)
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where in our case = 2iAm/a, x = 2 (\ [k +mE+1\/k:+ mlz) and the counter Cj is such that

all poles of the I" functions are inside it (see Ref. [39] for a derivation of this formula).

Therefore, we write the decay rate as

. G2|Uyg iI? =z
pprionlgvio JEZOU T f dkg sz dk; sz —F( s) (3.32)
2nta C, 21
2iAm

oo )

Now we express the term inside the parenthesis as

HCETR R

dr T(=DT(t— 25— 2Am) _ziam
f —a o (3.33)
c, 2mi r(_zs—M)

iAm

x (K2 +m2) "2 (k2 4 m2)?,

where the contour C; is such that it separates the poles of the I" functions in the numerator

(see Ref. [39] for details). The contours used in these integrals allow us to make the substitu-

tion s — s— A without altering the results. Therefore
+ 7+ G2 |U '|2 _tAm e} oo
TP nlaviz I;n—j‘a’l’e—ﬁ fo dky kifo dk; k? (3.34)

ds zAm iAm
x —TI|-s+—|T'|-s———
C, 2T a a
dt T(=0I'(t-2s) _,,
X a
c, 27l I'(-2s)

x (k2 +m2) "7 (k2 + m2)?

Similarly, we make a sequence of transformations (a) t — 2¢, (b) s — s+ ¢t and (c) s — s—
3/2,t— t—3/2 to arrive at

7+ G26l5U 2 —nAm
P nlgvi ﬂ Af dk, sz dk; k2 (3.35)

iAm iAm
X -s—t+——+3|['|-s—t———+3
527” ct2m a a

( LE2043T(225+3) oo p
I'(-2s-2t+6)
(kz )S 3/2 (k2 )t 3/2

Using the integral identity (which holds here by an appropriate choice of the countours)

fo'e) 281T(_
f (K2 + m2)s 32 = ﬁ m=I'(-s) (3.36)
0

4 T@3/2-3)
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we obtain

err—’nl_;

G2 a5|Ua l|2 anm
247-[3

(3.37)

iIAm iIAm
xf f —s—t+—+3|I'|-s—1- +3
2T ct27tl a a

T(-2t+3)[(-25+3) ooy

“T(—2s—21+6)(B/2—C(3/2—1)
x (Mg)*' (m))* T (=) (~1).

Finally we use one of the properties of the I function, i.e.,

I'2x)

to write

=22 1) 12T (T (x +1/2), (3.38)

I'@2(=t+3/2))I'(2(-s+3/2))

(3.39)

Fr2(=s-t+3)r@/2-s1r@3/2-1)

re-nre-s)

T2 AT (—s—t+3)(—s—1+7/2)

Also, using that I'(x)* =I'(x*), we arrive at the final form for the decay rate

rp*—»nl_;vl:

G;a°\Uq,il* —xam

257-[7/2
( iIAm )
s—t+——+3

Loz . o
s 2T Je, 21 a

XF( HI=DI'(=t+2)I'(—-s+2)
I'(=s—t+3)['(-s—t+7/2)

x (Mgl a)*" (m;l a)*

(3.40)

2

We note that this result correctly reproduces the ones given in Ref. [35] in the massless

limit and is the same as in Ref. [39] in the case of a single massive neutrino. As we have noted

before, the total rate for the process

pt—=n+e"+v, (3.41)
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is given by the incoherent sum of Eq. (3.40) with a = e over the rates obtained for v;, i.e.,

GZ 5 —nAm
257-[7/2 ¢

fs 2mi fct an

><1“( HI=I'(=t+2)I'(—-s+2)
(=s—t+3)['(-s—t+7/2)

x(me/a)“( Y |Ue,i|2(m,-/a)25),

i=1,2,3

rp+_’ne+ve_

(3.42)

2

iIAm
—Ss—t+——+3
a

The semi-classical Feynman diagrams associated with this decay are shown below in Figure
3.1.

P

+

U3

Figure 3.1: Feynman diagrams for the semi-classical inverse f-decay according to inertial ob-
Servers.

This is the result that all other observers must ascribe to the total interaction rate for the
inverse beta decay process, as demanded by the covariance of quantum field theory. We shall

see now how this happens from the accelerated point of view.

3.4 Accelerated point of view

In the same way that for the Unruh-deWitt detector we had to consider a different type of
process (an absorption) in the Rindler frame as opposed to a simple emission in the inertial
frame, we must now see what kind of processes correspond to the decay channels seen by
inertial observers.

From the form of the interaction action given Eq. (3.7) we see that energy for the decay

can only come from absorbing a charged lepton, an anti-neutrino or both. Therefore, each
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decay of the type p* — n+ I} +v; seen by inertial observers will correspond to three pro-

cesses from the Rindler point of view, which are
e (@pt+l;— n+v;,
e b)pt+v;—n+l,
s ©p+i+vi—n.

The total interaction rate for the inverse beta decay, then, is obtained by summing over
all three channels above for each massive neutrino. We must calculate then nine different
amplitudes, again following the conventions of Ref. [39]. Let us start with the amplitude for

process (a) for the i neutrino. It will be given by
A%“,)i =—i(Vi;g,0:5 n|§1|la;67a,cra; P (3.43)

where we have again used the shorthand g = (@, k 1) for each Rindler particle, with @ stand-
ing for the Rindler frequency. To calculate this amplitude we must expand the lepton fields

using Rindler modes, i.e.,

y= Sgle . at® 44t -@
w_a-;i_/vd q(cw’ki’og%l,a+da)jel,o-g%l,_a)’ (344)
with )
‘o e?i(DT+ikl-3€l N
g%_l,O' - Who(i@, kJ_)) (3.45)
where
> h(on/ 1/2
hy (@, k1) = cosh (@n/a) 3.46)
mal
ol(7. = l at
Y (kl'Ylme”)KJ_ria)/aH/z pl
l N
+ilY Keiora-1/2 (Ee“‘t) hs,
with
i 1, ] . .
N 0 N 1
o= h-= , (3.47)
1 0
0 -1

1=1/1kL|1?+m?and ¥, = (y',y?). Expanding Eq. (3.43) we obtain

(u) — lGF
B om2y2

+0; 0,7 5y.,t0q
dnoiV I-7)u . (3.48)

qa,0q
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Similarly, for process (b) and (c) we obtain

ARy = U 501 a - am) % 0=y |, (3.49)
© _ LGk _— +@q
= s 5 Uaa0(@i @0 am) |27 YO0 -yHui® |. (3.50)

To obtain the decay rates we square the amplitudes, multiply them by the thermal fermionic
factor (as discussed at the end of Sec. 2.2), divide them by the total proper time using Eq. (2.81)

and sum over the spins to obtain

dr'®  GilUqil’6(@q —@; = Am)
d3q; d3qe 2(2m)5

y Z ‘ +(D,‘Y (I- )/)u+'D" ”

np (@) - ns(@) (3.51)

~ GlUq,il?6(@a — @i — Am)
~ 23(2m)5emAmlacosh (1@, / a) cosh (T@;/ a)

XZ‘ +(D’Y(I Y)u+wa]2

qa,0a

)’

where n¢(x) is given by Eq. (2.63). Similarly for the other processes we have
dar® G2|Uq,il*6 (@i — @q — Am)

d3q; d3q, 2(2m)5

——@; Orr_ A5, Pa
x U;a ‘ [uﬁir_ai,}/ (1 Y )uﬁav—aa]
GlUq,iI*6(@; — @q — Am)

23(2m)demrAmiacosh (@, /a)cosh (m®;/ a)

2

-~ 0 _ 5 Qg
UbZUa ‘ [uéir—aiy u Y )uﬁav—aa]

dr® G2|Uq,iI*6(@q + @; — Am)
dB3q; d3q = 202715 ng(@)ng(@q) (3.53)
l a

< 3 |l e, ||

~ G§|Ua,i|26(@a+w,-—Am)
B 23(271)5e”A’”/“cosh (mDa/a) cosh (m®;/a)

% [l a-rugs |

np(@)(1—np(@g) (3.52)

2

X

Let us focus only on the spin sums for the moment. Using the code provided in Appendix
B, disregarding odd terms in the transverse momenta (which will not contribute when inte-

grated over all transverse momenta) and also using that K7, ;. (¥) = K_1/2+ix(y) (for y € R)
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to simplify the expressions, we obtain that in all three cases they are equal to

32cosh (m@y/a)cosh (mw;la)lyl;

= K, o U Ky, o0 (ol | (3.54)
where [; 4 = \/ kx i k}zl,l’ mlza In this way we obtain for the rates

dr'®  GiUq,il8(@q — @i = Am)

d3q; d3qs. a223 77 emAmlia (8.55)
jou U /a)( ‘Kl 0 (U /a)‘
A2T® :G§|Ua,,|25(a>,—a)a—Am) 3.56)
d?’qi dS Ga (1223]-[7enAm/a
< lila|Ky 0, U /a)( ‘Kl oa(la/a)‘
ar© Gian,lFa(maml—Am) 5.5

d3 qi dS da 02237[7 enAm/a

jou U /a)( ‘Kl 0a (U /a)‘

Now we must integrate over the remaining leptonic quantum numbers. First we get rid of

the 6-functions by integrating over ®;, therefore

o GlUwl e
' = W \ d(,l)a dkx;i dkx;a dky;l' dky;a (3.58)
m

I /a)‘ ‘Kl o (L /a)(

We do the same procedure for the other rates . Now, taking into account the integration
ranges and the fact that we must compare the fotal interaction rate for each i neutrino with
the one obtained by inertial observers (and then sum them all), we must sum over all pro-

cesses resulting in

(tOt) G2 |Ua l|2
F W da)a dkx i dkx a dky i dky a (3.59)
joum (I /a)‘ K)o (g /a)‘
Now we use the identity
(l/a)K. (l/a)K (l/a) \/_ Nia?| 12, 1
a i a)K_ i a) =
texiwla Verivla iwla+1/2, +1, 0, —iw/a+1/2

(3.60)

_Vm [ ds ds )25_1F(iw/a+1—s)1“(—s+ 1/2)T (—iw/la+1-ys)
~ 2 Jg, 2mi r(1-s)

’
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where we used the definition of the Meijer-G function, Eq. (9.301) of [28], along with a con-
tour change in the contour Cs, which encloses all poles of the I functions (in a similar way to
what was done in the inertial case). Going to polar coordinates in the transverse momenta

and noting that in the range of s covered by C;

s=1/2 1-25,..2s+1
+m a m
f dp (p ) =T Ti2s (3.61)

we obtain, after making ®,/a — @, and using Eq. (3.60) twice,

pror _ 3G2|Ual|2f f (3.62)
234enimla 2i Je, 2mi '
a 23m23+1a 2t+l
a

“0+29(1+200(—s+ 1)F(—t+ 1)
XxT(=s+1/2)T(—t+1/2)|[T(i@g+1-DPIT(i®g —iAmla+1-s).

Now we make i@, = x and use that

dxT(a+ 0T+ OT(c - 0T(d— x) = 2ni @+ DIb+ATb+d) o
o Ta+b+c+d)

whereinourcasea=c=1-t b=—-iAm/a+1-s,and d =iAm/a+ 1 - s. After making (a)
s—s—1/2and (b) t — t—1/2, this leads us to

ror 5G2|Ua:l|2 m Sa—ztmlgt
ot = f f (3.64)
22g3enAmia Jo 2mi Jc, 2mi (25) 20T (—s+3/2)['(—t+3/2)
xI'(—s+DI'(—t+ 1)|F(3—t—s+zAm/a)|

re-20r@-2s)
re—-2t-2s)

We apply again the identity given in Eq. (3.38) obtaining that

r@@E/12-0reE/2-s) (n)_l,zz—lr(s/z — O (—t+2)T(3/2— )T (~5+2) 5.65)
I'2@B-t-y9)) B r@-t=—9Ir@/2—t-ys) ’ '
so, finally,
tot _ a5G§|Ua,,-|2

2s 2s =2t 2t
_257r7/2e7mm/af 27”.[6, 27” a @ I'—t+2)I'(—s+2)I'(—-OI'(-s) (3.66)

TB-t—s+iAmla)|®
X .
T3-t-s)[(7/2—t—25)

Again taking into account an incoherent sum over the different neutrinos and fixing the end

particle to be a positron in the same way as before we obtain the decay rate (after arelabelling
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s—1)

G% a5 —nAm
o (3.67)

T 955712
f dtf ds ( iAm )
X b b I'i-s—t+—+3
¢ 2mi Jo, 2mi a
F=)I'(-Or'(=t+2)I'(-s+2)
I(=s—t+3)[(-s—t+7/2)

x(me/a)”( Y |Ue,i|2(m,-/a)25).

i=1,2,3

I‘P+—’ne+Vg_

2

which is exactly the same rate obtained from the inertial point of view, despite the drastically
different description of the decay (the Feynman diagrams from the Rindler point of view are

shown below in Figure 3.2).

P vy P vy P 3

Figure 3.2: Feynman diagrams for the semi-classical inverse -decay according to Rindler ob-
servers.

This shows that there is no paradox regarding the Unruh effect and mixing neutrinos, in

contrast to what was obtained in Ref. [25].
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As afinal aside, note that our calculations involve no approximation whatsoever (as those
of Ref. [38]). We owe this due to the fact that we used fields which have a well-defined quan-
tization (i.e., massive neutrino ones) in our calculations.

Our result is not a surprising one, since we should expect it from the general covariance
of QFT. It is, nonetheless, reassuring, given the existing discussion in the literature. Despite
not posing any paradox to be solved experimentally, the inverse beta decay could be used,
in principle at least, as a way to test the Unruh effect. For reasons we discuss in the next
chapter, it is not possible to do so and we must search for a different way of probing the
effect. A promising platform is the use of electromagnetic radiation, the subject to which we

turn now.



CHAPTER 4

‘—Proposal for observing the Unruh effect with classical

electrodynamics
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In the previous chapter we have seen that by taking into account the thermal bath in the
accelerated frame, along with a careful examination of how to quantize neutrinos when there
is flavor mixing, we obtain consistency between inertial and accelerated observers’ results.
As mentioned in Chapter 1, besides neutrinos, a similar reasoning can be applied to different
observables of different types of fields. Despite being derived from basic principles and its
fundamental role in guaranteeing consistency of the QFT framework, some people remain
skeptical of the existence of the Unruh effect.

A point of contention regarding the Unruh effect is the nature of particles seen in the
Rindler frame: are they real or not? Is it possible to observe them in the laboratory? In
this chapter we discuss such questions and also show how the Unruh effect can be virtually

confirmed by an experiment involving mainly classical electromagnetism.

4.1 Rindler particles

As we have seen in Chapter 2, Rindler particles are defined by uniformly accelerated ob-
servers in the same way that inertial observers define particles in their frame, as excitations
of a vacuum state via the action of creation operators. Different particle concepts come from
using different vacua and creation operators.

Although particles seen by Rindler observers have counter-intuitive properties (e.g., not
having an “usual” dispersion relation between energy and momenta, possibly having zero
energy), there is no reason to doubt their existence since they follow from basic principles
of QFT. In fact, a recurring theme in the preceding chapters has been that the existence of
Rindler particles, in the form of the Unruh thermal bath, is paramount for the consistency of
QFT. An useful analogy here is the concept of inertial forces in classical mechanics: they are
required for consistency of description between different sets of observers.

We saw this briefly in the case of the Unruh-deWitt detector in Chapter 2 and in much
more detail in the case of the inverse beta decay rate for accelerated protons in Chapter 3.
Leaving aside the complications brought by mixing neutrinos, this could be regarded as an
experimental idea for “observing” the Unruh effect. However, the proton lifetime obtained
from these decay rates precludes this from being a realistic possibility. As an estimate, under
typical accelerations obtainable with the LHC the accelerated proton lifetime would be of

8
order 103*10

years, being much larger than the lifetime of the universe.

An important scale existing in both these problems associated with this problem is the
gap between the proton and neutron masses. If the gap were smaller, observing the decay
would be easier (although not necessarily easy). This motivates us to look for another sys-
tem where this “energy gap” could be arbitrarily small. One system fitting this criterion is a
charged radiating particle, since it can emit photons with any frequency.

The connection between electromagnetic radiation and the Unruh effect was already

studied before [20]. Although equality between interaction rates was already obtained there,
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the fact that in the Rindler frame the charge (without a regularization procedure) only inter-
acted with (an infinite number of) zero-energy photons, was seen by skeptics as a problem.

With these two points in mind we proceed now to discuss a variant of this previous work
where this problem is avoided. This is done via addition of transversal motion to the charge.
In particular, we consider that the charge not only accelerates uniformly in the z direction
but that it also rotates in the x — y plane with a constant acceleration with respect to Rindler
observers. This type of motion makes the situation stationary from the accelerated point of
view, which allow us to study it analytically and also makes the charge interact with non-zero
energy particles in the Rindler frame. As we shall see, the Unruh effect is stillfundamental for
obtaining consistent results, no matter if these results involve particles with zero or non-zero
energy in the Rindler frame.

With regards to observing the Unruh effect experimentally, an important point to notice
is that we will not consider an observer co-moving with the charge. It is known that the
Unruh effect cannot be derived for uniformly rotating observers, since the Killing field gen-
erating their trajectory is not globally timelike [21] . This is the main reason the experimental
proposal made in Ref. [24] for observing the Unruh effect only achieves partial success. In
the last years there have been many other proposals for observing the Unruh effect experi-
mentally, both directly (e.g., Ref. [45]) and using analogue models (e.g., Ref. [23]).

We will also propose an experiment to obtain an observable which can be directly in-
terpreted in terms of the Unruh effect with some notable advantages: firstly, we calculate
the expected result in both inertial and accelerated frames, which is something that some
proposals only hint on being able to do. Secondly, our experiment involve mainly classical
quantities, with only one quantum ingredient added. Although this may sound a bit surpris-
ing, we will show this explicitly. We believe that our experiment may be doable with current

technology, but comment on some of the challenges involved at the end of this chapter.

4.2 Observing the Unruh effect with electromagnetic radia-

tion

4.2.1 Rindler observers’ proposal

Here we describe the setup for our experiment in detail. To this end, we consider a semi-
classical electromagnetic current j* and ask Rindler observers to predict the interaction rate
for the charge immersed in the Unruh thermal bath of photons. Later we will see that it is
easy to generalize the result to a thermal state at an arbitrary temperature. Keeping the ther-
mal state general allow us to also see how deviations from the Unruh temperature (which
would indicate something wrong with the derivation of the Unruh effect) affect our results.
Afterwards, these observers propose a setup for inertial experimenters to confirm their pre-

diction. Since this setup involves only classical electrodynamics, we can use Maxwell’s the-
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ory to predict the expected interaction rate.
Rindler observers cover spacetime with coordinates (A,¢,r,¢) such that the spacetime

length element is given by
ds® = &% (dA* - d&?) - dr® — r*d¢?, (4.1)

where A € (—o0, +00)!, ¢ € (—00,00), 1 € [0,00) and ¢ €10,2m). The current we want to describe

is one that is uniformly rotating with respect to Rindler observers. It is given by

"= \/__g6 (X = Xo) (4.2)
u
- Z—ZO(S(&)&((p—M)a(r—RL 4.3)

where ¢ is electric charge, R is the radius of movement in the transversal plane, Q is the

angular velocity (with respect to Rindler observers) and the four-velocity u* is given by

-1/2

ut=y(1,0,0,Q), y=(1-R*Q% (4.4)

Rindler observers must quantize the electromagnetic field, A, but now we shall use po-
lar coordinates, which are more adequate to the symmetry of our setup. Let us consider
initially the scalar Klein-Gordon equation [Eq. (2.2)], which we will use as a stepping stone
for constructing the solutions of the vector one. In the above coordinates, it can be written
as

e 2% (9% - 0% —r'0,(ro,) —r %05 | @ =0. (4.5)

Due to the time and axial symmetries of the problem we try an ansatz proportional to
e~i@A+im¢  The same method presented in Chapter 2, together with the definition of the

Bessel J function leads us to
85 = CoKiola (k—;e“f ) Jm(kyr)e™Pe i@, (4.6)
where 4 = (@, k., m), the normalization constant Cj, is
Cp = [sinh (m@/ @)/ 273 @)]''?, (4.7)

and the quantum numbers are such that m € Z, k; € [0,00) and ® € [0,00). Again we note

that there is no dispersion relation between any of the quantum numbers.

"We use A here in place of 7 since as the charge will be rotating with respect to Rindler observers, their
proper time (x A) will not coincide with the charge proper time, 7.
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For the electromagnetic field we consider the usual Lagrangian
% =-y=g|IDFu F* + 2a) 7 (V,AM?], (4.8)

with the Feynman gauge (a = 1) and where, as usual, F,,, = d,A, —0yA,. This leads to the
wave equation
VIV, A, =0. (4.9)

The physical modes of the electromagnetic field, which also satisfy the Lorenz condition

V,A¥ =0 and are not pure gauge modes, can then be written in terms of Eq. (4.6) as

Aif;il) = kll (aggﬁ,a;tgﬁ,o,()), (4.10)

AT =k (0,0,-mr gg,~ir0,g5). (4.11)

Together with the non-physical modes, ASZ;A), whose form shall not concern us here (since

no physical particle state will have such polarizations), we can expand the field as

e} le’s) 4
A = Lo ale
AH—;fO dkLkifo dm;(be"’AMH'c')' (4.12)

For calculating the interaction rate we work perturbatively to first order in the charge g

with the interaction action given by

St :fd‘lx\/_—g jrA,. (4.13)

The procedure is similar to the cases treated in Chapter 2 and 3: we calculate the inter-
action amplitudes, both for emission and absorption, square them, divide them by the total
proper time of the interaction to obtain a finite result, multiply them by the appropriate
thermal factors coming from the Unruh thermal bath and integrate non-invariant quantum
numbers. The extra detail is that we must sum over both polarizations incoherently (since
they give rise to different final states).

We begin with emission for the € = 1 case. In this case, the amplitude is given by

AR eme=1=—i{GIS7|0R)e=1 4.14)

— il gty =5 i AEe=D)"
= zfd xXv—8] (A,u,zi )
1/2

. sinhn®/a
==2miq)m (kK R) | ———

k
KQ_@(ZL)G((D—mQ),

a

2n3a

where the prime indicates differentiation with respect to the argument of the modified Bessel
function. Note that we are calculating the amplitude using the Rindler vacuum state, |0g) as

explained at the end of Chapter 2. Another important point to notice here is the presence of
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the 6 (0r — mQ) term. For m # 0 the particles interacting with the semi-classical current do
not have zero energy with respect to Rindler observers. As mentioned in the introduction to
this chapter, this has been a point of debate in the literature and the existence of the rota-

tional movement in the current was inserted specifically to address such criticism.

()
v

Integrating the Rindler frequency and multiplying by the appropriate thermal factor we ob-

Using Eq. (2.81) we obtain

2

A 12
| AR em,e=1] _4 |Jm (k1 R)|?sinh (m@/ a)
a

2
AT -2 6 (®—mQ). (4.15)
R

tain the interaction rate for emission as

=1 e=1
drg;m = 1 ng?efm _food(DIAR,em,ezﬂz( 1 + 1) (4.16)
kJ_ko_ B ATR kJ_ko_ 0 ATR eZTHD/a_l .
0 ifm<0,
= ) 2
ey ( K, (%) |Jm (kLR) |2e”m9’“) if m>0.

The same procedure can be followed for the absorption part of the interaction rate. Not-
ing that the probability for absorption and for emission are the same, the only difference is

the thermal factor (which does not include the spontaneous emission term). This gives

e=1
AT s _ f°° dwlAR,em,e:nz( 1 ) w1
kJ_ko_ 0 ATR ez”a”“—l '
0 ifm<0,
= B 2
- ( Koy (%) UmteBy |2e—”m9/“) if m > 0.
The remaining case, m = 0 (the zero-energy mode), is dealt by considering both emission
and absorption together!!
drm:O,e:I 2 2
R,em+abs q / kl) 2)
= Ky|— kiR . 4.18
kLdk, Zﬂza( O(a [Jo (kL R)| (4.18)

I'This is not strictly needed, but avoids a lengthy regularization procedure. See, e.g., Ref. [20] for a discus-
sion.
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With the first polarization being taken care of, let us look at € = 2. In this case,

AReme=2 = —i{G|S1I0R)e=2 (4.19)
. —= auf ae=2)"
i [z A

sinh (r@/a) |12

=2ngRQ
9 2n3a

];n (kL. R)Kio (%)5(&)— mQ),

where a prime again denotes differentiation with respect to the argument. Following the

same steps as the previous case, we obtain the emission rate as

drm,ezz o A 2 1
R,em :f d(Dl R,em,e_2| ( +1 (4.20)
kJ_ko_ 0 ATR eZmD/a_l
0 ifm<0,
2.2 2
Eya ( Kign (|17, (e B |2e”m9/a) if m > 0.
The absorption rate, on the other hand, is given by
m,e=2
drR,abs _ foo da)lAR,em,e=2|2( 1 ) 4.21)
kJ_ko_ 0 A‘L’R eZmD/a_l '
0 ifm<o,
2.2 2
(g ( Kiow (|71, (e B |2e—”m9/a) if m > 0.
Finally, the m = 0 case for € = 2 gives
drsz,e:Z 2 9 2
, bs _ (RQ) k
lic’znm -= anaq ( Ko (ﬁ o (kiR) . (4.22)

The total interaction rate per transverse momenta seen by Rindler observers then is given
by the sum over m of the previous expressions for the individual rates. We will not show the
full expression here since we will write this result in a more general way shortly below.

There are two interesting things to note in the above results: firstly, considering the Q — 0
case and summing over m, we can see that these are the same results obtained in Ref. [20] [if
we make dkydky, — ki dk, d¢y and integrate in ¢ in their Eq. (31)], as expected. Secondly,
the charge only interacts with m > 0 from the accelerated point of view. This will not be the
case from the inertial point of view and we shall see that this is related to conservation of
angular momentum.

Up until now we have considered a thermal bath at the Unruh temperature Ty = a/27.
Since it is our interest to consider how inertial observers can verify the properties of the
Unruh thermal bath, we consider a general thermal state seen by Rindler observers at an ar-

bitrary temperature 7T (including the possibility that both inertial and uniformly accelerated
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vacuum are equal, i.e., T = 0). We can easily generalize the above calculations for this case
by making the substitution 2z®@/a — @/ T in the thermal factors of Egs. (4.16), (4.17), (4.20),
(4.21) (the same caveats regarding the m = 0 mode also apply).

We obtain then

AT or _ 1 ANRior _ (4.23)
kJ_ko_ B ATR kj_dkj_ .

2 Q Q
=0(m) q sinh(nm )coth(m—) X
nla a 2T

(1K) 0L ! @) P m (kL R)* + (RO?IK; ) (kL /@)1 T, (kL R)IP] .

where ©(m) is the Heaviside function with ®(0) = 1/2. This expression, summed over m, is
plotted for different values of T in Figure 4.1. With these results, Rindler observers predict
that the total interaction rate seen by inertial observers (which from their point of view is
comprised only of photon emission) if the Unruh effect is valid, i.e., if T = Ty = a/2n is the

one given by Eq. (4.23) precisely for this temperature (the blue middle curve).

T T T
2)(1020— ;} a
0 Al
= AY IR
E NATATIR
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= Y i
o N
— 1.\" |
5 E r~ i
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Figure 4.1: Interaction rate per transverse momenta for different temperatures of the Rindler ther-
mal bath. The values of the chosen parameters are explained in Sec. 4.3.

To confirm Rindler observers predictions, inertial observers must set up an experiment.
They consider a charged bunch of electrons which propagates along a cylinder with an open-
ing in the middle where appropriate electromagnetic fields have been set up. This opening
is surrounded by a sphere of electromagnetic detectors which we assume are able to discern
the energy and angle of arrival of the radiation. A conceptual picture of this setup is shown in
Figure 4.2. Note that the information we require inertial observers to gather is purely “classi-
cal”, i.e., it does not involve quantum observables. We discuss the experimental parameters
of this setup and how reasonable they are at the end of this chapter.
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W @

Figure 4.2: Experiment representation. After setting appropriate electric and magnetic fields to
create the described 4-current, we inject a bunch of electrons into the cylinder with an opening in the
middle, from where radiation is collected by a sphere of electromagnetic detectors.

4.2.2 Inertial observers’ confirmation

Now we will show that using only classical electrodynamics and the usual quantization
of energy (i.e., & = Nyw, where N), is the number of photons seen by Minkowski observers
and w = I%I) we can predict the experimental result from the inertial point of view. To this

end, let us consider the angular-resolved spectral density of the emitted radiation, i.e.,

dé(w,0,d)
I(w,0,¢) = . 4.24
(@.0,9) dwd(cos8)d¢ (4.24)
We obtain the infinitesimal number of photons d N emitted with energy d& as
ANy =d&lw=I(w,0,p)w  dwd(cosd) dp. (4.25)

Using the geometry shown in Figure 4.2 we see that k; = wcosf and k; = wsinf. After inte-
grating with respect to non-invariant quantities between both sets of observers we can write

the number of emitted photons per transverse momenta seen by Minkowski observers as

d Ny fzﬂ f‘” dk,
= d ————1(0,0,¢). 4.26

The spectral density defined in Eq. (4.24) depends only on the properties of the radiating

electric field E rad- It can be written as a Fourier transform of this field, i.e.,

2

R? . .
- f dtE,qq(t,0,p)e ™t (4.27)
T

I(w,0,¢) =

where Rg is the radius of the sphere of the detectors. Since the properties of the electric field

in the radiating zone can be expressed in terms of the current j#, we can reduce the above



CHAPTER 4. PROPOSAL FOR OBSERVING THE UNRUH EFFECT WITH CLASSICAL

ELECTRODYNAMICS 49
equation to (see, e.g., [46])
g w* 2
I(w,0,¢) = An? |F(w,0,$), (4.28)
with A7
- r
F(wygr(,b):(Fx;FnyZ): fx\/‘dﬁ'd_ﬂqf(ﬂ/)) (4~29)
where
74(A) = (Rcos(QA), Rsin(QA), a™ ' cosh(al)) (4.30)
is the charged bunch spatial trajectory,
7 = (sin(0) cos(¢), sin(0) sin(¢p), cos(6)) (4.31)
gives the observation direction, and
f) =exp[-iw(F 74(A) - a! sinh(al))]. (4.32)
Expanding f (1) we get
f(A) =exp[—iw(Rsin(0) cos(¢p—QA) + a”(cos(®) cosh(al) — sinh(al)))]. (4.33)

If we expand Eq. (4.28) we see that each component is given in terms of a similar integral.
We shall show how F, is calculated explicitly, with F), and F, being obtained by applying very

similar ideas. Therefore, let us expand F as
Fy= f dAf(A) [sinh(al)sin(@) sin(¢) — QR cos(6) cos(QA) ] (4.34)

Before proceeding, however, we will derive a series of useful mathematical building blocks
for doing the integrals which will appear. To allow a comparison with the result obtained by
Rindler observers, the first step we must take is to make the m quantum number appear in
the formulas above, as it is not immediately obvious why it does so. To this end, we expand
the ¢p-dependent part using the Rayleigh formula, Eq. [8.511.4(2)] of Ref. [28],

g~ [wRsin(®) cos(p—QA) _ Z Z-m]m(_Rwsin(e))eim((b—ﬂl). (4.35)
" k
L

Since in the spectral density formula we have terms with cosines and sines multiplying
the exponential function it will be useful to derive some other identities from Eq. (4.35) by
differentiation with respect to —k; R and ¢. Firstly, deriving Eq. (4.35) with respect to —Rk,
we have

cos(p— QA) e HheReos(9=04) — ;5 ymy () R)e!MO-ON) (4.36)
m

where the ' means differentiation with respect to the argument. Differentiating Eq. (4.35)
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with respect to ¢, on the other hand, gives us
Rk, sin(¢p— QA)e ke Beos(@=04) N jmyy 1 () R)e!M@~ON, (4.37)
m
Both identities above can be written alternatively as

sin(¢) sin(QA) e~ kLReos(@-) - _; y° (z’m J(=k LR)eim(‘P_Q’l)) (4.38)
m

— cos(¢p) cos(QA) e~ TkLReos(p=0A)
and

. 1 .
sin(¢) cos(QN)e tkLReos(¢-0QA) _ _— Y (m im]m(—kLR)e’m("b_m)) (4.39)
kJ_R m

Using Eq. (4.35) then we can write Fj as
F,=

(sin (0) sin(¢p) f

LY ime! ™, (~k R)x (4.40)
m

+00

dAsinh(A) e—imQ/l/ae—iwa‘l cos(6) cosh(1) eiwu‘l sinh(]L))

—00

—cos(@)a” 1RQ[ dxlcos(Q )f(/l/a),

where we have made A — A/ a. Identities (4.38) and (4.39) can be used to express the integral
appearing in F,, i.e.,

+00 Q
f d)Lcos( )f(/l/a), (4.41)

(e¢]
in terms of another integral whose general form is similar to the first term in the expres-
sion above (and also similar to integrals appearing in the F, and Fx components). Applying
Egs. (4.38) and (4.39) we have

+00
f d?Lcos(Q )f(/l/a) csclé )Zmzm P C (@, 0) (4.42)
—00 kiR m
+o00o Q
+cot(</))f dAsm( )f()l/a)
_ ose(¢) Y m i [y (= k1 R)Cpn(,0)
kJ_R m
COS( ) m lm(p
- k.R)C 0
Sm(@Zz J (=K1 R)Cp(,6)

cos?(¢) f ( )
- dAco Al
S (¢) fAla)
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giving finally

f d/lcos( )f(M a) =
m
—zcos( )Y i I, (kL R) Cin(w,6),
m

ime!™? I, (~kiR)Cpn(w,0) (4.43)

where .
(o.e]
Con(,0) :f da e—imQ/llae—iwa’lcos(B)cosh(/l)eiwa’lsinh(/l)' (4.44)

(o.0]
All remaining integrals can be written in a general form (after making the change of vari-
ables t = e*) as

1:2‘1[ dt(t“+€t_“)t_ib_lexp{ %(dt—f/t) } (4.45)
0

wheree=+1,a=0o0r1,b=mQ/a, c=a 'w,d=1-cos0, f =1+ cos0. Using the residue
theorem with a quarter-circle contour to go to the positive imaginary axis of the complex
plane and using Eq. (8.432.7) of Ref. [28] we obtain the result

k
nQ ia(tan(9/2))—al<w_a (f)+e(a©—a) ,

(4.46)

where (¢ © —a) means making the indicated substitution in the preceding term of the bracket.
Using the result given by Eq. (4.46) with a = € = 0, we can solve the integral defining C,, (w, 0)

and write the integral in the second term of Eq. (4.40) as

+00
f dflCOS(Q )f(/l/tl) Zlm im "5 (tan(0/2)) @ x (4.47)
2msin(¢) ki ' / ki
(kl—R]m(—kLR)K@ (7) —21005(([))]m(—kLR)K% (7))

With the second term being taken care of, we focus on the first one. Using Eq. (4.46) now

with a =1 and € = -1 we get
Zimeimd’]m(—kLR)a_le% (tan(9/2))% X (4.48)
m

2isin(¢)

k k
COSZ(G/Z)Kim_Q_l (—L) +Sin2(6/2)Kim_Q+l (—L) .
a a a a

Using that 2 cos?(0/2) = (1+cos(0)) and 2sin?(0/2) = (1—cos()) along with Egs. (8.486.10/11)
of Ref. [28] simplifies the second line of the above expression to

Q k
Ktmﬂ( J_)
a

(4.49)

. (k
— isin(¢) [ZK,-,”Q (i) +2icos(0) 22
a a kJ_
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Now we can write Eq. (4.40), which after simplifying everything gives

Fr=—2ia"'y ime!™e™m2/24 (tan (9/2)) & (4.50)
m

sin(¢p) Jon (—k L R K g (k—;) ~ RQ.c0s(0) c0s() Jy (~k L R) Kima (%)) .

This form already bears some resemblance to the result obtained by Rindler observers
for the emission rate [Eq. (4.23) for T = Ty]. The appearance of the modified Bessel func-
tions with the right orders and arguments is interesting, as from the Rindler frame they come
directly from the quantum numbers defining the Unruh modes, while here they appear nat-
urally. Again we note how calculating this result in the Rindler frame is much easier then
doing so in the inertial one (even if we were to do so with usual QFT as is shown in Appendix

C). Applying the same ideas to F), and F, we get
Fy=—2ia'y i"e!™ ™2 (tan (0/2)) % x (4.51)
m

coS(Qb)]m(—kLR)K;m_Q (k—;) + RQ cos(0) sin(cp)];n(—klR)Km_Q (k_;))

and

nm

. ’ im k
F.=-2iRQa"'sin@) Y. i"e™ ], (~k R)e™5" (tan (0/2))""" Kuo (ﬁ) (4.52)
m a

All that remains now is to plug the results for (Fy, Fy, F;) in Egs. (4.28), (4.26) and integrate
in ¢. Although laborious, the calculations are much simpler than the ones above and this

process results finally in

dNy 2> amo
_ K : 4.53
ki dk, ;f “Ron’ " e
/ k 2 / 2 k ?
(|]m(kJ_R)|2 Km(ﬁ) +(RQ)2‘]m(k¢R)) ‘K% (i) )

Integrating this expression with respect to k; leads to a divergence. This is to be expected,
since we have a current existing from the beginning of spacetime to its end. However, this
divergence is independent of the transverse photon momentum k;. We show in Appendix C
that it can be identified with the total proper time of the current trajectory. Taking this fact
into account we obtain that

(4.54)

ANy (4_nf°° dx, )Zdrgtot

kidk, \a ) Q+xd12) % kidky

T=Ty

~~

ATR

This shows that the inertial result is exactly the one predicted by uniformly accelerated
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observers taking into account that the inertial vacuum state is seen by them as a thermal bath
with a temperature Ty = al2n exactly as predicted by the Unruh effect. Plotting the resulting
interaction rate gives exactly the middle curve of Figure 4.1, with T = Ty.

Before diving into the details of our proposed experiment, it is interesting to note some
facts. Firstly, we have calculated the interaction rate using only classical electrodynamics.
The fact that we can see traces of a quantum field theory effect [note the 72 in Eq. (1.1)] with a
classical calculation may seem surprising at first, but it ceases to be so if one notes that 7 in
Ty cancels everywhere since it is always accompanied by mQ. All “quantumness” comes
from the Einstein relation between energy and frequency.

Secondly, as noted before, in the inertial frame all values of m (both negative and posi-
tive) are included in the result, while in the accelerated frame only modes with m > 0 con-
tribute. The physical explanation for this is that in the accelerated frame we can have both
absorption and emission of Rindler photons, which in the Minkowski frame must correspond
only to emissions. However, an absorption of a m > 0 mode must then correspond to an
emission of a m < 0 mode to preserve angular momentum. This is shown schematically in

Figure 4.3.

Em, m >0

Y
A

Y
Y

Abs, m >0

Em, m >0 Em, m <0

> > > >
»- > > >

Figure 4.3: Relation between the angular quantum number m seen in the Rindler frame (above)
and in the Minkowski frame (below).

4.3 Experimental proposal

The second part of the calculation in the previous section shows that the only informa-
tion inertial experimenters need to recreate the result predicted by Rindler observers is the
angular resolved spectral density, I(w, 0, ¢). Although conceptually simple, to measure such

quantity we must consider various ways in which a real setup differs from the theoretical
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Figure 4.4: Exclusion region where the theory does not approximate the expected experimental
result due to boundary effects.

proposal.

Firstly, clearly the charge g must be bigger than an elemental charge. We consider a
bunch of =~ 107 electrons [47]. As seen during our calculations, we must be in the radiation
zone for our predictions to be sensible. This implies that Rs must be greater than the region
where the charge emits, which is the tube’s opening with length L, i.e., Rs > L. Also, since
we are dealing with an opening in a tube, we must require that boundary conditions are
negligible.

This was not a problem in our calculation because we assumed a charge radiating from
the infinite past to the infinite future. Considering a finite-time bunch, we avoid any diver-
gence with respect to the total interaction time, but must take care with boundary conditions
(i.e., the spacetime region where the charge spring into existence and where it disappears ac-
cording to our radiation detectors) which in turn implies that the radiation wavelength must
be smaller than the opening length L. Since the main scale determining the radiation wave-
length is given by the (inverse) total charge acceleration, a;,; = y>v'a? + R2Q*. This implies
that we must have

ator > 107 (Alm/L)m/ s (4.55)

In Figure 4.4 we plot the necessary electric field to achieve a total acceleration high enough
in order to avoid boundary effects. We also shown the required vacuum level such as to avoid
scattering by air molecules.

For estimation purposes, we consider electric and magnetic fields in the z direction such
that E* ~ 1MV /m and B* =~ 10~! T, which are both values attainable with today’s technology
[48]. This gives a linear acceleration of order a =~ 10!”m/s® and a total acceleration a;,; =
10'9m/s?, where we also took R = 10"'m. These are the parameters we used to plot the

curves in Figure 4.1.
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Figure 4.5: Exclusion regions due to background sources.

A final but important consideration is background noise. Experimental regions excluded
by some sources of noise are shown in Figure 4.5, where we have set the magnetic field to zero
for simplicity. From the plot in Figure 4.2 we see that it is easier to discern the expected result
for the Unruh thermal bath the smaller k; we can observe. This in turn implies generally a
bigger wavelength and a more challenging experimental setup to stay in the radiation zone.
Note that this can be greatly ammeliorated by thermal and electromagnetical isolation. In
this sense, the scenario presented here is an overly pessimistic estimate. Despite this, we still
are able to see signs of the Unruh effect in this setup.

The main point of Ref. [1] was to show explicitly an observable obtainable from using
mainly classical electrodynamics that could also be directly compared to an explicit pre-
diction made based on the existence of the Unruh thermal bath. Although we believe the
experiment we proposed is doable under present technology, it is still a formidable task. We
hope that it or a variation based on its design can be constructed in the future, providing

compelling evidence for any remaining skeptics with regards to the Unruh effect.
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The Unruh effect officially turned 40 years old in 2016 [17]. Although originally derived to
better understand the Hawking effect, it has continuously gained more and more attention
on its own during the last years. This is largely due to (i) the fact that it encapsulates in the
simplest setting possible (i.e., Minkowski space-time) some important lessons learned from
studying quantum field theories in curved spacetimes and (ii) that experimental technolo-
gies today are at the edge of enabling a strong and solid claim regarding an observation of
the Unruh effect.

Despite being grounded purely on well-established quantum field theory constructions,
a lot of mistrust has been (in our opinion, unjustly) placed on it due to it so explicitly laying
bare the fact that particles are not a fundamental concept in quantum field theory. It could
be argued that such lesson should have already been learned from condensed-matter sys-
tems (where quasi-particles abound), however, probably due to the non-relativistic nature
of these systems, it seems this lesson was largely overlooked. The Unruh effect, however,
leaves us with no doubts: Quantum field theory is really a theory of fields and not particles.
Understanding the Unruh effect in all of its splendor still is an active area of research and we
believe it will probably remain so in the mid-term future.

This thesis is our contribution to this important theme. After a brief introduction, we
treated the interplay between neutrinos and the Unruh effect [3]. Mixing neutrinos have
been in the spotlight in the last years due to arguably being our best bet for probing physics
beyond the Standard Model. By carefully defining what a flavor neutrino is and when such a
construction makes sense in the framework of QFT, we arrive at perfectly consistent predic-
tions between inertial and Rindler observers for one observable involving mixing neutrinos,
as the general covariance of QFT requires. Moreover, this is only achieved by taking into
account the existence of the Unruh thermal bath.

Afterwards, we considered how a well-understood effect such as bremsstrahlung can be
interpreted in terms of the Unruh effect. It is known that describing this phenomenon from
the point of view of Rindler observers is no trivial task (as was already shown by [20]) and
involve unfamiliar concepts such as zero-energy particles. This led some people to argue
that the Unruh effect must be wrong (see [21] for some examples of this affirmation!). For
this reason, we worked with a modified model where equivalence between number of pho-
tons per transverse momenta seen by both observers can be shown also for non-zero energy
Rindler particles again provided that the Unruh effect is present [1]. Moreover, the Rindler
result can be compared to a result obtained by inertial observers using only classical electro-
dynamics (plus the uncontested Einstein relation between energy and frequency). We expect

that this severely weakens the case of those who argue that the Unruh effect is wrong.

TFor more recent examples of  this kind of affirmation, see Science,
https://www.sciencemag.org/news/2017/04/does-space-heat-when-you-accelerate-physicists-propose-
test-controversial-idea
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Nevertheless, an experimental observation of such equivalence would be greatly appre-
ciated. To this end we proposed a simple conceptual experiment where this could be seen
and discussed some of the challenges of doing it with today’s technology [2]. It is our hope
that this or a similar experiment inspired by our proposal can be realized in the near future.

As discussed in the main text, despite being fundamental for the consistency of QFT in
the same way as inertial forces are for classical mechanics, experiencing the Unruh effect
directly in the same way as we may experience, e.g., centrifugal forces, is impossible due
to the extremely high accelerations required. For this reason, two main avenues present
themselves: first, the one we explored here, which is to find observable phenomena that
could be easily interpreted in terms of the Unruh effect itself and, second, finding analogue
models where the effect can be explored. We believe that both these venues will bear fruit in
the near/mid-term future, as evidenced by a flurry of recent research on these subjects (e.g.,
Refs. [49, 50, 51]).

Together with the work presented in this thesis and those sprung from it (e.g., Ref. [52]),
we hope to finally lay to rest any lingering doubts about the reality of the Unruh effect.
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Flavor neutrinos were proposed as a way to deal with the solar neutrino problem: the
fact that the neutrino flux seen from the sun arriving at Earth was only a third of what was
predicted at the time. The way out of this was to propose that neutrinos changed “flavor”
in such a way that only a fraction of the original electron neutrinos would interact with the
detectors on Earth. This paradigm has been phenomenologically very successful to explain
neutrinos’ behavior (see, e.g., 37D

The usual paradigm for dealing with flavor neutrinos initially used non-relativistic quan-
tum mechanics as a basis for the theory. Extending it to a construction based on quantum
field theory was then the next natural step. However, this is not so straightforward since
flavor neutrinos are not on-shell particles and, therefore, a natural Fock space cannot be as-
sociated with them [40]. The correct way to associate any state to flavor neutrinos then must
be phenomenological, such as the one given in [53, 44] (which we shall review shortly).

Such definition for flavor neutrino states, however, is valid for interaction processes in-
volving one neutrino only. This happens because to define a flavor state |v,) as a superpo-
sition of massive neutrino states one must express the amplitudes of such superposition in
terms of S-matrix elements, which are well-defined for massive neutrinos only.

More care is needed for the case involving multiple neutrinos, since in this case the am-
plitudes used for defining the state would themselves depend on the state definition. For
this reason, as explained below, we must extend the previous formalism and deal with den-
sity matrices instead of pure states. This extension is also applicable to the case of heavy and
sterile neutrinos with minor modifications. In this appendix, based on [4], we briefly review
the original formalism for defining flavor neutrino states and discuss how it can be extended
to the case of multiple neutrinos. We focus on the main points here and refer the reader to

[4] for further details that are out of the main scope of this thesis.

A.1 Flavor states for single-neutrino processes

The usual definition of a particle is given in terms of creation operators acting on the
vacuum state of the field. For interacting theories, such a definition is made asymptotically,
where the interactions are assumed to be negligible. For simplicity, we consider here only
flat spacetime quantum field theory using Cartesian coordinates.

A massive fermionic field is described by the Lagrangian
< =yliyto, — myy, (A1)

where the notation is explained in the main text (Chapter 3, Sec. 3.2). Given an expansion of

the field in terms of normal modes, the vacuum state of the field is then defined as the state

IIn fact this oscillation phenomenon arose even before in the context of particle/anti-particle oscillation.
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annihilated by all annihilation operators in the field expansion

= 31rlp. 70 L pT -0
V= UZJ d'k (“kﬂ Ui ot 0, “%,_U) : (A2)

This construction is adequate for obtaining massive neutrino states. Based on these states,
one may hope to construct a flavor neutrino state associated with the field v, = }; Uq,iv;.
This should come naturally after the successful usual construction given using non-relativistic

quantum theory, which is
Vay =) Uy ;Ivi). (A.3)
i

However, the situation in quantum field theory is more delicate. As shown in [40] there is
no physical Fock space containing such states. Moreover, they cannot be produced in funda-
mental interactions since, due to their ill-defined mass, they cannot hope to conserve both
energy and momentum in interaction vertexes. Despite these facts, for almost all practical
situations the states |v,) give correct results in calculations (such as those of neutrino os-
cillation phases) since one usually works in the approximation where the neutrinos can be
considered either massless or with degenerate masses.

Flavor neutrino and anti-neutrino states in QFT are better understood as phenomeno-
logical superposition of massive neutrino states and not associated with any fundamental
quantum field. The expression v, = Y_; Uy,;¥; should be regarded only as a shortcut for the
particular combination of fields appearing in the weak interaction Lagrangian, as discussed
in Chapter 3. The states must be seen as states associated with particular interactions, such
as

pt—=nl+et +v,, (A.4)

and not as states coming from the action of creation operators over vacuum states. Since
they are phenomenological, associating a state with a flavor neutrino depends on two hy-
potheses being valid: first, this state must be a superposition of massive neutrino states.
Second (and more importantly), there must be uncertainty in the energy and momenta in-
volved in the interaction such that energy-momentum conservation cannot discriminate
which massive neutrino is involved [41]. We will approximate here the states by momentum
eigenstates, but these manipulations must be seen formally. Fortunately, all constructions
presented here generalize to the case of wave-packets where they are physically meaningful.
Let us begin by considering the specific reaction described by Eq. (A.4). We define the initial
and final states as

Ip™), (A.5)
ZAlgyian;eJr;vi) +..., (A.6)
7

i)
1f) o< (S=DIi)
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where AE ; are complex numbers to be calculated [not, a priori, elements of the PMNS matrix

”

as in the state given by Eq. (A.3)] and “...” includes other decay channels not relevant here

(they are orthogonal to the one we are considering). The initial and final states are connected
by
1o (S= DI, (A7)

where § is the S-matrix of the process and we are excluding the possibility of no interac-
tion by subtracting the identity I term. Using the orthonormality of the different massive

neutrino states we can use the relation above to express the amplitudes as
Ay =(n%e*5vilSIp™). (A.8)
The flavor state is then defined by projecting only onto the neutrino subspace,
ve) o< (n% "1 f) (A.9)

and normalizing. We obtain then

Ve) = ———==2"A,,IV2). (A.10)

Since experimental results concerning neutrino mixing are very well described by us-
ing the states defined in Eq. (A.3), an important question is how these are recovered in the
construction presented above. To answer it, we expand the weak interaction sector of the

S-matrix appearing in the amplitudes as

A

- .G > 2
S~i-i éjd‘lx]gcp(x)]gc(x), (A.11)
with the weak-charged current jgc (x) given by

&) = Y Upvi(y? (1-7°) la(x) + I (), (A.12)
a,k

where flgc (x) is the hadronic part of the weak charged current (which is not our main con-
cern here). Using this expansion we can write the general form of the amplitudes given in
Eq. (A.8) as AP = U; iMzP' where

MP = —i%fd‘*x(v,-l;m(x)yp (1-7°) L ()10 75~ (), (A.13)

with P; and Pr standing for the initial and final hadronic particles, I being the charged
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anti-lepton and the hadronic transition amplitude being given by
Pr—Prf _ 7
Jo (x) = (Prlhy(x)|Pp). (A.14)

Note that by approximating the hadronic part of the problem by a semi-classical current
we get the proton/neutron system used in Chapter 3. This can be seen as an extra justifica-
tion for the treatment we used there. Now, in the approximation that all neutrino masses m;
are degenerate or zero, we have no i-index dependence in the Mf terms and we can denote
them all M* . This allow us to factor them out of the sum in Eq. (A.10). From the unitarity of
the PMNS matrix, we see that the denominator is M? up to an (irrelevant) phase, recovering
the states defined in Eq. (A.3).

We stress again that the states given by Eq. (A.10) and their approximation in the degen-
erate mass/massless limit are physically reasonable approximations for real flavor neutrino
states, which must necessarily be wave packets with energy-momentum uncertainty.

With the definition of weak states, Eq. (A.10), the whole process of neutrino emission,
propagation and detection can be coherently described in the same framework (even outside
the approximation where masses are degenerate or zero). Crucially, they imply that decay
rates for flavor neutrinos are given by an incoherent sum over massive neutrinos. This is

readily seen by calculating the probability associated with the beta decay:

Py, =l(n%e";velSIpty P (A.15)

1 . )
= [—=) A*7(n%e*;viISIp*)

P 2o el
VI AL 2
1 #P oP 1 P2
f~ 1 AP 1o ZZ ei Aei = /= AP 12 ZZ| e,il
Zi |Ae,i| ! Zi |Ae,i| !

2
= | 2148 2] =2 1415
4 1

Note that this discussion would follow in the same way from any point of view (inertial or
accelerated). This fact was absent in the previous discussions of the Unruh effect for mixing

neutrinos [25, 38], leading to the strange conclusions mentioned in Chapter 3.

A.2 Flavor states for multiple-neutrino processes

The derivations done in Sec. A.1 are well-suited for describing interactions involving one

neutrino, such as the normal or inverse f§ decay. However, other processes may involve more
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of them, e.g.,
pr— et +ve+ v (A.16)

It is not possible to use directly the definition given in Eq. (A.10) since when projecting over
the neutrino subspace we would have to project over states of the type (T/ue+ |, which would
still be not defined. The same is valid when trying to obtain the state of v, alone. Each
neutrino state, as we will show, must be described by a mixed state. We will also prove that
these mixed states give the correct oscillation phase, even outside the degenerate mass ap-
proximation. We focus here on the process given by Eq. (A.16), but our considerations are
valid more generally. The same caveats regarding uncertainty of the neutrinos masses and
momenta still apply.

Consider first the final state of Eq. (A.16), i.e.,

IfYoc (S=1) gy =) A orile Vi 7))+ (A.17)
kj

The amplitudes in this case are given by

A;I:,e;k,j = <e+,Vk,1_/j|S|M+> = U:kU#JM]I;], (A].S)
where
.G oA A A
M}ij=—ljgfd“x<e*,ijlvk<xw" (1-7°) @@y, (1-7°)v;Ieh.  (A19)

The state given in Eq. (A.17) is entangled with respect to the neutrino sector. To obtain a state

for each neutrino we first consider the density matrix

lj = |f><f| =N Z A,E,e;k,jAZTe;k',j'le*-’Vk"_/j><e+’vk/’{/j/|’ (AZO)
k',j,k’,j’
with the normalization factor

-1

-1
SIAY j|2) = (Z Uek P10 PIME 2| (A.21)
k,j k,j

N =

guaranteeing that the density matrix has unit trace. Now we take the partial trace over the
neutrino and the anti-neutrino and use Eq. (A.18) to obtain the reduced density matrices p.,

and py,, given by

v = NY |Uuil* Y U Uer My ;M5 Vi) (Viel, (A.22)
j k'

A 2 * P Px |- -
P, = N; Uekl” 3 UpjUp My ;M 51757 5. (A.23)
I’
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Before continuing, we note that it is easily seen in the degenerate mass limit that these

density matrices reduce to the expected ones, i.e.,

Pv, = (Z U:k|Vk>) (Z Uer' <kal) , (A.24)
k k'

;Upjl‘_’j>) (Z,:U;j,(ffjfl), (A.25)
J

Pv, =

since all amplitudes given in Eq. (A.18) are degenerate over the different neutrinos masses
indexed by i and k.

To calculate the oscillation phase we must consider a detection process of the type
VN+D1—>}J_+DF. (A.26)

First we evolve the neutrino density matrix by a spatio-temporal translation, i.e.,

U(T,T) = e~ PoT+iPL (A.27)
giving
pv,(T,L) = (T,D)py,%"(T,1) (A.28)
2 * P Px
- NZ|Uﬂj| %Ueka?k'Mk,ij’,j
] g /

xexp [—i(Ex— Ex)T
+i(Pr— Pr) - L] vidvel,
where T and L are the time and displacement of the neutrinos during propagation, Ej =

+4/ mi +|Prl? and py is the momentum of v;. Now we calculate the probability of this neu-
trino being in the state |VE ), i.e.,

Pypy, =T | pu (T, DIV, (A.29)

where the state |VB> is defined by applying the procedure described in Sec. A.1 to Eq. (A.26).
We also assume for simplicity that the neutrinos propagate all in the same direction (see
section 8.1.3 of Ref. [44] for a discussion regarding this point) and have approximately the

same momenta p. In the relativistic approximation where T = |L|, we can use that

— Ex T+ Pr- L~ —mi|LI/ 2E), (A.30)
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where E = |p|, giving finally

MDMD,* MIIC) .MP,*.
Py ., = Z U, |2 k"k JKLj (A.31)
e—Vu ) uj 2 D |2 2 2 P |2
ke (Zi 10 P2IM2 1) | | (Zap1Ueal2lUPIME 12)

* * Amik’lil
XUekUﬂkUek/Upk’eXp —ZT

|

which gives the correct oscillation phase. Moreover, it also reduces to the usual phase for
the degenerate mass case. The concepts outlined here are also useful to define, in the QFT
framework, states for reactions involving heavy or sterile neutrinos. We refer the interested
reader to [4] for more details and for full calculations in these cases, which fall outside the

scope of this thesis.
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Here we present the computer code used in obtaining various results throughout this

thesis.

B.1 Code used for calculating Eq. (3.24)

(* Initialization commands *)
SetOptions[$FrontEnd, ShowCellLabel — False];
Clear[71,72,k1i,k2i,k3i, mi, wi, k1 8,k28,k38, mB, wfl;

$Conjugate[x_]:=x/.Complex[a_,b_] :— a— Ib;

(*Definitions*)
(1 0 0 0 1 ( 0O 0 O 1\
01 O 0 0O 0 10
Y0 = ;yl= ;
00 -1 O 0 -1 00
L0 0 0 —1) (-1 0 0 0
f 0O 0O —I\ ( 0 01 O )
0O 01 O 0 0 0 -1
Y2= ;Y3= ;
0 I 0 O -1 00 O
\—I 00 O ) | 0 10 O )
Y5 = IDot[y0,Dot[y1, Dot[y2,y3]1];
[ w 0 a3 -xm+ike)  [1) (o)
0 w -k1-ik2 k3 0 1
Wiw_kl1_k2_,k3_]:= ;up = ;ud = ;
k3 kl-ik2 - 0 0 0
| kl+ik2  -k3 0 S ¥ Lo )

Ubarpwps|w_,k1_,k2_,k3_,m_]:=Dot[ConjugateTranspose[Dot[(W [w, k1,k2,k3]
+mldentityMatrix[4]), up]], y01/Sqrt[(2w(w + m))];

FullSimplify[%];
Ubarpwms|w_,k1_,k2_,k3_,m_]:=Dot[ConjugateTranspose[Dot[(W [w, k1,k2,k3]
+mldentityMatrix[4]), ud]], y01/Sqrt[ 2w (w + m))];

FullSimplify[%];
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72

Umwps[w_,k1_,k2_,k3_,m_]:=Dot[(W|w,k1,k2,k3]
—mldentityMatrix[4]), up]/Sqrt[(2w(w — m))];
FullSimplify[%];
Umwms|w_,k1_,k2_,k3_,m_]:=Dot[(W[w,k1,k2,k3]

—mldentityMatrix[4]), ud]/Sqrt[ (2w (w — m))];

FullSimplify[%];
f 1 0 -1 O \ (—1 01 O \
01 0 -1 0 1 0 -1
Ml= M2 = )
1 0 -1 O -1 01 O
\0 1 0 —lJ \ 0 10 —IJ

(* Calculating amplitudes and probabilities *)

Ipplr1_]:=2" (-1)Refine[Flatten[Exp[at1]Dot[Ubarpwps|wi, k1i, k2i, k3i, mi],
Dot[(M1 - M2), Umwms|wf,k18,k28,k3 8, mp]]]
+Exp[—ar1]Dot[Ubarpwps|wi, k1i, k2i, k3i, mi],

Dot[(M1 +M2), Umwms[wp,k18,k28,k36, mpf]11,11[[1]],

Element[{wi, k1i, k2i, k3i, mi, w8, k1 8,k2 8,k3 8, m B}, Reals]];

P1 =Ippl[r1] * $Conjugate(Ipp[72]]//FullSimplify;

Ipm[71_]:=2"(—1)Refine[Flatten[Exp[at1]Dot[Ubarpwps|wi, k1i, k2i, k3i, mi],
Dot[(M1 - M2), Umwps(wp, k15,k2p,k36,mp]l]
+Exp[—art1]Dot[Ubarpwps|wi, k1i, k2i, k3i, mi],

Dot[(M1 +M2), Umwps[wp,k18,k28,k38, mpB]]],11[[1]],

Element[{wi, k1i, k2i, k3i, mi, w 8,k1 8, k2 ,k3 8, mf}, Reals]];

P2 = Ipm][r1] * $Conjugate[Ipm[72]]//FullSimplify;

Imp[r1_]:=2" (-1)Refine[Flatten[Exp[at1]Dot[Ubarpwms|wi, k1i, k2i, k3i, mi],
Dot[(M1 - M2), Umwms[wf,k18,k28,k38, mp]]]
+Exp[—ar1]Dot[Ubarpwms|wi, k1i, k2i, k31, mi],

Dot[(M1 +M2), Umwms[wp,k16,k26,k38, mpf]1],11[[1]],

Element[{wi, k1i, k2i, k3i, mi, w8,k1 8,k26,k3 8, mf}, Reals]];
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P3 =Impl[r1] * $Conjugate[Imp[z2]]//FullSimplify;

Imm(71_]:=2" (-1)Refine[Flatten[Exp[at1]Dot[Ubarpwms|wi, k1i, k2i, k3i, mi],
Dot[(M1-M2), Umwps[wf,k18,k2,k38,mpf]]]
+Exp[—ar1]Dot[Ubarpwms|wi, k1i, k2i, k3i, mi],

Dot[(M1 +M2), Umwps|w, k18, k2p,k38, mpl1], 11([11],

Element[{wi, k1i, k2i, k3i, mi, w8,k1 8,k26,k3 8, mf}, Reals]];

P4 = Imm{r1] * $Conjugate[Imm[72]]//FullSimplify;

(* Summing over the spins *)

Result = (P1 + P2 + P3 + P4)//FullSimplify;

(* Making coordinate changes and boosting both the neutrino and the positron *)
Tl1=5+(0/2);12=5-(0/2);

kli = Sqrt[wi*2 — k2i*2 — k3i"2 — mi’2];
k1p = Sqrtlwp*2-k2p"2 -k3p"2 - mpB"2];

(*pstandsforprime, “’ ”*)

wi = wipCoshlas] + k3ipSinh[as];
k3i = wipSinh|[as] + k3ipCosh[as];
of = wPpCosh[as] + k3BpSinh[as];
k3B = wBpSinh[as] + k3BpCosh|as];

(* Final result *)

FullSimplify[Result]
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B.2 Code used for obtaining the spin sums in Eq. (3.51) and

subsequent similar calculations

SetOptions[$FrontEnd, ShowCellLabel — False];

$Conjugate[x_]:=x/.Complex[a_,b_] :— a— Ib;

Clear[l];

(1000\ foooﬂ
01 0 O 0 0 10
Y0 = ;Y11= ;
00 -1 0 0 -1 00
(00 0 -1 (-1 0 0 0
ro 00—1\ f001 0\

0 01 O 0 00 -1
Y2= ;Y3 = ;
0 10 O -1 00 O
(-1 00 0 ) (0 10 0)

75 = IDot[y0, Dot[y1, Dot[y2,y3I1];

Ik1_k2_,m_] =Sqrt[k1*2 + k2”2 + m"2];

Ord[w_]:=1w/ a;
SI = Dot[y0, (IdentityMatrix[4] —y5)];

YOR = u” (-1)y0;

(1\ (0}
0 1
up = ;um = ;
1 0
oy =y

Upwps(w_,k1_,k2_,m_]:=Sqrt [(%)] .
Dot[((—(k1/a) * Dot[y0,y1] — (k2/ a) * Dot[y0,y2] +
(m/ a) * y0)BesselK[Ord[w] + 1/2, 1[k1,k2, m] * u]+
I(1[k1,k2, m]/ a)Dot[y0, y3]BesselK[Ord[w] — 1/2, 1[k1,k2, m] * u]), up];



APPENDIX B. MATHEMATICA® CODE USED FOR CALCULATING AMPLITUDES OF
CHAPTER 3 75

Umwps[w_,k1_,k2_,m_]:=Sqrt [ (%) ] *

Dot[((—(k1/a) * Dot[y0,y1] — (k2/a) * Dot[y0,y2]
+(m/ a) * y0)BesselK[Ord[-w] + 1/2, I[k1,k2, m] * u]
+1(1[k1,k2, m]/ a)Dot[y0,y3]BesselK[Ord[—w] — 1/2, I[k1,k2, m] * u]), upl;

Upwms|w_,k1_,k2_,m_]:=Sqrt [ ( “,ﬁ‘[’ﬁll’ [lfz“’,/n‘f] ) ]
Dot[((—(k1/a) * Dot[y0,y1] — (k2/a) * Dot[y0,y2]
+(m/ a) * y0)BesselK[Ord[w] +1/2, 1[k1,k2, m] * u]

+1(1[k1,k2, m]/a)Dot[y0,y3]BesselK[Ord[w] — 1/2, I[k1,k2, m] * u]),um];

Umwms[w_,k1_,k2_,m_]:=Sqrt [ (%) ] *

Dot[((—(k1/a) * Dot[y0,y1] — (k2/a) * Dot[y0,y2]

+(m/ a) * y0)BesselK[Ord[-w] +1/2, I[k1,k2, m] * u]

+1(1[k1,k2, m]/ a)Dot[y0,y3]BesselK[Ord[-w] — 1/2, I[k1,k2, m] * u]),um];

Ubar[v_]:=Dot[$Conjugate[Transpose[v]],y0]

(*Processa)*)

Dot[Dot[Ubar[Upwps|wi, k1i, k2i, mi]], SI], Upwps[wf, k1 8,k2 8, mf]] *
$Conjugate[Dot[Dot[Ubar[Upwps|wi, k1i,k2i, mi]], SI], Upwps[wB, k1 8,k2 8, mB]]]1+
Dot[Dot[Ubar[Upwps|wi, k1i, k2i, mi]], SI], Upwms|[wB, k1 8,k2 8, mf]] *
$Conjugate[Dot[Dot[Ubar[Upwps[wi, kl1i, k2i, mi]], SI], Upwms|[wB, k1 8,k28, mB]1]+
Dot[Dot[Ubar[Upwms|wi, k1i, k2i, mi]], SI], Upwps|[wB, k1 8,k2 8, mf]] *
$Conjugate[Dot[Dot[Ubar[Upwms|[wi, k1i, k2i, mi]], SI], Upwps[wf, k1 8,k28, mf]]]1+
Dot[Dot[Ubar[Upwms|wi, k1i, k2i, mi]], SI], Upwms|[w8,k1 8, k28, mf]] *
$Conjugate[Dot[Dot[Ubar[Upwms|[wi, k1i, k2i, mi]], SI], Upwms|[w 8, k1 8, k2 8, mB]1]/ / Simplify

(*Processb)*)

Dot[Dot[Ubar[Umwms[wi, k1i,k2i, mi]], SI], Umwms[wf, k1 8,k2 8, mf]] *
$Conjugate[Dot[Dot[Ubar[Umwms|wi, k1i,k2i, mil]], SI], Umwms[wf, k1 8,k28, mB]1]+
Dot[Dot[Ubar[Umwps[wi, k1i, k2i, mi]], SI], Umwms|[wB, k1 8,k2 8, mf]] *
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$Conjugate[Dot[Dot[Ubar[Umwps|wi, k1i, k2i, mi]], SI], Umwms|[wf,k1 8, k28, mB]1]+

Dot[Dot[Ubar[Umwms|wi, k1i, k2i, mi]], SI], Umwps[w B, k1 8, k2, mf]]
$Conjugate[Dot[Dot[Ubar[Umwms|wi, k1i,k2i, mi]], SI], Umwps[wf,k18,k2 8, mfB]1]+
Dot[Dot[Ubar[Umwps[wi, k1i, k2i, mi]], SI], Umwps[w B, k1 8,k2 8, mf]] *
$Conjugate[Dot[Dot[Ubar[Umwps|wi, k1i,k2i, mi]], SI], Umwps[wf, k1 B,k2 8, mB]]1//Simplify

(*Processc)¥)

Dot[Dot[Ubar[Umwms|wi, k1i, k2i, mi]], SI], Upwps[wf, k1 8, k28, mB]] *
$Conjugate[Dot[Dot[Ubar[Umwms|wi, k11i, k2i, mi]], SI], Upwps[wf, k1 8,k28, mB]]]+
Dot[Dot[Ubar[Umwms[wi, k1i,k2i, mi]], SI], Upwms|[w B, k1 8, k28, mf]] *
$Conjugate[Dot[Dot[Ubar[Umwms|wi, k11i, k2i, mi]], SI], Upwms[wfB, k1 8,k2 8, mB]]]+
Dot[Dot[Ubar[Umwps[wi, k1i, k2i, mi]], SI], Upwps[w B, k1 8, k28, mf]] *
$Conjugate[Dot[Dot[Ubar[Umwps|wi, k1i,k2i, mi]], SI], Upwps[w B, k1 8, k28, mBl1]]+
Dot[Dot[Ubar[Umwps[wi, k1i, k2i, mi]], SI], Upwms[w g, k1 8, k2 8, mf]] *
$Conjugate[Dot[Dot[Ubar[Umwps|wi, k1i,k2i, mi]], SI], Upwms|w 8, k1 B, k2 8, m 111/ / Simplify
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In this appendix we present another way of obtaining the interaction rate for the current
given in Chapter 4 using standard (i.e., from inertial observers’ point of view) quantum field
theory in Minkowski spacetime. This serves a two-fold purpose: firstly, it is an additional
check for the results presented and, secondly and more importantly, it clarifies the interpre-
tation of the diverging integral present in Eq. (4.54) as the total Rindler proper time, ATg. We
use the same setting and notation as presented in Chapter 4.

In the inertial reference frame, we expand the electromagnetic field A, as

o) o) 4
A”:;fo dkLka dkzzl(ae_ﬁA%H.c.), (C.1)
—00 €=

with p = (m, k, k;), where € labels the mode polarization, m € Z, k, € [0, +00), k; € (—o0, +00),
and we recall the existence of the dispersion relation in the inertial frame w = +,/ ki + k2.
The normalized physical modes of the electromagnetic field in polar coordinates [solutions

of Eq. (4.9) in inertial polar coordinates (z, z, 1, ¢)] are

Ai:ﬁl) = kll (kaﬁ’ —wfﬁ»O,O), (C.2)
AS}Z) = k' (0,0,—mr~t f5,—ird, f3), (C.3)
where

are solutions to the Klein-Gordon equation in inertial polar coordinates. The distribution of

photons seen by inertial observers as a function of the transverse momenta is given by

- dk; |Avemel?, (C.5)
kJ_ko_ ez(é)ym - z M,em,e

where
| Am,em,el = ’fd4xv —gjt (e, ﬁlAMOM) ) (C.6)

and we recall that the electromagnetic current j* in usual inertial coordinates is given by

q

. _ 3, >
O uo\/__gu“(/lm (X —xo(A) (C.7)
= %u“(ﬂt)é(r—l{)é(gb—ﬂxl)&(z— a ! cosh(al)) (C.8)
where now
ut =t u®, u, ud) (C.9)

=7y (cosh(al),—RQsin(QA), RQcos(QA),sinh(al)).

We note that Eq. (C.5) [in contrast to Egs. (4.16) and (4.17)] does not carry any thermal factor
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because the Minkowski vacuum, [0,,), is a no-particle state according to inertial observers.
The required energy for emitting a photon comes from the external agent maintaining both
the linear and the circular accelerated motion. The photon emission amplitudes for both

polarizations can be written as (disregarding phases, since both polarizations are summed

incoherently)
> & q]m (kJ_R)
A -1=(e=1,p|S710p) = —————— (C.10)
M,em,e=1 ploriVm 27‘[]@_\/%
><f dA h(A) [k;cosh(al) —wsinh (al)],
o RQJ}, (k1R
AMeme=2 =€ =2,pIS1100m) = q2n+\/_h:) (C.11)
xf dA h(A),
where

h(A) = exp{ (—imQ/l - é [k, cosh (al) — wsinh (aﬂt)]) },

and we recall that A is related to the inertial time by ¢ = a 1lsinh(a), i.e., A is the proper
time of a Rindler observer located at ¢ = 0 (note that the proper time of the charge is different
due to the transversal motion). Expressing everything in terms of this particular observer’s
proper time will allow us to factor out the total proper time Aty in the emitted photon num-
ber.

In order to obtain the total emitted photon number per fixed k;, we must square the
absolute values of the amplitudes (C.10) and (C.11) and insert them in Eq. (C.5). We proceed
in the same way as described in Chapter 3, making the substitutions given by Egs. (3.22) and

(3.23) and boosting in the z direction. Doing so leads us to

dNy q* f f
=arp Y - | do | dk C.12
Frdk, =ML g | do | dk: (€12

x [(N + A1) exp[-imQo —2ia 'wsinh(ao/2)]],

with the total proper time being factored out and

_UnmkLRP [ @) , (a0
Ny= (h) cosh ( > ) , (C.13)
/ k R 2
Nip = W(HQ)Z. (C.14)

These integrals can be solved using the same techniques used in Chapter 2 and Chapter 3.

Their results for a fixed value of m are

2

amQ

e a . (C.15)

de,ezl 2
z (kLR P

k
Klpa (—L)
a a
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and I
dNM, - qZRZQZ kJ_ 2 nmQ
—M = Atg——\J}, (kL R |Kin (—) Ta, C.16
kidk, TR ggzg IRl | Kia (70 )] e (€16
Summing both results and summing in 7 we obtain
Cdk ATR%;@)(W (1K} q/akL/ @)l (C.17)
x| Jm(k L R)I? + (RO |Kimqyalko! @) | T, (kL R)I?]
ms
x cosh ,

which coincides with Eq. (4.54) provided we make the identification

ATg — (4—”f°o Lm) (C.18)
a J-co (1+x2)

As noted before, this divergence originates in the infinite duration in the accelerated part
of the current spacetime trajectory. This would not be the case in a real experiment and no
divergence would appear. On the other hand, the non-stationarity of the situation would
make the emission rate different from the one presented above. Our results would give a

good description of this situation only under the conditions discussed in the main text.
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