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Introduction

If we knew what we were doing, it wouldn’t be called research,would it?
A. Einstein

Unification is one of the driving principles of modern theoretical physics. Maxwell showed
us around the 1860’s that electricity and magnetism were notto be thought of as separate forces,
but as two different manifestations of the same entity,electromagnetism. Later on, in the begin-
ning of the twentieth century, Einstein asked the famous question: “What do you see if you chase
a ray of light? Can you see it in its rest frame?" Although the question was not motivated by
any unexplained experimental results, the answer led to a great revolution in physics. To answer
his question, Einstein had to find a way to combine the framework Galilean mechanics with
Maxwell’s electromagnetism. This led tospecial relativity, and eventuallygeneral relativity,
which completely modified the way we view space, time, and gravity.

In the early twentieth century, quantum mechanics was well-established asthe theory to
describe the electron in the atom. As experiments at the subatomic level became more sophisti-
cated, being able to collide subatomic particles at higher and higher energies, it was noticed that
the number of particles is not conserved in a collision process. A new theory was needed that
could at the same time deal with the fact that particles are small, and hence quantum mechani-
cal, and highly relativistic, traveling at speeds comparable to the speed of light. This led to the
development ofrelativistic quantum mechanicsand eventuallyquantum field theory, between
the late 1920’s and the 1950’s. The latter is built to incorporate special relativity and quantum
mechanics in one framework. Because it is relativistic, quantum field theory treats mass and
energy as a single entity. Consequently, it no longer requires the conservation of the particle
number in a process, as long as the total energy/mass at the end of a process is the same as that
at the beginning. Because it is quantum mechanical, it also allows for a temporary violation of
energy/mass conservation, leading to the off-shell intermediate states that one sees in Feynman
diagrams.

The ultimate success of quantum field theory came from its concrete application to thestan-
dard modelof particles. This model, which was developed in the 1970’s,describes three of the
four fundamental forces of nature:

• Electromagnetism: this force is responsible for most of the phenomena we observe in our
lives besides gravity, such as the electric repulsion that keeps solid objects from simply
merging into each other, and the fact that we can chat on cellular phones.
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• The strong nuclear force: this is what keeps nuclei from flying apart due to their electric
repulsion.

• The weak nuclear force: this force is responsible for radioactivity.

The standard model describes these three forces and the particles that arechargedunder them in
a single gauge theory withS U(3)× S U(2)× U(1) as its symmetry group. This theory has been
experimentally confirmed within its regime of validity beyond a shadow of doubt.

We could now ask a question that is notyet motivated by unexplained observational data,
but is in the spirit of unification: “What takes place inside ablack hole?" The first notion of a
black hole was discovered by Schwarzschild, as the first solution to the Einstein equations ever
written down. A lot of efforts have been made, and are still being made, in order to understand
the real physical meaning of this mathematical solution. What is interesting about black holes,
is that they provide us with a Gedankenexperiment that forces general relativity and quantum
mechanics together. The former is necessary because it is the framework for strong gravitational
fields, whereas the latter is necessary because black holes are made of matter that is compressed
to a very small space. This is where we notice the shortcomings of quantum field theory, and
general relativity. They are seemingly incompatible. Although a theory of quantum gravity does
not yet exist, there are two candidate theories: string theory, and loop quantum gravity. In this
thesis, we will work with string theory.

String theory is an attempt to describe very high energy densities such as the inside of a black
hole. However, it is more ambitious than that. It also has thepotential to unify gravity with the
other aforementioned forces of nature into one single framework, which would be valid in all
possible regimes of energy and size. String theorists hope to formulate atheory of everything.

The theory is derived from the very simple idea that fundamental particles, which were
always thought of as points (i.e. objects of zero size), are actually tiny vibrating strings of Planck
length size (i.e.∼ 10−35 m). The strings do not have fixed length, but a fixed tension, orenergy
density. This means that the mass of any given string is determined by its vibrational state. For
instance, if it spins really fast, it will tend to stretch by centrifugal force, and will have a higher
mass than a string that does not spin. Whereas a particle cannot have angular momentum, but
only intrinsic spin, a string does have angular momentum. Sostring theory regards all different
kinds of particles as being made out of the same ‘fabric’, andproperties such as spin and mass
are no longer intrinsic1, but simply labels of the states in which the strings are. Trying to
formulate a quantum theory of a relativistic strings (special or general relativistic), creates a
world of mathematical structure that is both beautiful and complicated.

Needless to say, the path toward such an ambitious goal as formulating the theory of every-
thing is plagued with obstacles. Although the theory has been around for several decades, as
of this writing, it is still in its infancy. One might even saythat string theory has so far made
bigger contributions to mathematics than to physics. A major drawback of string theory is that
it is only definedperturbatively. This means one has to assume that strings interactweakly
with each other, in order to even define the theory. In order tobe able to perform calculations,
however, one often has to make one more approximation: the low energy approximation. This
approximation requires that one only consider the masslessstates of the string. It also requires

1However, the difference between fermionic and bosonic strings is in some sense still intrinsic.
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that spacetime curvature be weak. Once those criteria are met, one can treat string theory as
a field theory. To be specific, the field theories used to approximate string theory are called
supergravities. Throughout this thesis, we will be working with this approximation.

In chapter 3, we will discuss D-instantons. These are objects that arise in the supergravity
approximation of string theory, yet they can actually provide us withnon-perturbativeinforma-
tion about string theory, i.e. they show effects that cannot be found by means of naïve pertur-
bation theory. They are analogous to instantons in ordinaryfield theory in that they can only
be found in the Euclidean formulation of the path integral. The D-instanton can be interpreted
as a quantum field theoretic tunneling amplitude between twostates of the spacetime metric,
and theaxion-dilatonscalar of type IIB supergravity. It yields a non-perturbative contribution
to the calculation of the path integral. We will be studying anon-supersymmetric kind of D-
instanton. We will show its relation to the better known supersymmetric D-instanton in terms
of the SL(2,�) duality symmetry of type IIB supergravity. We will also show how the general
D-instanton can be viewed as a spatial section of a charged black hole, one dimension higher.

Another challenge of string theory is that it manifests itself in different forms. Until the
mid 1990’s, there were actually five different consistent formulations of string theory, which
was very unsettling for those who believed it to be a theory ofeverything. However, in the
mid 1990’s, Edward Witten and other physicists showed that these five theories, together with
eleven-dimensional supergravity (a bonus theory, so to speak), were actually different limits of
one unique theory now known asM-theory. Unfortunately, not much is known about M-theory
itself. Even the origin of its name is a mystery. One often illustrates this novel understanding
of string theory by drawing a hexagon, where the corners represent all six limiting cases of M-
theory, the latter being represented by the content of the polygon. The six theories are related to
each other via so-calleddualities. A duality can be thought of as the abstract generalization of
the Fourier transform. Fourier transforming a differential equation means writing down the same
problem in different variables, according to a certain map. A problem that seems impossible in
one set of variables, can be a one-line calculation in the newvariables. String theory dualities
relate different theories in their opposite regimes, or sometimes theyrelate a theory to itself. For
instance, type IIB string theory isS-dualto itself. This S-duality manifests itself via the action
of the group SL(2,�) on the degrees of freedom of the theory, and it sometimes maps weakly
coupled string theory to its strongly coupled counterpart.

8

M? 11D

IIB IIA

I

Het E  x EHet SO(32)
8

Figure 1: The five string theories, 11-D supergravity, and M-theory.

Although this picture shows us what we know about string and M-theory, it mainly shows
us what we do not yet know. We know only the six corners of the hexagon, i.e. the extreme
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regimes of these theories. Everything between the corners is uncharted territory.
Another interesting discovery of the 1990’s is Maldacena’sAdS/CFT conjecture [1]. The

latter asserts that type IIB string theory in a certain background geometry, namelyAdS5×S5, is
fully equivalent to supersymmetric Yang-Mills theory in four dimensions (N = 4, d = 4 SYM).
This is another example of a strong/weak duality. It relates the two theories in their opposite
regimes of coupling strength. Therefore, this is useful forexploring the weakly and strongly
coupled phases of both theories, but not the intermediate phases.

The lack of a viable framework for M-theory prevents us from deriving the laws of physics
that govern strings. String theory, as it is currently formulated, does not tell us in what spacetime
manifold we actually live. It treats the spacetime metric asa non-dynamical background, and
imposes the Einstein equation on it as a consistency condition that restricts the kinds of allowed
manifolds. In order to be able to pinpoint a unique background for string theory, one would
need a theory with avacuum selection principle. This is analogous to having a system with
degenerate vacua and no potential that can lift the degeneracy. The best one can do is to look for
backgrounds through trial and error, and see which ones are most consistent with the physical
world we live in. A new emergent philosophy among string theorists, the so-calledlandscape
scenario, suggests that there is no vacuum selection principle, but that all possible universes
actually coexist asbubblesin a megaverse. According to this picture, we happen to live in
one of the few universes where the constants of nature are such that life is possible, but other
universes where it is not possible also exist. However, these are causally disconnected from
ours.

So far, no verifiable or falsifiable prediction has been made by string theory. This is due to
two reasons: first, technological limitations make it impossible to measure any string effects in a
particle accelerator. Second, even if particle accelerators were capable of making measurements
at an arbitrary energy level, string theory has not told us yet what we would see, due to its
complicated nature.

Recently, however, hopes of getting string theory to make contact with reality have been
revived by cosmology. First of all, cosmological processessuch as supernovae are the ultimate
particle accelerators, reaching energies far higher than CERN could ever dream of. Secondly,
recent measurements have confirmed that our universe is undergoing a period ofaccelerated
expansion. This provides string theorists with the challenge/opportunity to derive a scenario
from string theory that produces accelerated expansion that is consistent with observations.

In chapters 5 and 6, we will be studying a certain class of cosmological models containing
Einstein gravity and scalar fields, some of which are derivable from string theory, and some
with yet unknown fundamental origins. We will specifically see when these models lead to
accelerating universes, be iteternalor transientacceleration.

The Big Bang scenario, which is a widely accepted account forthe early history of our
universe, states that the latter was once very dense and hot,emitting perfectblackbody radi-
ation. The microwave spectrum of this radiation, the famousCosmic Microwave Background
Radiation, has been observed and thoroughly studied, and is consistent with the Big Bang the-
ory. Earlier in this introduction, I mentioned that black holes provided us with a ‘theoretical
laboratory’ in which to study quantum gravity. The Big Bang is actually a real life laboratory
for quantum gravity, as it describes a very dense, and hence highly curved spacetime, where
short-distance physics is dominant. If string theory is a theory of everything, it must ultimately
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explain and ‘smooth out’ the Big Bang singularity.

This thesis is organized as follows: chapter 1 is a basic introduction to the bosonic string, and
its quantization. There, I will also briefly explain the conformal field theory approach to string
theory, and the physical interpretation of spacetime backgrounds. Finally, a brief summary of
superstring and supergravity theories will be provided.

In chapter 2, I will introduce instantons in quantum mechanics and field theory, thereby
explaining the semiclassical approximation in a Euclideansignature. This will be illustrated
with examples, including the Yang-Mills instanton. Then, Iwill present a brief introduction to
solitons. Finally, I will explain the correspondence between solitons and instantons.

Chapter 3, which is based on a publication, concerns type IIBnon-extremal D-instantons.
First, I will review the SL(2,�) symmetry of type IIB supergravity and generalize to arbitrary
dimensions and dilaton coupling. Later, this theory will also be generalized to theories with
multiple scalars. Then, the solutions will be presented, aswell as their SL(2,�) properties. After
a brief introduction to Euclidean wormholes, we will see that one class of solutions gives rise to
such geometries. In analogy with the soliton-instanton correspondence explained in chapter 2, a
correspondence between D-instantons and charged black holes; and D-instantons andp-branes
will be established. The calculation of the action for theseinstanton solutions will be presented,
alongside with a discussion about the potential quantum mechanical role of non-extremal D-
instantons in string theory. Finally, I will comment on somework in progress, where these
D-instantons are put to work in the AdS/CFT context.

In chapter 4, I will give a basic introduction to modern cosmology and its issues. I will begin
by introducing theFriedmann-Lemaître-Robertson-Walkermetric and the standard terminology
for the matter and energy content of the universe. Then, I will review three main problems in
cosmology: thehorizon, flatness, andrelics problems, and we will see how these are solved by
inflation. I will then discuss present day acceleration, mentioning some of the current methods
being used by string theorists toderiveit.

The goal of chapter 5, which is based on a publication, will beto describe gravity-scalar
models for cosmology with single-exponential potentials.We will see that these systems can be
formulated as autonomous systems, and that power-law and deSitter solutions can be regarded
as critical points. We will then analyze the solutions that interpolate between critical points,
paying attention to trajectories that have periods of acceleration.

In chapter 6, we will generalize on the previous chapter by analyzing multiple-exponential
potentials. This chapter is based on a publication, in whichthe critical points are given for
the most general case for the first time. This analysis is novel in that it includes cases that are
even more general than what is known as ‘generalized assisted inflation’. The analysis will be
illustrated by some examples of potentials with higher-dimensional origins via compactifications
of gravity over three-dimensionalgroup manifolds.

Just as instantons and solitons have similar mathematical structures, D-instantons and FLRW
cosmologies are also mathematically similar. They are bothgravity-scalar configurations that
depend on only one coordinate (be it time-like or space-like). They both asymptote to ‘trivial’
configurations, but have non-trivial interpolating behavior, much like kink solutions. They can
probably be viewed as sections of non-trivial bundles over the circle. In chapter 7, this paral-
lelism will be pursued in two ways: first, we will see that someD-instantons can be related to
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cosmologies via Wick rotation. Then, we will see that D-instantons and scalar cosmologies can
be viewed as the trajectories of particles in a fictitiousscalar manifoldor target space. This
interpretation not only puts these solutions on equal footing, it even patches them as two por-
tions of the same trajectory. We will see how this suggests a possible resolution of the Big Bang
singularity, by means of smooth Big Crunch to Big Bang transitions that have an intermediate
Euclidean period.



Chapter 1

String theory in a nutshell

1.1 Introduction

In this chapter, the basic definitions and foundations of string theory will be laid. We will start
by reviewing the relativistic point-particle in the formalism of the variational principle. Then,
we will repeat this for the relativistic bosonic string. After a brief introduction into the canon-
ical quantization of the string and the resulting spectrum,we will study the string in the path
integral formalism. The notions of vertex operators, and the genus expansion of string Feyn-
man diagrams will be introduced. This will allow us to understand how non-trivial spacetime
backgrounds, on which the string can propagate, can be interpreted as coherent states of strings.
Then, we will briefly see that requiring classical symmetries to hold quantum mechanically im-
poses constraints on spacetime backgrounds by means ofβ-functions. In the low energy approx-
imation, these constraints can be interpreted as spacetimefield theories. Field theories obtained
as low energy approximations to string theory will be the main framework of this thesis. Finally,
a brief summary of supersymmetric string theories and theirlow energy limits will be provided.

In the following, I will be borrowing heavily (and sometimesverbatim) from Polchinski’s
textbooks [2, 3]. However, the philosophy behind this chapter isnot to provide the reader with
yet another carbon copy of the standard textbooks, and certainly not to improve on the latter. The
main goal of this chapter is to show a minimal selection from the standard textbooks in order
to schematically explain how the low energy limit of the quantized theory of relativistic strings
(which is a QFT in the two world-sheet dimensions) is a classical field theory in spacetime.

1.1.1 The relativistic point-particle

Before we begin our journey into the theory of strings, let usreview our knowledge of relativistic
point-particles through the action principle.

To describe the motion of a particle moving in aD-dimensional Minkowski spacetime we
can defineD − 1 functions of timeX1(X0), ...,XD−1(X0), which give the particle’s position in
space at any given timeX0. We can also make this description covariant by parametrizing the
particle’sworld-line with a variableτ, such that we now haveD functionsX0(τ), ...,XD−1(τ) on
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equal footing. One can derive the equations of motion from the variational principle through the
following action:

S = −m
∫

dτ (−Ẋµ(τ) Ẋµ(τ))1/2, (1.1)

wherem is the particle’s mass, and the dot represents aτ-derivative. This action measures the
relativistically invariant arc-length (or proper time) ofthe world-line, and the classical particle
will move along the trajectory that extremizes this quantity. The Euler-Lagrange equations for
theXµ’s are then,

∂τ

(

mẊµ

(−Ẋµ Ẋµ)1/2

)

= 0 . (1.2)

The conjugate momenta to the particle’s spacetime coordinates are the following:

Pµ =
mẊµ

(−Ẋµ Ẋµ)1/2
, (1.3)

from which we easily derive the on-mass-shell constraint

P2 +m2 = 0. (1.4)

Although this action allows for an easy derivation of the classical equations of motion and
on-shell condition, it does not accommodate the case of the massless particle. Moreover, the
square root of the integrand makes this action awkward to work with in a path integral calcu-
lation. Fortunately, there is a more convenient form which eliminates these two features by
introducing an auxiliary field:

S′ = 1
2

∫

dτ (e−1(τ) Ẋµ(τ) Ẋµ(τ) − e(τ) m2) . (1.5)

The auxiliary fielde(τ) is the world-lineeinbein. In other words, it is the square root of
(minus) the metricgττ(τ) = −e(τ)2 that lives on the one-dimensionalτ-space. This metric is an
independent field and is thereforenot induced by the spacetime Minkowski metricgµν. The first
property we should establish about this action is that it is equivalent to the previous one (1.1)
(except for the massless case). To show this we compute the equations of motion of theeinbein:

m2 e2 + Ẋµ Ẋµ = 0 . (1.6)

Substituting this back into (1.5) we find thatS = S′. Notice also that the conjugate momenta
are now given by

Pµ =
Ẋµ

e
, (1.7)

which, combined with (1.6) gives the on-mass-shell constraint as an equation of motion.
Let us list the symmetries of the action (1.5):

• D-dimensional spacetime Poincaré transformations:

Xµ → X′µ = Λµν Xν + Aµ , (1.8)

whereΛµν is an SO(1,D − 1) matrix andAµ is an arbitraryD-vector.
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• World-line reparametrizations:

τ→ τ′

e(τ)→ e′(τ′) = e(τ)
dτ
dτ′

Xµ(τ)→ Xµ(τ′) .

(1.9)

This action is by construction Poincaré invariant. The second symmetry merely confirms
the fact that the physics of a particle should be independentof how one chooses to parametrize
its world-line. Notice that we could make a paradigm shift and regard this system (1.5) as a
one-dimensional theory ofD scalar fieldsXµ(τ) and a metricgττ(τ) = −e(τ)2. In that case, the
D-dimensional Poincaré symmetry would be interpreted as an internal symmetry of the scalar
fields, and world-line reparametrization invariance wouldbe seen as invariance under general
coordinate transformations in one dimension. Although this interpretation may appear strange
in this case, this point of view will prove to be a very powerful tool in string theory.

1.1.2 The relativistic bosonic string

Now we are ready to deal with the bosonic string. We will proceed by analogy with the case
of the particle. A particle sweeps out a world-line in spacetime, which means that we can
describe it as an embedding of a one-dimensional manifold into a D-dimensional Minkowski
spacetime. A string sweeps out a two dimensional world-sheet, this requires an embedding of
a two dimensional manifold intoD-dimensional Minkowski spacetime. The string coordinates
will then be functions of two parametersXµ(τ, σ). We can derive equations of motion for the
string by requiring that the world-sheet extremize its invariant surface. In order to measure that
surface we define theinducedmetric on the world-sheethab, wherea, b run over the world-sheet
indices:

hab = ∂a Xµ ∂b Xν ηµν . (1.10)

Then, the string will extremize the so-called Nambu-Goto action:

SNG = −
1

2π α′

∫

dτdσ (− dethab)1/2 . (1.11)

In the case of the point particle we needed a constant with units of energy to make the action
dimensionless (i.e. the mass), in this case we need energy per unit length. Hence, the constant
1/(2π α′) will play the role of the string tension.

Once again, we can derive equations of motion from this action; however, if we expect to
use it in a path integral formalism we should find an action without a square root. In order to
achieve this we must again introduce an auxiliary world-sheet metricγab. The action we are
after is called the Brink-Di Vecchia-Howe-Deser-Zumino action [4,5] or Polyakov action [6,7]:

SP = −
1

4π α′

∫

dτdσ (−γ)1/2 γab∂a Xµ ∂b Xµ , (1.12)

whereγ = detγab. This action has a more familiar kinetic term for theXµ, which makes the
path integral easy to evaluate. If we eliminate the auxiliary metricγab from this action by using



10 String theory in a nutshell

its equations of motion, we will find that the Polyakov actionis equivalent to the Nambu-Goto
action (1.11).

Let us list the symmetries of the Polyakov action:

• Poincaré transformations inD-dimensional spacetime:

Xµ → X′µ = Λµν Xν + Aµ , (1.13)

whereΛµν is an SO(1,D − 1) matrix andAµ is an arbitraryD-vector.

• World-sheet reparametrizations:
Defining a generalized world-sheet coordinateσa = (τ, σ) for a = 0, 1 we have,

σa → σ′a(τ, σ),

Xµ(τ, σ)→ Xµ(τ′, σ′),

γab→ γ′cd(τ
′, σ′)

∂σc

∂σ′a
∂σd

∂σ′b
.

(1.14)

• World-sheet Weyl rescalings:

γab→ γ′ab = e2ω(τ,σ) γab . (1.15)

The first two symmetries, (1.13) and (1.14) are analogous to the point-particle symmetries,
(1.8) and (1.9). The last one (1.15), however, is specifically due to the fact that we are dealing
with a two dimensional extended object. This symmetry tellsus that we should regard all Weyl-
equivalent metrics on the world-sheet as physically equivalent. From the two dimensional point
of view, we have a scalar field theory with an internalD-dimensional Poincaré invariance, Weyl-
rescaling invariance, and invariance under two-dimensional general coordinate transformation.
This field theory falls under the category ofconformal field theories. Two dimensional CFT’s
are a very special kind of CFT when it comes to doing both classical andquantum computations,
due to techniques that exist only for two dimensions. This isanalogous to the fact that there are
much more powerful techniques to do analysis on the complex plane than there are for higher
dimensional complex spaces.

Let us now write down and solve the equations of motion for thePolyakov action (1.12).
Varying the string coordinatesXµ, we get the following equation:

δSP =
1

2π α′

∫

dτdσ∂a { (−γ)1/2 γab∂bXµ } δXµ

− 1
2π α′

∫

dτ (−γ)1/2 ∂σXµ δX
µ
∣

∣

∣

∣

σ=l

σ=0
.

(1.16)

To make this variation zero both terms must vanish independently. The first term requires the
two-dimensional Laplacian of theXµ’s to vanish. The second term requires a choice of boundary
conditions, for which there are three possibilities:

• Open string Neumann b.c.s:

∂σXµ(τ, 0) = ∂σXµ(τ, l) = 0 . (1.17)
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These conditions imply that no momentum flows in or out through the string endpoints,
and, hence, that these move freely.

• Open string Dirichlet b.c.s:

δXµ(τ, 0) = δXµ(τ, l) = 0 . (1.18)

These conditions mean that we are fixing the string endpointsand no longer consider them
as dynamical.

• Closed string (periodic b.c.s):
Xµ(τ, 0) = Xµ(τ, l) . (1.19)

This is the requirement that the string be closed, i.e. that it have no endpoints.

For open strings, the Neumann boundary conditions (1.17) are the only conditions that
are consistent with spacetime Poincaré invariance, whereas the Dirichlet b.c.’s (1.18) explic-
itly break it. For instance, if one imposes Neumann b.c.s onD − p − 1 string coordinates and
Dirichlet b.c.s onp + 1 of the coordinates, this means that the string endpoints are stuck to a
p+1-dimensional hypersurface of spacetime called Dp-brane, where the ’D’ stands for Dirichlet.
That’s why the latter were discarded for a long time as unphysical until Polchinski discovered
in 1995 [8] that D-branes are an integral part of string theory.

Let us now focus on the open string with Neumann b.c.s and solve the equations of motion
from the first term in (1.16):

∂a((−γ)1/2γab∂bXµ) = 0 . (1.20)

For generalγab this can be a non-trivial equation to solve. However, we are in luck. In two
dimensions there are enough symmetries to make this equation trivial. The first symmetry we
make use of is invariance under general coordinate transformations (1.14). One can show that,
in two dimensions, it islocally possible to bringanymetric to aconformally flatform through
an appropriate coordinate transformation:

σa → σ′a (1.21)

γab→ γ′ab = eφ ηab = eφ
(

−1 0
0 1

)

, (1.22)

whereφ is some function ofτ andσ. Now we are only a Weyl transformation (1.15) away from
a flat metric. However, by inspecting of (1.20), we see that the conformal factor simply drops
out. The solution forX in (1.20) is the following:

Xµ(τ, σ) = xµ + 2α′ pµ τ + i (2α′)1/2
∑

n,0

1
n
α
µ
n e−i n τ cosnσ , (1.23)

where we requireαµ−n = (αµn)∗ to ensure reality. The parameterxµ can be thought of as the string’s
initial center-of-mass position,pµ as its center-of-mass momentum, and theα

µ
n as the oscillation

modes of the string. Note that in the string action we did not fix the mass but rather the tension
or energy per unit length of the string. Since length of the string depends on its oscillatory state,
so will its mass. This makes sense relativistically, exciting the string’s oscillatory modes means
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putting energy into it, and energy is the same as mass. In fact, by using Hamiltonian dynamics,
one can show that the string’s mass is given by the following relation:

M2 =
1
α′

∞
∑

n=1

α−n · αn (1.24)

For the closed string one follows an analogous procedure to that for the open string case. One
discovers, however, that the closed string has two sets of oscillatorsαµ and α̃µ, the so-called
right- andleft-movers, which can be viewed as non-stationary waves on the world-sheet traveling
to the right and to the left respectively.

1.1.3 The bosonic string spectrum

We will now schematically study the quantum spectrum of the bosonic string. For a detailed
account of what we are about to do, the reader is referred to any standard textbook on String
theory such as [2] and [9].

Let us begin with the canonical quantization of the open string. Just as in the case of the
point particle, the string is quantized by replacing Poisson bracket into commutators:

{

Xµ(τ, σ),Πν(τ, σ′)
}→ [

Xµ(τ, σ),Πν(τ, σ′)
]

= i ηµν δ(σ − σ′) ,
and

{

xµ, pν
}→ [

xµ, pν
]

= i ηµν ,
(1.25)

whereΠµ = (1/2π α′) Ẋµ. Promoting the string coordinates to operators implies that the string
oscillatorsαµn are themselves promoted to operators. In fact, they acquirethe following commu-
tation relations:

[αµm, α
ν
n] = i mδm+nη

µν , (1.26)

which we recognize as the commutation relations of the harmonic oscillator, where theα−n and
αn are the creation and annihilation operators, respectively. So the string can be thought of as
an eigenstate of the momentum operatorpµ with an infinite number of harmonic oscillators,
each at a different excitation level. To create a state, define a "vacuum" state with some definite
momentum| p; 0, 0, ... 〉, and then act on it withαµ−n operators. This will generate a string with
definite momentum and oscillatory modes. The mass of the string will be given by a modified
version of the classical formula (1.24). The quantum formula will count the number of harmonic
oscillators and add a zero-point energy:

M2 =
1
α′















∞
∑

n=1

α−n · αn − 1















. (1.27)

Note that every oscillatorαµ carries a spacetime Lorentz index. It can be shown that the state
created by acting with an oscillator on the vacuum,α

µ
−n | p; 0〉, behaves as a vector boson. More

generally, it can be shown that any string state will behave as a particle with mass and spin
determined by the number of its oscillators and their indices. The closed string spectrum is
also generated by harmonic oscillators. Its spectrum, however, is different from that of the open
string. One key difference is that the closed string spectrum contains a massless spin-two particle
which behaves like agraviton, whereas the open string does not.
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Note also that the mass of a state is inversely proportional to α′. This means that in the low
energy approximation to string theory (lowα′), the massive states will become very massive
and will be difficult to excite. That’s why one can focus on the massless states when doing this
approximation.

The goal of these first three subsections was to introduce theclassical string and its quan-
tum mechanical spectrum in a fair amount of detail. In the next two subsections, I will explain
the Feynmann path integral quantization of the string and show that, in the low energy approx-
imation (i.e. α′ → 0), string theory can be effectively described by a spacetime field theory
containing gravity, an antisymmetric tensor, and a scalar.This is a rather ambitious goal and a
detailed treatment of this subject would require a lot of formalism and space, and would divert
us from the main topic of this thesis: to study particular field theory configurations with gravity
and scalar fields. I will, therefore, not show any detailed calculations; however, I will try to
give an overview that is self-contained in that it does not require any new concepts beyond those
of basic quantum field theory and path integrals. For an account that really does justice to the
subject of the path integral quantization of the string, thereader is referred to [2,9,10].

1.1.4 The string path integral

Now that we know how the string spectrum comes about, let us turn to the path integral formal-
ism to see how string amplitudes are defined.

When we want to compute quantum mechanical amplitudes for a point particle, the Feyn-
mann path integral procedure instructs us to sum over all possible histories (world-lines)x(t)
that the particle can take, given some initial and final positions xi and xf , and to weight each
with the phase exp(i S/ℏ), whereS = S[x(t)] is the action evaluated on the path. The partition
function is then the following:

Z =
∫

d[x] e−i S[x] . (1.28)

This is sometimes referred to as first quantization in old fashioned language. It is nothing other
thanquantum mechanics. When we want to compute a quantum field theory amplitude using
path integrals, we have to sum over all possible configurations a fieldφ can take given some
spacetime boundary conditions, each weighted again by a phase. This yields the following
partition function:

Z =
∫

d[φ] e−i S[φ] , (1.29)

whereZ stands forZustandssumme(sum of states). In the old fashioned language, this is sec-
ond quantization. However, many physicists regard this as amisnomer because the procedure
quantizes the field only once. This should just be calledquantum field theory

In string theory we will be summing over all trajectories thestring can take, i.e. over all
possible world-sheets, and weight each with the Polyakov action (1.12):

Z =
∫

d[X] d[γ] e−iS[X,g] , (1.30)

whereX represents the spacetime coordinates of the string andγ the world-sheet metric. This is
the analog of (1.28). In other words, this path integral describes the quantum mechanics of the
string.
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(a) (b)

Figure 1.1: Feynman diagram of a closed string: (a) propagator; (b) three-point function.

Figure 1.2: Feynman diagram of the one-loop four-point diagram.

We can take, however, a radically different point of view. If we view the Polyakov action as a
two-dimensional action of fields, the path integral (1.30) becomes the analog of (1.29), summing
over all configurations the fieldsXµ(σ, τ) andγab(σ, τ) can take: This means that we have to
sum over all scalar field configurations and all world-sheet geometries with given boundary
conditions. For instance, the open and closed string propagators and string 3-point functions
will contain diagrams1 such as those in figures 1.1(a) and (b). By working in the Euclidean
(Wick rotated) path integral formalism, and thus summing over Euclidean2 two-dimensional
metrics, one can use the conformal symmetry of the theory to map all world-sheets to compact
Riemannsurfaces. All external legs, which are infinitely long, are brought to a finite distance
from each other. For instance, the closed string propagatordiagram in figure 1.1(a), which was
a cylinder, gets mapped to a sphere and the external legs get mapped to two points on the sphere.
The "one-loop" four-point function diagram gets mapped to atorus with four points as external
legs, see figure 1.2. The general rule is that all diagrams aremapped to compact closed or open
surfaces and their external legs are mapped to points on the surfaces. However, it seems strange
to map the external legs to points. After all, these externallegs are supposed to represent initial
and final states of strings, so mapping these to points seems to lose all the stringy information
of these states. It turns out that the proper way to do this is to include what are calledvertex
operatorson the compact surfaces. These operatorsV(σ, τ), which are inserted in the path
integral, will supplement the latter with all the stringy information about initial and final states.
For example, the state with no oscillators excited (the tachyon), but with some momentump is

1It is also possible to draw diagrams representing the process where two open strings join at their endpoints, thereby
forming a closed string. This implies that open string theory must include closed string modes.

2It is not always possible to perform the Wick rotation. When dealing with cosmological models, i.e. time-dependent
spacetimes, Wick rotations can make the metric complex, see[11]
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translated into the following vertex operator:

| 0; p〉 ⇒
∫

d2z : ei p ·X : , (1.31)

wherez is a complex coordinate representingτ andσ, and : : represents normal ordering. Then,
the two-point function for a tachyon with momentump is computed as follows:

〈 0; p | ei H T | 0; p〉 = 〈 0 |
(∫

d2z : ei p ·X :

)† (∫

d2z′ : ei p ·X :

)

| 0〉 (1.32)

=

∫

d[X] d[γ]

(∫

d2z : ei p ·X :

)† (∫

d2z′ : ei p ·X :

)

e−i S[X,g] . (1.33)

The state that corresponds to the closed string graviton looks as follows:

ζµν α
µ

−1α
ν
−1 | 0; p〉 ⇒

∫

d2z : ζµν ∂zX
µ ∂z̄X

ν ei p ·X : , (1.34)

whereζµν is a symmetric tensor. This is actually not all that strange and new. In ordinary QFT
one must also use operator insertions in the path integral inorder to "prepare" the initial and
final states of an amplitude. For instance:

〈 xi1 · · · xin | ei H T | xf1 · · · xfn 〉 = 〈 0 | φ(xi1) · · ·φ(xin) φ(xf1) · · ·φ(xfn) | 0〉 (1.35)

=
1
Z

∫

d[φ] φ(xi1) · · ·φ(xin) φ(xf1) · · ·φ(xfn) e−S , (1.36)

where| 0〉 is the Fock space vacuum.
It now seems like we have a rule for computing amplitudes, represent all external legs with

operator insertions in the path integral, and sum over all two-dimensional compact surfaces.
Summing over all surfaces means summing over all metrics andtopologies of surfaces. The
topology of a two dimensional compact surface is completelyspecified by the number of its
boundaries, crosscaps, and handles (genus). But this procedure, being so similar to what we
usually do in QFT, raises a very important question. The genus of a diagram is pictorially
very reminiscent of the number of loops of a quantum field theory diagram. For instance, take
the torus diagram with four vertex operators, shrink the string to a point particle and you will
recover a one-loop diagram for a 4-point function inφ4 theory. In a weakly coupled field theory,
loop diagrams are usually suppressed by the coupling constant. So the big question is: where
is the analog of this in string theory? Is there such a thing asa string coupling constant that
keeps track of the loop order? Well, it turns out that when we wrote down the Polyakov action
(1.12), we didn’t write the most general action consistent with all the symmetries we found so
far ((1.13), (1.14), (1.15)). There is one more piece we could have added, the two-dimensional
gravity action3:

χ =
1
4π

∫

M
dτdσ(γ)1/2 R+

1
2π

∫

∂M
ds K, (1.37)

3Note that we are now working in the Euclidean formalism, so there is no minus sign under the square root in (γ)1/2
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where the first term is the Ricci scalar and the second term is the extrinsic curvature for a
manifold with a boundary (an open string world-sheet). Although very geometric in nature, this
action is a topological invariant for two-dimensional manifolds. It basically counts the genus
and the number of boundaries and crosscaps of a surface.

χ = 2− 2g− b− c , (1.38)

whereg is the genus,b the number of boundaries, andc the number of crosscaps. Therefore, if
we write the string action as follows:

S = SP + λ χ , (1.39)

then diagrams will be weighted by a factore−λχ. If λ is small, we will say that string theory
is weakly coupledand hence definedperturbatively. In this case, diagrams will be suppressed
as their genus grows, just like QFT diagrams are suppressed as their loop number grows. If it
is large, then we are in thestrongly coupled regimeof string theory, where most of the known
techniques from field theory break down and very little is known. In the next section, we will
see where this string coupling constantλ comes from; the answer will be quite surprising.

1.1.5 Strings in background fields

So far, we have been studying the theory of a string propagating in aD-dimensional flat space-
time. An obvious generalization at this point would be to start all over again with a Polyakov-like
action that has a curved spacetime metric:

Sσ =
1

4π α′

∫

dτdσ (γ)1/2 γabGµν(X) ∂aXµ ∂bXν . (1.40)

This action is called anon-linear sigma model. From the two-dimensional perspective, this non-
trivial spacetime metricGµν(X) plays the role of afield-dependent coupling, where the fields in
question are theD scalar fieldsXµ.

The attentive reader should be skeptical about this operation. Although it seems natural
to replace the flat spacetime metric with a curved one, we should ask ourselves the following
question: if the string is supposed to be the fundamental object which generates all particles
and forces including gravity, are we allowed to simply put inby hand a curved metric in the
action from which we will derive the string spectrum? In other words, if the graviton is a state
of the string, how can we include gravity into the action thatwe must quantize in order tofind
the graviton? This seems like a vicious circle. However, there is a way out of it. The following
explanation is borrowed from Polchinski’s textbook [2].

Let us first consider a background spacetime metric that is nearly flat:

Gµν(X) = ηµν + hµν(X) , (1.41)

wherehµν(X) is small. If we expand the integrand of the path integral we obtain the following:

e−Sσ = e−SP

(

1− 1
4π α′

∫

dτdσγ1/2 γab hµν ∂aXµ ∂bXν + · · ·
)

, (1.42)
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whereSσ is the sigma model action (1.40), andSP is the Polyakov action (1.12). The second
term in the parenthesis is of the form of a vertex operator fora closed string graviton state
(1.34), withhµν ∝ ζµν ei p X. So this perturbation of the background metric (1.41) can beviewed
as the emission or absorption of a graviton state. Furthermore, if we have a fullGµν background
metric, we can view it as an exponentiation of a graviton vertex operator; i.e. a coherent state of
gravitons. This validates our naive replacement of the Minkowski spacetime metric for a general
curved metric in the non-linear sigma model (1.40).

Let us look back on what we have done so far. We wrote down an action for a string that
propagates in a flat spacetime. By quantizing it we found thatthe string generates particles of
different spin, including the graviton. Then, we included gravity into our starting action and
discovered that this operation was merely an insertion of a coherent state of gravitons. A natural
question at this point would be: can we include other fields inour action that can be viewed as
coherent superpositions of other string states? The answeris yes.

Focusing on the massless closed string modes we can write thefollowing action:

Sσ =
1

4π α′

∫

γ1/2 [(γabGµν(X) + i ǫab Bµν(X)) ∂aXµ ∂bXν + α′ RΦ(X)] , (1.43)

whereBµν is the background antisymmetric tensor,Φ is the background scalar (called dila-
ton), andR is the two-dimensional Ricci scalar. This is the most general action consistent
with Poincaré invariance, two-dimensional g.c.t. invariance, and Weyl invariance, containing all
massless closed string modes as background fields. In order for this theory to be consistent from
the two-dimensional point of view, one needs to make sure that the classical Weyl symmetry is
also a symmetry of the quantum theory. This is accomplished by requiring that the expectation
value of the trace of the stress-energy tensor of the CFT vanish. This is just the requirement that
a current that is classically conserved also be quantum mechanically conserved. This calcula-
tion, which we will not contemplate here, is calledanomaly cancelation. Canceling the Weyl
anomaly implies requiring that certain functions calledbeta-functions vanish. Up to first order
in α′, they look as follows:

βG
µν = α

′
(

Rµν + 2∇µ ∇νΦ −
1
4

Hµκσ Hν
κσ

)

+O(α′2) ,

βB
µν = α

′
(

−1
2
∇κHκµν + ∇κΦHκµν

)

+O(α′2) ,

βΦ = α′
(

D − 26
6α′

− 1
2
∇2Φ + ∇κΦ∇κΦ −

1
24

Hκµν Hκµν

)

+O(α′2) ,

(1.44)

whereHµνκ ≡ ∂µBνκ + ∂νBκµ + ∂κBµν. These threeβ-functions must vanish independently. By
taking proper linear combinations of these equations we areleft with something very peculiar.
We are left with equations that look like equations of motionfor the spacetime background
fields. For instance, the equation for the background spacetime metricGµν(X) turns out to be the
Einstein equation. So the quantum string imposes constraints on its field-dependent couplings
that look like spacetime field equations! Another peculiarity about these equations is that they
require4 that D = 26. The quantum mechanical string is thus only consistent in26 spacetime

4They only requireD = 26 if the background dilatonΦ is constant. Solutions such as the so-calledlinear dilaton
theorywith D < 26 do exist, however, they are not phenomenologically attractive.
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dimensions! There is one more peculiar thing we should notice. The string coupling constant,
which we calledλ in (1.39) is actually the background value of the dilatonΦ, as can be seen
from (1.43). So the string coupling is not a free parameter ofthe theory, it is determined by a
background field of the string itself!

The constraints for the background fields not only look like equations of motion for space-
time fields, they can also be derived from a spacetime action:

S =
1

2κ2
0

∫

dDX (−G)1/2 e−2Φ

[

R+ 4∇µΦ∇µΦ −
1
12

Hµνλ Hµνλ

−2 (D − 26)
3α′

+O(α′)

]

,

(1.45)

whereκ0 is some physically meaningless constant. Whenever we are working in the low energy
approximation of string perturbation theory, we can simplyregard string theory as a spacetime
field theory defined by the action above. We focus on the massless modes of the string because,
for smallα′, the massive modes become very heavy and they decouple from the theory.

The search for solutions to (1.45) is also a search for a string theory background to quantize
the string on. Such a background is often called a string theory vacuumbecause, after quan-
tizing the string around it, it acquires the interpretationof a local minimum of some ‘potential’
for the string to oscillate about. The question however remains: what potential, and of what
theory? Theβ-functions provide us with consistency conditions that dictate in what spacetime
backgrounds strings are allowed to propagate. However, because string theory must ultimately
be a theory of spacetime, and not just a two-dimensional CFT,one would like to be able to treat
these backgrounds as vacuum states of some quantum theory. Such a theory does not yet exist.
Because of that, there are a myriad of backgrounds to choose from and no principle that allows
us to distinguish them. There is, in some sense, a vacuumdegeneracy, because we do not have
something like a potential that can help us distinguish the different ‘states’ of spacetime. One of
the great challenges in string theory is finding what is called avacuum selection principlethat
will actually pinpoint what background isthebackground for strings.

In recent years, however, the debate has shifted from the question: "what is the vacuum se-
lection principle?", to the question: "should there be a vacuum selection principle?" L. Susskind
has proposed a scenario, in which all possible allowed vacuaactually exist [12]. Thislandscape
scenario consists of stating that our universe is just one constituent of amegaverse, in which
all kinds of universes (corresponding to all kinds of stringtheory backgrounds) exist, but are
causally disconnected. In this approach, there is no room for a vacuum selection principle.

1.2 Superstrings and supergravities

1.2.1 Superstring theories

So far we have been studying the bosonic string, which is a finetoy model, but not a realistic
description of particle physics for two reasons: first, the spectrum of the bosonic string contains
a tachyon (i.e. a particle with negative mass), which indicates an instability of the string back-
ground. Second, it doesn’t contain any fermions since the oscillators only generate integer spin
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particles. To overcome these problems, we need to generalize the string to a supersymmetric
string. By upgrading the two dimensional CFT to a supersymmetric conformal field theory, or
superconformalfield theory, and imposing consistency conditions on the quantized theory, the
string will turn out to have spacetime supersymmetry, the tachyon will be projected out of the
spectrum, and, as a bonus, the number of required spacetime dimensions will be reduced from
26 to 10. I will now give an intuitive overview of how the superstring is developed, the theories
it leads to, and what its low energy approximations are (i.e.supergravities).

The basic form of the supersymmetric world-sheet action is as follows:

S =
1
4π

∫

dτdσ

(

2
α′
∂Xµ ∂̄Xµ + ψ

µ ∂̄ψµ + ψ̃
µ ∂ψ̃µ

)

, (1.46)

where theψµ areD two-dimensional fermions. This theory is a superconformalfield theory.
By analyzing its spectrum in analogy with the bosonic string, one will find that the world-sheet
fermions also have oscillators, which act as raising and lowering operators on the vacuum. This
will give rise to not only spacetime bosonic states, but alsospacetime fermionic states. In
fact, by properly counting the bosonic and fermionic statesthat are generated, one finds that this
theory has spacetime supersymmetry. This means that the number of bosonic degrees of freedom
matches the number of fermionic degrees of freedom. This theory turns to be anomaly-free only
in ten spacetime dimensions.

A more detailed study of the superstring will show that it is actually possible to definefive
different consistent supersymmetric string theories:

• Type I: This is a theory of unoriented open strings.

• Type II : There are two theories in this category,Type IIA and Type IIB . These are
theories of closed strings, and they differ in the boundary conditions applied on the world-
sheet fermions.

• Heterotic: There are two heterotic string theories. These theories are constructed in very
peculiar ways, and they naturally have non-Abelian spacetime gauge symmetries. Their
groups are indicated by their names:Het E8 × E8, andHet SO(32).

Type I and the Type II theories area priori not free of tachyons. However, a certain projec-
tion must be performed on the spectrum for consistency conditions, after which all tachyons are
gone. This projection is called theGSOprojection after Gliozzi, Scherk and Olive [13]. All five
of these string theories live in ten spacetime dimensions.

1.2.2 Supergravities

We will now write down the low energy effective actions for these five supersymmetric string
theories. But before we do so, let us look back to the case of the bosonic string for some moral
guidance. When we quantized the string, we required that theclassical symmetries (spacetime
Poincaré, and 2-D Weyl invariance) be respected at the quantum level. This lead to the vanishing
of theβ-functions of the field-dependent couplingsGµν(X), Bµν(X),Φ(X), which carved out for
us a procedure to write down a unique spacetime field theory that describes the massless modes
of the string at low energy.
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The five supersymmetric string theories not only have the symmetries of the bosonic string,
but they each come with a different form of spacetime supersymmetry. It turns out that super-
symmetry is a stringent enough constraint that, given the dimensionality and field content of a
theory, there is only one possible spacetime action one can write down. This means that all we
need to know to construct the low energy effective actions for the massless modes for these five
string theories is their spectrum and the kind of supersymmetry they have. The resulting actions
are calledsupergravities. Their symmetries naturally combine general coordinate transforma-
tion invariance and local supersymmetry as the name suggests. The bosonic parts of the actions
for the five supergravities are the following:

• Type IIA

SIIA =
1

2κ2
0

∫

d10 (−G)1/2

(

e−2Φ

[

R+ 4
(∇Φ)2 − 1

12
(H(3))2

]

− 1
4

(G(2))2 − 1
48

(G(4))2

)

− 1
4κ0

∫

B(2) dC(3) dC(3) ,

(1.47)

whereG is the 10-dimensional metric,Φ the dilaton,H(3) = dB(2) the field strength of a
two-form,G(2) = dC(1) the field strength of a one-form, andG(4) = dC(3)+H(3) ∧C(1) can
be seen as the modified field strength of a three-form.

• Type IIB

SIIB =
1

2κ2
0

∫

d10 (−G)1/2

(

e−2Φ

[

R+ 4 (∇Φ)2 − 1
12

(H(3))2

]

− 1
12

(

G(3) +C(0) H(3))2 − 1
2

(dC(0))2 − 1
480

(G(5))2

)

+
1

4κ2
0

∫ (

C(4) +
1
2

B(2) C(2)

)

G(3) H(3) ,

(1.48)

whereG(3) = dC(2), G(5) = dC(4) + H(3) ∧ C(2), andC(0) is a scalar. To get the right
number of degrees of freedom, one must impose that the field strength of the four-form
F(5) = dC(4) be self-dual:F(5) = ∗F(5). However, this constraint can only be imposed at
the level of the equations of motion.

• Type I

SI =
1

2κ2
0

∫

d10 (−G)1/2

(

e−2Φ

[

R+ 4
(∇Φ)2

]

− 1
12

(

G̃(3)
)2
− α

′

8
e−Φ Tr

(

F(2))2
)

,

(1.49)

whereG̃(3) = dC(2) − α′

4

[

1
30 Tr

(

A∧ dA+ 1
3 A∧ A∧ A

)]

. The trace ‘Tr’ runs over Yang-
Mills group indices.
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• Heterotic

SHet =
1

2κ2
0

∫

d10 (−G)1/2 e−2Φ

(

R+ 4
(∇Φ)2

− 1
12

(

H̃(3)
)2
− α

′

8
e−Φ Tr

(

F(2))2
)

,

(1.50)

whereH̃(3) = dB(2) − α′

4

[

1
30 Tr

(

A∧ dA+ 1
3 A∧ A∧ A

)]

.

This concludes the introduction to string theory. The main goal of this chapter was to explain
how a quantum theory of relativistic strings can, in a certain approximation, lead to a spacetime
gravitational field theory. Actually, two approximations were made. The first one is the assump-
tion that strings interact weakly, i.e. that the string coupling constant given by the constant part
of the dilaton is small. This allows us to define a CFT on the world-sheet perturbatively. The
second assumption is the low energy approximation. At low energies only the massless states
of the string are excited. In theβ-functions this is manifested by a truncation ofα′ corrections.
This is what allows us to write down a spacetime classical field theory, such as a supergravity,
as an effective description of string theory.

Throughout this thesis we will be working with these approximations. In the next part, which
consists of two chapters, we will study instantons and theirrole in string theory. In the second
part, chapters 4, 5 and 6, we will study cosmology in the context of scalar-gravity theories.
These theories are often supergravity Lagrangians that have been dimensionally reduced and
truncated to contain only the metric and scalar fields. In thefinal part of this thesis, chapter 7,
we will see how the first two parts come together in two different ways: first, we will see how
Wick rotations can relate supergravity instantons to cosmological solutions. Then, we will make
a paradigm shift and treat those two kinds of solutions on equal footing, by regarding them as
trajectories of a particle in a fictitioustarget spaceparametrized by the scalar fields of the theory.
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Chapter 2

Instantons

In this chapter we will study the basics of instantons, heavily borrowing material from the classic
textbooks by S. Coleman [14] and R. Rajaraman [15]. First, wewill see their application to
quantum mechanics, which is conceptually and technically the simplest framework to introduce
the topic. Then, we will move on to quantum field theory, wherethe example of the Yang-Mills
instanton will give us all the tools to understand these objects in generality. Finally, solitons will
be briefly introduced, and we will see how sometimes an instanton in D Euclidean dimensions
can correspond to a soliton inD + 1 Lorentzian dimensions.

2.1 Introduction

2.1.1 An alternative to WKB

In quantum mechanics it is possible for a particle to penetrate a region of potential energy that
is higher than the particle’s own energy. This classically forbidden motion is known asquan-
tum tunnelingand, for a general potential barrier, one can compute the tunneling amplitude of
a particle by means of the WKB approximation. The latter is a so-calledsemiclassicalapprox-
imation, which means that it requires small~. Let us see what happens in the case of a particle
of unit mass in 1+ 1 dimensions, subject to some potentialV(x).

The Schrödinger equation reads:

d2ψ

d x2
=

2 (V(x) − E)
~2

ψ . (2.1)

If V(x) = constant, then the solution would be a plain wave:

ψ ∝ e−i k x, where k ≡
√

2 (E − V)
~

. (2.2)

In the case of quantum tunnelingV > E, so the momentum becomes imaginary, and instead of
a plain wave, we obtain an exponentially decreasing function:

ψ ∝ e−κ x, where κ ≡
√

2 (V − E)
~

. (2.3)
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Let us now take a non-constant potential but make the approximation thatV(x) varies slowly
compared to the rate of decayκ of the wave function. Then, we can rewrite the Schrödinger
equation as follows:

dψ
d x
= ±
√

2 (V(x) − E)
~

ψ , (2.4)

Differentiating this equation yields the original Schrödinger(2.1) upon dropping a term propor-
tional toV′/~2 κ. The solution for a particle tunneling to the right is then:

ψ ∝ exp

(

−1
~

∫

√

2 (V(x) − E) dx

)

. (2.5)

The amplitude for the particle to tunnel is then:

exp

(

−1
~

∫ b

a

√

2 (V(x) − E) dx

)

, (2.6)

wherea andb are the beginning and endpoint of the tunneling trajectory.
The approximation we made is a semiclassical one in the sensethat it requires that~ be

‘small’. To see this, recall that differentiating the equation we actually solved (2.4) yielded the
true Schrödinger (2.1) equation if we dropped aV′ term. Comparing this term to the term that
we did keep shows that the dimensionless quantity we are neglecting is~V′/(2 (V − E))3/2,
which is small in the semiclassical limit~→ 0.

Now that we have obtained this result by using the WKB approximation, we will rederive it
through a completely different method, which will be the subject of this chapter: the method of
instantons.

Let us begin by rewriting (2.5) in a different way. First, we set the energy of the particle to
zero (which can always be done via a suitable shift in the potential), E = 0. Then, we have:

∫ b

a

√

2 (V(x) − E) dx=
∫ b

a
i p dx=

∫ b

a
i

dx
dt

dx, (2.7)

wherep is the momentum of the particle, and in the second equation weused the fact that the
mass has been set to 1. If we perform a Wick rotationt → i τ we can write this as follows:

∫ τb

τa

p ẋ dτ =
∫ τb

τa

LE dτ = SE , (2.8)

whereSE is the action of the classical particle in Euclidean spacetime with zero energy. This
teaches us a new way to compute tunneling amplitudes. Simplycompute the Euclidean action
of the tunneling trajectory. To see where this comes from, let us turn to the language of path
integrals.

Let us compute the tunneling amplitude for the same (1+1)-dimensional problem using path
integrals. The amplitude is given by the following:

K(a, b; T) ≡ 〈x = a|ei H T/~|x = b〉 =
∫

d[x(t)] ei S[x(t)]/~ (2.9)

with S ≡
∫ tb

ta

(

1
2 (dx/dt)2 − V(x)

)

dt , (2.10)
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Figure 2.1: Figure (a) depicts a double-well potential, while figure (b)depicts the inverted
potential.

where the path integral sums over all paths fromx = a to x = b, andT ≡ tb − ta. If we now
analytically continue this to Euclidean spacetime (i.e.t → i τ), this becomes:

KE(a, b; T) ≡ 〈x = a|e−H T/~|x = b〉 =
∫

d[x(τ)] e−SE[x(τ)]/~ (2.11)

with SE ≡
∫ τb

τa

(

1
2 (dx/dτ)2 + V(x)

)

dτ . (2.12)

There are basically two motivations to perform this Wick rotation: firstly, the Minkowskian
path integral is rigorously speaking not well-defined. It isdifficult to prove that the phases of
trajectories that greatly differ from the classical path actually cancel out, in order to make the
path integral convergent. However, since the partition function is an analytic function of time,
one can properly define the path integral by Wick rotating into Euclidean signature, which yields
a well-defined convergent object, and then Wick rotating physical results back to Minkowskian
signature.

The second motivation is the fact that the partition function 〈e−H T/~〉, in the limit T → ∞,
projects the lowest energy eigenstates. This provides information about vacuum energy and the
ground state wave function, as we will see later on. From thispoint of view, there is no need
to think in terms of Euclidean time. The path integral for thepartition function can be derived
from first principles without use of the Wick rotation.

If we now take the limit~→ 0, we see that the largest contribution to this path integralwill
come from a trajectory that minimizes the Euclidean action.If S0 is the value of the action for
such a trajectory, then, to leading order in~, the Euclidean amplitude will go likeKE ∝ e−S0/~.
The problem of extremizing the Euclidean actionSE is equivalent to that of extremizing the
Minkowskian action of a particle subject to an inverted potential −V(x). More explicitly, the
variational equation of the Euclidean action (2.12),

d2x
dτ2
− dV

dx
= 0 , (2.13)

looks just like theclassicalequation of motion of a particle in a potential−V(x), as shown in
figure 2.1(b). Solving this equation, we find that

dx
dτ
=
√

2V , (2.14)
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a

Figure 2.2: The kink solution: a classically forbidden trajectory thatinterpolates between the
two classical vacua of the double-well potential.

and using this we can rewrite the action (2.12) as

S0 =

∫ τb

τa

2V dτ =
∫ τb

τa

2V
dτ
dx

dx=
∫ τb

τa

√
2V dx, (2.15)

which matches our WKB calculation (forE = 0) (2.6). So, in order to compute a tunneling am-
plitude, instead of thinking of a classically forbidden trajectory where the particle goes through
a potential barrier such as the one depicted in figure 2.1(a),we simply compute the action for
a classically allowed trajectory where the particle rolls down from the top of the left-hand side
hill and then up to the top of the right-hand side hill of the inverted potential in figure 2.1(b).

This classical trajectoryxcl(τ) will qualitatively have the shape depicted in fig 2.2. It is
usually referred to as thekink. The precise shape of this trajectory is not important. What
matters is that this function interpolates between the two constant functions,x = −a andx = a,
which are the two classical vacua of the double-well problem. It differs significantly from those
two constant values only within a localized region in the range ofτ, so the Lagrangian density
is itself non-zero only in a finite region. It is because of this that the trajectory has finite action,
giving rise to a non-zero contribution to the path integral.

2.1.2 A tool of the trade: The semiclassical approximation

Although the minimum of the Euclidean action gives the largest contribution to the path integral,
it only constitutes a "point" of measure zero in the space of all trajectories we integrate over. This
is emphatically stated and clearly explained in Coleman’s work [14]. It is, therefore, a bit too
brutal and incorrect to define the semiclassical approximation as a sum of contributions of the
minimum (or minima) of the action. The semiclassical approximation consists in computing the
path integral by approximating theregionsaround the local minima of the action with Gaussians.
Although it is treated extensively in many standard QFT books such as [16], we will briefly go
over it here. Let us start with by computing the following one-dimensional integral as a toy
example:

I =
∫ +∞

−∞
exp(− f (x)/~) dx, (2.16)
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where we assume thatf (x) is bounded from below and has exactly one minimum atx = x0. By
expanding the function in its Taylor series aroundx0, we can re-write the integral as follows:

I =
∫ +∞

−∞
dx exp

(

−1
~

( f (x0) + 1
2 (x− x0)2 f ′′(x0) +O

(

(x− x0)3)
)

)

, (2.17)

= exp(−1
~

f (x0))
∫ +∞

−∞
dx̄ exp

(

1
2~

x̄2 f ′′(x0)

)

h(x̄) , (2.18)

wherex̄ = x− x0 andh(x̄) contains the higher order terms. If we take the limit~ → 0, it can be
easily shown that the Gaussian in the integrand becomes aδ-function of strength

√

2π ~/ f ′′(0).
Sinceh(x0) = 1, we have the following result1 for small~:

I ≈ exp

(

−1
~

f (x0)

)

√

π ~

f ′′(x0)
(1+O(~)) . (2.19)

Therefore, the semiclassical approximation does not only sum points of measure zero, it actually
sums over the regions around minima. These regions have non-zero measure. This is reflected
by the fact that the result (2.19) contains not only the valueof the action minimumf (x0), but
also the curvature around itf ′′(x0). In the case wheref (x) has many local minima one must
approximate the calculation by summing over several Gaussian integrals, each centered at a
local minimum.

In quantum mechanics, one performs an integral over the infinite dimensional space of paths
x(τ), and the functionf is replaced by the functionalS[x(τ)], the action. If we discretize time,
(i.e. τ = ..., τ−i , τ−i+1, ..., τ0, ...τi−1, τi , ...), then the variables of the integral become thexi ≡ x(τi).
Let us rewrite our action as follows:

S[x(τ)] =
∫

dτ (−x∂2
τ x+ V(x)) , (2.20)

where we partially integrate the kinetic term. Notice that in a discrete time a derivative is simply
a difference, i.e.x′(τ) → xi+1 − xi ; therefore, the kinetic term of the action can be represented
by a matrix,−x∂2 x→ ∑

i, j xi Di j x j for some symmetricDi j . Hence, we can write the action as

S[x(τ)] → S(x0i) =
∑

j















−
∑

k

x j D jk xk + V(x j)















(2.21)

for some proper choice ofD jk. Now, let us perform the semiclassical approximation by ex-
panding the action around its minimum,x0i (the classical path), and keeping only the quadratic
terms:

S[xi] = S[x0i ] +
∑

jk

x̄ j
∂2S[x0]
∂x j∂xk

x̄k , (2.22)

= S0 +
∑

jk

x̄ j

(

−D jk +
∂2V(x0 j)

∂x j∂xk
δ jk

)

x̄k = S0 +
∑

jk

x̄ j

(

A jk

)

x̄k , (2.23)

1Note that this requiresf ′′ , 0.
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whereS0 ≡ S[x0i], x̄i ≡ xi − x0i , andA jk is some matrix. This form of the action now looks like
the exponent of a multi-variable Gaussian. The result for aM-variable Gaussian integral with a
generic matrixA is the following2:

∫ +∞

∞
dx exp

(

− 1
2~

xT A x
)

=

√

(2π ~)M

detA
, (2.24)

where the determinant can be computed as a product of eigenvalues. In the continuum limit, the
path integral defines determinants for operators. In the case at hand, it defines the following:

∫

d[x(τ)] exp
[ − 1

2~

∫

dτ x
(

−∂2
τ + V′′(x0(τ))

)

x
]

=
N

√

det
( − ∂2 + V′′(x0(τ))

)

, (2.25)

whereN is a normalization constant, and the determinant can be computed by analogy with
matrices, i.e. by finding the eigenfunctions of the operator(−∂2 + V′′(x0)) and then taking the
product of their eigenvalues.

This is a natural point to give a definition of an instanton.
Definition: An instanton is a solution to the Euclidean equations of motion with finite, non-zero
action. This definition ensures that the instanton is a saddle point that will contribute to a path
integral.

Let us now get back to our double-well problem. We set out to compute the tunneling
amplitude< −a | e−H T/~ | a > with the path integral given in (2.11). To apply the semiclassical
approximation, we need to find the configurations with minimal Euclidean action. The kink
in figure 2.2 is the absolute minimum of the action, so we should compute the path integral
by means of a Gaussian integral centered around the kink. However, the kink is not the only
minimum, it is only the absolute one. The action (2.12) has several local minima which have
to be summed over too. One can take a sequence of kinks andanti-kinks as shown in figure
2.3. Any alternating sequence will do as long as it satisfies the boundary conditions of the path
integral.3

a

−a

Figure 2.3: An alternating sequence of kinks and anti-kinks. This interpolating trajectory is a
local minimum of the Euclidean action.

Another subtlety is that if the rangeT of τ is infinite, each kink or anti-kink can be displaced
along the time axis by an arbitrary amount and yield a new trajectory whose action is equal to the

2In analogy with the one-dimensional case, this requires det(A) , 0
3Sequences of kinks and anti-kinks are only true stationary points in the limit where the range of Euclidean time

T → ∞, which is the limit we will always be interested in.
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previous one. For instance, the one-kink trajectory can be centered around any valueτ′ and the
value of its action will be independent ofτ′. This means that we have to sum over the positions
of the (anti-)kinks in each sector of the path integral. Thisis reflected in (2.25) by the fact that
the operator−∂2 + V′′(x0) will have some zero eigenvalues, orzero modes. This woulda priori
yield an infinite result for the amplitude calculation. Fortunately, there is a trick to "factor out"
the infinity and cancel it against theN in (2.25). This is the Fadeev-Popov trick, which I will
not derive here. For a pedagogical derivation of it, the reader is referred to [17].

The contribution to the amplitude from a single kink is the following:

〈−a|e−H T/~|a〉(1) =

(

ω

π ~

)1/2
e−ωT/2 K e−S0/~ T , (2.26)

whereω ≡ V′′(−a) = V′′(a), andK is a constant which takes into account the calculation of the
translational zero mode. Note that this is proportional toe−S0/~, as expected. This is the biggest
contribution to the tunneling process. Now we need to sum over all configurations with kink-
anti-kink sequences. If we use theT → ∞ approximation then, in most of the configurations,
the kinks and antikinks will be far away from each other, in which case the action becomes
additive, i.e.Skink+antikink = Skink +Santikink = 2Skink

4. Each (anti)kink also brings a power ofK
with it. In a tunneling trajectory from−a to +a there must always be one kink more than there
are antikinks. Our task is then clear, the calculation and result are the following:

K(−a, a; T) =
(

ω

π ~

)1/2
e−ωT/2

∑

odd n

(K e−S0/~ T)n

n!
(2.27)

= 1
2

(

ω

π ~

)1/2 [

exp
( − 1

2 ωT + K e−S0/~ T
)

+ exp
( − 1

2 ωT − K e−S0/~ T
)

]

. (2.28)

2.1.3 True vacua

Consider again the particle in 1+ 1 dimensions subject to a double-well potential as depictedin
fig 2.1(a). What is the vacuum structure of this problem?

If we neglected tunneling effects, our classical intuition would tell us that the ground state
of the particle will be localized at one of the two wells. To find such a state, we would pick one
of the wells (say, the one atx = −a), and approximate it with a parabolic or harmonic oscillator
potential around its center,

V(x− a) = V(−a) +
1
2
ω2 x2 +O(x3), where ω2 ≡ V′′(−a) . (2.29)

Then, we would solve the harmonic oscillator as usual, and dothe same for the other well. This
would lead us to conclude that the ground state is degenerate, namely, that there are two ground
states, each localized at one well:

ψ−a(x) =
(

ω

π ~

)1/4
exp

(

− ω
π ~

(x+ a)2
)

, E−a =
1
2 ~ω ,

ψa(x) =
(

ω

π ~

)1/4
exp

(

− ω
π ~

(x− a)2
)

, Ea =
1
2 ~ω . (2.30)

4an antikink has the same action as a kink
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However, we know that a particle can tunnel from one well to the other, so these states we
have constructed are not really stationary. This means thatthey are not energy eigenstates, and
therefore, not vacuum states. A true vacuum state will have to be some linear combination of
the two states we constructed in the naïve perturbative approach (2.30). As we will see next,
instantons will give us all the information we need about this system.

Let us take a closer look at what the tunneling amplitudes we computed in the previous
subsection tell us. Let|En > be the set of true energy eigenstates of this system, then,

K(−a, a; T) ≡ 〈−a|e−H T/~|a〉 (2.31)

=
∑

n

〈−a En〉 〈En a〉 e−En T/~ , (2.32)

which in the largeT limit yields:

K(−a, a; T) =
∑

Lowest
energy states

〈−a En〉 〈En a〉 e−En T/~ . (2.33)

This provides us very valuable information. Comparing thisto (2.28) we realize that the energies
of the two lowest energy eigenstates are

E± = 1
2 ~ω ± ~K e−S0/~ , (2.34)

whereE− is the true ground state energy andE+ is the energy of the second lowest level. Equa-
tion (2.33) also tells us what the wave functions of these states look like:

〈−a E±〉 〈E± a〉 = 〈−a E±〉 〈E± a〉 = ∓ 1
2

(

ω

π ~

)1/2
. (2.35)

The ground state wave function is spatially even and can be shown to coincide with an even
linear combination of the two wave functions in (2.30) to leading order in the approximation of
the potential. The next energy level is spatially odd.

The lesson instantons teach us is that when the vacuum of a system isclassicallydegenerate,
tunneling effects lift the degeneracy, and the quantum mechanical vacuumstate will be a linear
combination of the naive wave functions that respects the symmetry of the potential. In the case
of the double-well problem, the vacuum state turned out to beeven, just like the potential.

4π0

V

x−2π−4π 2π

Figure 2.4: The periodic potential.

Let us now see what happens when the symmetry of the potentialis larger than just�2. Con-
sider the periodic potential whose shape is depicted in figure 2.4. Again let us ask the question:
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what is the vacuum structure of this system? Let us go throughit as we did in the previous prob-
lem, starting from the naive approach. Naively, neglectingquantum tunneling effects, we would
assume that the particle’s wave function is centered aroundone of the infinitely many minima
of the potential, sayx = 0, thereby spontaneously breaking the�-symmetry of the system. At
this point we would approximate the potential aroundx = 0 with a harmonic oscillator, and find
the ground state wave function and energy. But in light of theabove discussion, we are aware
of tunneling effects. By computing the tunneling amplitude for the particleto go from one min-
imum x = 2πN1 to anotherx = 2πN2, and taking the limitT → ∞, we will obtain information
about the true vacuum states:

K(2πN1, 2πN2; T) =
∑

n

〈2πN1 En〉 〈En 2πN2〉 e−En T/~ , (2.36)

−→
∑

Lowest
energy states

〈2πN1 En〉 〈En 2πN2〉 e−En T/~ , (2.37)

namely, the lowest energy eigenvalues and their wave functions. To compute this amplitude,
we again need to sum over the one-kink sector, and over all sequences with multiple kinks and
antikinks. The one-kink contribution to the amplitude is the same as in that the in the double-
well potential, namely equation (2.26), and the action is still additive, so the rules of the game
are the same. The only difference is that, now, kinks do not have to be followed by antikinks and
vice-versa, because the space where the particle moves has been enlarged to infinity. In other
words, the instanton trajectories need not be confined to theinterval [2πN1, 2πN2], they just
need to begin and end at 2πN1 and 2πN2 respectively. The sum is the following:

K(2πN1, 2πN2; T) =
(

ω

π ~

)1/2
e−ωT/2

∑

n,n̄

(K e−S0/~ T)n+n̄

n! n̄!
δN2−N1−n−n̄ , (2.38)

where the Kroeneckerδ-function imposes the boundary conditions. Thisδ-function can be
rewritten as follows:

δN2−N1−n+n̄ =

∫ 2π

0

dθ
2π

ei θ (N2−N1−n+n̄) . (2.39)

By inserting this integral, the sums overn andn̄ decouple. The result, which is also derived in
Coleman’s lectures [14] and in Rajaraman’s book [15] is the following:

K(2πN1, 2πN2; T) =
∫ 2π

0

dθ
2π

ei θ (N2−N1)
(

ω

π ~

)1/2
exp

(

− 1
2 ωT + 2 K e−S0/~ T cos(θ)

)

.

(2.40)
Notice that the discrete sum over low energy states has become an integral over a continuum of
energy states labeled byθ. The energy of atheta-state is then given by the following:

Eθ = ~
(

1
2 ωT − 2 K e−S0/~ T cos(θ)

)

, where 0≤ θ ≤ 2π , (2.41)

where the state of lowest energy is the one withθ = 0. These energy levels are reminiscent of
the band structures exhibited by systems with periodic potentials. This is the limit where the
number of minima of the potential goes to infinity (in other words, this is the limit where the
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periodic potential goes on forever). In this limit, the bandof energy levels becomes continuous,
yielding the energy formula (2.41). The double-well problem could be regarded roughly as the
opposite limit, where the number of potential minima is two.In that caseθ could only have two
discrete values, 0 andπ. We also have the following information about the wave function of the
θ-state:

〈2πN1 θ〉 〈θ 2πN2〉 =
(

ω

π ~

)1/2
ei θ (N2−N1) . (2.42)

The wave function of aθ-state is quasi-periodic: Under a translation by 2π it gains a phaseei θ.
So these states restore the symmetry of the system. In fact itcan be shown that, to leading order
in the approximation of the potential, the wave function of aθ-state is the following:

|θ〉 =
∑

N

ei θN |ψ2πN〉 , (2.43)

where the|ψ2πN〉 are the naively constructed harmonic oscillator ground states of each potential
minimum, when tunneling effects are neglected. This is analogous to what we noted in the
double-well case except that now, instead of just having twopossible linear combinations of the
naive states, we have a whole continuum of them.

In this section we have learned that the classical vacua of a system do not always correspond
to the quantum mechanical ones. In basic quantum mechanics we learn that for "small"~ a
particle will tend to be "smeared" around its classical vacuum equilibrium point. The more
orders of~we keep in our approximation, the better we know the shape of the wave function and
its energy. Instantons tell us, however, that tunneling effects drastically modify this picture. The
particle will actually tend to be "smeared" around all of itsclassical vacua, thereby restoring the
symmetry of the theory. We could have never seen this effect in an order-by-orderapproximation
of the wave function in~. This effect is non-perturbative.

In the next section we will see that gauge theories can also have tunneling effects that modify
the vacuum structure.

2.2 Yang-Mills instantons

Now that we have seen the basics about instantons through simple examples, we are ready to
take a look at a more sophisticated example. We will study instantons in a quantum field theory;
specifically Yang-Mills theory. Although everything we have seen up to now in this chapter
were instantons in quantum mechanics, we will be able to generalize the knowledge we have
gathered to field theories very easily, thanks to the wonderful language of path integrals. This
section will not be as technical as the previous one, as it is only meant to illustrate how theideas
we have seen so far apply to Yang-Mills theory. For an introduction to Yang-Mills theory and a
full derivation of the Yang-Mills instanton and all of its properties, the reader is again referred
to [14] and [15].

The goal is to find the vacuum structure of the Yang-Mills quantum field theory. We will
work specifically with the structure group SU(2), because the results can be generalized for
SU(N) with arbitraryN. The action is the following:

SYM = −
1

2g2

∫

d4x Tr
[

Fµν Fµν
]

, (2.44)
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whereg is the coupling constant of the theory.Fµν is the field-strength defined as follows:

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν] , (2.45)

and the conectionAm(x) is a Lie algebra valued vector field:

Aµ = g Aa
µ Ta , (2.46)

TheTa are the generators of SU(2), which can be expressed in terms of the Pauli matrices as
Ta = −i σa/2. SU(2) is a connected manifold, so any group element can be written in terms of
the Lie algebra as follows:

g(x) = exp(αa(x) Ta) , (2.47)

where theαa(x) are arbitrary smooth functions. The trace in (2.44) runs over SU(2) indices. The
action (2.44) is invariant under the following gauge transformations ofAµ:

Aµ → g Aµ g−1 + g∂µg
−1 , (2.48)

under which the field-strength transforms as follows:

Fµν → g Fµν g−1 . (2.49)

There are two kinds of gauge transformations, which we must distinguish: "small" and "large"
gauge transformations. "Small" gauge transformations arethose that satisfyα(|~x | = ∞) = 0.
Those that do not satisfy this restriction are denominated "large" gauge transformations. The
reader should note that the physical interpretation of a gauge symmetry is different from that
of a global symmetry. A global symmetry relates physically inequivalent solutions of a system.
In a gauge theory, however, one considers configurations that are related via "small" gauge
transformations as being physically equivalent. In fact, the physical states (in the classical sense)
are defined by the gauge equivalence classes (equivalence under "small" g. t.’s) of the solutions
for the gauge field.

First things first, we need to understand the classical vacuaof this system. To simplify the
task we take the so-calledstaticgaugeA0 = 0, which is left invariant by time-independent gauge
transformations. Now we can rewrite the Lagrangian densityfor (2.44) as follows:

L = 1
g2

Tr
(

1
2 (∂0Ai)2 − 1

4 Fi j Fi j

)

. (2.50)

This looks like the kinetic term minus a potential for theAi fields. So we immediately notice
that the classical vacua of this action are the so-calledstatic pure gauges. Static, meansAi(x) =
Ai(~x ), and pure gauge means gauge equivalent toAi = 0. These configurations can be written
as follows:

Ai(~x ) = e−α(~x )∂i eα(~x ) where α(~x ) = αa(~x ) Ta . (2.51)

It can be shown that it is enough to restrict our search to configurations that satisfyeα = � at
spatial infinity|~x | = ∞. Sinceα tends toward the same value in any direction at spatial infinity,
we can actually identify all of spatial infinity to a point. Inother words, we can reformulate the
problem of finding the static pure gauges withα → 0 for |~x | → ∞ as the problem of finding
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maps fromS3 into SU(2). As a manifold, SU(2) is diffeomorphic toS3; hence we are looking
for mapsα : S3→ S3. Maps that are homotopic (can be continuously deformed intoeach other)
correspond to field configurations that are related by "small" gauge transformations. Hence, the
vacua can be classified in homotopy classes. In this case, thehomotopy group isΠ3(S3) � �.
To each homotopy class we can associate an integer, which counts the number of timesS3 is
"wrapped" aroundS3 by the mapα. Given such a map, its homotopy class is determined by
computing the following:

N =
1

24π2

∫

S3
d3xǫi jk Tr

[

(e−α ∂i eα) (e−α ∂ j eα) (e−α ∂k eα)
]

. (2.52)

This is called the Pontryagin index, it literally yields theinteger representing the homotopy class
of the vacuum configuration. Because a homotopy class is invariant under continuous deforma-
tions one usually calls these configurationstopologicalvacua. The classicalN-vacuum can be
thought of as the analogue of thex = 2πN vacuum in the periodic potential problem. They are
physically inequivalent because no "small" gauge transformation can relate them. However, they
can be related via "larger" gauge transformations, just like x = 2πN is related tox = 2π (N+1)
via a 2π shift. From the classicalN-vacuum, one can build a naive perturbative quantum state
|N〉, just as we did with in the previous examples, and deduce thatthe vacuum is infinitely de-
generate. However, Yang-Mills theory also has instantons,and tunneling between the different
|N〉 states takes place. By computing tunneling amplitudes in analogy with the periodic potential
problem, one sees that the true low energy eigenstates form aband parametrized by an angleθ;
and in terms of the|N〉, aθ-state is given by the following:

|θ〉 =
∑

N

ei θN |N〉 , (2.53)

which restores the symmetry under "large" gauge transformation. This is analogous to the
restoration of the�-symmetry by theθ-vacua of the periodic potential system. One other impor-
tant property of theseθ-states is that they can never talk to each other. In other words, there can
never be a physical transition from one such state to another. For any gauge invariant operator
B, it can be shown that

〈θ | B | θ′〉 = 0 , (2.54)

for any choice ofθ andθ′. Therefore, we can make a paradigm shift and consider each|θ〉 as the
vacuum of a separate theory. For each value ofθ we have a theory whoseuniquevacuum state is
|θ〉. In quantum field theory, one is interested in the vacuum-to-vacuumamplitude〈0 | e−H T/~ | 0〉,
also known as the partition functionZ. In this case, to compute the partition function we have
to choose a theory by choosing a value ofθ and use its vacuum state. Then, we can writeZ as
follows:

Z = 〈θ | e−H T/~ | θ〉 =
∑

N,Q

e−i θQ 〈N + Q | e−H T/~ |N〉 , (2.55)

using the fact that〈N + Q | e−H T/~ |N〉 is independent ofN5 , we write

Z = K
∑

Q

e−i θQ
∫

Q
d[Aµ] e−SE , (2.56)

5The amplitude is invariant under all gauge transformations, "small" and "large", because the Yang-Mills action is.
SinceN can be changed to any value via a "large" gauge transformation, the amplitude must be independent ofN
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whereSE is the Euclidean version of (2.44), and the subscriptQ indicates that the path in-
tegral corresponds to a tunneling amplitude between two topological states whose Pontryagin
indices differ byQ. K is just an normalization constant encoding the infinity coming from the
summation overN. It is not physically relevant, as all quantum field theoretic amplitudes are
normalized by dividing byZ.

Let us summarize what we have learned so far. Yang-Mills theory for SU(2) has classical
vacua, which are classified by the third homotopy group of the3-sphereΠ3(S3). Each class
consists of static pure gauge field configurations, which arerelated by "small" gauge transfor-
mations, and it is labeled by the Pontryagin indexN. For eachN, we have a topological naive
vacuum, which can tunnel into another topological naive vacuum, and, just as in the case of the
periodic potential, the true energy eigenstates are combinations of the|N〉, labeled by an angle
θ. Since differentθ-vacua can never physically interact, we considerθ as a parameter labeling
a theory, whoseuniquevacuum is|θ〉. To compute the partition function of the theory, we have
to sum over all possible tunneling amplitudes, weighing each by e−i θQ. However, this whole
language of topological|N〉 states is not gauge invariant. It only works in the static gauge.
Therefore, the partition function as we wrote it in (2.56) isnot gauge invariant. Fortunately,
there is a way to remedy this.

Instead of classifying classical vacua, let us classify instantons; i.e. finite action Euclidean
configurations. In order for a field configuration to have finite action, its Lagrangian density
must be non-zero only in a localized area and vanish at the boundary of Euclidean spacetime.
The Euclidean version of the Yang-Mills action (2.44) is positive-definite:

SE = −
1

2g2

∫

d4x Tr
[

Fµν Fµν
]

= − 1
2g2

∫

d4x Tr
[

Fµν Fµν

]

. (2.57)

The minus sign is due to the fact that the SU(2) trace is negative in the basis we have chosen.
Hence, in order for a configuration to haveL vanish at infinity it must be pure gauge at infinity.
It must satisfy the following:

Aµ(x)→ g−1(x) ∂µ g(x) , (2.58)

as |x | → ∞ . (2.59)

If we define the boundary ofR4 as a 3-sphere6 whose radius is taken to infinity, then we can
think of instanton configurations as mapsg : S3 → SU(2) = S3. These are again classified
by Π3(S3) = �. The Pontryagin index can be computed using formula (2.52),but this time
integrating over theS3 that represents the spacetime boundary. Since we are integrating over
the boundary, we can use Stokes’ theorem and rewrite the formula as a total derivative:

Q = − 1
24π2

∫

∂�4
d3xǫνρσ Tr

[

Aν Aρ Aσ
]

= − 1
24π2

∫

�4
d4xǫµνρσ Tr

[

∂µ Aν Aρ Aσ
]

, (2.60)

which can be shown to be equivalent to

Q = − 1
16π2

∫

R4
d4xǫµνρσ Tr[Fµν Fρσ] = − 1

16π2

∫

R4
d4x Tr[Fµν F̃µν] , (2.61)

6A note of caution: theS3 we previously considered was a one-point compactification of the space R3, which we
used in order to classify the state of the system at a certain point in time. TheS3 we are considering now is the boundary
of Euclidean space-time�4, which we are using in order to classify instanton configurations.
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whereF̃µν ≡ ǫµνρσ Fρσ is the Hodge dual of the field-strength. This expression is manifestly
gauge invariant. It is also known as the second Chern class, due to its interpretation as the
characteristic class of an SU(2)-principal bundle over thebase manifoldS4.

1−pt. compactification

N|

x0x0 oo oo

N+Q| >

S
3

A = 0

A = 0=− =+

>

Figure 2.5: The boundary of spacetime as a time-like cylinder� × S2, with one suppressed
dimension. The initial and final topological states reside at the caps of the cylinder. The latter,
which are two D3, are compactified to two S3 to determine their topological indices N and
N + Q, respectively. The black filled circle represents the localization of the instanton.

This topological term classifies the boundary conditions ofall instanton configurations in
a gauge invariant way. However, any such configuration with second Chern classQ can be
interpreted as a tunneling process from a topological state|N〉 to a state|N + Q〉 by performing
a gauge transformation to go to the static gauge. In the static gauge, if we view the boundary of
Euclidean spacetime as a generalized cylinder�×S2 as in figure 2.5, where� is the Euclidean
time range, then the only contribution to (2.61) will come from the two 3-discs atx0 = ±∞ (i.e.
the caps of the cylinder):

Q = − 1
16π2

∫

D3
d3xǫνρσ Tr

[

Aν Aρ Aσ
]

∣

∣

∣

x=∞
x=−∞ , (2.62)

= (N + Q) − N . (2.63)

Hence, the second Chern class computes the change inN of the tunneling process. We can now
finally rewrite the partition function (2.56) in a gauge invariant way:

Z =
∫

all Q
d[Aµ] exp

[ − SE − i
θ

16π2

∫

d4xTr[FµνF̃
µν]

]

. (2.64)

Theθ-term has a physical effect on the theory. It breaks parity. This actually makesθ a physically
measurable quantity in gauge theories.
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2.3 Solitons vs. instantons

Having studied the mathematics and physics of instantons, we should also look at a special class
of solutions to classical equations of motion calledsolitons. These will be interesting to us for
a number of reasons: first of all, they have a similar mathematical structure to instantons in
that they aretopologically non-trivial. They too, are in some sense interpolating configurations.
Secondly, in some cases, there exists a precise correspondence between instantons and solitons.
In the next chapter, we will actually see an explicit exampleof this. Because solitons are not the
main focus of this text, I will only briefly introduce them andwill refer the interested reader to
Coleman ’s book [14] and Rajaraman’s book [15] for a careful introduction, and Zee’s book [17]
for a short but very clear exposition of the topic.

2.3.1 Solitons: Definition and examples

Definition: A soliton is a time-independent extremum of theMikowskianaction with finite non-
zero energy.7

Note that we are now back to Minkowski spacetime. Time-independent means that the field
configuration has no non-trivial time-dependence that could for instance be obtained by boosting
a static solution.

Let us take a look at the simplest soliton, thekink solution. We define the following field
theory in (1+ 1)-dimensions:

L = − 1
2

(

∂φ
)2 − V(φ) , (2.65)

with

V(φ) =
λ

4

(

φ2 − ν2
)2
, (2.66)

whereφ is the field, andλ andν are parameters. This is a double-well potential. Note that we
are working in themostly plusconvention, which is why the kinetic term has a minus sign. We
instinctively know that this Lagrangian has two very simplesolutions, namely the two vacua
φ(t, x) = ±ν. They both have energy zero. In standard perturbation theory we are instructed to
pick one of the two vacua and study the fluctuations around it.In practice, this means rewriting
the scalar field asφ → ν + χ, and treating the fluctuationχ as the fundamental field. Plugging
this back into (2.65) we will find thatχ is a scalar particle with massµ = (λ ν2)1/2.

One can, however, also look for a solution with non-trivial conditions, namely a configura-
tion that interpolates between those two vacua, i.e.φ → ±ν for x→ ±∞. Such a solution will
look qualitatively like the kink we saw in section 2.1, see figure 2.6. In fact, this solution is also
known as the kink solution. Because it is time-independent,we can write its energy density as
follows:

E = 1
2 φ
′2 + V , (2.67)

where the prime denotes differentiation w.r.t. the spatial coordinatex. Becauseφ → ±ν for
x → ±∞, the energy density is non-zero only within a localized region. This means that the

7This is not the only possible definition. A stricter one, stated in [15], also requires that a soliton’s shape be left
unaffected by scattering against another soliton, but we will notbe exploring this property here.
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total energy will be finite. Since this energy density is positive, we can rewrite it as a square plus
a positive term:

1
2

(

φ′ ±
√

2V
)2
∓ φ′

√
2V . (2.68)

ν

φ

x
−ν

Figure 2.6: The kink solution: a classical field configuration trajectory that interpolates be-
tween the two classical vacua of the double-well potential.

This means that the energy of any solution to this system satisfies a bound:

E ≥
∣

∣

∣

∣

∣

∫

dxφ′
√

2V
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫ φ(x=+∞)

φ(x=−∞)
dφ
√

2V

∣

∣

∣

∣

∣

∣

. (2.69)

This is known as theBogomol’nyi bound. Because we are choosing a time-independent Ansatz,
we can easily see that the Lagrangian density of this system (2.65) is equal to minus the energy
density (2.67), i.e.L = −E. This is more than a mere curiosity, this is at the heart of the
instanton-soliton correspondence. Therefore, solving the equations of motion with this Ansatz
means extremizing not only the action, but also the energy. This means that the soliton actually
saturates the Bogomol’nyi bound (2.69). In other words, a soliton is the configuration of least
energy within its class of boundary conditions or topological class. To saturate the bound, the
field has to satisfy:

φ′ = ±
√

2V . (2.70)

This is often referred to as the BPS condition. Note that if a field satisfies this equation, it
automatically satisfies the equations of motions. However,we have now simplified the task of
solving a second order differential equation into solving a first order equation. In supergravity,
p-branes are solutions, which satisfy an analogous form of the BPS condition. The latter implies
that the solution preserves a certain amount of the supersymmetry of the theory it lives in. Using
(2.68) and (2.70) we find that the energy is given by:

E =

∣

∣

∣

∣

∣

∣

∫ φ=ν

φ=−ν
dφ
√

2V

∣

∣

∣

∣

∣

∣

. (2.71)

This depends only on the potential and the boundary conditions, and not on any parameters of
the solution. In our case,E ∼ µ3/λ. So the kink is very massive (energetic) for small coupling
constant. This means that object is non-perturbative, i.e.it cannot be found by doing some sort of
pertubation theory around the vacuum. The kink is at least pertubatively a stable configuration.
Its non-trivial boundary conditions prevent it from simplydecaying into an object with lower
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energy. It is not a simple ripple in the field. Mathematicallythis translates into the statement
that the kink has a conservedtopological current8

Jµ =
1
2
ǫµν ∂νφ , (2.72)

yielding a conservedtopological charge

Q =
∫ −∞

+∞
dx J0 =

1
2ν

(

φ(+∞) − φ(−∞)
)

. (2.73)

Solitons are also present in more complicated field theories, such as gauge theories. Magnetic
monopoles are an example of solitons. Depending on the dimensionality of the soliton it may
be called,monopole, string or vortex, membrane,or texture, if it ‘stretches’ over 0, 1, 2 and 3
spatial directions respectively. If it only has one transverse spatial direction, such as the kink
in 1+ 1 dimensions, it is called adomain wall. All of these objects are characterized by some
topological charge. In gauge theories this charge will be a Pontryagin index.

In gravitational theories, there are objects analogous to solitons. The simplest one is the
Schwarzschild black hole. Its metric is the following:

ds2 = −
(

1− 2G M
r

)

dt2 +

(

1− 2G M
r

)−1

dr2 + r2 dΩ2
S2 , (2.74)

whereG is the Newton constant andM is a parameter of the solution. For an introduction to
black holes, the reader is referred to the pedagogical lecture notes by S. Carroll [18] (or his
book [19]), and to Townsend’s extensive lecture notes [20].The spacetime geometry of the
Schwarzschild black hole is non-trivial in that it interpolates between flat Minkowski spacetime
at spatial infinity, andAdS2 × S2 near its horizon atr = 2G M. Although energy is a tricky
subject in General Relativity, it can be defined via the ADM mass formula, which can be found
in [20]. Once it is calculated, one finds that it is equal to theparameterM in the solution
for the Schwarzschild metric (2.74). From the solution, we see that this object is also non-
perturbative. No matter how ‘small’ we make the mass, its effect will be very dramatic near the
horizon. In supergravity, p-branes play the role of the soliton. They are the higher-dimensional
generalization of the charged Reissner-Nordström black hole. A p-brane has ap+1-dimensional
world-volume and is charged under ap+2-form field-strength. For an introduction into p-brane
solutions, the reader is referred to “String Solitons" [21], and to “Gravity and Strings" [22].

2.3.2 The correspondence

Now that we have seen the definition of solitons and have seen some examples of them, let us
study their correspondence with instantons. We will first look at the simplest example of this
correspondence, and then explain it in a more general context.

Taking the example of the scalar field in 1+ 1 dimensions from the previous subsection,
the reader will recall that if we make take the time-independent Ansatz, which is what we do

8Note that this current is not a Noether current, as it does notfollow from a continous symmetry.
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when looking for solitons, and substitute it into the Lagrangian density (2.65), the latter takes
the following form:

L = − 1
2 ∂xφ

2 − V = −E , (2.75)

whereφ = φ(x), andE is the energy density of the system. A soliton is defined as being an
extremum of the action defined by this Lagrangian densityand as having finite energy. Note
that this Lagrangian density is, up to a minus sign, equivalent to that of a scalar field inone
Euclidean dimension if we define Euclidean timeτ asτ ≡ x. Hence, the equations of motion
for a soliton in 1+ 1 dimensions are the same as the equations for an instanton inone Euclidean
dimension, and the requirement that the soliton have finiteenergy

E =
∫

dxE , (2.76)

is equivalent to the requirement that the instanton in one dimension have finiteaction. So the
kink-soliton in 1+ 1 dimensions corresponds to the instanton in one dimension9. The relation is
simplyφsol(x) = φinst(τ).

This is not specific to the kink model, one can show a more general correspondence. Let
us define a system ind + 1 spacetime dimensions with general degrees of freedom, which we
denote byφI , where theI can stand for a collection Lorentz indices, or internal indices, and a
Lagrangian density

L = L(φI , ∂φI ) , (2.77)

where both temporal and spatial derivatives are implied by the symbol ‘∂’. The conjugate mo-
menta of the system are defined as follows:

π
µ
I ≡

δL
δ
(

∂µφI

) . (2.78)

Using the time-dependent Ansatz we can write the energy as follows:

E =
∫

ddx
[

π0
I φ̇I (t, ~x) − L (

φI (t, ~x)
)

)

] = −
∫

ddxL (

φ(~x)
)

, (2.79)

where the dot, as usual, represents a time derivative, and the first term on the LHS vanishes
due to the time-independence of the solution. A soliton solution will be an extremum of this
energy (since S=-E), and will have finite energy. Since all degrees of freedomdepend only on
the spatial directions, we can view this Lagrangian densityas that of ad-dimensional Euclidean
system (up to a minus sign), and this energy can be viewed as its action. The soliton can then be
called an instanton ind dimensions. In practice, all one has to do is a Kaluza-Klein reduction
over time, but without the interpretation that time is compactified. One is simply truncating
time.

To summarize all this, the statement is the following:A soliton in d+ 1 dimensions is equiv-
alent to an instanton in d dimensions. In the next chapter, we will see that charged black holes
can be viewed as a certain kind of supergravity instantons called D-instantons. An interesting

9The kink instanton solution in (1+ 1)-dimensional quantum mechanics can be viewed as an instanton in (0+ 1)-
dimensional quantum field theory.
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question that comes to mind based on the statement we have made, is whether its converse is
true. In other words:When is an instanton in d dimensions equivalent to a soliton in d + 1
dimensions? The answer depends on the Lagrangian. If a Euclidean Lagrangian can be obtained
as the time truncation of ad + 1-dimensional Lagrangian, in other words, if it can beuplifted
to d + 1 dimensions, then the instanton will give rise to a soliton.In the next chapter we will
establish the necessary condition for a D-instanton to giverise to a black hole.

In this chapter, we studied the basics about instantons in quantum mechanics and quantum
field theory. We learned that instantons provide us with non-perturbative information, by telling
us that a naïve perturbative vacuum is not really the vacuum state of a theory, because the system
can tunnel out of it. This requires that one rewrite a path integral with a new topological term
that properly takes this fact into account.

In the next chapter, we will be looking at instantons in gravitational field theories, such as
supergravities. Although defining a path integral for a gravitational theory is tricky business and
requires unnatural adjustments in order to be well-defined,it is possible to talk about instantons
and non-perturbative tunneling effects in gravity.
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Chapter 3

Non-extremal D-instantons

3.1 Introduction

In the previous chapter, we studied instantons in quantum mechanics and quantum field theory.
In this chapter we will be looking at instantons in gravitational theories. Instantons, as we have
seen, are inherently linked to path integrals. However, a path integral formulation of quantum
gravity is not as straight forward as one might wish. In an ideal world, we would simply write
down the following:

〈 hF | e−H T | hI〉 =
∫

d[g] exp

(

−
∫

dDx R

)

, (3.1)

wherehI ,F are the induced metrics on the initial and final spacelike hypersurfaces of spacetime,
respectively,R is the Ricci scalar, and the path integral sums over all metrics satisfying the
boundary condition that they asymptote tohI ,F in the early past and late future, respectively.
However, this path integral is not well-defined because the action is not bounded from below.
In fact, even flat Euclidean space is not a minimum of the Einstein-Hilbert action. Suppose we
wanted to perform a semiclassical approximation around theWick rotated Minkowski space-
time, i.e. flat Euclidean space. There are infinitely many possible fluctuations around the flat
metric, but let us restrict to summing over metrics that are related to flat space via a Weyl trans-
formation; i.e.conformally flatmetrics:

g̃ = e2σ η , (3.2)

whereη is the flat metric. Then, the action for ˜g will roughly go as follows:
∫

dDxR∼ −
∫

dDx (∂σ)2 , (3.3)

which means that the action can be made arbitrarily negativeby quantum fluctuations, making
flat spacetime a local maximum (or at best a saddle point), andmaking the whole path integral
divergent. Fixing this problem requires a new formalism, which is developed in [23], but is
not yet widely agreed upon. The idea is to first sum over conformal classes of metrics, and



44 Non-extremal D-instantons

then, within each class of conformally related metrics, onerotates the contour of integration to
imaginary conformal factors. In (3.3) this manifests itself in that only imaginaryσ are allowed,
thus keeping the action positive. We will not really be usingany of this formalism in this thesis.
The purpose of this paragraph was to show how severely different path integration becomes
when dealing with gravity.

Despite difficulties with path integrals, gravitational instantons do exist and have been ap-
plied to many different problems in quantum gravity such as the renormalization of the constants
of nature, the adjustment of the cosmological constant, spacetime topology fluctuations, and the
creation of baby universes (see [24–28]).

In the field theory limit of string theory, instantons can give rise to non-perturbative effects
(for an overview see [29]). The standardD-instantonis an instanton solution of type IIB super-
gravity, which was discovered in [30], and was later shown togive higher derivative correction
terms, specificallyR4 terms, to the effective action of type IIB string theory [31]. The coeffi-
cient of such terms was conjectured to be an SL(2,�) invariant modular function. In [32], the
high-energy limit of this conjecture was tested. Other instantons have been obtained through di-
mensional reductions of supergravity by wrapping Euclidean D-branes around compact cycles
of the internal space. This yields non-perturbative effects, which give rise to interesting lower-
dimensional effective actions that have applications in cosmology [33].

The standard D-instanton is a solution of a truncation of type IIB supergravity with the
metric, the dilaton, and the RR scalar known asaxionas its field content. The solution has a
flat Euclidean metric, preserves 1/2 of the supersymmetry of the theory, and is characterized by
the axion ‘charge’1. The fact that it is ‘charged’ under a 0-form potential makesthe D-instanton
mathematically similar top-branes. In this case it, could be thought of as a (−1)-brane, meaning
it is localized in spaceandtime. In this chapter, we will be studying solutions that generalize the
standard D-instanton in many ways: their metrics will be non-trivial, and they will not preserve
any supersymmetry. The solutions that will be presented arenot new, but will be studied in a
novel way. For earlier work on generalized D-instanton solutions see [25,28,34–41]

In this chapter, we will generalize the Lagrangian of type IIB supergravity to arbitrary dimen-
sions, and arbitrary dilaton coupling. However, one important property of type IIB supergravity
will be preserved: the scalars (dilaton and axion) are coupled in such a way that they parametrize
an SL(2,�)/SO(1, 1) coset space. By conveniently reorganizing the fields into2× 2 matrices,
the SL(2,�) symmetry will become manifest, and we will see that solutions to the field equa-
tions will have a ‘conserved’charge matrix Q, as implied by Noether’s theorem. This charge
matrix Q transforms under the adjoint representation of SL(2,�), which means that its determi-
nant is invariant under the symmetry. This implies that there are three families of solutions that
are not related via SL(2,�), i.e. those with detQ > 0,= 0 and< 0. This is analogous to the fact
that Minkowski spacetime admits three families of vectors:Timelike, lightlike, and spacelike.
In this chapter, we will see that all D-instanton solutions can be classified into three classes,
whereby the standard D-instanton falls under the detQ = 0 class.

A similar discovery was made in [42], where three classes of SL(2,�)-unrelated seven-
branes were found. Seven-branes can be seen as the magnetic duals of D-instantons. They are
carried by the same fields; however, instead of beingelectricallycharged under the axion, they

1We will give this ‘charge’ a physical interpretation later on.
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aremagneticallycharged under it. This means that, in contrast to the D-instantons, seven-branes
are not localized in spacetime. Given that seven-branes were shown to occupy all three possible
conjugacyclasses of SL(2,�), it is natural to ask whether D-instantons do the same.

At the end of chapter 2 we saw that instantons inD Euclidean dimensions can sometimes
be viewed as the spacelike sections of solitons inD + 1 spacetime dimensions. In this chapter,
we will show that the three SL(2,�) classes of D-instantons can sometimes be seen as spacelike
sections of electrically charged black holes, i.e. Reissner-Nordström black holes. As we will see,
the three families of solutions, detQ > 0,= 0, < 0, correspond to underextremal, extremal, and
overextremal black holes (i.e. black holes with electric charges lower than, equal to, and greater
than their masses). The condition for such a correspondenceto hold will be worked out, and the
correspondence will be extended touplift the D-instantons top-branes in higher dimensions.

This chapter is based on a collaboration with E. Bergshoeff, U. Gran, D. Roest, and S.
Vandoren, entitledNon-extremal D-instantons[43]. It is organized as follows: in section 3.2,
we will present the metric-scalar system we are interested in and discuss the realization of the
SL(2,�)-duality group for the Euclidean case. In section 3.3, we will give the generalized
instanton solutions mentioned above. At this point we only construct the bulk solutions without
taking care of boundary terms and/or boundary conditions. Next, in section 3.4, we will discuss
the relation to wormholes corresponding to non-extremal Reissner-Nordström black holes one
dimension higher. In section 3.5 we will consider generalizations that uplift to non-extremal
p-branes inD + p+ 1 dimensions. The application as true instantons of type IIBstring theory
will be investigated in section 3.6. Finally, we will discuss our results in section 3.7.

3.2 The system and its symmetries

3.2.1 Lagrangian

The system we will be interested in is described by the following Minkowskian Lagrangian
density:

LM =
1
2

√

|g| [R− 1
2(∂φ)2 − 1

2ebφ(∂χ)2] , (3.4)

whereφ andχ are scalars. We will work inD arbitrary dimensions, and will keep the couplingb
unspecified. This theory occurs, for example, as the scalar section of IIB supergravity inD = 10
Minkowski spacetime with coupling parameterb = 2. In this case, the scalarφ corresponds to
the string theorydilaton, and the scalarχ is the Ramond-Ramond scalar known as theaxion.
Other values ofb can arise when considering (truncations of) compactifications of IIB super-
gravity. For instance, inD = 3 one has supersymmetry forb = 2, b =

√
2, b =

√
4/3 andb = 1.

In order to study instanton solutions of this system we not only need to Wick rotate the theory,
but we also need to change the sign of the axion kinetic term, yielding the following Euclidean
Lagrangian:

LE =
1
2

√

|g| [R− 1
2(∂φ)2 + 1

2ebφ(∂χ)2] , (3.5)

The effect of the Wick rotation on the scalar is a very subtle issue, which I will further develop
in section 3.6. I will now summarize the three basic arguments to justify the sign change in the
kinetic term:
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• In the context of type IIB supergravity the axion is considered apseudoscalar. In that case
one could claim that the Wick rotation is the ‘square root of time reversal’, and hence a
pseudoscalar should get multiplied by an ‘i’ upon transforming. This argument, however,
is neither rigorous, nor widely agreed upon. Since we want tostudy D-instanton solutions
in theories with arbitraryD andb that are not necessarily imbeddable in supergravity, we
will not endorse this claim.

• A theory with a scalar isdual to a theory with a (D − 1)-form field strength. Dual means
that there exists a procedure to show that the path integralsof the two theories are equiv-
alent. This procedure allows one to move back and forth from the one path integral to the
other. In our case, the Lagrangian of the dual theory is the following:

L = 1
2

√

|g| [R− 1
2

(∂φ)2 − 1
2 · (D − 1)!

e−bφF2
D−1] , (3.6)

whereFD−1 is a (D − 1)-form field-strength. Contrary to common belief, the quantum
mechanical dualizationstarting fromthe (D−1)-form theorydoes notyield a scalar theory
with the wrong kinetic term sign, but a scalar theory with thenormal sign. However, one
quickly notices that the Euclidean scalar theory does not have any non-trivialreal saddle
points, so instead of performing the semiclassical approximation on the scalar theory, one
does it on the dual (D − 1)-form theory, which does have non-trivial real saddle points.
After writing down the classical Euclidean equations of motion to do the semiclassical
approximation one notices that, if one rewrites the (D − 1)-form field-strength as the
Hodge-dual of a 1-form field-strength as follows:

FD−1 = −ebφ ∗ dχ , (3.7)

then the Euclidean equations of motion of the (D − 1)-form look like the equations of
motion of a would-be scalar theory with the wrong sign for thekinetic term. In other
words, looking for the saddle points of the (D − 1)-form theory iseffectivelythe same as
looking for the saddle points of (3.5). I would like to emphasize that quantum mechanical
dualization and Hodge dualization are two different things.

• In a quantum field theory, imposing Dirichlet boundary conditions on the field yields a
transition amplitude between eigenstates of the field operators. In our case, this means
that the path integral is actually computing the following:

〈 φF , χF | e−H T | φI , χI 〉 . (3.8)

However, one can also compute a transition amplitude between axionic charge-eigenstates
by means of Fourier transformation:

〈 φF , πF | e−H T | φI , πI 〉 =
∫

d[χI ] d[χF] exp

(

−i
∫

ΣI

πI χI + i
∫

ΣF

πF χF

)

〈 φF , χF | e−H T | φI , χI 〉 (3.9)

where the path integral overχI ,F runs over functions defined on the initial and final time
hypersurfacesΣI andΣF , respectively; andπI ,F are the time components of the conjugate



3.2 The system and its symmetries 47

momenta of the axion. This theory has no boundary conditions. The path integral (3.9)
has no real saddle points. However, it can be computed in the semiclassical approxima-
tion; and it can be shown that the result of this path integration can also be obtained by
looking for the saddle points of a would-be system with the wrong kinetic term sign (3.5).
Effectively, it is as if we were looking for imaginary saddle points of the original system.
This argument was first discovered by Lee in [44]. In [45–47] the argument was refined;
however, the clearest and simplest explanation, in my view,can be found in [48].

In section 3.6.1, we will further develop the second method in order to evaluate the actions
of our solutions, and in appendix A, a toy model will be used toillustrate the phenomenon of
the ‘wrong’ sign in a simpler setting.

3.2.2 SL(2,�)-symmetry

The Lagrangian (3.5) has a manifest SL(2,�) symmetry. In fact, in chapter 7 we will see that
the scalar sector parametrizes a two-dimesional hyperboloid with Lorentzian signature; i.e. a
dS2 spacetime. The latter can be viewed as the following coset:

SO(2.1)
SO(1, 1)

, (3.10)

where SO(2, 1) � SL(2,�). In this chapter, we will making the symmetry manifest by writing
the Lagangian in a different form. Define the following matrix:

M = ebφ/2

(

1
4b2χ2 − e−bφ 1

2bχ
1
2bχ 1

)

. (3.11)

Now we can write (3.5) as follows:

LE =
1
2

√
g [R+ b−2Tr(∂M ∂M−1)] . (3.12)

It is clear that this is invariant under the following transformation:

M→ ΩMΩT with Ω =

(

a b
c d

)

∈ SL(2,�) . (3.13)

The attentive reader will probably have noticed that any invertible matrixΩ ∈ GL(2,�) will
do. However, only elements of SL(2,�) yield a transformed matrixM that is consistent with
the scalar parametrization (3.11) of the coset space2.

This symmetry, like any continuous symmetry, has Noether current:

Jµ = (∂µM)M−1 =

(

j(3)
µ j(+)

µ

− j(−)
µ − j(3)

µ

)

, (3.14)

2Throughout this chapter we assume thatb , 0. Note that forb = 0 the Euclidean SL(2,�) symmetry degenerates
to an ISO(1, 1) symmetry, and the scalar coset becomes a two-dimensionalMinkowski spacetime.
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which is a current matrix, with the following components:

j(3)
µ =

1
2 ebφ∂µ(e−bφ − 1

4b2χ2) , j(−)
µ =

1
2bebφ∂µχ ,

j(+)
µ = −bχ j(3)

µ + (e−bφ − 1
4b2χ2) j(−)

µ . (3.15)

Althought this is a Euclidean theory, we can still regard this current as giving rise to ‘charges’
that are ‘conserved’ with respect to a Euclidean time direction. Throughout this section, we
will choose it to be the radial direction. However, for a proper tunneling interpretation of the
instantons, we will choose a Cartesian direction in subsection 3.6.2. For a spherical boundary
defined by a radial normal unit vectornµ, the conserved charge matrix is the following:

Q =
(2 (D − 1) (D − 2))−1/2

bVol(SD−1)

∫

SD−1
Jµn

µ , (3.16)

where theSD−1 is transverse to the unit vector. Under an SL(2,�) transformation (3.13) the
corresponding charge matrix transforms as

Q→ ΩQΩ−1 . (3.17)

Note that the determinant ofQ is invariant under SL(2,�). Thus, solutions with different values
of det(Q) can never be related via SL(2,�)-transformations. Hence, as discussed in the intro-
duction the cases det(Q) = 0, det(Q) > 0 and det(Q) < 0 define the three different ‘conjugacy
classes’ of SL(2,�).

3.3 The solutions and their geometries

In this section we will consider solutions to the bulk equations of motion of (3.5). Issues like
boundary terms and the value of the action are postponed to section 6, where we will determine
which solutions can be considered as instantons.

3.3.1 Solutions

We consider the Euclidean gravity-dilaton-axion system inD ≥ 3 dimensions given by the
Lagrangian (with arbitrary dilaton coupling parameterb)

LE =
1
2

√
g [R− 1

2 (∂φ)2 + 1
2 ebφ(∂χ)2] , (3.18)

and search for generalized D-instanton solutions with manifest SO(D) symmetry of the form3

ds2 = e2 B(r)(dr2 + r2dΩ2
D−1) , φ = φ(r) , χ = χ(r) . (3.20)

3Note that by using reparameterizations ofr one can obtain different, but equivalent, forms of the metric in which
the SO(D) symmetry is non-manifest, in particular

ds2 = e2 B(r)(e−2 f (r)dr2 + r2dΩ2
D−1) , (3.19)

in analogy to what we will encounter later, see (3.78). We choose to take as our starting point a conformally flat metric,
i.e. f (r) = 0.
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The standard D-instanton solution [30] is obtained for the special case whereB(r) is constant.
In order to obtain an SO(D) symmetric generalized D-instanton solution, we allow fora non-
constantB(r) and solve the field equations following from the Euclidean action (3.18), which
read

Rµν =
1
2
∂µφ∂νφ −

1
2

ebφ∂µχ∂νχ ,

0 = ∂µ
(√

ggµνebφ∂νχ
)

,

0 =
b
2

ebφ(∂χ)2 +
1
√

g
∂µ

(√
ggµν∂νφ

)

. (3.21)

The expression for the Ricci tensor for the Ansatz (3.20) is given by

Rrr = −(D − 1)

(

B′′(r) +
B′(r)

r

)

,

Rθθ = −e−2 B(r) gθθ [B′′(r) + (D − 2) B′(r)2 + (2 D − 3)
B′(r)

r
] , (3.22)

where the prime denotes differentiation with respect tor, andθ stands for all angular coordinates.
In addition to the SL(2,�) symmetry these field equations are invariant under a constant Weyl
rescaling of the metric4

gµν → e2ωgµν . (3.23)

However, this is only a symmetry of the field equations and notof the action. In our Ansatz
(3.20), this has the effect of shiftingB by a constant, i.e.B→ B+ ω.

In order to solve forB(r), one can consider the angular component of the Einstein equation of
(3.21). Having solved forB(r) the expressions for the dilaton and axion scalars can be obtained
from the remaining two equations of (3.21). We thus obtain the following solution5 for B(r), φ(r)
andχ(r), which extends the solution given in [37] to arbitraryb:

e(D−2) B(r) = f+(r) f−(r) ,

ebφ(r) =

(

q−
2q

[eC1 ( f+(r)/ f−(r))
bc/2 − e−C1 ( f+(r)/ f−(r))

−b c/2]

)2

,

χ(r) =
2

b q−
[q

(

eC1 ( f+(r)/ f−(r))b c/2 + e−C1 ( f+(r)/ f−(r))−b c/2

eC1 ( f+(r)/ f−(r))b c/2 − e−C1 ( f+(r)/ f−(r))−b c/2

)

− q3] . (3.24)

The solution is given in terms of the two flat-space harmonic functions

f±(r) = 1± q
rD−2

(3.25)

4The constant Weyl rescaling symmetry is broken byO(α′) corrections.
5For practical purposes we omit an overall± sign corresponding to the�2 symmetry of the axion, which defines the

difference between between the instanton and anti-instanton. This sign affects some signs in the SL(2,�) charges of the
solution, but does not change its conjugacy class.
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and the four integration constantsq, q3, q− andC1. The integration constantq is defined as the
square root ofq2, which is an integration constant that can be positive, zeroor negative6. Finally,
the constantc is given by

c =

√

2(D − 1)
(D − 2)

. (3.26)

Note that the metric, specified byB(r) given in (3.24), only depends on the product off+ and f−,
whereas the scalars only depend on the quotient off+ and f−. This reflects the presence of the
scale symmetry (3.23), whose effect is to scale bothf± with the same factor. The constantsq2

andq− occur with inverse powers and have been taken non-zero in theabove solution. Below,
we will see that sending them to zero yields interesting limits.

The solution (3.24) carries electric SL(2,�) charges given by

QE =

(

q3 q+
−q− −q3

)

, (3.27)

where we have defined the dependent integration constantq+ via

q2 = −q+q− + q3
2 = − det(QE) . (3.28)

Thus, the solution (3.24) has general SL(2,�) charges (q+, q−, q3).
The appearance of the four independent integration constants, q2, q−, q3 andC1, can be

understood as follows. As can be inferred from the solution (3.24), the constantq3 corresponds
to the freedom to apply� transformations, which shift the axion. Similarly, the constantq−
corresponds to SO(1, 1) transformations, which scale the axion and shift the dilaton. By applying
such transformations one can shiftq3 with arbitrary numbers whileq− can be rescaled with a
positive number. The constantC1 is shifted as follows

C1 → C1 − 2λ q (3.29)

under the SL(2,�) transformation, with parameterλ, whose generator is given by the electric
charge matrix:

ΩE = exp(λQE) . (3.30)

SinceQE is invariant under such transformations (see (3.17)), whileC1 is shifted, this explains
why C1 does not appear in (3.27). The remaining constant,q2, is invariant under SL(2,�) and
hence does not correspond to these symmetry transformations. Rather, this constant corresponds
to the freedom to perform rescalings of the metric (3.23). Toretain a metric that asymptotically
goes to 1, this must be combined with an appropriate rescaling of r. The resulting effect of this
transformation is a rescaling ofq2 with a positive number. One therefore always stays in the
same conjugacy class under such transformations.

The solution (3.24) can be written in a more compact form by using, instead of the two
functionsf+ and f− which are harmonic overD-dimensional flat space, a functionH(r) which is

6Note that this implies that the solution (3.24) is not manifestly real, sinceq can be imaginary. Below, we discuss
this issue separately for the three casesq2 positive, negative or zero.
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harmonic over a conformally flat space with the conformal factor specified by the functionB(r)
given in (3.24), i.e.

�H(r) =
1
√

g
∂

∂r

(

rD−1e(D−2) B(r) ∂H(r)
∂r

)

= 0 . (3.31)

The general solution to this equation is of the following form:

H(r) ∝ log( f+(r)/ f−(r)) . (3.32)

We can, therefore, rewrite the solutions (3.24) as follows:

ds2 =

(

1− q2

r2 (D−2)

)2/(D−2)

(dr2 + r2dΩ2
D−1) ,

ebφ(r) =

(

q−
q

sinh(H(r) +C1)

)2

,

χ(r) =
2

b q−
(q coth(H(r) +C1) − q3) ,

(3.33)

where

H(r) =
b c
2

log( f+(r)/ f−(r)) . (3.34)

The solutions (3.33) are valid both forq2 positive, negative and zero. Below, we will discuss
the reality and validity of the solutions for each of these three cases. Note that we are using the
Einstein frame.

• q2 > 0:

In this caseq is real and the solution is given by (3.33) with all constantsreal. However,
the metric poses a problem: it becomes imaginary for

rD−2 < rD−2
c = q . (3.35)

One can check that there is a curvature singularity atr = rc. However, this curvature
singularity happens at strong string coupling:

eφ(r) → ∞ , r → rc . (3.36)

Betweenr = rc andr = ∞, H varies between∞ and 0, and with an appropriate choice7

of C1, i.e. a positive value ofC1, the scalars have no further singularities in this domain.
One might hope to have a modification of this solution by higher-order contributions to
the effective action of IIB string theory [38]. Alternatively, onecan consider the possible

7According to (3.29), the constantC1 can be changed by an SL(2,�) transformation, leading to singular scalars (but
non-singular currents, which are independent ofC1). However, since these are related to regular scalars by a global
SL(2,�) transformation, this does not pose a problem.
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resolution of this singularity upon uplifting. In the next section, we will see that this
indeed happens for the special case of

b =

√

2(D − 2)
D − 1

, (3.37)

equivalent tobc= 2.

In the case withq2 > 0, there is an interesting limit in whichq− → 0. For generical values
of the other three constants, this yields a non-sensible solution with infinite scalars. To
avoid this, one must simultaneously impose

C1 → − log(
q−
2q

) , q3→ q− q+q−
2q

, q− → 0 . (3.38)

This yields a well-defined limit, in which the scalars read

eφ/c =
f+
f−
, χ =

−q+
bq

, (3.39)

while the metric is unaffected and given by (3.24). This solution can also be deduced
by simply solving the equations of motion from scratch, withthe constant axion Ansatz.
Note that in this limit the dilaton becomes independent ofb: when the axion is constant,
the dilaton coupling drops out of the field equations. In thislimit, one is left with two
independent integration constants,q+ andq2. The range of validity of this solution is
equal to that of the above solution withq− , 0: it is well-defined forr > rc, while
at r = rc the metric has a singularity and the dilaton blows up. We willfind that this
singularity is resolved upon uplifting for all values ofbc≥ 2.

• q2 = 0

We now consider the limitq2 → 0 of the general solution (3.33). Taking this limit for
generic values ofC1, one sees thateφ(r) → ∞ for all r. The only way to avoid this
bad behaviour is to haveC1 → 0, asq2 → 0. Thus, to obtain a well-defined limit, we
simultaneously take

C1→ gb/2
s

q
q−

, q2→ 0 . (3.40)

The constantgs is assumed positive and will correspond to the value ofeφ(r) at r = ∞.
Taking the limit (3.40) of the general solution (3.33) yields the extremal solution:

ds2 = dr2 + r2 dΩ2
D−1 , ebφ(r)/2 = h χ(r) =

2
b

(h−1 − q3

q−
) , (3.41)

whereh(r) is the harmonic function:

h(r) = gb/2
s +

b c q−
rD−2

. (3.42)



3.3 The solutions and their geometries 53

This is the extremal D-instanton solution of [30]. It can also be obtained by solving the
equations from scratch with a flat metric in the Ansatz. This solution is regular over the
range 0< r < ∞ provided one takes bothgs andb c q− positive; atr = 0 however, the
harmonic function blows up and the scalars are singular. Again, string theory corrections
may resolve these scalar singularities.

• q2 < 0:

In this caseq is imaginary. To obtain a real solution we must takeC1 to be imaginary. We
therefore redefine

q→ i q̃ C1→ i C̃1 , (3.43)

such that ˜q andC̃1 are real. One can now rewrite the solution (3.33) by using therelation8

log( f+/ f−) = 2 arctanh(q/rD−2) , (3.44)

and, next, replacing the hyperbolic trigonometric functions by trigonometric ones in such
a way that no imaginary quantities appear. We find that, forq2 < 0, the general solution
(3.33) takes the following form:

ds2 = (1+
q̃2

r2 (D−2)
)2/(D−2) (dr2 + r2 dΩ2

D−1) ,

ebφ(r) =

(

q−
q̃

sin(b c arctan(
q̃

rD−2
) + C̃1)

)2

,

χ(r) =
2

b q−
(q̃ cot(b c arctan(

q̃
rD−2

) + C̃1) − q3) .

(3.45)

The metric and curvature are well behaved over the range 0< r < ∞. However, the scalars
can only be non-singular over the same range by an appropriate choice ofC̃1 provided that
bc < 2. This can be seen as follows: the arctan varies over a range of π/2 whenr goes
from 0 to∞. Since it is multiplied bybc, the argument of the sine varies over a range of
more thanπ if bc> 2. Therefore, forbc> 2 there is always a pointrc such thatχ→ ∞ as
r → rc. Note that the breakdown of the solution occurs at weak string coupling:eφ → 0 as
r → rc. In the next section we will find that this singularity is not resolved upon uplifting
and will correspond to a black hole with a naked singularity.The same holds for the
limiting case ofbc= 2. Therefore the caseq2 < 0 only yields regular instanton solutions
for bc< 2, together with the condition thatC1 andC1 + bcπ/2 are on the same branch of
the cotangent.

3.3.2 Wormhole geometries

It is known [30] that the standard D-instanton, i.e.D = 10, b = 2, in string frame has the
geometry of a wormhole, i.e. it has two asymptotically flat regions connected by a neck, see
figure 3.1. It will therefore be interesting to investigate whether there exist frames, in which the
non-extremal instantons also have the geometries of wormholes.

8Here we have used the general relation log((1+ x)/(1− x)) = 2 arctanh(x).
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r
r=0 r=r r= ∞sd

ρ=ρsd

Figure 3.1: The geometry of a wormhole. The two asymptotically flat regions at r = 0 and
r = ∞ are connected via a neck with a minimal physical radiusρsd at the self-dual radius rsd.

We consider a general wormhole metric of the form

ds2 = f (r)2/(D−2) (dr2 + r2dΩ2) , f (r) = α + βr2−D + γr4−2D , (3.46)

whereα, β andγ are constants. The metric has a�2 isometry corresponding to the transfor-
mation rD−2 → γ r2−D/α which interchanges the two asymptotically flat regions. Thephys-
ical radiusρ is the square root of the coefficient of the angular part of the metric, given by
ρD−2 = f (r)rD−2. The minimum of this physical radius of the neck occurs at thefixed point of
the transformation above, i.e. at the so-called self-dual radiusrD−2

sd =
√

γ/α, and is given by
ρD−2

sd = 2
√
αγ + β. We will now study the three conjugacy classes in order to seefor each case

if there exists a frame9 in which the metric takes the form (3.46).

• q2 > 0: As we will see in section 3.4, the appropriate frame in this case is the frame dual
to the instanton, i.e. the (D − 3)-brane frame, given by

gdual
µν = ebφ/(D−2) gE

µν . (3.47)

In the special case ofb c= 2, the metric takes the form (3.46) in the dual frame with

f (r) =
q−
q

sinh(C1) + 2q− cosh(C1)r2−D + q−qsinh(C1)r4−2D . (3.48)

This gives the self-dual radiusrsd and the minimal physical radiusρsd

rD−2
sd = q , ρD−2

sd = 2q−e
C1 . (3.49)

Note that the self-dual radiusrsd coincides with the critical radiusrc of the previous sec-
tion: the curvature singularity in Einstein frame becomes the center of the wormhole in

9In arbitrary dimension one can define three different frames as follows: in the Einstein frame, the Einstein-Hilbert
term has no dilaton factor; in the string frame, the kinetic term for the axionic field strength comes without a dilaton
factor (like all Ramond-Ramond field strengths); and in the dual frame, the Einstein-Hilbert term, the dilaton kinetic
term and the kinetic term for the dual field strength (i.e.F2

D−p−2 for the frame dual to ap-brane) come with the same
dilaton factor (see e.g. [49, 50] for a more detailed discussion).



3.3 The solutions and their geometries 55

the dual frame. The limitq− → 0, with appropriate scaling ofC1 as given in (3.38), yields
ρD−2

sd = 4q. For generic values ofbc, the instanton metrics cannot be written in the form
(3.46) in any frame.

• q2 = 0: It turns out that for any value ofb the wormhole geometry is made manifest by
going to the string frame

gstr
µν = e2bφ/(D−2) gE

µν . (3.50)

In this frame, the metric is given by (3.46) with

f (r) = gb
s + 2bcq−g

b/2
s r2−D + (bcq−)2r4−2D . (3.51)

This gives the self-dual and minimal physical radii

rD−2
sd = bcq−/g

b/2
s , ρD−2

sd = 4bcq−g
b/2
s . (3.52)

• q2 < 0: Here, the metric has the appropriate form already in Einstein frame, hence, from
(3.45) we get, for any value ofb,

rD−2
sd = q̃ , ρD−2

sd = 2q̃ . (3.53)

We thus see that for all three conjugacy classes there existsframes, in which the solutions have
the geometries of wormholes.

3.3.3 Instanton solutions with multiple dilatons

We will now consider extensions of the instanton solution described in the previous sections,
which is carried by the SL(2,�) scalarsφ andχ. We will extend this system withn dilatons
ϕα (α = 1, . . . , n), which are SL(2,�) singlets and do not couple to the axion (this can always
be achieved by field redefinitions provided one allows for an arbitrary dilaton couplingb to
the original dilatonφ). We will call the corresponding solution a multi-dilaton instanton. The
multi-dilaton action is given by

LE =
1
2

√
g [R− 1

2

n
∑

α=1

(∂ϕα)2 − 1
2 (∂φ)2 + 1

2 ebφ (∂χ)2] , (3.54)

with field equations (3.21) plusn equations, requiringϕα to be harmonic in the curved space.
The case of one extra dilaton was considered in [51].

The solution to this system has the same metric as given in (3.24), see also [51]. Then the
extra dilatonsϕα satisfy a d’Alembertian equation in a conformally flat background specified by
B(r) as given in (3.24):

∂

∂r

(

rD−1e(D−2) B(r) ∂ϕ(r)
∂r

)

= 0 . (3.55)



56 Non-extremal D-instantons

This equation is solved by the harmonic function as given in (3.32), yielding dilatons given by

ϕα = να + µα log

(

f+(r)
f−(r)

)

, (3.56)

with 2n integrations constantsνα andµα.
Of course, due to the presence of the extra dilatonsϕα, the Einstein equation in (3.21) is

modified. It turns out that the contribution ofϕα to the energy-momentum tensor is cancelled by
similarµα-dependent contributions of the dilatonφ and the axionχ to the energy-momentumten-
sor. Since allµα-dependent contributions of the dilatons and the axion to the energy-momentum
tensor cancel each other, this extension allows for aµα-independent metric.

3.4 Uplift to black holes

In this section, we will find an explicit example of the soliton-instanton correspondence men-
tioned in chapter 2. We will show that a D-instanton can sometimes be viewed as a spacelike
section of a charged black hole, and more generally ap-brane.

3.4.1 Kaluza-Klein reduction

In this section we consider the possible higher-dimensional origin of the Euclidean system (3.18)
as a consistent truncation of the (D+1)-dimensional Lagrangian, defined over Minkowski space,

LD+1 =
√

−ĝ [R̂− 1
2 (∂φ̂)2 − 1

4 eaφ̂ F̂2] , (3.57)

with the two-form field strengtĥF = dÂ. It consists of an Einstein-Hilbert term (for a metric
of Lorentzian signature), a dilaton kinetic term and a kinetic term for a vector potential with
arbitrary dilaton coupling, parametrized bya. The corresponding∆ value [52] is given by

∆ = a2 +
2 (D − 2)

D − 1
, (3.58)

which characterizes the dilaton coupling inD + 1 dimensions.
The reduction Ansatz over the time coordinate is

d̂s
2
= e2αϕ ds2 − e2βϕ dt2 , Â = χ dt , φ̂ = φ , (3.59)

with the constants

α2 =
1

2 (D − 1) (D − 2)
, β = −(D − 2)α , (3.60)

which are chosen such as to obtain the Einstein frame in the lower dimension with appropriate
normalization of the dilatonϕ. Note that the dilaton factor in front of the spatial part of the
metricĝµν coincides, forbc= 2, with the dual frame defined in section 3.3.2.

With the above Ansatz, the Einstein-Maxwell-dilaton system reduces to theD-dimensional
Euclidean system

LD =
√
−g [R− 1

2 (∂φ)2 − 1
2 (∂ϕ)2 + 1

2 eaφ−2β ϕ (∂χ)2] . (3.61)
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Next, we perform a field redefinition corresponding to a rotation in the (φ, ϕ)-plane such that we
obtain

LD =
√−g [R− 1

2 (∂φ̃)2 − 1
2 (∂ϕ̃)2 + 1

2 eb φ̃ (∂χ)2] , (3.62)

with dilaton couplingb given by

b =

√

a2 +
2(D − 2)

D − 1
. (3.63)

The corresponding value of∆ is equal to the original value (3.58). This system can be truncated
to the one we are considering by setting ˜ϕ = 0.

Therefore, the system that we consider in section 3.3 has a higher-dimensional origin if the
dilaton coupling satisfiesbc≥ 2 or

b ≥
√

2(D − 2)
D − 1

. (3.64)

The case which saturates the inequality, i.e.a = 0, can be uplifted to an Einstein-Maxwell
system without the dilaton̂φ. For bc > 2 one needs to include an explicit dilatonφ̂ in the
higher-dimensional system; i.e. one must consider the Einstein-Maxwell-dilaton system (3.57)
with a , 0. Note that in string theory toroidal reductions, under which the combination∆ is
preserved, only lead to values ofb with bc≥ 2.

Since the Euclidean gravity-axion-dilaton system we are considering can be obtained as a
consistent truncation of the higher-dimensional Minkowskian Einstein-Maxwell-dilaton system
(3.57), it is natural to look for a higher-dimensional origin of the non-extremal instanton solu-
tions within this system. In the following two sections we consider the casesbc= 2 andbc> 2
separately. The instantons withbc< 2 have no physical higher-dimensional origin from toroidal
reduction.

3.4.2 Reissner-Nordström black holes:bc= 2

It is not difficult to see that forbc = 2 the generalized instanton solutions uplift to the (D + 1)-
dimensional Reissner-Nordström (RN) black hole solution

ds2 = −g+(ρ) g−(ρ) dt2 +
dρ2

g+(ρ) g−(ρ)
+ ρ2dΩ2

D−1 , Ftρ = −∂ρAt = (D − 2)c
Q
ρD−1

, (3.65)

where

g±(ρ) = 1− ρ
D−2
±
ρD−2

, ρD−2
± = M ±

√

M2 − Q2 , (3.66)

andQ andM are the charge and mass of the black hole, respectively. The RN black hole has
naked singularities forM2 < Q2, while these are cloaked forM2 ≥ Q2, yielding a physically ac-
ceptable spacetime. Note that the coordinateρ coincides with the physical radius of the previous
section, for which the angular part of the metricdΩ2

D−1 is multiplied byρ2.
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In order to establish the precise relation between the charge Q and the massM of the RN
black hole and the SL(2,�) charges of thebc = 2 instanton solutions given in (3.33) we must
first cast the RN metric in isotropic form as follows:

ds2 = − g(r)
ρ(r)2 (D−2)

dt2 +
ρ(r)2

r2
(dr2 + r2 dΩ2

D−1) , (3.67)

where

ρ(r) =

(

rD−2 + M +
M2 − Q2

4 rD−2

)1/(D−2)

, g(r) =

(

rD−2 − M2 − Q2

4 rD−2

)2

. (3.68)

To relate the instanton and black hole solutions, we need to choose proper boundary conditions
for the instanton solutions (3.33), which are implied by theboundary conditions of the RN black
hole:

limr→∞ gtt = −1 ,
limr→∞ At = 0 ,

⇐⇒ limr→∞ eφ = 1 ,
limr→∞ χ = 0 .

(3.69)

This fixes the constantsC1 and one of the three SL(2,�) chargesq3 in (3.33) as follows:

C1 = arcsinh(
q
q−

) , q3 = q coth(C1) =
√

q2 + q2
− . (3.70)

The relation between the chargeQ and the massM of the RN black hole and the two unfixed
SL(2,�) chargesq− andq2 is:

Q = −2q− , M = 2
√

q2 + q2
− , (3.71)

such that

q2 =
M2 − Q2

4
. (3.72)

From (3.72) we see that the physically acceptable non-extremal RN black holes withM2 ≥
Q2 coincide with the uplifted instanton solutions in theq2 = 0 andq2 > 0 conjugacy classes:

M2 > Q2 ⇔ q2 > 0 ,

M2 = Q2 ⇔ q2 = 0 . (3.73)

More specifically, we find that the non-extremal (extremal) RN metric in isotropic coordinates
(3.67) reduces to theq2 > 0 (q2 = 0) instanton solution in the dual frame metric (3.47). Note
that theq2 > 0 instanton has a wormhole geometry in the dual frame metric.It turns out that the
minimal physical radiusρsd for this case is given byρsd = ρ+, whereρ+ is the position of the
outer event horizon given in (3.66).
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3.4.3 Interpretation of instantons as BH wormholes

In the previous section we have seen that the non-extremal D-instanton solutions (3.33) in the
dual frame metric (3.47) withb c = 2 andM2 ≥ Q2 can be viewed ast = constantspace-like
sections of the RN black hole metric (3.67). In the Kruskal-Szekeres-like extension of the RN
black hole, the spatial part of the metric (3.67) has the geometry of an Einstein-Rosen bridge
or wormhole, which connects two asymptotically flat regionsof space (see [20] for a general
introduction to black holes). Indeed, the spatial part of (3.67) has, forM2 > Q2, the�2 isometry

rD−2 → M2 − Q2

4 rD−2
, (3.74)

which relates each point on one side of the Einstein-Rosen bridge to a point on the other side.
It is instructive to consider the special case of the Schwarzschild black hole, (i.e.Q = 0).

Due to (3.71), this corresponds to the uplift of instantons with q− = 0, i.e. the solutions given
in (3.38). As shown in figure 3.2, in the Kruskal-Szekeres extension of the Schwarzschild black
hole, everyt = constantsection of space time corresponds to a straight space-like line going
through the origin of this coordinate system, with slope determined by the constant value oft.

X

0

ρ=ρ
+

IV I

r 

r 0

t=constant

T

0

Figure 3.2: Schwarzschild black hole in Kruskal-Szekeres coordinates. Spatial sections with
t = constant are space-like lines through the origin, going from region IV to region I. T and
X are the Kruskal-Szekeres time-like and space-like directions respectively. The horizons are at
ρ = ρ+, which coincides with the minimal physical radius at the center ρ = ρsd.

Notice that on each line, the coordinater from (3.67) runs fromr = 0 at the spatial infinity
on the left-hand-side, tor = ∞ on the right-hand-side. The fixed point of the�2-isometry (3.74)
(now with Q = 0) is positioned at the center of figure 3.2. The value ofr at this fixed point and
the corresponding minimal physical radius are given by

rD−2
sd = 1

2 M , ρD−2
sd = 2M . (3.75)

Note that this value of the physical radius corresponds to the horizon of the black hole, as can
also be seen from figure 3.2. One can make the wormhole geometry visible by associating to
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IIV

t = constant

r =r = 0 ∞

=ρ ρ
+

Figure 3.3: Carter-Penrose diagram of RN black hole. The lines withρ = ρ+ are the horizons,
which coincide with the minimal physical radiusρ = ρsd in the center.

every value ofr a (D − 1)−sphere. Representing every (D − 1)−sphere by a circle one obtains
the wormhole picture of figure 3.1.

In the more general case (i.e.Q , 0), thet = constantsections are still paths connecting
two regions of the RN black hole. To see what these regions correspond to, it is helpful to draw
a Carter-Penrose diagram, see figure 3.3. The wormhole geometry is qualitatively the same as
in the Schwarzschild case. The position of the wormhole neckand the value of the minimal
physical radius are given by

rD−2
sd = 1

4(M2 − Q2) , ρD−2
sd = M +

√

M2 − Q2 , (3.76)

which again coincide with the horizon atρ = ρ+. The curvature singularity of the D-instanton
solutions withq2 > 0 (3.33) atrc = (q)1/D−2 are resolved in this uplifting and can now be
understood as the usual coordinate singularity of the RN black hole outer event horizons (i.e.
ρ = ρ+, or r2 (D−2) = (M2 − Q2)/4).

r= ∞

r

r=0

ρ=ρ
0

Figure 3.4: The geometry of the extremal black hole as a "one-sided" wormhole with minimal
physical radiusρ0.

The extremal RN black hole (i.e.M2 = Q2) is qualitatively different from the other cases.
As one can see from (3.74), the�2-isometry is gone. By taking the limitM2 → Q2 of a non-
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extremal black hole we see that the wormhole stretches to an infinitely long neck. The fixed
point of the isometry goes to spatial infinity atr = 0. This means that the extremal black hole
has a "one-sided" wormhole with a minimal physical radiusρD−2

0 = M, and the full Kruskal-like
extension is geodesically complete without need for a region IV. This situation is illustrated in
figure 3.4.

3.4.4 Dilatonic black holes:bc> 2

The instantons withbc> 2 uplift to non-extremaldilatonicblack holes, i.e. black hole solutions
carried by a metric, a vector and a dilaton. In fact, the uplift is identical to a version of the
black hole solution presented in [53]. To be more precise, the non-extremal dilatonic black hole
solutions of [53] contain an extra parameterµ. For generic values of this parameter the black
hole solution is singular10. One only obtains a regular solution if11 µ ∼ q.

The uplift of thebc > 2 instantons equals theµ → 0 limit of the non-extremal black hole
solutions of [53]. Therefore, in contrast to thebc = 2 case, we obtain a singular black hole
solution. This singularity can only be avoided in two limiting cases. The singularity disappears
both in the extremal limit (3.40) whenq2 → 0 and in the Schwarzschild limit (3.39) when
q− → 0, where the dilaton decouples.

3.5 Uplift to p-branes

In section 4 we have discussed the uplift of the instantons ofsection 3 to higher-dimensional
black hole solutions. It is therefore natural to consider the uplift to higher-dimensionalp-branes.
To this end, it will be useful to first introduce the followingnomenclature.

Non-extremal deformations of generalp-branes have been considered in [53,55]. These are
solutions of the (D + p+ 1)-dimensional Lagrangian, defined over Minkowski space,

LD+p+1 =
√

−ĝ [R̂− 1
2

(∂φ̂)2 − 1
2 (p+ 1)!

eaφ̂ Ĝ2
(p+2)] , (3.77)

with the rank-(p+ 2) field strengthĜ(p+2) = dĈ(p+1). For ap-brane inD + p+ 1 dimensions the
metric (in Einstein frame) is of the form

ds2 = e2A(−e2 f dt2 + dxp
2) + e2B(e−2 f dr2 + r2dΩD−1

2) , (3.78)

whereA, B and f are functions that depend on the radial coordinater only. It is convenient to
introduce the quantity

X = (p+ 1)A+ (D − 3)B . (3.79)

The extremalp-brane solutions with equal mass and charge, preserving half of the supersym-
metry, are obtained by takingX = f = 0.

Assuming thatD ≥ 3 there exist two types of non-extremalp-brane solutions in the litera-
ture. Following [53], we will call them type 1 and type 2 non-extremalp-branes:

10These (singular) solutions are a generalization of the (regular) black holes of [54].
11The parameterq2 can be identified with the parameterk of [53].
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• Type 1 non-extremalp-branes: X = 0 and f , 0.

These are the non-extremal black branes of [55,56]. The deformation functionf is given
by

e2 f = 1− k
rD−2

, (3.80)

wherek is the deformation parameter. In a different coordinate frame, with radial coordi-
natesρ, these branes can be expressed in terms of the two harmonic functions

f±(ρ) = 1−
(

ρ±
ρ

)D−2

. (3.81)

Physical branes without a naked singularity have more mass than charge, which corre-
sponds toρ+ > ρ− or k > 0. For this type of non-extremal deformation, the dilatonφ̂ is
proportional toA andB, which are linearly related sinceX = 0.

• Type 2 non-extremalp-branes: X , 0 and f = 0.

These are the non-extremal black branes of [53]. The deformation functionX reads

eX = 1− k
r2(D−2)

, (3.82)

wherek is the deformation parameter. The absence of naked singularities requiresk to be
positive. In this case, the dilaton̂φ is not proportional toA or B, which are not linearly
related.

The non-extremal D-instanton solutions (3.33) fit exactly in this chain of non-extremalp-
branes forp = −1. Although the type 2 non-extremalp-branes are defined in Minkowski
space, we find that one can extend the formulae of [53] top = −1 branes in Euclidean
space, i.e. generalized D-instantons, by takingf = 0 andB , 0.

Both types of non-extremalp-branes break supersymmetry. A special case isp = 0, for which
the regular type 1 and type 2 non-extremal 0-branes are equivalent up to a coordinate transfor-
mation inr. From the form of the metric (3.78), which has different world-volume isometries
for f = 0 and f , 0, it is clear that this is not the case forp > 0.

To relate the (multi-dilaton) instanton solutions of section 3 to the non-extremalp-branes,
it is instructive to reduce thep-branes over their (p+ 1)-dimensional world-volume, including
time. In complete analogy with the reduction over time of section 4.1, this will give rise top+1
dilatons from the world-volume of thep-brane. However, these are not all unrelated: for one
thing, the dilatons corresponding to the spatial world-volume will be proportional to each other,
and can therefore be truncated to a single dilaton. We will denote the dilaton from the spatial
metric components byϕ, while the time-like component of the metric gives rise to ˜ϕ. In general,
the reduction of non-extremalp-branes will therefore give rise to a multi-instanton solution with
three different dilatons, including the explicit dilatonφ:

ĝtt → ϕ̃ , ĝxx→ ϕ , φ̂→ φ . (3.83)
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For the two types of non-extremal deformations considered here, however, there is always a
relation between the three dilatons, allowing a truncationto two dilatons12. For the type 1
deformations the dilatonsφ andϕ are related, as can be seen from the metric withX = 0.
Similarly, the type 2 deformations yield a relation betweenϕ and ϕ̃ since f = 0. Therefore,
these non-extremalp-branes reduce to multi-dilaton instanton solutions with two inequivalent
dilatons. Conversely, two-dilaton instanton solutions can uplift to either types of non-extremal
p-branes, by embedding these dilatons in different ways in the higher-dimensional metric and
dilaton.

It is interesting to investigate when these two dilatons canbe related or reduced to one,
therefore corresponding to our explicit SL(2,�) instanton solution (3.24) with only one dilaton.
For the type 1 deformations, this is only possible for the special case withp = 0 anda = 0. For
these values, the dilatonsφ andϕ vanish, leaving one with only ˜ϕ. The constraint ona implies
bc= 2 which, as discussed in section 3, gives rise to the Reissner-Nordström black hole.

For the type 2 deformations there are more possibilities to eliminate the dilatonφ. It can be
achieved by requiringa = 0, as we did for the uplift to black holes. For generalp, this leads to
the following constraint onb:

b =

√

2(p+ 1)(D − 2)
D + p− 1

. (3.84)

Note that this yieldsbc= 2 for black holes withp = 0. For these values ofb, the instanton solu-
tion (3.24) can be uplifted to regular non-extremal non-dilatonicp-branes. For higher values of
b, the instanton solution uplifts to singular non-extremal dilatonic p-branes. For these solutions
to become regular, one must take eitherq2 → 0 or q− → 0, exactly like we found in thebc> 2
discussion of section 4.3.

The uplift of the SL(2,�) instanton solution (3.24) top-branes is therefore very similar to
the uplift to black holes. There is one value ofb (3.84) for which the instanton solution can be
uplifted to a regular non-extremal non-dilatonicp-brane of type 2. For higher values ofb one
can obtain singular non-extremal dilatonicp-branes of type 2, which only become regular on
either of the limitsq2→ 0 andq− → 0. By adding an extra dilaton to the instanton solution one
can also make a connection to the regular type 1 and type 2 non-extremal dilatonicp-branes.

3.6 Instantons

In the previous section we focused on the bulk behavior of thethree conjugacy classes of
instanton-like solutions. In this section we will investigate which of these solutions can be
interpreted as instantons. Instantons, as we have seen in chapter 2 are defined to be solutions of
the Euclidean equations of motion with finite, non-zero value of the action. They have a tunnel-
ing interpretation, and generically contribute to certaincorrelation functions in the path integral
with terms that are exponentially suppressed by the instanton action. These correlation functions
then induce new interactions in the effective action, and for the extremal, 1/2 BPS, D-instantons
in type IIB in D = 10, these effects are captured by certain SL(2,�) modular functions that

12This seems to indicate a generalization of the non-extremaldeformations with bothX , 0 and f , 0, reducing to a
three-dilaton instanton.
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multiply higher derivative terms such asR4 and their superpartners [31]. Before we study corre-
lation functions and effective interactions induced by non-extremal D-instantons, we must first
discuss the properties and show the finiteness of the non-extremal instanton action. We will do
this using a method that will allow us to recover the special case of extremal D-instantons easily.

3.6.1 Instanton action

The first thing we notice is that the action (3.18), evaluatedon anysolution of (3.21) vanishes.
What is also bothersome about the Euclidean action (3.18) isthat it is not bounded from below,
not even in the scalar sector. Such actions cannot be used in apath integral, since fluctuations
around the instanton will diverge. However, this should notbe a surprise at all. After all, the
Lagrangian (3.5), whose equations of motion we have been solving, is not the true Lagrangian of
the full quantum field theoretic system, but aneffectiveLagrangian that is only meant to be used
for finding ‘saddle points’13. It was never meant to appear in a path integral. In order to evaluate
the true value of the action of the non-extremal D-instantonwe will use the dualization procedure
and replace this dilaton-axion system with a system containing the dilaton and a (D − 1)-form
field-strength, whichdoeshave true saddle points. This procedure was briefly mentioned at the
beginning of this chapter. We will now fully develop it here.For a toy model illustration of this
procedure, see appendix A.

The goal is to prove that two different systems can be regarded as the effective path integrals
of one and only one common parent path integral. Let us first write down the Euclidean path
integral for a dilaton coupled to a (D−1)-form field-strength14, subject to the constraint of being
a closed form, i.e.dFD−1 = 0:

∫

d[FD−1] d[λ] exp

(∫

M
− 1

2

(

dφ ∧ ∗dφ + e−bφ FD−1 ∧ ∗FD−1
)

+ i λ dFD−1

)

, (3.85)

whereλ is realand acts as a quantum Lagrange multiplier that imposes the constraintdFD−1 = 0,
by means of the following identity:

∫

d[λ] exp [i λG] = δ[G] , for any function G , (3.86)

where theδ[] stands forδ-functional. Notice that we are treating the field-strength as funda-
mental, not the gauge potential. This path integral is defined with ‘Dirichlet’ boundary condi-
tions onFD−1, i.e. some of the components ofFD−1 are fixed on the boundary. The constraint
that the former be closed implies that it is locally exact, i.e. locally,FD−1 = dCD−2, for some
CD−2. The path integral (3.85) is well-defined because the actionis positive-definite, and it is
straightforward to find its saddle points, by treatingCD−2 as fundamental, and deriving the usual
higher-dimensional Maxwell equations.

Let us now change the order of integration and perform the path integral overFD−1 first.
In order to do this, we need to rewrite the action in such a way that the field-strength appears

13They are not the true saddle points of the scalar system, but they still provide a semiclassical approximation of the
path integral.

14We will not worry about the gravitational sector in the following derivation, since it is not relevant. The integration
over the dilaton is also omitted.
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without derivatives acting on it:

SE =

∫

M

1
2

(

dφ ∧ ∗dφ + e−bφ FD−1 ∧ ∗FD−1 − 2 i λ dFD−1
)

=

∫

M

1
2

[

dφ ∧ ∗dφ + e−bφ
(

FD−1 + i ebφ ∗ dλ
)

∧ ∗
(

FD−1 + i ebφ ∗ dλ
)

(3.87)

+ ebφ dλ ∧ ∗dλ − 2 i d (λ FD−1)
]

,

where we have used partial integration and the fact that, in aEuclidean space,∗∗Ap = (−)(D−1)pAp,
whereAp is a p-form. The last term in (3.87) is a surface term, and since boundary conditions
have been imposed on the field-strength, it will not participate in the path integral over the latter.
The term can be interpreted as an external currentJµ. Defining∗J = FD−1, we have

∫

M
d (λ FD−1) =

∫

∂M
λ ∗ J =

∫

∂M
λ Jµ nµ , (3.88)

wherenµ is an outward normal vector.
To integrateFD−1 in (3.87), we first perform the following shift of integration variables:

FD−1 → F̄D−1 + i ebφ ∗ dλ . (3.89)

We are allowed to do this even thoughλ is real. This isnot a rotation of the contour of integra-
tion, it is just a shift in the imaginary direction. The resulting integration overF̄D−1 is nothing
other than the plain old Gaussian integral, yielding a determinantebφ/2 in the path integral.
We can absorb the latter in the measure of the dilatonic path integral by changing variables as
follows:

ebφ/2 d[φ] = 2/b d[ebφ/2] . (3.90)

This means we are treating the exponential of the dilaton as fundamental. As long as we only
sum over positive values of the exponential, this does not affect anything. The change of vari-
ables is valid because the exponential is a strictly monotonic function of the dilaton, and hence
injective. When the smoke clears, we are left with the following system:

∫

d[λ] exp

(

−
∫

M

1
2

[

dφ ∧ ∗dφ + ebφ dλ ∧ ∗dλ
]

+ i
∫

∂M
∗J λ

)

, (3.91)

where no boundary conditions are imposed onλ. The constraintdFD−1 = 0 translates tod ∗ J =
0, i.e. the external current must be divergenceless. The important thing to notice is that the
kinetic term ofλ has the ‘normal’ sign. Contrary to common belief, a quantum mechanical
dualization doesnot yield a negative action scalar. The boundary term in this path integral
corresponds to the two surface15 terms in (3.9). This boundary term, combined with the fact
that boundary values ofλ are being integrated over, plays the role of a Fourier transformation
of the boundary states. The path integral does not compute a transition amplitude between field
eigenstates| λ 〉, but between momentum eigenstates| π 〉 ≡

∫

d[λ] exp (i π λ) | λ 〉.
15There is ambiguity in defining the boundary at infinity of a manifold. Although the surface terms in (3.9) are only

defined on disconnected ‘initial’ and ‘final’ hypersurfaces, I believe that defining a single, connected, radial boundary
at r = ∞ leads to equivalent results.
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Note that the shift�-symmetry of the axion is now broken to a�-symmetry by the surface
term:

λ→ λ +
2π n

c
, where c ≡

∫

∂M
∗J , and c ∈ � . (3.92)

In theories whereλ is periodically identified, the single-valuedness of the path integral imposes
a quantization condition onc. String theory effects are expected to induce such a quantization,
[57,58]

Let us naïvely try to approximate (3.91) by means of the saddle point approximation. Be-
cause there are no boundary conditions onλ, variations need not vanish on the boundary. The
Euler-Lagrange variation of the action then yields

δS =
∫

M
d
(

ebφ ∗ dλ
)

δλ −
∫

∂M

(

ebφ ∗ dλ − i ∗ J
)

δλ . (3.93)

For arbitraryδλ, this imposes a rather normal equation of motion for the axion in the bulk

d
(

ebφ ∗ dλ
)

= 0 . (3.94)

However, it also imposes the following boundary condition on the current of the axion shift
symmetry:

ebφ dλ
∣

∣

∣

∂M = i J . (3.95)

This constraint is rather strange, as it would imply that thesaddle point approximation requires
λ to be imaginary. Hence, the path integral has no real saddle points. However, it is possible
to perform a semiclassical approximation of it in two ways: the first method consists in using
the fact that this path integral is at most quadratic inλ to compute it. The idea is that one
can split up the integral into an integration over bulk fieldswith Dirichlet boundary conditions
followed by one over the boundary fields. The former can be evaluated in the usual way by
using the variational principle, since it is just a Gaussian. Then, by performing the integral over
the boundary fields, one is basically Fourier transforming this result. However, this method is
very cumbersome, as it requires an explicit choice of the boundary. The second method relies
on the dualization procedure we described. This is a far simpler and more covariant approach,
and we will be using it to evaluate the actions of our solutions. The idea is that, since the axion
path integral (3.91) and the field-strength path integral (3.85) are equal to each other, instead of
trying to evaluate the former, which has no real saddle points, one can just evaluate the latter,
which does have saddle points. This indirectly yields a semiclassical approximation of the axion
theory.

If we use the constraintdFD−1, we can treat the (D − 1)-form as locally exact; i.eFD−1 =

dCD−2. Then, we can derive the following equation of motion:

d(e−bφ ∗ FD−1) = 0 , (3.96)

which means that, locally, one can rewrite the field-strength as follows:

FD−1 = ebφ ∗ dχ , (3.97)

whereχ is a scalar. The equation of motion of the dilaton is the following:

d ∗ dφ +
b
2

e−bφ F ∧ ∗F = 0 . (3.98)
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Substituting the definition ofχ into this yields the following:

d ∗ dφ +
b
2

dχ ∧ ∗dχ = 0 . (3.99)

This equation of motion has the wrong sign in front of theχ term. One can similarly show that
the Einstein equation also ‘sees’ a dilaton with the wrong sign. Hence, the remaining equations
of motion of the resulting system are the ones we have been solving in this chapter; i.e. those of
a system with a wrong sign kinetic term for the axion. At the end of the day, the result of solving
theFD−1 equations and substituting the solution into (3.85) is effectively the same as performing
a saddle point approximation of a ‘would-be’ imaginary scalar fieldχ with the following action:

S =
∫

M

1
2

[

dφ ∧ ∗dφ − ebφ dχ ∧ ∗dχ + 2d
(

χ ebφ ∗ dχ
)]

, (3.100)

and with the following Neumann boundary conditions for the axion current:

ebφ dχ
∣

∣

∣

∂M
= J . (3.101)

whereJ is the external current in (3.91) and the Hodge dual of the boundary value ofFD−1 in
(3.85). The equations of motion of the would-be scalar fieldχ seem to imply thatJ is diver-
genceless, which is equivalent to the constraintdFD−1 = d ∗ J = 0. Therefore, the path integral
yields a selection rule that enforces momentum conservation.

From now on, we will use theFD−1 action in (3.85) to evaluate the action of the non-extremal
D-instanton, and the on-shell duality relation (3.97) to translate our ‘electric’ axionic solutions
into dual ‘magnetic’ solutions.

It is now easy to show that this action satisfies a Bogomol’nyibound [31]. We can rewrite
the action as follows:

SE =

∫

M

1
2

(

dφ ∧ ∗dφ + e−bφ FD−1 ∧ ∗FD−1
)

, (3.102)

=

∫

M

1
2[(dφ ± e−bφ/2 ∗ FD−1) ∧ ∗(dφ ± e−bφ/2 ∗ FD−1) ∓ (−)D 4

bd(e−bφ/2FD−1)] , (3.103)

where we have used the fact thatdFD−1 = 0. Since the first term is positive semi-definiteSE is
bounded from below by a topological surface term given by thelast term in (3.103). The bound
is saturated when the Bogomol’nyi equation

∗FD−1 = ∓ebφ/2dφ , (3.104)

is satisfied. The∓ distinguishes instantons from anti-instantons, and for simplicity, we will use
the upper sign from now on. Using (3.97), one can write the Bogomol’nyi equation as

dχ = −e−bφ/2dφ , (3.105)

and one can check explicitly that the instanton solutions with q2 = 0, given in (3.41), satisfy this
bound. They are therefore rightfully called extremal. The instanton action can then easily be
evaluated, and has only a contribution from the boundary at infinity,

S∞inst =
4
b2

(D − 2)Vol(SD−1)
|bcq−|
gb/2

s

, (3.106)
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while the contribution fromr = 0 vanishes.
For D = 10 andb = 2, this value of the instanton action precisely coincides with [30]. For

other values ofb, we notice the dependence ofgs on b. In ten dimensions, the only possible
value forb compatible with maximal supersymmetry isb = 2. One then finds that the instanton
action depends linearly on the inverse string coupling constant. In lower dimensions this is not
necessarily so, and more values forb are possible, depending on whetherχ comes from the RR
sector or from the NS sector. This would imply different kinds of instanton effects, with instan-
ton actions that depend on different powers of the string coupling constant. This indeed happens
for instance in four dimensions, after compactifying type IIA strings on a Calabi-Yau threefold.
There are D-instantons coming from wrapping (Euclidean) D2branes around a supersymmetric
three-cycle, and there are NS5-brane instantons coming from wrapping the NS5-brane around
the entire Calabi-Yau. As explained in [59], such instantoneffects are weighted with different
powers ofgs in the instanton action. This was also explicitly demonstrated in [60–62]. In our
notation, they correspond16 to b = 1 andb = 2. Our results in (3.106) are consistent with these
observations.

Notice also that the instanton action is proportional toq−. For extremal instantons, this is
precisely the mass of the corresponding black hole one dimension higher, see (3.71). This is the
generic characteristic of the instanton-soliton correspondence that we explained in subsection
2.3.2. There, the Euclidean action of the instanton inD dimensions equals the mass or Hamilto-
nian of the black hole soliton inD+ 1 dimensions. It is interesting to note that this also happens
for theories with gravity.

We now turn to the case of non-extremal instantons, and focusfirst on the case ofq2 > 0.
The solutions (3.33) for the dilaton and axion fields can be written as

dφ =
2
b

coth(H +C1)dH , e−bφ/2FD−1 =
2
b

∗dH
sinh(H +C1)

, (3.107)

and do not satisfy the Bogomol’nyi equation (3.104). To evaluate the action on this non-extremal
instanton solution, we substitute these expressions into the bulk action (3.102), and find

Sscalars=
2
b2

∫

d
(

{H − 2 coth(H +C1)} ∗ dH
)

, (3.108)

which is a total derivative term. Evaluating the Ricci scalar on the solution in (3.33) we find the
following:

SR = −
∫

M
R= − 2

b2

∫

M
d(H ∗ dH) , (3.109)

which precisely cancels the first term of the scalar action (3.108). Hence, the bulk action is given
by the following:

SR + Sscalars= −
4
b2

∫

d (coth(H +C1) ∗ dH) , (3.110)

16This corrects a minor mistake in the previous version and in the version published inJHEP. In our conventions, the
D = 4 dilaton is related to theD = 10 string dilaton by a factor of 2, see [63] for further details and implications of this
correction.
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which is again a total derivative. In fact, had we used the pseudo action in (3.100), we would
have also ended up with a total derivative of the formd

(

χ ebφ ∗ dχ
)

, which would have yielded
the same result.

Using Stokes theorem, we only pick up contributions from theboundaries. Since theq2 > 0
instantons have a curvature singularity atr = rc (see section 3.1), one can take these boundaries
at r = ∞ and atr = rc. In terms of the variableH, this corresponds toH = 0 andH = ∞
respectively17. We stress again that we have takenC1 to be positive, in order to avoid further
singularities in the scalar sector whenH +C1 = 0.

Besides the bulk action, one also needs to include the Gibbons-Hawking term [64], to make
the action consistent with the Einstein equations:

SGH = −2
∫

∂M
(K − K0) , (3.111)

whereM is theD-dimensional Euclidean space and∂M is the boundary. In the second term,
K is the trace of the extrinsic curvature of the boundary andK0 the extrinsic curvature one
would find for flat space, which is subtracted to normalize thevalue of the action. The extrinsic
curvature is defined in terms of a unit vectornµ that is normal to the boundary as follows:

K ≡ hµ
ν ∇ν nµ , (3.112)

wherehµν is the tensor that projects components onto the boundary.
Let us now evaluate the total action at bothr = ∞ andr = rc: we first discuss the boundary

at r = ∞. The contribution from (3.111) vanishes, while (3.110) yields a contribution

S∞inst =
4
b2

(D − 2)Vol(SD−1) b c
(

q cothC1

)

,

=
4
b2

(D − 2)Vol(SD−1) b c
(

√

q2 +
q2
−

gb
s

)

. (3.113)

In the second line, we have used the relation betweenC1 and the asymptotic value of the dilaton,
gb

s = (q−/q)2 sinh2 C1.
For q2 = 0, (3.113) precisely yields back the result for the extremalinstanton, see (3.106).

There we made the relation between the instanton action and the black hole mass one dimension
higher. Also for the non-extremal instanton, such a relation seems to hold. Indeed, from the
mass formula for the non-extremal black hole in terms of the instanton parameters, one has that
q cothC1 =

√

q2 + q2
−, and the string coupling constant is set to unity. One therefore sees that

the contribution to the instanton action from the boundary at infinity is proportional to the black
hole mass one dimension higher.

The boundary atr = rc receives contributions from both integrals (3.110) and (3.111), which
add up to

Src
inst =

4
b2

(D − 2)Vol(SD−1) b c
(

q (
bc
2
− 1)

)

. (3.114)

17Without loss of generality, we can chooseq > 0.
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Because the dilatonand the curvature blow up atrc, the supergravity approximation and string
perturbation theory both break down. Hence, it is not clear whether this contribution is mean-
ingful. One might take the point of view that string theory corrections, which are expected to
take over atrc, would actually smooth the singularities out. In that case,there would be no need
to consider this point as a boundary, and no need to take this contribution into account. It is also
plausible, however, that string theory corrections completely modify the geometry, ‘opening up’
a wormhole that leads into a whole new space. In that case, a second boundary would exist, but
the values of the fields might be different there.

Note that this contribution vanishes for the casebc = 2, while it is positive forbc > 2.
However, as discussed above, it is not at all clear whether this contribution to the integrals
(3.110) and (3.111) should be included in the instanton action, since it is calculated in a region
of space where the supergravity approximation is no longer valid.

We now turn to the case ofq2 < 0, or withq = iq̃, a positive ˜q2 > 0. A similar calculation as
for q2 > 0 shows that, for the solution (3.45), we have

dφ =
2
b

cot(H̃ + C̃1)dH̃ , e−bφ/2FD−1 =
2
b

∗dH̃

sin(H̃ + C̃1)
, (3.115)

where

H̃ = bcarctan(
q̃

rD−2
) , (3.116)

is a harmonic function over the geometry given by the metric in (3.45). Plugging in these
expressions into the bulk action (3.102), we find

Sinst = −
2
b2

∫

d
(

{H̃ + 2 cot(H̃ + C̃1)} ∗ dH̃
)

. (3.117)

Since this is a total derivative, we can use Stokes theorem again to reduce it to an integral over
the boundaries. These boundaries are atr = ∞ andr = 0, where we required thatbc < 2, as
discussed in section 3.1. In contrast to the discussion of the r = rc boundary forq2 > 0, the
instanton solution is perfectly regular everywhere, in particular at both boundaries. Therefore
the contribution from the boundary atr = 0 can also be trusted.

In addition to the above action, one also needs to include thegravitational contribution
(3.111). Similar to the case ofq2 > 0, the first term of (3.117) is cancelled by the contribu-
tion from the Ricci scalar. We anticipate the Gibbons-Hawking term not to contribute, since the
two asymptotic geometries atr = 0 andr = ∞ are equivalent due to the�2-symmetry (3.74).
Hence, their contributions should cancel.

Therefore theq2 < 0 instanton action has contributions only from the second term of (3.117)
from both boundaries atr = 0 andr = ∞:

S∞inst =
4
b2

(D − 2)Vol(SD−1) b cq̃
(

cotC̃1

)

,

S0
inst =

4
b2

(D − 2)Vol(SD−1) b cq̃
(

− cot(C̃1 + bc
π

2
)
)

. (3.118)

Due to the fact that̃C1 andC̃1 + bcπ/2 are on the same branch of the cotangent (due to the
restriction of regular scalars for 0< r < ∞, which can only be achieved forbc < 2, see
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section 3.1), the total instanton action is manifestly positive definite. In the neighborhood of
bc ≈ 2, the instanton action becomes very large, and the limit to the extremal point where
bc = 2, is discontinuous. This shows that this instanton is completely disconnected from the
extremal D-instanton.

Using the asymptotic value of the dilaton in (3.45), we havegb
s = (q−/q̃)2 sin2 C̃1, and

therefore ˜q2 < q2
−/g

b
s. Assuming that cot̃C1 > 0, the contribution from infinity is positive

and can be rewritten as

S∞inst =
4
b2

(D − 2)Vol(SD−1) b c

√

q2
−

gb
s
− q̃2 , (3.119)

which is the analytic continuation of the result withq2 > 0.

3.6.2 Tunneling interpretation

The reader may wonder what the tunneling interpretation of aD-instanton is. In a standard non-
gravitational QFT, the metric is fixed and one always knows what the Euclidean time direction
is, because one knows how the theory was Wick rotated in the first place. In a theory where the
metric is dynamical, however, this is not straightforward at all. Since the Euclidean spacetime
is not part of the input, but rather the outcome of the equations of motion, which direction is
viewed as time-like is not determineda priori. For our solutions, one might be tempted to think
of r as the Euclidean time parameter, since all fields depend on it. However, this wouldn’t lead
to the tunneling interpretation we are after. Take for instance the caseq2 = 0, which has a flat
space. Let us Wick rotate this back to Lorentzian signature taking ther direction to be time:

dr2 + r2 dΩ2
SD−1 → −dt2 + t2 d�2

D−1 . (3.120)

See chapter 7 for a derivation of this Wick rotation. The initial slice t = 0 is singular, and the
later slices are hyperbolic spaces. These are not the initial and final states one would like to
have for a tunneling interpretation. The more natural Wick rotation takes place in Cartesian
coordinates. Lettingr = (x2

0 + ... + x2
D−1)1/2, and rotatingx0 → i t.

Another reason not to pickr as a time direction is the fact that, for our solutions, the axion
currentebφ ∂χ would be conserved in ther direction, since our Ansatz is such that the axion
equation of motion is the following:

∂µ
(

ebφ ∇µχ
)

= ∂r

(

ebφ(r) ∇rχ(r)
)

∼ δ(r) . (3.121)

This means that, in ther direction, there would be no charge conservation violationdue to
tunneling, and hence no interesting tunneling effect in any way. If we pickx0, however, then the
point r = 0 will act as a source-like singularity18 (for the cases withq2 ≥ 0) and will generate
a charge difference between the initial and final states. See figures 3.5(a) and 3.5(b). One can
calculate that this difference will be∼ q− for our solutions. Classically one could say that the
δ-function in the equations of motion forχ can be reproduced by adding a source term in the
action of the formχ δ(r). From the point of view of the path integral in (3.91), one should

18This is basically because�H(r) ∼ δ(r) for our harmonic functions.
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Figure 3.5: The tunneling interpretation. Figures (a), (b), and (c) depict the q2 = 0, > 0, and
< 0 respectively. The first two solutions have a charge conservation violation because they have
electric source-like singularities at the origin r= 0. The worhole (c) conserves its total charge,
but splits up into two disconnected spaces�D−1 ⊕ SD−1, so that an observer on�D−1 will see a
charge loss.

add a term of the formi λ δ(r) to the action; and in the path integral in (3.85) this corresponds
to addingi dFD−1 δ(r). This will supplement the charge conservation or closedness constraint,
respectively:

dFD−1 + δ(r) = d ∗ J + δ(r) = 0 . (3.122)

Such a term is a local operator insertion or vertex operator in the path integral, i.e.
〈

exp(i λ(r0))
〉

.
In the case of the wormhole, the pointr = 0 is not included in the manifold, and there is

noδ-function-like singularity. In order to find the tunneling interpretation, one must first cut the
wormhole in half at its neck, and suggestively redraw the shape of the remaining geometry as
in figure 3.5(c), as was done in [28]. The axion charge is globally conserved, but the manifold
splits up into two disconnected spaces as follows:

�
D−1 → �D−1 ⊕ SD−1 . (3.123)

Although the total charge is conserved, an observer who stays on the�D−1 will see a charge
loss, because theSD−1 baby universewill carry off some charge with it. From the string theory
point of view, it is possible that, for the caseq2 > 0, string theory corrections will change the
singular geometry into a smooth one, perhaps by ‘opening up’a wormhole-like geometry where
the singularity was. This would restore global axion chargeconservation.

3.6.3 Correlation functions

Once the instanton solutions are established, one would like to study their effect in the path inte-
gral. As for D-instantons in ten-dimensional IIB, they contribute to certain correlation functions
via the insertion of fermionic zero modes. For the D-instanton, which is 1/2 BPS, there are
sixteen fermionic zero modes. These are solutions for the fluctuations that satisfy the linearized
Dirac equation in the presence of the instanton. All of thesezero modes can be generated by
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acting with the broken supersymmetries on the purely bosonic instanton solution. For the non-
extremal instantons, no supersymmetries are preserved, sothere are more fermionic zero modes.
Let us focus for simplicity on ten-dimensional type IIB. Since all supercharges are broken, one
can generate 32 fermionic zero modes. The path integral measure contains an integration over
these fermionic collective coordinates, and to have a non-vanishing result, one must therefore
insert 32 dilatinos in the path integral. Based on this counting argument of fermionic zero
modes, a 32-point correlator of dilatinos would be non-zero, and induce new terms in the effec-
tive action, containing 32 dilatinos. In the full effective action, such terms are related to higher
curvature terms like e.g. certain contractions ofR8. An explicit instanton calculation should be
done to determine the non-perturbative contribution to thefunction that multipliesR8. As for
the D-instanton, we expect that the contributions of the instantons with differentq2-values build
up a modular form with respect to SL(2,�), possibly after integrating overq2.

These issues, though important, lie beyond the scope of thischapter, and are left open for
investigation.

3.7 Discussion

In this chapter we investigated non-extremal instantons instring theory that are solutions of a
gravity-dilaton-axion system with dilaton coupling parameterb. In particular, we constructed
an SL(2,�) family of spherically symmetric instanton-like solutions in all conjugacy classes
labelled byq2. Among these is the (anti-)D-instanton solution withq2 = 0. For special values
of the dilaton coupling parameter this solution is half-supersymmetric. The instanton solutions
in the other two conjugacy classes, withq2 > 0 andq2 < 0, are non-supersymmetric and can
be viewed as the non-extremal versions of the (anti-)D-instanton. This view is confirmed by the
property that instantons in these two conjugacy classes, for bc≥ 2 with c defined in (3.26), can
be uplifted to non-extremal black holes.

We stressed the wormhole nature of the instanton solutions.We found that each conjugacy
class leads to a wormhole geometry provided the corresponding instanton is given in a particular
metric frame:

q2 > 0 ↔ dual frame metric (only forbc= 2 orq− = 0)

q2 = 0 ↔ string frame metric (3.124)

q2 < 0 ↔ Einstein frame metric

For all these cases the metric takes the form (3.46), with thespecific values given in section 3.2.
Not all instanton solutions we constructed are regular and not all can be uplifted to black

holes. The non-extremal instantons in theq2 > 0 conjugacy class all have a curvature singularity
at r = rc, see (3.35). Only thebc = 2 instanton can be uplifted to a regular non-extremal RN
black hole with the singularity being resolved as a coordinate singularity at the outer event
horizon of the RN black hole. The singularity remains forbc > 2 and in that case can be
resolved by adding an extra dilaton to the original system [51]. Two exceptions are the limits
q2 → 0 or q− → 0, which correspond to the extremal and Schwarzschild blackhole solutions,
respectively. Finally, the instantons in theq2 < 0 conjugacy class are only regular forbc < 2.
These instantons can never be uplifted to black holes.
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We have also considered the uplift of our instanton solutions to p-branes. It turns out that
an instanton can only be uplifted over a (p+ 1)-torus to ap-brane provided the dilaton coupling
satisfies (following from (3.84))

b c≥

√

4(p+ 1)(D − 1)
D + p− 1

. (3.125)

For the case that saturates this bound, the instanton withq2 ≥ 0 uplifts to a regular non-dilatonic
p-brane. For larger values ofb, the instanton solution (3.24) withq2 > 0 uplifts to a singular
limit of the dilatonicp-branes of [53]. These solutions only become regular in the limit q2→ 0
or q− → 0. A summary of the possible regular solutions is given in table 3.1. Alternatively, we
have discussed the possibility of adding an extra dilaton tothe instanton solution [51], which
allows for the uplift to the regular dilatonicp-branes of both type 1 and type 2.

bc Dimension Regular solutions

< 2 D Instantons withq2 ≤ 0, see (3.45)

= 2 D + 1 RN black holes withq2 ≥ 0, see (3.67), or
Schwarzschild black holes withq2 > 0, q− = 0

> 2 D + 1 Dilatonic black holes withq2 = 0 or
Schwarzschild black holes withq2 > 0, q− = 0

= in (3.125) D + p+ 1 Non-dilatonicp-branes withq2 ≥ 0

> in (3.125) D + p+ 1 Dilatonic p-branes withq2 = 0 or
q2 > 0, q− = 0

Table 3.1:The regular instanton, black hole and p-brane solutions that are obtained, depending
on the dilaton coupling parameter b, the conjugacy class q2 and the charge q−.

For the particular valueb = 2, corresponding to∆ = 4, there is another higher-dimensional
origin. In this special case, theD-dimensional extremal instanton can be uplifted to a gravita-
tional wave inD+2 dimensions [35]. Similarly, the other two conjugacy classes uplift to purely
gravitational solutions inD + 2 dimensions which we denominate “non-extremal waves”. The
terminology is slightly misleading since the uplift only leads to a time-independent solution.
Whether this solution can be extended to a time-dependent wave-like solution remains to be
seen. It is also interesting to note the following curiosity: the source term for a pp-wave is a
massless particle, i.e. a particle with a null-momentum vector: p2 = 0. This suggests that we
associate the source terms for the other two conjugacy classes with massive particles (p2 > 0)
and tachyonic particles (p2 < 0). We leave this for future investigation.

In the second part of this chapter, we investigated whether the non-extremal instantons might
contribute to certain correlation functions in string theory. For this application, it is a prerequisite
that there be a well-defined and finite instanton action. Mimicking the calculation of the standard
D-instanton action, we found that forq2 > 0 the contribution from infinity to the instanton



3.7 Discussion 75

action, for all values ofb, is given by the elegant formula (3.113). This action reduces to the
standard D-instanton action forq2 = 0. Having a finite action, the non-extremal instantons might
contribute to certain correlation functions. In the case oftype IIB string theory, we conjectured
that non-extremal instantons contribute to theR8 terms in the string effective action in the same
way that the extremal D-instantons contribute to theR4 terms in the same action. Whether the
fact that all supersymmetries are broken by the non-extremal instantons poses problems remains
to be seen. An explicit instanton calculation should decidewhether our conjecture is correct.
We leave this for future investigation.

Finally a few comments on some work in progress [65]. A natural and very interesting gen-
eralization to the solutions in this chapter can be achievedby adding a negative cosmological
constant in the action. Just as the solutions we have studiedhere are asymptotically flat, solutions
in a system with a cosmological constant are asymptoticallyanti-de Sitteror AdS. Asymptoti-
cally AdS spaces are particularly interesting in light of Maldacena’s breakthrough in [1], where
he conjectured that type IIB string theory in anAdS5 × S5 background is completely equiva-
lent toN = 4, d = 4 super-Yang-Mills theory. The stronger version of his conjecture states
that string theory on an asymptoticallyAdS5 × S5 background is dual to some deformation of
super-Yang-Mills. This duality has been used to show that the extremal D-instanton of type IIB
supergravity corresponds to the super-Yang-Mills self-dual instanton [66–70]. It would be in-
teresting to see what the field theory dual of a non-extremal D-instanton is. Perhaps it contains
information about non-self-dual Yang-Mills instantons.

This concludes the first part of this thesis, which covered the topic of instantons. In the
next two chapters, we will look at a different kind of scalar-gravity solutions that also have
interpolating behavior: cosmological solutions. These are solutions of the Einstein equations
that also depend on only one parameter, however, that parameter is Lorentzian time.
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Chapter 4

Introduction to Cosmology

4.1 FLRW cosmology

To begin our studies of cosmology, we must first introduce a bit of formalism and terminology
that is now part of what is calledthe standard cosmology. The language and formulae in which
we will state facts about cosmology are deceitfully simple.They hide the massive amounts of
observational data and research required to arrive at them.Doing justice to the topic of modern
cosmology would obviously require a lot more than one chapter. For a proper introduction to
standard cosmology and cosmology in the context of string theory, the reader is referred to the
lecture notes [71–73], on which this chapter is mainly based. Often in physics one tries to re-
produce or model complicated phenomena by defining a fundamental1 theory that is simple to
begin with, but requires all kinds of approximations and truncations in order to describe realistic
physics. In cosmology, one does the exact opposite. One tries to model complicated phenom-
ena with simple models, which are not reallyderived from a fundamental theory. They can
ultimately be seen as large scale gross approximations of some unknown fundamental theory.
When discussing inflation, F. Quevedo describes it as "a scenario in search of an underlying the-
ory" [72]. A fundamental theory that could account for cosmology would also have to explain
the Big Bang. General Relativity breaks down for highly curved spacetimes, where quantum
effects become important. String theory is a current candidateas an underlying theory of cos-
mology because it is a theory of quantum gravity.

4.1.1 The FLRW Anstatz: Motivation and definition

We begin by defining the FLRW, orFriedmann-Lemaître-Robertson-Walkerspacetime metric.
It is actually a class of metrics defined by two properties as follows: a metric is FLRW if there
exists a frame (i.e. a family of geodesic observers), in which it is spatially homogeneous and
isotropic (see appendix C for definitions and examples). These two properties that are imposed
are based on the observations that the universe "looks the same" at every point in space, and it

1Of course, the concept of afundamentaltheory is only relative. So far there is no such thing as a fundamental theory
that is valid in all regimes.
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"looks the same" in every direction about a point. Of course this is only true on a very very large
scale, a cosmological scale. Our lives would be pretty difficult if we were not capable of telling
the difference between our boss’ office and our bathroom, and driving would be impossible if
we couldn’t make a distinction between the right and the wrong way of a one-way street. But
we as humans are looking too closely at things and what we see are only tiny fluctuations from
homogeneity and isotropy.

So the Ansatz for an FLRW metric is the following:

ds2 = − f 2(t) dt2 + g2(t) dΣ2
3 , (4.1)

where f (t) ang(t) are two undetermined functions of time, anddΣ3 is the line element of some
homogeneous and isotropic spatial manifold. It can be shownthat in three dimensions there are
only three possible metrics that satisfy the requirement ofhomogeneity and isotropy :

dΣ2
3 =

dr2

1− k r2
+ r2

(

dθ2 + sin(θ)2 dφ2
)

with k = +1, 0, 1 . (4.2)

This can also be written as follows:

dΣ2
3 = dρ2 + f 2(ρ)

(

dθ2 + sin(θ)2 dφ2
)

, (4.3)

where

f (ρ) =



















sin(ρ) if k = +1
ρ if k = 0
sinh(ρ) if k = −1

. (4.4)

The parameterk lables the curvature of the spatial section of the metric. A spatial section of
(4.1) with line element

ds2
spatial = g2(t) dΣ2

3 (4.5)

has the following Ricci scalar:

RΣ =
6k

g2(t)
. (4.6)

We easily recognize the three spatial metrics as those of the3-sphere, 3-plane and 3-hyperboloid
respectively. But we must be careful not to confuse local with global statements about a mani-
fold. The three spatial metrics in (4.2) contain only local information and do not imply anything
about the topologies of their respective manifolds. For instance, thek = 0 metric may be defined
on the 3-planeR3 as well as on the 3-torusT3. Similarly, the 3-hyperboloidH3 can be com-
pactified by means of discrete group identifications that do not affect curvature. So what does
the metricg2(t) dΣ2

3 tell us about a spatial manifold? Any physically meaningfulstatement in
General Relativity must be expressible in terms of "clock and rods", and in this case specifically,
in terms of "rods".

Let us start with the spatially flat (k = 0) case. We place an observer at timet = t0 at the
origin of our coordinate system (ρ = 0) and at rest w.r.t. it ( ˙ρ = 0). Let the observer pick a
plane passing through him (without loss of generality theθ = π/2 plane), and draw a circle on it
around himself of radius

R= g(t0)ρ′ for some ρ′ , (4.7)
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If the observer measures the circumferenceL of this circle instantaneously, or fast enough so
thatg(t) does not change significantly, the metric (4.5) tells us that he will find it to be

L = 2π g(t0) ρ′ = 2πR, (4.8)

as expected. For generalk this will change. If we conduct the same experiment, (4.5) tells us
that the circumference of a circle of radiusR= g(t0) ρ′ will be

L = 2π g(t0) f (ρ′) =



















2π g(t0) sin[R/g(t0)] if k = +1
2πR if k = 0
2π g(t0) sinh[R/g(t0)] if k = −1

. (4.9)

The first thing to notice about this result is thatg(t0) completely drops out for thek = 0 case,
making its value at any given time physically meaningless. The other thing to notice is that if
we takeR to be very small and expandf (ρ), we see that, to leading order, the circumferences
become 2πR for the k , 0 cases. If this were not the case, we would have what is calleda
conical singularityon our spatial manifold. Hence, thek = +1 case tells us that circles have
smaller circumferences than we are used to, and thek = −1 tells us that they are larger than
normal.

Now that we understand the spatial geometry of the FLRW metric, let us study the spacetime
geometry. Oncek is fixed, the only undetermined parts of the metric (4.1) are the time-dependent
functions f (t) andg(t). However, these two functions are not independent of each other. If we
perform the following simple coordinate transformation:

τ(t′) ≡
∫ t′

0
f (t) dt , (4.10)

we end up with the following metric:

ds2 = −dτ2 + a2(τ) dΣ2
3 , (4.11)

where we are now left with only one undetermined functiona(τ), usually called thescale factor.
The time coordinateτ as defined in (4.11) is calledcosmic time. In the standard cosmology
jargon, if the scale factor is an increasing or decreasing function of time we say that the universe
is "expanding" or "contracting" respectively. Similarly,if its second time derivative is positive,
we say that the universe is "accelerating". But these words can be misleading. If the spatial
topology of the universe is compact, one can define a volume ofthe universe, and then it makes
sense to talk about expansion or contraction. But if the universe has a non-compact spatial
topology, such asR3 or H3, then this does not make sense. So what does the scale factor really
tell us about the universe? Again, the only meaningful thingto do is to revert to our "clocks and
rods". The only information we can and should infer from a metric is what geodesic observers
see. So let us define two geodesic trajectoriesx1(t) andx2(t) as follows:

x0(t) = τ(t) = t, xi(t) = xi(τ) = ai (4.12)

y0(t) = τ(t) = t, yi(t) = yi(τ) = bi , (4.13)

whereai andbi are constants. Such geodesics are calledcomoving. Notice that for comoving
observers the time coordinateτ in (4.11) measures their proper time, so all comoving observers



80 Introduction to Cosmology

can keep their clocks synchronized. The spatial separationof x1 andx2 in the comoving frame
is given by:

d2 = di d j gi j , where di ≡ ai − bi . (4.14)

Differentiating this w.r.t. time we find that

ḋ = H d , (4.15)

whereH ≡ ȧ/a is called theHubble parameter. Therefore, the scale factor tells us that two
comoving observers will notice a relative velocity betweenthem that is proportional to their
separation, and the Hubble parameter. In a universe with accelerated expansion (i.eH > 0 and
ä > 0), this means that this relative velocity will eventually exceed the speed of light! Although
this may seem like a violation of causality, it is not. No information is travelling from one point
to another acausally. What this does mean, however, is that the two observers will eventually
cease to be in causal contact, as no signal sent from one can ever catch up with the other.

4.1.2 The right-hand side of the Einstein equation

Having studied the general form of an FLRW cosmological metric, we should now study the
kind of matter or energy that can coexist with or drive such a metric. The assumption of spatial
isotropy leads us to consider perfect fluids as unique candidates. They have the property (which
can be taken as a defining property [18]) of looking isotropicin their rest frames. The stress-
energy tensor of a perfect fluid has the following form:

Tµν = (ρ + p) Uµ Uν + p gµν , (4.16)

whereUµ(x) is the velocity field of the fluid,ρ is the energy density of the fluid in its rest frame,
andp its pressure in its rest frame. This is the stress-energy tensor that will be on the right-hand
side of the Einstein equation. In order for the fluid to coexist in equilibrium, or be consistent
with the FLRW metric, its elements must be comoving. In otherwords, in comoving coordinates
the velocity field of the fluid must be

Uµ = (1, 0, 0, 0) . (4.17)

Note that if the fluid is made of photons thenUµ cannot be interpreted as the velocity of the
individual photons, but must be interpreted as an average displacement of energy. Using these
assumptions we can write the Einstein equations and cleverly rearrange them into the following
two equations:

H2 =
8πG

3
ρ − k

a2
, (4.18)

ä
a
= −4πG

3
(

ρ + 3 p
)

, (4.19)

whereH is the Hubble parameter. The first equation is called theFriedmann equationand the
second is called theacceleration equation. Note that if we want to include several species of
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fluid we can simply add up theρ’s and p’s. The equations of motion for the fluid follow from
the conservation laws of the stress-energy tensor:

∇µTµν = 0 . (4.20)

They imply the continuity equation for the fluid:

ρ̇ + 3 H (ρ + p) = 0 . (4.21)

This equation can actually also be obtained by differentiating the Friedmann equation (4.18)
w.r.t. time and combining it with the acceleration equation(4.19).

To be able to solve fora(t), ρ(t) andp(t), we need to make one more assumption about the
fluid, namely, that it obeys an equation of state. In other words, that the pressure is a function
of density, p = p(ρ). For ordinary matter, we can approximate the equation of state by the
following instantaneous relation:

p = ωρ , (4.22)

whereω is a constant that depends on the kind of matter that makes thefluid. For pressureless
dust (i.e. non-interacting particles)ω = 0. For radiation, meaning either photons or highly
relativistic particles,ω = 1/3. In the case of radiation, one can see this by writing the stress-
energy tensor of the Maxwell field:

Tµν = −
1

4π
(

Fµα Fν
α − 1

4
gµν F2) , (4.23)

which is manifestly traceless in four dimensions. Our assumptions about comoving perfect
fluids tell us that the trace of this tensor isTµµ = 3 p− ρ. Combining these two facts gives us
ω = 1/3.

Dust and radiation are part of a larger class of possible forms of "matter" calledordinary
matter. Another form of matter isdark matter, which is essentially non-baryonic matter. There
is another important kind of energy that can drive an FLRW metric, a cosmological constantΛ.
It cannot be viewed as matter, it is regarded as a vacuum energy. The cosmological constant also
satisfies an equation of state (4.22), withω = −1, and its energy density is equal to itself,ρ = Λ.
It is part of a class of possible forms of energy calleddark energy, which characteristically have
equations of state withω < −1/3.

Observations show that our universe is not made of just one kind of fluid, but it is a combina-
tion of different kinds of fluids. Also, throughout the history of the universe, the different kinds
of matter and energy have swapped the roles of dominance and subdominance. Therefore, a
convenient notation for comparing the energy densities of the fluids has been developped. From
the Friedmann equation (4.18) we see that the energy densityrequired to have a spatially flat
universe is

ρc =
3 H

8πG
. (4.24)

This is called thecritical density. By computing the ratio of the actual energy densityof a fluid
to the critical density

Ω ≡ ρ

ρc
, (4.25)
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we can easily relate the matter content and observed Hubble parameter of the universe to its
spatial geometry as follows:

Ω > 1 ⇐⇒ k = 1

Ω = 1 ⇐⇒ k = 0 (4.26)

Ω < 1 ⇐⇒ k = −1 .

In a universe with coexisting fluidsΩ is simply decomposed into the fractional contributions of
each species to the total ratio:

Ωtotal =
∑

i

Ωi . (4.27)

Observations indicate that our current universe is spatially flat, and it is composed of ordinary
(baryonic) matter, dark matter, and dark energy in the following respective ratios:

ΩB = 0.04

ΩDM = 0.26 (4.28)

ΩΛ = 0.7 .

A statement of modern cosmology is that the early universe (shortly after the Big Bang) would
have been radiation dominated. It is puzzling that, presently, the energy densities of all three
forms of matter and energy are of the same order (i.e.∝ 1). This puzzle is known as thecosmic
coincidence problem.

4.1.3 Solutions

Given the matter or energy content of the universe one is trying to model, it is easy to solve for
the scale factor by combining the Friedmann and acceleration equations (4.18) (4.19) with the
proper equations of state. Since observations show that ourcurrent universe is spatially flat to a
high degree of precision, we will focus on thek = 0 case. The solutions are the following:

a(t) = a0

(

t
t0

)2/3 (1+ω)

for ω , −1

a(t) ∝ eH t for ω = −1

(4.29)

whereH is now constant. The first solution is calledpower lawsolution. It is mainly used to
model pre- and post-inflationary cosmology. Note that fort = 0 such a metric has a singularity,
namely all spatial distances are zero. This is called theBig Bangsingularity. The second metric
is a solution to the Einstein equation with apositivecosmological constant. It is calledde Sitter
space, after Willem de Sitter, the great mathematician, physicist, and astronomer who studied at
the University of Groningen. Solutions fork , 0 can also easily be found.

At this point a word of caution would be in order. Specifying FLRW metrics in terms ofk
anda(t) is, as we said before, only a local statement about the spacetime manifold. For instance,
we noted earlier that division by a discrete group can related two different manifolds with the
same local geometry. More generally, we have to remember that a manifold is defined as a
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Figure 4.1: Minkowski spacetime with two suppressed dimensions. A three-dimensional picture
can be obtained by rotating everything about the X0-axis. The constant t surfaces are the two-
sheeted Euclidean hyperboloids covering the Milne patch. The constant r surfaces are the one-
sheeted Lorentzian hyperboloids (dS) covering the Rindlerpatch.

collection ofpatches(i.e. open sets of the underlying space) withcharts(i.e. coordinates) and
transition functionsrelating the charts of intersecting patches. In many cases asingle patch may
cover the whole space minus a finite set of points. For instance, polar coordinates cover the
whole sphere except for the two poles. In such cases, that onepatch is all we need. However,
some coordinate systems cover only half of a space. So any metric that we write down may just
represent one patch of a manifold.

Let us illustrate this with a familiar manifold, Minkowski spacetime. Minkowski spacetime
is defined as the manifold�4 with a flat Lorentzian metric (i.e. Riemann tensor is zero). In
cartesian coordinates we write this as follows:

ds2 = −d(X0)2 + d(X1)2 + d(X2)2 + d(X3)2 . (4.30)

So far so good. Now let us introduce the so-calledMilne coordinates.

X0 = t cosh(ψ) ,

X1 = t sinh(ψ) sin(θ) sin(φ) ,

X2 = t sinh(ψ) sin(θ) cos(φ) , (4.31)

X3 = t sinh(ψ) cos(θ) . (4.32)

These coordinates don’t cover all of Minkowski spacetime. They only cover the regions within
the future and past light-cones of the origin of Minkowski spacetime:

(X0)2 − ‖~X‖2 = t2 > 0 . (4.33)

Milne coordinates slice up the space with a one-parameter family of two-sheeted Euclidean
hyperboloids, parametrized byt, see figure 4.1. In these coordinates, the flat metric (4.30)
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becomes
ds2 = −dt2 + t2

(

dψ2 + sinh2(ψ) dΩ2
S2

)

. (4.34)

In other words, the FLRW metric witha(t) = t andk = −1 is nothing other than a patch of
Minkowski spacetime in disguise!

For completness, and because it will come in handy in chapter7, let us study theRindler
coordinates, which cover the complement of the region covered by the Milne coordinates, i.e.
(X0)2 − ‖~X‖2 < 0. Define the following parametrization of Minkowski spacetime:

X0 = r sinh(t) ,

X1 = r cosh(t) sin(θ) sin(φ) ,

X2 = r cosh(t) sin(θ) cos(φ) , (4.35)

X3 = r cosh(t) cos(θ) . (4.36)

These coordinates slice up the spacetime with a one-paramteter family of one-sheeted Lorentzian
hyperboloids, where the parameter isr, see figure 4.1. The metric (4.30) takes the following
form:

ds2 = dr2 + r2
(

−dt2 + cosh2(t) dΩS2
2
)

. (4.37)

Although they are hyperboloids, the constant-r subspaces have Lorentzian signature and are
positively curved. In fact, they are three-dimensional de Sitter spacetimes, as we will see next.

Having seen this familiar example, let us study de Sitter spacetime. It can be defined as a
four-dimensional hyperboloid embedded in five-dimensional Minkowski spacetime:

−(X0)2 + (X1)2 + (X2)2 + (X3)2 + (X4)2 = ℓ2 (4.38)

ds2 = −d(X0)2 + d(X1)2 + d(X2)2 + d(X3)2 + d(X4)2 , (4.39)

where the first equation defines the hyperboloid, and the second defines the metric in the em-
bedding space. The radiusℓ is related to the cosmological constantΛ in the Einstein equation as
ℓ2 = 3/Λ. There are several coordinate systems that can be used to parametrize de Sitter space-
time, or at least a patch of it. In fact, it can be viewed as three different FLRW cosmologies with
k = 1, 0, and−1 respectively. Let us start with thek = 1 form. Define the following coordinates:

X0 = ℓ sinh(t/ℓ) ,

X1 = ℓ cosh(t/ℓ) sin(ψ) sin(θ) sin(φ) ,

X2 = ℓ cosh(t/ℓ) sin(ψ) sin(θ) cos(φ) , (4.40)

X3 = ℓ cosh(t/ℓ) sin(ψ) cos(θ) ,

X4 = ℓ cosh(t/ℓ) cos(ψ) .

These coordinates solve the constraint (4.38) on the whole hyperboloid. The resulting four-
dimensional metric is

ds2 = −dt2 + ℓ2 cosh2(t/ℓ) dΩ2
S3 . (4.41)
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This is called the de Sitter metric inglobal coordinates. It represents spacetime as a spacelike
sphere that contracts from an infinite to a minimal radiusℓ (at t = 0), and then enters an eternal
phase of accelerated expansion. The acceleration rate is constant at ¨a/a = 1. This will cause
causally connected spatial regions to become causally disconnected in the future. In other words,
any two spatially separated observers will eventually become causally disconnected. To see this,
we only need to look at null geodesics in de Sitter space. For simplicity, let us study a ‘radial’
geodesic emitted from the origin at timet0:

−dt+ ℓ cosh(t/ℓ) dψ = 0 . (4.42)

The solution is

ψ(t) = 2
(

arctan[tanh(t/2ℓ)] − arctan[tanh(t0/2ℓ)]
)

. (4.43)

If the light ray is emitted at timet = 0, it will asymptotically reachψ = π/2 for t → ∞. However,
the later it is emitted the less it will travel as can be seen from the solution. This means that if
we place a comoving observer at positionψ = ǫ, it will at first be capable of receiving light rays
emitted from the origin; however after a certain time (fort > 2 arctanh[tan(π/4 − ǫ)]) it will
be causally disconnected from the origin. This feature of deSitter spacetime poses a serious
problem in modern physics. One cannot define asymptotic states for a quantum field theory, or
conservation laws for general relativity in the usual way.

Now, let us write down thek = 0 form of de Sitter spacetime. Once again, we implicitly
define four-dimensional coordinates by solving the five-dimensional constraint (4.38):

X0 + X1 = ℓ exp(t/ℓ) ,

Xi = ℓ exp(t/ℓ) xi , for i = 2, 3, 4 , (4.44)

X0 − X1 = ℓ exp(t/ℓ)








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∑

i=2

(xi)2 − exp(−2 t/ℓ)

















,

where the first equation defines a light-cone coordinate exp(t), the second equation defines carte-
sian coordinatesxi , and the third equation follows from the hyperboloid constraint (4.38). Note
that the light cone coordinate is defined to be positive, which means that we are only covering
half of the de Sitter manifold. Plugging this into (4.39) yields the following metric:

ds2 = −dt2 + ℓ2 exp(2t/ℓ)
∑

i

(dxi)2 . (4.45)

These are the de Sitter equivalent of Poincaré coordinates for anti-de Sitter spacetime. This form
of de Sitter is the one used to model inflation because it hask = 0 and it is expanding for allt,
unlike the global form (4.42). Finally, let us write down thek = −1 form. The trick is to putX4

on the right-hand side of the constraint equation (4.38) andview the space as a one-parameter
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family of hyperboloids of radius (X4)2 − ℓ2, with the assumption that|X4| > ℓ:

X4 = ℓ cosh(t/ℓ) ,

X0 = ℓ sinh(t/ℓ) cosh(ψ) ,

X1 = ℓ sinh(t/ℓ) sinh(ψ) sin(θ) sin(φ) , (4.46)

X2 = ℓ sinh(t/ℓ) sinh(ψ) sin(θ) cos(φ) ,

X3 = ℓ sinh(t/ℓ) sinh(ψ) cos(θ) ,

(4.47)

which yields the following metric:

ds2 = −dt2 + ℓ2 sinh2(t/ℓ)
(

dψ2 + sinh2(θ) dΩS2

)

. (4.48)

The Anstatz forX4 implies that this parametrization only cover half of the manifold. Note that
this metric has a Big Bang singularity att = 0.

Finally, we should briefly discuss anti-de Sitter spacetimeor AdS. This is a solution to the
Einstein equation with a negative cosmological constant. It can also be defined as a hyperboloid
embedded in a higher dimensional spacetime, and many coordinate systems are available to
cover it or at least partly cover it. However, AdS admits onlyone coordinate system such that
its metric is in the FLRW form. The metric looks as follows:

ds2 = −dt2 + ℓ2 sin2(t/ℓ)
(

dψ2 + sinh2(θ) dΩS2

)

, (4.49)

whereℓ is defined analogously to the de Sitter case. This is ak = −1 cosmology with a Big
Bang singularity att = 0 and abig crunchsingularity att = π ℓ.

4.2 Physics of FLRW cosmologies

Having laid the foundations of cosmology we are ready to study the phenomena that drive the
field of modern cosmology. The standard cosmology is a model of our universe that has been
developed over decades by fitting observations from innumerably many experiments to theoret-
ical models that rely upon the foundations of different fields such as general relativity, quantum
field theory, thermodynamics, astrophysics, spectroscopy, etc.. Again, I would like to post my
disclaimer here, and reiterate how extremely rich and complicated standard cosmology is, and
that I in no way pretend to do justice to it. I will, however, try to give a condensed account of the
history of our universe. Then, I will present three issues that arise in the standard cosmology,
namely thehorizon problem, theflatness problem, and therelics problem; and I will briefly ex-
plain the concept of inflation and show how it solves all threeproblems. I will then mention the
presently observed acceleration of the universe, and finally, I will motivate the need for scalar
cosmology models.

4.2.1 An ephemerally brief history of time

Let us start with an extremely brief history of the universe.In the beginning was the Big Bang.
There are singularity theorems by Hawking and Penrose [74] that predict that any universe
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occupied by matter withρ > 0 andp > 0 must have a Big Bang singularity. Since observations
show that our early universe was mainly radiation dominated, the theorems would imply that
our universe started with such a singularity. So what is a BigBang singularity? A power law
FLRW metric (4.29) provides us with a good metaphor for the Big Bang. Att = 0 the scale
factor vanishes and the spatial section has ‘zero size’. This is the ‘beginning of time’. All the
matter in the universe is condensed to a ‘point’, and thusρ is really high. One must, however,
realize that at the time of the Big Bangt = 0 the solution has a curvature singularity and the
laws of General Relativity break down. No one knows, whetherthe singularity is a physical
event, or a mere mathematical extrapolation from GR into uncharted territory. At this point a
new theory is needed, namely one that can combine gravity andquantum mechanics. String
theory is a strong candidate for this. For the time being, we must use GR within its regime of
validity. This means that we cannot taket = 0 anda = 0 too literally. The standard cosmology
is only meant to describe what happened after the first millisecond (or less) of the classically
describable universe. So, although we cannot say that the universe ‘started out’ with ‘zero size’,
or ‘small’ (unlessk = 1, in which case a size can be defined), we can certainly say that it was
occupied by very dense matter or radiation.

Since shortly after the Big Bang the universe was hot, dense and in thermal equilibrium, it
started emitting light in every direction like a perfect blackbody. This radiation is observable
today, especially its microwave component. This is the famousCosmic Microwave Background
Radiationor CMBR (or just CMB), which was almost accidentally discovered in 1965 by two
radio astronomers, Arno Penzias and Robert Wilson. Its spectrum is so close to that of a perfect
blackbody, that the CMBR is considered to be the strongest existing evidence of the Big Bang
scenario. While the light was constantly scattering off of the rest of the matter constituents of
the universe, the latter kept expanding. Expansion not onlymeans that matter is driven apart
at a rate proportional to the Hubble parameter, as we saw before, but it also means that the
wavelengths of photons stretch. They getredshifted. Around 300,000 years after the Big Bang,
the photons were so redshifted, that they no longer scattered off of particles. They decoupled,
and simply went through everything. This is why the CMBR we observe today gives us such a
perfectly undistorted picture of the universe as it was 300,000 years after the Big Bang. Before
that, matter was constantly being ionized into plasma due tothe constant scattering of photons.
After that decoupling, the average temperature of the universe was low enough that atoms were
able to form. This is calledrecombination. That is when galaxies and other structures started to
form, leading to our present universe, att ∼ 1010 years.

End of the schematic history of the universe.

4.2.2 Three problems

Like any great discovery in Physics, the CMBR has not only brought us answers, but also ques-
tions. It turns out that this radiation background has a remarkable property, it is almost perfectly
isotropic. In any direction we look in the sky, this radiation has the same temperature to within
0.01%, about 2.7K. Most of this variation by 0.01% is nowadays interpreted as proof that the
Earth has a non-zero speed relative to the cosmological frame. We are not quite comoving.
Taking this into account, the CMBR is ridiculously isotropic. This is puzzling from a causality
point of view for the following reason: if one assumes that the universe has gone through a
power-law expansion from the Big Bang until recently due to radiation and matter domination,
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then a calculation shows that the CMBR light that we see in thesky must have been emitted at
recombination time (tCMBR ∼ 3× 105 years) by points that could not have been in causal contact
with each other. In other words, if we observe the light coming from two completely opposite
directions in the sky, and we take the power-law expansion into account, we conclude that the
two sources of light we are looking at were so distant from each other when they emitted it, that
they had not had enough time to communicate since the Big Bang300,000 years earlier. But
why is the CMBR so isotropic, then? Why would causally disconnected regions of space emit
such perfectly coordinated radiation? This is called thehorizon problem.

The reader may find this paradox itself, paradoxical. One could ask the following question:
"If the universe started with the Big Bang, and all spatial distances were (close to) zero in the
beginning, then why couldn’t all points in the universe simply have communicated back then,
when they were so close to each other? How could 300,000 yearsnot be enough for points
that were at an initial distance of zero to communicate? As was pointed out before, no one
knows, whether the universe really had ‘zero size’ in the past. The only trustworthy predictions
of the standard cosmology are those regarding the history ofthe universe, beginning moments
after the Big Bang. So, in this text, I will abandon the notionof a universe of ‘zero size’. At
most, one might say that ak = 1 model has an initially ‘small’ spatial section, in which case
the above-mentioned paradox within the paradox becomes a valid one. Fortunately, it can be
solved. Wald’s book [75] discusses this very clearly. I willtry, however, to explain this here.
Let us start by defining the wordhorizon, or in this caseparticle horizon.

horizons

light cone

O

0

t

past

Figure 4.2: The observer at event O can only see information emitted within the horizons.
t = 0 marks the beginning of time.

As observers, we can only see information coming from eventsthat are within our past
light-cones. We cannot, for instance, see something that happened one second ago in a galaxy
that’s three light-years away. When we look into the sky, thelight that we see comes to us
from the past. The farther the source is spatially, the olderthe information. But what if there
was a ‘beginning of time’ such as in the Big Bang scenario? Then we would only be able to
see information coming from a restricted area around our location. If spacetime were flat, but
with a beginning of time, then only events that were within a distanced = (speed of light)×
(age of the universe) of us at the time of emission could influence us. The spatial area that we
can see is delimited by what is called aparticle horizon. See figure 4.2. Now let us take ak = 0
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FLRW metric with a power-law scale factor, and impose a cutoffminimal timeti , which we will
effectively treat as the beginning of time. Do horizons form? Tosee what happens, we must
look at what light rays do. In comoving coordinates, a null geodesic has the following velocity:

dx
dt
=

1
a(t)

, (4.50)

where we use just one spatial axis for simplicity. This velocity is infinite at first, but decays
more or less rapidly depending on the scale factor. We need tocalculate how much comoving
distance the geodesic can cover if it is emitted right after the Big Bang, at our cutoff time ti , and
observed atto:

∆x = x(to) − x(ti) =
∫ to

τi

dt
a(t)

. (4.51)

We can easily see that, fora ∝ tα, this integral diverges asti → 0, if α ≥ 1. In that case, there is
a particle horizon, but the smallerti is, the bigger it gets. In other words, light coming from any
point in the universe can reach the observer if it was emittedearly enough. In the case where
α < 1, however, there is a particle horizon, and it is present even asti → 0. Translating this into
statements about matter

α =
2

3 (1+ ω)
, (4.52)

we see that a radiation or matter dominated universe will generate horizons. Dark energy (i.e.
ω < −1/3), however, will generate horizons that are large at early time.

CMBR

0

t

t

tnow

Figure 4.3: The two sources of CMBR that we see today could not have been incausal contact.

We are now ready to restate the horizon problem in the following oversimplified way:
At the present time, we can observe highly uniform CMBR rays.Choosing two widely separated
CMBR sources in the sky will be separated by a comoving distance∆s ≈ 4 H0, whereH0 is the
current Hubble parameter. The beams were emitted attCMBR. Assuming radiation domination
(a ∝ t2/3), a null geodesic emitted at the Big Bang and observed attCMBR will travel a distance
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∆l ≈ 6 × 10−2 H0. Hence we see that∆l ≪ ∆s, so the outermost sources of the CMBR could
have never communicated, see figure 4.3. This is the horizon problem.

Another problem in the standard cosmology before inflation was known is the so-called
flatness problem. Observations indicate that currentlyΩ ∼ 1 to a high degree of precision.
However, in order for the universe to be so spatially flat in the present, it needs to have been
extremely spatially flat from the get-go. This requires a high degree of fine-tuning that would
have no apparent explanation. To understand how this comes about, let us start by rewriting the
Friedmann equation as follows:

Ω − 1 =
k

H2 a2
. (4.53)

Differentiating this w.r.t. time this yields:

Ω̇ = H (1+ 3ω)Ω (Ω − 1) . (4.54)

Note that, sincea(t) is a strictly monotonic function oft, we can treat the scale factor as a time
parameter. This does not represent the proper time of any particular observer, but it allows us to
look at the equations from the point of view of dynamical systems. We will do extensively in
the next two chapters. Usingdt = da/H we rewrite the evolution equation forΩ as follows:

dΩ
da
= (1+ 3ω)

Ω (Ω − 1)
a

. (4.55)

We immediately see thatΩ = 1 is a critical point of this system (4.55), i.e. a point where
dΩ/da = 0. However,assumingthe universe is dominated by ordinary matter or radiation (i.e.
ω > −1/3), this critical point is not an attractor, but a repellor orunstable critical point:

d
dΩ

(

dΩ
da

)
∣

∣

∣

∣

∣

∣

Ω=1

> 0 . (4.56)

This means that, in order forΩ to be one today, it must have been incredibly close to one in
the early universe. In fact, by looking at (4.55) we see that any slight deviation from the value
one is magnified by the small scale factor (early universe) inthe denominator. The fine tuning
required to keep the rate of change ofΩ small enough so thatΩ is close to one today cannot be
explained without inflation.

Finally, there is one more problem that arises in the standard cosmology, which is also solved
by inflation. It is called theunwanted relics problem. I will not treat this problem in any detail
whatsoever, but will merely state it. In spontaneously broken gauge theories, topologically non-
trivial objects such as monopoles, strings, or textures naturally arise. The gauge theory that
describes the matter in the universe is a GUT (Grand Unified Theory), and it has a gauge group,
which is spontaneously broken to the standard model gauge group SU(3)× SU(2)× U(1). It
is possible to predict the density of monopoles that should be present in our universe today, by
standard calculations using the assumptions about cosmology that we have been using so far.
The result turns out to be far too big. The abundant number of monopoles as predicted by the
standard cosmology is very generous, however, not one monopole has ever been observed.
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4.2.3 Inflation saves the day

Inflation is a scenario for the evolution of the universe, which was created in the 80’s [76–78]
to solve a number of problems, among which are the three that were mentioned in the previous
section. The idea is to have the universe go through a period of accelerated expansion (i.e. ¨a > 0)
starting 10−12s after the Big Bang, and lasting long enough for the scale factor to increase by a
factor of 1060. Let us start by looking at how this could solve the horizon problem.

As was mentioned in the previous subsection, solving the horizon problem consists in ex-
plaining how regions that seem causally disconnected att = tCMBR under the assumption of
power-law expansion could have actually been in causal contact at earlier times. As shown
earlier, if the scale factor is a power law function with exponentα < 1, then there is a finite
horizon, no matter how early we take time to begin. However, if 1/a(t) blows up faster than
1/t for t → 0, then the horizon can be made large (in comoving coordinates). By choosing a
function that blows up fast enough, we can enlarge the horizons of the CMBR sources such that
they will include each other, thereby solving the horizon problem. Note that this applied not
only to power-law solutions withα ≥ 1, but also to the de Sitter solution,a ∝ exp(H t). As
mentioned before, in terms of matter or energy content, thisrequiresω < −1/3. This can be a
cosmological constant or some other form of dark energy.

Another way to see how this solves the problem is the following: take two comoving points
separated initially by a distances = a(ti)∆x. Their proper relative speed is ˙s = ȧ∆x. If ä > 0,
this relative speed will increase with time, eventually exceeding the proper speed of light, which
is

a
dx
dt
= a

1
a
= 1 . (4.57)

So regions that are initially causally connected can becomecausally disconnected by moving
away from each other faster than the speed of light.

The flatness problem is also solved by inflation. Intuitivelyspeaking, the period of acceler-
ated expansion blows up small regions of space into huge onesin a short time, thereby flattening
out any initial spatial curvature. This explains why the present universe is spatially flat without
resorting to fine-tuning at early times. There are two ways tosee how this works mathematically:

From the Friedmann equation, which I rewrite for the reader’s convenience,

Ω − 1 =
k

H2 a2
, (4.58)

we see that the right-hand side decreases with time if ¨a > 1, leading to a spatially flat universe,
even if the spatial curvaturek/a was initially huge. We can also understand this in the language
of critical points. From the acceleration equation (4.19) we read off that an accelerating universe
requiresω < −1/3. Analyzing (4.55) as we previously did, with this assumption aboutω, we
see thatΩ = 1 is now a stable critical point.

Finally, inflation also solves the problem of unwanted relics. The precise argument is beyond
the scope of this chapter, so I will just state the intuitive one. Basically, inflation blows up small
regions in space into huge ones, however the amount of monopoles and other topological relics
does not increase. The consequences is that the latter are diluted in our universe, which provides
us with a plausible explanation for why we have not detected them yet.
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4.2.4 Present day acceleration

Another important piece of information about the physics ofcosmology concerns the present.
By measuring the redshift of light coming from supernovae, two independent teams [79, 80]
have concluded that our universe is currently undergoing a period of accelerated expansion.
From the acceleration equation (4.19), we see that this implies the presence of dark energy. In
fact, these measurements imply that dark energy is the dominant form of energy in the universe
today, providing us with the estimateΩΛ ∼ 0.7, mentioned in (4.29).

In this section, we described the history of the universe from moments after the Big Bang
until the present day. We have seen that in order to solve the horizon, flatness, and relics prob-
lems, the early universe must have gone through a period of inflation lasting long enough to
generate 60 e-foldings (i.e. log(anow/ai) = 60). Inflation actually also solves a number of prob-
lems that I have not even mentioned here. Therefore, inflation is definitely a necessary scenario
for modern cosmology. However, it is a ‘passing the buck’ solution to those problems. It merely
merges several problems into one big problem: What drives inflation? Even though we know
that dark energy is required for it, there is no known mechanism in physics toderive inflation
from a fundamental theory. Similarly, there is noderivationof the current period of acceleration
we are going through. To repeat the quote by Quevedo, inflation is “a scenario in search of an
underlying theory." So is present acceleration. In recent years, new hope has arisen that string
theory may be used to derive realistic cosmological scenarios. Especially, the latest very pre-
cise measurements of CMBR anisotropies have given theorists the hope of finding observational
signatures of stringy or transplanckian physics. On one hand cosmology poses a challenge for
string theory to come up with a mechanism to drive inflation and present day acceleration, on
the other hand, it may provide string theorists with their first lab in which to test string theory
ideas.

4.3 New challenges lead to new ideas

If string theory truly is thetheory of everything, and especially if it is a theory of quantum
gravity, then it must ultimately explain the Big Bang, inflation, and current acceleration. In
this section we will be looking at some candidate mechanismsby means of which string theory
might induce those two cosmological events. I will begin by introducing a new form of dark
energy as a possible source for acceleration: the scalar field. Then, I will briefly introduce
how gravity-scalar models with accelerating cosmologicalsolutions can arise from string or M-
theory. Consider this as an introduction for the next two chapters, which will be based on two
articles about scalar cosmologies and their possible string/M-theory origins.

4.3.1 Scalar models for cosmology

As we pointed out before, in order to have accelerated expansion, be it for inflation or present
day acceleration, we must have a perfect fluid withω < −1/3 in the universe. Havingω = −1,
a positive cosmological constant will do. It will source a deSitter spacetime. However, it does
have some drawbacks: being a constant by definition, it is non-dynamical. This means that
the universe would be in a state of eternal inflation at a constant rate of acceleration, which is
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not quite consistent with observations. A more flexible and more interesting approach would
be to have a form of dark energy that mimics a cosmological constant and is yet dynamical.
This has two advantages: firstly, it could induce a de Sitter-like universe with a slowly varying
acceleration rate, which would be more consistent with observations of current acceleration.
Secondly, it would in principle allow for a dynamical start and end of inflation and current
acceleration, and also for a dynamical resolution of the cosmic coincidence problem, which is
more appealing from a theoretician’s point of view.

Let us write down a simple gravity-scalar model, namely gravity with one scalar field and
some potential for it:

L =
√
−g

(

R− 1
2 (∂φ)2 − V(φ)

)

. (4.59)

The equations of motion for ak = 0 FLRW Ansatz are the following:

H2 = 1
12 φ̇

2 + 1
6 V , (4.60)

ä
a
= 1

6

(

−φ̇2 + V
)

, (4.61)

φ̈ + 3 H φ̇ +
∂V
∂φ
= 0 , (4.62)

where we recognize the first two equations as the Friedmann and acceleration equations, re-
spectively, and the third one is the equation of motion of thescalar field. To be consistent with
homogeneity, we have assumed thatφ depends only on time. Comparing this to (4.18) and
(4.19), we see that

ρ =
1

16πG

(

1
2 φ̇

2 + V
)

, (4.63)

p =
1

16πG

(

1
2 φ̇

2 − V
)

. (4.64)

So, ifφ varies slowly in time, its equation of motion approaches that of a cosmological constant,
i.e.ω ∼ −1. We also see from the acceleration equation (4.61) thatV acts in favor of acceleration
like a cosmological constant, and the kinetic energy acts against it. This is why in scalar models
for inflation such aschaotic inflation, one requires that the field be slowly varying, i.e.φ̇ ≪ 1,
by restricting the form of the potential. However, a realistic model for inflation must have an
inflationary period of at least 60 e-foldings. A scalar field will naturally roll down its potential
until it reaches a minimum, and its kinetic energy will only increase in the meantime, leading to
a non-accelerating or even decelerating cosmology. Therefore, in order to prevent a premature
end of inflation one must also require thatφ̈ ≪ 1. These two conditions,̇φ ≪ 1 andφ̈ ≪ 1 are
called theslow roll conditions. Of course, in a specific model, one usually parametrizes these
constraints to obtain controlled results.

Introducing the scalar field allows for cosmologies that aremore complicated than just
power-law or de Sitter solutions. Because it is dynamical, it can source solutions that inter-
polate in time between those two basic solutions. Cosmological solutions that interpolate in
time between two non-accecelerating regimes, but are separated by one or several periods of
transient acceleration are of special interest. We will seea specific example of this in the next
section, and in the next two chapters we will be looking at more general examples where we
introduce several scalar fields with intricate potentials that couple them to each other.
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4.3.2 Acceleration from string/M-theory

In principle one can obtain all kinds of interesting geometries to model inflation and current
acceleration from scalar field models by having several scalar fields and the right potential, as
we will see in the next two chapters. However, even if one can write down such a model the
question remains: where do these fields and their potential come from? Often one refers to such
scalar fields asinflatonsand to their potentials asquintessence, meaning they are a fifth force
in nature that drives acceleration. However, as string theorists, we do not like to invoke new
forces unless we can derive them from a unified theory. In the past few years, string theorists
have made numerous attempts to derive scalar cosmology models by dimensionally reducing
10-dimensional supergravities and making appropriate truncations leaving only scalar fields and
scalar potentials in the four-dimensional spacetime. In chapter 6, we will look at what happens
when one reduces supergravities on three-dimensionalgroup manifolds. However, before jump-
ing into that, I will attempt to give a brief review of what happens when one considers simpler
schemes, such as reducing over Einstein spaces2.

The standard torroidal Kaluza-Klein reduction scheme provides us with an easy way of go-
ing from ten dimensions to fourand generating scalar fields (i.e. Kaluza-Klein modes) with
potentials. However, the potentials it yields will not generate an accelerating four-dimensional
universal. To make things worse, there is ano-gotheorem [81, 82] that essentially states that
compactifications of ten or eleven dimensional supergravities of string/M-theory over compact,
non-singular, spaces without boundaries and with time-independent volume3 never lead to ac-
celerating universes. To circumvent the theorem, one must allow for time-dependent volume of
the internal space. P.K. Townsend and M. Wohlfarth [83] showed that reducing gravity over a six
or seven-dimensional hyperboloid with time-dependent volume yields a universe with a limited
period of acceleration. The solution interpolates in time between two decelerating power-law
periods att → 0 andt → ∞, which are joined by an accelerating epoch. The Ansatz in 4+ n
dimensions has the following form:

ds2 = δ−n(t) ds2
E + δ

2(t) dH2
n , (4.65)

whereds2
E is the four-dimensional cosmological spacetime that will result in Einstein frame

after the reduction,dHn is the n-dimensional hyperbolic space, andδ(t) is the warp factor,
which will act as a time-dependent ‘volume’ of the internal space. The dimensionn of the
internal space is left arbitrary, but for string/M-theory we needn = 6, 7. I will not write down
the actual solutions forδ(t) andds2

E, for I want to stress the qualitative information. The (4+n)-
dimensional Ansatz is itself flat, i.e. it is Minkowski spacetime with some identifications that
do not affect curvature. However, the reduction Ansatz we have chosen, yields a non-trivial
four-dimensional spacetime with interpolating behavior.In the early universe it hasa ∼ t1/3; in
the future it hasa ∼ tn/(n+2); and in between it has an epoch of transient acceleration. This is
in principle what we are looking for, as this scenario has itsown mechanism to begin and end
inflation. Unfortunately, the acceleration period generated by this scheme is not long enough

2An Einstein space is a manifold with a metric that solves the Einstein equationsin vacuoor in the presence of a
cosmological constant. As a consequence of that, it has the highest possible degree of symmetry.

3You may wonder what I mean by ‘volume’ if the internal space ishyperbolic. In this case one must always make
the space compact by topological identifications. Otherwise, one must face the undesirable physical consequences of a
so-callednon-compactification.
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to yield the so much needed 60 e-foldings of inflation. But theresult may still apply to current
acceleration.

The Townsend-Wohlfarth solution turns out to be a special case of a larger class of super-
gravity solutions calledS-branes, found in [84]. These are essentially solutions of supergravity,
which look like p-brane solutions, except that time istransverseto their world-volume as op-
posed to being in it. These solutions are sourced by the dilaton and some antisymmetric tensor,
just like p-brane solutions:

L = R− 1
2

(∂φ)2 − 1
2 (p+ 2)!

eap φ F2
p+2 , (4.66)

whereFp+2 is the field-strength, andap is determined by the supergravity in question. This
differs from the previous Ansatz in that the latter was a solutionto Einstein’s equationin vacuo,
whereas the S-brane is carried by the dilaton and has a flux from thep+ 2-form field-strength.
The Ansatz for the metric is similar to the previous one, except that the internal space no longer
needs to be hyperbolic; it can be flat or spherical. The Ansatzfor an SD2-branes looks roughly
as follows:

ds2 = − f (t)2 dt2 + g(t)2 dx2
3 + h(t)2 dΣ2

k,6 , (4.67)

where the three boldfaced spatial coordinates correspond to our space, and to the world-volume
of the SD2-brane, the six-dimensional internal space can now be positively curved, flat, or neg-
atively curved (k = 1, 0,−1 respectively), andf (t), g(t) andh(t) are determined by the equations
of motion. This solution is no longer flat in ten dimensions, since it now solves the Einstein
equations with RR flux turned on, but interpolates in time between a flat metric and a horizon-
like geometry. In four dimensions, it yields an interpolating solution with a transient accelerating
epoch regardless of the kind of internal space we pick (i.e.k = 1, 0,−1). For a more detailed
review on the subject of S-branes and their status, the reader is referred to [85].

The schemes I have mentioned so far are all based on the assumption that the supergrav-
ity approximation is a valid one, allowing one to treat string theory as field theory. However,
this assumption is not necessarily justified. One uses it only because it is very difficult to deal
with the full string theory. For instance, in a scenario where the dilaton grows large over time,
string perturbation theory will break down. That is why attempts are being made to take non-
perturbative string theory effects into account in compactification schemes. Another problem
posed by these compactifications is that the volume and shapeof the internal space, being dy-
namical by construction, are not always stable. For instance, in many solutions, the volume
will tend to blow up in time. This is known asspontaneous decompactification. If one takes
such models seriously, then one should expect to be able to observe these extra dimensions in
the present, or assume that we live in a special moment in the history of the universe, when the
extra dimensions happen to be small. These compactificationschemes should, therefore, not be
regarded as phenomenologically realistic models, but merely as evidence that demonstrates that
it is possible to circumvent the Maldacena-Nuñez no-go theorem [82].

Currently, string theorists are trying to create realisticmodels that can stabilize all of the
moduli of the internal compactification manifold. A couple of yearsago, the authors of [33]
came up with a string compactification scenario that exploits non-perturbative string theory
effects to stabilize the internal moduli. The idea relies on non-perturbative instanton effects
induced by wrapping a Euclidean D3-brane around a 4-cycle ofthe internal Calabi-Yau space.
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The authors of the paper, however, did not find an explicit choice for the required Calabi-Yau
space to carry out this idea. String theorists have only recently been able to write down concrete
realizations of this scenario. For instance, while this thesis was being written, an article was
published [86], in which not only the moduli stabilization problem was dealt with, but also the
problem of breaking supersymmetry softly for particle phenomenological purposes.

All of the schemes to obtain acceleration from string/M-theory that I have mentioned so
far have one thing in common: from the four-dimensional point of view, they all reduce to an
effective field theory with Einstein gravity and scalar fields with potentials. This is true even
for models that take non-perturbative string theory effects into account. Therefore, although
one would like to be able to derive the ultimate string theorymechanism or scenario that leads
to inflation and present day acceleration right away, it is useful and wise to also study which
four-dimensional scalar models are capable of driving those two cosmological phenomena at
all. After all, most of the conceivable reduction schemes will reduce to four-dimensional scalar-
gravity field theories. Should one find a class of models that drive a realistic cosmology, one
could then investigate how to obtain it from string theory. In the next two chapters, we will
be doing a bit of both. We will study scalar-gravity models with exponential potentials in gen-
eral, but will also pay attention to potentials obtained from some specific dimensional reduction
schemes.



Chapter 5

Scalar Cosmologies I: A simple case

5.1 Introduction

The discovery that the universe may currently be in a phase ofaccelerated expansion [79, 80]
has led to strong interest in finding de Sitter solutions or more general accelerating cosmologies
from M-theory, see [33,83,87–97] and references therein.

A simple way to study accelerating cosmologies is to consider models containing just gravity
and a number of scalars with a potential. This method has a long history and has resulted in
models for inflation [98], describing the early universe, and for quintessence [99], describing the
present universe. The potentials for the scalar fields give rise to a small effective cosmological
constant. Multi-exponential potentials comprise a specific class of potentials, which have been
frequently studied, and these are of interest for two reasons: first, they can arise from M-theory
in many ways; e.g. via compactifications on product spaces possibly with fluxes [100–103],
and second, the equations of motion can be written as an autonomous system. This approach
allows for an algebraic determination of power-law and de Sitter solutions, which are viewed
as critical points that can correspond to early- and late-time asymptotics of general solutions.
Many authors have made use of this fact, see [95,104–110] andreferences therein.

The purpose of this chapter is to investigate the possibility of transient acceleration for the
class of cosmologies whose solutions are described by a metric and N scalars, with a scalar
potential given by a single exponential. The consequence ofthis is that, effectively, the scalar
potential depends on only one scalar. All otherN − 1 scalars are represented by their kinetic
terms only. Since the metric cannot distinguish between these differentN−1 scalars, there is no
qualitative difference between theN = 2 scalar cosmology and theN > 2 scalar cosmologies.
We therefore only consider the one-scalar (N = 1) and two-scalar (N = 2) cosmologies. We
will be studying these models purely from the four-dimensional point of view, without reference
to possible higher dimensional origins. This chapter can beconsidered as a warm up for the
next chapter, where we will study scalar cosmologies with multi-exponential potentials. In that
case, things will be much more complicated, as there it will no longer be possible to reduce a
multi-scalar system into a 2-scalar model.

The cosmological solutions discussed in this paper have been given sometime ago [111,112].



98 Scalar Cosmologies I: A simple case

The fact that these cosmologies, for particular cases at least, exhibit a period of acceleration, was
noted recently in [83] where a specific class of solutions wasobtained by compactification over
a compact hyperbolic space (for earlier discussions, see [90, 101, 112–114]). The relation with
S-branes was subsequently noted in [91, 92, 97] (for generalliterature on S-brane solutions,
see [84,94,100–102,114–121]).

(a) (b)

Figure 5.1: Each cosmological solution is represented by a curve on the sphere. In figure (a)
“Rome", represented by the dot, is on the sphere and each curve is directed from the equator
towards “Rome", which corresponds to a power-law solution to the equations of motion. In
figure (b) “Rome" is not on the sphere and each curve, again being directed towards “Rome",
begins and ends on the equator. In this case “Rome" is not a solution. The accelerated expansion
of the solution occurs whenever the curve lies within the “arctic circle". This region is shown
by the shaded area.

In this work we will discuss systematically the accelerating phases of all 2-scalar cosmolo-
gies with a single exponential potential by associating to each solution a trajectory on a 2-sphere.
It turns out that all trajectories have the property that, when projected onto the equatorial plane,
they reduce to straight lines which are directed towards a point that we will call “Rome". De-
pending on the specific dilaton coupling of the potential, this point can be either on the sphere
or not. In the former case, it corresponds to a power-law solution for the scale factor, whereas in
the latter case, it is not a solution. We find that the accelerating phase of a solution is represented
by the part of the trajectory that lies within the “arctic circle" on the sphere, see figure 5.1. This
enables us to calculate the expansion factors in a straightforward way for each of the solutions.

This chapter is based on a collaboration with E. Bergshoeff, U. Gran, M. Nielsen, and D.
Roest, entitledTransient quintessence from group manifold reductions or how all roads lead to
Rome[95]. It is organized as follows: in sections 5.2-5.4 we present, under the assumptions
stated, the most generalN-scalar accelerating cosmology in 4 dimensions. The accelerating
phases of these cosmologies are discussed in section 5.5. Their equations of state and the one-
scalar truncations are discussed in sections 5.6 and 5.7, respectively.
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5.2 Setup: Lagrangian and Ansatz

Our starting point is gravity coupled toN scalars [122] which we denote by (ϕ, ~φ). We assume
that the scalar potential consists of a single exponential term:

L =
√
−g

[

R− 1
2(∂ϕ)2 − 1

2(∂~φ)2 − V(ϕ, ~φ)
]

, V(ϕ, ~φ) = Λ exp(−αϕ − ~β · ~φ) , (5.1)

where we restrict1 toΛ > 0. To characterize the potential we introduce the followingparameter:

∆ ≡ α2 + |~β|2 − 2 (D − 1)
(D − 2)

= α2 + |~β|2 − 3 for D = 4. (5.2)

This parameter, first introduced in [52], is invariant undertoroidal reductions.
The kinetic terms of the dilatons are invariant underS O(N)-rotations of (ϕ, ~φ). However,

in the scalar potential the coefficientsα and~β single out one direction inN-dimensional space.
Therefore the Lagrangian (5.1) is only invariant underS O(N − 1). The remaining generators of
S O(N) can be used to set~β = 0, in which case only the scalarϕ appears in the scalar potential.
Such a choice of basis leaves∆ invariant.

Motivated by observational evidence, we choose a flat FLRW Ansatz. This basically means
a spatially flat metric that can only contain time-dependentfunctions. One can always perform
a reparametrization of time to bring the metric to the following form:

ds2 = −a(u)2δ du2 + a(u)2 dx2
3 , (5.3)

for someδ. In this paper we will chooseδ as follows2:

Cosmic time: δ = 0 , u= τ ,
da
dτ
= ȧ , (5.4)

Non-cosmic time: δ = 3 , u= t ,
da
dt
= a′ . (5.5)

As a part of the Ansatz, we also assume:

ϕ = ϕ(u) , ~φ = ~φ(u) . (5.6)

For this Ansatz one can reduce theN − 1 scalars~φ that do not appear in the potential to one
scalar by using their field equations as follows:

d2 ~φ

du2
= (δ − 3)

d loga
du

d~φ
du

⇒ d~φ
du
= ~c aδ−3 , (5.7)

where~c is some constant vector. The only influence of theN − 1 scalars comes from their total
kinetic term:

∣

∣

∣

∣

d~φ
du

∣

∣

∣

∣

2
= |~c|2 a2δ−6 . (5.8)

1We make this choice in order to obtain dark energy and therefore accelerating solutions.
2The non-cosmic time corresponds to the gauge in which the lapse functionN ≡ √−gtt is equal to the square root

of the determinantγ of the spatial metric, i.e.N =
√
γ, whereas cosmic time corresponds toN = 1. We thank Marc

Henneaux for a discussion on this point.
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Therefore, from the metric point of view, there is no difference betweenN = 2 andN > 2 scalars
(under the restriction of a single exponential potential).The truncation of the system (5.1) to
one scalar corresponds to setting~c = 0.

To summarize, we will be using the following Lagrangian:

L =
√
−g

[

R− 1
2(∂ϕ)2 − 1

2(∂φ)2 − V(ϕ)
]

, V(ϕ) = Λ exp(−αϕ) , (5.9)

with Λ > 0 and we choose the conventionα ≥ 0. From now on we will use∆ = α2 − 3 instead
of α.

In the next two subsections we will first discuss the criticalpoints corresponding to the
system (5.9) and then the solutions that interpolate between these critical points. We will use
cosmic time (5.4) when discussing the critical points in section 5.3 and non-cosmic time (5.5)
when dealing with the interpolating solutions in section 5.4.

5.3 Critical points

It is convenient to choose a basis for the fields, such that they parametrize a 2-sphere. In this
basis, we will be able to regard our system as an autonomous one, and we will find that all
constant configurations (critical points) correspond to power-law solutions for the scale factor
a(τ) ∼ τp for somep. By studying the stability of these critical points [104,107] one can deduce
that there exist interpolating solutions which tend to these points in the far past or the distant
future. We will actually be able to draw these interpolatingsolutions without having to do any
stability analysis.

We begin by choosing the flat FLRW Ansatz (5.3) in cosmic time:

ds2 = −dτ2 + a(τ)2 (dx2 + dy2 + dz2) . (5.10)

The Einstein equations for the system (5.9) with this Ansatzbecome:

H2 = 1
12 (ϕ̇2 + φ̇2) + 1

6 V , (5.11)

Ḣ = − 1
4 (ϕ̇2 + φ̇2) , (5.12)

whereH ≡ ȧ/a is the Hubble parameter and the dot denotes differentiation w.r.t.τ. Equations
(5.11) and (5.12) are usually referred to as the Friedmann equation and the acceleration equation,
respectively. The scalar equations are:

ϕ̈ = −3 H ϕ̇ +
√
∆ + 3 V , φ̈ = −3 H φ̇ . (5.13)

We define the following three variables:

x =
ϕ̇
√

12H
, y =

φ̇
√

12H
, z=

√
V

√
6H

. (5.14)
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In these variables the Friedmann equation (5.11) becomes the defining equation of a 2-sphere
[107,123]:

x2 + y2 + z2 = 1 . (5.15)

This means that we can think of solutions as points or trajectories on a globe. It turns out
that cosmological solutions are either eternally expanding (i.e.H > 0) or eternally contracting
(H < 0), but cannot have an expanding phase and then a contractingphase (or vice-versa).
Since we are only interested in expanding universes, we willonly be concerned with the upper
hemisphere (i.e.z> 0). In terms ofx andy the scalar equations become:

ẋ
H
= −3z2 (x−

√

1+ ∆/3) , (5.16)

ẏ
H
= −3z2 y . (5.17)

We can rewrite the acceleration equation (5.12) as follows:

Ḣ
H2
= −3 (x2 + y2) . (5.18)

If we now solve for the critical points ( ˙x = 0, ẏ = 0), we can then integrate (5.18) twice and
obtain the following power-law solutions fora(τ) [122]:

a(τ) ∼ τp , where p =
1

3 (x2
c + y2

c)
, (5.19)

and the following solutions for the scalars:

ϕ =
√

12p xc log(τ) + constant. (5.20)

We thus find the following critical points:

• Equator:

z= 0, x2 + y2 = 1. (5.21)

Every point on the equator of the sphere is a critical point with power-law behaviour
a ∼ τ1/3.

• “Rome" :

x =
√

1+ ∆/3 , y = 0 , z=
√

−∆/3 . (5.22)

This critical point yields a power-law behaviour of the form(we ignore here irrelevant
constants that rescale time)

a ∼ τ1/(∆+3) for − 3 < ∆ < 0 , a ∼ eτ for ∆ = −3. (5.23)

Note that the greater∆ is, the further “Rome" gets pushed towards the equator, and for
∆ = 0 it is on the equator.
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Although the equatorial points (a.k.a. kinetic-dominatedsolutions) do solve (5.15)-(5.18) as
critical points, they are not proper solutions of (5.11)-(5.13) in terms of the fundamental fields,
sincez = 0 would imply thatV = 0, which is impossible forΛ , 0 unlessϕ is infinite at all
times. However, these points will be interesting to us, as they will provide information about the
asymptotics of the interpolating solutions.

In contrast to the equator, the “Rome" critical point is a physically acceptable solution of
the system, provided it is well defined on the globe (i.e.∆ < 0). In the case where∆ = −3 it
becomes De Sitter (i.e.a ∼ eτ), as one would expect, sinceV = Λ.

Besides these critical points there are other solutions, which are not points but rather trajec-
tories. In fact, we can already determine their shapes. Dividing (5.16) and (5.17) we obtain the
following:

dy
dx
=

y

x−
√

1+ ∆/3
. (5.24)

Integrating this we get the following relation betweenx andy:

y = C (x−
√

1+ ∆/3) , (5.25)

whereC is an arbitrary constant3. This relation tells us that if we project the upper hemisphere
onto the equatorial plane, in other words, if we view the sphere from above, any solution to the
equations of motion must trace out a straight line that lies within the circle defined byx2+y2 = 1
and has ay-intercept at (x =

√
1+ ∆/3, y = 0). From now on, we will refer to that point as

“Rome"4. Notice that all lines intersect at “Rome" independently ofwhether it is on the globe
(∆ < 0), right on the equator (∆ = 0) or off the globe (∆ > 0). These lines can only have critical
points as end-points. So each line is a solution, which interpolates between two power-law
solutions. In a similar, yet physically inequivalent context, such a line was found in [105].

Now that we know the shapes of the trajectories, let us figure out their time-orientations. By
looking at (5.16) we realize that the time derivative ofx is positive whenx <

√
1+ ∆/3 and

negative whenx >
√

1+ ∆/3. This tells us thatall roads lead to Rome. Figure 5.2 illustrates
this for the cases where “Rome" is off the globe, right on the equator or on the globe.

One can also determine the orientations of the trajectoriesby analysing the stability of the
critical points. One will find that whenever “Rome" is on the globe (i.e.∆ = 0 and∆ < 0), it is
stable (i.e. an attractor), and the points on the equator areall unstable (i.e. repellers), except for
“Rome" when∆ = 0. In the case where “Rome" is off the globe (i.e.∆ > 0), the equator splits
up into a repelling and an attracting region. The attractingregion turns out to be the portion of
the equator that can “see” “Rome". In other words, any point on the equator that can be joined to
“Rome" by a straight line such that the line does not intersect the equator again before reaching
“Rome" is attracting. To summarize, for∆ > 0, all points on the equator withx >

√
3/(∆ + 3)

are attracting, and the rest are repelling. In the first illustration of figure 5.2, the attracting
portion of the equator is depicted by the thick arc.

3SinceC is finite one might think that this excludes the line defined byx =
√

1+ ∆/3. However, that line can be
obtained by taking the inverse of (5.24) and solving forx as a function ofy.

4Note that we have extended our definition of “Rome": only if “Rome" is on the globe (∆ < 0) is it equal to the
critical point discussed before.
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∆ > 0 ∆ = 0 ∆ < 0

Figure 5.2: The solutions represented as straight lines in the(x, y)-plane for∆ > 0 where
“Rome" is not on the sphere,∆ = 0 where “Rome" is on the equator and−3 ≤ ∆ < 0 where
“Rome" is on the sphere. The thick arc in the left figure represents the attracting portion of the
equator [124].

5.4 Interpolating solutions

To solve the equations of motion, it is convenient to use the FLRW Ansatz (5.3) in non-cosmic
time:

ds2 = −a(t)6 dt2 + a(t)2 dx2
3 . (5.26)

Substituting this Ansatz in the Einstein equations yields

F2 = 1
3 F′ + 1

12 (φ′2 + ϕ′2) , (5.27)

F′ = 1
2 V a6 , (5.28)

whereF = a′/a is a Hubble parameter-like function, and the prime denotes differentiation
w.r.t. t. The equations for the scalars are:

φ′′ = 0 , ϕ′′ =
√
∆ + 3V a6 . (5.29)

Combining (5.29) and (5.28) gives the following solutions for the scalars:

ϕ = 2
√
∆ + 3 log(a) + a1 t + b1 , φ = a2 t + b2 . (5.30)

By substituting this into equation (5.25) we can deduce thatthe slope of the line is given by
C = a2/a1. Substituting the scalars into (5.27) and (5.28) we are now left with the following
two equations:

F′ = −∆ F2 −
√
∆ + 3a1 F − 1

4 (a2
1 + a2

2) (5.31)

= 1
2 Λ e−

√
∆+3 (b1+a1 t) a−2∆ . (5.32)

Keeping in mind thatF′ must be positive due to (5.32) we can now solve forF in the three
different cases where∆ is positive, zero and negative. We can then easily finda(t). We will
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chooseb1 (the constant part ofϕ) such that all solutions fora(t) have a proportionality constant of
1, which does not affect the cosmological properties of the solutions. The integration constants
appearing in the solutions are defined as follows:

c1 =
−
√
∆ + 3a1

2∆
, c2 =

√

3a2
1 − ∆a2

2

2
, d1 = −

a2
1 + a2

2

4
√

3a1

, d2 = −
√

3a1 . (5.33)

Below we present the solutions [111, 112] and their late- andearly-time asymptotic behaviours
(we give the latter without any irrelevant constants that rescale time):

1. ∆ > 0:

a(t) = ec1 t cosh (c2 t)1/∆ , for −∞ < t < +∞ . (5.34)

The positivity ofF′ requiresa1 to be negative, and it also imposes the following constraint:

(a2

a1

)2
<

3
∆
. (5.35)

This solution corresponds to a generic line on the first illustration in figure 5.2. It starts
on the equator somewhere to the left ofx =

√
3/(∆ + 3), then moves in the direction of

“Rome", but ends on the equator on the right-hand side. Note that the constraint (5.35) is
simply the requirement that the slope of the line is bounded from above and from below
such that the line actually intersects the sphere. We can confirm this asymptotic behaviour
of the solution by converting to cosmic time (5.4) fort → −∞ and t → +∞ with the
relationa(t)3 dt = dτ:

t → −∞ , τ→ 0 , a→ et ∼ τ1/3 ,

t → +∞ , τ→ +∞ , a→ et ∼ τ1/3 . (5.36)

2. ∆ = 0:

a(t) = ed1 t exp (ed2 t) , for − ∞ < t < +∞ . (5.37)

The positivity ofF′ requiresa1 to be negative. This corresponds to a line on the second
illustration in figure 5.2. It starts on the equator and reaches “Rome"5, which is also on
the equator. Its asymptotic behaviour goes as follows:

t → −∞ , τ→ 0 , a→ et ∼ τ1/3 ,

t → +∞ , τ→ +∞ , a→ eet ∼ τ1/3 . (5.38)

To find the late-time behaviour ofa in cosmic time one must realize the following two
facts: First,a(t) ∼ exp(et) for t→ ∞. Second, in this limit,a′ ∼ a and thereforea behaves
like a normal exponential.

5In this case, “Rome" is again attracting, however to see that, one must perform the stability analysis by going to
second order perturbation. The first order vanishes, which means that the interpolating trajectory approaches “Rome"
more slowly than in the cases where∆ < 0.
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3. −3 ≤ ∆ < 0:

a(t) = ec1 t sinh (−c2 t)1/∆ , for −∞ < t < 0 . (5.39)

This solution corresponds to any line on the third illustration in figure 5.2. It starts at any
point on the equator and ends at “Rome". This is reflected in the asymptotics as follows:

t → −∞ , τ→ 0 , a→ et ∼ τ1/3 ,

t → 0 , τ→ +∞ , a→ (−t)1/∆ ∼ τ1/(∆+3) for ∆ > −3 , (5.40)

∼ eτ for ∆ = −3 .

There is one more solution for−3 ≤ ∆ < 0. If we seta1 = a2 = 0 we find:

a(t) = (−t)1/∆ for −∞ < t < 0 . (5.41)

This solution corresponds to the “Rome" solution itself. For −3 < ∆ < 0 the conversion
to cosmic time is the following:

a ∼ τ1/(∆+3) . (5.42)

Notice, however, that in the case where∆ = −3, the “Rome" solution (5.41) and therefore
the late-time asymptotics of (5.39) have a different conversion to cosmic time, namely:

a ∼ (−t)1/∆ ∼ eτ , (5.43)

which we recognize as the De Sitter solution, in agreement with the fact that we have
V = Λ.

The interpolating solutions above are given in non-cosmic time, which as mentioned is re-
lated to cosmic time by

dτ = a(t)3 dt . (5.44)

Integrating this equation yields hypergeometric functions for a generic interpolating solution,
which we cannot invert to get the scale factor as a function ofcosmic time. However, it is pos-
sible to get interpolating solutions in cosmic time for negative∆ when the following constraint
on the constants holds:

(a2

a1

)2
= 12

∆ + 9
4

(2∆ + 3)2
, (5.45)

which can only be fulfilled for−9/4 ≤ ∆ < 0. The relation between the two time coordinates is

τ =
2−3/∆

2c2

∆

3+ ∆
(e2c2t − 1)(3+∆)/∆ , (5.46)

and the scale factor in cosmic time becomes

a(τ) =
(

k1 τ
3/(3+∆) + k2 τ

)1/3
, (5.47)

wherek1 = (2/c1)3/∆ andk2 = k1 c1 (2∆ + 3)/(18+ 6∆). From this solution, the asymptotic
power-law behaviours are easily seen. The special one-scalar case, corresponding to∆ = −9/4,
was found in [125].
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5.5 Acceleration

In this section we will investigate under which conditions “Rome" and the interpolating solutions
represent an accelerating universe. This can be given a nicepictorial understanding in terms of
the 2-sphere. We will show that acceleration takes place when the trajectory enters the region
bounded by an “arctic circle". This is summarized in figure 5.3.

An accelerating universe is defined by ¨a/a > 0. The existence of the “arctic circle" in
connection to acceleration can now easily be determined. Assuming an expanding universe and
using

ä
a
= Ḣ + H2 , (5.48)

as well as (5.18), we see that the condition for accelerationis equivalent to6

z2 >
2
3
, i.e. x2 + y2 <

1
3
, (5.49)

which exactly yields an “arctic circle" as the boundary of the region of acceleration. The straight
line representing the exact solution is parametrized by theconstantsa1 anda2 as found in the
previous section. From (5.49) and (5.25) it then easily follows that the condition for acceleration
leads to the following restriction for the slope of the line:

(a2

a1

)2
(2+ ∆) < 1 . (5.50)

This condition is always fulfilled when∆ ≤ −2 and otherwise there is an interval of values
for a2

2/a
2
1 yielding an accelerating universe. This can easily be understood from figure 5.3. In

general, a solution will only have transient acceleration.The only exception is when “Rome"
lies within or on the “arctic circle", corresponding to∆ ≤ −2. Then, from the moment the
line crosses the “arctic circle", there will be eternal acceleration [89] towards “Rome". When
∆ = −2, there will only be eternal acceleration when “Rome" is approached from the left. The
possibilities of acceleration can be summarized as:

• ∆ > −2 : A phase of transient acceleration is possible,

• ∆ = −2 : A phase of eternal acceleration is possible,

• − 3 ≤ ∆ < −2 : Always a phase of eternal acceleration.

The phase of eternal acceleration can also be understood from the power-law behaviour of the
“Rome" solution, i.e.a(τ) ∝ τ1/(3+∆). We have asymptotic acceleration when 1/(3 + ∆) > 1,
i.e.∆ < −2. In the limiting case∆ = −3, corresponding to “Rome" being on the North Pole, the
interpolating solution will asymptote to De Sitter.

6A similar inequality was given in [105] for the one-scalar case, and in terms of the scalars and the potential in [112]
for the multi-scalar case.
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∆ > 0 ∆ = 0 −2 < ∆ < 0

∆ = −2 −3 < ∆ < −2 ∆ = −3

Figure 5.3: The solutions represented as straight lines in the(x, y)-plane for∆ > 0 where
“Rome" is not on the sphere,∆ = 0 where “Rome" is on the equator and−3 ≤ ∆ < 0 where
“Rome" is on the sphere. The inner circle corresponds to the “arctic circle", and solutions
are accelerating when they enter the shaded area. The lower part of the figure corresponds
to the cases where “Rome" is lying on the “arctic circle",∆ = −2, inside the “arctic circle",
−3 < ∆ < −2 and on the North Pole,∆ = −3.

5.6 Equation of state

In a cosmological setting, one often writes the matter part of the equations in terms of a perfect
fluid, which is described by its pressurep and energy densityρ. These two variables are then
assumed to be related via the equation of state:

p = κ ρ . (5.51)

As is well known in standard cosmology,κ = 0 corresponds to the matter dominated era,κ = 1/3
to the radiation dominated era andκ = −1 to an era dominated by a pure cosmological constant.
Quintessence is a generalization of the latter with−1 ≤ κ < −1/3.

In our case, the matter is given by the two scalar fields, and thus p andρ are given by the
difference and sum of the kinetic terms and the potential, respectively:

p = 1
2 (ϕ̇2 + φ̇2) − V , ρ = 1

2 (ϕ̇2 + φ̇2) + V . (5.52)

Writing the above in terms ofx, y andz, we see that the scalars describe a perfect fluid with an
equation of state given in terms of the parameter:

κ = 1− 2z2 . (5.53)
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Hence,κ varies from 1 on the equator to−1 on the North Pole, and we needκ < −1/3 for
quintessence. For the interpolating solutions, which are given as curves on the sphere,κ will
depend on time, but it will be constant for the critical points with the following values [89]:

• Equator : κ = 1 ,

• “Rome” : κ = 1+ 2
3 ∆ . (5.54)

5.7 One-scalar truncations

The analysis has so far been done for two scalars, and as such it also contains the truncation to
a system with one scalar with a potential, corresponding toφ = 0. Here we will summarize the
results of the previous sections in this truncation. On the sphere this yieldsy = 0, and for the
solutions it corresponds toa2 = b2 = 0.

∆ > 0 ∆ = 0 ∆ < 0

Figure 5.4: The 2-dimensional(x, z) space and the critical points for the one-scalar truncations.
The thick curve is the accelerating region. The two points onthe x-axis are the equatorial critical
points. The third point is “Rome". Note that in the middle illustration “Rome" coincides with
the equatorial critical point x= 1.

Since we only have one scalar, the Friedmann equation will define a circle when written in
terms ofx andz [105,109]:

x2 + z2 = 1 . (5.55)

The critical points are [104]:

• Equatorial : z= 0 , x2=1 ,

• “Rome” (−3 ≤ ∆ < 0) : z=
√

−∆/3 , x =
√

1+ ∆/3 . (5.56)

The full circle is shown in figure 5.4, including the criticalpoints, and is just the vertical slice
of the two-sphere including the North Pole. The equator therefore becomes two points, and
the region bounded by the “arctic circle" now becomes the part of the circle7 corresponding to
x2 < 1/3.

7This is equivalent to the accelerating region of [126, 127].
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The exact solutions can be obtained from the previous section by settinga2 = b2 = 0. For
∆ ≥ 0 the solutions correspond to the curves starting atx = −1 and ending atx = 1, whereas for
−3 ≤ ∆ < 0 the curves start at either one of the equatorial points and end at “Rome". In all cases
where the curve starts atx = −1, the corresponding solution will give rise to acceleration. For
this reason, interpolating solutions with∆ ≥ 0 will always give rise to a period of acceleration.
This is in clear contrast to the two-scalar case, where it is possible to avoid acceleration (see
figure 5.3). As for the 2-scalar case, if “Rome" lies in the “arctic" region, the solution will be
eternally accelerating from the moment it enters this region.

One can also consider the truncation to zero scalars. However, from the scalar field equa-
tions, it is seen that this is only consistent if∆ = −3, and this corresponds to the De Sitter
solution withV = Λ.

A comment on the relevance of the interpolating solutions toinflation would be in order. In
this context the number ofe-foldings is crucial. As mentioned already, it is defined byNe =

log(a(τ2)/a(τ1)) with τ1 andτ2 the start and end times of the accelerating period. These times
can easily be found in our approach as the points where the straight lines intersect the “arctic
circle". The number ofe-foldings is required to be of the order of 65 to account for astronomical
data. For the interpolating solutions with∆ > −2, which is a necessary requirement to have a
finite period of acceleration, one findsNe . 1 [93,97,120] for all values ofa1, a2 andΛ. The only
exception to this behaviour is when∆→ −2, whereNe blows up. For the required 65e-foldings
one needs to take∆ + 2 ∼ 10−60. As an example, for a compactification over anm-dimensional
hyperbolic space, leading to∆ = −2+ 2/m, this translates intom∼ 1060. Thus, it seems that the
e-foldings requirement for inflation cannot be met by a singleexponential potential emanating
from a dimensional reduction from the effective action of string/M-theory. Such a potential may,
however, be relevant for describing present day acceleration. This does not exclude, however,
that potential with∆ close enough to 2 for inflation might arise in a string theory scenario that
takes other string theory effects into account, such as in [33].

In this chapter we introduced the scalar-gravity model in the FLRW context. We also in-
troduced the language of autonomous systems and their fruitful application to cosmology. We
learned that it is not necessary to find explicit solutions tothe Einstein equations in order to
get important qualitative information about our system. Although we were fortunate enough
to write down the solutions explicitly, just by reasoning interms of critical points and stabil-
ity, we realized that power-law and de Sitter solutions are not the only kind of cosmology. We
found solutions that interpolate between those two basic cases, some of which showed periods of
transient acceleration. Transient acceleration is phenomenologically more interesting because a
realistic model of cosmology should dynamically bring inflation to an end. It is also useful to
consider scenarios with transient acceleration simply because we do not know whether present
day acceleration will last forever.

So far, we have specialized in the case where the scalar potential consists of one exponential
term. This lead to the huge simplification of being able to redefine our fields such that only one
scalar appears in the exponent, no matter how many scalars were present in it to begin with. This
was a particularly simple prelude to what we are about to do inthe next chapter, where we will
deal with themostgeneral multi-exponential potential. We will rely entirely on the language of
dynamical systems, as explicit interpolating solutions will become virtually impossible to find.
By looking for critical points in such systems we will discover that intricate multi-exponential
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potentials do not simply accumulate the effects of a single exponential potential, but actually
lead new de Sitter solutions that had not been seen before.



Chapter 6

Scalar Cosmologies II: A not so
simple case

6.1 Introduction

In chapter 5, we studied scalar cosmology models, specializing in the single exponential poten-
tial case. We wrote down the field equations in the form of an autonomous system and studied
its critical points and its interpolating solutions. However, the assumption of a single expo-
nential in the potential lead to a great simplification, namely the amount of scalar fields was
effectively reduced to two. In this chapter, we will drop this simplifying assumption and look at
multi-exponential potentials.

The understanding of multi-exponential potentials has gradually evolved over the years. In
the early days, the single exponential was studied in the context of inflation, where it was dis-
covered that this potential allowed for a power-law solution [104]. Later on, the effect of adding
exponential terms, each carrying a different scalar, was studied. This model is called “assisted
inflation” [108]. The outcome is that the scalars ‘assist’ each other in the sense that each term
contributes in the same way to the power-law behaviour of thescale factor and all the contri-
butions are added. Later on, the effect of a cross-coupling between scalars was searched for,
resulting in a model called “generalized assisted inflation” [122]. It was shown that these multi-
exponential potentials also allowed for power-law solutions. However, the understanding of
multi-exponential potentials wasn’t complete. The class of potentials described in [122] does
not cover all possible multi-exponential potentials. There is a strong restriction on the scalar
couplings in that model, such that it only allows for power-law solutions. In other words, the
potentials do not have any extrema. However, nowadays, a considerable amount of models that
are inspired by string theory seem to be multi-exponentialswith extrema (which allow for de
Sitter solutions). Hence, they do not fall in the class of generalized assisted inflation.

The goal of this chapter is to study the most general multi-exponential potential. This is
done using the elegant formalism of autonomous dynamical systems. We will construct all pos-
sible power-law and de Sitter solutions by finding the critical points to which they correspond
in this formalism. We point out that this will uncover many new power-law and de Sitter solu-
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tions corresponding to so-called non-proper critical points that cannot be found in the case of
generalized assisted inflation. To illustrate this, we willconsider the special cases of double and
triple exponential potentials with one or two scalars. For certain values of the scalar couplings,
these can arise from M-theory, and their interpolating solutions correspond to the reduction of
S-branes [117] and so-called exotic S-branes [95], respectively. For the exotic S-branes we de-
rive the phases of accelerated expansion and find special cases where the number of such phases
can be arbitrarily high. This can be useful for solving the cosmological coincidence problem,
since oscillating dark energy could explain why we see a recent take over of dark energy in our
present universe. It would simply be an event that occurs many times during the evolution of the
universe.

The chapter is based on a collaboration with M. Nielsen and T.Van Riet, entitledScalar
cosmology with multi-exponential potentials[128]. It is organized as follows: in section 2, we
present the system consisting of gravity and scalars with a potential. In section 3, we perform
the general analysis of critical points. In section 4, we consider the special cases of double
exponentials. In section 5, we present cases that can be obtained from the reduction over a
three-dimensional group manifold. Finally, we end with a discussion of our results in section 6.

6.2 Scalar gravity with multi-exponential potentials

We consider 4-dimensional spatially flat FLRW gravity withN scalarsφI which only depend on
(cosmic) timeτ. The scalars have a potential which is of the most general exponential form:

V ~(φ) =
m

∑

i=1

Λi e−~αi ·~φ . (6.1)

Thus, the scalar potential is characterized bym vectors~αi andm constantsΛi which can
have positive or negative signs. The~αi vectors form anm× N matrix αiI , where the indices
i = 1, . . . ,m parametrize the exponential terms in the potential and the indicesI = 1, . . . ,N
parametrize the different scalars. The Lagrangian for the system then reads1:

L =
√
−g

(

R− 1
2 (∂~φ)2 − V ~(φ)

)

. (6.2)

The equations of motion derived from the Lagrangian are

φ̈I + 3Hφ̇I +
∂V
∂φI
= 0 ,

H2 = 1
12 (~̇φ · ~̇φ) + 1

6 V , (6.3)

Ḣ = − 1
4 (~̇φ · ~̇φ) ,

where the dot is differentiation w.r.t. cosmic time. We refer to the equations asthe scalar equa-
tions, the Friedmann equation and the acceleration equation, respectively. The Hubble constant
H is defined asH = ȧ/a wherea(τ) is the scale factor appearing in the flat FLRW metric:

ds2 = −dτ2 + a(τ)2 dx2
3 . (6.4)

1We use the convention for the metric with mostly plus signature.
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There areN+ 1 degrees of freedom, namely, the scale factor and theN scalars (and accordingly
only N + 1 equations of motion are independent). For example, the acceleration equation can
be obtained from the Friedmann equation and the scalar equations). There exist 2 types of
solutions:

• Critical points: These solutions correspond to stationarysolutions defined in terms of
certain dimensionless variables, which will be introducedin the next section. The critical
points can be obtained explicitly and they correspond to power-law solutions (a(τ) ∼ τp)
or de Sitter solutions2 (a(τ) ∼ eτ). The solutions can be attractors, repellers or saddle
points. In the former two cases they correspond to the asymptotic behaviour of more
general solutions, whereas a saddle point just correspondsto an intermediate regime.

• Interpolating solutions: These are the non-stationary solutions and in general they will
interpolate between the critical points. Often they cannotbe found explicitly, but a nu-
merical analysis can reveal most of their properties.

6.3 The critical points

Critical points (also known as fixed points or equilibrium points) are solutions of differential
equations in the context of autonomous dynamical systems. An autonomous system is defined
as a system described byn variables, say~z, that depend on one variablet, whose dynamical
equations are of the form:

d~z
dt
= ~f (~z) , (6.5)

where~f : �n→ �n is interpreted as a vector field on�n. A key feature of autonomous systems
is the absence of the independent variablet on the right-hand-side of the dynamical equation
(6.5). Solutions for~z(t) are then integral curves to the vector field~f ; i.e. ~f is everywhere
tangent to all possible curves~z(t). The critical points of an autonomous system are defined
as those points~z0 obeying ~f (~z0) = 0. These points are always exact constant solutions since
d~z0(t)/dt = 0. The interesting property about these systems is that the critical points are often
the end points (and initial points) of the orbits and therefore describe the asymptotic behaviour.
If the solutions interpolate between critical points, theycan be divided into two classes:

• Heteroclinic orbit: This is an orbit connecting two different critical points.

• Homoclinic orbit: This is an orbit connecting a critical point to itself.

Most of the examples we have found are of the first type and we will focus on those. More on
the theory of dynamical systems in cosmology can be found in [129,130].

An useful property of multi-scalar cosmology with exponential potentials is that they allow
for a description in terms of variables that make the system autonomous [104, 106, 107, 110].
With an arbitrary multi-exponential potential, the variables are defined as follows:

xI =
φ̇I√
12H

, yi =

√

Λi e−~αi ·~φ

6H2
. (6.6)

2Anti-de Sitter solutions are not possible since a flat FLRW metric doesn’t support them.
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In this notation, there areN +m variables. Note thatyi will be imaginary whenΛi < 0, but this
is not a problem since onlyy2

i appears in the equations of motion. Rewriting the equationsof
motion with these variables yields

ẋI

H
= −3y2 xI +

√
3

m
∑

i=1

αiI y
2
i , (6.7)

x2 + y2 = 1 , (6.8)

Ḣ
H2
= −3 x2 , (6.9)

where we have used the shorthand notationx2 =
∑N

I=1 x2
I and y2 =

∑m
i=1 y2

i . An interesting
consequence of the choice of variables is that the Friedmannequation (6.8) becomes the defining
equation of an (N + m− 1)-sphere forΛi > 0 (otherwise it will be a generalized hyperboloid).
Furthermore, from the acceleration equation, the condition for accelerated expansion translates
into the following simple constraint:

ä > 0 ⇔ x2 <
1
3
. (6.10)

The above condition allows us to visualize the region of acceleration for the specific examples
in section 4 and 5.

It turns out that we also need the derivatives of they-variables:

ẏi

H
=
√

3 (
√

3 x2 − ~αi · ~x) yi . (6.11)

We can also use ln(a) as evolution parameter3 instead of cosmic time, which simplifies the
equations sinceH drops out in the scalar equations of motion and the equationsfor ẏi , giving

x′I = −3y2 xI +
√

3
m

∑

i=1

αiI y
2
i , y′i =

√
3 (
√

3 x2 − ~αi · ~x) yi , (6.12)

where the prime indicates differentiation w.r.t. ln(a). The above is clearly of the form (6.5), and
the critical points can therefore be calculated asx′I = y′i = 0 (or equivalently as ˙xI = ẏi = 0). It
is easy to prove that the system will obey the Friedmann constraint (6.8) at all times as long as
it does so initially. Hence, if we impose (6.8) on the initialconditions, then (6.12) contains all
the information about the subsequent evolution.

Integrating the acceleration equation (6.9) for a criticalpoint yields power-law solutions if
x2
, 0

a(τ) ∼ τp, p =
1

3 x2
. (6.13)

If on the other hand, ifx2 = 0, then the critical point is an extremum of the potential with a de
Sitter expansion

a(τ) ∼ exp(
√

1
6V(φc) τ) . (6.14)

3However, one must be careful if the scale factor is not strictly monotonic.
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The equations (6.12) determining the critical points are

(
√

3 x2 − ~αi · ~x) yi = 0 , (6.15)

− 3y2 xI +
√

3
m

∑

i=1

αiI y
2
i = 0 . (6.16)

There are two different kinds of critical points:

• Proper solutions: /∃i : yi = 0 ,
• Non-proper solutions: ∃i : yi = 0 .

We can single out special non-proper solutions, which always exist, namely, the case where
all y’s vanish. From the Friedmann equation it follows that thesesolutions havex2 = 1 and
for this reason we refer to them as “the equator”. The solutions with somey’s vanishing have
infinite scalars and therefore, are not proper solutions of the equations of motion. They are,
however, very important, since they correspond to the asymptotic behaviour of interpolating
solutions. From this classification, we see that there are a maximum of 2m types of critical point
solutions [110]. Below we will give these solutions for the most general exponential potential
by analysing (6.15) and (6.16).

The rankR of the matrixαiI , i.e. the number of independent~αi-vectors, plays a central role
in this discussion. In fact, the discussion of the general potential naturally splits up into two
cases:R= m andR< m.

The rankR gives the effective number of scalars appearing in the potential, corresponding
to the part of the scalar space that is projected on the~αi-vectors. It is therefore always possible
to perform a field redefinition, such that onlyR scalars appear in the potential. The part of the
scalar space perpendicular to the~αi-vectors only appears in the kinetic term of the Lagrangian
and is (N − R)-dimensional. Therefore, these scalars decouple from therest. All systems with
N > Rhave decoupled scalars and this is necessarily the case whenN > m. Systems withN ≤ m
only have decoupled scalars if the vectors~αi are linearly dependent in such a way thatN > R.

The field redefinition yieldingR scalars in the potential can be performed by anS O(N)
rotation (which leaves the kinetic term invariant) such that ~φ changes into~φ′ andα′iR+1 = α

′
iR+2 =

. . . = α′iN = 0 for all i. We then notice from (6.16) that, for critical points, allx’s corresponding
to decoupled scalars are zero,xR+1 = xR+2 = . . . = xN = 0. Therefore, in the rest of this section,
the indicesI now run from 1 toR. In the caseR= m, this makesαiI a square matrix.

We have seen that the discussion of the system can be split up into two cases, depending on
the rank ofαiI . Alternatively, we can formulate this in terms of the following matrix, which is
quadratic in theα’s

Ai j = ~αi · ~α j . (6.17)

The separation of the general exponential potential into two classes can then be characterized
by the determinant ofA:

R= m : det(A) , 0 , (6.18)

R< m : det(A) = 0 .
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The first class corresponds to an invertibleA-matrix and this is exactly what is termed general-
ized assisted inflation [122]; whereas the second class, to our knowledge, has not been treated
in generality in the literature.

We will extend the existing results by also treating the caseof non-invertibleA in generality
and providing the non proper critical points of both classes. Special examples can be obtained
by performing compactifications over certain three-dimensional unimodular group manifolds
corresponding to class A in the Bianchi classification, see e.g. [95].

There is a subtlety about the description in terms of the (xI , yi)-variables, namely ifR < m
then they-variables are not necessarily independent. We will comment on this in section 3.2.

6.3.1 TheR= mcase

This case has the simplifying feature that ˙xI = 0 impliesẏi = 0. This can be seen in the following
way: first we differentiate (6.7) and use ˙xI = d(y2)/dτ = 0. Multiplying with α jI and summing
over I we get

∑

j(Ai j ) d(y2
j )/dτ = 0, and since det(A) , 0 we know that the only solution is

d(y2
i )/dτ = 0.

We will now solve for the critical points:

• Proper critical points:

From (6.15) and (6.16) we get:
∑

i

(Ai j ) y2
i = 3y2 x2 ej , (6.19)

whereej is anm-dimensional vector with all components equal to 1. Inverting this relation
and using (6.16) yields the values ofyi andxI for the proper critical point

y2
i =

3p− 1
3p2

m
∑

j=1

(A−1)i j , xI =

√
3 p

3p− 1

m
∑

i

αiI y2
i , (6.20)

wherep is the exponent given in (6.13). The result forxI can also be given in the rotated
basis whereαiI is a square matrix

xI =
1
√

3 p

m
∑

i=1

(α−1)iI . (6.21)

Note that by construction, theAi j -matrix (6.17) isS O(N)-invariant and accordingly, all
quantities containing only this matrix can be calculated inany basis. We notice from our
formula above that there is a unique proper critical point. However, it only exists wheny2

i ,
as determined from (6.20), has the same sign asΛi , which serves as a consistency check
of definition (6.6). Thus, this critical point only exists for certain values of theα-vectors.

Using (6.13), we get the exponent for the power-law that reproduces the result found
in [122,131]:

p =
m

∑

i, j=1

(A−1)i j . (6.22)
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By integration we can go back to theφI ,H variables where the solution becomes:

H =
p
τ
, φI =

√
12p xI ln(τ) + cI , y2

i =
ki

τ2
, (6.23)

wherecI andki are integration constants. In fact, in [103, 122], (6.23) was used as an
Ansatz to find power-law solutions.

• Non-proper critical points :

These correspond to somey’s being equal to zero. Parametrising the subset of nonzeroy’s
with the indicesa, b, c, . . ., the equations become:

√
3x2 − ~αa · ~x = 0 ,

∑

a

αIa(ya)2 − (1− x2)
√

3xI = 0 , (6.24)

from which we deduce:
∑

b

(Aab)y2
b = 3y2 x2 ea . (6.25)

The ~αa-vectors are of course also linearly independent and accordingly, the sub-matrix
Aab has non-zero determinant and is therefore invertible. Inverting relation (6.25) and
using (6.16), we find a unique solution

y2
a =

3p− 1
3p2

∑

b

(A−1)ab , xI =

√
3 p

3p− 1

m
∑

a

αaI y2
a. (6.26)

The power-law is again given by (6.22) but now with the inverse of the sub-matrixAab.
Just as for the proper solution, the above is only well-defined wheny2

a has the same sign
asΛa. Note that all the above formulae for the non-proper critical points are similar to
those for the proper ones. This is due to the fact that vanishing y’s just yield a truncated
potential.

Note that since the solution for the proper critical point isunique and has power-law be-
haviour for the scale factor, there are no de Sitter solutions. This can also be seen from (6.19).
SinceA has maximal rank, this matrix only has the trivial nullspace, i.e yi = 0, which is not
consistent with the Friedmann equation, sincex = 0 for the de Sitter solutions. We can con-
clude that potentials with linearly independent~αi-vectors generically have power-law solutions
and no de Sitter solutions. This conclusion was also reachedin [132] where special cases were
considered.

The special case whereαiI is diagonalisable by anS O(N)-rotation is equivalent to the case
where just one scalar appears in each exponential, thus yielding the model which has been called
assisted inflation [108].

6.3.2 TheR< mcase

Since det(A) = 0 we will have to use another approach to determine the critical points. And the
R< mcase will also be more difficult to treat in full generality because they’s are not necessarily
independent.
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The number of independenty’s is always smaller than or equal toR+ 1, as we will now
illustrate. After possible field redefinitions, they-coordinates are given in terms ofR+ 1 fields,
namely the scalars and the Hubble parameter. Therefore, among themcoordinates, at mostR+1
are independent, e.g.y1, . . . , yR+1. This leaves us withm− R− 1 relations for the rest of they’s.
From the definitions of they’s, we can expressφI andH in terms of the firstR+ 1 y’s

eφI =

R
∏

i=1

(y2
i Λi+1

y2
i+1Λi

)(β−1)Ii
, H =

ΛR+1

6
e−~αR+1·~φ y−2

R+1 , (6.27)

where the following square matrix has been defined

βiJ = αi+1,J − αiJ , i, J ∈ {1, . . . ,R} . (6.28)

We can then express the remainingy’s in terms of the firstR+ 1 as follows

y2
i = y2

R+1

Λi

ΛR+1

∏R
j,K=1

( y2
j Λ j+1

y2
j+1Λ j

)αiK (β−1)K j

∏R
l,M=1

( y2
l Λl+1

y2
l+1Λl

)αR+1,M (β−1)Ml
, i = R+ 2, . . . ,m. (6.29)

Thus, the maximal number of independenty’s is R+1. It is possible to prove that the dynamical
system (6.12) will obey the above relations for theyi ’s at all times if it do so initially. So again
we can use (6.12) as equations that govern the whole system, as long as we pick our initial
conditions consistently. With this in mind we will look for critical points.

Until now we have denoted the row vectors of theα-matrix with ~αi andAi j was defined as
the matrix with the inner products of these row vectors as entries: Ai j = ~αi · ~α j . In this section
we will also need the column vectors which we will denote by~αI and we will need to define the
following matrix

BIJ = ~αI · ~αJ . (6.30)

TheR column vectors~αI are all linearly independent because the rank ofα equalsR and, con-
sequently,B is invertible (remember thatI now runs from 1 toR). It is this property that we will
use to find the solutions.

• Proper power-law critical points:

Looking for the solution(s), withyi , 0, we find from (6.15)

R
∑

I=1

BIJ xI =
√

3x2FJ , (6.31)

whereFJ =
∑m

i=1αiJ . Thus, we can solve forxI :

xI =
1
√

3 p

R
∑

J=1

(B−1)IJ FJ . (6.32)
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Hence we find the extension of the power-law formula to the case whereR< m:

p = |B−1 · ~F|2 . (6.33)

One can prove that this formula reduces to (6.22) ifR= m. Since the rank ofαiI is R, it is
enough to useR independent equations among themequations of (6.15) to obtainxI . This
result, of course, has to be consistent with the remainingm− R equations, and this puts
strong restrictions on the allowed dilaton couplings as we will now show. Let{~αa}Ra=1 be
linearly independent. It is possible to solve (6.15) simultaneously for these vectors. The
rest of the vectors can be written as linear combinations andare only guaranteed to solve
(6.15) if the linear combinations are convex4

~αi =

R
∑

a=1

cia~αa ,

R
∑

a=1

cia = 1 , i = R+ 1, . . . ,m. (6.34)

We will give a specific example with an M-theory origin, wherethis is realized. A special
case isR = 1, where after field redefinitions only one scalar appears in the potential. In
this case, the above solution will never exist, since (6.15)becomesm equations with one
variable (or equivalently, the requirement of convexity here would implym= 1, which is
not the case under consideration).

An important difference between this and the previous case is the question of the unique-
ness of the solution. We cannot obtain they-values with this procedure, and in particular
we cannot determine whether they are unique. In fact, it is easy to give an example where
they are not: when at least oneΛi < 0, we have the following possibility, sinceA has a
non-trivial kernel

y2 = 0 , y2
i ∈ Ker(A) ,

x2 = 1 , ~αi · ~x =
√

3 , for yi , 0 . (6.35)

In particular, this includes a proper critical point of the form (6.32) when allyi , 0 and
where furthermore

|B−1 · ~F |2 = 1
3
. (6.36)

• De Sitter solutions:

We have seen in the previous subsection, that de Sitter solutions do not exist forR = m,
because the matrixA has a trivial kernel. In the present case, sinceA has a non-trivial
kernel, making a de Sitter solution is possible, we have the following:

x = 0 , y2 = 1 , y2
i ∈ Ker(A) . (6.37)

Again, this solution is only well-defined wheny2
i has the same sign asΛi . We can conclude

that potentials withR < m show the opposite behaviour ofR = m potentials. Here,
(proper) power-law solutions are rare (only possible for certain couplings (6.34)), whereas
de Sitter solutions are quite generic. Again, a similar observation was made in [132], but
for specific couplings (which did not allow power-law behaviour).

4Of course, there are many ways to number the vectors; it suffices to find one that obeys these relations.
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• Non-proper critical points :

Looking for these solutions, we again put a subset of they’s to zero. This corresponds to
some terms in the potential being absent. Therefore, we can analyse the new system as
before but with a “truncated” potential. A subtlety appearswheneverR < m, namely the
y’s are dependent on each other, and therefore only certain subsets of they’s can be zero
simultaneously.

The findings of this section are summarized in the table below. The asterisk in the lower
left corner stands for a truncated system, which can belong to either of the two cases (R< m or
R= m).

R< m, det(A) = 0 R= m, det(A) , 0

Proper Power-law (convex combinations) Power-law
de Sitter No de Sitter

Non-proper ∗ Power-law
No de Sitter

Table 6.1: The critical points for multi-exponential potentials.

As mentioned before, the critical points give rise to the asymptotic behaviour of the general
solutions. By performing stability analysis it is possibleto determine the nature of the critical
points, i.e. whether they are attractors, repellers, or saddle points. This can be done by lineariz-
ing the system around the critical points,~x′ = M · ~x, and determining the eigenvalues of the
matrix M . If the real part of all eigenvalues is negative, the critical point is an attractor; if the
real part of all eigenvalues is positive, the critical pointis a repeller; and in the mixed case it is a
saddle point. It is easy to perform the stability analysis inthe simple cases considered in the fol-
lowing sections, and the result is confirmed by the interpolating solutions, which are calculated
numerically.

6.4 Double and triple exponential potentials

In this section we will consider some specific examples of double and triple exponential poten-
tials with one or two scalars, i.e.m= 2, 3 andN = 1, 2. These examples serve as an illustration
of the formal framework in the previous section.

As mentioned before, the critical points reveal the asymptotic behaviour of more general
solutions. In some cases it has been possible to obtain thesesolutions exactly. For single expo-
nential potentials, this was done for arbitrary dilaton couplings and the result can be pictured as
straight lines in the space defined by thex’s [95]. For double exponential potentials, exact so-
lutions were obtained for special values of the dilaton couplings, corresponding to the reduction
of S-brane solutions to 4D, see e.g. [91, 92, 94] and references therein. Ideally, we would like
to obtain exact results for the general case. However, this is a highly non-trivial task, and we
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therefore turn to numerical methods, which can still show the qualitative behaviour of the solu-
tions. To this end, it is convenient to use ln(a) as a time parameter. For an eternally expanding
universe wherea increases from 0 to∞, our time coordinate ranges from−∞ to∞.

In general, an S-brane can be obtained as a time-dependent solution to the following system
containing gravity, an antisymmetric tensor, and possiblya dilaton:

S =
∫

d4+dx
√

−ĝ
(

R̂− 1
2 (∂φ̂)2 − 1

2d! e−bφ̂ F̂2
d

)

, (6.38)

where the hats indicate that the fields live in 4+ d dimensions and where the dilaton coupling
for maximal supergravities is given by

b =

√

14− 2d
d+ 2

. (6.39)

Reducing over ad-dimensional maximally symmetric space with curvaturek and flux f yields
the following potential [133]

V(φ, ϕ) = f 2 e−bφ−3
√

d
d+2 ϕ − k e−

√
d+2

d ϕ , (6.40)

whereϕ is the Kaluza-Klein scalar. S2-brane solutions have been found in six to eleven di-
mensions, corresponding tod = 2, . . . , 7. In five dimensions, an S2-brane has a 1-form field
strength. The corresponding four-dimensional cosmological solution with single exponential
potential was found in [95]. As explained in that paper, a general twisted reduction leads to
triple exponential potentials, which could have corresponding exotic S-brane solutions in five
dimensions.

6.4.1 Double exponential potentials, one scalar

The simplest case ism= 2 andN = 1. The corresponding potential is described in terms of two
dilaton couplingsα1 andα2. We can always choose e.g.α1 to be positive and in this example we
will start by considering positiveΛi . SinceR = 1, we have 2 independenty’s. The Friedmann
equation defines a 2-sphere, but the allowed solutions can only lie on the part corresponding to
non-negativey’s. Using the machinery from the previous section, we find thefollowing critical
points

(i) y1 = y2 = 0 , x2 = 1 ,

(ii ) y1 =

√

1−
α2

1

3
, y2 = 0 , x =

α1√
3
, for α2

1 < 3 ,

(iii ) y1 = 0 , y2 =

√

1−
α2

2

3
, x =

α2√
3
, for α2

2 < 3 , (6.41)

(iv) y1 = (1− α1

α2
)−1/2 , y2 = (1− α2

α1
)−1/2 , x = 0 , for α2 < 0 .

The first, (i) corresponds to the “equatorial” pointsx = ±1. In an (y1, y2, x)-plot these become
the North and South Pole. The next two, (ii ) and (iii ), are the non-proper critical points. The



122 Scalar Cosmologies II: A not so simple case

last one, (iv), is the proper solution, which only exists forα2 < 0 and corresponds to a de Sitter
solution. The stability of the different points is best illustrated by considering the different
possible cases5.

• α1 , α2 >
√

3: Only the North and South Pole are critical points; the former is attracting
and the latter repelling. Any interpolating solution will be a curve between them, and
these can be found numerically. An example is illustrated infigure 6.1(a).

• α1 < α2 <
√

3: The critical points (i)-(iii) exist. The poles are repellers and (iii) is
attracting.

• α1 <
√

3 , α2 < −
√

3: Apart from the poles, we have the two critical points, corresponding
to (iii) and (iv) in (6.41). The North Pole is repelling and the de Sitter solution is attracting;
this is shown in figure 6.1(b).
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x
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Figure 6.1: Plot (a) shows x(t) in the case (α1, α2) = (3,2), where the solution interpolates between the
North and South Pole. Plot (b) is for the case(α1, α2) = (1,−2), yielding a solution interpolating between
the North Pole and a de Sitter solution.

• α1 >
√

3 ,−
√

3 < α2 < 0: This is similar to the previous case, except that the critical
point (iii) is interchanged with (ii), and the early asymptotics will be the South Pole.

• α1 >
√

3 , 0 < α2 <
√

3: In addition to the North and South Pole, there is the non-proper
critical point (ii), which is an attractor. The South Pole isrepelling. An interpolating
solution is shown in figure 6.2(a).

• α1 >
√

3 , α2 < −
√

3: The critical points are the poles and the de Sitter solution, and the
latter is an attractor. It turns out that the poles are saddlepoints; hence, they do not give
rise to the early asymptotics of the solution. Instead, thiswill be an infinite cycle, moving
closer and closer to the boundary of the space (given byy1 = 0 ory2 = 0), as time goes to
minus infinity. This is illustrated in figure 6.2(b).

• α1 <
√

3 ,−
√

3 < α2 < 0: The late-time asymptotics are similar to those of the previous
case. The early-time asymptotics are different due to the fact that all the critical points (i)-
(iv) are realized. Both of the poles will be repelling, and depending on initial conditions,
either of these can give rise to the early-time asymptotics.

5If we do not explicitly classify the stability of a critical point, it will be a saddle point.
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Figure 6.2: The figure shows(y1, y2, x)-plots for two cases. Figure (a) with(α1, α2) = (2,1), shows a
solution interpolating between the South Pole and the critical point (ii). Plot (b), with(α1, α2) = (3,−2)
shows a solution spiralling towards the de Sitter point.

For all the cases above, the solutions enter a phase of acceleration whenx2 < 1/3. The cases
with |α1| , |α2| > 1 give rise to one period of transient acceleration, otherwise the solution will
end up in a phase of eternal acceleration, which, as mentioned before, is an asymptotic de Sitter
phase whenα2 < 0. In the caseα1 >

√
3 , α2 < −

√
3 the phase of late-time acceleration is

preceded by an infinite cycle, alternating between acceleration and deceleration.
The case withΛ2 < 0 can be analysed in a similar way, but the interpolating solutions will

now be given by curves on a hyperboloid. The critical point (iii ) will only exist forα2
2 > 3, since

this yieldsy2
2 < 0. By the same token, the de Sitter critical point (iv) only exists forα2 > α1 > 0.

The S-brane case corresponding toφ̂ = 0 in (6.38), gives the following dilaton couplings

α1 = 3

√

d
d+ 2

, α2 =

√

d+ 2
d

. (6.42)

This system, which can be obtained from eleven dimensions where it will give rise to SM2-brane
solutions, was analysed in [96], where curvature of the external space is also included. One can
show that only the critical points (i) and (iii ) exist forΛ2 > 0; and (i) and (ii ) exist forΛ2 < 0,
with the latter being attracting. However, In the latter case, we also have a de Sitter critical point,
which is not an attractor.

6.4.2 Double exponential potential, two scalars

Let us now study the case with double exponential potentialsand two scalars, i.e.m = 2 and
N = 2. Considering the twoα-vectors to be independent, we getR = 2. The critical points can
be obtained as a special case of the general analysis from theprevious section and consist of the
equator,x2 = 1, yi = 0; the proper critical point,yi , 0; and two non-proper critical points with
yi = 0 , y j , 0, i , j.
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Figure 6.3: Three interpolating solutions, corresponding to S2-branes reduced to four dimensions, pro-
jected on the(x1, x2)-plane. The inner circle is the boundary of the acceleratingregion.

Specialising to the reduction of S-branes, we get the following dilaton couplings:

~α1 = (3

√

d
d+ 2

,

√

14− 2d
d+ 2

) , ~α2 = (

√

d+ 2
d

, 0) . (6.43)

For theseα-couplings we get det(A) = 14/d− 2; therefore, the matrixA is invertible ford < 7.
However, using (6.20),y2

1 we see that is negative, and, sinceΛ1 = f 2 > 0, the proper critical
point does not exist. Apart from the equator, there is another critical point, which hasy1 = 0
andy2 , 0 and corresponds to a power-law behaviour with exponentp = d/(d+2). This critical
point is an attractor and the equator is a repeller. Thus, an S2-brane reduced to four dimensions
corresponds to a solution interpolating between the equator and the attracting critical point.
This is similar to the behaviour of the solution found in [83], which is the fluxless limit of a
reduced S2-brane [91]. Indeed, the attracting power-law solution is the same with or without
flux. Examples of interpolating solutions, projected on the(x1, x2)-plane, are shown in figure
6.3, in the case ofd = 2. One can see that they indeed interpolate between the equator and the
attracting critical point, which, according to (6.26), hasthe coordinates (x1, x2) = (

√
2/3, 0).

For d = 7, there is a possibility of a de Sitter solution, since det(A) = 0, see (6.37). However, it
does not exist becausey2

1 is negative.

6.4.3 Triple exponential potential, one scalar

This example is the simplest case where they-variables are not all independent, and this sub-
section serves as an illustration. The potential is described in terms of three dilaton couplings
α1, α2, andα3. For simplicity, we takeΛi > 0; the case with negativeΛi can be analysed in a
similar way. We can chooseα3 > 0. SinceR = 1, we have two independenty’s, leaving one
relation, which reads

(Λ2)α1−α3 (y2
2)α3−α1 = (Λ1)α2−α3 (Λ3)α1−α2 (y2

1)
α3−α2 (y2

3)
α2−α1 . (6.44)
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The analysis of critical points is analogous to the previouscase, except for the extra feature of
the relation above. There are three kinds of critical points(for the moment we leave aside the
y-dependence)

(i) yi = 0 , x2 = 1 ,

(ii ) yi = y j = 0 , yk =

√

1−
α2

k

3
, x =

αk√
3
, i, j, k different (6.45)

(iii ) x = 0 .

A necessary condition for its existence isα2
k < 3. However, this is not sufficient, since (6.44)

only allows certainy’s to be non-zero while the others are zero. For instance, withα3 > α2 > α1,
havingy1 = 0 ory3 = 0 impliesy2 = 0.

The third type of critical point is a de Sitter solution givenby the following equations:

α1 y2
1 + α2 y2

2 + α3 y2
3 = 0 , y2

1 + y2
2 + y2

3 = 1 , (6.46)

which can be rewritten as

α3 − α1

α3
y2

1 +
α3 − α2

α3
y2

2 = 1 . (6.47)

This defines an ellipse forα3 > α1 , α2. When substitutingy3, (6.44) also gives a curve in the
(y1, y2)-plane, and the critical point is given as the intersectionbetween these two curves.6 For
example, for (α1, α2, α3) = (−1/2, 1/2, 3/2) andΛi = 1, the de Sitter critical point becomes
(y1 = 0.78, y2 = 0.52, y3 = 0.34). Figure 6.4 shows the time-development of an interpolating
solution for this case. One can see that the late-time behaviour indeed corresponds to the de
Sitter critical point above.
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Figure 6.4: The plots show y1(t), y2(t) and y3(t), respectively. As t increases, they tend towards the de
Sitter critical point.

6.5 Multi-exponential potentials from group manifolds

In this section we will consider specific cases that can be obtained by reducing pure gravity
in seven dimensions over a three-dimensional group manifold. See appendix C for a basic

6However, it is only possible to give algebraic expressions of the solution for special values of the dilaton couplings.
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definition of group manifolds. Since pure gravity in 7D can beembedded in 11D, the solutions
have an M-theory origin. We will focus on the triple-exponential case.

Double exponential potentials can be obtained for certain truncations of reductions over type
VIII and IX group manifolds [95]. This is equivalent to a trivial reduction over a circle followed
by a reduction over a maximally symmetric 2D space with flux. The resulting potential is given
by (6.40), withd = 2, and interpolating solutions correspond to reductions ofS2-branes from
six dimensions.

A triple exponential potential can be obtained from type VI0 and VII0 group manifolds and
the result is [95]

V = 1
8 e−

√
3ϕ (eφ ± e−φ)2 , (6.48)

where the plus sign occurs for type VI0 and the minus sign for type VII0. We therefore have an
example withm= 3 andN = 2, and the three dilaton couplings are

~α1 = (
√

3, 2) , ~α2 = (
√

3,−2) , ~α3 = (
√

3, 0) . (6.49)

Note that only two of these are independent, hence this case falls into theR < m class, and,
more interestingly, we find the convex combination1

2~α1+
1
2~α2 = ~α3, Therefore, a proper critical

point with power-law behaviour is possible. The fact that wehave linearly dependent~αi-vectors
(R< m) is actually the case for most Bianchi class A types. For the present example, there will
be two independenty-variables plus the relationy3 = ±2y1y2, but onlyy1 andy2 are needed.
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Figure 6.5: Type VII0. On the left-hand-side are shown the projection of two interpolating solutions on
the(x1, x2)-plane. On the right-hand-side, the curves are shown on the 2-sphere defined by the Friedmann
equation; the vertical axis is given by y1 − y2. The fact that the curves do not reach the attractor is due to
the finite computation time.
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For the sake of illustration,y1 ± y2 can be used as a variable, such that any solution will be
given by points or curves on a 2-sphere (the upper half in the case of the plus sign, since they’s
are positive). Interestingly, the dilaton couplings are such that most of the critical points from
the previous section do not exist. In fact, for type VI0, we are just left with the equator solutions
and for type VII0 we have the equator and an infinite set of proper solutions:

x2 = 1 , y1 = y2 = 0 type VI0 ,

x2 = 1 , y1 = y2 = 0
(x1, x2) = (1, 0) , y1 = y2

}

type VII0 . (6.50)

By studying the derivatives of the coordinates, it can be shown that the following points are
attractors

(x1, x2) = (1, 0) y1 = y2 = 0 type VI0 ,

(x1, x2) = (1, 0) y1 = y2 type VII0 . (6.51)

Thus, the latter is not unique since theyi-values are arbitrary. The solution corresponds to
(6.32), which is possible because of the convex combination: ~α3 = (~α1 + ~α2)/2. In both cases
any interpolating solution will end in the point (1, 0, 0) on the 2-sphere. In the VII0 case, the
y-value will be determined by the initial conditions. The sign of ẋ1 is always positive. When
projected on the (x1, x2)-plane, any curve will therefore move from left to right.

A stability analysis leads to the result that only the part ofthe equator withx1 < −1/7 is
repelling. Thus, any interpolating solution can start on this part and will end in (1, 0, 0).
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Figure 6.6: Type VII0. An example of a(t, x2)-plot with n< 1.

A couple of typical curves for interpolating solutions withdifferent initial conditions are
depicted on figure 6.5, for type VII0. In this case, any curve will spiral around the 2-sphere
towards the attractor. The projection on the (x1, x2)-plane produces a curve which bounces off
the boundary of the unit circle. The inner disc, corresponding to x2 < 1/3, yields phases of
accelerated expansion. Depending on the initial conditions, the number of such phases can be
as high or low as desired. For the two cases on figure 6.5, the numbers are 16 and 1, respec-
tively. Even with a large number of accelerating phases, thenumber of e-foldings is of order 1;
therefore, these models are not well suited for inflation. The numerical solutions uset = ln(a)
as time parameter. The number of e-foldings is given by

n = ln
(a(τ2)
a(τ1)

)

= ln
(et2

et1

)

= ∆t , (6.52)
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and its order of magnitude can easily be read off from a (t, x2)-plot as the sum of thet-intervals
wherex2 < 1/3. An example is given in figure 6.6.

For type VI0, the situation is slightly different, sincey1 + y2 is always positive; this confines
the curves to the upper half of the 2-sphere. On figure 6.7, thecurves still move towards the
attractor in an oscillatory manner, but now without crossing the equator (though they can get
arbitrarily close). For this case, there can only be one or nophase of accelerated expansion.

The interpolating solutions above correspond to reductions of exotic S2-branes in five di-
mensions, or equivalently, exotic S(D − 3)-branes inD dimensions. However, the solutions
were found numerically, and we have not been able to obtain exact expressions for these exotic
S-branes.
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Figure 6.7: Type VI0. On the left-hand-side are shown the projections of two interpolating solutions on
the(x1, x2)-plane. On the right-hand-side, the curves are shown on the 2-sphere defined by the Friedmann
equation; the vertical axis is given by y1 + y2.

6.6 Discussion

In this chapter we have considered cosmological models for an arbitrary number of scalars
with arbitrary multi-exponential potentials. Using a special set of variables, the equations were
written as autonomous dynamical systems, and this allowed us to determine the critical points
in complete generality. We found that the nature of these critical points depends strongly on the
rankR of the matrixαiI . The rank also determines the number of decoupled scalars.

In the caseR = m, both the proper and non-proper critical points are power-law solutions,
and there are no de Sitter solutions. In theR < m case the opposite behaviour was found.
Proper power-law solutions are only possible in special cases, where the~αi-vectors are linearly
dependent in a specific way, but the de Sitter solutions are very generic. For the non-proper
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solutions, this depends on whether the “truncated” potential hasR = m or R < m. We also
found a new property of these systems, namely the possibility of proper critical points that are
not unique. A special case was realized in section 5, where wehave an infinite set of these.

It should be emphasized that the non-proper critical pointsare as important as the proper ones
for understanding the interpolating solutions, even though they have not often been considered
in the literature. In this respect, using the techniques of autonomous systems is more fruitful
than simply looking for power-law solutions to the equations of motion.

It should be pointed out that in our solutions the scalars generically have run-away behaviour.
The only exceptions are the de Sitter critical points, sincethese correspond to extrema of the
potential and accordingly stabilize the values of the scalars. This is important in the context of
spontaneous decompactification [134] or stabilization of dilaton and volume moduli [33]

In section 4 and 5, we provided several examples of double andtriple exponential poten-
tials. We presented the critical points and illustrated theinterpolating solutions using numerical
calculations. In particular, we found examples with an arbitrarily high number of phases of
accelerated expansion. However, the number of e-foldings turned out to be of order one, so
these models do not seem to be relevant for inflation. They might, however, be relevant for
present-day acceleration and they might help solve the cosmic coincidence problem.

The numerical solutions found in section 5 for the systems obtained from reductions over
group manifolds of type VI0 and type VII0 correspond to the reduction of exotic S2-branes
in five dimensions. The two solutions belong to a set of three different solutions that can be
obtained via twisted circle reductions. The third solutioncan be obtained from a reduction
over the type II group manifold and corresponds to the reduction of a fluxless S2-brane. The
existence of three classes of S-branes is similar to the cases of 7-branes in ten dimensions [42]
and the non-extremal D-instantons we studied in chapter 3, and it is reminiscent of the global
S L(2,�)-symmetry of the higher dimensional theory. It would be interesting to see whether it
would be possible to find exact solutions for the exotic S-branes.

Recently, an elegant framework for arbitrary potentials has been developed, where the solu-
tions correspond to geodesics in an augmented target space [135]. One of the key ingredients is
the importance of systems whose late-time behaviour is governed by single exponential poten-
tials [94]. In our analysis, these solutions asymptote to the special class of non-proper critical
points where ally’s but one vanish. However, we have shown that multi-exponential potentials
have solutions, where the asymptotics cannot be governed bya single term in the potential.
Specific examples are given by the cases of assisted inflation[108] and generalized assisted
inflation [122], where each term in the potential contributes.

Comments on some possible extensions of this work would be inorder. First of all, we
have only considered flat universes, and it is certainly possible to extend this formalism to the
spatially curved cases.

Secondly, we could also add matter, in the form of a barotropic fluid. This could play a rôle
in solving the cosmic coincidence problem. The authors of [107] showed that a system with one
scalar and a barotropic fluid can have attractor solutions that are neither scalar-field dominated
nor matter dominated, but both at the same time. These are theso-calledscaling solutionswhere
dark energy and matter coexist. This may lead to a dynamical solution to the cosmic coincidence
problem. In other words, a scaling solution dynamically explains why dark energy and matter
have comparable energy densities, in the present universe.However, in the one-scalar system
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studied in that paper, the de Sitter attractor and the scaling attractor are mutually exclusive.
Given a dilaton coupling, only one can exist. Although it is not known whether the universe
will be eternally de Sitter, some string theory based scenarios rely upon stable de Sitter vacua
that the universe ‘tunnels’ out of by quantum mechanical effects. Hence, it could be interesting
to have a combined scaling-de Sitter attractor. By having a more complex system than the
one-scalar Lagrangian, one might obtain a compromise between a pure de Sitter and a scaling
solution. In [106] and [122], scalars were added to make systems with assisted and generalized
assisted inflation, respectively. In [136], spatial curvature was added in the one-scalar case. The
potentials we have considered here, however, allow for new de Sitter attractors. They also allow
for oscillatory behavior; i.e. some of the solutions are periodic in time. An oscillatory universe
might also explain cosmic coincidence. The chances of living in a period where dark energy and
matter coexist are greater in a universe that forever oscillates between dark energy and matter
domination. In this same spirit, we hope to extend the searchfor scaling solutions to the most
general exponential potential with spatial curvature and abarotropic fluid and report on it in a
future publication.

Thirdly, we could consider non-flat scalar manifolds. Finally, we could consider other spe-
cific numerical examples with other values ofmandN and special dilaton couplings which arise
from dimensional reductions of string/M-theory.

This concludes the second part of this thesis, which coveredthe topic of cosmological so-
lutions. Both this and the previous part dealt with scalar-gravity solutions that depend on one
parameter. D-instantons depend on one spatial direction, whereas cosmologies depend on time
only. Both types of solution have the generic property of interpolating between ‘trivial’ con-
figurations: The wormhole solution interpolates between two regions with flat spacetime and
constant fields, and the cosmologies interpolate between power-law and/or de Sitter spacetimes.
In the next and final chapter of this thesis, we will establishlinks between D-instantons and
cosmologies. We will actually show two ways in which these objects can correspond to each
other. First, we will see that they can sometimes be related to each other via Wick rotations.
Then, we will show that by means of a paradigm shift, both types of solutions can be regarded
as trajectories of a particle in a fictitious spacetime, a target space parametrized by the scalars in
the Lagrangian.



Chapter 7

Link between D-instantons and
Cosmology

Throughout this thesis, we have been studying two different kinds of scalar-gravity field con-
figurations: D-instantons and cosmological solutions. We also briefly looked at solitons. We
pointed out in chapter 2 that instantons and solitons can be equivalent, if certain conditions are
met by the system they are in. In chapter 3, we studied the specific correspondence between
black hole solutions and D-instantons, and the requirements for the correspondence to hold.
But there is a strikingly simpler and more obvious fact that ties D-instantons, black holes, and
cosmological solutions together. They all depend on one coordinate, be it space-like or time-
like, and they all interpolate between ‘trivial’ configurations. More specifically, the wormhole
geometry of the non-extremal D-instanton withq2 > 0 interpolates between two flat Euclidean
spaces. Cosmological solutions such as the ones we studied in chapters 5 and 6 interpolate in
time between power-law regimes, or between power-law and deSitter spaces with non-trivial
behavior in between, such as transient acceleration. In this chapter, we will pursue the similarity
between D-instantons and cosmological solutions carried by scalar fields in detail. We will do so
in two ways. In the first section, we will relate some of these solutions to each other via the Wick
rotation. In the second section, we will take a different perspective on the degrees of freedom we
are studying. We will view the D-instanton and cosmologicalsolutions as trajectories in a scalar
manifold, an abstract target space, if you will. That will enable us to present these solutions
in a mathematically unified way. It will even suggest a way of pasting together a cosmological
solution and an instanton solution, as though they were partof the same phenomenon.

7.1 Wick rotation

WARNING : The following section contains passages with explicit Wick rotations that may not
be suitable for self-respecting mathematicians. Parentaldiscretion is advised.

Let us begin by reviewing the non-extremal D-instanton solution from chapter 3, which I will
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rewrite here for the reader’s convenience. The Euclidean Lagrangian density is the following:

L = R− 1
2 (∂φ)2 + 1

2 ebφ (∂χ)2 , (7.1)

where,φ areχ scalars. The ‘wrong’ sign of the kinetic term forχ is explained in subsection
3.6.1. We take the Ansatz of a conformally flat metric with maximal spherical symmetry. We
also assume that all fields respect the spherical symmetry. This yields the following solution:

ds2 =

(

1− q2

r2 (D−2)

)2/(D−2)
(

dr2 + r2 dΩ2
SD−1

)

, (7.2)

ebφ(r) =

(

q−
q

sinh(H(r) +C1)

)2

, (7.3)

χ(r) =
2

b q−
(q coth(H(r) +C1) − q3) . (7.4)

with
H(r) = b carctanh

( q
rD−2

)

, (7.5)

whereq2, q−, q3 andC1 are integration constants and

c =

√

2 (D − 1)
(D − 2)

. (7.6)

As we saw previously,q2 can be positive, negative or zero. Therefore, as we can see, everything
depends on one coordinater. At this point, the reader should feel the irresistible temptation
to Wick rotate this solution to see if that yields a cosmological configuration. This has been
explored in [137], but I will do it in my own notation here. Thefirst step is to make ‘r ’ timelike
by lettingr → i t. This takes care of thedr2 term in the metric, but messes up the spherical part
by creating a minus sign. To fix this, let us rewrite the spherical metric as follows:

dΩ2
SD−1 = dθ2 + sin2(θ) dΩ2

SD−2 . (7.7)

The Wick rotation created an overall sign in front of this metric, so to fix it, we letθ → i ψ:

dθ2 + sin2(θ) dΩ2
SD−2 → −dψ2 − sinh2(ψ) dΩ2

SD−2 = −d�2
D−1 , (7.8)

where� stands for a hyperbolic space. The end result is the following metric:

ds2 =

(

1− q̃2

t2 (D−2)

)2/(D−2)
(

−dt2 + t2 d�2
D−1

)

, (7.9)

whereq̃2 = (−1)(D−2) q2. This is indeed a cosmological solution. Specifically, it isan FLRW
metric with k = −1. But what aboutφ andχ? Those are less straightforward to study, but
as we will see we can already gather one qualitative piece of information from them. Let us
first write down the Lagrangian density for the Lorentzian system to which this cosmological
solution belongs:

L = R− 1
2 (∂φ)2 − 1

2 ebφ (∂χ)2 . (7.10)
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Notice that we are now using the ‘normal’ sign for the kineticterm forχ. Hence, in order to
establish a relation between an instanton and a cosmology, we must effectively multiplyχ by i.
If we take the metric (7.9) as an Ansatz for this system and fillit into the time component of the
Einstein equation, we get the following:

Rtt =
4 (D − 1) (D − 2)

r2 (D−1)
(

1− q̃2

t2 (D−2)

)2
q̃2 = 1

2 φ̇
2 + 1

2 ebφ χ̇2 . (7.11)

The right-hand side is positive definite, therefore,q̃2 mustbe positive. Hence, not all three
classes of D-instantons (i.e.q2 positive, negative and zero) can be Wick rotated to a cosmologi-
cal solution. Not even the extremal D-instanton has a cosmological partner. The only class that
can be Wick rotated is the one withq2 (−)D−2 > 0. This is obviously a dimension-dependent
condition. The actual process of Wick rotating the solutions for the scalars is less obvious. The
idea is thatχ has to get mutliplied by ani, whereas the dilaton should remain unaffected. This
is accomplished by lettingC1 → C1 + i π/2, andq− → i q−. The result is the following:

ebφ(r) =

(

q−
q̃

cosh(H(r) +C1)

)2

, (7.12)

χ(r) =
2

b q−
(q̃ tanh(H(r) +C1) − q3) , (7.13)

with

H(r) = b carctanh

(

q̃
rD−2

)

. (7.14)

7.2 Target space interpretation

In this section, we are going to investigate another parallelism betweenaxionic instantons and
cosmologies. The idea is to regard all fields, including the non-constant part of the metric, as
coordinates in a fictitioustarget space. Because instantons and cosmologies both depend on
only one parameter, they will be interpreted as trajectories of a particle in the target space.

This section is based on a collaboration with E. Bergshoeff, D. Roest, J. Russo, and P.K.
Townsend, entitledCosmological D-instantons and Cyclic Universes, [138]. It is organized as
follows: first, we will present the general system and Ansatzwe want to solve and dimensionally
reduce it to one dimension. In subsection 7.2.2, we will introduce the ‘Liouville’ gauge, in which
will allow us to view our solutions as trajectories in two-dimensional target spaces defined by
the two scalar fields. In subsection 7.2.3, we will introducethe ‘Milne-Rindler’ gauge, which
will also view the non-trivial part of the metric as a target space coordinate. In this new three-
dimensional target space, we will be able to present instantons and cosmologies in a unified way,
as trajectories of a particle.

7.2.1 Ansatz and reduction to one dimension

The Lagrangians we will be studying can be summarized as follows:

L = R− 1
2 (∂φ)2 + ǫ 1

2 ebφ (∂χ)2 , (7.15)
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with ǫ = ±1 for Euclidean and Lorentzian signature respectively. To investigate cosmological
solutions of our model, or to find instanton solutions of its Euclidean version, we make the
Ansatz

ds2 = ǫ (eαϕ f )2 dλ2 + e2αϕ/(d−1)dΣ2
k , φ = φ(λ) , χ = χ(λ) , (7.16)

where f is an arbitrary function ofλ, and

α =

√

d − 1
2(d− 2)

. (7.17)

The (d − 1)-metricdΣ2
k is (at least locally) a maximally symmetric space of positive (k = 1),

negative (k = −1) or zero (k = 0) curvature. One can choose coordinates such that

dΣ2
k = (1− kr2)−1dr2 + r2dΩ2

d−2 , (7.18)

wheredΩ2
d−2 is an SO(d−1)-invariant metric on the unit (d−2)-sphere. This Ansatz constitutes

a consistent reduction of the original degrees of freedom toa three-dimensional subspace, the
‘augmented target space’, with coordinates (ϕ, φ, χ). The full equations of motion reduce to a set
of equations that can themselves be derived by variation of the time-reparametrization invariant
effective action

I = 1
2

∫

dλ
{

f −1
(

ǫϕ̇2 − ǫφ̇2 + ebφχ̇2
)

+ 2k(d− 1)(d− 2) f eϕ/α
}

, (7.19)

where the overdot indicates differentiation with respect toλ. Forǫ = −1 we can interpretλ as a
time coordinate related to the timet of FLRW cosmology in standard coordinates by

dt ∝ eαϕ f dλ . (7.20)

For ǫ = 1 the metric has Euclidean signature and we can interpretλ as imaginary time.
If we interpret all fields as being coordinates of a particle’s world-line in some target space,

then we notice that the scalarsφ andχ parametrize a two-dimensional hyperbolic space:

dsT
2 = −ǫ dφ2 + ebφ dχ2 . (7.21)

For ǫ = −1, this is�2, the two-sheeted hyperboloid with Euclidean signature, inPoincaré
coordinates, which are globally defined. Forǫ = +1, however, this is a Lorentzian one-sheeted
hyperboloiddS2 in Poincaré coordinates, which arenot gobally defined. They only cover half
of the surface. To treat both signatures on equal footing, itis therefore convenient to switch to
coordinates of the target space that are globally defined. This is done by defining new scalar
field variables (ψ, θ) by

e(b/2)φ = eψ cos2(θ/2)− ǫe−ψ sin2(θ/2) ,

e(b/2)φχ = b−1
(

eψ + ǫe−ψ
)

sinθ , (7.22)

which yields the following target space metrics:

dsT
2 =

{

−dψ2 + cosh2(ψ) dθ2 for ǫ = 1
+dψ2 + sinh2(ψ) dθ2 for ǫ = −1

. (7.23)
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We can now recognize the first metric as that of adS2, by comparison with thedS3 metric
(4.41) we introduced in chapter 4. The second metric is the usual one for a two-dimensional
hyperboloid. The new effective action is

I = 1
2

∫

dλ

{

4
b2

f −1

[

b2

4
ǫ ϕ̇2 − ǫψ̇2 + 1

4

(

eψ + ǫe−ψ
)2
θ̇2

]

+

+ 2k(d− 1)(d− 2) f eϕ/α
}

. (7.24)

Introducing the new scale-factor variableη by

ηγ = 2γ(d− 1)eϕ/(2α) , (7.25)

where
γ = 1/(bα) , (7.26)

we arrive at the action

I = 1
2

∫

dλ

{

4
b2

f −1
[

ǫ(η̇/η)2 − ǫψ̇2 + 1
4

(

eψ + ǫe−ψ
)2
θ̇2

]

+
b2

4
k f η2γ

}

. (7.27)

We remark, for future reference, that the Ansatz (7.16) leads toγ = 2/3 for d = 10 IIB super-
gravity.

Because of the time-reparametrization invariance, we are free to choose the functionf ; each
choice of f corresponds to some choice of time parameter. There are two choices that are
particularly convenient, and we now consider them in turn.

7.2.2 The ‘Liouville’ gauge

The simplest way to proceed for generalb is to make the gauge choice

f = 4/b2 . (7.28)

From (7.27) one sees that the effective Lagrangian in this gauge is

L = 1
2

[

−ǫψ̇2 + 1
4

(

eψ + ǫe−ψ
)2
θ̇2

]

+ 1
2

[

ǫ(η̇/η)2 + kη2γ
]

. (7.29)

Apart from the constraint, the dynamics of the motion on the target space, which is manifestly
geodesic, is now separated from the dynamics of the scale factor, which is determined by a equa-
tion of Liouville-type; for this reason we will call this choice of gauge the “Liouville gauge”.

As SL(2;�) is the isometry group of both�2 (the target space of the Lorentzian action) and
dS2 (the target space of the Euclidean action), there is a conserved SL(2;�) ‘momentum’ℓµ,
and the geodesics are such that

ψ̇2 − ǫ 1
4

(

eψ + ǫe−ψ
)2
θ̇2 = ℓ2 . (7.30)

The constraint (f equation of motion) is

(η̇/η)2 = ℓ2 + kǫ η2γ . (7.31)

We now present the solutions of the equations of motion of (7.29) subject to the constraint (7.30)
and (7.31), first for the target space fields and then for the scale factor.
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Target space geodesics

Geodesics on the�2 (ǫ = −1) ordS2 (ǫ = 1) target space are solutions of the field equations of
(7.29) forψ andθ subject to (7.30) and can be classified as follows, accordingto whetherℓ2 is
positive, negative or zero:

• ℓ2 > 0. Forǫ = 1 the solution is

sinhψ = ±

√

1+
q2
−
ℓ2

sinh [ℓ (λ − λ0)]

tan(θ − θ0) = ±q−
ℓ

tanh [ℓ (λ − λ0)] , (7.32)

for constantsλ0, θ0 and q− (this being the integration constant for the super-extremal
D-instanton of [43]). Forǫ = −1 the solution is

coshψ =

√

1+
q2
−
ℓ2

cosh
[

ℓ (λ − λ0)
]

tan(θ − θ0) = ±q−
ℓ

coth [ℓ (λ − λ0)] . (7.33)

In the special case thatq− = 0 these solutions simplify, for either choice of the signǫ, to

ψ = ±ℓ(λ − λ0) , θ = θ0 , (ǫ = ±1). (7.34)

• ℓ2 < 0. In this case onlyǫ = 1 is possible, and the solution is

sinhψ = ±

√

q2
−

(−ℓ2
) − 1 sin

[√
−ℓ2 (λ − λ0)

]

tan(θ − θ0) = ± q−√
−ℓ2

tan
[√
−ℓ2 (λ − λ0)

]

. (7.35)

• ℓ2 = 0. The only solution forǫ = −1 in this case is the trivial one for which bothψ andθ
are constant. Forǫ = 1 the solution is

sinhψ = ±q− (λ − λ0) , tan(θ − θ0) = ±q− (λ − λ0) . (7.36)

It should be noted that, in each case, the± signs forψ andθ can be chosen independently.
We should note that, forǫ = 1 (dS2), there are three classes of solutions, withℓ2 positive, zero
and negative, whereas forǫ = −1, there is only one class withℓ2 > 0. This is becausedS2,
being Minkowskian, has a light-cone structure. It admits, space-like, light-like and time-like
solutions. We can interpretℓ2 as the momentum squared (i.e.−m2), of the particle.�2, on the
other hand, does not have a light-cone structure.

One interesting consequence of writing our instanton solutions in terms of these global co-
ordinates, is that the singularities of the dilaton and axion that we previously encountered in
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chapter 3 go away. In this target space interpretation, those singularities are mere coordinate
singularities, signaling that the particle’s world-line has departed from the Poincaré coordinate
patch. It has gone over to the half of the hyperboloid that is not covered by these coordinates.
The true physical meaning of this resolution of the singularities, however, remains to be discov-
ered.

The scale factor

We next turn to the constraint (7.31). Givenℓ2, this determinesη as follows

• ℓ2 > 0.

η2γ = η
2γ
0 exp (±2ℓγλ) , (k = 0) , (7.37)

η2γ =
ℓ2

sinh2(ℓγλ)
, (kǫ = 1) , (7.38)

η2γ =
ℓ2

cosh2(ℓγλ)
, (kǫ = −1) , (7.39)

for some constantη0. Note that allk = ±1 trajectories are asymptotic to somek = 0
trajectory nearη = 0, as expected since theσ-model matter satisfies the strong energy
condition.

• ℓ2 < 0. In this case there is a solution only fork = ǫ = 1:

η2γ =
−ℓ2

sin2
(

γ
√
−ℓ2 λ

) , (k = ǫ = 1) . (7.40)

• ℓ2 = 0. In this case there is a solution only forkǫ ≥ 0. If k = 0 thenη is constant.
Otherwise

η2γ = 1/(γλ)2 , (kǫ = 1) . (7.41)

For ǫ = k = 1 these solutions yield the super-extremal (ℓ2 > 0), sub-extremal (ℓ2 < 0) and
extremal (ℓ2 = 0) D-instantons of [43]. Forǫ = −1 they yield FLRW cosmologies; from (7.20)
we see that the standard FLRW timet is related to the parameterλ by

dt ∝ η2γα2
dλ . (7.42)

Given one of above solutions forη2γ as a function ofλ we can determineλ as a function oft and
henceη as a function oft. Of most interest here is the behaviour nearη = 0. For example, for
ℓ2 > 0 we have

η ∼ η0 e−ℓλ , (7.43)

for λ → ∞, asη → 0. This yields (for a choice of integration constant such that t → 0 as
λ→ ∞)

−t ∝ e−2γα2ℓλ . (7.44)
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Given that we start with a cosmological solution for negative t, this shows that a big-crunch
singularity will be approached ast → 0. By considering the behaviour asλ → −∞ we may
similarly deduce that a cosmological solution for positivet must have had a big-bang singularity
at t = 0. In other words, cosmologies withℓ2 > 0 are incomplete in the sense that they have a
beginning or an end (or both) at finitet. We shall make a suggestion in the following subsection,
of how they can be completed.

7.2.3 The ‘Milne-Rindler’ gauge

We will now upgrade the approach we took in the previous subsection by augmenting the two-
dimensional target space to a three-dimensional one. We will do so by considering the single
degree of freedom of the spacetime metric as another target space coordinate.

Returning to (7.27), we make the new gauge choice

f =
4

b2 η2
. (7.45)

As the possible choices off are related by a redefinition of the independent variable, wewill
need to distinguish the independent variable in this gauge from the parameterλ previously used.
Let us call the new independent variableτ; it is related toλ through the differential equation

dτ = η2(λ) dλ , (7.46)

which can be solved forτ(λ) given any of the scale factor solutionsη(λ) presented above.
In the gauge (7.45) the action is

I =
∫

dτ Lτ , (7.47)

where1

Lτ = 1
2ǫ

(

dη
dτ

)2

+
1
2
η2















−ǫ
(

dψ
dτ

)2

+ 1
4

(

eψ + ǫe−ψ
)2

(

dθ
dτ

)2












+
k
2
η2γ−2 . (7.48)

We observe that forǫ = −1 the kinetic term is that of a particle in a 3-dimensional Minkowski
spacetime in Milne coordinates. However, forǫ = 1, this kinetic term is again that of a particle
in 3-dimensional Minkowski spacetime, only this time in Rindler coordinates. See 4.1.3 for a
discussion on those two coordinates systems for four-dimensional Minskowski. We will call
this choice of gauge the ‘Milne-Rindler’ gauge. We can unifyboth actions (ǫ = ±1), by going
to Cartesian coordinates, since the latter are globally defined in Minkowski spacetime. The new
field variablesXµ (µ = 0, 1, 2) are

X0 = ±1
2
η
(

eψ − ǫe−ψ
)

,

X1 = ±1
2
η
(

eψ + ǫe−ψ
)

cosθ ,

X2 = ±1
2
η
(

eψ + ǫe−ψ
)

sinθ . (7.49)

1Note thatLτdτ = Ldλ, whereL is the lagrangian in the gauge used previously.



7.2 Target space interpretation 139

Note that
X2 ≡ −X0

2 + X1
2 + X2

2 = ǫη2 . (7.50)

Sinceη2 is positive, it follows thatX2 < 0 whenǫ = −1, andX2 > 0 whenǫ = 1. TheX2 < 0
region is the Milne region of Minkowski space and cosmological solutions are trajectories in this
space. Generic trajectories reachη = 0 at finite FLRW time, corresponding to a cosmological
singularity. However, the hypersurfaceη = 0 is just the Milne horizon, and the singularity
at the Milne horizon disappears in the cartesian coordinates Xµ. The trajectory can therefore
be smoothly continued through the Milne horizonin cartesian coordinatesinto to the Rindler
region, in whichX2 > 0, where we needǫ = 1. Thus, on passing through the Milne horizon, a
cosmological trajectory becomes an instanton (and vice-versa).

The Milne-Rindler gauge LagrangianLτ in cartesian coordinates is

Lτ = 1
2

[

(dX/dτ)2 + k
(

ǫX2
)γ−1

]

. (7.51)

The constraint is now
(dX/dτ)2 = k

(

ǫX2
)γ−1

. (7.52)

We thus have a problem analogous to that of a particle of zero energy in a central potential, with
conserved SL(2;�) “angular momentum”

ℓµ = εµνρXν(dXρ/dτ) . (7.53)

The target space and the scale factor solutions given previously can now be combined into a
single solution forXµ. For example, forℓ2 > 0, the solutions are

Xµ =















±η
(

sµ sinh(ℓλ) + cµ cosh(ℓλ)
)

, ǫ = 1 ,

±η
(

sµ cosh(ℓλ) + cµ sinh(ℓλ)
)

, ǫ = −1 ,
(7.54)

where

s0 =
√

1+ a2 cosh(ℓλ0) , a ≡ q−/ℓ ,

c0 = −
√

1+ a2 sinh(ℓλ0) ,

c1 = cosh(ℓλ0) cos(θ0) + asinh(ℓλ0) sin(θ0) ,

s1 = − sinh(ℓλ0) cos(θ0) − acosh(ℓλ0) sin(θ0) ,

c2 = −asinh(ℓλ0) cos(θ0) + cosh(ℓλ0) sin(θ0) ,

s2 = acosh(ℓλ0) cos(θ0) − sinh(ℓλ0) sin(θ0) . (7.55)

Note that (cµ ± sµ) is null.
In [138], this coordinate system is used to ‘continue’ cosmological solutions into instanton

solutions by passing through the target space Milne horizon. See figure 7.1, for the case where
γ = 1. In this case, the Lagrangian simplifies tremendously, as all trajectories become goedesics
in the three-dimensional Minkowski spacetime. Theγ , 1 have a central potential, which
complicates the picture. An interesting idea that has not been experimented with, would be to
eliminate such a potential by augmenting the target space toa four-dimensional one with non-
trivial curvature. In [135,139], this idea was applied in the context of cosmological solutions by
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Figure 7.1: Instantons and cosmologies as geodesics in a 2-D projectionof Minkowski space-
time onto a plane, X2 , 0, that does not pass through the origin. The solid (dashed) lines are
cosmologies (instantons), which are separated by the light-cone. The dotted hyperbola with
X0

2 − X1
2 = X2

2 is the projection of the light-cone onto the 2-D plane.

reinterpreting the derivatives of scalar potentials in equations of motion as Christoffel symbols
of an augmented target space.

The hope behind the idea of patching cosmological solutionswith instanton geometries is
to find a mechanism, by means of which the Big Bang singularitycan be ‘smoothed out’. The
Big Bang of the universe would actually be preceded by another cosmological solution that
underwent a Big Crunch. The two cosmologies would be ‘connected’ by an instanton phase.
The full solution, although singular in spacetime, is singularity-free in the target space. For
details on the patching of specific cases, the reader is referred to [138].



Conclusions

This thesis has covered two separate topics: instantons andcosmologies in scalar-gravity trun-
cations of supergravity and scalar-gravity theories in general. These were shown to be related in
the final chapter.

The first chapter laid out the foundations of bosonic string theory and superstring theory. We
learned that in a quantum theory of relativistic strings, mass and spin are actually the quantum
numbers of a particle as opposed to Casimir operators (i.e. fixed properties). However, the main
message of that chapter was the field theory limit of string theory. If we assume that strings
couple weakly to each other, i.e. that the string coupling given by the constant value of the
dilaton is small, then we can define a two-dimensional CFT on the world-sheet of the string.
Fields such as the spacetime (target space) metric are viewed as field-dependent couplings of
theσ-model, however, they can be shown to be operator insertionsof coherent states of the
string spectrum, such as the spin-2 particle called the graviton. Imposing that the classical
conformal invariance of the CFT also hold at the quantum level requires setting theβ-functions
for the field-dependent couplings to zero. These constraints are perturbative inα′, and, in the
low energy approximation, we keep only the zeroth-order terms. This leaves us with constraints
that look like the equations of motion of spacetime fields (such as the Einstein equation for the
spacetime metric). By encoding these spacetime equations of motion into actions we get the
supergravity actions, which are the ones that were used in this thesis.

In chapter 2 the basics of instantons were explained. We started with the example of the
non-relativistic quantum mechanical particle in the double-well and periodic potentials. We
learned that instantons are extrema of the Euclidean actionthat allow us to compute tunneling
amplitudes. These tunneling effects taught us that the naïve degenerate perturbative vacuaof
the theory are actually not stationary states, since the particle can tunnel out of them. This
allowed us to define the true vacuum of the theory, which is roughly a linear combination of
the naïve vacua. The true vacuum samples all of the degenerate minima of a potential, thereby
spontaneously restoring the symmetry of the theory. We thenmoved on to the application of
instantons in quantum field theory, by treating the example of the Yang-Mills instanton. The
latter showed us how the principles of instantons and true vacua generalize to quantum field
theories. We saw that a path integral that takes instanton effects into account, i.e. a path integral
that gives thetrue-vacuum-to-true-vacuum amplitude, effectively gets a topologicalθ-term in its
action. At the end of the chapter, I gave a brief explanation of how instantons inD Euclidean
dimensions can sometimes correspond to solitons inD + 1 spacetime dimensions.

In chapter 3 we put this knowledge to use in a scalar-gravity theory. First, a quick explanation
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of the issues of the Euclidean path integral for gravity was given. Then, we defined a theory of
gravity with two scalars, which can be embedded in type IIB supergravity for certain values of
the dilaton coupling. We found the solutions of this theory and were able to classify them in
terms of their SL(2,�) ‘conjugacy classes’. There turned out to be three SL(2,�)-unrelated
families of solutions. The instanton-soliton correspondence that was explained in general in
chapter 2 was put to use, as we realized that the three families of D-instantons can be viewed
as spacelike sections of superextremal, extremal, and subextremal electrically charged black
holes. We studied the singularity structure of these solutions and evaluated their actions. After
a comment on the tunneling interpretation of these solutions, we discussed the possibility that
they might lead to non-perturbativeR8 corrections to the type IIB effective action.

Finally, I commented on some work in progress. Putting D-instantons in an AdS background
can lead to interesting applications in AdS/CFT. The correspondence between the extremal D-
instanton in type IIB supergravity and the self-dual instanton ofN = 4, d = 4 super-Yang-Mills
has been known for a while. We hope to understand the field theory dual of the non-extremal
D-instantons, which may be pointing us toward non-self-dual super-Yang-Mills instantons.

The next part of this thesis was concerned with another kind of scalar-gravity solution that
depends on one parameter: FLRW cosmologies. Chapter 4 introduced the basics of the standard
cosmology and modern cosmology. Inflation and present day acceleration are experimentally
undeniable events in our universe. If string theory is the theory of everything, it must be able to
derive a realistic scenario for them. At the end of the chapter, I summarized a few of the many
string theory based approaches toward modern cosmology, focusing on models that reduce to
theories of four-dimensional gravity with scalar fields.

In chapter 5 we studied the gravity-scalar system with a single exponential potential. First,
we showed that, by a proper field redefinition, the system effectively has only one scalar in
the exponent of the potential. Then, the equations of motionwere rewritten in the language of
autonomous systems. We saw that, in this terminology, the familiar FLRW power-law and de
Sitter solutions can be thought of as critical points, and the more interesting solutions are the
ones that interpolate between those two regimes. This showed us how to recognize solutions
that have periods of transient acceleration, which is phenomenologically interesting for models
of both inflation and present day acceleration.

In chapter 6, we dropped all simplifications by studying themostgeneral multi-exponential
potential for an arbitrary number of scalars. A general formula for finding critical points was
derived, which unveiled de Sitter critical points that had never been discovered. The general
formula was then applied to some specific cases coming from reductions of pure gravity over
three-dimensional group manifolds. At the end of the chapter, comments on possible extensions
of this work were made. Theses possibilities are including abarotropic fluid in the system to
mimic matter, and including spatial curvature. One possible application of such an extension is
the cosmic coincidence problem, which might be solved by scaling solutions.

Chapter 7 was the concluding chapter that tied D-instantonsand cosmologies together. Their
mathematical similarity, due to the fact that both are solutions to scalar-gravity models that
depend on only one coordinate, was translated into two concrete correspondences. First, we
saw that some D-instantons are related to S(-1)-branes via Wick rotation. In the second part
of the chapter we developed a formalism that put both types ofsolutions on equal footing. By
interpreting the scalar fields as coordinates of a two-dimensional target space, and subsequently
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performing coordinate transformations on this target space, we realized that instanton solutions
can be thought of as the trajectories of particles on adS2 space. The three families of instantons
correspond to massive, massless and tachyonic particles. The cosmologies on the other hand are
interpreted as trajectories of a particle on a Euclidean�2 space.

The Ansätze for the spacetime metrics of both the instantonsand the cosmologies are such
that both metrics have only one degree of freedom. By interpreting this degree of freedom as
anextra target space coordinate, we were able to combine both systems into the action of one
particle in a three-dimensional Minkowski spacetime. In this formalism, an instanton and a
cosmology are patched together, and are viewed as two portions of the trajectory of a single
particle. This suggested a possible scenario to resolve cosmological singularities. For instance,
in this target space language, the Big Bang is preceded by an instanton phase, which is itself
preceded by a Big Crunch.

Understanding the deeper links between instantons and cosmologies may lead to interesting
and unexpected results. For instance, by using AdS/CFT to further knowledge about the cor-
respondence between gravity and gauge instantons, one might establish new cosmology/gauge
correspondences in the context of dS/CFT.
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Appendix A

2-D Quantum Mechanics

In this appendix, we will study the point particle in (2+ 1)-dimensional quantum mechanics.
In [44], Lee introduced this example as a toy model to show howthe path integral of a positive-
definite action can effectively be computed by finding the saddle points of an actionthat is not
positive-definite. This toy model will allow us to understand why we are solving a system with
a negative kinetic term for the axion in (3.5).

A.1 Path integral for momentum eigenstates

Let us begin by defining the system and its path integral. We want to study quantum mechanics
of a unit mass particle moving in two spatial directions, by using polar coordinates:r(t) andθ(t).
The partition function and path integral between position eigenstates are defined and computed
as follows:

〈 rF , θF | e−H T | r I , θI 〉 =
∫

b.c.

(

Πt′ r(t′)
)

d[r(t)] d[θ(t)] exp

[

− 1
2

∫ tF

tI

dt (ṙ2 + r2 θ̇2)

]

, (A.1)

whereI andF stand for initial and final, respectively;T ≡ tF − tI ; and ‘b.c’ stands for Dirichlet
boundary conditions, i.er(tI ,F ) = r I ,F andθ(tI ,F ) = θI ,F , respectively. The product in the inte-
gration measure is simply the Jacobian for polar coordinates. For convenience, we will omit the
integration overr(t) and its kinetic term, and reinsert it when it is needed. As already mentioned
in chapter 2, this partition function can, but need not be thought of as an imaginary time path
integral. In this appendix, we will think oft as real time.

Suppose that we want to compute the partition function between initial and final angular
momentum eigenstates| ℓ 〉, as opposed to angular position eigenstates| θ 〉. Using the following
definition for the angular momentum states

| ℓ 〉 ≡
∫

dθ ei ℓ θ | θ 〉 , (A.2)
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we see that all we have to do is Fourier transform the path integral in (A.1) with respect to its
boundary conditions:

〈 rF , ℓF | e−H T | r I , ℓI 〉 =
∫

dθI dθF exp(−i ℓF θF + i ℓI θI ) 〈 rF , θF | e−H T | r I , θI 〉 . (A.3)

The Dirichlet path integral can be combined with the integral over boundary conditions to yield
one path integral without boundary conditions:

〈 rF , ℓF | e−H T | r I , ℓI 〉 =
∫

no b.c.
d[θ(t)] exp

[

− 1
2

∫ tF

tI

dt(ṙ2 + r2 θ̇2) − i ℓF θF + i ℓI θI

]

, (A.4)

where this sums over all possibleθ(t) with arbitrary boundary values. If we try to compute this
path integral via the standard saddle point approximation,the Euler-Lagrange variation of the
action w.r.t.θ will be the following:

δS = −
∫ tF

tI

dt
[

∂t(r
2 θ̇) δθ

]

+ (r2 θ̇ − i ℓ) δθ
∣

∣

∣

tF
tI
. (A.5)

Notice we do not throw away the total derivative, because there are no boundary conditions.
Since this must vanish for arbitrary variationsδθ, both terms must vanish independently. Hence,
we get the following equations:

∂t(r2 θ̇) = 0 ,

r2 θ̇
∣

∣

∣

tI ,F
= i ℓ|tI ,F . (A.6)

The first equation is a normal equation of motion forθ; however, the second is a constraint that
is inconsistent with the assumption thatθ, ℓ, andt are real. Therefore, the path integral must be
computed by means of a different method. In what follows, two methods for doing this will be
presented.

A.2 Computing the path integral: first method

In this section, we will present one of two methods for computing the path integral in (A.4). It
involves splitting up the integration into bulk and then boundary values ofθ as in (A.3). We
can easily compute the bulk integral using the usual methodsof Euler-Lagrange variations with
Dirichlet boundary conditions. Then, by Fourier transforming the result w.r.t. the boundary
conditions, we obtain the final result.

We start by evaluating the angular part of (A.1), which has Dirichlet boundary conditions
for θ:

〈 rF , θF | e−H T | r I , θI 〉 =
∫

b.c.
d[θ(t)] exp

[

− 1
2

∫ tF

tI

dt r2 θ̇2

]

. (A.7)

This is easily done by finding a saddle point through the Euler-Lagrange variation, which yields
the following equation:

∂t

(

r2 θ̇
)

= 0⇒ r2 θ̇ = ℓcl , (A.8)
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where the constantℓcl is the classical angular momentum. The solution is the following:

θ(t) = ℓcl

∫ t

tI

dt′

r2(t′)
+ θI where ℓcl = (θF − θI )

∫ tF

tI

dt′

r2(t′)
. (A.9)

DefiningI [r] ≡
∫ tF

tI
dt′/r2(t′), and substituting the solution into the action, we obtain the follow-

ing:

− 1
2

∫ tF

tI

dt r2 θ̇2 = − 1
2 ℓ

2
cl I [r] = −

(θF − θI )2

2 I [r]
. (A.10)

Because the action is quadratic inθ, the semiclassical approximation provides us with an exact
result for the path integral. Hence, evaluating the action at this saddle point and computing
the functional determinant (as we saw in chapter 2) is an an exact evaluation of this part of the
path integral. The functional determinant contains det(∂2

t ) and 1/ (Πt r(t)), which cancels the
Jacobian in the path integral overr(t). Now, in order to finish the evaluation of (A.4) (or (A.3)),
all we have to do is Fourier transform this result w.r.t. the boundary conditionsθI ,F :

∫

dθI dθF exp

(

− (θF − θI )2

2 I [r]
− i ℓF θF + i ℓI θI

)

=

∫

dθI dθ̃ exp

(

− θ̃2

2 I [r]
− i ℓF θ̃ + i θI (ℓI − ℓF)

)

=
√

2π I [r] δ(ℓF − ℓI ) exp













−
ℓ2

F I [r]

2













, (A.11)

where theδ-function comes from theθI integral, and the exponential comes from the integral
over the shifted variablẽθ ≡ θF − θI . The path integral enforces conservation of angular mo-
mentum. Substituting1 this result into the full path integral, we are left with the following:

〈 rF , ℓF | e−H T | r I , ℓI 〉 = δ(ℓF − ℓI )
∫

√

2π I [r] d[r(t)] exp













− 1
2

∫ tF

tI

dt













ṙ2 +
ℓ2

F

r2

























. (A.12)

Performing the saddle point approximation on the remainingintegration overr(t), we find the
following equations of motion:

r̈ +
ℓ2

F

r3
= 0 . (A.13)

However, had we derived the normal Euler-Lagrange equations from the standard path integral
with Dirichlet boundary conditions (A.1), these would havehad a relative minus sign between
these two terms. The result in (A.13) can alsoeffectivelybe obtained by finding the saddle point
of the following pseudo-action

S = 1
2

∫ tF

tI

dt (ṙ2 − r2 θ̇2) − ℓF θF + ℓI θI , (A.14)

and evaluating the action of the solution with it. The boundary conditions are then enforced by
the surface term. The wrong sign in front of the kinetic term of θ is analogous to the sign in front

1The fact that we have expressedℓcl as a functional ofr(t) and theθ boundary conditions means that this substitution
is legal. What would be wrong, would be to explicitly keepℓcl, and subsequently treat it as a constant upon integrating
over r(t), which it is not.
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of the axion kinetic term in (3.5). This is as though we had looked for imaginary saddle points
of the action in (A.4). Some papers in the litterature have gone as far as saying that one needs
to rotate the contour of integration ofθ into the imaginary line in the complex plane. However, I
would like to stay away from such an unnecessary and unnatural interpretation of what is really
taking place in this calculation.

The method we have presented in this section makes use of the fact that we can easily
expressℓcl in terms of the boundary values ofθ. This is, however, due to the fact that we are
doing (2+ 1)-dimensional quantum mechanics, or (0+ 1)-dimensional quantum field theory.
In higher dimensions, this task becomes more difficult; and the definition of a boundary is no
longer unique, which it was in this case. Therefore, we need amore covariant way to compute
the path integral that can be applied to higher-dimensionalfield theory.

A.3 Computing the path integral: second method

The second method we will be exploring involves the concept of dualization. The basic idea
behind this is the realization that, if one wants to compute apath integral with initial and final
momentumstates, one should be working with momentum variables in thefirst place, as opposed
to position variables.

We begin by rewriting (A.4) as follows:

〈 rF , ℓF | e−H T | r I , ℓI 〉 =
∫

b.c.
d[θ] d[ℓ] exp

[

− 1
2

∫ tF

tI

dt

(

ṙ2 +
ℓ2

r2
+ 2 i θ ℓ̇

)]

, (A.15)

where we have inserted an integration over a dummy variableℓ(t). We impose Dirichlet bound-
ary conditions onℓ, i.e. ℓ(tI ,F ) = ℓI ,F , and no boundary conditions onθ. Let us first show how
this reduces to (A.4) upon integratingℓ out. Integrating the last term by parts

−
∫ tF

tI

dti θ ℓ̇ =
∫ tF

tI

dt i ℓ θ̇ − i (θF ℓF − θI ℓI ) . (A.16)

we recognize the surface term as the one in (A.4). The first term can used to complete a square
in the action as follows:

− ℓ2

2 r2
+ i ℓ θ̇ = − 1

2 r2
(ℓ − i r 2 θ̇)2 − 1

2 r2 θ̇2 . (A.17)

The remaining integral overℓ is easy to perform:
∫

d[ℓ̃] exp

[

− 1
2

∫

dt

(

ℓ̃2

r2
+ r2 θ̇2

)

+ surface term

]

, (A.18)

where we have used the shift invariance of the measure by setting ℓ̃ = ℓ − i r 2 θ̇. Because the
boundary values ofℓ are fixed, they are not being integrated over, hence, they arenot affected
by this shift. This integral is simply a Gaussian.2 The end result is the original path integral

2The result of the determinant is a factorΠt r(t), which can be absorbed with the other equal factor we saw in (A.1)
in the measurer2 d[r ] → d[r3]. This is a bijective transformation of variables, and hence yields no problems in the
extremization process.
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(A.4) over θ. It should not come as a big surprise that one can write a partition function in
terms of a path integral overbotha variable and its momentum conjugate. Usually, in derivinga
path integral from first principles, one obtains such an integral and subsequently eliminates the
momentum variable as we just did above.

Now that we have proven that the right-hand-side of (A.15) yields (A.4) upon integratingℓ
out, let us change the order of integration, and eliminateθ first. The integral overθ is simply a
δ-functional:

∫

d[θ] exp

[

i
∫

dtθ ℓ̇

]

= δ
[

ℓ̇
]

. (A.19)

This simply imposes conservation of angular momentum. Hence, the path integral overℓ yields
the following:

∫

d[ℓ]δ
[

ℓ̇
]

exp

[

− 1
2

∫

dt

(

ℓ2

r2

)]

= δ(ℓF − ℓI ) exp













− 1
2

∫

dt













ℓ2
F

r2

























. (A.20)

Therefore, the final result is the following:

〈 rF , ℓF | e−H T | r I , ℓI 〉 = δ(ℓF − ℓI )
∫

(

Π′t r(t′)
)

d[r(t)] exp













− 1
2

∫ tF

tI

dt













ṙ2 +
ℓ2

F

r2

























, (A.21)

which is what we obtained with the previous method.
In terms of our dilaton-axion system in chapter 3, the radialcoordinater is roughly anal-

ogous to the dilatonφ, and the angular coordinateθ is analogous to the axionχ. The angular
momentum, which is the conjugate variable toθ, is analogous to the (D−1)-form field-strength.
There, the restriction thatdF = 0 implies that, locally,F = dC. Here, this translates to the
constraintℓ̇ = 0, which implies thatℓ is a constant. The conservation of angular momentum in
the two-dimensional quantum mechanical system translatesto the conservation of axion charge.

This method of dualization is preferable to the previous one, because it does not require
an explicit choice of parametrization of the boundary, and does not require us to split up path
integrals into bulk and boundary integrals. Hence, we will use this method in chapter 3.
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Appendix B

Useful formulae in Riemannian
geometry

In this appendix, I will spare the reader the annoying work ofcalculating the curvatures of
metrics with spherical or hyperbolic symmetry that are relevant in this thesis. I will first write
down some basic definitions for the sake of clarity, and to establish my conventions.

The Christoffel symbols are defined as follows:

Γρµν =
1
2 gρσ

(

∂µgνσ + ∂νgµσ − ∂σgµν
)

. (B.1)

In this thesis, I have used the following definition for the Ricci tensor:

Rµν = ∂ρΓ
ρ
µν − ∂µΓρνρ + Γρµν Γσσρ − Γρσµ Γσρν . (B.2)

The convention for metrics with Lorentzian signature is mostly plus, i.e. (− , + , . . . ,+). For
Euclidean metrics the convention is, well ... all plus.

The general Ansatz that encompasses all instanton and cosmological metrics that have been
used in this thesis can be written as follows:

ds2
D = ǫ e2A(r) dr2 + e2 B(r) r2 dΣ2

k ,D−1 , (B.3)

whereǫ = ±1 depending on the desired signature, and the two functionsA(r) and B(r) are
undetermined. In the second term,dΣ2

k ,D−1 is the line element of a (D − 1)-dimensional sphere,
plane or hyperbolic space fork = 1 , 0, and−1 respectively:

dΣ2
k ,D−1 =

dρ2

1− kρ2
+ r2 dΩ2

SD−2 . (B.4)

This can also be written as follows:

dΣ2
k ,D−1 = dψ2 + f 2(ψ) dΩ2

SD−2 , (B.5)
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where

f (ψ) =



















sin(ψ) if k = +1
ψ if k = 0
sinh(ψ) if k = −1

. (B.6)

I will now write down the radial component of the Ricci tensorasRrr and will denote transverse
components byRθθ:

Rrr = −(D − 1)

(

B′′ + B′2 − A′ B′ + 2
B′

r
− A′

r

)

, (B.7)

Rθθ = −ǫ gθθ e−2A

(

B′′ + (D − 1) B′2 − A′ B′ + 2 (D − 1)
B′

r
− A′

r
+

(D − 2)
r2

)

(B.8)

+ k gθθ e−2 B (D − 2)
r2

. (B.9)

All other components vanish. The non-vanishing Christoffel symbols are the following:

Γr
rr = A′ ,

Γr
θθ = −ǫ gθθ e−2A

(

B′ +
1
r

)

, (B.10)

Γθθr = B′ +
1
r
,

where no sum overθ is intended in the last component.

Sometimes one needs to compute the Ricci tensor of a metric that is related via a Weyl
rescaling to another metric whose Ricci tensor is already known. There is a very useful identity,
which can save time in this situation. Letgµν be the components of a metric with Ricci tensor
Rµν, and letg̃µν be the components of a metric that is related to the first metric as follows:

g̃µν = e2σ(x) gµν , (B.11)

whereσ(x) is some function on the manifold. Define the tensorBµ
κ as follows:

Bµ
κ = −∂µσ∂κσ + 1

2 (∂σ)2 δµ
κ + ∇µ(∂κσ) , (B.12)

where the covariant derivative is defined in terms of the metric gµν. Then, the Ricci tensor̃Rµν

of g̃µν is related toRµν as follows:

R̃µν = Rµν − gµν Bλ
λ − (D − 2) Bνµ . (B.13)

This formula is derived in [140]. Note that it applies to any metric, and does not require any
Ansatz for either the metric or the functionσ(x).



Appendix C

Homogeneous spaces and group
manifolds

In this appendix, I will define homogeneous spaces and isotropy, giving some examples. Then,
I will define group manifolds and illustrate with one example.

C.1 Homogeneous spaces

This section is based on a section in the book by Nakahara [140]. I will assume that the reader
is familiar with Lie groups.

Let us begin by defining the action of a group on a manifold.
Definition: Given a Lie groupG and a differentiable manifoldM, we define anactionof G on
M to be a differentiable mapσ : G × M → M, which satisfies the following conditions:

(i) σ(e, p) = p for anyp ∈ M,

(ii) σ(g1, σ(g2, p)) = σ(g1 g2, p) for anyg1, g2 ∈ G and anyp ∈ M,

wheree is the identity element of the group. The first condition needs no explanation, and the
second one just means that the group action has to respect thegroup multiplication. Notice that
each group elementg defines a diffeomorphism from the manifold to itself as follows:

σ(g, · ) : M → M . (C.1)

From basic Physics we already know many examples of groups acting on spaces. The classic
example is SO(3) acting on�3 as the group of rotations. More generally, whenever a group
G ⊂ GL(n,�) acts on ann-dimensional vector spaceV over some field�, we call that specific
action ofG onV ann-dimensional representation of the groupG.

An actionσ of groupG on a manifoldM automatically induces an actionσ∗ on the tangent
spaceTpM of any pointp on the manifold. I will not state the mathematical definitionhere,
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but I will briefly give an intuitive picture of it. Given a vector V ∈ TpM, tangent top, one can
always drawintegral curves, i.e. curves passing throughp that are tangent toV. Take one such
integral curvec(t), and letσ(g, · ), for someg ∈ G, act on it point by point. This will yield a
curve c̃(t) ≡ σ(g, c(t)) that passes throughq ≡ σ(g, p). DefineW ≡ σ∗g,p(V) as the vector in
TqM that is tangent to ˜c(t) atq. This defines what is called aninduced actionof G onT M.

We also need to define the following properties for group actions:
Definition: Let G be a Lie group that acts on a manifoldM byσ : G × M → M. The actionσ
is said to be

(a) transitiveif, for any p1, p2 ∈ M, there exists an elementg ∈ G such thatσ(g, p1) = p2;

(b) free if every non-trivial elementg , e of G has no fixed points inM. In other words, given
an elementg ∈ G, if there exists an elementp ∈ M such thatσ(g, p) = p, theng must be
the identity elemente.

Now we are ready to define a homogeneous space. A manifoldM is said to be homogeneous,
if there exists a Lie groupG that actstransitivelyon M. For instance, Lie groups act transitively
on themselves via the group multiplication. Then-sphere is homogeneous because its group
of rotations SO(n + 1) acts transitively on it. It is tempting to think that one can then simply
identify a manifold with the group that acts transitively onit, by choosing a base pointp on
the manifold, which one would identify withe, and identifying all other points with the group
elements required to go fromp to them. In general, however, given any two pointsp1 andp2 on a
homogeneous manifold, there could be several group elements that connect them. For instance,
given two points on a sphere, there are infinitely many rotations that can bring one point to the
other. One can easily show that this implies that for any point, one can find rotations that leave
it fixed. More generally this means that the action of the group is not free. This leads to the
concept ofisotropy group:
Definition: Let G be a Lie group that acts on a manifoldM. The isotropy groupof p ∈ M is a
subgroup ofG defined by

H(p) = [g ∈ G σ(g, p) = p]. (C.2)

In other words,H(p) ⊂ G is the group of elements that leavep fixed. This is also called thelittle
groupor stabilizerof p. If G acts transitively onM, one can show that the isotropy groups of
all points inM are isomorphic to each other. Let us take the example of the 2-sphere. Given a
point p, we see that any rotation along the axis passing throughp will leave the point fixed. So
the isotropy ofS2 is SO(2).
There is a remarkable theorem that states that, under certain conditions, if one has a homo-
geneous manifoldM with the groupG acting on it and with isotropy groupH, then the coset
spaceG/H is a manifold (i.e. it has a differentiable structure), and it is diffeomorphic toM, i.e.
G/H � M. The following are a few of the classic examples:

SO(n+ 1)/SO(n) � Sn ,

O((n+ 1)/O(n) � Sn ,

U(n+ 1)/U(n) � S2n+1 , (C.3)

O(n+ 1)/[O(1)×O(n)] � Sn/�2 � �Pn .
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As the reader may have noticed, a manifold can have more than one representation as a coset
space. It is this fact that will be exploited in the next section about group manifolds.

In section 4 we saw an intuitive definition of anisotropic manifold. We are now ready to
give a more mathematical one:
Definition: Let M be a manifold with a groupG acting on it viaσ (not necesarily transitively),
and letH(p) be the isotropy group of some pointp ∈ M. M is isotropic at p, if for any two
vectorsV1 andV2 in TpM, there exists an elementh ∈ H(p) such thatσ∗h,p(V1) = V2. In other
words,M is isotropic atp if all tangent vectors atp can be rotated into each other by elements
of the isotropy group ofp. This matches our intuition that isotropy means that a space‘looks’
the same in every direction, because all directions are related via a symmetry transformation. It
can be shown, that if a manifold is isotropic at every point, then it is also homogeneous. Spaces
that are homogeneous and isotropic are said to bemaximally symmetric.

None of the definitions and concepts we have defined so far haverequired us to define a
metric on the manifold in question. But when dealing with general relativity, there is always a
metric at hand. So, all of these definitions must be slightly altered from the physicist’s point of
view. Namely, every manifold must be endowed with a metric, and every groupG acting as a
group of diffeomorphisms on the manifold must leave the metric invariant, i.e. it must be a group
of isometries. This means for instance, that then-sphere will only be considered homogeneous,
if its isometry groupacts transitively on it. IfSn is endowed with the standard metric, then it
will be homogeneous, since its isometry group SO(n + 1) acts transitively on it. If, however,
it is endowed with a metric that has, for instance, no isometries whatsoever, then it will not be
called homogeneous. The concept of isotropy also changes inthat the isotropy group has to
be a subgroup of the isometry group. Again, a manifold can have a larger or smaller isotropy,
depending on the metric defined on it. A manifold will be called maximally symmetricif it is
homogeneous and isotropic under the physicist’s definitions of these two concepts.

C.2 Group manifolds

In this section, we will take thephysicsdefinitions of homogeneity and isotropy.
A group manifoldis a Lie group endowed with a metric that makes it homogeneous. In

other words, it is a manifold that is diffeomorphic to a Lie group and it has a metric, such that
its isometry group acts transitively on the manifold. One simple example is theS3 with the
standard metric

ds2 = dψ2 + sin2(ψ) dΩ2
S2 . (C.4)

This manifold is diffeomorphic to the group SU(2). Endowed with this metric, it has SO(4)
isometry and SO(3) isotropy, so we can write it as the quotient SO(4)/SO(3). It is maximally
symmetric.

However, as we mentioned before, there are more ways to identify a manifold with a quotient
of groups. We could endow it with a metric that has less isometries, and hence less isotropy. The
manifoldS3 can be regarded as a U(1) principal bundle overS2 known as theHopf fibration.
This means thatlocally

S3
� S2 × S1 . (C.5)
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So we can in principle write down a locally defined metric forS3 that has SO(3)× SO(2) as
its isometry group, and SO(2) as its isotropy group. I will not write down the explicit formulae
because they are not clarifying, but they can be found in [95]. Therefore, we can rewrite our
manifold as the following coset:

S3
�

SO(3)× SO(2)
SO(2)

, (C.6)

where the SO(2) in the denominator is a subgroup of the SO(3) in the numerator, i.e. the quotient
SO(3)/SO(2) forms theS2 factor of the Hopf fibration. This manifold is no longer maximally
symmetric, it isanisotropic.

We can even go further and write down a metric with the least amount of isometry that can
still act transitively on the manifold. The isometry group must then be at least three-dimensional.
Such a metric will then have no isotropy group left. In that case, we will be writing our manifold
as follows:

S3
�

SO(3)
· , (C.7)

where the ‘·’ represents the trivial group. This space is totally anisotropic. All of these state-
ments are valid only locally. Globally, of course,S3

� SU(2), and SO(3)� SU(2)/�2.
To summarize, we have written our manifold as three different quotients in the order of

decreasing isometry and isotropy:

S3
�

SO(4)
SO(3)

�
SO(3)× SO(2)

SO(2)
�

SO(3)
· . (C.8)

The first two forms are referred to as theroundand thesquashed3-sphere respectively. In gen-
eral relativity, one sees group manifolds as generalizations of maximally symmetric spaces, in
that they are homogeneous but potentially completely anisotropic. In the standard terminology,
which I personally find confusing, one names the group manifold after its isometry group. In the
case of the 3-sphere one would call the cases in (C.8) the SO(4)-manifold, the SO(3)× SO(2)-
manifold, and the SO(3)-manifold respectively.

All three-dimensional group manifolds were completely classified by Bianchi [141]. In
[95] they were used as internal spaces to compactify seven-dimensional pure gravity. This
yielded four-dimensional theories with gravity and scalars, with interesting exponential poten-
tials, which could be used to obtain cosmological solutionswith periods of transient accelera-
tion. In [128] some of those theories were studied as autonomous systems to find solutions with
periods of acceleration.
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Samenvatting

In dit proefschrift zijn twee onderwerpen behandeld: instantonen en kosmologieën in scalar-
zwaartekracht truncaties van superzwaartekracht en in scalar-zwaartekracht theorieën in het al-
gemeen. In het laatste hoofdstuk werd aangetoond dat deze onderwerpen gerelateerd zijn.

Het eerste hoofdstuk behandelde de fundamentele beginselen van de bosonische snaartheo-
rie en de supersnaartheorie. We hebben geleerd dat elke toestand van een kwantummechanische,
relativistische snaar als een deeltje kan worden opgevat, waarbij zijn massa en spin de kwan-
tumgetallen van de snaartrillingstoestand zijn, in tegenstelling tot Casimir operatoren (i.e. vaste
eigenschappen). De nadruk van dit hoofdstuk ligt op de veldentheorie limiet van de snaartheo-
rie. Als we veronderstellen dat snaren zwak koppelen, i.e. dat de koppeling van snaren bepaald
door de constante waarde van de dilaton klein is, dan kunnen we een twee-dimensionale CFT
op het wereldoppervlak van de snaar definiëren. Velden zoalsde ruimtetijd (target space) me-
triek worden gezien als veld-afhankelijke koppelingen vanhetσ-model. Ze kunnen ook worden
gezien als operator inserties van coherente toestanden vanhet snarenspectrum, zoals het spin-2
toestand/deeltje dat graviton wordt genoemd. Om de klassieke conforme invariantie van de CFT
ook te laten gelden op het kwantumniveau, moeten deβ-functies voor de veld-afhankelijke kop-
pelingen op nul worden gezet. Deze beperkingen zijn perturbatief in α′ en, in de lage energie
benadering, houden we alleen de nulde-orde termen. Dit geeft ons beperkingen die eruit zien
als de bewegingsvergelijkingen van ruimtetijd velden (zoals de Einstein vergelijking voor de
ruimtetijd metriek). Door deze ruimtetijd bewegingsvergelijkingen weer te geven als acties,
verkrijgen wij de superzwaartekracht acties, welke gebruikt zijn in dit proefschrift.

In het tweede hoofdstuk werden de basisbeginselen van instantonen uitgelegd. We begonnen
met het voorbeeld van het niet-relativistische kwantumdeeltje in de dubbele-put en de periodie-
ke potentialen. We hebben geleerd dat instantonen extrema zijn van de Euclidische actie die
gebruikt kunnen worden om tunnelingsamplitudes te berekenen. Deze tunnelingseffecten leren
ons dat de naïeve ontaarde perturbatieve vacua van de theorie geen stationaire toestanden zijn
omdat het deeltje ze kan verlaten. Dit stelt ons in staat het werkelijke vacuüm van de theorie
te definiëren, wat ruwweg een lineaire combinatie is van de naïeve vacua. Vervolgens gingen
we verder met de toepassing van instantonen in de kwantumveldentheorie, door het voorbeeld
van de Yang-Mills instanton te behandelen. Dit toonde ons hoe de principes van instantonen
en werkelijke vacua generaliseren tot kwantumveldentheorieën. We zagen dat een padintegraal
die rekening houdt met de effecten van instantonen, i.e. een padintegraal die deecht-vacuüm-
tot-echt-vacuüm amplitude geeft, in essentie een topologischeθ-term in zijn actie krijgt. Aan
het einde van het hoofdstuk heb ik uitgelegd hoe instantonenin D Euclidische dimensies soms
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overeen kunnen komen met solitonen inD + 1 ruimtetijd dimensies.

In het derde hoofdstuk konden we deze kennis toepassen in eenscalar-zwaartekracht theo-
rie. Allereerst hebben we een aantal subtiliteiten met betrekking tot de Euclidische padintegraal
voor de zwaartekracht naar voren gebracht. Daarna definieerden we een theorie van zwaarte-
kracht met twee scalairen, welke kunnen worden ingebed in type IIB superzwaartekracht voor
bepaalde waarden van de dilaton koppeling. We vonden de oplossingen voor deze theorie en
waren in staat ze te classificeren in termen van hun SL(2,�) ’conjugatieklassen’. Er bleken drie
SL(2,�)-ongerelateerde families van oplossingen te zijn. Door dein hoofdstuk 2 besproken
correspondentie tussen instantonen en solitonen toe te passen, realiseerden wij ons dat de drie
families van D-instantonen gezien kunnen worden als ruimtelijke gebieden van superextremale,
extremale en subextremale electrisch geladen zwarte gaten. Na de tunneling interpretatie van
deze oplossingen naar voren te hebben gebracht, hebben we demogelijkheid besproken dat zij
leiden tot niet-perturbatieveR8 correcties aan de type IIB effectieve actie.

Ten slotte heb ik enkele onderwerpen besproken, die onderdeel uitmaken van mijn nog lo-
pende onderzoek. Het plaatsen van D-instantonen in een AdS achtergrond kan leiden tot inte-
ressante toepassingen in de AdS/CFT correspondentie. De correspondentie tussen de extremale
D-instanton in type IIB superzwaartekracht en de zelf-duale instanton vanN = 4, d = 4 super-
Yang-Mills, is sinds enige tijd bekend. Wij hopen de veldentheorie duale van de niet-extremale
D-instantonen te begrijpen, wat ons in de richting zou kunnen wijzen van niet-zelf-duale super-
Yang-Mills instantonen.

Het volgende deel van dit proefschrift heeft een ander soortscalar-zwaartekracht oplossing
behandeld, dat ook afhangt van één parameter: FLRW kosmologieën. Hoofdstuk 4 introdu-
ceerde de basisprincipes van de standaard kosmologie en moderne kosmologie. Inflatie en de
tegenwoordige versnelling zijn experimenteel gemeten gebeurtenissen in ons universum. Als de
snaartheorie daadwerkelijk de theorie van alles is, moet zij een realistisch scenario voor deze
gebeurtenissen toelaten. Aan het eind van het hoofdstuk hebik een samenvatting gegeven van
enkele van de vele op de snaartheorie gebaseerde benaderingen van de moderne kosmologie,
gericht op modellen die te reduceren zijn tot theorieën van vier-dimensionsele zwaartekracht
met scalaire velden.

In hoofdstuk 5 bestudeerden we het scalar-zwaartekracht systeem met een enkele exponen-
tiële potentiaal. Allereerst toonde we aan dat, door een juiste veldherdefinitie, het systeem
effectief slechts één scalair veld in de exponent van de potentiaal heeft. Daarna werden de be-
wegingsvergelijkingenherschreven in de taal van autonomesystemen. We zagen dat, bij gebruik
van deze terminologie, de gebruikelijke FLRW ‘machtswet’ (power-law) en de Sitter oplossin-
gen kunnen worden gezien als kritische punten en de meer interessante oplossingen zijn diegene
die interpoleren tussen deze twee regimes. Dit toonde ons hoe wij de oplossingen kunnen her-
kennen die periodes met tijdelijke versnelling hebben, watfenomenologisch interessant is voor
modellen van zowel inflatie als de tegenwoordige versnelling.

In hoofdstuk 6, hebben we alle vereenvoudigingen laten vallen door demeestalgemene
multi-exponentiële potentiaal voor een willekeurig aantal scalaire velden te bestuderen. Een
algemene formule voor het vinden van kritische punten werd afgeleid, welke de Sitter kriti-
sche punten blootlegde die nog nooit ontdekt waren. De algemene formule werd vervolgens
toegepast op enkele specifieke gevallen afkomstig van reducties van pure zwaartekracht op drie-
dimensionale groepvariëteiten. Tenslotte werden mogelijke uitbreidingen van genoemd werk
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beschreven, namelijk het toevoegen van een barotropische vloeistof in het systeem om materiaal
na te bootsen en van ruimtelijke kromming. Een mogelijke toepassing van een dergelijke uit-
breiding is het ‘kosmische samenvallen probleem’ (cosmic coincidence problem), wat mogelijk
opgelost kan worden door ‘schalende oplossingen’ (scaling solutions).

In het afsluitende hoofdstuk 7 werden D-instantonen en kosmolgieën samengebracht. Hun
wiskundige overeenkomstigheid, te wijten aan het feit dat beide oplossingen van scalar-zwaarte-
kracht modellen zijn die afhankelijk zijn van slechts één coördinaat, werd vertaald in twee
concrete correspondenties. Allereerst zagen wij dat enkele D-instantonen gerelateerd zijn aan
S(-1)-branen via de Wick rotatie. In het tweede deel van het hoofdstuk ontwikkelden wij een for-
malisme dat beide typen oplossingen op gelijke voet brengt.Door het interpreteren van scalaire
velden als coördinaten van een twee-dimensionale scalarvariëteit (target space) en het vervol-
gens uitvoeren van coördinatentransformaties op deze scalarvariëteit, realiseerden wij ons dat
instanton oplossingen gezien kunnen worden als de banen vandeeltjes in eendS2 ruimte. De
drie SL(2,�) families van instantonen komen overeen met respectievelijk massieve, massalo-
ze en tachyonische deeltjes. De kosmologieën, aan de anderekant, worden geïnterpreteerd als
banen van een deeltje in een Euclidische�2 ruimte.

De Ansätze voor de ruimtetijd metriek van zowel de instantonen als de kosmologieën zijn
zodanig dat beide metrieken slechts één vrijheidsgraad hebben. Door het interpreteren van deze
vrijheidsgraad als een extra scalarvariëteit coördinaat,werden wij in staat gesteld beide syste-
men te combineren in de actie van een deeltje in een drie-dimensionale Minkowski ruimtetijd.
In dit formalisme zijn een instanton en een kosmologie samengepakt en worden beschouwd als
twee delen van de baan van een enkel deeltje. Dit suggereert een mogelijk scenario om kos-
mologische singulariteiten op te lossen. Bijvoorbeeld, indeze scalarvariëteit taal wordt de Big
Bang voorafgegaan door een instanton fase wat in zichzelf voorafgegaan wordt door een Big
Crunch.
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