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We study the K ∗ meson dissociation in heavy ion collisions during the hadron gas phase. We use 
the production and absorption cross sections of the K ∗ and K mesons in a hadron gas, which were 
calculated in a previous work. We compute the time evolution of the K ∗ abundance and the K ∗/K
ratio during the hadron gas phase. Assuming a Bjorken type cooling and using an empirical relation 
between the freeze-out temperature and the central multiplicity density, we are able to write K ∗/K as 
a function of (dN/dη(η = 0)). The obtained function is in very good agreement with recent experimental 
data.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In recent heavy ion collision experiments nuclei are accelerated towards each other with energies of the order of GeV or TeV. These 
extremely high energies allow for the production of a deconfined phase of quarks and gluons. This phase where the fundamental particles 
are able to travel freely is known as the quark gluon plasma (QGP) [1,2]. It exists for a short time and as the system expands and 
cools down, quarks, antiquarks and gluons recombine to form hadrons. This phase transition back to the hadron phase is also called 
hadronization. The abundances of particles formed during the hadronization depend on the temperature and on the baryon chemical 
potential. After hadronization the system becomes a hot hadron gas in which inelastic reactions occur, changing the relative abundance of 
the hadrons. The system further expands and cools down until the point when all interactions cease. This is known as kinetic or thermal 
freeze-out. The final yield of hadrons in a collision is influenced not only by their production rate at the quark-hadron transition point 
but also by the interactions that they undergo after hadronization, which might increase or decrease their abundances. At the thermal 
freeze-out, particle abundances are frozen and the hadrons flow freely to the detectors.

The K ∗ meson is a resonance and may change its abundance also by the strong decay K ∗ → Kπ . This meson has a lifetime of 4 fm/c, 
smaller than the duration of the hadron gas phase, which is believed to be of the order of 10 fm/c. When the decay happens in the 
hadronic medium, the daughter particles (K and π ) interact further with other particles in the environment, changing their energy and 
momentum, and even if they can be measured at the end of the heavy ion collision, the invariant mass of the pair is no longer equal 
to the K ∗ mass. The K ∗ which is no longer reconstructed is lost and we would observe a reduction in the final yield of this resonance, 
which would then be attributed to the existence of the hadron gas phase. This means that the existence of the hadron gas phase could be 
tested by the study of the abundances of such particles. This idea has been discussed in several publications [3–8].

From the experimental point of view, the abundance of the K ∗ meson can be studied through the yield ratio K ∗/K . Experiments have 
measured it to be 0.33 ± 0.01 in Au+Au collisions at 

√
sN N = 130 GeV, 0.23 ± 0.05 in Au+Au collisions at 

√
sN N = 200 GeV at RHIC [9,10], 

0.19 ± 0.05 at 
√

sN N = 2.76 TeV in Pb+Pb collisions at the LHC [11,12] and very recently [13] it was found to be 0.2 ± 0.01 in Pb+Pb at √
sN N = 5.02 TeV in collisions at the LHC. Model calculations suggest that the lifetime of the hadron gas phase grows with the mass of 

the colliding nuclei, with centrality and with the collision energy. We can see that the ratio K ∗/K decreases as the collision energy and/or 
system size increases, giving support to the conjecture made in the previous paragraph. However, in order to reach a firm conclusion a 
comprehensive quantitative calculation must be done.
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Fig. 1. Diagrams for the relevant processes considered in the calculation of the cross sections in Ref. [17]. a) K ∗π → ρK reactions. R represents the resonances h1(1170), 
h1(1380), f1(1285), a1(1260) and b1(1235). b) K ∗ρ → Kπ reactions.

In the hadron gas formed in heavy ion collisions, the temperatures range from � 175 MeV, where hadronization takes place, to � 100
MeV, where kinetic freeze-out takes place. The temperature defines the order of magnitude of the hadron momenta in the gas and also 
the energy with which hadrons collide in the medium. The energies of a few hundred MeV’s are too high to allow the use of chiral 
perturbation theory and are too low to allow the use of perturbative QCD. One has to resort to models involving mesons and baryons. 
In principle baryons could be efficient in absorbing K ∗ ’s. Although the coupling constants B B ′K (∗) (baryon-baryon-strange meson) are 
relatively small [14], it has been shown in [15] that the interaction cross sections are significant and the K ∗N total cross section can be as 
large as 20 mb. On the other hand, the particles which emerge from the hadron gas have low or moderate rapidities and in this rapidity 
region there are no remnant baryons from the projectile or from the target. There are only newly created baryons, which are relatively 
rare. Therefore, here we follow [16] and neglect K ∗ interactions with baryons.

In Ref. [16] the authors computed the cross sections of several types of interactions suffered by K ∗ and K mesons in the hadron gas 
and showed that, due to these interactions and to the strong decay, the final yield ratio K ∗ /K measured in central Au+Au collision at √

sN N = 200 GeV decreases by 37% during the hadron gas phase, resulting in a final ratio comparable to STAR measurements. In [16], the 
change in the abundances of the K ∗ and K mesons was computed by solving a system of differential rate equations which use as input 
the cross sections for different interactions involving the K ∗ and K mesons with each other and with the light mesons ρ and π . The 
authors found that the leading processes contributing to the abundance dynamics are: K ∗π → Kρ , K ∗ρ → Kπ and K ∗ → Kπ , as well as 
the inverse ones.

In [16] some interaction mechanisms that might be relevant were not included in the calculations. In a subsequent work [17] the 
cross sections for production and annihilation of K ∗ and K mesons were recalculated with the inclusion of new reaction mechanisms. The 
relevant Feynman diagrams for the K ∗π → ρK and K ∗ρ → Kπ reactions are shown in Fig. 1.

The most important (but not the only ones) changes made in [17] are:

I) Inclusion of anomalous parity vector-vector-pseudoscalar (VVP) interactions.
II) Inclusion of the exchange of axial resonances K1(1270), h1(1170), h1(1380), f1(1285), a1(1260) and b1(1235) in the s and t chan-

nels.

Modification I) introduces new vertices, modifies several Feynman diagrams and changes the amplitudes of all processes discussed 
previously in [16]. In Refs. [18–20], it was shown that interaction terms with anomalous parity couplings have a strong impact on the 
corresponding cross sections. The relevance of such anomalous terms in the determination of the abundance of X(3872) in heavy ion 
collisions was computed in Ref. [21]. In [17] these interaction terms were found to be relevant also in the calculation of K ∗ absorption 
processes. Modification II) introduces several new diagrams. The presence of the resonance K1(1270), for example, had been found to be 
important [22] in describing the invariant mass distribution of the process K − p → K −π+π− p at 

√
sN N = 63 GeV measured by the WA3 

collaboration at CERN [23]. In [17] it was seen that the diagram with K1(1270) in the s-channel is the most important contribution to the 
absorption process π K ∗ → ωK and also to the production process ρK → π K ∗ .

The results in Ref. [17] show that the new mechanisms are rather significant, changing the cross sections up to one or two orders of 
magnitude in some cases, suggesting that these new cross sections would result in a very different dynamics for the abundances of K ∗
and K mesons. A comparison between the results obtained in Refs. [16] and in [17] is presented in Fig. 2, where we show the thermally 
averaged cross sections (see below) of the main processes of absorption and regeneration of K ∗ . From the figures we see that the cross 
sections found in [17] are much larger than those found in [16], both for absorption and for regeneration of K ∗ .

In this work we use the improved cross sections of [17] and solve the differential rate equations proposed in Ref. [16], obtaining 
the K ∗/K ratio as a function of the proper time. We use a Bjorken type cooling to connect the proper time and the temperature. The 
evolution stops at the freeze-out temperature T f . Finally, we use the empirical relation between T f and the central multiplicity density 
found in [24], to obtain a direct relation between the K ∗/K ratio and dN/dη(η = 0). The obtained relation is in very good agreement with 
experimental data. In the next section we briefly describe the formalism and in the following section we present our results and compare 
them with experimental data.
2
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2. Formalism

2.1. Thermal cross sections

In [16] the interactions of K and K ∗ with light non-strange mesons were described by effective Lagrangians of the type LP P V and 
LV V V , where P and V are pseudoscalar and vector mesons, respectively. The Lagrangians were obtained from free pseudoscalar and vector 
meson Lagrangians by introducing the minimal substitution. In [17], in addition to these Lagrangians, the Lagrangian LV V P was included, 
representing the so called “anomalous parity” interactions. From the Lagrangians it is straightforward to evaluate the amplitudes of K ∗
absorption by pions, kaons, ρ ’s and by K ∗ ’s. In order to take the finite size of the hadrons into consideration when evaluating amplitudes, 
one uses form factors at each interaction vertex. These form factors contain a cut-off parameter. In [16] the authors took a value taken from 
previous phenomenological analyses [25]. With the amplitudes it is easy to compute the cross sections of the corresponding processes. 
With the same Lagrangians one can calculate all the interaction cross sections of kaons. Moreover, with the use of detailed balance one 
can calculate the inverse processes, i.e. one can compute the K ∗ + π → K + ρ and K + ρ → K ∗ + π cross sections. Finally, one has to 
consider the processes K + π → K ∗ and K ∗ → K + π . The authors of [16] also found that the cross section for the formation of the K ∗
meson from pions and K mesons is not small at all, compared to cross sections for other processes.

All the reactions mentioned above happen within a hadron gas at temperatures ranging from 100 to 200 MeV. These temperatures 
determine the collision energies. Moreover the densities of the colliding particles are determined by the temperature. Therefore, in this 
context, the most relevant dynamical quantity is the thermally averaged cross section. For a process a + b → c + d it is defined as:

〈σab→cd vab〉 = 1

1 + δab

∫
d3 	pad3 	pb fa( 	pa) fb( 	pb)σab→cd vab∫

d3 	pad3 	pb fa( 	pa) fb( 	pb)
, (1)

where vab is the relative velocity between the initial particles

vab =
√

(pa · pb)
2 − m2

am2
b/(Ea Eb)

and f i( 	pi) is the thermal momentum distribution of particle i, which is given by a Bose-Einstein distribution:

f i( 	pi) = 1

e

√
	pi

2+m2
i /T − 1

.

The production and absorption rates of K ∗ or K obviously depend on the densities of particles in the hadron gas at proper time τ which 
are given by

ni(τ ) = gi

2π2

∞∫
0

p2dp

e

√
p2

i +m2
i /T (τ ) − 1

� gi

2π2
m2

i T (τ )K2

(
mi

T (τ )

)
, (2)

where gi is the degeneracy factor of meson i and mi its mass. K2(τ ) is the modified Bessel function of the second kind and T (τ ) is the 
temperature. The total number of particles of species i, Ni(τ ), is obtained by multiplying the density given by (2) by the system volume 
V (τ ). At last, the thermally averaged decay width of K ∗ was computed using the following expression introduced in Ref. [16]:

〈	K ∗ 〉 = 	K ∗(mK ∗)
K1

(
mK∗
T (τ )

)

K2

(
mK∗
T (τ )

) , (3)

where K1 and K2 are the modified Bessel functions of the first and second kind, T (τ ) is the temperature as a function of proper time τ , 
mK ∗ is the mass of K ∗ and 	K ∗ , its decay width, which was computed as:

	K ∗(
√

s) = g2
π K K ∗
2π s

p3
cm(

√
s), (4)

with gπ K K ∗ being the coupling constant, pcm the momentum at the center of mass frame and s the Mandelstam variable.
For our purposes it is not necessary to recalculate all the thermally averaged cross sections, 〈σab→cd vab〉, which are smooth functions 

of the temperature. It is enough to parametrize the results obtained in Refs. [16] and [17] by the polynomial functions which are shown 
in the Appendix. The resulting parametrizations are shown in Fig. 2.

In Fig. 2 we can compare the results obtained in [16] with those obtained in [17]. The inclusion of modifications I and II increased 
the cross sections typically by one order of magnitude. In both approaches the absorption of K ∗ is stronger than its production. However, 
with the formalism considered in [17], at higher temperatures we observe the dominance of the processes of creation of K ∗ . So, when the 
hadron gas starts its expansion at high temperatures, we expect to see first the growth of the K ∗ multiplicity which is later followed by 
its reduction. In contrast, with the formalism of [16] we only see a monotonic reduction of the K ∗ multiplicity.

2.2. Evolution equations

With the ingredients presented in the previous subsection, it is possible to write rate equations, which describe the time evolution of 
the K ∗ and K multiplicities, incorporating the gain and loss terms due to production and absorption respectively. These equations are:
3



C. Le Roux, F.S. Navarra and L.M. Abreu Physics Letters B 817 (2021) 136284
Fig. 2. Comparison between the cross sections obtained in Ref. [16] and those obtained in Ref. [17]. The lines are obtained with Eq. (16) which is a parametrization of the 
results obtained in the mentioned papers. a) K ∗π → ρK reactions. b) K ∗ρ → Kπ reactions.

dNK ∗

dτ
=〈σKρ→K ∗π v Kρ〉nρ(τ )NK (τ ) − 〈σK ∗π→Kρ v K ∗π 〉nπ (τ )NK ∗(τ ) + 〈σKπ→K ∗ρ v Kπ 〉nπ (τ )NK (τ )

− 〈σK ∗ρ→Kπ v K ∗ρ〉nρ(τ )NK ∗(τ ) + 〈σπρ→K ∗ K̄ vπρ〉nπ (τ )Nρ(τ ) − 〈σK ∗ K̄→ρπ v K ∗ K̄ 〉nK̄ (τ )NK ∗(τ )

+ 〈σππ→K ∗ K̄ ∗ vππ 〉nπ (τ )Nπ (τ ) − 〈σK ∗ K̄ ∗→ππ v K ∗ K̄ ∗ 〉nK̄ ∗(τ )NK ∗(τ ) + 〈σρρ→K ∗ K̄ ∗ vρρ〉nρ(τ )Nρ(τ )

− 〈σK ∗ K̄ ∗→ρρ v K ∗ K̄ ∗ 〉nK̄ ∗(τ )NK ∗(τ ) + 〈σKπ→K ∗ v Kπ 〉nπ (τ )NK (τ ) − 〈	K ∗ 〉 NK ∗(τ ),

dNK

dτ
=〈σππ→K K̄ vππ 〉nπ (τ )Nπ (τ ) − 〈σK K̄→ππ v K K̄ 〉nK̄ (τ )NK (τ ) + 〈σρρ→K K̄ vρρ〉nρ(τ )Nρ(τ )

− 〈σK K̄→ρρ v K K̄ 〉nK̄ (τ )NK (τ ) + 〈σK ∗π→Kρ v K ∗π 〉nπ (τ )NK ∗(τ ) − 〈σKρ→K ∗π v Kρ〉nρ(τ )NK (τ )

+ 〈σK ∗ρ→Kπ v K ∗ρ〉nρ(τ )NK ∗(τ ) − 〈σKπ→K ∗ρ v Kπ 〉nπ (τ )NK (τ ) + 〈σπρ→K ∗ K̄ vπρ〉nπ (τ )Nρ(τ )

− 〈σK ∗ K̄→ρπ v K ∗ K̄ 〉nK̄ (τ )NK ∗(τ ) + 〈	K ∗ 〉 NK ∗(τ ) − 〈σKπ→K ∗ v Kπ 〉nπ (τ )NK (τ ). (5)

The above equations include all relevant creation and annihilation reactions. However, as showed in Refs. [16] and [17], some of 
them have very small thermally averaged cross sections and can be safely neglected. The really important interactions of the K ∗ meson 
according to both references are the following:

K ∗ρ → Kπ,

K ∗π → Kρ,

K ∗ → Kπ, (6)

as well as the respective inverse processes. This should not be surprising since π ’s are the most abundant particles in a hadron gas and 
ρ ’s are vector particles and, as discussed above, have a large interaction cross section with other vector particles. Restricting ourselves to 
the processes above, the system of differential equations Eq. (5) can be written as:

dNK ∗(τ )

dτ
= γK NK (τ ) − γK ∗ NK ∗(τ ),

dNK (τ )

dτ
= −γK NK (τ ) + γK ∗ NK ∗(τ ), (7)

where NK and NK ∗ are the abundances of K and K ∗ mesons respectively. They are functions of the proper time τ . The factors γK and γK ∗
depend on the interaction cross sections and the light meson densities in the following way:

γK = 〈σKπ−→K ∗ρ v Kπ 〉nπ + 〈σKρ−→K ∗π v Kρ〉nρ + 〈σKπ−→K ∗ v Kπ 〉nπ ,

γK ∗ = 〈σK ∗ρ−→Kπ v K ∗ρ〉nρ + 〈σK ∗π−→Kρ v K ∗π 〉nπ + 〈	K ∗ 〉 . (8)

It is interesting to consider the limiting case where the temperature and light meson densities stay constant in time. In this case γK ∗ and 
γK are constant and the system (7) can be solved analytically giving the following result:

NK ∗(τ ) = γK

γ
N0 +

(
N0

K ∗ − γK

γ
N0

)
e−γ (τ−τh),

NK (τ ) = γK ∗

γ
N0 +

(
N0

K − γK ∗

γ
N0

)
e−γ (τ−τh), (9)
4
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Fig. 3. K ∗/K ratio as a function of the proper time τ . Dashed lines correspond to the initial conditions 0.2, 0.5 and 0.8 and no cooling. Solid lines correspond to the initial 
conditions 0.2, 0.5 and 0.8 and cooling. a) Cross sections from S. H. Lee et al. [16]. b) Cross sections from A. Martinez et al. [17].

where N0 = N0
K ∗ + N0

K , i.e., the sum of the initial abundances of K and K ∗ . Moreover, γ = γK ∗ + γK , as computed in expressions (8). At 
the hadronization time, τh , the system of K ∗ ’s and K ’s starts to evolve and collide with the light particles from the reservoir which is 
kept at constant temperature. At large times the N0

K ∗ and N0
K reach their asymptotic constant values. This is our operational definition of 

chemical equilibrium.
Once we define the temperature evolution (“cooling”) of the hadron gas T (τ ) and the initial conditions NK ∗ (τh) and NK (τh), the system 

of differential equations (7) can be solved, yielding NK ∗ , NK and the ratio R(τ ):

R(τ ) = NK ∗

NK
= K ∗

K
. (10)

We follow the time evolution of the abundances until the kinetic freeze-out of the gas, which is defined by the freeze-out temperature 
T f and occurs at time τ f . Assuming that the hadronic system undergoes a Bjorken-like expansion, we may write:

T = Th

(τh

τ

)1/3
, (11)

where Th = 175 MeV is the universal hadronization temperature discussed above and τh is the hadronization time, which may change 
from system to system. We take the above expression at the particular freeze out time, τ f and freeze-out temperature, T f , and invert it 
to obtain:

τ f = τh

(
Th

T f

)3

. (12)

We solve (7) until τ f and compute the ratio R[τ f (T f )]. As it was pointed out long ago [26], the kinetic freeze-out temperature is not an 
universal constant. It depends on the size of the hadronic system and hence on the collision energy, on the mass number of the colliding 
nuclei and on the centrality of the collision. A recent blastwave fit analysis made by the ALICE Collaboration [24] has confirmed that 
the kinetic freeze-out temperature decreases with the system size, customarily associated to the multiplicity density of charged particles, 
dN/dη, measured at midrapidity. The empirical relation between T f and N found in [24] can be parametrized as:

T f = T f 0

N a
, (13)

where T f 0 and a are constants. Inserting (13) into (12) we find that

τ f ∝ N 3a. (14)

This relation tells us that N gives a measure of the duration of the hadronic phase. Larger systems (with larger N ) live longer. Using the 
obtained τ f to determine the end of the evolution of (7) we find R as a function N . The function R can then be directly compared with 
the data on R versus N presented very recently in [13]. This will be done in the next section.

3. Results and discussion

From what was said above we see that the final multiplicities of K ∗ and K may depend on: i) the collision dynamics, i.e., on the 
production and absorption cross sections discussed above; ii) the initial conditions of the evolution equations (7), i.e., the initial values of 
NK ∗ and NK ; iii) the expansion dynamics, i.e., the cooling function T (τ ) and iv) the system size, characterized by dN/dη(η = 0).

We solve the equations (7) using as input the cross sections calculated in [16] and in [17]. The initial temperature is Th = 175 MeV and 
the initial conditions are K ∗/K = 0.2, 0.5 and 0.8. The results are shown in Fig. 3. On the left (right) panel the inputs are from Ref. [16]
([17]).

First we observe that, as anticipated from Eqs. (9), when there is no cooling the system evolves to an asymptotic state where the 
abundances become constant. When cooling (11) is included, the ratio K ∗/K drops and at typical freeze-out times of 20 - 25 fm/c reaches 
0.2 - 0.3. These numbers are close to the measured ones. This suggests that a cooling faster than (11), such as the Hubble-like cooling 
discussed in [27,28], is probably incompatible with data. Another interesting aspect of the figure is that, even with cooling, after some 
5
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Fig. 4. Freeze-out temperature as a function of [dN/dη(η = 0)]1/3. The circles are the result of the blastwave fits of data on Pb + Pb collisions at √sN N = 2.76 TeV taken by 
the ALICE Collaboration [24]. The squares represent blastwave fits of data on Au + Au collisions √sN N = 200 GeV taken by the STAR Collaboration [9]. The line represents the 
expression (15).

time of evolution the K ∗/K ratio becomes the same for all initial conditions. Comparing the left and right panels we observe the effect 
of changing the microscopic cross sections from those calculated in [16] to those calculated in [17]. When there is no cooling the ratio 
shown on the left (with the inputs from [16]) is significantly smaller than the one on the right (with the inputs from [17]). This is a 
consequence of Fig. 2: at higher temperatures, with [17] the cross section for K ∗ production is bigger and so is the ratio R . It is also for 
this reason that on the right panel we observe a growth, in some cases very pronounced, of all lines at early times.

In [17] all the cross sections are bigger, all the reactions happen faster and hence the system looses sooner the memory of the initial 
conditions (the three lines become a single line). Interestingly, at very long times in both cases (right and left panels) the ratio goes to 
the same value.

From Fig. 3 it is clear that the new reactions mechanisms considered in [17] have an impact on the evolution of the abundances of K ∗
and K mesons in the hadronic medium. They predict a time evolution of the abundances which is considerably different from previously 
thought: there is an initial increase in the yield ratio which would not exist without taking into account all the possible mechanisms 
for the processes in (6). Unfortunately, the differences with respect to the previous calculations of Ref. [16] are washed out during the 
evolution and in the end the improved cross sections lead to a final yield ratio very close to that computed in Ref. [16].

In order to understand this behavior, it is important to notice from Fig. 2 that even though the cross sections for the annihilation of 
K ∗ are larger in Ref. [17] than in Ref. [16], those for the creation of K ∗ are also larger. For example, Fig. 2b clearly shows that in the case 
of the creation of K ∗ through Kπ → K ∗ρ , the cross sections from Ref. [17] are one order of magnitude larger than those from [16] and, 
as time passes, i.e., the gas cools down, the difference between them decreases considerably. The opposite goes for the creation of K ∗
through Kρ → K ∗π (Fig. 2a) but the difference between the cross section in Ref. [17] and Ref. [16] in this case is much smaller.

In order to compare our results with data, we will make use of the connection established in [24] between T f and N . Although the 
power law fit (13) is very useful because it leads immediately to (14), a somewhat better fit of the points shown in [24] can be obtained 
with the form:

T f = T f 0 e−bN , (15)

where T f 0 = 132.5 MeV and b = 0.02. The above expression is compared to the data points from [24] in Fig. 4. We emphasize that 
Eq. (15) is not the result of a global best χ2 fit. We try to get a better description of the higher energy data points, which will be relevant 
for the study of the K ∗/K ratio measured at the LHC. The STAR points are shown just for comparison. We first choose the system under 
consideration, fixing N . This determines the freeze-out temperature, T f , and the endpoint of the evolution, τ f . Then, we read the ratio 
K ∗/K from Fig. 3. Finally, we plot K ∗/K as a function of N and compare the results with the data compilation published in [13]. The 
comparison is presented in Fig. 5.

As it can be seen in Fig. 3, the longer the hadronic system lasts, the smaller is the ratio R . Indeed, for each (increasing) value of N we 
stop the evolution at an (increasing) value of τ (which is τ f ) and read from Fig. 3 a (decreasing) value of the ratio K ∗/K .

There is a strong correlation between Fig. 4 and Fig. 5. A steeper function in the first figure implies a steeper function in the second. 
In fact R � T f . Interestingly, the data seem to exclude a flat horizontal line in Fig. 4, i.e., a freeze-out temperature which is universal, 
independent of the system size.

Knowing that the existence of a hadron gas phase leads to a reduction in the ratio R = K ∗/K , the systematic study of this ratio in 
different collisions and at different energies will help us in better determining the properties of the hadron gas. In proton-proton collisions, 
where there is no hadron gas and hence no K ∗ absorption, R should be maximal. Moving to p-A and A-A collisions we expect to see the 
formation of a larger and longer-living hadron gas. Also, when we move to larger systems we observe a growth of the multiplicity of 
produced particles and also of the multiplicity density in the central rapidity region N = dN/dη(η = 0), which is usually taken as a 
measure of the size of the system.

In our approach to study the ratio R = K ∗/K we made some simplifications. The goal was to determine which ingredients are really 
crucial to understand the observed behavior. One of the simplifications was to neglect the volume of the system. The colliding systems 
mentioned in Fig. 5 are different and so are the corresponding hadronic gases, which have different volumes. In our study these differences 
are partly considered in Eq. (15). Moreover the details of the light flavor composition of these different systems were not taken into 
account. In each of the systems considered in Fig. 5 the π and ρ finally measured multiplicities are different. In thermal models, this 
6
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Fig. 5. K ∗/K as a function of [dN/dη(η = 0)]1/3. Data are from [13].

Table 1
Parameters used in (16). With the above numbers the temperature is given in MeV 
and the outcome is the thermally averaged cross sections in mb. In the last line, the 
average decay width is given in f m−1.

p0 p1 p2 p3

K ∗ρ → Kπ [17] 92 -0.91 0.0043 −7.2 × 10−6

K ∗ρ → Kπ [16] 1.78 -0.0052 0.000007 0
Kπ → K ∗ρ [17] -20 0.6 -0.007 3.5 × 10−5

Kπ → K ∗ρ [16] 0.2 -0.004 0.00001 6.0 × 10−8

K ∗π → Kρ [17] -8.5 0.200 -0.00085 1.23 × 10−6

K ∗π → Kρ [16] -0.1 -0.002 0.00007 −1.5 × 10−7

Kρ → K ∗π [17] 25.3 -0.143 0.00052 −8.0 × 10−7

Kρ → K ∗π [16] 0 0.010 -0.000014 0
Kπ → K ∗ [16] -3 0.27 -0.0019 3.8 × 10−6

K ∗ → Kπ [16] 0.2579 −4.32 × 10−4 6.0 × 10−7 −6.5 × 10−10

difference is usually accounted by the fugacity factor, γ , which should appear multiplying the right side of Eq. (2). We have taken γ = 1
for π ’s and ρ ’s in p − Pb and Pb − Pb collisions. In previous studies with thermal models it was shown that, in Pb − Pb collisions, we 
could have γπ � 1.3 and γρ � 1.2. Changes in these quantities would bring changes in Eqs. (8) and (7). We have checked that, using 
these values for γπ and γρ we would obtain, in Fig. 5, curves with the same aspect of the solid line but shifted upwards. For conciseness 
we decided not to include them in the figure. Furthermore, the used numerical values could be different, such as the hadronization 
temperature, Th , or the numbers contained in the parametrizations. None of these changes however would substantially change the curve 
shown in Fig. 5.

To summarize: we have improved the treatment of the microscopic dynamics of K ∗ ’s. We used all the relevant reaction cross sections 
involving K ∗ ’s calculated in Ref. [17] as input in the evolution equations (7). We included cooling and the dependence of the freeze-
out temperature on the system size. We obtained a very good description of the data published in [13] on R = K ∗/K as a function of 
dN/dη(η = 0). In order to reproduce the features of Fig. 5 we need the three aspects of the process: i) dominance of the K ∗ absorption 
reactions; ii) cooling and iii) system size dependent freeze-out.

4. Appendix

In this appendix we have included the parametrization used to reproduce the thermally averaged cross sections calculated in Ref. [16]
and in Ref. [17]. It is given by:

〈σ v〉 (T ) = p0 + p1T + p2T 2 + p3T 3. (16)

The coefficients pi are given in Table 1.
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