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Introduction

If we knew what we were doing, it wouldn'’t be called reseanatw)ld it?
A. Einstein

Unification is one of the driving principles of modern thettwal physics. Maxwell showed
us around the 1860’s that electricity and magnetism weréom thought of as separate forces,
but as two diferent manifestations of the same entélactromagnetisiriLater on, in the begin-
ning of the twentieth century, Einstein asked the famoustijue “What do you see if you chase
a ray of light? Can you see it in its rest frame?" Although tesiion was not motivated by
any unexplained experimental results, the answer led teat gevolution in physics. To answer
his question, Einstein had to find a way to combine the frannkv@alilean mechanics with
Maxwell’s electromagnetism. This led 8pecial relativity and eventuallygeneral relativity
which completely modified the way we view space, time, andigra

In the early twentieth century, quantum mechanics was aahblished athe theory to
describe the electron in the atom. As experiments at thetenii@level became more sophisti-
cated, being able to collide subatomic particles at highditagher energies, it was noticed that
the number of particles is not conserved in a collision psecé\ new theory was needed that
could at the same time deal with the fact that particles amdlsand hence quantum mechani-
cal, and highly relativistic, traveling at speeds compbzrab the speed of light. This led to the
development ofelativistic quantum mechani@nd eventuallyguantum field theorybetween
the late 1920’s and the 1950’s. The latter is built to incogp® special relativity and quantum
mechanics in one framework. Because it is relativistic,nquia field theory treats mass and
energy as a single entity. Consequently, it no longer reguine conservation of the particle
number in a process, as long as the total energgs at the end of a process is the same as that
at the beginning. Because it is quantum mechanical, it dlsvsfor a temporary violation of
energymass conservation, leading to th&shell intermediate states that one sees in Feynman
diagrams.

The ultimate success of quantum field theory came from itsrete application to thstan-
dard modelof particles. This model, which was developed in the 19Escribes three of the
four fundamental forces of nature:

e Electromagnetism this force is responsible for most of the phenomena we obsenur
lives besides gravity, such as the electric repulsion teapk solid objects from simply
merging into each other, and the fact that we can chat onlaefihhones.



2 Introduction

e The strong nuclear force this is what keeps nuclei from flying apart due to their efect
repulsion.

e The weak nuclear force this force is responsible for radioactivity.

The standard model describes these three forces and tiegsattiat arehargedunder themin
a single gauge theory with U(3) x SU(2) x U(1) as its symmetry group. This theory has been
experimentally confirmed within its regime of validity bayiba shadow of doubt.

We could now ask a question that is ny@t motivated by unexplained observational data,
but is in the spirit of unification: “What takes place insidélack hole?" The first notion of a
black hole was discovered by Schwarzschild, as the firstisolto the Einstein equations ever
written down. A lot of éforts have been made, and are still being made, in order torstadel
the real physical meaning of this mathematical solution.ati interesting about black holes,
is that they provide us with a Gedankenexperiment that fogemeral relativity and quantum
mechanics together. The former is necessary becauseétfiatihework for strong gravitational
fields, whereas the latter is necessary because black helesaae of matter that is compressed
to a very small space. This is where we notice the shortcosnifigiuantum field theory, and
general relativity. They are seemingly incompatible. Aligh a theory of quantum gravity does
not yet exist, there are two candidate theories: stringrih@md loop quantum gravity. In this
thesis, we will work with string theory.

String theory is an attempt to describe very high energyitleasuch as the inside of a black
hole. However, it is more ambitious than that. It also hasptbtential to unify gravity with the
other aforementioned forces of nature into one single fraonie, which would be valid in all
possible regimes of energy and size. String theorists hmfigmulate aheory of everything

The theory is derived from the very simple idea that fundaegparticles, which were
always thought of as points (i.e. objects of zero size), enggdly tiny vibrating strings of Planck
length size (i.e~ 10735 m). The strings do not have fixed length, but a fixed tensioepergy
density. This means that the mass of any given string is ited by its vibrational state. For
instance, if it spins really fast, it will tend to stretch bgntrifugal force, and will have a higher
mass than a string that does not spin. Whereas a particlochave angular momentum, but
only intrinsic spin, a string does have angular momentumstBog theory regards all fierent
kinds of particles as being made out of the same ‘fabric’, progberties such as spin and mass
are no longer intrinsfg but simply labels of the states in which the strings are. infryto
formulate a quantum theory of a relativistic strings (speor general relativistic), creates a
world of mathematical structure that is both beautiful aodhplicated.

Needless to say, the path toward such an ambitious goal msifating the theory of every-
thing is plagued with obstacles. Although the theory haswlmeund for several decades, as
of this writing, it is still in its infancy. One might even sdlyat string theory has so far made
bigger contributions to mathematics than to physics. A mdjawback of string theory is that
it is only definedperturbatively This means one has to assume that strings intevaakly
with each other, in order to even define the theory. In ordéetable to perform calculations,
however, one often has to make one more approximation: thehergy approximation. This
approximation requires that one only consider the masstesss of the string. It also requires

IHowever, the dference between fermionic and bosonic strings is in somesgitisintrinsic.



that spacetime curvature be weak. Once those criteria ateome can treat string theory as
a field theory. To be specific, the field theories used to apprate string theory are called
supergravities Throughout this thesis, we will be working with this appiroation.

In chapter 3, we will discuss D-instantons. These are objtbett arise in the supergravity
approximation of string theory, yet they can actually pdais withnon-perturbativenforma-
tion about string theory, i.e. they shoufects that cannot be found by means of naive pertur-
bation theory. They are analogous to instantons in ordifialy theory in that they can only
be found in the Euclidean formulation of the path integrale D-instanton can be interpreted
as a quantum field theoretic tunneling amplitude betweenstates of the spacetime metric,
and theaxion-dilatonscalar of type 1B supergravity. It yields a non-perturbattontribution
to the calculation of the path integral. We will be studyingan-supersymmetric kind of D-
instanton. We will show its relation to the better known sggenmetric D-instanton in terms
of the SL(2 R) duality symmetry of type IIB supergravity. We will also siitnow the general
D-instanton can be viewed as a spatial section of a chargett bble, one dimension higher.

Another challenge of string theory is that it manifestslitge different forms. Until the
mid 1990's, there were actually fiveftirent consistent formulations of string theory, which
was very unsettling for those who believed it to be a theorgwdrything. However, in the
mid 1990’s, Edward Witten and other physicists showed thesé five theories, together with
eleven-dimensional supergravity (a bonus theory, so talgpgvere actually dferent limits of
one unique theory now known &-theory Unfortunately, not much is known about M-theory
itself. Even the origin of its name is a mystery. One ofteusiliates this novel understanding
of string theory by drawing a hexagon, where the cornersmpnt all six limiting cases of M-
theory, the latter being represented by the content of thegpa. The six theories are related to
each other via so-calledualities A duality can be thought of as the abstract generalizatfon o
the Fourier transform. Fourier transforming &eliential equation means writing down the same
problem in diferent variables, according to a certain map. A problem thatns impossible in
one set of variables, can be a one-line calculation in thevaables. String theory dualities
relate diterent theories in their opposite regimes, or sometimesriiate a theory to itself. For
instance, type IIB string theory 8-dualto itself. This S-duality manifests itself via the action
of the group SL(2Z) on the degrees of freedom of the theory, and it sometimes mwapkly
coupled string theory to its strongly coupled counterpart.

1B A

| 11D

Het SO(32) Het g x
Figure 1: The five string theories, 11-D supergravity, and M-theory.

Although this picture shows us what we know about string anth&bry, it mainly shows
us what we do not yet know. We know only the six corners of theagen, i.e. the extreme
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regimes of these theories. Everything between the coraensdaharted territory.

Another interesting discovery of the 1990’s is MaldaceedS/CFT conjecture [1]. The
latter asserts that type 11B string theory in a certain baskgd geometry, namekdSs x S°, is
fully equivalent to supersymmetric Yang-Mills theory iruiodimensionsA = 4,d = 4 SYM).
This is another example of a strgmgak duality. It relates the two theories in their opposite
regimes of coupling strength. Therefore, this is usefulegploring the weakly and strongly
coupled phases of both theories, but not the intermediategsh

The lack of a viable framework for M-theory prevents us froamnidng the laws of physics
that govern strings. String theory, as it is currently fotated, does not tell us in what spacetime
manifold we actually live. It treats the spacetime metri@ason-dynamical background, and
imposes the Einstein equation on it as a consistency condltat restricts the kinds of allowed
manifolds. In order to be able to pinpoint a unique backgdofan string theory, one would
need a theory with @acuum selection principleThis is analogous to having a system with
degenerate vacua and no potential that can lift the degendrhe best one can do is to look for
backgrounds through trial and error, and see which ones ast consistent with the physical
world we live in. A new emergent philosophy among string tigte, the so-callethndscape
scenario, suggests that there is no vacuum selection pléndiut that all possible universes
actually coexist adubblesin a megaverse According to this picture, we happen to live in
one of the few universes where the constants of nature atetbatlife is possible, but other
universes where it is not possible also exist. However elas causally disconnected from
ours.

So far, no verifiable or falsifiable prediction has been magstiing theory. This is due to
two reasons: first, technological limitations make it imgibke to measure any stringfects in a
particle accelerator. Second, even if particle accelesatere capable of making measurements
at an arbitrary energy level, string theory has not told uswleat we would see, due to its
complicated nature.

Recently, however, hopes of getting string theory to mak&azi with reality have been
revived by cosmology. First of all, cosmological procesaash as supernovae are the ultimate
particle accelerators, reaching energies far higher tHBRNCcould ever dream of. Secondly,
recent measurements have confirmed that our universe iggoidg a period ofaccelerated
expansion This provides string theorists with the challefg@portunity to derive a scenario
from string theory that produces accelerated expansidigltansistent with observations.

In chapters 5 and 6, we will be studying a certain class of @bsgical models containing
Einstein gravity and scalar fields, some of which are det&/détom string theory, and some
with yet unknown fundamental origins. We will specificallgeswhen these models lead to
accelerating universes, beeiternalor transientacceleration.

The Big Bang scenario, which is a widely accepted accountHerearly history of our
universe, states that the latter was once very dense ane@indting perfectblackbody radi-
ation. The microwave spectrum of this radiation, the fam@asmic Microwave Background
Radiation has been observed and thoroughly studied, and is cortsigiterthe Big Bang the-
ory. Earlier in this introduction, | mentioned that blacklém provided us with a ‘theoretical
laboratory’ in which to study quantum gravity. The Big Basgaictually a real life laboratory
for quantum gravity, as it describes a very dense, and heigbdylcurved spacetime, where
short-distance physics is dominant. If string theory iseotly of everything, it must ultimately



explain and ‘smooth out’ the Big Bang singularity.

This thesis is organized as follows: chapter 1 is a basiodhiction to the bosonic string, and
its quantization. There, | will also briefly explain the cormhal field theory approach to string
theory, and the physical interpretation of spacetime bamkuds. Finally, a brief summary of
superstring and supergravity theories will be provided.

In chapter 2, |1 will introduce instantons in quantum mecharand field theory, thereby
explaining the semiclassical approximation in a Euclidegmature. This will be illustrated
with examples, including the Yang-Mills instanton. Themyill present a brief introduction to
solitons. Finally, | will explain the correspondence betweolitons and instantons.

Chapter 3, which is based on a publication, concerns typadB-extremal D-instantons.
First, | will review the SL(2R) symmetry of type IIB supergravity and generalize to aduitr
dimensions and dilaton coupling. Later, this theory wil@abe generalized to theories with
multiple scalars. Then, the solutions will be presentetelbas their SL(2R) properties. After
a brief introduction to Euclidean wormholes, we will seettiae class of solutions gives rise to
such geometries. In analogy with the soliton-instantomezpondence explained in chapter 2, a
correspondence between D-instantons and charged blaeg; faold D-instantons armgbranes
will be established. The calculation of the action for thiestanton solutions will be presented,
alongside with a discussion about the potential quantumhamr@cal role of non-extremal D-
instantons in string theory. Finally, | will comment on somerk in progress, where these
D-instantons are put to work in the AASFT context.

In chapter 4, | will give a basic introduction to modern cosogy and its issues. | will begin
by introducing theé=riedmann-Lemaitre-Robertson-Walkeetric and the standard terminology
for the matter and energy content of the universe. Then,lIresiew three main problems in
cosmology: thénorizon, flathessandrelics problems, and we will see how these are solved by
inflation. | will then discuss present day acceleration, tioering some of the current methods
being used by string theorists deriveit.

The goal of chapter 5, which is based on a publication, wiltdéeescribe gravity-scalar
models for cosmology with single-exponential potentisie will see that these systems can be
formulated as autonomous systems, and that power-law aBdtde solutions can be regarded
as critical points. We will then analyze the solutions thaeipolate between critical points,
paying attention to trajectories that have periods of aredbn.

In chapter 6, we will generalize on the previous chapter afyaing multiple-exponential
potentials. This chapter is based on a publication, in wit&hcritical points are given for
the most general case for the first time. This analysis isIiowbat it includes cases that are
even more general than what is known as ‘generalized addigtation’. The analysis will be
illustrated by some examples of potentials with highertisional origins via compactifications
of gravity over three-dimensiongtoup manifolds

Just as instantons and solitons have similar mathemattioatsres, D-instantons and FLRW
cosmologies are also mathematically similar. They are godlvity-scalar configurations that
depend on only one coordinate (be it time-like or spacerlikéney both asymptote to ‘trivial’
configurations, but have non-trivial interpolating belwaymuch like kink solutions. They can
probably be viewed as sections of non-trivial bundles okerdircle. In chapter 7, this paral-
lelism will be pursued in two ways: first, we will see that soBxnstantons can be related to
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cosmologies via Wick rotation. Then, we will see that D-amgbns and scalar cosmologies can
be viewed as the trajectories of particles in a fictitisealar manifoldor target space This
interpretation not only puts these solutions on equal faptit even patches them as two por-
tions of the same trajectory. We will see how this suggestssaiple resolution of the Big Bang
singularity, by means of smooth Big Crunch to Big Bang traoss that have an intermediate
Euclidean period.



Chapter 1

String theory in a nutshell

1.1 Introduction

In this chapter, the basic definitions and foundations @fgttheory will be laid. We will start
by reviewing the relativistic point-particle in the fornsah of the variational principle. Then,
we will repeat this for the relativistic bosonic string. Afta brief introduction into the canon-
ical quantization of the string and the resulting spectrwa,will study the string in the path
integral formalism. The notions of vertex operators, areldhnus expansion of string Feyn-
man diagrams will be introduced. This will allow us to undargl how non-trivial spacetime
backgrounds, on which the string can propagate, can beneted as coherent states of strings.
Then, we will briefly see that requiring classical symmeti@hold quantum mechanically im-
poses constraints on spacetime backgrounds by megnfsinttions. In the low energy approx-
imation, these constraints can be interpreted as spacBéideheories. Field theories obtained
as low energy approximations to string theory will be themfeamework of this thesis. Finally,
a brief summary of supersymmetric string theories and theirenergy limits will be provided.
In the following, | will be borrowing heavily (and sometimgsrbatim) from Polchinski’s
textbooks [2, 3]. However, the philosophy behind this cbkafgnotto provide the reader with
yet another carbon copy of the standard textbooks, andieigrtet to improve on the latter. The
main goal of this chapter is to show a minimal selection fréwa $tandard textbooks in order
to schematically explain how the low energy limit of the gtized theory of relativistic strings
(which is a QFT in the two world-sheet dimensions) is a ctaddield theory in spacetime.

1.1.1 The relativistic point-particle

Before we begin our journey into the theory of strings, letaxsew our knowledge of relativistic
point-particles through the action principle.

To describe the motion of a particle moving irDadimensional Minkowski spacetime we
can defineD — 1 functions of timeX*(XP), ..., XP~1(X9), which give the particle’s position in
space at any given time°. We can also make this description covariant by paramegittie
particle’sworld-line with a variabler, such that we now hav@ functionsX®(z), ..., XP~(z) on
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equal footing. One can derive the equations of motion froenveriational principle through the
following action:

S=-m f dr (= XH(7) X, (7)) Y2, (1.1)

wherem is the particle’s mass, and the dot representsdarivative. This action measures the
relativistically invariant arc-length (or proper time) tfe world-line, and the classical particle
will move along the trajectory that extremizes this quantithe Euler-Lagrange equations for
the X*'s are then,

&

37(7@5 ): 0. (1.2)

(=X X,) Y2

The conjugate momenta to the particle’s spacetime coaebreae the following:

XH

oo M%T (1.3)
(=X X, )12
from which we easily derive the on-mass-shell constraint

P2+’ =0. (1.4)

Although this action allows for an easy derivation of thesslaal equations of motion and
on-shell condition, it does not accommodate the case of th&skess particle. Moreover, the
square root of the integrand makes this action awkward t&wadth in a path integral calcu-
lation. Fortunately, there is a more convenient form whitimi@ates these two features by
introducing an auxiliary field:

§'=1 [ dr(e X @R - ey, 19

The auxiliary fielde(r) is the world-lineeinbein In other words, it is the square root of
(minus) the metrig..(r) = —e(r)? that lives on the one-dimensionakpace. This metric is an
independent field and is therefaretinduced by the spacetime Minkowski metgg,. The first
property we should establish about this action is that igisielent to the previous one (1.1)
(except for the massless case). To show this we compute tlaiens of motion of theinbein

e+ XX, =0, (1.6)
Substituting this back into (1.5) we find that= S’. Notice also that the conjugate momenta
are now given by
P X 1.7
== (L7
which, combined with (1.6) gives the on-mass-shell coirstess an equation of motion.
Let us list the symmetries of the action (1.5):

e D-dimensional spacetime Poincaré transformations:
Xt — XH = A*, X+ A (1.8)

whereA#, is an SO(1D - 1) matrix andA* is an arbitraryD-vector.
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e World-line reparametrizations:

T—>7

o) - €(+') = efr)

Xt (1) — XH(7').

(1.9)

This action is by construction Poincaré invariant. The seceymmetry merely confirms
the fact that the physics of a particle should be indepenafembw one chooses to parametrize
its world-line. Notice that we could make a paradigm shiftl aagard this system (1.5) as a
one-dimensional theory d scalar fieldsx*(r) and a metri@..(r) = —&(r)?. In that case, the
D-dimensional Poincaré symmetry would be interpreted astmrial symmetry of the scalar
fields, and world-line reparametrization invariance wolédseen as invariance under general
coordinate transformations in one dimension. Although thierpretation may appear strange
in this case, this point of view will prove to be a very poweéthol in string theory.

1.1.2 The relativistic bosonic string

Now we are ready to deal with the bosonic string. We will pextéy analogy with the case
of the particle. A particle sweeps out a wotide in spacetime, which means that we can
describe it as an embedding of a one-dimensional manifeddarb-dimensional Minkowski
spacetime. A string sweeps out a two dimensional wehdet this requires an embedding of
a two dimensional manifold int®-dimensional Minkowski spacetime. The string coordinates
will then be functions of two paramete¥s'(r, o). We can derive equations of motion for the
string by requiring that the world-sheet extremize its nivat surface. In order to measure that
surface we define theaducedmetric on the world-sheét,,, wherea, b run over the world-sheet
indices:

hab = 9a XX 0p X" 1,y - (1.10)

Then, the string will extremize the so-called Nambu-Gotioac

Sne = 5 f dir dor (- detha) 2. (1.11)

In the case of the point particle we needed a constant witts whienergy to make the action
dimensionless (i.e. the mass), in this case we need energynjidength. Hence, the constant
1/(2r o) will play the role of the string tension.

Once again, we can derive equations of motion from this actiowever, if we expect to
use it in a path integral formalism we should find an actiorhaitt a square root. In order to
achieve this we must again introduce an auxiliary worldesmeetricy,,. The action we are
after is called the Brink-Di Vecchia-Howe-Deser-Zumindiag [4, 5] or Polyakov action [6, 7]:

1
4 o/

wherey = dety,,. This action has a more familiar kinetic term for tK&, which makes the
path integral easy to evaluate. If we eliminate the auxilraetricy,, from this action by using

Sp=-

f drdo ()29 9, X 9y X, , (1.12)
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its equations of motion, we will find that the Polyakov actisrequivalent to the Nambu-Goto
action (1.11).
Let us list the symmetries of the Polyakov action:

e Poincaré transformations D-dimensional spacetime:
XH — X = A, XY + A, (1.13)
whereA*#, is an SO(1D - 1) matrix andA* is an arbitraryD-vector.

e World-sheet reparametrizations:
Defining a generalized world-sheet coordinafe= (7, o) for a = 0, 1 we have,

o? - o¥r,0),

Xi(,0) = XU, o),

(1.14)
L, 00C dod
yab_’ycd(T,U)% 900
e \World-sheet Weyl rescalings:
Yab = Vap = €7 yap. (1.15)

The first two symmetries, (1.13) and (1.14) are analogousdgbint-particle symmetries,
(1.8) and (1.9). The last one (1.15), however, is specifiailie to the fact that we are dealing
with a two dimensional extended object. This symmetry wdlshat we should regard all Weyl-
equivalent metrics on the world-sheet as physically edentaFrom the two dimensional point
of view, we have a scalar field theory with an interBatlimensional Poincaré invariance, Weyl-
rescaling invariance, and invariance under two-dimeraiganeral coordinate transformation.
This field theory falls under the category @dnformal field theoriesTwo dimensional CFT’s
are a very special kind of CFT when it comes to doing both @takandquantum computations,
due to techniques that exist only for two dimensions. Thaniglogous to the fact that there are
much more powerful techniques to do analysis on the comgimepthan there are for higher
dimensional complex spaces.

Let us now write down and solve the equations of motion forRloéyakov action (1.12).
Varying the string coordinate$’, we get the following equation:

1
6Sp = —— f dr do 84 { (=) Y2y gpXH } 5XH
2ra’

1
2 o’
To make this variation zero both terms must vanish indepsthdeThe first term requires the

two-dimensional Laplacian of thé¢*’s to vanish. The second term requires a choice of boundary
conditions, for which there are three possibilities:

(1.16)

o=l
f dr (=y)M2 0, X, 6XH e

e Open string Neumann b.c.s:

0 XM(1,0) = 9,XH(z,1) = 0. (1.17)
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These conditions imply that no momentum flows in or out thiotige string endpoints,
and, hence, that these move freely.

e Open string Dirichlet b.c.s:
6XH(1,0) = 6X(,1) = 0. (1.18)

These conditions mean that we are fixing the string endpaimso longer consider them
as dynamical.

e Closed string (periodic b.c.s):
XH(1,0) = XH(z,1). (1.19)

This is the requirement that the string be closed, i.e. tha\e no endpoints.

For open strings, the Neumann boundary conditions (1.1&)tle& only conditions that
are consistent with spacetime Poincaré invariance, wheteaDirichlet b.c.’s (1.18) explic-
itly break it. For instance, if one imposes Neumann b.c.®onp — 1 string coordinates and
Dirichlet b.c.s onp + 1 of the coordinates, this means that the string endpoietstaick to a
p+1-dimensional hypersurface of spacetime callgelddane, where the 'D’ stands for Dirichlet.
That's why the latter were discarded for a long time as unjglaysintil Polchinski discovered
in 1995 [8] that D-branes are an integral part of string theor

Let us now focus on the open string with Neumann b.c.s ancghl equations of motion
from the first term in (1.16):

da((=)"?y** 3pX) = 0. (1.20)

For generalyyy, this can be a non-trivial equation to solve. However, we arkick. In two
dimensions there are enough symmetries to make this equati@l. The first symmetry we
make use of is invariance under general coordinate tramsfitons (1.14). One can show that,
in two dimensions, it idocally possible to bringany metric to aconformally flatform through
an appropriate coordinate transformation:

ot —o? (1.21)

, -1 0
yab—>)/ab=e¢77ab=ed)(o 1)’ (1.22)
whereg is some function of ando. Now we are only a Weyl transformation (1.15) away from
a flat metric. However, by inspecting of (1.20), we see thatabnformal factor simply drops
out. The solution foiX in (1.20) is the following:

. 1,
Xi(1,0) = X' + 20’ P 1+ (2a) Y2 Z ~ahe!"" cosno, (1.23)

n#0

where we require”,, = (a})* to ensure reality. The parametércan be thought of as the string’s
initial center-of-mass positiop* as its center-of-mass momentum, andd¢fi@s the oscillation

modes of the string. Note that in the string action we did nottfe mass but rather the tension
or energy per unit length of the string. Since length of thiegtdepends on its oscillatory state,
so will its mass. This makes sense relativistically, ergitihe string’s oscillatory modes means
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putting energy into it, and energy is the same as mass. Inkfgetsing Hamiltonian dynamics,
one can show that the string’s mass is given by the followélation:

1
M? = p Dla - an (1.24)

For the closed string one follows an analogous procedutestiofor the open string case. One
discovers, however, that the closed string has two setsalfaiers o anda*, the so-called
right- andleft-moverswhich can be viewed as non-stationary waves on the woreighaveling
to the right and to the left respectively.

1.1.3 The bosonic string spectrum

We will now schematically study the quantum spectrum of thedmic string. For a detailed
account of what we are about to do, the reader is referredyist@mmdard textbook on String
theory such as [2] and [9].

Let us begin with the canonical quantization of the opemgtriJust as in the case of the
point particle, the string is quantized by replacing Paiss@acket into commutators:

{XH(1,0), Il (1, 0")} = [XH(1,0), [T (7, 07)] = i " 6(0 = o),
y o (1.25)
and  {X',p’} - X p=in",
wherell* = (1/2ra’) X*. Promoting the string coordinates to operators implies e string
oscillatorsa4, are themselves promoted to operators. In fact, they acthérillowing commu-
tation relations:
[a/;n, Cl:—/]] = | m6m+n77’uv 5 (126)

which we recognize as the commutation relations of the harcrascillator, where the_, and
an are the creation and annihilation operators, respectiv@bythe string can be thought of as
an eigenstate of the momentum opergtbiwith an infinite number of harmonic oscillators,
each at a dferent excitation level. To create a state, define a "vacutate svith some definite
momentum p; 0,0, ...), and then act on it witk,, operators. This will generate a string with
definite momentum and oscillatory modes. The mass of thegstill be given by a modified
version of the classical formula (1.24). The quantum foawill count the number of harmonic
oscillators and add a zero-point energy:

we= 2 (Za_n - - 1) . (1.27)
n=1

Note that every oscillatag* carries a spacetime Lorentz index. It can be shown that #ie st
created by acting with an oscillator on the vacuuth, | p; 0), behaves as a vector boson. More
generally, it can be shown that any string state will beha/a article with mass and spin
determined by the number of its oscillators and their inglicBhe closed string spectrum is
also generated by harmonic oscillators. Its spectrum, fiewes diferent from that of the open
string. One key dterence is that the closed string spectrum contains a masgistwo particle
which behaves like graviton whereas the open string does not.
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Note also that the mass of a state is inversely proportienal.tThis means that in the low
energy approximation to string theory (law), the massive states will become very massive
and will be dificult to excite. That's why one can focus on the masslesssstédtien doing this
approximation.

The goal of these first three subsections was to introduceléssical string and its quan-
tum mechanical spectrum in a fair amount of detail. In thet heg subsections, | will explain
the Feynmann path integral quantization of the string amgvghat, in the low energy approx-
imation (i.e. ’ — 0), string theory can befiectively described by a spacetime field theory
containing gravity, an antisymmetric tensor, and a scdlhis is a rather ambitious goal and a
detailed treatment of this subject would require a lot ofrfalism and space, and would divert
us from the main topic of this thesis: to study particularfigeory configurations with gravity
and scalar fields. | will, therefore, not show any detailetwations; however, | will try to
give an overview that is self-contained in that it does nquiee any new concepts beyond those
of basic quantum field theory and path integrals. For an adcat really does justice to the
subject of the path integral quantization of the string,rdader is referred to [2, 9, 10].

1.1.4 The string path integral

Now that we know how the string spectrum comes about, letnmsttuthe path integral formal-
ism to see how string amplitudes are defined.

When we want to compute quantum mechanical amplitudes fairg particle, the Feyn-
mann path integral procedure instructs us to sum over alipleshistories (world-linesk(t)
that the particle can take, given some initial and final pms&x; andxs, and to weight each
with the phase exp§/#), whereS = S[x(t)] is the action evaluated on the path. The partition
function is then the following:

Z= f d[x] e S (1.28)

This is sometimes referred to as first quantization in oltlifazed language. It is nothing other
thanquantum mechanicsWhen we want to compute a quantum field theory amplitudegusin
path integrals, we have to sum over all possible configunatafield¢ can take given some
spacetime boundary conditions, each weighted again by seph@his yields the following
partition function:

Z= f dl¢] eS| (1.29)

whereZ stands foiZustandssummi@um of states). In the old fashioned language, this is sec-
ond quantization. However, many physicists regard this mésaomer because the procedure
guantizes the field only once. This should just be catjedntum field theory

In string theory we will be summing over all trajectories #teng can take, i.e. over all
possible world-sheets, and weight each with the Polyaktema¢l.12):

Z= f d[X] d[y] eS| (1.30)

whereX represents the spacetime coordinates of the string déinel world-sheet metric. This is
the analog of (1.28). In other words, this path integral dbss the quantum mechanics of the
string.
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Figure 1.1: Feynman diagram of a closed string: (a) propagator; (b) #mgoint function.

Figure 1.2: Feynman diagram of the one-loop four-point diagram.

We can take, however, a radicallyfidgirent point of view. If we view the Polyakov action as a
two-dimensional action of fields, the path integral (1.3®)dmes the analog of (1.29), summing
over all configurations the fields (o, 7) andyap(o, 7) can take: This means that we have to
sum over all scalar field configurations and all world-shesirgetries with given boundary
conditions. For instance, the open and closed string patpagand string 3-point functions
will contain diagrams such as those in figures 1.1(a) and (b). By working in the Bealn
(Wick rotated) path integral formalism, and thus summingrouclideaf two-dimensional
metrics, one can use the conformal symmetry of the theoryap atl world-sheets to compact
Riemannsurfaces. All external legs, which are infinitely long, areught to a finite distance
from each other. For instance, the closed string propagégram in figure 1.1(a), which was
a cylinder, gets mapped to a sphere and the external legsagéetad to two points on the sphere.
The "one-loop" four-point function diagram gets mapped toras with four points as external
legs, see figure 1.2. The general rule is that all diagramsapped to compact closed or open
surfaces and their external legs are mapped to points omtfaxes. However, it seems strange
to map the external legs to points. After all, these extdagd are supposed to represent initial
and final states of strings, so mapping these to points seetosd all the stringy information
of these states. It turns out that the proper way to do this indlude what are calledertex
operatorson the compact surfaces. These operatiis, 7), which are inserted in the path
integral, will supplement the latter with all the stringyfonmation about initial and final states.
For example, the state with no oscillators excited (theytanl, but with some momentumis

litis also possible to draw diagrams representing the psowbere two open strings join at their endpoints, thereby
forming a closed string. This implies that open string tygoust include closed string modes.

2|tis not always possible to perform the Wick rotation. Wheslihg with cosmological models, i.e. time-dependent
spacetimes, Wick rotations can make the metric complexlsge
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translated into the following vertex operator:
|0;p) = fdzz LI (1.31)

wherezis a complex coordinate representingndo, and : : represents normal ordering. Then,
the two-point function for a tachyon with momentymis computed as follows:

:
<0;p|éHT|o;p>=<0|(fd2z:éP'X:) (fdzz :ép'x:)|o> (1.32)

= | d[X]d[y] dzz:e‘p'x:T d?z P X | e'SXd - (1.33)
Javaan ([ dz:ers) [z e

The state that corresponds to the closed string gravitdeslae follows:
G @’y 10;p) = fdzz D O XM 9K P X (1.34)

where(,,, is a symmetric tensor. This is actually not all that strange mew. In ordinary QFT
one must also use operator insertions in the path integraider to "prepare" the initial and
final states of an amplitude. For instance:

O, %, 1€ e, xq,) = (01906,) -+ 6(%,) $(x1,) -+ #(x4,) | O) (1.35)
=2 [as1600) o) 800 -s0)e >, (1.30)

where| 0) is the Fock space vacuum.

It now seems like we have a rule for computing amplitudes;asgnt all external legs with
operator insertions in the path integral, and sum over atdimensional compact surfaces.
Summing over all surfaces means summing over all metricst@gpalogies of surfaces. The
topology of a two dimensional compact surface is complesglgcified by the number of its
boundaries, crosscaps, and handles (genus). But thiscanaxebeing so similar to what we
usually do in QFT, raises a very important question. The gesfua diagram is pictorially
very reminiscent of the number of loops of a quantum field thellagram. For instance, take
the torus diagram with four vertex operators, shrink thimgtto a point particle and you will
recover a one-loop diagram for a 4-point functiomfrtheory. In a weakly coupled field theory,
loop diagrams are usually suppressed by the coupling aans$m the big question is: where
is the analog of this in string theory? Is there such a thing afing coupling constant that
keeps track of the loop order? Well, it turns out that when wetevdown the Polyakov action
(1.12), we didn’t write the most general action consisteith \&ll the symmetries we found so
far ((1.13), (1.14), (1.15)). There is one more piece we addave added, the two-dimensional
gravity action®:

_ 1 1/2 if
)(—47TfMde0'(y) R+27r aMdSK, (2.37)

3Note that we are now working in the Euclidean formalism, swehs no minus sign under the square rootiyt/¢
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where the first term is the Ricci scalar and the second terrhasektrinsic curvature for a
manifold with a boundary (an open string world-sheet). aitgh very geometric in nature, this
action is a topological invariant for two-dimensional nfafds. It basically counts the genus
and the number of boundaries and crosscaps of a surface.

x=2-2g-b-c, (1.38)

whereg is the genush the number of boundaries, andhe number of crosscaps. Therefore, if
we write the string action as follows:

S=Sp+dy, (1.39)

then diagrams will be weighted by a factert. If 1 is small, we will say that string theory
is weakly coupledind hence definegerturbatively In this case, diagrams will be suppressed
as their genus grows, just like QFT diagrams are suppressttea loop number grows. If it
is large, then we are in the&rongly coupled regimef string theory, where most of the known
techniques from field theory break down and very little is\no In the next section, we will
see where this string coupling constardomes from; the answer will be quite surprising.

1.1.5 Strings in background fields

So far, we have been studying the theory of a string propag@tiaD-dimensional flat space-
time. An obvious generalization at this point would be totstfi over again with a Polyakov-like
action that has a curved spacetime metric:

1
L= f dr dor ()29 G,y (X) 92X 9pX” . (1.40)
4 o

This action is called aon-linear sigma modeFrom the two-dimensional perspective, this non-
trivial spacetime metriG,,,(X) plays the role of dield-dependent couplingvhere the fields in
question are th® scalar fieldsx*.

The attentive reader should be skeptical about this operatAlthough it seems natural
to replace the flat spacetime metric with a curved one, weldhask ourselves the following
question: if the string is supposed to be the fundamentaabhyhich generates all particles
and forces including gravity, are we allowed to simply pubinhand a curved metric in the
action from which we will derive the string spectrum? In athwrds, if the graviton is a state
of the string, how can we include gravity into the action twatmust quantize in order tind
the graviton? This seems like a vicious circle. Howevenrghg a way out of it. The following
explanation is borrowed from Polchinski’s textbook [2].

Let us first consider a background spacetime metric thatagyéat:

Gv(X) = nuy + (X)), (1.41)
whereh,, (X) is small. If we expand the integrand of the path integral Ww&im the following:

1
4 o/

e S = g S (1 - f dr doyH2 Y™ hy, 9aXH GpX + - ) : (1.42)
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whereS,; is the sigma model action (1.40), aBg is the Polyakov action (1.12). The second
term in the parenthesis is of the form of a vertex operatoraf@tosed string graviton state
(1.34), withh,, « £, €PX. So this perturbation of the background metric (1.41) cavieeed
as the emission or absorption of a graviton state. Furthexnifove have a fullG,, background
metric, we can view it as an exponentiation of a gravitonesedperator; i.e. a coherent state of
gravitons. This validates our naive replacement of the Mhivéki spacetime metric for a general
curved metric in the non-linear sigma model (1.40).

Let us look back on what we have done so far. We wrote down aoreftr a string that
propagates in a flat spacetime. By quantizing it we foundttiaistring generates particles of
different spin, including the graviton. Then, we included dsainto our starting action and
discovered that this operation was merely an insertion oherent state of gravitons. A natural
question at this point would be: can we include other fieldsuinaction that can be viewed as
coherent superpositions of other string states? The answes.

Focusing on the massless closed string modes we can writellibwwing action:

Se = 4 o
where B, is the background antisymmetric tensdr,is the background scalar (called dila-
ton), andR is the two-dimensional Ricci scalar. This is the most geinaction consistent
with Poincaré invariance, two-dimensional g.c.t. invacde, and Weyl invariance, containing all
massless closed string modes as background fields. In andiig theory to be consistent from
the two-dimensional point of view, one needs to make suretligaclassical Weyl symmetry is
also a symmetry of the quantum theory. This is accomplislya@guiring that the expectation
value of the trace of the stress-energy tensor of the CFBhaiiihis is just the requirement that
a current that is classically conserved also be quantum améchlly conserved. This calcula-
tion, which we will not contemplate here, is calladomaly cancelationCanceling the Weyl
anomaly implies requiring that certain functions caletafunctions vanish. Up to first order
in o, they look as follows:

f Y2 (2 G (X) + 1 €0 B,y (X)) 8aXH 3pX” + @’ RO(X)] , (1.43)

1
ﬁG =a (Ryv + 2V/1 V,® - Z H/u((r HVKU') + O(C},’/Z) ,

Ny

1
Be =a (—5 V<H,,, + V<O HK,W) +O(a’?), (1.44)
D-26 1 1
= o — Z V20 + V@ VO — — H,,,, H* 2
ﬁ @ ( 60 2 + 24 H + O(a' ) >

whereH,,, = 8,B,« + 9,B + 0.B,,. These threg-functions must vanish independently. By
taking proper linear combinations of these equations wéedravith something very peculiar.
We are left with equations that look like equations of motfon the spacetime background
fields. For instance, the equation for the background sfmaeenetricG,, (X) turns out to be the
Einstein equation. So the quantum string imposes consiramits field-dependent couplings
that look like spacetime field equations! Another peculjaabout these equations is that they
requird thatD = 26. The quantum mechanical string is thus only consiste@6ispacetime

4They only requireD = 26 if the background dilator is constant. Solutions such as the so-caliedar dilaton
theorywith D < 26 do exist, however, they are not phenomenologically cive
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dimensions! There is one more peculiar thing we should eofithe string coupling constant,
which we called? in (1.39) is actually the background value of the dilatbnas can be seen
from (1.43). So the string coupling is not a free parameteheftheory, it is determined by a
background field of the string itself!

The constraints for the background fields not only look ligei@ions of motion for space-
time fields, they can also be derived from a spacetime action:

z (1.45)
_20-2)

o(@)|,
35 T OW)

wherexq is some physically meaningless constant. Whenever we aténvgan the low energy
approximation of string perturbation theory, we can simmglgard string theory as a spacetime
field theory defined by the action above. We focus on the mssah@des of the string because,
for smalle’, the massive modes become very heavy and they decoupletieotihdory.

The search for solutions to (1.45) is also a search for agsthieory background to quantize
the string on. Such a background is often called a stringrtheacuumbecause, after quan-
tizing the string around it, it acquires the interpretatidra local minimum of some ‘potential’
for the string to oscillate about. The question however iamawhat potential, and of what
theory? Thes-functions provide us with consistency conditions thatatie in what spacetime
backgrounds strings are allowed to propagate. Howeveausecstring theory must ultimately
be a theory of spacetime, and not just a two-dimensional GR& would like to be able to treat
these backgrounds as vacuum states of some quantum theatya$heory does not yet exist.
Because of that, there are a myriad of backgrounds to choomseand no principle that allows
us to distinguish them. There is, in some sense, a vaaaganeracybecause we do not have
something like a potential that can help us distinguish tfteint ‘states’ of spacetime. One of
the great challenges in string theory is finding what is cel@acuum selection principléhat
will actually pinpoint what background thebackground for strings.

In recent years, however, the debate has shifted from th&tique "what is the vacuum se-
lection principle?”, to the question: "should there be anaw selection principle?" L. Susskind
has proposed a scenario, in which all possible allowed vactually exist [12]. Thidandscape
scenario consists of stating that our universe is just omstitaent of amegaversein which
all kinds of universes (corresponding to all kinds of strthgory backgrounds) exist, but are
causally disconnected. In this approach, there is no roomm f@acuum selection principle.

1.2 Superstrings and supergravities

1.2.1 Superstring theories

So far we have been studying the bosonic string, which is atéipenodel, but not a realistic

description of particle physics for two reasons: first, thecdrum of the bosonic string contains
a tachyon (i.e. a particle with negative mass), which in@igan instability of the string back-
ground. Second, it doesn’t contain any fermions since to#éla®rs only generate integer spin
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particles. To overcome these problems, we need to genethkzstring to a supersymmetric
string. By upgrading the two dimensional CFT to a supersytrimeonformal field theory, or
superconformafield theory, and imposing consistency conditions on thentjped theory, the
string will turn out to have spacetime supersymmetry, tlobyan will be projected out of the
spectrum, and, as a bonus, the number of required spacetim@sions will be reduced from
26 to 10. I will now give an intuitive overview of how the sug#ing is developed, the theories
it leads to, and what its low energy approximations are §upergravities).
The basic form of the supersymmetric world-sheet actios ibows:

S= % fdrda' (a3 OXH 0K,y + Y Oy + GF D) (1.46)

where they* are D two-dimensional fermions. This theory is a superconforfigddl theory.
By analyzing its spectrum in analogy with the bosonic strimmge will find that the world-sheet
fermions also have oscillators, which act as raising an@fovg operators on the vacuum. This
will give rise to not only spacetime bosonic states, but @gacetime fermionic states. In
fact, by properly counting the bosonic and fermionic stétesare generated, one finds that this
theory has spacetime supersymmetry. This means that thieamaibosonic degrees of freedom
matches the number of fermionic degrees of freedom. Thi@yterns to be anomaly-free only
in ten spacetime dimensions.

A more detailed study of the superstring will show that itésually possible to definfive
different consistent supersymmetric string theories:

e Type I: This is a theory of unoriented open strings.

e Type II: There are two theories in this categoiype IIA and Type IIB. These are
theories of closed strings, and theytdr in the boundary conditions applied on the world-
sheet fermions.

e Heterotic: There are two heterotic string theories. These theoresamstructed in very
peculiar ways, and they naturally have non-Abelian spaeetiauge symmetries. Their
groups are indicated by their namétet Eg x Eg, andHet SO(32).

Type | and the Type Il theories agepriori not free of tachyons. However, a certain projec-
tion must be performed on the spectrum for consistency tiondi after which all tachyons are
gone. This projection is called tl&SOprojection after Gliozzi, Scherk and Olive [13]. All five
of these string theories live in ten spacetime dimensions.

1.2.2 Supergravities

We will now write down the low energyfiective actions for these five supersymmetric string
theories. But before we do so, let us look back to the caseedbdisonic string for some moral
guidance. When we quantized the string, we required thatltfgsical symmetries (spacetime
Poincaré, and D Weyl invariance) be respected at the quantum level. Théstiethe vanishing

of thes-functions of the field-dependent couplings, (X), B.,(X), ®(X), which carved out for
us a procedure to write down a unique spacetime field theatydiscribes the massless modes
of the string at low energy.
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The five supersymmetric string theories not only have thensgtries of the bosonic string,
but they each come with aftiérent form of spacetime supersymmetry. It turns out thaésup
symmetry is a stringent enough constraint that, given theedsionality and field content of a
theory, there is only one possible spacetime action one cé@ eown. This means that all we
need to know to construct the low enerdieetive actions for the massless modes for these five
string theories is their spectrum and the kind of supersymntieey have. The resulting actions
are calledsupergravities Their symmetries naturally combine general coordinaesforma-
tion invariance and local supersymmetry as the name sugygest bosonic parts of the actions
for the five supergravities are the following:

o TypellA

_ 1 10/ ~\1/2 [ 20 2 1 . @y
S||A—2K(2) fd (G) e R+4(V(D) 12(H )

(1.47)
_lie@po Ligeyp)o L f B@ 4C® gc®
4 48 %0 ’

whereG is the 10-dimensional metrid the dilaton,H® = dB@ the field strength of a
two-form,G@ = dCW the field strength of a one-form, a@* = dC® + H® A C® can
be seen as the modified field strength of a three-form.

e TypellB

_ 1 10, 12 [ 420 2 1 Gp2
SHB_ZK% fd (-G) e R+4 (VD) 12(H )
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(@@ +C f -5 (dCO2 - = (G )) (1.48)
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+ = [(c®+ ZB@c@|GRHO,

4K(2) 2

whereG® = dC®, GO = dC® + H® A C@, andC© is a scalar. To get the right
number of degrees of freedom, one must impose that the fieldgth of the four-form
F® = dC® be self-dual:F® = «F®). However, this constraint can only be imposed at
the level of the equations of motion.

e Typel
S = i fdlo(_G)l/Z(e—ZCD
2

1/ ~xa2
_ 3)) _ ~® (2)2
12((3 ) g€ TrF )),

R+4(V q))z}
(1.49)

whereG® = dC® - & [3% Tr (A ANdA+ TANAN A)] The trace Tr’ runs over Yang-
Mills group indices.
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e Heterotic

1
SHet = > di0(-G)Y2e2? ( R+4(V®)>?
0 (1.50)

1 /~in2 !
- (A®) - % e‘q’Tr(F(Z))z),

whereH® = dB? - [3—10Tr(A/\ dA+L1AAAA A)]

This concludes the introduction to string theory. The maial@f this chapter was to explain
how a quantum theory of relativistic strings can, in a carggiproximation, lead to a spacetime
gravitational field theory. Actually, two approximationsie made. The first one is the assump-
tion that strings interact weakly, i.e. that the string dmgpconstant given by the constant part
of the dilaton is small. This allows us to define a CFT on thelasheet perturbatively. The
second assumption is the low energy approximation. At loargies only the massless states
of the string are excited. In th&functions this is manifested by a truncationadfcorrections.
This is what allows us to write down a spacetime classical fiekory, such as a supergravity,
as an €ective description of string theory.

Throughoutthis thesis we will be working with these appnoations. In the next part, which
consists of two chapters, we will study instantons and tleé in string theory. In the second
part, chapters 4, 5 and 6, we will study cosmology in the odndé scalar-gravity theories.
These theories are often supergravity Lagrangians that baen dimensionally reduced and
truncated to contain only the metric and scalar fields. Infitne part of this thesis, chapter 7,
we will see how the first two parts come together in twiiatent ways: first, we will see how
Wick rotations can relate supergravity instantons to cdsgical solutions. Then, we will make
a paradigm shift and treat those two kinds of solutions orakfuoting, by regarding them as
trajectories of a particle in a fictitiodarget spacg@arametrized by the scalar fields of the theory.
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String theory in a nutshell




Chapter 2

Instantons

In this chapter we will study the basics of instantons, Hgdarrowing material from the classic
textbooks by S. Coleman [14] and R. Rajaraman [15]. Firstwilesee their application to
quantum mechanics, which is conceptually and technica#ystmplest framework to introduce
the topic. Then, we will move on to quantum field theory, whieexample of the Yang-Mills
instanton will give us all the tools to understand thesedbjm generality. Finally, solitons will
be briefly introduced, and we will see how sometimes an instaim D Euclidean dimensions
can correspond to a soliton i+ 1 Lorentzian dimensions.

2.1 Introduction
2.1.1 An alternative to WKB

In quantum mechanics it is possible for a particle to petetaegion of potential energy that
is higher than the particle’s own energy. This classicadigpfdden motion is known aguan-
tum tunnelingand, for a general potential barrier, one can compute theelimg amplitude of
a particle by means of the WKB approximation. The latter is-@alledsemiclassicahpprox-
imation, which means that it requires smallLet us see what happens in the case of a particle
of unit mass in 1 1 dimensions, subject to some potentigk).

The Schrddinger equation reads:

¢y _2(V(9-E)

i - 2 v (2.1)
If V(X) = constantthen the solution would be a plain wave:
Yo €KX where k= 7‘2(§_V) . (2.2)

In the case of quantum tunneliMgy> E, so the momentum becomes imaginary, and instead of
a plain wave, we obtain an exponentially decreasing functio
V2(V-E)

W€, where k= — (2.3)
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Let us now take a non-constant potential but make the appation thatV(x) varies slowly
compared to the rate of decayof the wave function. Then, we can rewrite the Schrédinger

equation as follows:
dy _  VZV-E)
— =,
dx h
Differentiating this equation yields the original Schrodin@et) upon dropping a term propor-

tional toV’ /%2 k. The solution for a particle tunneling to the right is then:

ven-3 [ VEVRI-B 1) (2.5)

The amplitude for the particle to tunnel is then:

exp(-7 | " ZVR B . (2.6)

wherea andb are the beginning and endpoint of the tunneling trajectory.

The approximation we made is a semiclassical one in the dbasét requires that be
‘small’. To see this, recall that flerentiating the equation we actually solved (2.4) yielded t
true Schrodinger (2.1) equation if we dropped’aerm. Comparing this term to the term that
we did keep shows that the dimensionless quantity we areeciiag iszV’/(2 (V — E))%/?,
which is small in the semiclassical limit— O.

Now that we have obtained this result by using the WKB appnation, we will rederive it
through a completely dierent method, which will be the subject of this chapter: theghuad of
instantons.

Let us begin by rewriting (2.5) in a fierent way. First, we set the energy of the particle to
zero (which can always be done via a suitable shift in therg@t®, E = 0. Then, we have:

fab\/2(\/(x)—E)dx=fabipdx=fabi%(dx, (2.7)

wherep is the momentum of the particle, and in the second equationsed the fact that the
mass has been set to 1. If we perform a Wick rotatien i r we can write this as follows:

Th Th
f p>'<df=f Ledr = Sg, (2.8)

whereSe is the action of the classical particle in Euclidean spatetwith zero energy. This
teaches us a new way to compute tunneling amplitudes. Siogphpute the Euclidean action
of the tunneling trajectory. To see where this comes fromuseturn to the language of path
integrals.

(2.4)

Let us compute the tunneling amplitude for the samelkdimensional problem using path
integrals. The amplitude is given by the following:

K@ab;T)= (x=ad" ™ |x=b) = fd[x(t)] g Sxol/n (2.9)

with  S= tb(% (dx/dt)? - V(x)) dt, (2.10)

a
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\/

(@) (b)

Figure 2.1: Figure (a) depicts a double-well potential, while figure @gpicts the inverted
potential.

where the path integral sums over all paths frem ato x = b, andT = t, — t5. If we now
analytically continue this to Euclidean spacetime (i.e: i 1), this becomes:

Ke(a,b;T) = (x=ale "/ x=h) = f d[x(r)] e Sel/n (2.11)

with  Sg= f Tb(% (dx/dr)? + V(x)) dr. (2.12)

There are basically two motivations to perform this Wickatan: firstly, the Minkowskian
path integral is rigorously speaking not well-defined. Itiicult to prove that the phases of
trajectories that greatly fier from the classical path actually cancel out, in order t&erthae
path integral convergent. However, since the partitiorcfiom is an analytic function of time,
one can properly define the path integral by Wick rotating lticlidean signature, which yields
a well-defined convergent object, and then Wick rotatingsptait results back to Minkowskian
signature.

The second motivation is the fact that the partition functie™ /7, in the limit T — oo,
projects the lowest energy eigenstates. This providesrirdtion about vacuum energy and the
ground state wave function, as we will see later on. Frompbist of view, there is no need
to think in terms of Euclidean time. The path integral for graatition function can be derived
from first principles without use of the Wick rotation.

If we now take the limit: — 0, we see that the largest contribution to this path integilél
come from a trajectory that minimizes the Euclidean actlbrgg is the value of the action for
such a trajectory, then, to leading orderirthe Euclidean amplitude will go likEg o e S0/,
The problem of extremizing the Euclidean actiBp is equivalent to that of extremizing the
Minkowskian action of a particle subject to an inverted ptitd -V (x). More explicitly, the
variational equation of the Euclidean action (2.12),

d?x  dv

a? " dx
looks just like theclassicalequation of motion of a particle in a potentiaV/(x), as shown in
figure 2.1(b). Solving this equation, we find that

(2.13)

dx_ av. (2.14)
dr
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—a

Figure 2.2: The kink solution: a classically forbidden trajectory thaterpolates between the
two classical vacua of the double-well potential.

and using this we can rewrite the action (2.12) as

Th
so:f 2V dr = f2V—dx f V2V dx, (2.15)

which matches our WKB calculation (f& = 0) (2.6). So, in order to compute a tunneling am-
plitude, instead of thinking of a classically forbiddené@tory where the particle goes through
a potential barrier such as the one depicted in figure 2.@)simply compute the action for
a classically allowed trajectory where the particle roltsvd from the top of the left-hand side
hill and then up to the top of the right-hand side hill of thedrted potential in figure 2.1(b).

This classical trajectory(r) will qualitatively have the shape depicted in fig 2.2. Itis
usually referred to as thkink. The precise shape of this trajectory is not important. What
matters is that this function interpolates between the tersstant functionsy = —a andx = a
which are the two classical vacua of the double-well problimiffers significantly from those
two constant values only within a localized region in thegaofr, so the Lagrangian density
is itself non-zero only in a finite region. It is because oftthiat the trajectory has finite action,
giving rise to a non-zero contribution to the path integral.

2.1.2 Atool of the trade: The semiclassical approximation

Although the minimum of the Euclidean action gives the latgentribution to the path integral,
it only constitutes a "point" of measure zero in the spacdl tfegectories we integrate over. This
is emphatically stated and clearly explained in ColemargskwW14]. It is, therefore, a bit too
brutal and incorrect to define the semiclassical approdaonats a sum of contributions of the
minimum (or minima) of the action. The semiclassical appration consists in computing the
path integral by approximating tlegionsaround the local minima of the action with Gaussians.
Although it is treated extensively in many standard QFT tsomikch as [16], we will briefly go
over it here. Let us start with by computing the following esimensional integral as a toy
example:

| = fm expf(x)/h) dx, (2.16)

o
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where we assume thagx) is bounded from below and has exactly one minimum atxy. By
expanding the function in its Taylor series arougdwe can re-write the integral as follows:

| = I*w dx exp(—% (F(x0) + 3 (x = x0) £ (x0) + O((x— Xo)3))) ’ (2.17)

= expt1 100) [ - dx‘exp(z—lhi? f"(Xo)) h(R). (2.18)

wherex = x — Xp andh(x) contains the higher order terms. If we take the lilit 0, it can be
easily shown that the Gaussian in the integrand becordaraction of strengthy/2 72/ £7(0).
Sinceh(xo) = 1, we have the following resdifor smallz:

| zexp(—% f(xo)) ,/ frog 00 (2.19)

Therefore, the semiclassical approximation does not amysoints of measure zero, it actually
sums over the regions around minima. These regions haveerameasure. This is reflected
by the fact that the result (2.19) contains not only the vaiithe action minimumf (xg), but
also the curvature around it’(xp). In the case wheré(x) has many local minima one must
approximate the calculation by summing over several Ganssitegrals, each centered at a
local minimum.

In quantum mechanics, one performs an integral over thatafiimensional space of paths
x(r), and the functiorf is replaced by the function&[x(r)], the action. If we discretize time,

(ie.t=...,7,7T-i41, .-, T0, ---Ti-1, Ti» -..), then the variables of the integral becomexhe x(t;).
Let us rewrite our action as follows:
S[x(7)] = f dr (=x? x + V(X)) (2.20)

where we partially integrate the kinetic term. Notice tmedidiscrete time a derivative is simply
a difference, i.eX'(r) — Xi11 — X;; therefore, the kinetic term of the action can be represknte
by a matrix,—x8? x — 3 ; % Djj X; for some symmetri®;;. Hence, we can write the action as

SIX(T)] — S(xoi) = Z [— Z Xj Dk X« + V(X)) (2.21)
j K
for some proper choice dDj. Now, let us perform the semiclassical approximation by ex-
panding the action around its minimumg; (the classical path), and keeping only the quadratic
terms:

S[x] = S[xa] +Z X; 6>i<[9xx(:<] (2.22)
=So+ Z X; ( i+ aaV(axo,) (s,-k) %= So+ ) % (Ak) % (2.23)
jk

INote that this require$” # 0.
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whereSy = S[Xoi], X = X — Xoi, andAjc is some matrix. This form of the action now looks like
the exponent of a multi-variable Gaussian. The result fel-gariable Gaussian integral with a
generic matrixA is the following

e 1 @M
L dx exp(—ﬁx Ax)_ T (2.24)

where the determinant can be computed as a product of eigesvan the continuum limit, the
path integral defines determinants for operators. In the agkand, it defines the following:

1 N
d[x(7)] exp[ - =— f dr x (=02 + V" (xo(7))) X] = , (2.25)
f 1= 25 ( )4 Vdet(— 82 + V' (xo(7)))
whereN is a normalization constant, and the determinant can be otady analogy with
matrices, i.e. by finding the eigenfunctions of the operét@¥ + V(X)) and then taking the
product of their eigenvalues.

This is a natural point to give a definition of an instanton.

Definition: An instanton is a solution to the Euclidean equations of amtith finite, non-zero
action. This definition ensures that the instanton is a saddle pbaitwill contribute to a path
integral.

Let us now get back to our double-well problem. We set out tmmate the tunneling
amplitude< —a|e"T/7|a > with the path integral given in (2.11). To apply the semisieal
approximation, we need to find the configurations with miriiaclidean action. The kink
in figure 2.2 is the absolute minimum of the action, so we sth@gimpute the path integral
by means of a Gaussian integral centered around the kink.el#awthe kink is not the only
minimum, it is only the absolute one. The action (2.12) hasis# local minima which have
to be summed over too. One can take a sequence of kinkararkinks as shown in figure
2.3. Any alternating sequence will do as long as it satisfiedbundary conditions of the path
integral®

[ AN [
_/ Al o/

Figure 2.3: An alternating sequence of kinks and anti-kinks. This pukating trajectory is a
local minimum of the Euclidean action.

Another subtlety is that if the randeof  is infinite, each kink or anti-kink can be displaced
along the time axis by an arbitrary amount and yield a newttajy whose action is equal to the

2In analogy with the one-dimensional case, this require§\jet 0
3Sequences of kinks and anti-kinks are only true stationaigtg in the limit where the range of Euclidean time
T — oo, which is the limit we will always be interested in.
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previous one. For instance, the one-kink trajectory careiméeced around any valu¢ and the
value of its action will be independent of. This means that we have to sum over the positions
of the (anti-)kinks in each sector of the path integral. Tibigeflected in (2.25) by the fact that
the operator-a? + V"’ (Xo) will have some zero eigenvalues,zero modesThis woulda priori
yield an infinite result for the amplitude calculation. Rorately, there is a trick to "factor out"
the infinity and cancel it against thé in (2.25). This is the Fadeev-Popov trick, which | will
not derive here. For a pedagogical derivation of it, the ee&lreferred to [17].

The contribution to the amplitude from a single kink is thédaing:

_alaHT/R _(w 12 ~wT/2 1 ~Solhi
(-ale [@yay = p—s e Ke T, (2.26)

wherew = V" (-a) = V”(a), andK is a constant which takes into account the calculation of the
translational zero mode. Note that this is proportionat’", as expected. This is the biggest
contribution to the tunneling process. Now we need to sunm alfeonfigurations with kink-
anti-kink sequences. If we use thie— oo approximation then, in most of the configurations,
the kinks and antikinks will be far away from each other, iniebhcase the action becomes
additive, i..Syinksantikink = Skink + Santikink = 2 Skink 4. Each (anti)kink also brings a power kf
with it. In a tunneling trajectory from-a to +a there must always be one kink more than there
are antikinks. Our task is then clear, the calculation asdItare the following:

1/2 K e So/h T)n
K(-a,a:T) = (ﬂ) et Y (Ke™m Ty 2.27)
nh et n!

1/2
=1 (ﬂ) lexp(- 3T +Ke S T)+exp(- 0T -Ke>/"T)|. (228)
mh

2.1.3 True vacua

Consider again the particle in11 dimensions subject to a double-well potential as depiicted
fig 2.1(a). What is the vacuum structure of this problem?

If we neglected tunnelingfiacts, our classical intuition would tell us that the groutates
of the particle will be localized at one of the two wells. Todfisuch a state, we would pick one
of the wells (say, the one at= —a), and approximate it with a parabolic or harmonic oscillato
potential around its center,

1
V(x—a) = V(-a) + > W’ X +0(¢), where w?=V"(-a). (2.29)
Then, we would solve the harmonic oscillator as usual, antthesame for the other well. This

would lead us to conclude that the ground state is degeneiteely, that there are two ground
states, each localized at one well:

W_a(X) = (%)M exp(—% (X + a)z), Ea=thow,

Va(X) = (%)U4 exp(—% (x— a)z), Eo=lhw. (2.30)

4an antikink has the same action as a kink
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However, we know that a particle can tunnel from one well te ¢ther, so these states we
have constructed are not really stationary. This meandhlegtare not energy eigenstates, and
therefore, not vacuum states. A true vacuum state will hav@tsome linear combination of
the two states we constructed in the naive perturbativeoagpr(2.30). As we will see next,
instantons will give us all the information we need abous gyistem.

Let us take a closer look at what the tunneling amplitudes @reputed in the previous
subsection tell us. LétE,, > be the set of true energy eigenstates of this system, then,

K(-a,aT)=(-ale"a) (2.31)
= > (-alEp) (Enla) €& T/", (2.32)

which in the largeT limit yields:

KaaT)= ) (-alEn) (Elaye™"". (2.33)

Lowest
energy states

This provides us very valuable information. Comparing thi€.28) we realize that the energies
of the two lowest energy eigenstates are

E.=ihwxnKe™S", (2.34)

whereE_ is the true ground state energy dadis the energy of the second lowest level. Equa-
tion (2.33) also tells us what the wave functions of theseestok like:

1/2

(-alE.) (E.[a) = (-alE.) (E.[a) = 74 (=) . (2.35)
The ground state wave function is spatially even and can bensho coincide with an even
linear combination of the two wave functions in (2.30) todiee order in the approximation of
the potential. The next energy level is spatially odd.

The lesson instantons teach us is that when the vacuum ofarsisclassicallydegenerate,
tunneling éfects lift the degeneracy, and the quantum mechanical vastatawill be a linear
combination of the naive wave functions that respects thensgtry of the potential. In the case
of the double-well problem, the vacuum state turned out teves, just like the potential.

\Y

4n 2 0l 2 4m x
Figure 2.4: The periodic potential.

Let us now see what happens when the symmetry of the poteniadier than jusZ,. Con-
sider the periodic potential whose shape is depicted indigu4. Again let us ask the question:
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what is the vacuum structure of this system? Let us go thrdwghwe did in the previous prob-
lem, starting from the naive approach. Naively, neglectjpgntum tunnelingféects, we would
assume that the particle’s wave function is centered arowedof the infinitely many minima
of the potential, sax = 0, thereby spontaneously breaking #iesymmetry of the system. At
this point we would approximate the potential around 0 with a harmonic oscillator, and find
the ground state wave function and energy. But in light ofaheve discussion, we are aware
of tunneling éfects. By computing the tunneling amplitude for the partiolgo from one min-
imum x = 2 Np to anothex = 27 Np, and taking the limiT — oo, we will obtain information
about the true vacuum states:

K(Zan,ZnNg;T)zz (27 N1 |Eny (En|27 Np) e EnT/h (2.36)
n
— Z (27 Ny |Ep) (En|27 Npy e EnT/7 (2.37)

Lowest
energy states

namely, the lowest energy eigenvalues and their wave famgti To compute this amplitude,
we again need to sum over the one-kink sector, and over alesegs with multiple kinks and
antikinks. The one-kink contribution to the amplitude ie #ame as in that the in the double-
well potential, namely equation (2.26), and the actionilsadditive, so the rules of the game
are the same. The onlyftirence is that, now, kinks do not have to be followed by anki&iand
vice-versa, because the space where the particle movesbashlarged to infinity. In other
words, the instanton trajectories need not be confined tintkeval [27 N1, 27 Ny], they just
need to begin and end air2\; and 27 N, respectively. The sum is the following:

So/h T)n+n

w \Y? Ke
K@rh 22N T) = (2] e “/ZZ( Sprinn. (2.39)

n! n!

where the Kroeneckei-function imposes the boundary conditions. Thifunction can be
rewritten as follows:

2n

By inserting this integral, the sums oweandn decouple. The result, which is also derived in
Coleman’s lectures [14] and in Rajaraman’s book [15] is tileWwing:

27
do
= [ 5@t (2.39)
0

1/2
K27 Ny, 27 Np; T) = f 90 goe-ny (nh) exp(-2w T +2Ke>" T cosf)) .

0 271'
(2.40)
Notice that the discrete sum over low energy states has leearintegral over a continuum of
energy states labeled I8y The energy of éhetastate is then given by the following:

Eg=% (30T -2Ke /T cosf)), where 0<0<2r, (2.41)

where the state of lowest energy is the one with 0. These energy levels are reminiscent of
the band structures exhibited by systems with periodicrgi@is. This is the limit where the
number of minima of the potential goes to infinity (in otherrds, this is the limit where the
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periodic potential goes on forever). In this limit, the barié&nergy levels becomes continuous,
yielding the energy formula (2.41). The double-well prableould be regarded roughly as the
opposite limit, where the number of potential minima is tWothat case could only have two
discrete values, 0 and We also have the following information about the wave fiorcof the
f-state:

12
2xNy|0) (027 Ny) = (ﬂ—“%) o (NN (2.42)

The wave function of &-state is quasi-periodic: Under a translation byi2gains a phase?.
So these states restore the symmetry of the system. In fzat ibe shown that, to leading order
in the approximation of the potential, the wave function éfstate is the following:

0y = €™ Wann) . (2.43)
N

where thgy,, n) are the naively constructed harmonic oscillator groungstaf each potential
minimum, when tunneling féects are neglected. This is analogous to what we noted in the
double-well case except that now, instead of just havinggessible linear combinations of the
naive states, we have a whole continuum of them.

In this section we have learned that the classical vacuaysters do not always correspond
to the quantum mechanical ones. In basic quantum mechamideasn that for "small’ a
particle will tend to be "smeared" around its classical wamuequilibrium point. The more
orders of we keep in our approximation, the better we know the shapeeofvave function and
its energy. Instantons tell us, however, that tunnelifigats drastically modify this picture. The
particle will actually tend to be "smeared" around all ofdlsssical vacua, thereby restoring the
symmetry of the theory. We could have never seen tffigcein an order-by-order approximation
of the wave function irki. This dfect is non-perturbative.

In the next section we will see that gauge theories can algtuaneling &ects that modify
the vacuum structure.

2.2 Yang-Mills instantons

Now that we have seen the basics about instantons throughieseramples, we are ready to
take a look at a more sophisticated example. We will studimiens in a quantum field theory;
specifically Yang-Mills theory. Although everything we leaseen up to now in this chapter
were instantons in quantum mechanics, we will be able to géime the knowledge we have
gathered to field theories very easily, thanks to the wondlé&ahguage of path integrals. This
section will not be as technical as the previous one, as itlisrmeant to illustrate how thideas
we have seen so far apply to Yang-Mills theory. For an intaidin to Yang-Mills theory and a
full derivation of the Yang-Mills instanton and all of itsgperties, the reader is again referred
to [14] and [15].

The goal is to find the vacuum structure of the Yang-Mills quamfield theory. We will
work specifically with the structure group SU(2), because risults can be generalized for
SU(N) with arbitraryN. The action is the following:

1 4 %
Sm=-35 fd XTr[Fu F*] (2.44)
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whereg is the coupling constant of the theo#y,, is the field-strength defined as follows:
Fu =d,A - 0,A, +[ALA], (2.45)

and the conectioAn(X) is a Lie algebra valued vector field:

A =gAT?, (2.46)
The T2 are the generators of SU(2), which can be expressed in tefrthe ®auli matrices as
T2 = —i¢g?/2. SU(2) is a connected manifold, so any group element carritemvin terms of
the Lie algebra as follows:
9(x) = expe’(x) T, (2.47)

where ther?(x) are arbitrary smooth functions. The trace in (2.44) rurer 8J(2) indices. The
action (2.44) is invariant under the following gauge tramsfations ofA,;:

A, - gA gt +9d,0", (2.48)
under which the field-strength transforms as follows:
Fo—gF,gt. (2.49)

There are two kinds of gauge transformations, which we missinduish: "small" and "large"
gauge transformations. "Small" gauge transformationgterse that satisfyr(|X| = o) = O.
Those that do not satisfy this restriction are denominak@d)é" gauge transformations. The
reader should note that the physical interpretation of aygaymmetry is dferent from that
of a global symmetry. A global symmetry relates physicallgquivalent solutions of a system.
In a gauge theory, however, one considers configuratiorisattiearelated via "small" gauge
transformations as being physically equivalent. In faw,ghysical states (in the classical sense)
are defined by the gauge equivalence classes (equivaledee'lamall” g. t.'s) of the solutions
for the gauge field.

First things first, we need to understand the classical vattlas system. To simplify the
task we take the so-calletiaticgauge?, = 0, which is left invariant by time-independent gauge
transformations. Now we can rewrite the Lagrangian derfigity2.44) as follows:

L= g—lzTr(% (00A)? - § Fij Fij) - (2.50)
This looks like the kinetic term minus a potential for tAefields. So we immediately notice
that the classical vacua of this action are the so-caliatic pure gaugesStatic, meang\(x) =
Ai(X), and pure gauge means gauge equivaleite 0. These configurations can be written
as follows:

A(R) = €Wy, X  where a(X) = a®(X) T?. (2.51)

It can be shown that it is enough to restrict our search to gardtions that satisfg* = I at
spatial infinity|X| = co. Sincea tends toward the same value in any direction at spatial tgfini
we can actually identify all of spatial infinity to a point. &ther words, we can reformulate the
problem of finding the static pure gauges with— O for |X| — oo as the problem of finding
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maps fromS?® into SU(2). As a manifold, SU(2) is fleomorphic toS®; hence we are looking
for mapsa : S — S°. Maps that are homotopic (can be continuously deformedsiatd other)
correspond to field configurations that are related by "Sngallige transformations. Hence, the
vacua can be classified in homotopy classes. In this castpthetopy group i§13(S°) = Z.

To each homotopy class we can associate an integer, whigtiscthe number of timeS2 is
"wrapped" arounds® by the mape. Given such a map, its homotopy class is determined by
computing the following:

1
N= -
2472

This is called the Pontryagin index, it literally yields tinéeger representing the homotopy class
of the vacuum configuration. Because a homotopy class isiamtaunder continuous deforma-
tions one usually calls these configuratidagologicalvacua. The classicéd-vacuum can be
thought of as the analogue of tke= 27 N vacuum in the periodic potential problem. They are
physically inequivalent because no "small" gauge tramsétion can relate them. However, they
can be related via "larger" gauge transformations, justdik 27 N is related tax = 27 (N + 1)

via a 2r shift. From the classicall-vacuum, one can build a naive perturbative quantum state
IN), just as we did with in the previous examples, and deducethieatacuum is infinitely de-
generate. However, Yang-Mills theory also has instantand,tunneling between theftérent
IN) states takes place. By computing tunneling amplitudeséatogyy with the periodic potential
problem, one sees that the true low energy eigenstates fban@parametrized by an angte
and in terms of théN), ag-state is given by the following:

0y => ™M INy, (2.53)
N
which restores the symmetry under "large" gauge transftioma This is analogous to the
restoration of th&-symmetry by th&-vacua of the periodic potential system. One other impor-
tant property of thesé-states is that they can never talk to each other. In othedsydinere can
never be a physical transition from one such state to anoHugrany gauge invariant operator
B, it can be shown that

f Exew Tr((ed € (€7 d; ") (67 dkeY)]. (2.52)
SS

(91B|¢y =0, (2.54)

for any choice of) and¢’. Therefore, we can make a paradigm shift and consider|@pak the
vacuum of a separate theory. For each valugwé have a theory whosmiguevacuum state is
16). In quantum field theory, one is interested in the vacuuntatoium amplitud¢0| eH /% | 0,
also known as the partition functiah In this case, to compute the partition function we have
to choose a theory by choosing a valugga@ind use its vacuum state. Then, we can WZites
follows:

z:<9|e*HT/h|9>=Z e (N+ Qe T/ Ny, (2.55)

N,Q

using the fact thatN + Q| e " T/7| Ny is independent oR® , we write

Z=K -10Q | g ~Se | 2.56
ZQ:e fQ[Aﬂ]e (2.56)

5The amplitude is invariant under all gauge transformatidssall* and "large", because the Yang-Mills action is.
SinceN can be changed to any value via a "large" gauge transformatie amplitude must be independent\bf
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where Sg is the Euclidean version of (2.44), and the subsc@pindicates that the path in-
tegral corresponds to a tunneling amplitude between twoltgjical states whose Pontryagin
indices diter by Q. K is just an normalization constant encoding the infinity aogrrom the
summation ovelN. It is not physically relevant, as all quantum field thearetimplitudes are
normalized by dividing byZ.

Let us summarize what we have learned so far. Yang-Millsrihéar SU(2) has classical
vacua, which are classified by the third homotopy group of3spherdls(S®). Each class
consists of static pure gauge field configurations, whichreleed by "small" gauge transfor-
mations, and it is labeled by the Pontryagin indéxFor eachN, we have a topological naive
vacuum, which can tunnel into another topological naiveuuag, and, just as in the case of the
periodic potential, the true energy eigenstates are caatibims of thgN), labeled by an angle
0. Since dfferentg-vacua can never physically interact, we consi@las a parameter labeling
a theory, whose@niguevacuum ig6). To compute the partition function of the theory, we have
to sum over all possible tunneling amplitudes, weighinghdage?Q. However, this whole
language of topologicdN) states is not gauge invariant. It only works in the staticggau
Therefore, the partition function as we wrote it in (2.56©& gauge invariant. Fortunately,
there is a way to remedy this.

Instead of classifying classical vacua, let us classifyaintons; i.e. finite action Euclidean
configurations. In order for a field configuration to have &rdiction, its Lagrangian density
must be non-zero only in a localized area and vanish at thadayy of Euclidean spacetime.
The Euclidean version of the Yang-Mills action (2.44) isifies-definite:

1 , 1
Sg = T fd“xTr[F,w P = T fd"’xTr[FW Ful . (2.57)
The minus sign is due to the fact that the SU(2) trace is negjatithe basis we have chosen.
Hence, in order for a configuration to hagevanish at infinity it must be pure gauge at infinity.
It must satisfy the following:

A - g% 8,909 (2.58)
as |X| — oo. (2.59)

If we define the boundary d®* as a 3-sphefewhose radius is taken to infinity, then we can
think of instanton configurations as mags S® — SU(2) = S%. These are again classified
by I13(S®) = Z. The Pontryagin index can be computed using formula (25®)¢this time
integrating over thé&® that represents the spacetime boundary. Since we areatitegyover
the boundary, we can use Stokes’ theorem and rewrite theufaras a total derivative:

1 1
Q=542 e S TIAANA] =515 fR d*x e Tr(d, A A AL, (2.60)
which can be shown to be equivalent to
1 1 -
Q - _ o L d4XE,qutrTr[Flly F/m-] = — 16,2 fF\; d4xTr[F,1V F/“’] , (261)

6A note of caution: thes® we previously considered was a one-point compactificatiothespace R, which we
used in order to classify the state of the system at a cerdaiti im time. TheS® we are considering now is the boundary
of Euclidean spactime R*, which we are using in order to classify instanton configaret
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whereFw = e Foo is the Hodge dual of the field-strength. This expression isifastly
gauge invariant. It is also known as the second Chern classtalits interpretation as the
characteristic class of an SU(2)-principal bundle overthse manifol&*.

A=0

A=0

Figure 2.5: The boundary of spacetime as a time-like cylinitex S?, with one suppressed
dimension. The initial and final topological states resid¢hee caps of the cylinder. The latter,
which are two B, are compactified to two Bto determine their topological indices N and
N + Q, respectively. The black filled circle represents the liaaetion of the instanton.

This topological term classifies the boundary conditionglbinstanton configurations in
a gauge invariant way. However, any such configuration wétoed Chern clas® can be
interpreted as a tunneling process from a topological §igtéo a statgN + Q) by performing
a gauge transformation to go to the static gauge. In thegatige, if we view the boundary of
Euclidean spacetime as a generalized cyliRlerS? as in figure 2.5, wherR is the Euclidean
time range, then the only contribution to (2.61) will comerfr the two 3-discs aty = o (i.e.
the caps of the cylinder):

1
Q="T6:2 Jy
=(N+Q)—N. (2.63)

d*xe*” TrAAAA[ . (2.62)

Hence, the second Chern class computes the charigeirnhe tunneling process. We can now
finally rewrite the partition function (2.56) in a gauge ineat way:

) .
z= fall Qd[Aﬂ] expl - Se -1 1672 fd4XTr[F/1VF” 1. (2.64)

The#-term has a physicatiect on the theory. It breaks parity. This actually makaphysically
measurable quantity in gauge theories.
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2.3 Solitons vs. instantons

Having studied the mathematics and physics of instantoasheuld also look at a special class
of solutions to classical equations of motion caladitons These will be interesting to us for

a number of reasons: first of all, they have a similar mathealastructure to instantons in
that they argopologically non-trivial They too, are in some sense interpolating configurations.
Secondly, in some cases, there exists a precise corregpmnbetween instantons and solitons.
In the next chapter, we will actually see an explicit exangflthis. Because solitons are not the
main focus of this text, | will only briefly introduce them amdll refer the interested reader to
Coleman 's book [14] and Rajaraman’s book [15] for a careftrbiduction, and Zee's book [17]
for a short but very clear exposition of the topic.

2.3.1 Solitons: Definition and examples

Definition: A soliton is a time-independent extremum of tié&owskianaction with finite non-
zero energy.

Note that we are now back to Minkowski spacetime. Time-irhejent means that the field
configuration has no non-trivial time-dependence thatd@ulinstance be obtained by boosting
a static solution.

Let us take a look at the simplest soliton, tiak solution. We define the following field
theory in (1+ 1)-dimensions:

L=-100) - V(9). (2.65)
with
wwzﬁ@hwf, (2.66)

whereg is the field, andl andy are parameters. This is a double-well potential. Note thet w
are working in thanostly plusconvention, which is why the kinetic term has a minus sign. We
instinctively know that this Lagrangian has two very simptdutions, namely the two vacua
¢(t,X) = +v. They both have energy zero. In standard perturbation yheerare instructed to
pick one of the two vacua and study the fluctuations around fpractice, this means rewriting
the scalar field a — v + y, and treating the fluctuatiop as the fundamental field. Plugging
this back into (2.65) we will find tha is a scalar particle with mags= (1v?)%/2.

One can, however, also look for a solution with non-triviahditions, namely a configura-
tion that interpolates between those two vacua,d.e> +v for x — +co. Such a solution will
look qualitatively like the kink we saw in section 2.1, sealfig2.6. In fact, this solution is also
known as the kink solution. Because it is time-independgatcan write its energy density as
follows:

E=3¢7+V, (2.67)

where the prime denotesftiirentiation w.r.t. the spatial coordinate Becausep — +v for
X — oo, the energy density is non-zero only within a localized oegiThis means that the

"This is not the only possible definition. A stricter one, sthin [15], also requires that a soliton’s shape be left
undfected by scattering against another soliton, but we willb@éxploring this property here.
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total energy will be finite. Since this energy density is fiesj we can rewrite it as a square plus
a positive term:

L(¢+ V2V) ¢ V2V (2.68)
0
v
X
%

Figure 2.6: The kink solution: a classical field configuration trajegtdhat interpolates be-
tween the two classical vacua of the double-well potential.

This means that the energy of any solution to this systersfiestia bound:

E>

deq)' \/W’ =

f e de @' . (2.69)
[

(x=-c0)

This is known as th8ogomol'nyi boundBecause we are choosing a time-independent Ansatz,
we can easily see that the Lagrangian density of this sys2eBb)is equal to minus the energy
density (2.67), i.e.£L = —&. This is more than a mere curiosity, this is at the heart of the
instanton-soliton correspondence. Therefore, solviegetuations of motion with this Ansatz
means extremizing not only the action, but also the enerlgis Means that the soliton actually
saturates the Bogomol'nyi bound (2.69). In other words,lacsois the configuration of least
energy within its class of boundary conditions or topolagidass. To saturate the bound, the
field has to satisfy:

¢ =+£V2V. (2.70)

This is often referred to as the BPS condition. Note that ifeddfsatisfies this equation, it
automatically satisfies the equations of motions. Howewerhave now simplified the task of
solving a second orderfiierential equation into solving a first order equation. Inesgpavity,
p-branes are solutions, which satisfy an analogous forimeoBPS condition. The latter implies
that the solution preserves a certain amount of the supenggm of the theory it lives in. Using
(2.68) and (2.70) we find that the energy is given by:

E =

fw de \/W’ . (2.71)
¢=—v

This depends only on the potential and the boundary comditiand not on any parameters of
the solution. In our casé& ~ 13/1. So the kink is very massive (energetic) for small coupling
constant. This means that objectis non-perturbativat cannot be found by doing some sort of
pertubation theory around the vacuum. The kink is at leastipatively a stable configuration.
Its non-trivial boundary conditions prevent it from simplgcaying into an object with lower
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energy. It is not a simple ripple in the field. Mathematicdlis translates into the statement
that the kink has a conservémpological current

I = %eﬂv 0,0, (2.72)

yielding a conservetbpological charge

Q= f: dx P = 2—1V (¢(+00) = p(-0)). (2.73)

Solitons are also present in more complicated field theosigsh as gauge theories. Magnetic
monopoles are an example of solitons. Depending on the diimeality of the soliton it may
be calledmonopole, string or vortex, membrara,texture if it ‘stretches’ over 01,2 and 3
spatial directions respectively. If it only has one tramseespatial direction, such as the kink
in 1+ 1 dimensions, it is called domain wall All of these objects are characterized by some
topological charge. In gauge theories this charge will berafyagin index.

In gravitational theories, there are objects analogouslitoss. The simplest one is the
Schwarzschild black hole. Its metric is the following:

-1
0¥ = -(1- 228 ae 4 (1- 22M) o+ a0z, (2.74)

whereG is the Newton constant and is a parameter of the solution. For an introduction to
black holes, the reader is referred to the pedagogicalrectates by S. Carroll [18] (or his
book [19]), and to Townsend’s extensive lecture notes [ZIf}e spacetime geometry of the
Schwarzschild black hole is non-trivial in that it interpteds between flat Minkowski spacetime
at spatial infinity, andAdS, x S? near its horizon at = 2G M. Although energy is a tricky
subject in General Relativity, it can be defined via the ADMssy@ormula, which can be found
in [20]. Once it is calculated, one finds that it is equal to fa@ameteM in the solution
for the Schwarzschild metric (2.74). From the solution, we $hat this object is also non-
perturbative. No matter how ‘small’ we make the mass,fitsat will be very dramatic near the
horizon. In supergravity, p-branes play the role of thetsoli They are the higher-dimensional
generalization of the charged Reissner-Nordstrom blatk op-brane has g+ 1-dimensional
world-volume and is charged undepa 2-form field-strength. For an introduction into p-brane
solutions, the reader is referred to “String Solitons" [2]d to “Gravity and Strings" [22].

2.3.2 The correspondence

Now that we have seen the definition of solitons and have sere gxamples of them, let us
study their correspondence with instantons. We will firetkki@t the simplest example of this
correspondence, and then explain it in a more general contex

Taking the example of the scalar field int11 dimensions from the previous subsection,
the reader will recall that if we make take the time-indepartdAnsatz, which is what we do

8Note that this current is not a Noether current, as it doegatiotv from a continous symmetry.
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when looking for solitons, and substitute it into the Lagyiam density (2.65), the latter takes
the following form:
L=-5 6x¢ -V=-&, (2.75)

where¢ = ¢(x), and& is the energy density of the system. A soliton is defined asgoan
extremum of the action defined by this Lagrangian deresitgt as having finite energy. Note
that this Lagrangian density is, up to a minus sign, equindie that of a scalar field ione
Euclidean dimension if we define Euclidean timast = x. Hence, the equations of motion
for a soliton in 1+ 1 dimensions are the same as the equations for an instanooe iBuclidean
dimension, and the requirement that the soliton have fentrgy

= fdx&, (2.76)

is equivalent to the requirement that the instanton in ongedsion have finitaction So the
kink-soliton in 1+ 1 dimensions corresponds to the instanton in one dimehsidre relation is
simply ¢sol(X) = Pinst(7)-

This is not specific to the kink model, one can show a more gérerrespondence. Let
us define a system id + 1 spacetime dimensions with general degrees of freedonthwing
denote byy,, where the can stand for a collection Lorentz indices, or internal ¢edi and a
Lagrangian density

L=L(,0¢), (2.77)

where both temporal and spatial derivatives are impliechisysymbol 8’. The conjugate mo-
menta of the system are defined as follows:

= L (2.78)

5(0u¢1)

Using the time-dependent Ansatz we can write the energyliasvi

£~ [ [0 - L) = - [as 00 . (2.79)

where the dot, as usual, represents a time derivative, anirth term on the LHS vanishes
due to the time-independence of the solution. A soliton tsmuwill be an extremum of this
energy (since S-E), and will have finite energy. Since all degrees of freedtmpend only on
the spatial directions, we can view this Lagrangian derasitthat of ad-dimensional Euclidean
system (up to a minus sign), and this energy can be viewed astibn. The soliton can then be
called an instanton id dimensions. In practice, all one has to do is a Kaluza-Kleatuction
over time, but without the interpretation that time is comwiffaed. One is simply truncating
time.

To summarize all this, the statement is the followiAgsoliton in d+ 1 dimensions is equiv-
alent to an instanton in d dimensianis the next chapter, we will see that charged black holes
can be viewed as a certain kind of supergravity instantolieccB-instantons An interesting

9The kink instanton solution in (2 1)-dimensional quantum mechanics can be viewed as an iostan (0 + 1)-
dimensional quantum field theory.
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question that comes to mind based on the statement we hawe mashether its converse is
true. In other wordsWhen is an instanton in d dimensions equivalent to a solitod + 1
dimension® The answer depends on the Lagrangian. If a Euclidean Lgigranan be obtained
as the time truncation of d + 1-dimensional Lagrangian, in other words, if it canuifted
tod + 1 dimensions, then the instanton will give rise to a solittmthe next chapter we will
establish the necessary condition for a D-instanton toggesto a black hole.

In this chapter, we studied the basics about instantonsantgm mechanics and quantum
field theory. We learned that instantons provide us with perturbative information, by telling
us that a naive perturbative vacuum is not really the vacuata ef a theory, because the system
can tunnel out of it. This requires that one rewrite a patbgral with a new topological term
that properly takes this fact into account.

In the next chapter, we will be looking at instantons in gtaonal field theories, such as
supergravities. Although defining a path integral for a gedional theory is tricky business and
requires unnatural adjustments in order to be well-defiinéglpossible to talk about instantons
and non-perturbative tunnelingfects in gravity.
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Chapter 3

Non-extremal D-instantons

3.1 Introduction

In the previous chapter, we studied instantons in quantuohargcs and quantum field theory.
In this chapter we will be looking at instantons in gravitathl theories. Instantons, as we have
seen, are inherently linked to path integrals. However,th paegral formulation of quantum
gravity is not as straight forward as one might wish. In araideorld, we would simply write
down the following:

(el i) = [ g exp(— [ deR) , (3.1)

whereh, ¢ are the induced metrics on the initial and final spacelikeshsyprfaces of spacetime,
respectivelyR is the Ricci scalar, and the path integral sums over all mesatisfying the
boundary condition that they asymptotehg- in the early past and late future, respectively.
However, this path integral is not well-defined because tt®mis not bounded from below.
In fact, even flat Euclidean space is not a minimum of the Eingtlilbert action. Suppose we
wanted to perform a semiclassical approximation aroundifek rotated Minkowski space-
time, i.e. flat Euclidean space. There are infinitely manysitds fluctuations around the flat
metric, but let us restrict to summing over metrics that atated to flat space via a Weyl trans-
formation; i.e.conformally flatmetrics:

§=en, (3.2)

wheren is the flat metric. Then, the action fgmwill roughly go as follows:

f dPXR~ — f d°x(@0)? . (3.3)

which means that the action can be made arbitrarily neghgiv@uantum fluctuations, making
flat spacetime a local maximum (or at best a saddle point)naaidng the whole path integral
divergent. Fixing this problem requires a new formalismjclihis developed in [23], but is
not yet widely agreed upon. The idea is to first sum over con&ébrclasses of metrics, and
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then, within each class of conformally related metrics, mtates the contour of integration to
imaginary conformal factors. In (3.3) this manifests itgelthat only imaginary- are allowed,
thus keeping the action positive. We will not really be usamy of this formalism in this thesis.
The purpose of this paragraph was to show how severdigrdnt path integration becomes
when dealing with gravity.

Despite dfficulties with path integrals, gravitational instantons dseand have been ap-
plied to many diterent problems in quantum gravity such as the renormatdizati the constants
of nature, the adjustment of the cosmological constantetpae topology fluctuations, and the
creation of baby universes (see [24-28]).

In the field theory limit of string theory, instantons canaivse to non-perturbativetects
(for an overview see [29]). The standddeinstantonis an instanton solution of type 11B super-
gravity, which was discovered in [30], and was later showgite higher derivative correction
terms, specificallyR* terms, to the fective action of type 1B string theory [31]. The die
cient of such terms was conjectured to be an SEjdnvariant modular function. In [32], the
high-energy limit of this conjecture was tested. Otheransins have been obtained through di-
mensional reductions of supergravity by wrapping EuclidBabranes around compact cycles
of the internal space. This yields non-perturbatiffe@s, which give rise to interesting lower-
dimensional fective actions that have applications in cosmology [33].

The standard D-instanton is a solution of a truncation oetyB supergravity with the
metric, the dilaton, and the RR scalar knownaa#on as its field content. The solution has a
flat Euclidean metric, preserveg2lof the supersymmetry of the theory, and is characterized by
the axion ‘charge’. The fact that it is ‘charged’ under a 0-form potential matkesD-instanton
mathematically similar t@-branes. In this case it, could be thought of as B{brane, meaning
itis localized in spacandtime. In this chapter, we will be studying solutions that getize the
standard D-instanton in many ways: their metrics will be-trvial, and they will not preserve
any supersymmetry. The solutions that will be presentechateew, but will be studied in a
novel way. For earlier work on generalized D-instanton sohs see [25, 28, 34-41]

In this chapter, we will generalize the Lagrangian of tyjiedupergravity to arbitrary dimen-
sions, and arbitrary dilaton coupling. However, one imaotrproperty of type 1B supergravity
will be preserved: the scalars (dilaton and axion) are el such a way that they parametrize
an SL(2R)/ SO(1 1) coset space. By conveniently reorganizing the fields 2#d matrices,
the SL(2R) symmetry will become manifest, and we will see that sohsgito the field equa-
tions will have a ‘conservedtharge matrix Q as implied by Noether’s theorem. This charge
matrix Q transforms under the adjoint representation of SRR which means that its determi-
nant is invariant under the symmetry. This implies thatéteme three families of solutions that
are not related via SL(R), i.e. those with de® > 0, = 0 and< 0. This is analogous to the fact
that Minkowski spacetime admits three families of vectdrsnelike, lightlike, and spacelike.
In this chapter, we will see that all D-instanton solutiom® de classified into three classes,
whereby the standard D-instanton falls under theletO class.

A similar discovery was made in [42], where three classesld? R)-unrelated seven-
branes were found. Seven-branes can be seen as the magrétiotiD-instantons. They are
carried by the same fields; however, instead of beiegtrically charged under the axion, they

1we will give this ‘charge’ a physical interpretation later.o
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aremagneticallycharged under it. This means that, in contrast to the D4instes, seven-branes
are not localized in spacetime. Given that seven-branes siewn to occupy all three possible
conjugacyclasses of SL(ZR), it is natural to ask whether D-instantons do the same.

At the end of chapter 2 we saw that instanton®iftuclidean dimensions can sometimes
be viewed as the spacelike sections of soliton® in 1 spacetime dimensions. In this chapter,
we will show that the three SL(R) classes of D-instantons can sometimes be seen as spacelike
sections of electrically charged black holes, i.e. Reisdiwrdstrom black holes. As we will see,
the three families of solutions, dét> 0,= 0, < 0, correspond to underextremal, extremal, and
overextremal black holes (i.e. black holes with electriarges lower than, equal to, and greater
than their masses). The condition for such a corresponderiz#d will be worked out, and the
correspondence will be extendeduplift the D-instantons t@-branes in higher dimensions.

This chapter is based on a collaboration with E. Bergha¢ Gran, D. Roest, and S.
Vandoren, entitledNon-extremal D-instantorfgl3]. It is organized as follows: in section 3.2,
we will present the metric-scalar system we are interestehil discuss the realization of the
SL(2 R)-duality group for the Euclidean case. In section 3.3, wk give the generalized
instanton solutions mentioned above. At this point we owlystruct the bulk solutions without
taking care of boundary terms godboundary conditions. Next, in section 3.4, we will dissus
the relation to wormholes corresponding to non-extreméads$Rer-Nordstrom black holes one
dimension higher. In section 3.5 we will consider genegdians that uplift to non-extremal
p-branes inD + p + 1 dimensions. The application as true instantons of typesttiBg theory
will be investigated in section 3.6. Finally, we will dissusur results in section 3.7.

3.2 The system and its symmetries

3.2.1 Lagrangian

The system we will be interested in is described by the fdthgwMinkowskian Lagrangian
density:

Ly = 3+I0l[R- 3(3¢)* — 3™ (%)Y (3.9

whereg andy are scalars. We will work iD arbitrary dimensions, and will keep the coupling
unspecified. This theory occurs, for example, as the scetdios of 1B supergravity ird = 10
Minkowski spacetime with coupling parametee 2. In this case, the scalgrcorresponds to
the string theorydilaton, and the scalay is the Ramond-Ramond scalar known as dk@®n
Other values ob can arise when considering (truncations of) compactificatiof 11B super-
gravity. For instance, iD = 3 one has supersymmetry for= 2,b = V2,b = v4/3 andb = 1.
In order to study instanton solutions of this system we ndf aped to Wick rotate the theory,
but we also need to change the sign of the axion kinetic teieidiyg the following Euclidean
Lagrangian:

Le = 3VIg [R- 5(39)* + 3™ (0x)°1 , (3.5)
The dfect of the Wick rotation on the scalar is a very subtle issugckwl will further develop

in section 3.6. | will now summarize the three basic arguménjustify the sign change in the
kinetic term:
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¢ Inthe context of type 1B supergravity the axion is consatkapseudscalar. In that case
one could claim that the Wick rotation is the ‘square rootiwfet reversal’, and hence a
pseudoscalar should get multiplied by &upon transforming. This argument, however,
is neither rigorous, nor widely agreed upon. Since we wastudy D-instanton solutions
in theories with arbitraryp andb that are not necessarily imbeddable in supergravity, we
will not endorse this claim.

¢ Atheory with a scalar islualto a theory with alp — 1)-form field strength. Dual means
that there exists a procedure to show that the path integf#ie two theories are equiv-
alent. This procedure allows one to move back and forth floemone path integral to the
other. In our case, the Lagrangian of the dual theory is thewWong:

1

2. (D _ 1)!e_b¢':%—l] ’ (36)

£= 3R 5007 -
whereFp_; is a @O — 1)-form field-strength. Contrary to common belief, the quam
mechanical dualizatiostarting fromthe (D—1)-form theorydoes noyield a scalar theory
with the wrong kinetic term sign, but a scalar theory with tleemal sign. However, one
quickly notices that the Euclidean scalar theory does neg laay non-triviakeal saddle
points, so instead of performing the semiclassical appnaion on the scalar theory, one
does it on the duall§ — 1)-form theory, which does have non-trivial real saddlengsi
After writing down the classical Euclidean equations of imotto do the semiclassical
approximation one notices that, if one rewrites tile{ 1)-form field-strength as the
Hodgedual of a 1-form field-strength as follows:

Fp_1 = —€°¢ « dy, (3.7)

then the Euclidean equations of motion of thi2 - 1)-form look like the equations of
motion of a would-be scalar theory with the wrong sign for Kieetic term. In other
words, looking for the saddle points of the ¢ 1)-form theory isgffectivelythe same as
looking for the saddle points of (3.5). | would like to emptzaghat quantum mechanical
dualization and Hodge dualization are twdfeient things.

¢ In a quantum field theory, imposing Dirichlet boundary caiodis on the field yields a
transition amplitude between eigenstates of the field dpeyaln our case, this means
that the path integral is actually computing the following:

<¢F’XF|e_HT|¢|’X|> . (38)

However, one can also compute a transition amplitude betarienic charge-eigenstates
by means of Fourier transformation:

(e, el T g, m) =

fd[)(l]d[)(F] eXp(—ifzﬂl)(lﬂfz NFXF)<¢F,XF|EHT|¢|,X|) (3.9)

where the path integral oves r runs over functions defined on the initial and final time
hypersurfaceE, andXg, respectively; aneh ¢ are the time components of the conjugate
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momenta of the axion. This theory has no boundary conditiding path integral (3.9)

has no real saddle points. However, it can be computed inetiméctassical approxima-
tion; and it can be shown that the result of this path intégnatan also be obtained by
looking for the saddle points of a would-be system with themgrkinetic term sign (3.5).

Effectively, it is as if we were looking for imaginary saddle misiof the original system.

This argument was first discovered by Lee in [44]. In [45—41¢ argument was refined;
however, the clearest and simplest explanation, in my \daw,be found in [48].

In section 3.6.1, we will further develop the second methodrder to evaluate the actions
of our solutions, and in appendix A, a toy model will be usedlltstrate the phenomenon of
the ‘wrong’ sign in a simpler setting.

3.2.2 SL(2 R)-symmetry

The Lagrangian (3.5) has a manifest SIRY symmetry. In fact, in chapter 7 we will see that
the scalar sector parametrizes a two-dimesional hypeibulith Lorentzian signature; i.e. a
dS, spacetime. The latter can be viewed as the following coset:

SO(21)
SO(11)’

(3.10)

where SO(21) = SL(2 R). In this chapter, we will making the symmetry manifest byting
the Lagangian in a elierent form. Define the following matrix:

;bz 2_e—b¢ ;b
_ b2 zVX 3B
M= e ( by 1 ) (3.11)

Now we can write (3.5) as follows:
Le = 3[R+ b 2TrGMoM™)]. (3.12)
Itis clear that this is invariant under the following tramshation:

M- aMQ™  with Q:(‘Z‘ S)GSL(Z,IR). (3.13)

The attentive reader will probably have noticed that angitilsle matrixQ € GL(2,R) will
do. However, only elements of SL(R) yield a transformed matri¥ that is consistent with
the scalar parametrization (3.11) of the coset shace

This symmetry, like any continuous symmetry, has Noetheea:

. j(3) j(+)
Jy = (@ MM ™ = ( ’.1(_) _'L.l(g)) , (3.14)
u u

-l ]

2Throughout this chapter we assume that 0. Note that forb = 0 the Euclidean SL(R) symmetry degenerates
to an ISO(11) symmetry, and the scalar coset becomes a two-dimenduinkbwski spacetime.
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which is a current matrix, with the following components:

i® =30, -30%7), D =3bMou,
i = —by i + (e - 12D (3.15)

Althought this is a Euclidean theory, we can still regard ttiirrent as giving rise to ‘charges’
that are ‘conserved’ with respect to a Euclidean time dioact Throughout this section, we
will choose it to be the radial direction. However, for a peopunneling interpretation of the
instantons, we will choose a Cartesian direction in sulime®&.6.2. For a spherical boundary
defined by a radial normal unit vectot, the conserved charge matrix is the following:

_(O-1)(©O-2)*?
Q= b(VO|(SD71) gp-1

where theSP-1 is transverse to the unit vector. Under an SIR® transformation (3.13) the
corresponding charge matrix transforms as

Q- QQQ™. (3.17)

Note that the determinant € is invariant under SL(ZR). Thus, solutions with dierent values

of det(Q) can never be related via SL(R)-transformations. Hence, as discussed in the intro-
duction the cases d€j = 0,det@) > 0 and detQ) < 0 define the three fierent ‘conjugacy
classes’ of SL(2R).

3.3 The solutions and their geometries

In this section we will consider solutions to the bulk eqaasi of motion of (3.5). Issues like
boundary terms and the value of the action are postponedtios®, where we will determine
which solutions can be considered as instantons.

3.3.1 Solutions

We consider the Euclidean gravity-dilaton-axion systenDire 3 dimensions given by the
Lagrangian (with arbitrary dilaton coupling parameagr

Le = 5VI[R~ 3 (99)° + 3 €(0x)] . (3.18)
and search for generalized D-instanton solutions with feahBOD) symmetry of the forr

dg = B0dr? +r2dQ2 ),  ¢=00), x=x(). (3.20)

3Note that by using reparameterizationsrafne can obtain dierent, but equivalent, forms of the metric in which
the SOP) symmetry is non-manifest, in particular

ds = B0(e210dr? 4 r2da3 ), (3.19)

in analogy to what we will encounter later, see (3.78). Weosledo take as our starting point a conformally flat metric,
ie. f(r)=0.
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The standard D-instanton solution [30] is obtained for thectal case wherB(r) is constant.
In order to obtain an S@() symmetric generalized D-instanton solution, we allowdanon-
constantB(r) and solve the field equations following from the Euclideatica (3.18), which
read

Ry = % 0, $0,¢ — % eb"’a,,)(ayx R
0=0,(v3g" e dx) .

b 1 ,
0= 5 €00+~ 50 (Vag"09) . (3.21)

The expression for the Ricci tensor for the Ansatz (3.20)visrgby

Rr=-(D-1) (B”(r) + %(f)) )

Ry = —€ 220 gy [B"(r) + (D - 2) B'(1)* + (2D - 3) ——], (3.22)

B'(r)
r
where the prime denotest#irentiation with respect tg andd stands for all angular coordinates.
In addition to the SL(2R) symmetry these field equations are invariant under a congvayl

rescaling of the metrfc

Guv = €“Yyr - (3.23)

However, this is only a symmetry of the field equations andafdhe action. In our Ansatz
(3.20), this has thefect of shiftingB by a constant, i.eB — B + w.

In order to solve foB(r), one can consider the angular component of the EinsteiateaLof
(3.21). Having solved foB(r) the expressions for the dilaton and axion scalars can tzenmut
from the remaining two equations of (3.21). We thus obtagrftiiowing solutior for B(r), 4(r)
andy(r), which extends the solution given in [37] to arbitrdry

eP-2)B() — f.(r) £_(r),
2

0 = F 1 (.12 - & (/0>

_ 2 (€O L) e O (L)1)
N U oo e oo e RS
The solution is given in terms of the two flat-space harmouicfions
fo(r)=1z rDi_z (3.25)

4The constant Weyl rescaling symmetry is brokerQfy’) corrections.

SFor practical purposes we omit an overalsign corresponding to th&, symmetry of the axion, which defines the
difference between between the instanton and anti-instantes sign dects some signs in the SL(R) charges of the
solution, but does not change its conjugacy class.
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and the four integration constarjsgs, - andC;. The integration constamtis defined as the
square root off?, which is an integration constant that can be positive, aeregativé. Finally,

the constant is given by
B /Z(D -1)
c= CER (3.26)

Note that the metric, specified IB(r) given in (3.24), only depends on the producfofindf_,
whereas the scalars only depend on the quotierit @ind f_. This reflects the presence of the
scale symmetry (3.23), whoséect is to scale botli, with the same factor. The constaifs
andq- occur with inverse powers and have been taken non-zero ialibee solution. Below,
we will see that sending them to zero yields interestingtimi

The solution (3.24) carries electric SL.(R) charges given by

_ (0 0+
QE—(_q_ —qs)’ (3.27)

where we have defined the dependent integration congtana
0° = 0.0 + G = — det@Qg). (3.28)

Thus, the solution (3.24) has general SIR? chargesd;, 0-, 0s).

The appearance of the four independent integration coissigh g, gz andCy, can be
understood as follows. As can be inferred from the solut®@4), the constart; corresponds
to the freedom to applR transformations, which shift the axion. Similarly, the stantq_
corresponds to SO(1) transformations, which scale the axion and shift thealilaBy applying
such transformations one can shggtwith arbitrary numbers whilg- can be rescaled with a
positive number. The consta@i is shifted as follows

Ci1—Ci1-21q (3.29)

under the SL(2R) transformation, with parametdr whose generator is given by the electric
charge matrix:

Qe = exp@ Qg). (3.30)

SinceQE is invariant under such transformations (see (3.17)),endilis shifted, this explains
why C; does not appear in (3.27). The remaining consightis invariant under SL(ZR) and
hence does not correspond to these symmetry transforrsaRather, this constant corresponds
to the freedom to perform rescalings of the metric (3.23)réfain a metric that asymptotically
goes to 1, this must be combined with an appropriate reggafin. The resulting &ect of this
transformation is a rescaling gf with a positive number. One therefore always stays in the
same conjugacy class under such transformations.

The solution (3.24) can be written in a more compact form hpgisinstead of the two
functionsf, andf_ which are harmonic ovdd-dimensional flat space, a functibt(r) which is

5Note that this implies that the solution (3.24) is not mastifereal, sinceg can be imaginary. Below, we discuss
this issue separately for the three cagepositive, negative or zero.
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harmonic over a conformally flat space with the conformaldaspecified by the functioB(r)
givenin (3.24), i.e.

_ 1 8 (b1 p-2sndHO)) _
oH(r) = 75 o r-—e o =0. (3.31)

The general solution to this equation is of the followingnfior
H(r) o log(f.(r)/f_(r)). (3.32)

We can, therefore, rewrite the solutions (3.24) as follows:

q2 2/(D-2)
dSz = (1 - m) (dl’2 + I’deZDfl) .
2
o) = (% sinh(H(r) + cl)) : (3.33)
() = % (q cothH(r) + C1) - Gs).

where
bc
H(r) = - log(f(r)/f-(r)). (3.34)

The solutions (3.33) are valid both fqt positive, negative and zero. Below, we will discuss
the reality and validity of the solutions for each of theseéhcases. Note that we are using the
Einstein frame.

° q2>02

In this casea is real and the solution is given by (3.33) with all constaet. However,
the metric poses a problem: it becomes imaginary for

D-2

P2 <rP2=q. (3.35)

One can check that there is a curvature singularity at r.. However, this curvature
singularity happens at strong string coupling:

&) - o, r—re. (3.36)

Betweenr = r. andr = oo, H varies betweeko and 0, and with an appropriate choice
of Cq, i.e. a positive value of;, the scalars have no further singularities in this domain.
One might hope to have a modification of this solution by higreler contributions to
the dtfective action of 11B string theory [38]. Alternatively, oman consider the possible

“According to (3.29), the consta@t can be changed by an SL{R) transformation, leading to singular scalars (but

non-singular currents, which are independenE€gf. However, since these are related to regular scalars bylaigl
SL(2 R) transformation, this does not pose a problem.
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resolution of this singularity upon uplifting. In the nexction, we will see that this
indeed happens for the special case of

_ [2(D-2)
b= 5T (3.37)

In the case withy? > 0, there is an interesting limit in whiap. — 0. For generical values
of the other three constants, this yields a non-sensiblgisalwith infinite scalars. To
avoid this, one must simultaneously impose

equivalent tdoc = 2.

_ O:0-
2q

This yields a well-defined limit, in which the scalars read

cya—mm%y % — q . g -0. (3.38)

/C _ f+ _ —Q+

el = o X = bq ° (3.39)
while the metric is unfiected and given by (3.24). This solution can also be deduced
by simply solving the equations of motion from scratch, wifte constant axion Ansatz.
Note that in this limit the dilaton becomes independent:oivhen the axion is constant,
the dilaton coupling drops out of the field equations. In thist, one is left with two
independent integration constants, andg?. The range of validity of this solution is
equal to that of the above solution with # 0: it is well-defined forr > r., while
atr = rc the metric has a singularity and the dilaton blows up. We fiilll that this
singularity is resolved upon uplifting for all valueslo¢ > 2.

q?=0

We now consider the limit? — 0 of the general solution (3.33). Taking this limit for
generic values o€, one sees tha’) — oo for all r. The only way to avoid this
bad behaviour is to hav@; — 0, asg® — 0. Thus, to obtain a well-defined limit, we
simultaneously take

cra@ﬂg, ¢ - 0. (3.40)

The constangs is assumed positive and will correspond to the value?sf atr = co.
Taking the limit (3.40) of the general solution (3.33) yielthe extremal solution:

ds =dr? +r2dQ3 ., /2 — p Mn:%mﬂ—ﬂﬁ, (3.41)

g-

whereh(r) is the harmonic function:

bcqg

b/2
h(r) = 02 + —55--

(3.42)
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This is the extremal D-instanton solution of [30]. It cancal®e obtained by solving the
equations from scratch with a flat metric in the Ansatz. Thisiton is regular over the
range O< r < oo provided one takes botly andb c g positive; atr = 0 however, the

harmonic function blows up and the scalars are singularilAg#ing theory corrections
may resolve these scalar singularities.

° q2<02

In this casey is imaginary. To obtain a real solution we must t&leto be imaginary. We
therefore redefine B
q—ig C—iCy, (3.43)

such thagandC; are real. One can now rewrite the solution (3.33) by usingehetior?
log(f,/f_) = 2arctanhg/rP2), (3.44)

and, next, replacing the hyperbolic trigonometric funetidy trigonometric ones in such
a way that no imaginary quantities appear. We find thatgfox 0, the general solution
(3.33) takes the following form:

62
45 = (1+ )7 (dr* + 1703 ),

~ 2
e = (% sinfc arctan%) + (fl)) , (3.45)

2 g .
x() = H (G cotbc arctanﬁ) +Cy1) - 03) .

The metric and curvature are well behaved over the range & . However, the scalars
can only be non-singular over the same range by an appreptaice ofC; provided that
bc < 2. This can be seen as follows: the arctan varies over a rang&ovhenr goes
from 0 tooco. Since it is multiplied bybc, the argument of the sine varies over a range of
more thanr if bc > 2. Therefore, fobc > 2 there is always a poimg such thay — o« as

r — re. Note that the breakdown of the solution occurs at weakgtaupling:e’ — 0 as

r — re. In the next section we will find that this singularity is nesolved upon uplifting
and will correspond to a black hole with a naked singularithe same holds for the
limiting case ofboc = 2. Therefore the casg < 0 only yields regular instanton solutions
for bc < 2, together with the condition th&; andC; + ber/2 are on the same branch of
the cotangent.

3.3.2 Wormhole geometries

It is known [30] that the standard D-instanton, il@2.= 10,b = 2, in string frame has the
geometry of a wormhole, i.e. it has two asymptotically flajioms connected by a neck, see
figure 3.1. It will therefore be interesting to investigatieether there exist frames, in which the
non-extremal instantons also have the geometries of wdesho

8Here we have used the general relation log{(()/(1 — X)) = 2 arctanhy).
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Figure 3.1: The geometry of a wormhole. The two asymptotically flat regiat r = 0 and
r = oo are connected via a neck with a minimal physical ragiygat the self-dual radiusgg.

We consider a general wormhole metric of the form
ds = f(Z®-2 (dr? + r2dQ?), f(r) = a +Br2 P + 1420, (3.46)

wherea, g andy are constants. The metric haZa isometry corresponding to the transfor-
mationr®2 — yr?-P /¢ which interchanges the two asymptotically flat regions. Phegs-
ical radiusp is the square root of the cfiient of the angular part of the metric, given by
pP~2 = f(r)rP-2. The minimum of this physical radius of the neck occurs atfitked point of
the transformation above, i.e. at the so-called self-dadiusr®2 = \/y/a, and is given by
pSDd*2 = 2+/ay + B. We will now study the three conjugacy classes in order tdeseeach case
if there exists a frantein which the metric takes the form (3.46).

e g2 > 0: As we will see in section 3.4, the appropriate frame in tlaisecis the frame dual
to the instanton, i.e. thdX— 3)-brane frame, given by

gl = /-2 gF (3.47)

In the special case difc = 2, the metric takes the form (3.46) in the dual frame with
f(r) = % sinh(C1) + 2g- coshC1)r?® + gq_qsinhCy)r*2° . (3.48)
This gives the self-dual radiugy and the minimal physical radiygg
ro2=q, p2?=2q.€". (3.49)

Note that the self-dual radiugy coincides with the critical radiug, of the previous sec-
tion: the curvature singularity in Einstein frame becontestenter of the wormhole in

%In arbitrary dimension one can define threffatient frames as follows: in the Einstein frame, the Einstéilhert
term has no dilaton factor; in the string frame, the kinetiart for the axionic field strength comes without a dilaton
factor (like all Ramond-Ramond field strengths); and in tbaldrame, the Einstein-Hilbert term, the dilaton kinetic
term and the kinetic term for the dual field strength (F(%_p_z for the frame dual to g@-brane) come with the same
dilaton factor (see e.g. [49,50] for a more detailed disicugs
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the dual frame. The limig- — 0, with appropriate scaling &; as givenin (3.38), yields
,oSDd’2 = 4q. For generic values difc, the instanton metrics cannot be written in the form
(3.46) in any frame.

e g2 = 0: It turns out that for any value df the wormhole geometry is made manifest by
going to the string frame

gy = /O (3.50)
In this frame, the metric is given by (3.46) with

f(r) = g2+ 2bcg.g2?r? P + (beq )?r+20 (3.51)

This gives the self-dual and minimal physical radii

ro? =bea /g2?,  pS% = 4bcg.gl?. (3.52)

e 02 < 0: Here, the metric has the appropriate form already in Einstame, hence, from
(3.45) we get, for any value df,

D-
I'sq

2=4.  p%%=24. (3.53)
We thus see that for all three conjugacy classes there drastes, in which the solutions have
the geometries of wormholes.

3.3.3 Instanton solutions with multiple dilatons

We will now consider extensions of the instanton solutioeadi®ed in the previous sections,
which is carried by the SL(R) scalarsp andy. We will extend this system with dilatons

oo (@ = 1,...,n), which are SL(2R) singlets and do not couple to the axion (this can always
be achieved by field redefinitions provided one allows for gritiary dilaton couplingo to

the original dilatong). We will call the corresponding solution a multi-dilatamstanton. The
multi-dilaton action is given by

Le = 1VBIR-§ ) (@0u - 1 007+ 3 € (071, (3.54)

a=1

with field equations (3.21) plus equations, requiring, to be harmonic in the curved space.
The case of one extra dilaton was considered in [51].

The solution to this system has the same metric as given 24\3see also [51]. Then the
extra dilatongp, satisfy a d’Alembertian equation in a conformally flat baickgnd specified by
B(r) as given in (3.24):

0 [ p-10-2)80)9¢(1)\ _
ar r-—e ar =0. (3.55)
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This equation is solved by the harmonic function as giverBiBZ), yielding dilatons given by

o =7+ alog [ £33). (3:56)
with 2n integrations constantis, andg,.

Of course, due to the presence of the extra dilatanshe Einstein equation in (3.21) is
modified. It turns out that the contribution @f to the energy-momentum tensor is cancelled by
similaru,-dependent contributions of the dilatoand the axiory to the energy-momentumten-
sor. Since all,-dependent contributions of the dilatons and the axionécetiergy-momentum
tensor cancel each other, this extension allows faf-andependent metric.

3.4 Uplift to black holes

In this section, we will find an explicit example of the sofitinstanton correspondence men-
tioned in chapter 2. We will show that a D-instanton can samest be viewed as a spacelike
section of a charged black hole, and more generatiybaane.

3.4.1 Kaluza-Klein reduction

In this section we consider the possible higher-dimensinigin of the Euclidean system (3.18)
as a consistent truncation of tHa{ 1)-dimensional Lagrangian, defined over Minkowski space,

Lo = V-AIR- 109> - 1€ F7, (3.57)

with the two-form field strengthr = dA. It consists of an Einstein-Hilbert term (for a metric
of Lorentzian signature), a dilaton kinetic term and a kinétrm for a vector potential with
arbitrary dilaton coupling, parametrized By The corresponding value [52] is given by

2(D-2)
_ A2
A=a +7D—1 , (3.58)
which characterizes the dilaton couplingDn+ 1 dimensions.
The reduction Ansatz over the time coordinate is
ds = v dg - #¢d2, A=ydt, =0, (3.59)
with the constants
1
o? B=-(D-2)a, (3.60)

“20-1)(D-2)°

which are chosen such as to obtain the Einstein frame in therldimension with appropriate
normalization of the dilatorp. Note that the dilaton factor in front of the spatial part oét
metricd,, coincides, fobc = 2, with the dual frame defined in section 3.3.2.

With the above Ansatz, the Einstein-Maxwell-dilaton systeduces to th®-dimensional
Euclidean system

Lo = V=GIR-3(0¢)" - 3 (9)° + 3 €% (9)°].. (3.61)
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Next, we perform a field redefinition corresponding to a liotain the @, ¢)-plane such that we
obtain

Lo = V=GR~ (03 - 3 (09)* + 1 &* (). (3.62)
with dilaton couplingo given by

2(D-2)

b=,/a? .
&+ ——

(3.63)

The corresponding value éfis equal to the original value (3.58). This system can bectated
to the one we are considering by setting 0.
Therefore, the system that we consider in section 3.3 haghehRimensional origin if the

dilaton coupling satisfielsc > 2 or
[2(D-2)
b> D1 - (3.64)

The case which saturates the inequality, ae= 0, can be uplifted to an Einstein-Maxwell
system without the dilatos. Forbc > 2 one needs to include an explicit dilatgnin the
higher-dimensional system; i.e. one must consider thet&md/laxwell-dilaton system (3.57)
with a # 0. Note that in string theory toroidal reductions, underahhihe combinatiom is
preserved, only lead to valueslofvith bc > 2.

Since the Euclidean gravity-axion-dilaton system we amssitiering can be obtained as a
consistent truncation of the higher-dimensional MinkolaskEinstein-Maxwell-dilaton system
(3.57), it is natural to look for a higher-dimensional ongif the non-extremal instanton solu-
tions within this system. In the following two sections wens@ler the casdsc = 2 andbc > 2
separately. The instantons witle < 2 have no physical higher-dimensional origin from toroidal
reduction.

3.4.2 Reissner-Nordstrom black holesbc = 2

It is not difficult to see that fobc = 2 the generalized instanton solutions uplift to tBe+ 1)-
dimensional Reissner-Nordstrém (RN) black hole solution

2402 Ftpz_pAtz(D—Z)ch—Q_l, (3.65)

dp?
d€ = —g,(0)g_(0) d& + ————
9+(0) 9-(p) dt” + 0.0 90 +p

where

D-2
0.0)=1-"55.  pP=Me M-, (3.66)

andQ andM are the charge and mass of the black hole, respectively. Thbl&k hole has
naked singularities foM? < Q?, while these are cloaked fdf? > Q?, yielding a physically ac-

ceptable spacetime. Note that the coordipateincides with the physical radius of the previous
section, for which the angular part of the metﬂ'@%_l is multiplied byp?.
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In order to establish the precise relation between the en@rgnd the mas$/ of the RN
black hole and the SL(R) charges of thdc = 2 instanton solutions given in (3.33) we must
first cast the RN metric in isotropic form as follows:

2
ds = —% dt2+pEL2)(dr2+r2dQZD,l), (3.67)
P
where
) M2 - 02\ Y2 L M2-0? 2
p(r) = P2+ M+ TD—? , g0 = (rD 2_ 4rDS ) : (3.68)

To relate the instanton and black hole solutions, we neetldose proper boundary conditions
for the instanton solutions (3.33), which are implied bylleendary conditions of the RN black
hole:

|imf—>oo O = _1’ |Imr—>oo e(b = 1’

limy e A = 0, = limy oy = 0. (3.69)

This fixes the constant3; and one of the three SL(R) chargesys in (3.33) as follows:
Cy= arcsinhe), gs = g cothCy) = /g2 + @2 (3.70)

The relation between the char@eand the masb of the RN black hole and the two unfixed
SL(2 R) charges)- andc? is:

Q=-2q., M=2 @+, (3.71)

MZ_QZ
2 _
T3

such that

, (3.72)

From (3.72) we see that the physically acceptable non+aer&N black holes withvi? >
Q? coincide with the uplifted instanton solutions in tife= 0 andg? > 0 conjugacy classes:

M2 > Q? o o’ >0,
M? = Q? o o’ =0. (3.73)

More specifically, we find that the non-extremal (extremal) Retric in isotropic coordinates
(3.67) reduces to thg? > 0 (g° = 0) instanton solution in the dual frame metric (3.47). Note
that theg? > 0 instanton has a wormhole geometry in the dual frame méttietns out that the
minimal physical radiugsq for this case is given bysq = p., wherep, is the position of the
outer event horizon given in (3.66).
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3.4.3 Interpretation of instantons as BH wormholes

In the previous section we have seen that the non-extrenia$tanton solutions (3.33) in the
dual frame metric (3.47) with c = 2 andM? > Q? can be viewed at = constantspace-like
sections of the RN black hole metric (3.67). In the Kruska¢i&res-like extension of the RN
black hole, the spatial part of the metric (3.67) has the gegnof an Einstein-Rosen bridge
or wormhole, which connects two asymptotically flat regiofispace (see [20] for a general
introduction to black holes). Indeed, the spatial part o8 {3 has, foM? > Q?, theZ, isometry

2 2

b, M2-Q
_—
4rb-2 -’

which relates each point on one side of the Einstein-Roddgéto a point on the other side.

It is instructive to consider the special case of the Schedniid black hole, (i.eQ = 0).
Due to (3.71), this corresponds to the uplift of instantoiith\g_ = 0, i.e. the solutions given
in (3.38). As shown in figure 3.2, in the Kruskal-Szekeregeston of the Schwarzschild black
hole, everyt = constantsection of space time corresponds to a straight spacetiggbing
through the origin of this coordinate system, with slopesdeined by the constant value tof

r (3.74)

Figure 3.2: Schwarzschild black hole in Kruskal-Szekeres coordinafgmtial sections with

t = constant are space-like lines through the origin, goingrfreegion 1V to region I. T and
X are the Kruskal-Szekeres time-like and space-like direstrespectively. The horizons are at
o = p+, Which coincides with the minimal physical radius at theteep = psg.

Notice that on each line, the coordinatéom (3.67) runs front = 0 at the spatial infinity
on the left-hand-side, to= co on the right-hand-side. The fixed point of thg-isometry (3.74)
(now with Q = 0) is positioned at the center of figure 3.2. The value af this fixed point and
the corresponding minimal physical radius are given by

%= 1IMm, P22 =2M. (3.75)

Note that this value of the physical radius correspondsedtirizon of the black hole, as can
also be seen from figure 3.2. One can make the wormhole gepwisiole by associating to
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t = constant

Figure 3.3: Carter-Penrose diagram of RN black hole. The lines with p, are the horizons,
which coincide with the minimal physical radigs= psq in the center.

every value of a (D — 1)-sphere. Representing eveld ¢ 1)-sphere by a circle one obtains
the wormhole picture of figure 3.1.

In the more general case (i.€ # 0), thet = constantsections are still paths connecting
two regions of the RN black hole. To see what these regiorrgespond to, it is helpful to draw
a Carter-Penrose diagram, see figure 3.3. The wormhole dgoimgualitatively the same as
in the Schwarzschild case. The position of the wormhole resukthe value of the minimal
physical radius are given by

re’ = 3(M*-Q), P22 = M+ YM2Z - Q2, (3.76)

which again coincide with the horizon at= p,. The curvature singularity of the D-instanton
solutions withg? > 0 (3.33) atr. = (g)¥P~2 are resolved in this uplifting and can now be
understood as the usual coordinate singularity of the Ridkbtele outer event horizons (i.e.
p = py, 0rr20=2 = (M2 — Q?)/4).

\
=P -

T
Figure 3.4: The geometry of the extremal black hole as a "one-sided" Wwolenwith minimal
physical radiugo.

The extremal RN black hole (i.evi? = Q?) is qualitatively diferent from the other cases.
As one can see from (3.74), ti&-isometry is gone. By taking the limN? — Q? of a non-
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extremal black hole we see that the wormhole stretches tofantély long neck. The fixed
point of the isometry goes to spatial infinityrat= 0. This means that the extremal black hole
has a "one-sided" wormhole with a minimal physical ragigis® = M, and the full Kruskal-like
extension is geodesically complete without need for a retNo This situation is illustrated in
figure 3.4.

3.4.4 Dilatonic black holes:bc > 2

The instantons withc > 2 uplift to non-extremadlilatonic black holes, i.e. black hole solutions
carried by a metric, a vector and a dilaton. In fact, the u@ifidentical to a version of the
black hole solution presented in [53]. To be more precisentim-extremal dilatonic black hole
solutions of [53] contain an extra parameterFor generic values of this parameter the black
hole solution is singuldf. One only obtains a regular solutiofif: ~ q.

The uplift of thebc > 2 instantons equals the — 0 limit of the non-extremal black hole
solutions of [53]. Therefore, in contrast to the = 2 case, we obtain a singular black hole
solution. This singularity can only be avoided in two limiicases. The singularity disappears
both in the extremal limit (3.40) whee? — 0 and in the Schwarzschild limit (3.39) when
g- — 0, where the dilaton decouples.

3.5 Upliftto p-branes

In section 4 we have discussed the uplift of the instantorseofion 3 to higher-dimensional
black hole solutions. It is therefore natural to consideruplift to higher-dimensionad-branes.
To this end, it will be useful to first introduce the followimgmenclature.

Non-extremal deformations of genembranes have been considered in [53,55]. These are
solutions of the D + p + 1)-dimensional Lagrangian, defined over Minkowski space,

_ 1 1 .
Loip = \/__g[R ) ((9¢)2 - m e G(2p+2)] s (3.77)

with the rank-p + 2) field strengttGp,2) = dCp.1). For ap-brane inD + p + 1 dimensions the
metric (in Einstein frame) is of the form

dg = A(-?'dt? + dxy?) + €®(e2"dr? + r2dQp_1?), (3.78)

whereA, B and f are functions that depend on the radial coordimagaly. It is convenient to
introduce the quantity
X=(p+1)A+(D-3)B. (3.79)

The extremalp-brane solutions with equal mass and charge, preservirfigghtdle supersym-
metry, are obtained by taking= f = 0.

Assuming thaD > 3 there exist two types of non-extrem@brane solutions in the litera-
ture. Following [53], we will call them type 1 and type 2 noxtremalp-branes:

10These (singular) solutions are a generalization of theu(aepblack holes of [54].
11The parameteq? can be identified with the parameteof [53].
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e Type 1 non-extremalp-branes: X = 0 andf # 0.

These are the non-extremal black branes of [55, 56]. Theghefiion functionf is given
by

k
f_
h=1- ol (3.80)
wherek is the deformation parameter. In dférent coordinate frame, with radial coordi-

nates, these branes can be expressed in terms of the two harmawitdis

D-2
f(o)=1- (pi) . (3.81)

P
Physical branes without a naked singularity have more niass ¢harge, which corre-
sponds tg, > p_ ork > 0. For this type of non-extremal deformation, the dilafois
proportional toA andB, which are linearly related since = 0.

e Type 2 non-extremalp-branes: X # 0 andf = 0.
These are the non-extremal black branes of [53]. The defiismaunctionX reads

k
f=1- 6 (3.82)
wherek is the deformation parameter. The absence of naked siritipsaequirex to be
positive. In this case, the dilatahis not proportional toA or B, which are not linearly
related.

The non-extremal D-instanton solutions (3.33) fit exaatlyhiis chain of non-extremat
branes fop = —1. Although the type 2 non-extremgdbranes are defined in Minkowski
space, we find that one can extend the formulae of [53] to —1 branes in Euclidean
space, i.e. generalized D-instantons, by taking0 andB # 0.

Both types of non-extremad-branes break supersymmetry. A special cage4s0, for which
the regular type 1 and type 2 non-extremal O-branes are @&euivup to a coordinate transfor-
mation inr. From the form of the metric (3.78), which hagfdrent world-volume isometries
for f = 0 andf # 0, itis clear that this is not the case for> 0.

To relate the (multi-dilaton) instanton solutions of sentB to the non-extremad-branes,
it is instructive to reduce thp-branes over theirg + 1)-dimensional world-volume, including
time. In complete analogy with the reduction over time oftisec4.1, this will give rise tqp+ 1
dilatons from the world-volume of thp-brane. However, these are not all unrelated: for one
thing, the dilatons corresponding to the spatial worldawo¢ will be proportional to each other,
and can therefore be truncated to a single dilaton. We wilbtke the dilaton from the spatial
metric components by, while the time-like component of the metric gives risetdri general,
the reduction of non-extremptbranes will therefore give rise to a multi-instanton simintwith
three diferent dilatons, including the explicit dilat@n

G — ¢, Ox— @, ¢— 0. (3.83)



3.6 Instantons 63

For the two types of non-extremal deformations conside@,hhowever, there is always a
relation between the three dilatons, allowing a truncatmiwo dilatond?. For the type 1
deformations the dilatong and ¢ are related, as can be seen from the metric Witk O.
Similarly, the type 2 deformations yield a relation betwgeand ¢ sincef = 0. Therefore,
these non-extremad-branes reduce to multi-dilaton instanton solutions witi tnequivalent
dilatons. Conversely, two-dilaton instanton solutions oglift to either types of non-extremal
p-branes, by embedding these dilatons ifiedent ways in the higher-dimensional metric and
dilaton.

It is interesting to investigate when these two dilatons barrelated or reduced to one,
therefore corresponding to our explicit SLIR) instanton solution (3.24) with only one dilaton.
For the type 1 deformations, this is only possible for thecggease withp = 0 anda = 0. For
these values, the dilato@sande vanish, leaving one with only. " The constraint o implies
bc = 2 which, as discussed in section 3, gives rise to the Reiddartstrém black hole.

For the type 2 deformations there are more possibilitiedinoirate the dilatons. It can be
achieved by requiring = 0, as we did for the uplift to black holes. For gengpathis leads to

the following constraint oi;
B /Z(p +1)(D-2)
b= “Dbip-1 (3.84)

Note that this yield®c = 2 for black holes withp = 0. For these values ¢ the instanton solu-
tion (3.24) can be uplifted to regular non-extremal nomtihicp-branes. For higher values of
b, the instanton solution uplifts to singular non-extreniidtdnic p-branes. For these solutions
to become regular, one must take eitbgr 0 org_ — 0, exactly like we found in thec > 2
discussion of section 4.3.

The uplift of the SL(2RR) instanton solution (3.24) tp-branes is therefore very similar to
the uplift to black holes. There is one valuelnf3.84) for which the instanton solution can be
uplifted to a regular non-extremal non-dilatomi<orane of type 2. For higher values lofone
can obtain singular non-extremal dilatorpebranes of type 2, which only become regular on
either of the limitsg? — 0 andg_ — 0. By adding an extra dilaton to the instanton solution one
can also make a connection to the regular type 1 and type 2xiwemal dilatonig-branes.

3.6 Instantons

In the previous section we focused on the bulk behavior ofttinee conjugacy classes of
instanton-like solutions. In this section we will investtg which of these solutions can be
interpreted as instantons. Instantons, as we have seeaert? are defined to be solutions of
the Euclidean equations of motion with finite, non-zero eadfithe action. They have a tunnel-
ing interpretation, and generically contribute to ceranrelation functions in the path integral
with terms that are exponentially suppressed by the insteanttion. These correlation functions
then induce new interactions in thfextive action, and for the extremaf2IBPS, D-instantons

in type IIB in D = 10, these ffects are captured by certain SL#) modular functions that

12This seems to indicate a generalization of the non-extrefef@rmations with botiX # 0 andf # 0, reducing to a
three-dilaton instanton.
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multiply higher derivative terms such & and their superpartners [31]. Before we study corre-
lation functions and fective interactions induced by non-extremal D-instant@resmust first
discuss the properties and show the finiteness of the noareat instanton action. We will do
this using a method that will allow us to recover the spe@akcof extremal D-instantons easily.

3.6.1 Instanton action

The first thing we notice is that the action (3.18), evaluatedny solution of (3.21) vanishes.
What is also bothersome about the Euclidean action (3.1Batst is not bounded from below,
not even in the scalar sector. Such actions cannot be usegathantegral, since fluctuations
around the instanton will diverge. However, this should @t surprise at all. After all, the
Lagrangian (3.5), whose equations of motion we have beemspis not the true Lagrangian of
the full quantum field theoretic system, butegfectiveLagrangian that is only meant to be used
for finding ‘saddle pointg®. It was never meant to appear in a path integral. In orderatuate
the true value of the action of the non-extremal D-instamtenvill use the dualization procedure
and replace this dilaton-axion system with a system coim@githe dilaton and al§ — 1)-form
field-strength, whicldoeshave true saddle points. This procedure was briefly mentiahéhe
beginning of this chapter. We will now fully develop it hefeor a toy model illustration of this
procedure, see appendix A.

The goal is to prove that two filerent systems can be regarded as ffecve path integrals
of one and only one common parent path integral. Let us firgdewdlown the Euclidean path
integral for a dilaton coupled to ®( 1)-form field-strength, subject to the constraint of being
a closed form, i.edFp_; = O:

fd[FD_]_] d[/l] exp(f —% (d¢ A *d¢ + e‘b¢ Fpo1 A *FD_]_) +i /ldFD_l) s (385)
M

whered isreal and acts as a quantum Lagrange multiplier that imposes tistredntdFp_; = 0,
by means of the following identity:

fd[/l] exp[i1G] = 6[C], for any function G, (3.86)

where thed[] stands ford-functioral. Notice that we are treating the field-strength as funda-
mental, not the gauge potential. This path integral is ddfimigh ‘Dirichlet’ boundary condi-
tions onFp_3, i.e. some of the components Bf_; are fixed on the boundary. The constraint
that the former be closed implies that it is locally exad, locally, Fp_; = dCp_», for some
Cp-2. The path integral (3.85) is well-defined because the adtignositive-definite, and it is
straightforward to find its saddle points, by treatig » as fundamental, and deriving the usual
higher-dimensional Maxwell equations.

Let us now change the order of integration and perform thk jpaégral overFp_; first.
In order to do this, we need to rewrite the action in such a way the field-strength appears

13They are not the true saddle points of the scalar systemhbutstill provide a semiclassical approximation of the
path integral.

14we will not worry about the gravitational sector in the falimg derivation, since it is not relevant. The integration
over the dilaton is also omitted.
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without derivatives acting on it:
Se = f % (d¢ A *d¢ + e’b“’ Fp-1 A «Fp_1 = 2i /ldFD,l)
M

:f L[dg A+ + €% (Foy +i€™ «dl) A (Fo_y +i€™ +dl) (3.87)
M
+ € dAA«dl—2id(AFp_1)],

where we have used partial integration and the fact thatzincidean spacexAp = (—)(D‘l)pAp,
whereA, is ap-form. The last term in (3.87) is a surface term, and sincendaty conditions
have been imposed on the field-strength, it will not partitégn the path integral over the latter.
The term can be interpreted as an external curdnbDefining+J = Fp_1, we have

fd(/lFD_l)zf A*sz A, (3.88)
M oM oM

wherert is an outward normal vector.
To integrateFp_1 in (3.87), we first perform the following shift of integratiovariables:

Fp-1 — Fp_1 +i€°? «da. (3.89)

We are allowed to do this even thouglis real. This isnota rotation of the contour of integra-
tion, it is just a shift in the imaginary direction. The retsuj integration oveFp_; is nothing
other than the plain old Gaussian integral, yielding a deieante®?/2 in the path integral.
We can absorb the latter in the measure of the dilatonic padigial by changing variables as
follows:

2d[¢] = 2/bd[’??]. (3.90)

This means we are treating the exponential of the dilatomaddmental. As long as we only
sum over positive values of the exponential, this does fiethanything. The change of vari-
ables is valid because the exponential is a strictly moriotomction of the dilaton, and hence
injective. When the smoke clears, we are left with the follaysystem:

fd[/l] exp(—fM% |d A xdg + €¢da A «da] + if

oM

+J /1) , (3.91)

where no boundary conditions are imposedoithe constraintlFp_; = O translates tal « J =

0, i.e. the external current must be divergenceless. Theritapt thing to notice is that the
kinetic term ofA has the ‘normal’ sign. Contrary to common belief, a quantuethanical
dualization doesot yield a negative action scalar. The boundary term in thié jrategral
corresponds to the two surfd€aerms in (3.9). This boundary term, combined with the fact
that boundary values of are being integrated over, plays the role of a Fourier tansition

of the boundary states. The path integral does not compusasition amplitude between field
eigenstateBl ), but between momentum eigenstates = fd[/l] exp(nd)|A).

15There is ambiguity in defining the boundary at infinity of a rifiaid. Although the surface terms in (3.9) are only
defined on disconnected ‘initial’ and ‘final’ hypersurfacébelieve that defining a single, connected, radial boundar
atr = o leads to equivalent results.
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Note that the shifR-symmetry of the axion is now broken tazasymmetry by the surface
term:

2
/l—>/1+%n, where CEf xJ, and ceZ. (3.92)
oM

In theories wherd is periodically identified, the single-valuedness of ththpategral imposes
a quantization condition oa String theory &ects are expected to induce such a quantization,
[57,58]

Let us naively try to approximate (3.91) by means of the sagdint approximation. Be-
cause there are no boundary conditionstprariations need not vanish on the boundary. The
Euler-Lagrange variation of the action then yields

6S=fd(eb¢*d/l)6/1—f (€ xda—ixJ)oa. (3.93)

M oM

For arbitrarys, this imposes a rather normal equation of motion for therakiche bulk
d(e*? +d1)=0. (3.94)

However, it also imposes the following boundary conditiontbe current of the axion shift
symmetry:
lda,, =iJ. (3.95)

This constraint is rather strange, as it would imply thatgaddle point approximation requires
A to be imaginary. Hence, the path integral has no real sadiigg However, it is possible
to perform a semiclassical approximation of it in two waye first method consists in using
the fact that this path integral is at most quadraticlito compute it. The idea is that one
can split up the integral into an integration over bulk fieldth Dirichlet boundary conditions
followed by one over the boundary fields. The former can béuated in the usual way by
using the variational principle, since it is just a Gaussilimen, by performing the integral over
the boundary fields, one is basically Fourier transforming tesult. However, this method is
very cumbersome, as it requires an explicit choice of thendary. The second method relies
on the dualization procedure we described. This is a farlgingmd more covariant approach,
and we will be using it to evaluate the actions of our solwiohhe idea is that, since the axion
path integral (3.91) and the field-strength path integr&d§Bare equal to each other, instead of
trying to evaluate the former, which has no real saddle ppine can just evaluate the latter,
which does have saddle points. This indirectly yields a stssical approximation of the axion
theory.

If we use the constrairdFp_;, we can treat thel§ — 1)-form as locally exact; i.€&p_1 =
dCp_>. Then, we can derive the following equation of motion:

de® «Fp_1) =0, (3.96)
which means that, locally, one can rewrite the field-stremgtfollows:
Fp_1 = € s dy, (3.97)

wherey is a scalar. The equation of motion of the dilaton is the foita:

d*d¢+ge’b“’F/\*F=O. (3.98)
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Substituting the definition of into this yields the following:
d*d¢+gd/\//\>kd/\/=0. (3.99)

This equation of motion has the wrong sign in front of theerm. One can similarly show that
the Einstein equation also ‘sees’ a dilaton with the wrogg sHence, the remaining equations
of motion of the resulting system are the ones we have begimgah this chapter; i.e. those of
a system with a wrong sign kinetic term for the axion. At thd efithe day, the result of solving
theFp_; equations and substituting the solution into (3.85fiisaively the same as performing
a saddle point approximation of a ‘would-be’ imaginary ascéield y with the following action:

S=f 3 [de A +dg — € dy A sdy +2d (€ = dy)] , (3.100)
M
and with the following Neumann boundary conditions for tkesa current:

e dyl,, = J. (3.101)

whereJ is the external current in (3.91) and the Hodge dual of thenbauy value ofFp_; in
(3.85). The equations of motion of the would-be scalar fielseem to imply that is diver-
genceless, which is equivalent to the constrdift_1 = d « J = 0. Therefore, the path integral
yields a selection rule that enforces momentum conservatio

From now on, we will use thEp_; action in (3.85) to evaluate the action of the non-extremal
D-instanton, and the on-shell duality relation (3.97) smslate our ‘electric’ axionic solutions
into dual ‘magnetic’ solutions.

It is now easy to show that this action satisfies a Bogomobmyind [31]. We can rewrite
the action as follows:

Se = f % (d¢ A *d¢ + e_b¢ Fp-1 A *FD,]_) y (3102)
M

= [ 3o &2 Fo) A (e £ ™2 Fo = (P fd(e o). (3.103)

where we have used the fact tltHfp_; = 0. Since the first term is positive semi-definBg is
bounded from below by a topological surface term given bydketerm in (3.103). The bound
is saturated when the Bogomol’nyi equation

«Fp_1 = e"/%dg (3.104)

is satisfied. Ther distinguishes instantons from anti-instantons, and fopscity, we will use
the upper sign from now on. Using (3.97), one can write theddogi’ nyi equation as

dy = —e™/2dg, (3.105)

and one can check explicitly that the instanton solutiorte @A = 0, given in (3.41), satisfy this
bound. They are therefore rightfully called extremal. Ths&tanton action can then easily be
evaluated, and has only a contribution from the boundanyfatity,

lbca |
922

w _ 4 _
Sist = z(D = 2)Vol(S®™) (3.106)
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while the contribution fronm = 0 vanishes.

For D = 10 andb = 2, this value of the instanton action precisely coincideh\\80]. For
other values ob, we notice the dependence @f on b. In ten dimensions, the only possible
value forb compatible with maximal supersymmetrnyiis= 2. One then finds that the instanton
action depends linearly on the inverse string coupling @onts In lower dimensions this is not
necessarily so, and more values licare possible, depending on whetyezomes from the RR
sector or from the NS sector. This would implyfférent kinds of instantonfkects, with instan-
ton actions that depend onfiirent powers of the string coupling constant. This indeggbas
for instance in four dimensions, after compactifying typedtrings on a Calabi-Yau threefold.
There are D-instantons coming from wrapping (EuclideanpEshes around a supersymmetric
three-cycle, and there are NS5-brane instantons comimg ¥apping the NS5-brane around
the entire Calabi-Yau. As explained in [59], such instargfiacts are weighted with flerent
powers ofgs in the instanton action. This was also explicitly demonstitan [60-62]. In our
notation, they correspofito b = 1 andb = 2. Our results in (3.106) are consistent with these
observations.

Notice also that the instanton action is proportionadjto For extremal instantons, this is
precisely the mass of the corresponding black hole one diroeigher, see (3.71). This is the
generic characteristic of the instanton-soliton corresiemce that we explained in subsection
2.3.2. There, the Euclidean action of the instantoD idimensions equals the mass or Hamilto-
nian of the black hole soliton iD + 1 dimensions. It is interesting to note that this also happen
for theories with gravity.

We now turn to the case of non-extremal instantons, and fii@ion the case of? > 0.
The solutions (3.33) for the dilaton and axion fields can bitevr as

_2 bo2p_ 2 *dH
do¢ = 5 cothH + C;)dH, e Fp_1= bSnhH +C1) (3.107)

and do not satisfy the Bogomol'nyi equation (3.104). To es# the action on this non-extremal
instanton solution, we substitute these expressionslietdtilk action (3.102), and find

2
Sscalars= 5 f d({H - 2 cothH + Cy)}  dH), (3.108)

which is a total derivative term. Evaluating the Ricci scala the solution in (3.33) we find the
following:

st_f R:—éfd(H*dH), (3.109)
M M

which precisely cancels the first term of the scalar actiohd8). Hence, the bulk action is given
by the following:

SR + Ssca|arS: _é fd (COth(H + Cl) * dH) . (3.110)

16This corrects a minor mistake in the previous version antiénversion published i3HEP. In our conventions, the
D = 4 dilaton is related to th® = 10 string dilaton by a factor of 2, see [63] for further detaihd implications of this
correction.
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which is again a total derivative. In fact, had we used thaigseaction in (3.100), we would
have also ended up with a total derivative of the fcur()sg( et « dX), which would have yielded
the same result.

Using Stokes theorem, we only pick up contributions fromtibandaries. Since thgg > 0
instantons have a curvature singularity at r. (see section 3.1), one can take these boundaries
atr = oo and atr = r¢. In terms of the variabléd, this corresponds tél = 0 andH =
respectively’. We stress again that we have takento be positive, in order to avoid further
singularities in the scalar sector whelin+ C; = 0.

Besides the bulk action, one also needs to include the Gibbtanwvking term [64], to make
the action consistent with the Einstein equations:

Sch = —2f (K - Ko), (3.111)
oM

where M is the D-dimensional Euclidean space afiM is the boundary. In the second term,
K is the trace of the extrinsic curvature of the boundary Bgdhe extrinsic curvature one

would find for flat space, which is subtracted to normalizev#lee of the action. The extrinsic

curvature is defined in terms of a unit vectdrthat is normal to the boundary as follows:

K=h"v,n, (3.112)

whereh,” is the tensor that projects components onto the boundary.
Let us now evaluate the total action at both co andr = r: we first discuss the boundary
atr = co. The contribution from (3.111) vanishes, while (3.110)g$ea contribution

Sinst = é (D - 2)Vol(S® ) be(q cothCy).

4 2
= 5 (D -2 VoI(S® b + %) . (3.113)
In the second line, we have used the relation betvigeand the asymptotic value of the dilaton,
@ = (9-/q)? sint? Cy.

Foro? = 0, (3.113) precisely yields back the result for the extremstanton, see (3.106).
There we made the relation between the instanton actiorrerlack hole mass one dimension
higher. Also for the non-extremal instanton, such a retaieems to hold. Indeed, from the
mass formula for the non-extremal black hole in terms of tiséainton parameters, one has that
g cothCy = +/o2 + ¢, and the string coupling constant is set to unity. One tlizectees that
the contribution to the instanton action from the boundaigfinity is proportional to the black
hole mass one dimension higher.

The boundary at = r. receives contributions from both integrals (3.110) an@l13), which
add up to

inst —

St = é (D - 2)Vol(S® Y be(g (%: - 1)). (3.114)

L7without loss of generality, we can chooge 0.
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Because the dilatoand the curvature blow up at, the supergravity approximation and string
perturbation theory both break down. Hence, it is not clelagtiver this contribution is mean-

ingful. One might take the point of view that string theoryreetions, which are expected to
take over at, would actually smooth the singularities out. In that célsere would be no need

to consider this point as a boundary, and no need to takedhtsiloution into account. Itis also

plausible, however, that string theory corrections congbyenodify the geometry, ‘opening up’

a wormhole that leads into a whole new space. In that casepadédoundary would exist, but

the values of the fields might beftérent there.

Note that this contribution vanishes for the cése= 2, while it is positive forbc > 2.
However, as discussed above, it is not at all clear whethsrcibntribution to the integrals
(3.110) and (3.111) should be included in the instantoroagsince it is calculated in a region
of space where the supergravity approximation is no longka v

We now turn to the case of < 0, or withq = id, a positiveg® > 0. A similar calculation as
for ¢ > 0 shows that, for the solution (3.45), we have

2 . e~ 2 «dH
d¢ = = cot(H + C1)dH , eMlEy = — — 3.115
¢ =pootH+C) D1 = b sin@ + Co) (3.115)
where o
H= bcarctan%), (3.116)

is a harmonic function over the geometry given by the metri¢3.45). Plugging in these
expressions into the bulk action (3.102), we find

Sinst = —b—zz f d({H + 2 cot + Cy)} « dH). (3.117)

Since this is a total derivative, we can use Stokes theorexim &g reduce it to an integral over
the boundaries. These boundaries are ateo andr = 0, where we required thétc < 2, as
discussed in section 3.1. In contrast to the discussioneof ta r. boundary forg? > 0, the
instanton solution is perfectly regular everywhere, intipatar at both boundaries. Therefore
the contribution from the boundary at= 0 can also be trusted.

In addition to the above action, one also needs to includegtheitational contribution
(3.111). Similar to the case @f > 0, the first term of (3.117) is cancelled by the contribu-
tion from the Ricci scalar. We anticipate the Gibbons-Hagkierm not to contribute, since the
two asymptotic geometries at= 0 andr = oo are equivalent due to th&,-symmetry (3.74).
Hence, their contributions should cancel.

Therefore the? < 0 instanton action has contributions only from the second tef (3.117)
from both boundaries at= 0 andr = co:

Sira= 25 (D~ 2YVoI(S> ) beg(cotCy).
Shst = é (D - 2)Vol(s® ) bed( - cot(Cy + bcg)). (3.118)

Due to the fact tha€; andC; + bcr/2 are on the same branch of the cotangent (due to the
restriction of regular scalars for & r < co, which can only be achieved fdic < 2, see
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section 3.1), the total instanton action is manifestly pasidefinite. In the neighborhood of
bc ~ 2, the instanton action becomes very large, and the limih&extremal point where
bc = 2, is discontinuous. This shows that this instanton is cetef disconnected from the
extremal D-instanton.

Using the asymptotic value of the dilaton in (3.45), we hafe= (q./g)?sir? ¢, and
thereforeg® < q?/g8. Assuming that caf, > 0, the contribution from infinity is positive
and can be rewritten as

2
Sioi= 5 (D=2 VoI(S* b % - P (3119)

S

which is the analytic continuation of the result wigh > 0.

3.6.2 Tunneling interpretation

The reader may wonder what the tunneling interpretation@iastanton is. In a standard non-
gravitational QFT, the metric is fixed and one always knowswthe Euclidean time direction
is, because one knows how the theory was Wick rotated in thtepfeice. In a theory where the
metric is dynamical, however, this is not straightforwar@lh Since the Euclidean spacetime
is not part of the input, but rather the outcome of the equatiaf motion, which direction is
viewed as time-like is not determinedpriori. For our solutions, one might be tempted to think
of r as the Euclidean time parameter, since all fields depend éfoivever, this wouldn't lead
to the tunneling interpretation we are after. Take for instathe case? = 0, which has a flat
space. Let us Wick rotate this back to Lorentzian signaaking ther direction to be time:

dr? +r2dQ%, , —» —de +t?dH3 ;. (3.120)

See chapter 7 for a derivation of this Wick rotation. Theiahislicet = O is singular, and the
later slices are hyperbolic spaces. These are not theliait final states one would like to
have for a tunneling interpretation. The more natural Wigtation takes place in Cartesian
coordinates. Letting = (X3 + ... + X3_,)*?, and rotatingx — it.

Another reason not to pickas a time direction is the fact that, for our solutions, thi@ax
currente®? 9y would be conserved in thedirection, since our Ansatz is such that the axion
equation of motion is the following:

0, ("¢ Viy) = 8, (€290 Yy (1)) ~ 6(r). (3.121)

This means that, in thedirection, there would be no charge conservation violatioa to
tunneling, and hence no interesting tunnelifiget in any way. If we pick, however, then the
pointr = 0 will act as a source-like singularf/(for the cases witly? > 0) and will generate
a charge dierence between the initial and final states. See figures)&ah(h3.5(b). One can
calculate that this diierence will be~ g- for our solutions. Classically one could say that the
¢-function in the equations of motion fgr can be reproduced by adding a source term in the
action of the formy §(r). From the point of view of the path integral in (3.91), oneshl

18This is basically becauseH(r) ~ 6(r) for our harmonic functions.
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Figure 3.5: The tunneling interpretation. Figures (a), (b), and (c) @#¢phe ¢ = 0,> 0, and

< Orespectively. The first two solutions have a charge consenvaiolation because they have
electric source-like singularities at the origin= 0. The worhole (c) conserves its total charge,
but splits up into two disconnected spai&s! @ SP-1, so that an observer oRP~* will see a
charge loss.

add a term of the formA §(r) to the action; and in the path integral in (3.85) this cquoasls
to addingidFp_1 6(r). This will supplement the charge conservation or closesmenstraint,
respectively:

dFp_1+6(r) =d«J+6(r) =0. (3.122)

Such aterm is alocal operator insertion or vertex operatthre path integral, i.gexp( A(ro))).

In the case of the wormhole, the point= 0 is not included in the manifold, and there is
no §-function-like singularity. In order to find the tunnelingtérpretation, one must first cut the
wormhole in half at its neck, and suggestively redraw thesha the remaining geometry as
in figure 3.5(c), as was done in [28]. The axion charge is dlplzanserved, but the manifold
splits up into two disconnected spaces as follows:

RP-! — RP-1gsPt, (3.123)

Although the total charge is conserved, an observer wha staytheRP~* will see a charge
loss, because th8P~ baby universavill carry off some charge with it. From the string theory
point of view, it is possible that, for the cagé > 0, string theory corrections will change the
singular geometry into a smooth one, perhaps by ‘openingwmrmhole-like geometry where
the singularity was. This would restore global axion chamgeservation.

3.6.3 Correlation functions

Once the instanton solutions are established, one wowdddiktudy their ect in the path inte-
gral. As for D-instantons in ten-dimensional IIB, they adlmiite to certain correlation functions
via the insertion of fermionic zero modes. For the D-instantwhich is 12 BPS, there are
sixteen fermionic zero modes. These are solutions for tleeuiiions that satisfy the linearized
Dirac equation in the presence of the instanton. All of the=® modes can be generated by
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acting with the broken supersymmetries on the purely basastanton solution. For the non-
extremal instantons, no supersymmetries are preservétkare more fermionic zero modes.
Let us focus for simplicity on ten-dimensional type IIB. &nall supercharges are broken, one
can generate 32 fermionic zero modes. The path integralureasntains an integration over
these fermionic collective coordinates, and to have a ramshing result, one must therefore
insert 32 dilatinos in the path integral. Based on this cimgnargument of fermionic zero
modes, a 32-point correlator of dilatinos would be non-zanal induce new terms in théec-
tive action, containing 32 dilatinos. In the fulffective action, such terms are related to higher
curvature terms like e.g. certain contractions0f An explicit instanton calculation should be
done to determine the non-perturbative contribution toftimetion that multipliesRe. As for
the D-instanton, we expect that the contributions of theaim®ns with dferentg?-values build
up a modular form with respect to SL), possibly after integrating ovey.

These issues, though important, lie beyond the scope otltspter, and are left open for
investigation.

3.7 Discussion

In this chapter we investigated non-extremal instantorstring theory that are solutions of a
gravity-dilaton-axion system with dilaton coupling pareterb. In particular, we constructed
an SL(2R) family of spherically symmetric instanton-like solut®im all conjugacy classes
labelled byg?. Among these is the (anti-)D-instanton solution with= 0. For special values
of the dilaton coupling parameter this solution is half-stgymmetric. The instanton solutions
in the other two conjugacy classes, with > 0 andg? < 0, are non-supersymmetric and can
be viewed as the non-extremal versions of the (anti-)Daimisin. This view is confirmed by the
property that instantons in these two conjugacy classesco 2 with c defined in (3.26), can
be uplifted to non-extremal black holes.

We stressed the wormhole nature of the instanton solutiesfound that each conjugacy
class leads to a wormhole geometry provided the correspgimistanton is given in a particular
metric frame:

q°>0 < dual frame metric (only fobc = 2 org- = 0)
q®=0 « string frame metric (3.124)
¢° <0 « Einstein frame metric

For all these cases the metric takes the form (3.46), witlspleeific values given in section 3.2.
Not all instanton solutions we constructed are regular astcati can be uplifted to black
holes. The non-extremal instantons in tfe> 0 conjugacy class all have a curvature singularity
atr = rc, see (3.35). Only thbc = 2 instanton can be uplifted to a regular non-extremal RN
black hole with the singularity being resolved as a coorirgingularity at the outer event
horizon of the RN black hole. The singularity remains bar > 2 and in that case can be
resolved by adding an extra dilaton to the original systefrj.[Fwo exceptions are the limits

> — 0 org- — 0, which correspond to the extremal and Schwarzschild Hhatb solutions,
respectively. Finally, the instantons in th& < 0 conjugacy class are only regular foc < 2.
These instantons can never be uplifted to black holes.
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We have also considered the uplift of our instanton solgtimp-branes. It turns out that
an instanton can only be uplifted over@« 1)-torus to ap-brane provided the dilaton coupling

satisfies (following from (3.84))
/4(p +1)(D-1)
bc> Drp-1 (3.125)

For the case that saturates this bound, the instantorgivithO uplifts to a regular non-dilatonic
p-brane. For larger values &f the instanton solution (3.24) witlf > 0 uplifts to a singular
limit of the dilatonic p-branes of [53]. These solutions only become regular inithié 4> — 0
org- — 0. A summary of the possible regular solutions is given ing&hl. Alternatively, we
have discussed the possibility of adding an extra dilatotnéoinstanton solution [51], which
allows for the uplift to the regular dilatonjg-branes of both type 1 and type 2.

bc Dimension| Regular solutions

<2 D Instantons withg? < 0, see (3.45)

=2 D+1 RN black holes withy? > 0, see (3.67), or
Schwarzschild black holes witif > 0,q- =0

> 2 D+1 Dilatonic black holes wittg? = 0 or

Schwarzschild black holes witif > 0,q- =0
=in(3.125)|| D+ p+1 | Non-dilatonicp-branes withg? > 0

>in (3.125)|| D+ p+1 | Dilatonic p-branes withg? = 0 or
>0, =0

Table 3.1: The regular instanton, black hole and p-brane solutions #va obtained, depending
on the dilaton coupling parameter b, the conjugacy clasany the charge g

For the particular valub = 2, corresponding ta = 4, there is another higher-dimensional
origin. In this special case, tHa-dimensional extremal instanton can be uplifted to a gaavit
tional wave inD + 2 dimensions [35]. Similarly, the other two conjugacy ctsssplift to purely
gravitational solutions iD + 2 dimensions which we denominate “non-extremal waves”. The
terminology is slightly misleading since the uplift onlyalds to a time-independent solution.
Whether this solution can be extended to a time-dependerg-like solution remains to be
seen. ltis also interesting to note the following curiositye source term for a pp-wave is a
massless particle, i.e. a particle with a null-momentunmareq? = 0. This suggests that we
associate the source terms for the other two conjugacyeslasith massive particlept > 0)
and tachyonic particlepf < 0). We leave this for future investigation.

In the second part of this chapter, we investigated wheltgembn-extremal instantons might
contribute to certain correlation functions in string thed-or this application, it is a prerequisite
that there be a well-defined and finite instanton action. Mikimg the calculation of the standard
D-instanton action, we found that fe? > 0 the contribution from infinity to the instanton
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action, for all values ob, is given by the elegant formula (3.113). This action reducethe
standard D-instanton action fgf = 0. Having a finite action, the non-extremal instantons might
contribute to certain correlation functions. In the casgypé 11B string theory, we conjectured
that non-extremal instantons contribute to Rfgerms in the stringfective action in the same
way that the extremal D-instantons contribute to Rigerms in the same action. Whether the
fact that all supersymmetries are broken by the non-extrigisiantons poses problems remains
to be seen. An explicit instanton calculation should deeittether our conjecture is correct.
We leave this for future investigation.

Finally a few comments on some work in progress [65]. A ndtamnd very interesting gen-
eralization to the solutions in this chapter can be achidyeddding a negative cosmological
constantin the action. Just as the solutions we have sthdiethre asymptotically flat, solutions
in a system with a cosmological constant are asymptotieaiti-de Sitteror AdS. Asymptoti-
cally AdS spaces are particularly interesting in light ofl&cena’s breakthrough in [1], where
he conjectured that type 1B string theory in &dSs x S° background is completely equiva-
lentto N = 4,d = 4 super-Yang-Mills theory. The stronger version of his ectjre states
that string theory on an asymptotical\dSs x S° background is dual to some deformation of
super-Yang-Mills. This duality has been used to show thaetttremal D-instanton of type 11B
supergravity corresponds to the super-Yang-Mills sektdustanton [66—70]. It would be in-
teresting to see what the field theory dual of a non-extrerialsianton is. Perhaps it contains
information about non-self-dual Yang-Mills instantons.

This concludes the first part of this thesis, which coveredttpic of instantons. In the
next two chapters, we will look at aftierent kind of scalar-gravity solutions that also have
interpolating behavior: cosmological solutions. Thes= solutions of the Einstein equations
that also depend on only one parameter, however, that ptgaisé& orentzian time.



76

Non-extremal D-instantons




Chapter 4

Introduction to Cosmology

4.1 FLRW cosmology

To begin our studies of cosmology, we must first introduce afiormalism and terminology
that is now part of what is calletthe standard cosmology he language and formulae in which
we will state facts about cosmology are deceitfully simplbey hide the massive amounts of
observational data and research required to arrive at tBeimg justice to the topic of modern
cosmology would obviously require a lot more than one clragter a proper introduction to
standard cosmology and cosmology in the context of strirgry) the reader is referred to the
lecture notes [71-73], on which this chapter is mainly bag@fien in physics one tries to re-
produce or model complicated phenomena by defining a fundtathé¢heory that is simple to
begin with, but requires all kinds of approximations andhtrations in order to describe realistic
physics. In cosmology, one does the exact opposite. Orettrimodel complicated phenom-
ena with simple models, which are not reaflgrivedfrom a fundamental theory. They can
ultimately be seen as large scale gross approximationsnoé amknown fundamental theory.
When discussing inflation, F. Quevedo describes it as "aasieim search of an underlying the-
ory" [72]. A fundamental theory that could account for co$ogy would also have to explain
the Big Bang. General Relativity breaks down for highly @dspacetimes, where quantum
effects become important. String theory is a current candigstn underlying theory of cos-
mology because it is a theory of quantum gravity.

4.1.1 The FLRW Anstatz: Motivation and definition

We begin by defining the FLRW, dfriedmann-Lemaitre-Robertson-Wallsgracetime metric.
It is actually a class of metrics defined by two propertiesadisws: a metric is FLRW if there
exists a frame (i.e. a family of geodesic observers), in wiiidés spatiallyhomogeneous and
isotropic (see appendix C for definitions and examples) s&lwo properties that are imposed
are based on the observations that the universe "looks the"sat every point in space, and it

10f course, the concept offandamentatheory is only relative. So far there is no such thing as adamehtal theory
that is valid in all regimes.
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"looks the same" in every direction about a point. Of coungeit only true on a very very large
scale, a cosmological scale. Our lives would be pretiyadilt if we were not capable of telling
the diference between our bosgfice and our bathroom, and driving would be impossible if
we couldn’t make a distinction between the right and the \graay of a one-way street. But
we as humans are looking too closely at things and what werseaandy tiny fluctuations from
homogeneity and isotropy.

So the Ansatz for an FLRW metric is the following:

d< = —12(t) d + g2(t) d=2, (4.1)

wheref(t) ang(t) are two undetermined functions of time, afit} is the line element of some
homogeneous and isotropic spatial manifold. It can be shibaiin three dimensions there are
only three possible metrics that satisfy the requiremehbofiogeneity and isotropy :

dr?
1-kr?

This can also be written as follows:

ds? = +12 (de® + sin@)?d¢?)  with k=-+1,0,1. (4.2)

dzj = dp? + 2(p) (d6” + sin(e)” dg?) , (4.3)
where
sin(p) if k=+1
f(p)z{p ifk=0 . (4.4)
sinhp)  ifk=-1

The parametek lables the curvature of the spatial section of the metric.pAtial section of
(4.1) with line element

d%pa’tial = gz(t) d2§ (4.5)
has the following Ricci scalar:
6k
RZ = % . (46)

We easily recognize the three spatial metrics as those @ #phere, 3-plane and 3-hyperboloid
respectively. But we must be careful not to confuse locahwibbal statements about a mani-
fold. The three spatial metrics in (4.2) contain only locdbrmation and do not imply anything
about the topologies of their respective manifolds. Faiainse, thé&k = 0 metric may be defined
on the 3-plané?® as well as on the 3-torug®. Similarly, the 3-hyperboloidH® can be com-
pactified by means of discrete group identifications that atoafiect curvature. So what does
the metricg?(t) dZ% tell us about a spatial manifold? Any physically meaningfiaitement in
General Relativity must be expressible in terms of "cloctt srds", and in this case specifically,
in terms of "rods".

Let us start with the spatially flak(= 0) case. We place an observer at time ty at the
origin of our coordinate systenp (= 0) and at rest w.r.t. itd = 0). Let the observer pick a
plane passing through him (without loss of generalityitken/2 plane), and draw a circle on it
around himself of radius

R=g(to)p’ forsome p’, 4.7)
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If the observer measures the circumferehogf this circle instantaneously, or fast enough so
thatg(t) does not change significantly, the metric (4.5) tells us tieawill find it to be

L=2r9g(to)p’ = 2R, (4.8)

as expected. For genetiathis will change. If we conduct the same experiment, (4.5 tes
that the circumference of a circle of radiBs= g(to) o’ will be

27 g(to) sin[R/9(to)] if k=+1
L=27rg(to)f(p’)={ 27R ifk=0 . (4.9)
27 g(to) sinh[R/g(to)] if k=-1

The first thing to notice about this result is tlidty) completely drops out for thie = 0 case,
making its value at any given time physically meaningledse dther thing to notice is that if
we takeR to be very small and expanidp), we see that, to leading order, the circumferences
become Z R for thek # O cases. If this were not the case, we would have what is called
conical singularityon our spatial manifold. Hence, tlke= +1 case tells us that circles have
smaller circumferences than we are used to, anktke-1 tells us that they are larger than
normal.

Now that we understand the spatial geometry of the FLRW méét us study the spacetime
geometry. Onckis fixed, the only undetermined parts of the metric (4.1) aedime-dependent
functionsf (t) andg(t). However, these two functions are not independent of etwdr.olf we
perform the following simple coordinate transformation:

v

()= | f()dt, (4.10)
0

we end up with the following metric:
ds = —dr? + a%(r) d22, (4.11)

where we are now left with only one undetermined functfr), usually called thecale factor
The time coordinate as defined in (4.11) is callecbsmic time In the standard cosmology
jargon, if the scale factor is an increasing or decreasingtfan of time we say that the universe
is "expanding" or "contracting" respectively. Similarfyits second time derivative is positive,
we say that the universe is "accelerating”. But these woatisbe misleading. If the spatial
topology of the universe is compact, one can define a voluntigeafiniverse, and then it makes
sense to talk about expansion or contraction. But if the ers® has a non-compact spatial
topology, such a& or H3, then this does not make sense. So what does the scale fealigr r
tell us about the universe? Again, the only meaningful thendo is to revert to our "clocks and
rods". The only information we can and should infer from anwés what geodesic observers
see. So let us define two geodesic trajectaxi€y andx,(t) as follows:

X =tt)=t, Xt)=xX(r)=4a (4.12)
YO =1t =t. yO=y@) =0 (4.13)

wherea andb' are constants. Such geodesics are caitadoving Notice that for comoving
observers the time coordinatén (4.11) measures their proper time, so all comoving olesarv
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can keep their clocks synchronized. The spatial separafianandx; in the comoving frame
is given by:
d??=ddgj, where d=a-b'. (4.14)

Differentiating this w.r.t. time we find that
d=Hd, (4.15)

whereH = a/ais called theHubble parameter Therefore, the scale factor tells us that two
comoving observers will notice a relative velocity betweakem that is proportional to their
separation, and the Hubble parameter. In a universe witbl@@ted expansion (ild > 0 and

a > 0), this means that this relative velocity will eventualiceed the speed of light! Although
this may seem like a violation of causality, it is not. No infation is travelling from one point
to another acausally. What this does mean, however, ishbatro observers will eventually
cease to be in causal contact, as no signal sent from one eanateh up with the other.

4.1.2 The right-hand side of the Einstein equation

Having studied the general form of an FLRW cosmological mewe should now study the

kind of matter or energy that can coexist with or drive suchedrio. The assumption of spatial
isotropy leads us to consider perfect fluids as unique cametd They have the property (which
can be taken as a defining property [18]) of looking isotrapitheir rest frames. The stress-
energy tensor of a perfect fluid has the following form:

Tow=@+pP U, U, +pgu. (4.16)

whereU*(X) is the velocity field of the fluidp is the energy density of the fluid in its rest frame,
andp its pressure in its rest frame. This is the stress-energytehat will be on the right-hand
side of the Einstein equation. In order for the fluid to coeiisequilibrium, or be consistent
with the FLRW metric, its elements must be comoving. In otherds, in comoving coordinates
the velocity field of the fluid must be

U* = (1,0,0,0). (4.17)

Note that if the fluid is made of photons thél cannot be interpreted as the velocity of the
individual photons, but must be interpreted as an averagmatiement of energy. Using these
assumptions we can write the Einstein equations and clexeairange them into the following
two equations:

87 G k
H2= ———p- =, 4.18
3 P2 (4.18)
a 447G
_=——3 (+3p), (4.19)

whereH is the Hubble parameter. The first equation is calledRfiedmann equatioand the
second is called thacceleration equationNote that if we want to include several species of
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fluid we can simply add up the's and p’s. The equations of motion for the fluid follow from
the conservation laws of the stress-energy tensor:

vV, TH =0. (4.20)
They imply the continuity equation for the fluid:
p+3H(@+p)=0. (4.21)

This equation can actually also be obtained bjedentiating the Friedmann equation (4.18)
w.r.t. time and combining it with the acceleration equaiéri9).

To be able to solve foa(t), p(t) and p(t), we need to make one more assumption about the
fluid, namely, that it obeys an equation of state. In otherdspthat the pressure is a function
of density,p = p(p). For ordinary matter, we can approximate the equation atedby the
following instantaneous relation:

p=wp, (4.22)

wherew is a constant that depends on the kind of matter that makdhiiie For pressureless
dust (i.e. non-interacting particles) = 0. For radiation, meaning either photons or highly
relativistic particlesw = 1/3. In the case of radiation, one can see this by writing thesstr
energy tensor of the Maxwell field:

1 1
nwz_zzaaaﬁﬁ—ZgWF%, (4.23)

which is manifestly traceless in four dimensions. Our agsions about comoving perfect
fluids tell us that the trace of this tensorTig* = 3p — p. Combining these two facts gives us
w=1/3.

Dust and radiation are part of a larger class of possible $avfi'matter” calledordinary
matter Another form of matter islark matter which is essentially non-baryonic matter. There
is another important kind of energy that can drive an FLRWringa cosmological constant.

It cannot be viewed as matter, it is regarded as a vacuumerigrg cosmological constant also
satisfies an equation of state (4.22), witk= —1, and its energy density is equal to itsglf: A.

It is part of a class of possible forms of energy caliiedk energywhich characteristically have
equations of state withh < —1/3.

Observations show that our universe is not made of just amkddifluid, but it is a combina-
tion of different kinds of fluids. Also, throughout the history of theuamse, the dferent kinds
of matter and energy have swapped the roles of dominanceumtbsiinance. Therefore, a
convenient notation for comparing the energy densitieb®fluids has been developped. From
the Friedmann equation (4.18) we see that the energy demrsjtyred to have a spatially flat

universe is
3H

" 871G
This is called theritical density. By computing the ratio of the actual energy dersfity fluid
to the critical density

pe (4.24)

o

Q >
Pc

(4.25)
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we can easily relate the matter content and observed Hulalbbbareter of the universe to its
spatial geometry as follows:

QA>1 < k=1
Q=1 < k=0 (4.26)
Q<1 & k=-1.

In a universe with coexisting fluid? is simply decomposed into the fractional contributions of
each species to the total ratio:

Quotar = ) Q. (4.27)
i

Observations indicate that our current universe is spafiialt, and it is composed of ordinary
(baryonic) matter, dark matter, and dark energy in the falg respective ratios:

Qs = 004
Qo = 026 (4.28)
Q. = 07.

A statement of modern cosmology is that the early universer{ly after the Big Bang) would
have been radiation dominated. It is puzzling that, prégetite energy densities of all three
forms of matter and energy are of the same orderdi.¢). This puzzle is known as tresmic
coincidence problem

4.1.3 Solutions

Given the matter or energy content of the universe one iadrio model, it is easy to solve for
the scale factor by combining the Friedmann and acceleratiuations (4.18) (4.19) with the
proper equations of state. Since observations show thatustent universe is spatially flat to a
high degree of precision, we will focus on tke- 0 case. The solutions are the following:

for w#-1
to

a(t) oc et for w=-1

t )2/3 (1+w)

alt) =2 (_ (4.29)

whereH is now constant. The first solution is callpdwer lawsolution. It is mainly used to
model pre- and post-inflationary cosmology. Note thatfer0 such a metric has a singularity,
namely all spatial distances are zero. This is calledilgeBangsingularity. The second metric
is a solution to the Einstein equation witlpasitivecosmological constant. It is callek Sitter
space, after Willem de Sitter, the great mathematiciansieist, and astronomer who studied at
the University of Groningen. Solutions f&ar# 0 can also easily be found.

At this point a word of caution would be in order. SpecifyingRV metrics in terms ok
anda(t) is, as we said before, only a local statement about the 8paemanifold. For instance,
we noted earlier that division by a discrete group can rdlat® different manifolds with the
same local geometry. More generally, we have to remembeértmaanifold is defined as a
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Figure 4.1: Minkowski spacetime with two suppressed dimensions. A-firmensional picture
can be obtained by rotating everything about tHeaxis. The constant t surfaces are the two-
sheeted Euclidean hyperboloids covering the Milne pattie donstant r surfaces are the one-
sheeted Lorentzian hyperboloids (dS) covering the RinsHésh.

collection ofpatcheqi.e. open sets of the underlying space) vgttarts(i.e. coordinates) and
transition functionselating the charts of intersecting patches. In many casemée patch may
cover the whole space minus a finite set of points. For instapclar coordinates cover the
whole sphere except for the two poles. In such cases, thagpatct is all we need. However,
some coordinate systems cover only half of a space. So amicritedt we write down may just
represent one patch of a manifold.

Let us illustrate this with a familiar manifold, Minkowskpacetime. Minkowski spacetime
is defined as the manifol®* with a flat Lorentzian metric (i.e. Riemann tensor is zera). |
cartesian coordinates we write this as follows:

ds = —d(X%? + d(X1)? + d(X?)? + d(X3)2. (4.30)
So far so good. Now let us introduce the so-caldithe coordinates.
X% =t cosh@),
X! =t sinh) sin@) sin(@).,
X2 =t sinh) sin() cosg), (4.31)
X3 =t sinh) cosp) . (4.32)

These coordinates don’t cover all of Minkowski spacetimieeyronly cover the regions within
the future and past light-cones of the origin of Minkowskasgtime:

(X%2 - IX|? =2 > 0. (4.33)

Milne coordinates slice up the space with a one-parameter farfilyssheeted Euclidean
hyperboloids, parametrized hy see figure 4.1. In these coordinates, the flat metric (4.30)
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becomes
ds’ = —df® + t? (dy? + sintP(y) dQ2,) . (4.34)

In other words, the FLRW metric with(t) = t andk = —1 is nothing other than a patch of
Minkowski spacetime in disguise!

For completness, and because it will come in handy in chaftkat us study thé&Rindler
coordinates, which cover the complement of the region @a/éy the Milne coordinates, i.e.
(X9)2 - IX|[2 < 0. Define the following parametrization of Minkowski spane:

X% =r sinht),

X! = r cosh() sin@) sin@®),

X2 =r coshf) sin@) cosg), (4.35)
X3 =r coshf) cosg). (4.36)

These coordinates slice up the spacetime with a one-patenfamily of one-sheeted Lorentzian
hyperboloids, where the parameterjssee figure 4.1. The metric (4.30) takes the following
form:

ds’ = dr? +r? (-dt® + cosH(t) dQs? ) . (4.37)

Although they are hyperboloids, the constargubspaces have Lorentzian signature and are
positively curved. In fact, they are three-dimensional dieSspacetimes, as we will see next.

Having seen this familiar example, let us study de Sittecepime. It can be defined as a
four-dimensional hyperboloid embedded in five-dimensidfiakowski spacetime:

—(X9% + (X1? + (X3 + (X3)2 + (XH)? = ¢2 (4.38)

ds = —d(X%? + d(XY)? + d(X?)? + d(X3)? + d(X*)?, (4.39)
where the first equation defines the hyperboloid, and thenskdefines the metric in the em-
bedding space. The raditss related to the cosmological constanin the Einstein equation as
£? = 3/A. There are several coordinate systems that can be usedimgizize de Sitter space-

time, or at least a patch of it. In fact, it can be viewed asdltiferent FLRW cosmologies with
k = 1,0, and-1 respectively. Let us start with tike= 1 form. Define the following coordinates:

X° = ¢ sinht/¢),

X! = ¢ cosh(/¢) sin() sin@) sin(g),

X2 = ¢ cosh(/¢) sin@y) sin@) cosg), (4.40)
X3 = ¢ cosh(/¢) sin(y) cos@),

X* = ¢ cosh(/¢) cosg).

These coordinates solve the constraint (4.38) on the whgberboloid. The resulting four-
dimensional metric is

ds’ = —dt® + £% cosH(t/£) dQZ, . (4.41)
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This is called the de Sitter metric global coordinates. It represents spacetime as a spacelike
sphere that contracts from an infinite to a minimal radigatt = 0), and then enters an eternal
phase of accelerated expansion. The acceleration rates$act ata/a = 1. This will cause
causally connected spatial regions to become causallgmiiszcted in the future. In other words,
any two spatially separated observers will eventually bezoausally disconnected. To see this,
we only need to look at null geodesics in de Sitter space. irwlity, let us study a ‘radial’
geodesic emitted from the origin at timge

—dt+ ¢ cosh{/¢)dy = 0. (4.42)

The solution is

Y(t) = Z(arctan[tanHI/Zé’)] — arctan[tanht/2 t’)]). (4.43)

If the light ray is emitted at time= 0, it will asymptotically reacly = n/2 fort — . However,
the later it is emitted the less it will travel as can be seemfthe solution. This means that if
we place a comoving observer at positibi e, it will at first be capable of receiving light rays
emitted from the origin; however after a certain time (fas 2 arctanh[tant/4 — €)]) it will

be causally disconnected from the origin. This feature oSidter spacetime poses a serious
problem in modern physics. One cannot define asymptotiestat a quantum field theory, or
conservation laws for general relativity in the usual way.

Now, let us write down th& = 0 form of de Sitter spacetime. Once again, we implicitly
define four-dimensional coordinates by solving the five-etisional constraint (4.38):

X%+ X = ¢ expt/f),
X = expt/O)K, for i=234, (4.44)

4
X0 — X = ¢ expt/¢) Z(x‘)2 —exp(2t/0) ],

i=2

where the first equation defines a light-cone coordinatetgxpé second equation defines carte-
sian coordinate®', and the third equation follows from the hyperboloid coaistr (4.38). Note
that the light cone coordinate is defined to be positive, tvinieans that we are only covering
half of the de Sitter manifold. Plugging this into (4.39)Idie the following metric:

d< = —df + £2 exp(2t/0) Z(dx')z. (4.45)

These are the de Sitter equivalent of Poincaré coordinatemfi-de Sitter spacetime. This form
of de Sitter is the one used to model inflation because ikha® and it is expanding for at|
unlike the global form (4.42). Finally, let us write down tke- —1 form. The trick is to puX*

on the right-hand side of the constraint equation (4.38)\aed the space as a one-parameter
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family of hyperboloids of radius{*)? — £, with the assumption th&x?| > ¢:
X* = ¢ cosh(/?),
X0 = ¢ sinht/¢) cosh@),
X! = ¢ sinh¢/¢) sinh@) sin@) sin@), (4.46)
X2 = ¢ sinh¢/¢) sinh@) sin@) cosg),
X3 = ¢ sinht/¢) sinh@) cos@),
(4.47)

which yields the following metric:
ds’ = —dt® + £2 sintP(t/£) (dy? + sinf?(6) dQs: ) . (4.48)

The Anstatz foiX* implies that this parametrization only cover half of the fi@d. Note that
this metric has a Big Bang singularitytat 0.

Finally, we should briefly discuss anti-de Sitter spacettm@&dS. This is a solution to the
Einstein equation with a negative cosmological constaman also be defined as a hyperboloid
embedded in a higher dimensional spacetime, and many cabedsystems are available to
cover it or at least partly cover it. However, AdS admits onmhe coordinate system such that
its metric is in the FLRW form. The metric looks as follows:

ds’ = —dt® + £ sirP(t/¢) (dy? + sint?(6) dQse) . (4.49)

where¢ is defined analogously to the de Sitter case. Thisks=a—1 cosmology with a Big
Bang singularity at = 0 and abig crunchsingularity att = 7 ¢.

4.2 Physics of FLRW cosmologies

Having laid the foundations of cosmology we are ready toysthé phenomena that drive the
field of modern cosmology. The standard cosmology is a madeliouniverse that has been
developed over decades by fitting observations from innabigmany experiments to theoret-
ical models that rely upon the foundations offeient fields such as general relativity, quantum
field theory, thermodynamics, astrophysics, spectrosaetpy. Again, | would like to post my
disclaimer here, and reiterate how extremely rich and caratgd standard cosmology is, and
that | in no way pretend to do justice to it. | will, howevel to give a condensed account of the
history of our universe. Then, | will present three issuex #rise in the standard cosmology,
namely thehorizon problemtheflatness problemand therelics problem and | will briefly ex-
plain the concept of inflation and show how it solves all thyegblems. | will then mention the
presently observed acceleration of the universe, andyijralill motivate the need for scalar
cosmology models.

4.2.1 An ephemerally brief history of time

Let us start with an extremely brief history of the universethe beginning was the Big Bang.
There are singularity theorems by Hawking and Penrose [7af] predict that any universe
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occupied by matter witpp > 0 andp > 0 must have a Big Bang singularity. Since observations
show that our early universe was mainly radiation dominatieel theorems would imply that
our universe started with such a singularity. So what is aHgigg singularity? A power law
FLRW metric (4.29) provides us with a good metaphor for thg Bang. Att = 0 the scale
factor vanishes and the spatial section has ‘zero size’s iBhthe ‘beginning of time’. All the
matter in the universe is condensed to a ‘point’, and jhissreally high. One must, however,
realize that at the time of the Big Barig= 0 the solution has a curvature singularity and the
laws of General Relativity break down. No one knows, whethersingularity is a physical
event, or a mere mathematical extrapolation from GR intcharted territory. At this point a
new theory is needed, namely one that can combine gravitygaadtum mechanics. String
theory is a strong candidate for this. For the time being, wstruse GR within its regime of
validity. This means that we cannot take 0 anda = 0 too literally. The standard cosmology
is only meant to describe what happened after the first mibad (or less) of the classically
describable universe. So, although we cannot say that fkierse ‘started out’ with ‘zero size’,
or ‘small’ (unlessk = 1, in which case a size can be defined), we can certainly sayt thas
occupied by very dense matter or radiation.

Since shortly after the Big Bang the universe was hot, dendarathermal equilibrium, it
started emitting light in every direction like a perfectdithody. This radiation is observable
today, especially its microwave component. This is the fas@@osmic Microwave Background
Radiationor CMBR (or just CMB), which was almost accidentally disceegin 1965 by two
radio astronomers, Arno Penzias and Robert Wilson. Itstapeds so close to that of a perfect
blackbody, that the CMBR is considered to be the strongestieg evidence of the Big Bang
scenario. While the light was constantly scatterifigad the rest of the matter constituents of
the universe, the latter kept expanding. Expansion not ordgns that matter is driven apart
at a rate proportional to the Hubble parameter, as we sawdebat it also means that the
wavelengths of photons stretch. They gatshifted Around 300,000 years after the Big Bang,
the photons were so redshifted, that they no longer scdtt#f®f particles. They decoupled,
and simply went through everything. This is why the CMBR wealve today gives us such a
perfectly undistorted picture of the universe as it was @00 years after the Big Bang. Before
that, matter was constantly being ionized into plasma diled@onstant scattering of photons.
After that decoupling, the average temperature of the uséeas low enough that atoms were
able to form. This is calledecombination That is when galaxies and other structures started to
form, leading to our present universetat 10'° years.

End of the schematic history of the universe.

4.2.2 Three problems

Like any great discovery in Physics, the CMBR has not onlygtd us answers, but also ques-
tions. It turns out that this radiation background has a r&atale property, it is almost perfectly
isotropic. In any direction we look in the sky, this radiatioas the same temperature to within
0.01%, about ZK. Most of this variation by 1% is nowadays interpreted as proof that the
Earth has a non-zero speed relative to the cosmologicalefravie are not quite comoving.
Taking this into account, the CMBR is ridiculously isotropiThis is puzzling from a causality
point of view for the following reason: if one assumes tha tniverse has gone through a
power-law expansion from the Big Bang until recently dueadiation and matter domination,
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then a calculation shows that the CMBR light that we see irskyemust have been emitted at
recombination timetgyer ~ 3 x 10° years) by points that could not have been in causal contact
with each other. In other words, if we observe the light cagrfiom two completely opposite
directions in the sky, and we take the power-law expansitmascount, we conclude that the
two sources of light we are looking at were so distant fromheztber when they emitted it, that
they had not had enough time to communicate since the Big BAAgOO0 years earlier. But
why is the CMBR so isotropic, then? Why would causally diseested regions of space emit
such perfectly coordinated radiation? This is calledhtbgzon problem

The reader may find this paradox itself, paradoxical. Onédcask the following question:
"If the universe started with the Big Bang, and all spatiztaices were (close to) zero in the
beginning, then why couldn't all points in the universe siynipave communicated back then,
when they were so close to each other? How could 300,000 yearse enough for points
that were at an initial distance of zero to communicate? As p@inted out before, no one
knows, whether the universe really had ‘zero size’ in the.pEse only trustworthy predictions
of the standard cosmology are those regarding the histottyeofiniverse, beginning moments
after the Big Bang. So, in this text, | will abandon the notafra universe of ‘zero size’. At
most, one might say thatla= 1 model has an initially ‘small’ spatial section, in whichsea
the above-mentioned paradox within the paradox become$idcaoree. Fortunately, it can be
solved. Wald’s book [75] discusses this very clearly. | wijl, however, to explain this here.
Let us start by defining the woittbrizon or in this caseatrticle horizon

t

past
light cone

.. -

“*~~ horizons---""~

Figure 4.2: The observer at event O can only see information emittedmiitie horizons.
t = 0 marks the beginning of time.

As observers, we can only see information coming from evtrds are within our past
light-cones. We cannot, for instance, see something thaddraed one second ago in a galaxy
that's three light-years away. When we look into the sky, ligket that we see comes to us
from the past. The farther the source is spatially, the dlderinformation. But what if there
was a ‘beginning of time’ such as in the Big Bang scenario?nTlie would only be able to
see information coming from a restricted area around owation. If spacetime were flat, but
with a beginning of time, then only events that were withinistahced = (speed of light)x
(age of the universe) of us at the time of emission could initeeus. The spatial area that we
can see is delimited by what is callegarticle horizon See figure 4.2. Now let us takeka= 0
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FLRW metric with a power-law scale factor, and impose a ffutonimal timet;, which we will
effectively treat as the beginning of time. Do horizons form?s&ée what happens, we must
look at what light rays do. In comoving coordinates, a nubdesic has the following velocity:

dx 1
—=—, 4.50
dt  a(t) ( )
where we use just one spatial axis for simplicity. This vélots infinite at first, but decays
more or less rapidly depending on the scale factor. We needltoilate how much comoving
distance the geodesic can cover if it is emitted right afterBig Bang, at our cutbtimet;, and
observed aty:

AX = X(to) — X(t) = fO dt

S L e

We can easily see that, farx t?, this integral diverges @s— 0, if @ > 1. In that case, there is
a particle horizon, but the smallgris, the bigger it gets. In other words, light coming from any
point in the universe can reach the observer if it was emitatly enough. In the case where
a < 1, however, there is a particle horizon, and it is presemesg — 0. Translating this into
statements about matter

(4.51)

2
T 3(1+w)’

we see that a radiation or matter dominated universe wilegee horizons. Dark energy (i.e.
w < —1/3), however, will generate horizons that are large at earlgt

a (4.52)

t
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Figure 4.3: The two sources of CMBR that we see today could not have beansal contact.

We are now ready to restate the horizon problem in the folligvaiversimplified way:
Atthe present time, we can observe highly uniform CMBR r&tsoosing two widely separated
CMBR sources in the sky will be separated by a comoving digtag ~ 4 Ho, whereHy is the
current Hubble parameter. The beams were emittéghazk. Assuming radiation domination
(a o« t??), a null geodesic emitted at the Big Bang and observeghak: will travel a distance
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A ~ 6x 102Hy. Hence we see that, < As, so the outermost sources of the CMBR could
have never communicated, see figure 4.3. This is the horizuigm.

Another problem in the standard cosmology before inflati@s wnown is the so-called
flatness problem Observations indicate that currenty ~ 1 to a high degree of precision.
However, in order for the universe to be so spatially flat i@ finesent, it needs to have been
extremely spatially flat from the get-go. This requires ahhilggree of fine-tuning that would
have no apparent explanation. To understand how this cobmeg,det us start by rewriting the
Friedmann equation as follows:

k
Differentiating this w.r.t. time this yields:
Q=H(@1+3w)Q(Q-1). (4.54)

Note that, sinca(t) is a strictly monotonic function af we can treat the scale factor as a time
parameter. This does not represent the proper time of atigylar observer, but it allows us to
look at the equations from the point of view of dynamical eyss. We will do extensively in
the next two chapters. Usirdf = da/H we rewrite the evolution equation fér as follows:

dQ QQ-1)
— =(1+3w) /= 4.55
g5 = (1+3w) (4.55)
We immediately see tha® = 1 is a critical point of this system (4.55), i.e. a point where
dQ/da = 0. Howeverassuminghe universe is dominated by ordinary matter or radiation (i

w > —1/3), this critical point is not an attractor, but a repelloumstable critical point:
d (dQ

dQ ( da)
This means that, in order fd to be one today, it must have been incredibly close to one in
the early universe. In fact, by looking at (4.55) we see tingtslight deviation from the value
one is magnified by the small scale factor (early universéiéndenominator. The fine tuning
required to keep the rate of changetmall enough so th& is close to one today cannot be
explained without inflation.

Finally, there is one more problem that arises in the stahcl@asmology, which is also solved
by inflation. It is called thainwanted relics problem will not treat this problem in any detail
whatsoever, but will merely state it. In spontaneously Brogauge theories, topologically non-
trivial objects such as monopoles, strings, or texturesrally arise. The gauge theory that
describes the matter in the universe is a GUT (Grand Unifiexbiiy), and it has a gauge group,
which is spontaneously broken to the standard model gaugepdBU(3)x SU(2) x U(1). It
is possible to predict the density of monopoles that shoaldresent in our universe today, by
standard calculations using the assumptions about cogmtiiat we have been using so far.

The result turns out to be far too big. The abundant numberasfapoles as predicted by the
standard cosmology is very generous, however, not one nob@mbps ever been observed.

> 0. (4.56)
Q=1
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4.2.3 Inflation saves the day

Inflation is a scenario for the evolution of the universe, ehhivas created in the 80’s [76-78]
to solve a number of problems, among which are the three thet mentioned in the previous
section. The idea s to have the universe go through a pefactelerated expansion (i.e>"0)
starting 10'%s after the Big Bang, and lasting long enough for the scaleféactincrease by a
factor of 16°. Let us start by looking at how this could solve the horizooigem.

As was mentioned in the previous subsection, solving thebmproblem consists in ex-
plaining how regions that seem causally disconnected-attcygr Under the assumption of
power-law expansion could have actually been in causalacbmit earlier times. As shown
earlier, if the scale factor is a power law function with erpata < 1, then there is a finite
horizon, no matter how early we take time to begin. Howevet/a(t) blows up faster than
1/t fort — 0, then the horizon can be made large (in comoving coordifhai®y choosing a
function that blows up fast enough, we can enlarge the hosipdthe CMBR sources such that
they will include each other, thereby solving the horizoolgem. Note that this applied not
only to power-law solutions witlw > 1, but also to the de Sitter solutioa,« expH t). As
mentioned before, in terms of matter or energy content,régsiresw < —1/3. This can be a
cosmological constant or some other form of dark energy.

Another way to see how this solves the problem is the follgwiake two comoving points
separated initially by a distanee= a(tj) Ax. Their proper relative speed $s= aAx. If a > 0,
this relative speed will increase with time, eventuallyeading the proper speed of light, which

is
dx 1
a——-=a—-=1. 4.57
dt a ( )
So regions that are initially causally connected can becoausally disconnected by moving
away from each other faster than the speed of light.

The flatness problem is also solved by inflation. Intuitivgbeaking, the period of acceler-
ated expansion blows up small regions of space into hugeineshort time, thereby flattening
out any initial spatial curvature. This explains why theganet universe is spatially flat without
resorting to fine-tuning at early times. There are two wayewhow this works mathematically:

From the Friedmann equation, which | rewrite for the readeonvenience,

k

Q-l=tma

(4.58)
we see that the right-hand side decreases with tirae-ifl; leading to a spatially flat universe,
even if the spatial curvatuiga was initially huge. We can also understand this in the laggua
of critical points. From the acceleration equation (4.18)read ¢ that an accelerating universe
requiresw < —1/3. Analyzing (4.55) as we previously did, with this assurptaboutw, we
see thaf2 = 1 is now a stable critical point.

Finally, inflation also solves the problem of unwanted ieli€he precise argumentis beyond
the scope of this chapter, so | will just state the intuitime oBasically, inflation blows up small
regions in space into huge ones, however the amount of méemand other topological relics
does notincrease. The consequences is that the lattetateldh our universe, which provides
us with a plausible explanation for why we have not detediedityet.
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4.2.4 Present day acceleration

Another important piece of information about the physice@$mology concerns the present.
By measuring the redshift of light coming from supernova# tndependent teams [79, 80]
have concluded that our universe is currently undergoingréog of accelerated expansion.
From the acceleration equation (4.19), we see that thisiésthe presence of dark energy. In
fact, these measurements imply that dark energy is the doriarm of energy in the universe
today, providing us with the estimag®, ~ 0.7, mentioned in (4.29).

In this section, we described the history of the universenfrooments after the Big Bang
until the present day. We have seen that in order to solvedhedn, flatness, and relics prob-
lems, the early universe must have gone through a periodflation lasting long enough to
generate 60 e-foldings (i.e. lamGw/a) = 60). Inflation actually also solves a number of prob-
lems that | have not even mentioned here. Therefore, inflagidefinitely a necessary scenario
for modern cosmology. However, it is a ‘passing the buckisoh to those problems. It merely
merges several problems into one big problem: What driviéetion? Even though we know
that dark energy is required for it, there is no known mec$ranin physics taeriveinflation
from a fundamental theory. Similarly, there is derivationof the current period of acceleration
we are going through. To repeat the quote by Quevedo, infléita scenario in search of an
underlying theory." So is present acceleration. In receary, new hope has arisen that string
theory may be used to derive realistic cosmological scemaispecially, the latest very pre-
cise measurements of CMBR anisotropies have given thedhisthope of finding observational
signatures of stringy or transplanckian physics. On onalltasmology poses a challenge for
string theory to come up with a mechanism to drive inflatiod present day acceleration, on
the other hand, it may provide string theorists with thestflab in which to test string theory
ideas.

4.3 New challenges lead to new ideas

If string theory truly is thetheory of everythingand especially if it is a theory of quantum
gravity, then it must ultimately explain the Big Bang, initet, and current acceleration. In
this section we will be looking at some candidate mechantymaeans of which string theory
might induce those two cosmological events. | will begin biraducing a new form of dark
energy as a possible source for acceleration: the scaldr figthen, | will briefly introduce
how gravity-scalar models with accelerating cosmologscélitions can arise from string or M-
theory. Consider this as an introduction for the next twoptles, which will be based on two
articles about scalar cosmologies and their possibleggifiiitheory origins.

4.3.1 Scalar models for cosmology

As we pointed out before, in order to have accelerated expanise it for inflation or present

day acceleration, we must have a perfect fluid witkc —1/3 in the universe. Having = -1,

a positive cosmological constant will do. It will source aSiger spacetime. However, it does
have some drawbacks: being a constant by definition, it isdyoramical. This means that
the universe would be in a state of eternal inflation at a @msate of acceleration, which is
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not quite consistent with observations. A more flexible araterinteresting approach would
be to have a form of dark energy that mimics a cosmologicasteon and is yet dynamical.
This has two advantages: firstly, it could induce a de Slikeruniverse with a slowly varying
acceleration rate, which would be more consistent with olag®ns of current acceleration.
Secondly, it would in principle allow for a dynamical staridaend of inflation and current
acceleration, and also for a dynamical resolution of thentogoincidence problem, which is
more appealing from a theoretician’s point of view.

Let us write down a simple gravity-scalar model, namely gyawith one scalar field and
some potential for it:

L= =7 (R-$(0¢)* - V(9)) . (4.59)
The equations of motion forla= 0 FLRW Ansatz are the following:
H?=L¢?+ 1V, (4.60)
a .
= z (_¢2 + V) , (4.61)
. )Y
¢+3H¢+a—¢—0, (4.62)

where we recognize the first two equations as the Friedmadraeceleration equations, re-
spectively, and the third one is the equation of motion ofdbaar field. To be consistent with
homogeneity, we have assumed thadepends only on time. Comparing this to (4.18) and
(4.19), we see that

1

P=T6-G ($4°+V). (4.63)
P= 161(3 (34°-v). (@64

So, if¢ varies slowly in time, its equation of motion approaches ¢fia cosmological constant,
i.e.w ~ —1. We also see from the acceleration equation (4.6 1)flaa&ts in favor of acceleration
like a cosmological constant, and the kinetic energy acfnag)it. This is why in scalar models
for inflation such aghaotic inflation one requires that the field be slowly varying, ide< 1,

by restricting the form of the potential. However, a readishodel for inflation must have an
inflationary period of at least 60 e-foldings. A scalar fieldl waturally roll down its potential
until it reaches a minimum, and its kinetic energy will onfigiease in the meantime, leading to
a non-accelerating or even decelerating cosmology. Thexgiih order to prevent a premature
end of inflation one must also require thiat< 1. These two conditiong; < 1 and¢$ < 1 are
called theslow roll conditions. Of course, in a specific model, one usually patares these
constraints to obtain controlled results.

Introducing the scalar field allows for cosmologies that ar@re complicated than just
power-law or de Sitter solutions. Because it is dynamid¢atan source solutions that inter-
polate in time between those two basic solutions. Cosmaddgiolutions that interpolate in
time between two non-accecelerating regimes, but are a&guhby one or several periods of
transient acceleration are of special interest. We willaspecific example of this in the next
section, and in the next two chapters we will be looking atengeneral examples where we
introduce several scalar fields with intricate potentibét touple them to each other.
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4.3.2 Acceleration from stringM-theory

In principle one can obtain all kinds of interesting geonestito model inflation and current
acceleration from scalar field models by having severabsdalds and the right potential, as
we will see in the next two chapters. However, even if one cdatevdown such a model the
guestion remains: where do these fields and their potermtiaédrom? Often one refers to such
scalar fields ainflatonsand to their potentials aguintessencemeaning they are a fifth force
in nature that drives acceleration. However, as stringribesp we do not like to invoke new
forces unless we can derive them from a unified theory. In #st few years, string theorists
have made numerous attempts to derive scalar cosmologylsnioglelimensionally reducing
10-dimensional supergravities and making appropriatectitions leaving only scalar fields and
scalar potentials in the four-dimensional spacetime. aptér 6, we will look at what happens
when one reduces supergravities on three-dimensgraap manifoldsHowever, before jump-
ing into that, | will attempt to give a brief review of what hggns when one considers simpler
schemes, such as reducing over Einstein spaces

The standard torroidal Kaluza-Klein reduction scheme jgi®sus with an easy way of go-
ing from ten dimensions to fouand generating scalar fields (i.e. Kaluza-Klein modes) with
potentials. However, the potentials it yields will not geate an accelerating four-dimensional
universal. To make things worse, there is@gotheorem [81, 82] that essentially states that
compactifications of ten or eleven dimensional supergesvaf stringM-theory over compact,
non-singular, spaces without boundaries and with timeethdent volunienever lead to ac-
celerating universes. To circumvent the theorem, one st &or time-dependent volume of
the internal space. P.K. Townsend and M. Wohlfarth [83] skabthat reducing gravity over a six
or seven-dimensional hyperboloid with time-dependeniv@ yields a universe with a limited
period of acceleration. The solution interpolates in tineéneen two decelerating power-law
periods at — 0 andt — oo, which are joined by an accelerating epoch. The Ansatz+#m4
dimensions has the following form:

de =6"(t)ds + 62(t) dH2, (4.65)

wheredg is the four-dimensional cosmological spacetime that ve#iult in Einstein frame
after the reductiondH, is the n-dimensional hyperbolic space, anaf) is the warp factor,
which will act as a time-dependent ‘volume’ of the internphse. The dimension of the
internal space is left arbitrary, but for strifMrtheory we needh = 6, 7. | will not write down
the actual solutions fai(t) andd<Z, for | want to stress the qualitative information. Thex(#)-
dimensional Ansatz is itself flat, i.e. it is Minkowski sptioge with some identifications that
do not dfect curvature. However, the reduction Ansatz we have choselds a non-trivial
four-dimensional spacetime with interpolating behavinithe early universe it has ~ tY/3; in
the future it hasa ~ t"(™2; and in between it has an epoch of transient acceleratiois i¥h
in principle what we are looking for, as this scenario hagit® mechanism to begin and end
inflation. Unfortunately, the acceleration period geneddty this scheme is not long enough

2An Einstein space is a manifold with a metric that solves thestgin equationsn vacuoor in the presence of a
cosmological constant. As a consequence of that, it hasighest possible degree of symmetry.

3You may wonder what | mean by ‘volume’ if the internal spacéygerbolic. In this case one must always make
the space compact by topological identifications. Othesnwame must face the undesirable physical consequences of a
so-callednon-compactification
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to yield the so much needed 60 e-foldings of inflation. Butrémult may still apply to current
acceleration.

The Townsend-Wohlfarth solution turns out to be a specisé @ a larger class of super-
gravity solutions calle&-branesfound in [84]. These are essentially solutions of supeigra
which look like p-brane solutions, except that timdresnsverseo their world-volume as op-
posed to being in it. These solutions are sourced by theodilahd some antisymmetric tensor,
just like p-brane solutions:

1

2
meap¢ Fp+2, (466)

L=R-2 (002~
2

whereF,., is the field-strength, and, is determined by the supergravity in question. This
differs from the previous Ansatz in that the latter was a solutidginstein’s equatioin vacuq
whereas the S-brane is carried by the dilaton and has a flaxtfie p + 2-form field-strength.
The Ansatz for the metric is similar to the previous one, gxtieat the internal space no longer
needs to be hyperbolic; it can be flat or spherical. The Arfeatan SD2-branes looks roughly
as follows:

dg = —f(t)2dt® + g(t)? dx3 + h(t)? dzﬁﬁ, (4.67)

where the three boldfaced spatial coordinates corresmoodrtspace, and to the world-volume
of the SD2-brane, the six-dimensional internal space canb®positively curved, flat, or neg-
atively curved k = 1, 0, —1 respectively), and(t), g(t) andh(t) are determined by the equations
of motion. This solution is no longer flat in ten dimensionisce it now solves the Einstein
equations with RR flux turned on, but interpolates in timenasn a flat metric and a horizon-
like geometry. In four dimensions, it yields an interpatgtsolution with a transient accelerating
epoch regardless of the kind of internal space we pick k.e. 1,0,-1). For a more detailed
review on the subject of S-branes and their status, the réadeferred to [85].

The schemes | have mentioned so far are all based on the assurtat the supergrav-
ity approximation is a valid one, allowing one to treat gjrilheory as field theory. However,
this assumption is not necessarily justified. One uses it betause it is very dicult to deal
with the full string theory. For instance, in a scenario vehtre dilaton grows large over time,
string perturbation theory will break down. That is why atfes are being made to take non-
perturbative string theoryfiects into account in compactification schemes. Anotherlprob
posed by these compactifications is that the volume and stfape internal space, being dy-
namical by construction, are not always stable. For ingairc many solutions, the volume
will tend to blow up in time. This is known aspontaneous decompactificatioli one takes
such models seriously, then one should expect to be ableserabdthese extra dimensions in
the present, or assume that we live in a special moment inishar of the universe, when the
extra dimensions happen to be small. These compactificetioemes should, therefore, not be
regarded as phenomenologically realistic models, but inaseevidence that demonstrates that
it is possible to circumvent the Maldacena-Nufiez no-gorigred82].

Currently, string theorists are trying to create realistiodels that can stabilize all of the
moduli of the internal compactification manifold. A couple of yeago, the authors of [33]
came up with a string compactification scenario that exploiin-perturbative string theory
effects to stabilize the internal moduli. The idea relies on-perturbative instantonfiects
induced by wrapping a Euclidean D3-brane around a 4-cyctheinternal Calabi-Yau space.
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The authors of the paper, however, did not find an expliciiaéor the required Calabi-Yau
space to carry out this idea. String theorists have onlynthcbeen able to write down concrete
realizations of this scenario. For instance, while thisihievas being written, an article was
published [86], in which not only the moduli stabilizatioroplem was dealt with, but also the
problem of breaking supersymmetry softly for particle poraenological purposes.

All of the schemes to obtain acceleration from stfMgheory that | have mentioned so
far have one thing in common: from the four-dimensional poinview, they all reduce to an
effective field theory with Einstein gravity and scalar fieldshypotentials. This is true even
for models that take non-perturbative string theoffigets into account. Therefore, although
one would like to be able to derive the ultimate string themgchanism or scenario that leads
to inflation and present day acceleration right away, it isfuisand wise to also study which
four-dimensional scalar models are capable of drivingehwg cosmological phenomena at
all. After all, most of the conceivable reduction schemdsneduce to four-dimensional scalar-
gravity field theories. Should one find a class of models thiaed realistic cosmology, one
could then investigate how to obtain it from string theorg. the next two chapters, we will
be doing a bit of both. We will study scalar-gravity modelshwéxponential potentials in gen-
eral, but will also pay attention to potentials obtainedrireome specific dimensional reduction
schemes.



Chapter 5

Scalar Cosmologies I: A simple case

5.1 Introduction

The discovery that the universe may currently be in a phaseadlerated expansion [79, 80]
has led to strong interest in finding de Sitter solutions orenyeneral accelerating cosmologies
from M-theory, see [33,83,87-97] and references therein.

A simple way to study accelerating cosmologies is to comsimlels containing just gravity
and a number of scalars with a potential. This method has @ tistory and has resulted in
models for inflation [98], describing the early universed éor quintessence [99], describing the
present universe. The potentials for the scalar fields gbeeto a small #ective cosmological
constant. Multi-exponential potentials comprise a specifiss of potentials, which have been
frequently studied, and these are of interest for two resisfinst, they can arise from M-theory
in many ways; e.g. via compactifications on product spacssibly with fluxes [100-103],
and second, the equations of motion can be written as an @utaus system. This approach
allows for an algebraic determination of power-law and d&eBsolutions, which are viewed
as critical points that can correspond to early- and latestasymptotics of general solutions.
Many authors have made use of this fact, see [95, 104—110jed@tnces therein.

The purpose of this chapter is to investigate the posgilofitransient acceleration for the
class of cosmologies whose solutions are described by dcnagtd N scalars, with a scalar
potential given by a single exponential. The consequendki®is that, €ectively, the scalar
potential depends on only one scalar. All otiNer- 1 scalars are represented by their kinetic
terms only. Since the metric cannot distinguish betweeseldéferentN — 1 scalars, there is no
qualitative diference between thé = 2 scalar cosmology and th¢ > 2 scalar cosmologies.
We therefore only consider the one-scaldr£ 1) and two-scalarN = 2) cosmologies. We
will be studying these models purely from the four-dimensigoint of view, without reference
to possible higher dimensional origins. This chapter caediesidered as a warm up for the
next chapter, where we will study scalar cosmologies withtirexponential potentials. In that
case, things will be much more complicated, as there it vallanger be possible to reduce a
multi-scalar system into a 2-scalar model.

The cosmological solutions discussed in this paper havedigen sometime ago [111,112].
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The fact that these cosmologies, for particular cases stt leghibit a period of acceleration, was
noted recently in [83] where a specific class of solutions @l@ained by compactification over
a compact hyperbolic space (for earlier discussions, &€l (8, 112-114]). The relation with

S-branes was subsequently noted in [91, 92, 97] (for getiezedture on S-brane solutions,

see [84,94,100-102,114-121]).

,‘ >

@) (b)

Figure 5.1: Each cosmological solution is represented by a curve on piher®. In figure (a)
“Rome", represented by the dot, is on the sphere and eachedardirected from the equator
towards “Rome", which corresponds to a power-law solutiortlte equations of motion. In
figure (b) “Rome" is not on the sphere and each curve, againddirected towards “Rome",
begins and ends on the equator. In this case “Rome" is notidisol. The accelerated expansion
of the solution occurs whenever the curve lies within thectiarcircle”. This region is shown
by the shaded area.

In this work we will discuss systematically the accelergtiinases of all 2-scalar cosmolo-
gies with a single exponential potential by associatingithesolution a trajectory on a 2-sphere.
It turns out that all trajectories have the property thatewprojected onto the equatorial plane,
they reduce to straight lines which are directed towardsiat ploat we will call “Rome". De-
pending on the specific dilaton coupling of the potentiak fhoint can be either on the sphere
or not. In the former case, it corresponds to a power-lawtsoldor the scale factor, whereas in
the latter case, it is not a solution. We find that the acceétegyphase of a solution is represented
by the part of the trajectory that lies within the “arctica@” on the sphere, see figure 5.1. This
enables us to calculate the expansion factors in a straigbdafd way for each of the solutions.

This chapter is based on a collaboration with E. Berghake Gran, M. Nielsen, and D.
Roest, entitledransient quintessence from group manifold reductionsaw hll roads lead to
Rome[95]. It is organized as follows: in sections 5.2-5.4 we prasunder the assumptions
stated, the most generbllscalar accelerating cosmology in 4 dimensions. The actéalg
phases of these cosmologies are discussed in section %eb.efuations of state and the one-
scalar truncations are discussed in sections 5.6 and Sp&ctvely.



5.2 Setup: Lagrangian and Ansatz 99

5.2 Setup: Lagrangian and Ansatz

Our starting point is gravity coupled td scalars [122] which we denote by,@). We assume
that the scalar potential consists of a single exponeietied:t

L= V=9[R-3(0¢)* - 308° - V(e )|,  V(e.4)=Aexpap-F-4), (5.1

where we restriétto A > 0. To characterize the potential we introduce the followpagameter:

2(D-1)
(b-2)

This parameter, first introduced in [52], is invariant ungepidal reductions.

The kinetic terms of the dilatons are invariant un&@(N)-rotations of {, (3). However,
in the scalar potential the cfigientsa andj single out one direction ilN-dimensional space.
Therefore the Lagrangian (5.1) is only invariant un8&XN — 1). The remaining generators of
SQN) can be used to sgt= 0, in which case only the scalarappears in the scalar potential.
Such a choice of basis leavasnvariant.

Motivated by observational evidence, we choose a flat FLRWasn This basically means
a spatially flat metric that can only contain time-dependienttions. One can always perform
a reparametrization of time to bring the metric to the follegvform:

A=ad?+ |2 - ?+|fP-3 for D=4 (5.2)

d& = —a(u)?’ du? + a(u)®dx, (5.3)

for somes. In this paper we will choosé as follows:
Cosmic time: 6=0, u=r, % =a, (5.4)
Non-cosmic time: § = 3, u=t, % =a. (5.5)

As a part of the Ansatz, we also assume:
e=p), §=4u). (5.6)

For this Ansatz one can reduce tNe- 1 scalarsp that do not appear in the potential to one
scalar by using their field equations as follows:

¢ dloga dé dé 3
aE - audu > au-o

whereCis some constant vector. The only influence ofkhe 1 scalars comes from their total
kinetic term:

6 -3) (5.7)

d_&z_ 2 .26-6
'w — g2 a8 . (5.8)

1We make this choice in order to obtain dark energy and thezefocelerating solutions.

2The non-cosmic time corresponds to the gauge in which treelfynctionN = /=gy is equal to the square root
of the determinany of the spatial metric, i.eN = +/y, whereas cosmic time correspondsNo= 1. We thank Marc
Henneaux for a discussion on this point.
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Therefore, from the metric point of view, there is néfdience betweeN = 2 andN > 2 scalars
(under the restriction of a single exponential potentidlje truncation of the system (5.1) to
one scalar corresponds to settinig O.

To summarize, we will be using the following Lagrangian:

L= V=g[R-3(00)*- 330 - V()|.  V(¢) = A exp(-ay), (5.9)

with A > 0 and we choose the conventior> 0. From now on we will usé = o? — 3 instead
of a.

In the next two subsections we will first discuss the critipalnts corresponding to the
system (5.9) and then the solutions that interpolate betileese critical points. We will use
cosmic time (5.4) when discussing the critical points intisec5.3 and non-cosmic time (5.5)
when dealing with the interpolating solutions in sectio. 5.

5.3 Critical points

It is convenient to choose a basis for the fields, such thatplaeametrize a 2-sphere. In this
basis, we will be able to regard our system as an autonomagisama we will find that all
constant configurations (critical points) correspond tav@elaw solutions for the scale factor
a(r) ~ P for somep. By studying the stability of these critical points [L047]0ne can deduce
that there exist interpolating solutions which tend to éhpsints in the far past or the distant
future. We will actually be able to draw these interpolatiodutions without having to do any
stability analysis.

We begin by choosing the flat FLRW Ansatz (5.3) in cosmic time:
ds = —dr? + a(r)? (d¥ + dy? + d2). (5.10)
The Einstein equations for the system (5.9) with this Anbatzome:

H2= L (@ +¢)+ iV, (5.11)

H=-2("+4%, (5.12)
whereH = a/ais the Hubble parameter and the dot denot@&iintiation w.r.tz. Equations
(5.11) and (5.12) are usually referred to as the Friedmaunatemn and the acceleration equation,
respectively. The scalar equations are:

¢p=-3H¢+ VA+3V, $=-3H¢. (5.13)
We define the following three variables:
¢ ¢ W
X=—-, y=——, z=——. (5.14)
VI2H VI2H VeH
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In these variables the Friedmann equation (5.11) beconeeddfining equation of a 2-sphere
[107,123]:

X+y+Z=1. (5.15)

This means that we can think of solutions as points or trajet on a globe. It turns out
that cosmological solutions are either eternally expam¢iie. H > 0) or eternally contracting

(H < 0), but cannot have an expanding phase and then a contrgttagge (or vice-versa).
Since we are only interested in expanding universes, weonil be concerned with the upper
hemisphere (i.ez > 0). In terms ofx andy the scalar equations become:

=32 (x- \1+A/3), (5.16)

__32y. (5.17)

T x

TIT|<

We can rewrite the acceleration equation (5.12) as follows:

H
e 30 +Y?). (5.18)

If we now solve for the critical pointsx(= 0,y = 0), we can then integrate (5.18) twice and
obtain the following power-law solutions fefr) [122]:

a(r) ~7°, where p= Wiy@) (5.19)
and the following solutions for the scalars:
¢ = V12p x log(r) + constant (5.20)
We thus find the following critical points:
e Equator:
z=0, X¥+y’=1 (5.21)
Ever){/spoint on the equator of the sphere is a critical poirthvpiower-law behaviour
a~ 13,
e “Rome":

x=41+A/3, y=0, z=+-A/3. (5.22)

This critical point yields a power-law behaviour of the fofme ignore here irrelevant
constants that rescale time)

a~7t/®3) for —3<A<0, a~¢€ for A=-3 (5.23)

Note that the greatek is, the further “Rome" gets pushed towards the equator, and f
A =0 itis on the equator.
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Although the equatorial points (a.k.a. kinetic-dominasedutions) do solve (5.15)-(5.18) as
critical points, they are not proper solutions of (5.11¢@ in terms of the fundamental fields,
sincez = 0 would imply thatV = 0, which is impossible foA # 0 unlessy is infinite at all
times. However, these points will be interesting to us, ag thill provide information about the
asymptotics of the interpolating solutions.

In contrast to the equator, the “Rome" critical point is a gibglly acceptable solution of
the system, provided it is well defined on the globe (Ae< 0). In the case whera = -3 it
becomes De Sitter (i.e.~ €7), as one would expect, sinde= A.

Besides these critical points there are other solutiong;iwdre not points but rather trajec-
tories. In fact, we can already determine their shapes.didigi(5.16) and (5.17) we obtain the
following:

dy_ vy
dX x-+VI+A/3

Integrating this we get the following relation betweeandy:

(5.24)

y=C(x- v1+A/3), (5.25)

whereC is an arbitrary constaht This relation tells us that if we project the upper hemisphe
onto the equatorial plane, in other words, if we view the spliem above, any solution to the
equations of motion must trace out a straight line that ligBiwthe circle defined by?+y? = 1
and has g-intercept at X = v1+ A/3,y = 0). From now on, we will refer to that point as
“Rome™. Notice that all lines intersect at “Rome" independentlywyiether it is on the globe
(A < 0), right on the equator\(= 0) or of the globe A > 0). These lines can only have critical
points as end-points. So each line is a solution, which paietes between two power-law
solutions. In a similar, yet physically inequivalent cotitesuch a line was found in [105].

Now that we know the shapes of the trajectories, let us figutéheir time-orientations. By
looking at (5.16) we realize that the time derivativexois positive whenx < v1+ A/3 and
negative wherx > +/1+ A/3. This tells us thaall roads lead to RomeFigure 5.2 illustrates
this for the cases where “Rome" iff the globe, right on the equator or on the globe.

One can also determine the orientations of the trajectbsieanalysing the stability of the
critical points. One will find that whenever “Rome" is on thelge (i.e.A = 0 andA < 0), itis
stable (i.e. an attractor), and the points on the equatalbuvastable (i.e. repellers), except for
“Rome" whenA = 0. In the case where “Rome" igfdhe globe (i.eA > 0), the equator splits
up into a repelling and an attracting region. The attractegjon turns out to be the portion of
the equator that can “see” “Rome". In other words, any pairthe equator that can be joined to
“Rome" by a straight line such that the line does not intdrdexequator again before reaching
“Rome" is attracting. To summarize, far> 0, all points on the equator witk > +/3/(A + 3)
are attracting, and the rest are repelling. In the firstfitateon of figure 5.2, the attracting
portion of the equator is depicted by the thick arc.

3SinceC is finite one might think that this excludes the line definedxby I+ A/3. However, that line can be
obtained by taking the inverse of (5.24) and solvingXas a function ofy.

“Note that we have extended our definition of “Rome": only ibfRe" is on the globeX < 0) is it equal to the
critical point discussed before.
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A>0 A=0 A<O

Figure 5.2: The solutions represented as straight lines in (Rgy)-plane forA > 0 where
“Rome" is not on the spheréy = 0 where “Rome" is on the equator ane3 < A < 0 where
“Rome" is on the sphere. The thick arc in the left figure repres the attracting portion of the
equator [124].

5.4 Interpolating solutions

To solve the equations of motion, it is convenient to use ttiRW Ansatz (5.3) in non-cosmic
time:

dg = —at)®de® + a(t)?dx3. (5.26)
Substituting this Ansatz in the Einstein equations yields

FP=2F + 5 (0% +¢?). (5.27)
FF=1ive, (5.28)

whereF = & /a is a Hubble parameter-like function, and the prime denotésréntiation
w.r.t.t. The equations for the scalars are:

¢ =0, ¢ = VA+3Val. (5.29)
Combining (5.29) and (5.28) gives the following solutionsthe scalars:
¢=2VA+3log@ +art+by, ¢=axt+bhy. (5.30)

By substituting this into equation (5.25) we can deduce thatslope of the line is given by
C = ap/ay. Substituting the scalars into (5.27) and (5.28) we are regtwiith the following
two equations:

F'=-AF2— VA+3a.F - 1 (a%+ad) (5.31)
= 1 A VAR O g2 (5.32)

Keeping in mind thaF’ must be positive due to (5.32) we can now solve Foin the three
different cases wher# is positive, zero and negative. We can then easily &l We will
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chooséb; (the constant part @f) such that all solutions fa(t) have a proportionality constant of
1, which does notféect the cosmological properties of the solutions. The iatign constants
appearing in the solutions are defined as follows:

-VA +3a V3a§—Aa§ a2+ a3
=" =Y g =-L 2 ¢,=-V3ay. (533
2A 2 4\/§al

Below we present the solutions [111, 112] and their late-earty-time asymptotic behaviours
(we give the latter without any irrelevant constants thatade time):

1. A>0:
a(t) = ' cosh g t)Y4, for —oco<t<+c0. (5.34)

The positivity ofF’ requiresa; to be negative, and it also imposes the following constraint

a2 3
(al) <3 (5.35)
This solution corresponds to a generic line on the firstiitat®n in figure 5.2. It starts
on the equator somewhere to the lefbof +/3/(A + 3), then moves in the direction of
“Rome", but ends on the equator on the right-hand side. M@tetihe constraint (5.35) is
simply the requirement that the slope of the line is boundechfabove and from below
such that the line actually intersects the sphere. We cdiiraotiis asymptotic behaviour
of the solution by converting to cosmic time (5.4) for» —co andt — +oco with the
relationa(t)® dt = dr:

t— —oo, 7—-0, a—d~7l3,
t — 400, T — +00, a—ée ~ 13, (5.36)
2.A=0
at) = et expE®!), for —oco<t<+co. (5.37)

The positivity of F’ requiresa; to be negative. This corresponds to a line on the second
illustration in figure 5.2. It starts on the equator and reasctiRome®, which is also on
the equator. Its asymptotic behaviour goes as follows:

t—> —o0, T—0, a—>et~rl/3,

t — 4o, T — +00, a— e ~ 713 (5.38)
To find the late-time behaviour @ in cosmic time one must realize the following two

facts: Firsta(t) ~ exp@) fort — co. Second, in this limita’ ~ a and therefora behaves
like a normal exponential.

5In this case, “Rome" is again attracting, however to see thva must perform the stability analysis by going to
second order perturbation. The first order vanishes, whieans that the interpolating trajectory approaches “Rome"
more slowly than in the cases wheke< 0.



5.4 Interpolating solutions 105

3. -3<A<0:
a(t) = ! sinh (- )4, for —oo<t<DO. (5.39)

This solution corresponds to any line on the third illustmatn figure 5.2. It starts at any
point on the equator and ends at “Rome". This is reflectedaratymptotics as follows:
t— -0, T—-0, a—oée~73,
t—0, T 400, a— (YA~ VA for A -3, (5.40)

~ € for A=-3.

There is one more solution fei3 < A < 0. If we seta; = a, = 0 we find:
a(t) = (¥4 for —co<t<O. (5.41)
This solution corresponds to the “Rome" solution itselfr F8 < A < 0 the conversion
to cosmic time is the following:
an~ /(03 (5.42)

Notice, however, that in the case whére- —3, the “Rome" solution (5.41) and therefore
the late-time asymptotics of (5.39) have &elient conversion to cosmic time, namely:

a~ (-4 ~ e, (5.43)
which we recognize as the De Sitter solution, in agreemettt thie fact that we have
V =A.

The interpolating solutions above are given in non-cosimiet which as mentioned is re-
lated to cosmic time by

dr = a(t)®dt. (5.44)

Integrating this equation yields hypergeometric funddiéor a generic interpolating solution,
which we cannot invert to get the scale factor as a functiocogfic time. However, it is pos-
sible to get interpolating solutions in cosmic time for nigaA when the following constraint
on the constants holds:

9
az\2 A+ i
=) =12—, 5.45
(al) (ZA + 3)2 ( )
which can only be fulfilled for-9/4 < A < 0. The relation between the two time coordinates is
2738 A o
_ ot 1\(3+A)/A
= 5 37A (€% — 1) , (5.46)
and the scale factor in cosmic time becomes
1/3
a(®) = (ke Y 4l 7) (5.47)

wherek; = (2/¢1)¥2 andk, = ky c1 (2A + 3)/(18 + 6A). From this solution, the asymptotic
power-law behaviours are easily seen. The special onarszade, corresponding 0= —9/4,
was found in [125].
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5.5 Acceleration

In this section we will investigate under which conditioffme" and the interpolating solutions
represent an accelerating universe. This can be given giut®ial understanding in terms of
the 2-sphere. We will show that acceleration takes placenvifne trajectory enters the region
bounded by an “arctic circle". This is summarized in figur& 5.

An accelerating universe is defined bya > 0. The existence of the “arctic circle" in
connection to acceleration can now easily be determinesusg an expanding universe and
using

Z — H + H2, (5.48)

as well as (5.18), we see that the condition for acceleraiequivalent t&
2 1
22>§, ie. x2+y2<§, (5.49)

which exactly yields an “arctic circle" as the boundary & tegion of acceleration. The straight
line representing the exact solution is parametrized byctmstants; anda, as found in the
previous section. From (5.49) and (5.25) it then easilyofedl that the condition for acceleration
leads to the following restriction for the slope of the line:

(Z_i)z(“ A <1. (5.50)

This condition is always fulfilled wher < -2 and otherwise there is an interval of values
for ag/af yielding an accelerating universe. This can easily be wstded from figure 5.3. In
general, a solution will only have transient acceleratidhe only exception is when “Rome"
lies within or on the “arctic circle", corresponding 1o < —2. Then, from the moment the
line crosses the “arctic circle", there will be eternal deragtion [89] towards “Rome". When
A = -2, there will only be eternal acceleration when “Rome" israpghed from the left. The
possibilities of acceleration can be summarized as:

e A>-2: A phase of transient acceleration is possijble
o A=-2: A phase of eternal acceleration is possjble
e—3<A<-2: Always a phase of eternal acceleration

The phase of eternal acceleration can also be understoodtfi® power-law behaviour of the
“Rome" solution, i.ea(r) o« %G+ We have asymptotic acceleration whef{3l+ A) > 1,
i.e.A < -2. In the limiting case\ = -3, corresponding to “Rome" being on the North Pole, the
interpolating solution will asymptote to De Sitter.

6A similar inequality was given in [105] for the one-scalaseaand in terms of the scalars and the potential in [112]
for the multi-scalar case.
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Figure 5.3: The solutions represented as straight lines in (rgy)-plane forA > 0 where
“Rome" is not on the spheréy = 0 where “Rome" is on the equator ane3 < A < 0 where
“Rome" is on the sphere. The inner circle corresponds to thectic circle”, and solutions
are accelerating when they enter the shaded area. The lowdrgb the figure corresponds
to the cases where “Rome" is lying on the “arctic circlel,= -2, inside the “arctic circle",
-3 < A < -2 and on the North Pole\ = -3.

5.6 Equation of state

In a cosmological setting, one often writes the matter patti® equations in terms of a perfect
fluid, which is described by its pressupeand energy density. These two variables are then
assumed to be related via the equation of state:

p=«p. (5.51)

As is well known in standard cosmology= 0 corresponds to the matter dominated era,1/3
to the radiation dominated era ané —1 to an era dominated by a pure cosmological constant.
Quintessence is a generalization of the latter with< « < —1/3.

In our case, the matter is given by the two scalar fields, and phandp are given by the
difference and sum of the kinetic terms and the potential, réspkc

P=1@+d)-V. p=3@+i)+V. (5.52)

Writing the above in terms of, y andz, we see that the scalars describe a perfect fluid with an
equation of state given in terms of the parameter:

k=1-27. (5.53)
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Hence,« varies from 1 on the equator tel on the North Pole, and we need< —1/3 for
quintessence. For the interpolating solutions, which &rergas curves on the spherewill
depend on time, but it will be constant for the critical psintith the following values [89]:

e Equator: k=1,
e “Rome”: k=1+3A. (5.54)

5.7 One-scalar truncations

The analysis has so far been done for two scalars, and astsalsh tontains the truncation to
a system with one scalar with a potential, corresponding+00. Here we will summarize the
results of the previous sections in this truncation. On fhteege this yieldy = 0, and for the
solutions it corresponds & = b, = 0.

A>0 A=0 A<O

Figure 5.4: The 2-dimensiongk, z) space and the critical points for the one-scalar truncasion
The thick curve is the accelerating region. The two pointtherx-axis are the equatorial critical
points. The third point is “Rome". Note that in the middleigtration “Rome" coincides with
the equatorial critical point x= 1.

Since we only have one scalar, the Friedmann equation withee circle when written in
terms ofx andz[105, 109]:

X+Z=1. (5.55)
The critical points are [104]:
e Equatorial : z=0, x=1,
e “Rome”"(-3<A<0): z= \/T/?, X = m (5.56)

The full circle is shown in figure 5.4, including the critigadints, and is just the vertical slice
of the two-sphere including the North Pole. The equatoretoge becomes two points, and
the region bounded by the “arctic circle" now becomes thé @iathe circl€ corresponding to
x? <1/3.

"This is equivalent to the accelerating region of [126, 127].
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The exact solutions can be obtained from the previous sebgiesettinga, = b, = 0. For
A > 0 the solutions correspond to the curves starting-at-1 and ending ax = 1, whereas for
-3 < A < Othe curves start at either one of the equatorial points adé&e“Rome". In all cases
where the curve starts at= —1, the corresponding solution will give rise to accelenatieor
this reason, interpolating solutions with> 0 will always give rise to a period of acceleration.
This is in clear contrast to the two-scalar case, where ibssible to avoid acceleration (see
figure 5.3). As for the 2-scalar case, if “Rome" lies in thectar" region, the solution will be
eternally accelerating from the moment it enters this negio

One can also consider the truncation to zero scalars. Howfeoen the scalar field equa-
tions, it is seen that this is only consistentAif= -3, and this corresponds to the De Sitter
solution withV = A.

A comment on the relevance of the interpolating solutionsflation would be in order. In
this context the number afoldings is crucial. As mentioned already, it is definedMy =
log(a(r2)/a(r1)) with T1 andt; the start and end times of the accelerating period. Thessstim
can easily be found in our approach as the points where thigistrlines intersect the “arctic
circle". The number oé-foldings is required to be of the order of 65 to account farasmical
data. For the interpolating solutions with> —2, which is a necessary requirement to have a
finite period of acceleration, one fintls < 1[93,97,120] for all values &y, a andA. The only
exception to this behaviour is whean— -2, whereN. blows up. For the required G5foldings
one needs to tak& + 2 ~ 1070, As an example, for a compactification overrardimensional
hyperbolic space, leading to= —2 + 2/m, this translates int1 ~ 10°°. Thus, it seems that the
e-foldings requirement for inflation cannot be met by a sirgtponential potential emanating
from a dimensional reduction from théective action of strindv-theory. Such a potential may,
however, be relevant for describing present day acceteraiihis does not exclude, however,
that potential withA close enough to 2 for inflation might arise in a string theargrario that
takes other string theonyffects into account, such as in [33].

In this chapter we introduced the scalar-gravity model m BLRW context. We also in-
troduced the language of autonomous systems and thefiufrafiplication to cosmology. We
learned that it is not necessary to find explicit solutionshi® Einstein equations in order to
get important qualitative information about our systemthAlugh we were fortunate enough
to write down the solutions explicitly, just by reasoningt@rms of critical points and stabil-
ity, we realized that power-law and de Sitter solutions arethe only kind of cosmology. We
found solutions that interpolate between those two basies;asome of which showed periods of
transient acceleration. Transient acceleration is phenahgically more interesting because a
realistic model of cosmology should dynamically bring itifia to an end. It is also useful to
consider scenarios with transient acceleration simplabse we do not know whether present
day acceleration will last forever.

So far, we have specialized in the case where the scalartiabtmmmsists of one exponential
term. This lead to the huge simplification of being able teefad our fields such that only one
scalar appears in the exponent, no matter how many scaleegnesent in it to begin with. This
was a particularly simple prelude to what we are about to dbémext chapter, where we will
deal with themostgeneral multi-exponential potential. We will rely entyeln the language of
dynamical systems, as explicit interpolating solutiont @come virtually impossible to find.
By looking for critical points in such systems we will dis@nthat intricate multi-exponential
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potentials do not simply accumulate theets of a single exponential potential, but actually
lead new de Sitter solutions that had not been seen before.



Chapter 6

Scalar Cosmologies II: A not so
simple case

6.1 Introduction

In chapter 5, we studied scalar cosmology models, speicigliz the single exponential poten-
tial case. We wrote down the field equations in the form of aom@amous system and studied
its critical points and its interpolating solutions. Howevthe assumption of a single expo-
nential in the potential lead to a great simplification, nhntke amount of scalar fields was
effectively reduced to two. In this chapter, we will drop thisipiifying assumption and look at
multi-exponential potentials.

The understanding of multi-exponential potentials haslgadly evolved over the years. In
the early days, the single exponential was studied in théegbof inflation, where it was dis-
covered that this potential allowed for a power-law sola{ib04]. Later on, theféect of adding
exponential terms, each carrying dfdient scalar, was studied. This model is called “assisted
inflation” [108]. The outcome is that the scalars ‘assistleather in the sense that each term
contributes in the same way to the power-law behaviour okttade factor and all the contri-
butions are added. Later on, thffeet of a cross-coupling between scalars was searched for,
resulting in a model called “generalized assisted infldtja@2]. It was shown that these multi-
exponential potentials also allowed for power-law solusio However, the understanding of
multi-exponential potentials wasn't complete. The clapaientials described in [122] does
not cover all possible multi-exponential potentials. Eher a strong restriction on the scalar
couplings in that model, such that it only allows for powawlsolutions. In other words, the
potentials do not have any extrema. However, nowadays, sidenable amount of models that
are inspired by string theory seem to be multi-exponentigtls extrema (which allow for de
Sitter solutions). Hence, they do not fall in the class ofegatized assisted inflation.

The goal of this chapter is to study the most general mulpeeential potential. This is
done using the elegant formalism of autonomous dynamiciésys. We will construct all pos-
sible power-law and de Sitter solutions by finding the caitigoints to which they correspond
in this formalism. We point out that this will uncover manynpower-law and de Sitter solu-
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tions corresponding to so-called non-proper critical othat cannot be found in the case of
generalized assisted inflation. To illustrate this, we wglhsider the special cases of double and
triple exponential potentials with one or two scalars. Fentain values of the scalar couplings,
these can arise from M-theory, and their interpolating tsahs correspond to the reduction of
S-branes [117] and so-called exotic S-branes [95], resdct For the exotic S-branes we de-
rive the phases of accelerated expansion and find speced wdmre the number of such phases
can be arbitrarily high. This can be useful for solving theroological coincidence problem,
since oscillating dark energy could explain why we see arrietede over of dark energy in our
present universe. It would simply be an event that occursrtiares during the evolution of the
universe.

The chapter is based on a collaboration with M. Nielsen andan. Riet, entitledScalar
cosmology with multi-exponential potentigd8]. It is organized as follows: in section 2, we
present the system consisting of gravity and scalars witbterpial. In section 3, we perform
the general analysis of critical points. In section 4, wesider the special cases of double
exponentials. In section 5, we present cases that can baettirom the reduction over a
three-dimensional group manifold. Finally, we end with scdission of our results in section 6.

6.2 Scalar gravity with multi-exponential potentials

We consider 4-dimensional spatially flat FLRW gravity wiNtscalarss, which only depend on
(cosmic) timer. The scalars have a potential which is of the most generalrexqtial form:

V($) = Zm: A e@d (6.1)
i=1

Thus, the scalar potential is characterizednbyectors@; andm constantsA; which can
have positive or negative signs. Thevectors form amm x N matrix «;, where the indices
i = 1,...,m parametrize the exponential terms in the potential andribeésl = 1,...,N
parametrize the dlierent scalars. The Lagrangian for the system then teads

L= V=9(R- 509 -V(d)). (6.2)

The equations of motion derived from the Lagrangian are

<}5|+3H<}5|+ﬂ=0,

' '3¢|
H2=%2(f3'f5)+%V’ (6.3)
H=-1(d),

where the dot is dierentiation w.r.t. cosmic time. We refer to the equationthasscalar equa-
tions, the Friedmann equation and the acceleration eqyaispectively. The Hubble constant
H is defined a#1 = &/awherea(r) is the scale factor appearing in the flat FLRW metric:

de = —dr? + a(r)?dXg. (6.4)

1We use the convention for the metric with mostly plus sigratu
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There areN + 1 degrees of freedom, namely, the scale factor andliteealars (and accordingly
only N + 1 equations of motion are independent). For example, thelemation equation can
be obtained from the Friedmann equation and the scalariegapt There exist 2 types of
solutions:

e Critical points: These solutions correspond to statiorsuolytions defined in terms of
certain dimensionless variables, which will be introdutethe next section. The critical
points can be obtained explicitly and they correspond togrdaw solutions&(r) ~ 7P)
or de Sitter solutiorfs(a(r) ~ €). The solutions can be attractors, repellers or saddle
points. In the former two cases they correspond to the asytmpgiehaviour of more
general solutions, whereas a saddle point just corresgoratsintermediate regime.

e Interpolating solutions: These are the non-stationarytgmis and in general they will
interpolate between the critical points. Often they carbefound explicitly, but a nu-
merical analysis can reveal most of their properties.

6.3 The critical points

Critical points (also known as fixed points or equilibriuminis) are solutions of dierential
equations in the context of autonomous dynamical systemsavdonomous system is defined
as a system described lnyvariables, say, that depend on one variabiewhose dynamical

equations are of the form:

dz
pralICR (6.5)

wheref’: R" > R"is interpreted as a vector field ®f. A key feature of autonomous systems

is the absence of the independent varighba the right-hand-side of the dynamical equation
(6.5). Solutions forZ(t) are then integral curves to the vector fifldi.e. fis everywhere
tangent to all possible curvegt). The critical points of an autonomous system are defined
as those pointg, obeyinngZo) = 0. These points are always exact constant solutions since
dZy(t)/dt = 0. The interesting property about these systems is thatritieat points are often

the end points (and initial points) of the orbits and therefidescribe the asymptotic behaviour.

If the solutions interpolate between critical points, tlcay be divided into two classes:

e Heteroclinic orbit: This is an orbit connecting twdl@irent critical points.

e Homoclinic orbit: This is an orbit connecting a critical poto itself.

Most of the examples we have found are of the first type and Wdagus on those. More on
the theory of dynamical systems in cosmology can be foundi28,[130].

An useful property of multi-scalar cosmology with exponehpotentials is that they allow
for a description in terms of variables that make the systatoreomous [104, 106, 107, 110].
With an arbitrary multi-exponential potential, the vatiebare defined as follows:

¢

o ’Ai e aid
| = \/1_2H , Yi= 6H2 . (66)

X =

2Anti-de Sitter solutions are not possible since a flat FLRWrineloesn’t support them.
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In this notation, there arld + mvariables. Note that will be imaginary whem; < 0, but this
is not a problem since only? appears in the equations of motion. Rewriting the equatidns
motion with these variables yields

. m
X
ﬁ'=—3y2x| + \/éza”y?, (6.7)
=
X+y? =1, (6.8)
K
o = -3x2, (6.9)
where we have used the shorthand notatidn= Y|, x2 andy? = 3™ y2. An interesting

consequence of the choice of variables is that the Friedranation (6.8) becomes the defining

equation of an| + m — 1)-sphere for\; > 0 (otherwise it will be a generalized hyperboloid).

Furthermore, from the acceleration equation, the conitio accelerated expansion translates
into the following simple constraint:

a>o = X< =. (6.10)
The above condition allows us to visualize the region of Eedion for the specific examples

in section 4 and 5.
It turns out that we also need the derivatives ofyhariables:

%: V3(V3xX2-a-Qyi. (6.11)

We can also use laj as evolution parameteinstead of cosmic time, which simplifies the
equations sincel drops out in the scalar equations of motion and the equatiwnys, giving

x|'=—3y2X|+\/§ZOZi|yi2, Y = V3(V3x*-ai -0y, (6.12)
i1

where the prime indicatesféirentiation w.r.t. Ing). The above is clearly of the form (6.5), and
the critical points can therefore be calculatedias y; = 0 (or equivalently ag; = y; = 0). It
is easy to prove that the system will obey the Friedmann cains$t(6.8) at all times as long as
it does so initially. Hence, if we impose (6.8) on the inittainditions, then (6.12) contains all
the information about the subsequent evolution.
Integrating the acceleration equation (6.9) for a critjpaint yields power-law solutions if

x2#0

1
3x2°
If on the other hand, ik = 0, then the critical point is an extremum of the potentiahvétde
Sitter expansion

a(r) ~ 7P, p= (6.13)

a(t) ~ exp(/zV(¢c) 7). (6.14)

SHowever, one must be careful if the scale factor is not $griconotonic.
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The equations (6.12) determining the critical points are

(V3 - -R)yi =0, (6.15)
m
32X + \/éza”y?:o. (6.16)
i-1
There are two dierent kinds of critical points:
e Proper solutions: di:y =0,
e Non-proper solutions: di:y; =0.

We can single out special non-proper solutions, which adnewist, namely, the case where
all y's vanish. From the Friedmann equation it follows that thesktions have<? = 1 and
for this reason we refer to them as “the equator”. The sahstieith somey’s vanishing have
infinite scalars and therefore, are not proper solutiondiefequations of motion. They are,
however, very important, since they correspond to the agyticpbehaviour of interpolating
solutions. From this classification, we see that there arevamum of 2" types of critical point
solutions [110]. Below we will give these solutions for th@shgeneral exponential potential
by analysing (6.15) and (6.16).

The rankR of the matrixa;;, i.e. the number of independeagtvectors, plays a central role
in this discussion. In fact, the discussion of the generémital naturally splits up into two
casesR=mandR<m.

The rankR gives the #ective number of scalars appearing in the potential, cpording
to the part of the scalar space that is projected orthectors. It is therefore always possible
to perform a field redefinition, such that orfiscalars appear in the potential. The part of the
scalar space perpendicular to tiievectors only appears in the kinetic term of the Lagrangian
and is N — R)-dimensional. Therefore, these scalars decouple fromete All systems with
N > Rhave decoupled scalars and this is necessarily the caseNvhan. Systems wittN < m
only have decoupled scalars if the vect@rare linearly dependent in such a way that R.

The field redefinition yieldingR scalars in the potential can be performed byS@(N)
rotation (which leaves the kinetic term invariant) suctt thehanges intg’ andajg,, = ajg,, =
... =ajy = 0foralli. We then notice from (6.16) that, for critical points, &8 corresponding
to decoupled scalars are zera,;1 = Xr2 = ... = Xy = 0. Therefore, in the rest of this section,
the indiced now run from 1 toR. In the casdRk = m, this makesy; a square matrix.

We have seen that the discussion of the system can be spiitawio cases, depending on
the rank ofa; . Alternatively, we can formulate this in terms of the folliog matrix, which is
guadratic in thex's

Aj=d - . (6.17)

The separation of the general exponential potential into ¢dl@sses can then be characterized
by the determinant oA:

R=m: detd) # 0, (6.18)
R<m: det(®) = 0.
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The first class corresponds to an invertiblenatrix and this is exactly what is termed general-
ized assisted inflation [122]; whereas the second clasjrt&rmwledge, has not been treated
in generality in the literature.

We will extend the existing results by also treating the adsgn-invertibleA in generality
and providing the non proper critical points of both classggecial examples can be obtained
by performing compactifications over certain three-dini@mal unimodular group manifolds
corresponding to class A in the Bianchi classification, sge[85].

There is a subtlety about the description in terms of they()-variables, namely iR < m
then they-variables are not necessarily independent. We will controethis in section 3.2.

6.3.1 TheR = mcase

This case has the simplifying feature tixat= 0 impliesy; = 0. This can be seen in the following
way: first we diferentiate (6.7) and use = d(y?)/dr = 0. Multiplying with aj; and summing
overl we getzj(A;j)d(yJ?)/dT = 0, and since de®) # 0 we know that the only solution is

d(y?)/dr =0
We will now solve for the critical points:

e Proper critical points
From (6.15) and (6.16) we get:

DAY =3y X, (6.19)

whereg; is anm-dimensional vector with all components equal to 1. Inveythis relation
and using (6.16) yields the valuesyfandx, for the proper critical point

¥ = 3p : Z(A_l)lj , X = 3p 1 ZOZH (6.20)

wherep is the exponent given in (6.13). The result forcan also be given in the rotated
basis wherey; is a square matrix

1 &
"= A ;(a i . (6.21)

Note that by construction, th&;-matrix (6.17) isS Q(N)-invariant and accordingly, all
quantities containing only this matrix can be calculatedny basis. We notice from our
formula above that there is a unique proper critical poirtwiver, it only exists wheyﬁ,

as determined from (6.20), has the same sign;asvhich serves as a consistency check
of definition (6.6). Thus, this critical point only existsrfoertain values of the-vectors.

Using (6.13), we get the exponent for the power-law thatadpces the result found
in[122,131]:

p= Z(Aﬁl)ij : (6.22)

ij=1
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By integration we can go back to tle, H variables where the solution becomes:

H=$, ¢ = V12px In() + ¢, yi2=|:—', (6.23)

wherec, andk; are integration constants. In fact, in [103,122], (6.23swaed as an
Ansatz to find power-law solutions.

e Non-proper critical points:

These correspond to sorys being equal to zero. Parametrising the subset of nonzero
with the indicesa, b, c, . . ., the equations become:

V3¢ —d@,-x=0, Z aa(ya)? - (1 - x3) V3x =0, (6.24)

from which we deduce:

D (At = 3y* X ea. (6.25)
b

The @,-vectors are of course also linearly independent and astgyd the sub-matrix
Aqp has non-zero determinant and is therefore invertible. rtingg relation (6.25) and
using (6.16), we find a unique solution

3p-1«, Vip o
a = 3p2 Z(A 1)ab, X = m ;a’m yg. (626)

The power-law is again given by (6.22) but now with the ineeo$ the sub-matriap.
Just as for the proper solution, the above is only well-definbeny? has the same sign
asA,. Note that all the above formulae for the non-proper critf@ints are similar to
those for the proper ones. This is due to the fact that vamgsfs just yield a truncated
potential.

Note that since the solution for the proper critical pointirique and has power-law be-
haviour for the scale factor, there are no de Sitter solstidrhis can also be seen from (6.19).
Since A has maximal rank, this matrix only has the trivial nullspaicey; = 0, which is not
consistent with the Friedmann equation, sixce O for the de Sitter solutions. We can con-
clude that potentials with linearly independéiwvectors generically have power-law solutions
and no de Sitter solutions. This conclusion was also reachg2] where special cases were
considered.

The special case whetg is diagonalisable by a8 Q\N)-rotation is equivalent to the case
where just one scalar appears in each exponential, thubngeghe model which has been called
assisted inflation [108].

6.3.2 TheR < mcase

Since detd) = 0 we will have to use another approach to determine the afjpicints. And the
R < mcase will also be more flicult to treat in full generality because tie are not necessarily
independent.
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The number of independeys is always smaller than or equal B+ 1, as we will now
illustrate. After possible field redefinitions, tgecoordinates are given in terms B+ 1 fields,
namely the scalars and the Hubble parameter. Thereforegthem coordinates, at mof+ 1
are independent, e.g;, ..., Vs This leaves us witln — R — 1 relations for the rest of thgs.
From the definitions of thg's, we can expresg andH in terms of the firsR+ 1y's

R y-zAi+l B i A
“- 1-_1[(y|.21Ai) o H= ey (6.27)
1= i+

where the following square matrix has been defined
ﬁIJ =ai+l,J - a, I9J € {19"'9R}' (628)
We can then express the remainifgin terms of the firsR + 1 as follows

HR (yjzAHl)(YiK(ﬁ’l)Kj
AI JK 1 yjz+1Ai

¥ = You 1

i=R+2,...,m. (6.29)

1 1 E}
AR+1 Y2 A \@Re1M (B i
l—ll M=1 (VI|2+1 Al )

Thus, the maximal number of independgstis R+ 1. It is possible to prove that the dynamical
system (6.12) will obey the above relations for fis at all times if it do so initially. So again
we can use (6.12) as equations that govern the whole systetong as we pick our initial
conditions consistently. With this in mind we will look foritical points.

Until now we have denoted the row vectors of thenatrix with @ andA;; was defined as
the matrix with the inner products of these row vectors adeitA;; = @; - @;. In this section
we will also need the column vectors which we will denoteilpyand we will need to define the
following matrix

Bjy=a -aj. (6.30)
The R column vectorsy, are all linearly independent because the rank efjualsk and, con-

sequentlyB is invertible (remember thatnow runs from 1 tdR). It is this property that we will
use to find the solutions.

e Proper power-law critical points:
Looking for the solution(s), witly; # 0, we find from (6.15)

R
Z Biyxi = V3x%F;, (6.31)
=1

whereF; = ¥, aiy. Thus, we can solve fox :

R
- %p B Fs (6.32)
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Hence we find the extension of the power-law formula to the eadsereR < m;
p=B" FP. (6.33)

One can prove that this formula reduces to (6.28 # m. Since the rank of;; ISR, itis
enough to us®independent equations among thequations of (6.15) to obtaiq. This
result, of course, has to be consistent with the remainirgR equations, and this puts
strong restrictions on the allowed dilaton couplings as Wwenaw show. Let{d’a}il be
linearly independent. It is possible to solve (6.15) simmngdtously for these vectors. The
rest of the vectors can be written as linear combinationssa@@nly guaranteed to solve

(6.15) if the linear combinations are convex

R R
@i=) Cada, Zciazl, i=R+1,...,m. (6.34)
a=1 a=1
We will give a specific example with an M-theory origin, whéhes is realized. A special
case isR = 1, where after field redefinitions only one scalar appearkémpbtential. In
this case, the above solution will never exist, since (6bEfomesn equations with one
variable (or equivalently, the requirement of convexityeheould implym = 1, which is
not the case under consideration).

An important diference between this and the previous case is the questiba ahtque-
ness of the solution. We cannot obtain healues with this procedure, and in particular
we cannot determine whether they are unique. In fact, it3y &magive an example where
they are not: when at least ong < 0, we have the following possibility, sing®has a
non-trivial kernel

y¥'=0, ¥ eKer(A),
X¥=1, & -X=V3, for y;#0. (6.35)

In particular, this includes a proper critical point of therh (6.32) when all; # 0 and
where furthermore

. 1
B F]? = 3 (6.36)

e De Sitter solutions

We have seen in the previous subsection, that de Sittericodudo not exist foR = m,
because the matrid has a trivial kernel. In the present case, sidckas a non-trivial
kernel, making a de Sitter solution is possible, we havedhewing:

x=0, y=1, y’eKer(A). (6.37)

Again, this solution is only well-defined whgﬁ has the same sign as. We can conclude
that potentials withR < m show the opposite behaviour 8 = m potentials. Here,
(proper) power-law solutions are rare (only possible fotaia couplings (6.34)), whereas
de Sitter solutions are quite generic. Again, a similar oletéon was made in [132], but
for specific couplings (which did not allow power-law belmu).

40f course, there are many ways to number the vectorsflites to find one that obeys these relations.
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e Non-proper critical points:

Looking for these solutions, we again put a subset ofythéo zero. This corresponds to
some terms in the potential being absent. Therefore, we ralyse the new system as
before but with a “truncated” potential. A subtlety appeahenevelR < m, namely the
y's are dependent on each other, and therefore only certbsetiof the/s can be zero
simultaneously.

The findings of this section are summarized in the table helbie asterisk in the lower
left corner stands for a truncated system, which can beloegther of the two casefR(< mor
R=m).

R<m, detA)=0 R=m, det@)#0
Proper Power-law (convex combinations) Power-law
de Sitter No de Sitter
Non-proper * Power-law
No de Sitter

Table 6.1: The critical points for multi-exponential potentials.

As mentioned before, the critical points give rise to thenagtotic behaviour of the general
solutions. By performing stability analysis it is possilibedetermine the nature of the critical
points, i.e. whether they are attractors, repellers, odlsgubints. This can be done by lineariz-
ing the system around the critical poinis,= M - X, and determining the eigenvalues of the
matrix M. If the real part of all eigenvalues is negative, the critpaint is an attractor; if the
real part of all eigenvalues is positive, the critical pagna repeller; and in the mixed case itis a
saddle point. Itis easy to perform the stability analysithmsimple cases considered in the fol-
lowing sections, and the result is confirmed by the interjimdesolutions, which are calculated
numerically.

6.4 Double and triple exponential potentials

In this section we will consider some specific examples ofad®and triple exponential poten-
tials with one or two scalars, i.en = 2,3 andN = 1, 2. These examples serve as an illustration
of the formal framework in the previous section.

As mentioned before, the critical points reveal the asympteehaviour of more general
solutions. In some cases it has been possible to obtain sodsions exactly. For single expo-
nential potentials, this was done for arbitrary dilatonglings and the result can be pictured as
straight lines in the space defined by ti& [95]. For double exponential potentials, exact so-
lutions were obtained for special values of the dilaton diogjs, corresponding to the reduction
of S-brane solutions to 4D, see e.g. [91, 92, 94] and refeetiwrein. Ideally, we would like
to obtain exact results for the general case. However, shéshighly non-trivial task, and we
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therefore turn to numerical methods, which can still shogvghalitative behaviour of the solu-
tions. To this end, it is convenient to usedpés a time parameter. For an eternally expanding
universe whera increases from 0 teo, our time coordinate ranges froawo to .

In general, an S-brane can be obtained as a time-dependitisto the following system
containing gravity, an antisymmetric tensor, and possabdjlaton:

S= fd‘”dx V-8(R-3(0¢)* - 5 €™ F3), (6.38)

where the hats indicate that the fields live ir- 4l dimensions and where the dilaton coupling
for maximal supergravities is given by

[14-2d

Reducing over @-dimensional maximally symmetric space with curvatkiend flux f yields
the following potential [133]

V(g.g) = f2eP3Vaze ke Ve (6.40)

whereg is the Kaluza-Klein scalar. S2-brane solutions have beandan six to eleven di-
mensions, corresponding tb= 2,...,7. In five dimensions, an S2-brane has a 1-form field
strength. The corresponding four-dimensional cosmo#dgiolution with single exponential
potential was found in [95]. As explained in that paper, aegehtwisted reduction leads to
triple exponential potentials, which could have corregtiog exotic S-brane solutions in five
dimensions.

6.4.1 Double exponential potentials, one scalar

The simplest case im = 2 andN = 1. The corresponding potential is described in terms of two
dilaton couplingsr; anda,. We can always choose ea. to be positive and in this example we
will start by considering positiva;. SinceR = 1, we have 2 independeyis. The Friedmann
equation defines a 2-sphere, but the allowed solutions cigriieron the part corresponding to
non-negativg’s. Using the machinery from the previous section, we findftlewing critical
points

() yi=¥=0, x =1,

a a’l

@) yi=y1l-3. ¥%2=0, x=\_@, for of <3,
Cl’% 07}
(ii)  y1=0, y2=q1-=, X= 5 for a3 <3, (6.41)

(v) yi=(1-2y¥2 = @-2)M2 x=0, for ap<O.
a? %}

The first, {) corresponds to the “equatorial” poimnts= +1. In an {1, y», X)-plot these become
the North and South Pole. The next twd) @nd {ii), are the non-proper critical points. The
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last one, i), is the proper solution, which only exists f@s < 0 and corresponds to a de Sitter
solution. The stability of the dlierent points is best illustrated by considering thfedent
possible casés

e a1,z > V3: Only the North and South Pole are critical points; the feris attracting
and the latter repelling. Any interpolating solution wik a curve between them, and
these can be found numerically. An example is illustratefibiore 6.1(a).

e a1 < az < V3: The critical points (i)-(iii) exist. The poles are repa and (iii) is
attracting.

e a1 < V3, a2 < —V3: Apartfrom the poles, we have the two critical points, esponding
to (iii) and (iv) in (6.41). The North Pole is repelling anctttie Sitter solution is attracting;
this is shown in figure 6.1(b).

(@) (b)

Figure 6.1: Plot (a) shows ) in the case ¢1, @) = (3, 2), where the solution interpolates between the
North and South Pole. Plot (b) is for the caga, ;) = (1, -2), yielding a solution interpolating between
the North Pole and a de Sitter solution.

e a1 > V3,-V3 < a» < 0: This is similar to the previous case, except that theoeiiti
point (iii) is interchanged with (ii), and the early asymiits will be the South Pole.

e a1 > V3,0 < ay < V3: In addition to the North and South Pole, there is the naper
critical point (ii), which is an attractor. The South Polerépelling. An interpolating
solution is shown in figure 6.2(a).

e a1 > V3,a, < —V3: The critical points are the poles and the de Sitter salytmd the
latter is an attractor. It turns out that the poles are sagdiets; hence, they do not give
rise to the early asymptotics of the solution. Instead,whiidoe an infinite cycle, moving
closer and closer to the boundary of the space (given By0 ory, = 0), as time goes to
minus infinity. This is illustrated in figure 6.2(b).

e a1 < V3,-V3 < a, < 0: The late-time asymptotics are similar to those of the iores
case. The early-time asymptotics arffelient due to the fact that all the critical points (i)-
(iv) are realized. Both of the poles will be repelling, angherding on initial conditions,
either of these can give rise to the early-time asymptotics.

51f we do not explicitly classify the stability of a criticalgint, it will be a saddle point.
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M’\

0.5

@) (b)

Figure 6.2: The figure showgy;, y», X)-plots for two cases. Figure (a) witfwy, az) = (2, 1), shows a
solution interpolating between the South Pole and theaaitpoint (ii). Plot (b), with(a1, a2) = (3,-2)
shows a solution spiralling towards the de Sitter point.

For all the cases above, the solutions enter a phase of eati@hewhernx? < 1/3. The cases
with |aq], lao] > 1 give rise to one period of transient acceleration, otheswie solution will
end up in a phase of eternal acceleration, which, as mentioefre, is an asymptotic de Sitter
phase whemr, < 0. In the caser; > V3,a» < — V3 the phase of late-time acceleration is
preceded by an infinite cycle, alternating between acdaéderand deceleration.

The case with\, < 0 can be analysed in a similar way, but the interpolatingtsmis will
now be given by curves on a hyperboloid. The critical pain} ill only exist forag > 3, since
this yieldsyg < 0. By the same token, the de Sitter critical poixj only exists fora, > a1 > 0.

The S-brane case correspondingte 0 in (6.38), gives the following dilaton couplings

| d [d+2
] = 3 dTZ, o = T (642)

This system, which can be obtained from eleven dimensiorsanibwill give rise to SM2-brane
solutions, was analysed in [96], where curvature of theragiespace is also included. One can
show that only the critical points)(and {ii) exist for A, > 0; and () and {i) exist forA, < 0,
with the latter being attracting. However, In the latteregase also have a de Sitter critical point,
which is not an attractor.

6.4.2 Double exponential potential, two scalars

Let us now study the case with double exponential potergiatstwo scalars, i.en = 2 and

N = 2. Considering the twa-vectors to be independent, we gt 2. The critical points can
be obtained as a special case of the general analysis fropnaéki®us section and consist of the
equatorx? = 1,y; = 0; the proper critical pointy; # 0; and two non-proper critical points with
yi=0,y;#0,i # .
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x1

Figure 6.3: Three interpolating solutions, corresponding to S2-bsareduced to four dimensions, pro-
jected on théxy, xo)-plane. The inner circle is the boundary of the acceleratiegjon.

Specialising to the reduction of S-branes, we get the fatigudilaton couplings:

14— 2d
7= \/d+2 \/ d+2 = ( 0). (6.43)

For thesar-couplings we get de() = 14/d — 2; therefore, the matrif is invertible ford < 7.
However, using (6.20)? we see that is negative, and, sinte = f2 > 0, the proper critical
point does not exist. Apart from the equator, there is amathigcal point, which hag; = 0
andy, # 0 and corresponds to a power-law behaviour with expopentl/(d+ 2). This critical
point is an attractor and the equator is a repeller. Thus2abr&ne reduced to four dimensions
corresponds to a solution interpolating between the equatd the attracting critical point.
This is similar to the behaviour of the solution found in [88iich is the fluxless limit of a
reduced S2-brane [91]. Indeed, the attracting power-ldutiso is the same with or without
flux. Examples of interpolating solutions, projected on tke x2)-plane, are shown in figure
6.3, in the case ol = 2. One can see that they indeed interpolate between thecequrat the
attracting critical point, which, according to (6.26), lthe coordinatesx, x») = (v2/3,0).
Ford = 7, there is a possibility of a de Sitter solution, since dgtf 0, see (6.37). However, it
does not exist becaugéis negative.

6.4.3 Triple exponential potential, one scalar

This example is the simplest case where yhariables are not all independent, and this sub-
section serves as an illustration. The potential is desdrib terms of three dilaton couplings
a1, a2, andas. For simplicity, we takeA; > 0; the case with negativ&; can be analysed in a
similar way. We can choose; > 0. SinceR = 1, we have two independeyis, leaving one
relation, which reads

(A2)"77 (B = (Aq)27% (Ag)™ 0 () () (6.44)
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The analysis of critical points is analogous to the previcase, except for the extra feature of
the relation above. There are three kinds of critical poffisthe moment we leave aside the
y-dependence)

(i) vy=0, xX=1,

.. _ _ _ a/i _ak .. .
(@) ¥i=y=0,y=\1-=, x= N i, .k different (6.45)

(i) x=0.

A necessary condition for its existenceai§ < 3. However, this is not dficient, since (6.44)
only allows certairy’s to be non-zero while the others are zero. For instancé,ait> a, > a1,
havingy; = 0 ory; = 0 impliesy, = 0.

The third type of critical point is a de Sitter solution givieyithe following equations:

a1y +a2y5 +asy; =0, Yi+Yo+y5=1, (6.46)

which can be rewritten as

-1, (6.47)
3

a3 — a1 as
Y2+
(0%} [07

This defines an ellipse fars > a1, a2. When substitutings, (6.44) also gives a curve in the
(Y1, Y2)-plane, and the critical point is given as the interseclietween these two curvégs-or
example, for ¢, a2, a3) = (-1/2,1/2,3/2) andA; = 1, the de Sitter critical point becomes
(y1 = 0.78y, = 052 y; = 0.34). Figure 6.4 shows the time-development of an interpajat
solution for this case. One can see that the late-time bebaindeed corresponds to the de
Sitter critical point above.

Figure 6.4: The plots showyt), y»(t) and y(t), respectively. As t increases, they tend towards the de
Sitter critical point.

6.5 Multi-exponential potentials from group manifolds

In this section we will consider specific cases that can baionbtl by reducing pure gravity
in seven dimensions over a three-dimensional group mahif@ee appendix C for a basic

SHowever, it is only possible to give algebraic expressidrthe solution for special values of the dilaton couplings.
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definition of group manifolds. Since pure gravity in 7D cangnebedded in 11D, the solutions
have an M-theory origin. We will focus on the triple-expotialcase.

Double exponential potentials can be obtained for certaimcations of reductions over type
VIl and IX group manifolds [95]. This is equivalent to a tié reduction over a circle followed
by a reduction over a maximally symmetric 2D space with fluixe Tesulting potential is given
by (6.40), withd = 2, and interpolating solutions correspond to reductionSZbranes from
six dimensions.

A triple exponential potential can be obtained from typg &hd VIly group manifolds and
the result is [95]

V=le (e, (6.48)

where the plus sign occurs for typegdnd the minus sign for type \WI We therefore have an
example withm = 3 andN = 2, and the three dilaton couplings are

d1=(V32), d=(V¥3-2), d=(V30). (6.49)

Note that only two of these are independent, hence this edlseirito theR < m class, and,
more interestingly, we find the convex Combinat%)ﬂ + %&2 = @3, Therefore, a proper critical
point with power-law behaviour is possible. The fact thathage linearly dependent-vectors
(R < m) is actually the case for most Bianchi class A types. For tlesgnt example, there will
be two independentvariables plus the relatioyy = +2y1y», but onlyy; andy, are needed.

Figure 6.5: Type VIp. On the left-hand-side are shown the projection of two iniéating solutions on
the (X, x2)-plane. On the right-hand-side, the curves are shown on tgh2re defined by the Friedmann
equation; the vertical axis is given by ¥ y,. The fact that the curves do not reach the attractor is due to
the finite computation time.
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For the sake of illustrationy; + y, can be used as a variable, such that any solution will be
given by points or curves on a 2-sphere (the upper half in&se of the plus sign, since thi's
are positive). Interestingly, the dilaton couplings aretsthat most of the critical points from
the previous section do not exist. In fact, for typgMie are just left with the equator solutions
and for type VIp we have the equator and an infinite set of proper solutions:

x2=1, yi=V¥>=0 type Vb,
X2 = 1’ yl = y2 = O
(X1, %2) = (1,0), yi=VYo } type Vllp. (6.50)

By studying the derivatives of the coordinates, it can beanshthat the following points are
attractors

(X1, %) =(L0) yi=y.=0 type Vb,
(X1, %) =(L0) yi=V type Vllp. (6.51)

Thus, the latter is not unique since thevalues are arbitrary. The solution corresponds to
(6.32), which is possible because of the convex combinatign= (@; + @)/2. In both cases
any interpolating solution will end in the point,(@ 0) on the 2-sphere. In the \jlicase, the
y-value will be determined by the initial conditions. Thersigf x; is always positive. When
projected on thexy, X2)-plane, any curve will therefore move from left to right.

A stability analysis leads to the result that only the parthaf equator withx; < —1/7 is
repelling. Thus, any interpolating solution can start da gart and will end in (10, 0).

2
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Figure 6.6: Type VIb. An example of &, x?)-plot with n< 1.

A couple of typical curves for interpolating solutions witlifferent initial conditions are
depicted on figure 6.5, for type Ml In this case, any curve will spiral around the 2-sphere
towards the attractor. The projection on thxg, &>)-plane produces a curve which bouncés o
the boundary of the unit circle. The inner disc, correspogdo x* < 1/3, yields phases of
accelerated expansion. Depending on the initial conditittmee number of such phases can be
as high or low as desired. For the two cases on figure 6.5, thiers are 16 and 1, respec-
tively. Even with a large number of accelerating phasesntimber of e-foldings is of order 1;
therefore, these models are not well suited for inflatione Mhmerical solutions uge= In(a)
as time parameter. The number of e-foldings is given by

el

a(r2)
n= In(?:)) = In(g) = At, (6.52)
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and its order of magnitude can easily be refidrom a ¢, x°)-plot as the sum of theintervals
wherex? < 1/3. An example is given in figure 6.6.

For type Vb, the situation is slightly dierent, since + y» is always positive; this confines
the curves to the upper half of the 2-sphere. On figure 6.7¢tinees still move towards the
attractor in an oscillatory manner, but now without crogdine equator (though they can get
arbitrarily close). For this case, there can only be one gshrase of accelerated expansion.

The interpolating solutions above correspond to redustmfnexotic S2-branes in five di-
mensions, or equivalently, exotic 3 3)-branes inD dimensions. However, the solutions
were found numerically, and we have not been able to obtaintexpressions for these exotic
S-branes.

Figure 6.7: Type Vj. On the left-hand-side are shown the projections of tworpatiating solutions on
the (x4, X2)-plane. On the right-hand-side, the curves are shown on tgefre defined by the Friedmann
equation; the vertical axis is given by ¥ y,.

6.6 Discussion

In this chapter we have considered cosmological models riocarhitrary number of scalars
with arbitrary multi-exponential potentials. Using a siaéset of variables, the equations were
written as autonomous dynamical systems, and this allowdd determine the critical points
in complete generality. We found that the nature of thegeatipoints depends strongly on the
rankR of the matrixa; . The rank also determines the number of decoupled scalars.

In the caseR = m, both the proper and non-proper critical points are poweardolutions,
and there are no de Sitter solutions. In Re< m case the opposite behaviour was found.
Proper power-law solutions are only possible in speciadsashere th&;j-vectors are linearly
dependent in a specific way, but the de Sitter solutions ang geeneric. For the non-proper
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solutions, this depends on whether the “truncated” paaéhtisR = mor R < m. We also
found a new property of these systems, namely the posgibiliproper critical points that are
not unique. A special case was realized in section 5, wherieawe an infinite set of these.

It should be emphasized that the non-proper critical p@irdss important as the proper ones
for understanding the interpolating solutions, even ttotingy have not often been considered
in the literature. In this respect, using the techniquesubdr@omous systems is more fruitful
than simply looking for power-law solutions to the equatiaf motion.

It should be pointed out that in our solutions the scalarggeally have run-away behaviour.
The only exceptions are the de Sitter critical points, sithese correspond to extrema of the
potential and accordingly stabilize the values of the ssal@his is important in the context of
spontaneous decompactification [134] or stabilizationilatain and volume moduli [33]

In section 4 and 5, we provided several examples of doubletrgpld exponential poten-
tials. We presented the critical points and illustratedititerpolating solutions using numerical
calculations. In particular, we found examples with an taglbily high number of phases of
accelerated expansion. However, the number of e-foldingset out to be of order one, so
these models do not seem to be relevant for inflation. Theyhtigpwever, be relevant for
present-day acceleration and they might help solve the icasymcidence problem.

The numerical solutions found in section 5 for the systentainbd from reductions over
group manifolds of type \4l and type VIp correspond to the reduction of exotic S2-branes
in five dimensions. The two solutions belong to a set of thige@nt solutions that can be
obtained via twisted circle reductions. The third solutman be obtained from a reduction
over the type Il group manifold and corresponds to the redngif a fluxless S2-brane. The
existence of three classes of S-branes is similar to thesa@dsébranes in ten dimensions [42]
and the non-extremal D-instantons we studied in chapten@®jtds reminiscent of the global
S (2, R)-symmetry of the higher dimensional theory. It would besiesting to see whether it
would be possible to find exact solutions for the exotic Sabsa

Recently, an elegant framework for arbitrary potentials ieen developed, where the solu-
tions correspond to geodesics in an augmented target spa%k Pne of the key ingredients is
the importance of systems whose late-time behaviour isrgedsby single exponential poten-
tials [94]. In our analysis, these solutions asymptote edpecial class of non-proper critical
points where all/’'s but one vanish. However, we have shown that multi-exptalgmotentials
have solutions, where the asymptotics cannot be governeddiggle term in the potential.
Specific examples are given by the cases of assisted inflHt@8] and generalized assisted
inflation [122], where each term in the potential contrilsute

Comments on some possible extensions of this work would kweder. First of all, we
have only considered flat universes, and it is certainly iptessso extend this formalism to the
spatially curved cases.

Secondly, we could also add matter, in the form of a barotrfipid. This could play a réle
in solving the cosmic coincidence problem. The authors @7]5howed that a system with one
scalar and a barotropic fluid can have attractor solutioasdte neither scalar-field dominated
nor matter dominated, but both at the same time. These asetballedscaling solutionsvhere
dark energy and matter coexist. This may lead to a dynanotaisn to the cosmic coincidence
problem. In other words, a scaling solution dynamicallyleis why dark energy and matter
have comparable energy densities, in the present univel®eever, in the one-scalar system



130 Scalar Cosmologies II: A not so simple case

studied in that paper, the de Sitter attractor and the ggalitractor are mutually exclusive.
Given a dilaton coupling, only one can exist. Although it & known whether the universe
will be eternally de Sitter, some string theory based sdesaely upon stable de Sitter vacua
that the universe ‘tunnels’ out of by quantum mechanif&@ats. Hence, it could be interesting
to have a combined scaling-de Sitter attractor. By havingoaentomplex system than the
one-scalar Lagrangian, one might obtain a compromise leehaeure de Sitter and a scaling
solution. In [106] and [122], scalars were added to makeesysiwith assisted and generalized
assisted inflation, respectively. In [136], spatial cuavatwas added in the one-scalar case. The
potentials we have considered here, however, allow for reeiter attractors. They also allow
for oscillatory behavior; i.e. some of the solutions araqudic in time. An oscillatory universe
might also explain cosmic coincidence. The chances ofdiuira period where dark energy and
matter coexist are greater in a universe that forever asesllbetween dark energy and matter
domination. In this same spirit, we hope to extend the sefanchcaling solutions to the most
general exponential potential with spatial curvature aha@rmtropic fluid and report on it in a
future publication.

Thirdly, we could consider non-flat scalar manifolds. Fipnale could consider other spe-
cific numerical examples with other valuesoandN and special dilaton couplings which arise
from dimensional reductions of strifig-theory.

This concludes the second part of this thesis, which coviéredopic of cosmological so-
lutions. Both this and the previous part dealt with scalaviy solutions that depend on one
parameter. D-instantons depend on one spatial directibareas cosmologies depend on time
only. Both types of solution have the generic property oélipblating between ‘trivial’ con-
figurations: The wormhole solution interpolates betweea tegions with flat spacetime and
constant fields, and the cosmologies interpolate betweerplaw andor de Sitter spacetimes.
In the next and final chapter of this thesis, we will establisks between D-instantons and
cosmologies. We will actually show two ways in which thesgeots can correspond to each
other. First, we will see that they can sometimes be relatezhth other via Wick rotations.
Then, we will show that by means of a paradigm shift, both $yplesolutions can be regarded
as trajectories of a particle in a fictitious spacetime, gebspace parametrized by the scalars in
the Lagrangian.



Chapter 7

Link between D-instantons and
Cosmology

Throughout this thesis, we have been studying twitedént kinds of scalar-gravity field con-
figurations: D-instantons and cosmological solutions. e ariefly looked at solitons. We
pointed out in chapter 2 that instantons and solitons cambaent, if certain conditions are
met by the system they are in. In chapter 3, we studied thefgpecorrespondence between
black hole solutions and D-instantons, and the requiresnfemtthe correspondence to hold.
But there is a strikingly simpler and more obvious fact tlied D-instantons, black holes, and
cosmological solutions together. They all depend on onedioate, be it space-like or time-
like, and they all interpolate between ‘trivial’ configuiats. More specifically, the wormhole
geometry of the non-extremal D-instanton with> 0 interpolates between two flat Euclidean
spaces. Cosmological solutions such as the ones we stud@tapters 5 and 6 interpolate in
time between power-law regimes, or between power-law anfitier spaces with non-trivial
behavior in between, such as transient acceleration. drcti@pter, we will pursue the similarity
between D-instantons and cosmological solutions cargesthlar fields in detail. We will do so
in two ways. In the first section, we will relate some of thesle@ons to each other via the Wick
rotation. In the second section, we will take &elient perspective on the degrees of freedom we
are studying. We will view the D-instanton and cosmologgmutions as trajectories in a scalar
manifold, an abstract target space, if you will. That willeie us to present these solutions
in a mathematically unified way. It will even suggest a way a$ting together a cosmological
solution and an instanton solution, as though they weregfaine same phenomenon.

7.1 Wick rotation

WARNING : The following section contains passages with explicitk\fiatations that may not
be suitable for self-respecting mathematicians. Pareligatetion is advised.

Let us begin by reviewing the non-extremal D-instantontsoifufrom chapter 3, which | will
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rewrite here for the reader’s convenience. The Euclideamdragian density is the following:
L=R-3 0¢)*+ 3 @), (7.1)

where,¢ arey scalars. The ‘wrong’ sign of the kinetic term fgris explained in subsection
3.6.1. We take the Ansatz of a conformally flat metric with im@ad spherical symmetry. We
also assume that all fields respect the spherical symmdiiy.ylelds the following solution:

q2 2/(D-2)
d§==(1—F5575) (dr? +r2dQ3..,) (7.2)
2
éWE{%gmmm+qﬂ, (7.3)
X(0) = o (@ con(H() +Co) - ) (7.4)
with
H(r) = bcarctanl’(rDi_z) , (7.5)

whereg?, g_, gz andC; are integration constants and

~ P@—D
C— m . (7.6)

As we saw previouslyg? can be positive, negative or zero. Therefore, as we canseytiing
depends on one coordinate At this point, the reader should feel the irresistible téatipn

to Wick rotate this solution to see if that yields a cosmatadjiconfiguration. This has been
explored in [137], but | will do it in my own notation here. Thest step is to maker' timelike

by lettingr — it. This takes care of thér? term in the metric, but messes up the spherical part
by creating a minus sign. To fix this, let us rewrite the sptaninetric as follows:

dQ32, , = d¢? + sinf(6) dQZ, , . 7.7)
The Wick rotation created an overall sign in front of this rieetso to fix it, we letg — iy
de? + sir?(6) dQéD,2 — —dy? — sint?(y) dQéD,2 = —dH3 ., (7.8)
whereH stands for a hyperbolic space. The end result is the follgwietric:
~2 12/(D-2)
d§=(1—§£}5) (~df + 2dH3 ) . (7.9)

whered? = (-1)P-2 g2, This is indeed a cosmological solution. Specifically, iais FLRW
metric withk = —1. But what about andy? Those are less straightforward to study, but
as we will see we can already gather one qualitative piecafofrmation from them. Let us
first write down the Lagrangian density for the Lorentziasteyn to which this cosmological
solution belongs:

L=R-1 (09?1 ()7 . (7.10)
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Notice that we are now using the ‘normal’ sign for the kineéom fory. Hence, in order to
establish a relation between an instanton and a cosmolagmust &ectively multiply y by i.
If we take the metric (7.9) as an Ansatz for this system and filto the time component of the
Einstein equation, we get the following:
Ry = 4D-1)(D ~22)2 5
r2(0-1) (1 _ tzg_z))

147+ 1€ )2. (7.11)

The right-hand side is positive definite, therefoié, mustbe positive. Hence, not all three
classes of D-instantons (i.g% positive, negative and zero) can be Wick rotated to a cosgiolo
cal solution. Not even the extremal D-instanton has a cosgicdl partner. The only class that
can be Wick rotated is the one witff (-)°~? > 0. This is obviously a dimension-dependent
condition. The actual process of Wick rotating the solusitor the scalars is less obvious. The
idea is thafy has to get mutliplied by an whereas the dilaton should remain ffieated. This

is accomplished by lettinG; — C; +i7/2, andg- — ig-. The result is the following:

2
P = (% cosh(H(r) + Cl)) , (7.12)
X(0) = o (@ tanh(H() +Co) - ). (7.13)
with .
H(r) = bcarctani‘(rDiz) . (7.14)

7.2 Target space interpretation

In this section, we are going to investigate another pdisihebetweeraxionicinstantons and
cosmologies. The idea is to regard all fields, including the-nonstant part of the metric, as
coordinates in a fictitiousarget space Because instantons and cosmologies both depend on
only one parameter, they will be interpreted as trajecsaoiea particle in the target space.

This section is based on a collaboration with E. Bergghd@® Roest, J. Russo, and P.K.
Townsend, entitledCosmological D-instantons and Cyclic Universg&38]. It is organized as
follows: first, we will present the general system and Angatavant to solve and dimensionally
reduce it to one dimension. In subsection 7.2.2, we wilbdtrce the ‘Liouville’ gauge, in which
will allow us to view our solutions as trajectories in twavdinsional target spaces defined by
the two scalar fields. In subsection 7.2.3, we will introdttoe ‘Milne-Rindler’ gauge, which
will also view the non-trivial part of the metric as a targpaise coordinate. In this new three-
dimensional target space, we will be able to present instesrdnd cosmologies in a unified way,
as trajectories of a particle.

7.2.1 Ansatz and reduction to one dimension
The Lagrangians we will be studying can be summarized aavst|
L=R-1(09)*+ e (97, (7.15)
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with € = +1 for Euclidean and Lorentzian signature respectively. ni@stigate cosmological
solutions of our model, or to find instanton solutions of itsckdean version, we make the
Ansatz

de = e(ef)?da® + €/ Vds2 . s =9(1), x=x(), (7.16)

wheref is an arbitrary function ofl, and

/ d-1

The d - 1)—metricd2§ is (at least locally) a maximally symmetric space of positl = 1),
negative kK = —1) or zero k = 0) curvature. One can choose coordinates such that

dx2 = (1 - kr?)1dr? +r?dQ3 ,, (7.18)

wheredQé_2 is an SO@ — 1)-invariant metric on the unit(— 2)-sphere. This Ansatz constitutes
a consistent reduction of the original degrees of freedom ttoree-dimensional subspace, the
‘augmented target space’, with coordinates#; ). The full equations of motion reduce to a set
of equations that can themselves be derived by variatioheofine-reparametrization invariant

effective action

=1 f dA {7 (e¢® — e¢® + €¥§) + 2k(d - 1)(d - 2)f e/} , (7.19)

where the overdot indicatesftéirentiation with respect td. Fore = —1 we can interpret as a
time coordinate related to the timef FLRW cosmology in standard coordinates by

dto € fda. (7.20)

Fore = 1 the metric has Euclidean signature and we can intefpastimaginary time.
If we interpret all fields as being coordinates of a partglgorld-line in some target space,
then we notice that the scalafandy parametrize a two-dimensional hyperbolic space:

dsr? = —edg? + € dy?. (7.21)

For e = -1, this isH,, the two-sheeted hyperboloid with Euclidean signatureRamcaré
coordinates, which are globally defined. Fot +1, however, this is a Lorentzian one-sheeted
hyperboloiddS; in Poincaré coordinates, which amet gobally defined. They only cover half
of the surface. To treat both signatures on equal footirig,thierefore convenient to switch to
coordinates of the target space that are globally defineds i$tdone by defining new scalar
field variables, 6) by

2% = & cod(h/2) - e sirf(6/2),
ey = bt(e +ee?)sing, (7.22)

which yields the following target space metrics:

2 2 —
ds? = { —dy? + cos(y) d¢ fore=1 (7.23)

+dy? + sintP(y) d6? fore=-1
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We can now recognize the first metric as that ad%, by comparison with the&lS; metric
(4.41) we introduced in chapter 4. The second metric is thlusne for a two-dimensional
hyperboloid. The newfeective action is

fdxl{—f 1[—6(,0 —e)® + 3 (éﬁ+ee )292 +

+ 2k(d - 1)(d - 2)fe"/"}. (7.24)
Introducing the new scale-factor varialgl®y
7’ = 2y(d - 1)/ (7.25)
where
y = 1/(ba), (7.26)
we arrive at the action
. . 2
fd/l{— 1 6(7'7/77)2 —ef+ (¢ + ee"”)2 92] + bz kfnzy} : (7.27)

We remark, for future reference, that the Ansatz (7.16)dd¢ag = 2/3 ford = 10 IIB super-
gravity.

Because of the time-reparametrization invariance, weraeetb choose the functiof each
choice of f corresponds to some choice of time parameter. There are lwices that are
particularly convenient, and we now consider them in turn.

7.2.2 The ‘Liouville’ gauge

The simplest way to proceed for gendpas to make the gauge choice

f=4/b. (7.28)
From (7.27) one sees that thextive Lagrangian in this gauge is
L=1 [ ey’ + 1 (e‘” +e€ ‘”)2 éz] +3 [6(7'7/77)2 + knzy] . (7.29)

Apart from the constraint, the dynamics of the motion on Hrget space, which is manifestly
geodesic, is now separated from the dynamics of the scdta fadich is determined by a equa-
tion of Liouville-type; for this reason we will call this clee of gauge the “Liouville gauge”.

As SL(2;R) is the isometry group of botH, (the target space of the Lorentzian action) and
dS; (the target space of the Euclidean action), there is a coede3L(2;R) ‘momentum’ ¢+,
and the geodesics are such that

yP €l (e‘” + ee“”)2 0> = (2. (7.30)
The constraint{ equation of motion) is
(/n)? = €% + ken® (7.31)

We now present the solutions of the equations of motion @Q)/subject to the constraint (7.30)
and (7.31), first for the target space fields and then for takedactor.
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Target space geodesics

Geodesics on thEl, (e = —1) ordS; (e = 1) target space are solutions of the field equations of
(7.29) fory and@ subject to (7.30) and can be classified as follows, accortdinghether? is
positive, negative or zero:

e (2> 0. Fore = 1 the solution is

2
sinhy = =+ 1+%sinh[€(/l—/lo)]
tan(0 - ) = iqu tanh | (1 - 10)] , (7.32)

for constantsly, 6o andq- (this being the integration constant for the super-exttema
D-instanton of [43]). Foe = —1 the solution is

coshy = \/1+ %z cosh[¢ (2 — A0)]

tan@ — o) & cothe (2 - 20)] - (7.33)

+
¢

In the special case thgt = 0 these solutions simplify, for either choice of the sigmo

Y= if(/l - /lo) S 0=6y, (E = il). (7.34)

e (? < 0. Inthis case only = 1 is possible, and the solution is

sinhy =+, / (_qjjz) -1 sin[ V-2 (A- /lo)]
tan@-6) = t—— tan[ V=22 (1-10)] . (7.35)

Nar

e (? = 0. The only solution foe = —1 in this case is the trivial one for which baghandd
are constant. Far = 1 the solution is

sinhy = +q- (1 - 19) , tan@ — 6p) = +q- (41— o) . (7.36)

It should be noted that, in each case, thsigns fory andé can be chosen independently.
We should note that, far = 1 (dS,), there are three classes of solutions, wiipositive, zero
and negative, whereas fer= —1, there is only one class witff > 0. This is becausdS,,
being Minkowskian, has a light-cone structure. It admiace-like, light-like and time-like
solutions. We can interprét as the momentum squared (i-em?), of the particle.H,, on the
other hand, does not have a light-cone structure.

One interesting consequence of writing our instanton &wigtin terms of these global co-
ordinates, is that the singularities of the dilaton and axtiat we previously encountered in
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chapter 3 go away. In this target space interpretation etisosgularities are mere coordinate

singularities, signaling that the particle’s world-linashdeparted from the Poincaré coordinate
patch. It has gone over to the half of the hyperboloid thabiscovered by these coordinates.

The true physical meaning of this resolution of the singtits, however, remains to be discov-

ered.

The scale factor

We next turn to the constraint (7.31). Givéh this determinesg as follows

e (2>0.

W= g expe2eyd),  (k=0), (7.37)

52
2 — ke = 1), 7.38
7 Sinfe(ty) (ke =1) (7.38)

2 52
y = ke = —1), 7.39
7 cost(tyA) (ke ) (7.39)

for some constanfy. Note that allk = +1 trajectories are asymptotic to sorke= 0
trajectory nearn = 0, as expected since tlemodel matter satisfies the strong energy
condition.

e (? < 0. Inthis case there is a solution only ok € = 1:

—£?
L — k=e=1). 7.40
(T S (7.40)

e (? = 0. In this case there is a solution only fee > 0. If k = 0 thenp is constant.
Otherwise
n? =1/(yA)?,  (ke=1). (7.41)

Fore = k = 1 these solutions yield the super-extrenfal¥ 0), sub-extremal® < 0) and
extremal (? = 0) D-instantons of [43]. Fo¢ = —1 they yield FLRW cosmologies; from (7.20)
we see that the standard FLRW tiinis related to the parametéiby

dtoc 2 dA. (7.42)

Given one of above solutions fgf” as a function oft we can determing as a function of and
hencen as a function of. Of most interest here is the behaviour ngat 0. For example, for
£? > 0 we have

n~noet, (7.43)

for A - oo, asp — 0. This yields (for a choice of integration constant suct tha> 0 as
A — )

“to e—Z)/(YZ{’/l ) (7_ 44)
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Given that we start with a cosmological solution for negativthis shows that a big-crunch
singularity will be approached @s— 0. By considering the behaviour as— —co we may
similarly deduce that a cosmological solution for positiveust have had a big-bang singularity
att = 0. In other words, cosmologies witk > 0 are incomplete in the sense that they have a
beginning or an end (or both) at finiteWe shall make a suggestion in the following subsection,
of how they can be completed.

7.2.3 The ‘Milne-Rindler’ gauge

We will now upgrade the approach we took in the previous sttimse by augmenting the two-
dimensional target space to a three-dimensional one. Walwi$o by considering the single
degree of freedom of the spacetime metric as another tgzgeesoordinate.

Returning to (7.27), we make the new gauge choice
4
f = b2—772 .

As the possible choices df are related by a redefinition of the independent variableyile
need to distinguish the independent variable in this gargye the parametet previously used.
Let us call the new independent variablét is related tad through the dierential equation

(7.45)

dr = ?(1)da, (7.46)

which can be solved for(1) given any of the scale factor solution&t) presented above.
In the gauge (7.45) the action is

| = fd'r L., (7.47)
wheré
+ k 2. (7.48)

dn\> 1 dy\? _2(do)?
€ (E) + 57’]2 I:—E(a) + %(e‘” + €€ W) (E) 5
We observe that for = —1 the kinetic term is that of a particle in a 3-dimensional kéiwski
spacetime in Milne coordinates. However, &ot 1, this kinetic term is again that of a particle
in 3-dimensional Minkowski spacetime, only this time in Blier coordinates. See 4.1.3 for a
discussion on those two coordinates systems for four-déineal Minskowski. We will call
this choice of gauge the ‘Milne-Rindler’ gauge. We can utifth actions{ = +1), by going
to Cartesian coordinates, since the latter are globallyddfin Minkowski spacetime. The new
field variablesx, (u=0,1,2) are

L, =

NI

Xo = gn(e-ce).
X, = i%n(e‘”+ee“”)cose,
X = i%n(e‘”+ee_‘”)sin0. (7.49)

INote thatl.dr = Lda, whereL is the lagrangian in the gauge used previously.
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Note that
X2 = —Xo? + X12 + X% = en®. (7.50)

Sincer? is positive, it follows thatX? < 0 whene = -1, andX? > 0 whene = 1. TheX? <0
region is the Milne region of Minkowski space and cosmolaggolutions are trajectories in this
space. Generic trajectories reagh: 0 at finite FLRW time, corresponding to a cosmological
singularity. However, the hypersurfage= 0 is just the Milne horizon, and the singularity
at the Milne horizon disappears in the cartesian coordingie The trajectory can therefore
be smoothly continued through the Milne horizioncartesian coordinatemto to the Rindler
region, in whichX? > 0, where we need = 1. Thus, on passing through the Milne horizon, a
cosmological trajectory becomes an instanton (and vicsaye

The Milne-Rindler gauge Lagrangidn in cartesian coordinates is

L =1 [(dX/dT)Z ; k(eXz)y_l] . (7.51)

The constraint is now »
(dX/dr)? = k(ex?)" . (7.52)

We thus have a problem analogous to that of a particle of zexgg in a central potential, with
conserved SL(ZR) “angular momentum”

" = &P X, (dX, /dr) . (7.53)

The target space and the scale factor solutions given prglyican now be combined into a
single solution fotx,. For example, fof? > 0, the solutions are

X, = 7 (s, sinh(a) + ¢, cgshw)) , e=1, (7.54)

<7 (s, coshA) + ¢, sinha)) . e = -1,
where

S = V1+a2cosh(ly), a=q. /¢,

Co = -—V1+a?sinh{Aag),

c1 = cosh{ag)cosfo) + asinhAp) sin(Eo) ,

s = —sinhp) cosbp) — acosh{Ap) sin(Eo) ,

Cc; = -—asinh(p) cosfp) + cosh{Ap) sin(o) ,

s, = acosh(1g) cos@o) — sinh(Ap) sin(o) . (7.55)

Note that ¢, + s,) is null.

In [138], this coordinate system is used to ‘continue’ cokrgal solutions into instanton
solutions by passing through the target space Milne horisae figure 7.1, for the case where
v = 1. In this case, the Lagrangian simplifies tremendouslyll aspectories become goedesics
in the three-dimensional Minkowski spacetime. The: 1 have a central potential, which
complicates the picture. An interesting idea that has nehlexperimented with, would be to
eliminate such a potential by augmenting the target spaeddar-dimensional one with non-
trivial curvature. In [135, 139], this idea was applied ie tontext of cosmological solutions by
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Figure 7.1: Instantons and cosmologies as geodesics in a 2-D projecfidtinkowski space-
time onto a plane, X# 0, that does not pass through the origin. The solid (dashedsliare
cosmologies (instantons), which are separated by the-tighte. The dotted hyperbola with
Xo? = X412 = X,? is the projection of the light-cone onto the 2-D plane.

reinterpreting the derivatives of scalar potentials inauns of motion as Christtel symbols
of an augmented target space.

The hope behind the idea of patching cosmological solutwitis instanton geometries is
to find a mechanism, by means of which the Big Bang singulagty be ‘smoothed out’. The
Big Bang of the universe would actually be preceded by amatbemological solution that
underwent a Big Crunch. The two cosmologies would be ‘cotatedy an instanton phase.
The full solution, although singular in spacetime, is siagity-free in the target space. For
details on the patching of specific cases, the reader iseeftw [138].



Conclusions

This thesis has covered two separate topics: instantonsa@amlologies in scalar-gravity trun-
cations of supergravity and scalar-gravity theories inegah These were shown to be related in
the final chapter.

The first chapter laid out the foundations of bosonic strivapty and superstring theory. We
learned that in a quantum theory of relativistic stringsssand spin are actually the quantum
numbers of a particle as opposed to Casimir operators (ed firoperties). However, the main
message of that chapter was the field theory limit of strirepti. If we assume that strings
couple weakly to each other, i.e. that the string couplinggiby the constant value of the
dilaton is small, then we can define a two-dimensional CFThenworld-sheet of the string.
Fields such as the spacetime (target space) metric are diasvéield-dependent couplings of
the o-model, however, they can be shown to be operator insertbesherent states of the
string spectrum, such as the spin-2 particle called theitgrav Imposing that the classical
conformal invariance of the CFT also hold at the quantumlleguires setting thg-functions
for the field-dependent couplings to zero. These constrairg perturbative in’, and, in the
low energy approximation, we keep only the zeroth-ordengerThis leaves us with constraints
that look like the equations of motion of spacetime fieldsfsas the Einstein equation for the
spacetime metric). By encoding these spacetime equatfom®tion into actions we get the
supergravity actions, which are the ones that were usedsdititésis.

In chapter 2 the basics of instantons were explained. Weesdtavith the example of the
non-relativistic quantum mechanical particle in the dewbkll and periodic potentials. We
learned that instantons are extrema of the Euclidean atttatrallow us to compute tunneling
amplitudes. These tunnelingfects taught us that the naive degenerate perturbative wdcua
the theory are actually not stationary states, since thecfgarcan tunnel out of them. This
allowed us to define the true vacuum of the theory, which ighbua linear combination of
the naive vacua. The true vacuum samples all of the degenamima of a potential, thereby
spontaneously restoring the symmetry of the theory. We thewed on to the application of
instantons in quantum field theory, by treating the examplé® Yang-Mills instanton. The
latter showed us how the principles of instantons and treeia@eneralize to quantum field
theories. We saw that a path integral that takes instarftents into account, i.e. a path integral
that gives thérue-vacuum-totrue-vacuum amplitude féectively gets a topologicakterm in its
action. At the end of the chapter, | gave a brief explanatioinoov instantons irD Euclidean
dimensions can sometimes correspond to solitoiis il spacetime dimensions.

In chapter 3 we put this knowledge to use in a scalar-gralvégty. First, a quick explanation
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of the issues of the Euclidean path integral for gravity wiasmy Then, we defined a theory of
gravity with two scalars, which can be embedded in type lIBesgravity for certain values of
the dilaton coupling. We found the solutions of this theongl avere able to classify them in
terms of their SL(2R) ‘conjugacy classes’. There turned out to be three SRj2unrelated
families of solutions. The instanton-soliton corresparmiethat was explained in general in
chapter 2 was put to use, as we realized that the three fanailiB-instantons can be viewed
as spacelike sections of superextremal, extremal, andksebel electrically charged black
holes. We studied the singularity structure of these smhstand evaluated their actions. After
a comment on the tunneling interpretation of these solsfiore discussed the possibility that
they might lead to non-perturbati®§ corrections to the type |IBffective action.

Finally, | commented on some work in progress. Putting Daintons in an AdS background
can lead to interesting applications in A@FT. The correspondence between the extremal D-
instanton in type IIB supergravity and the self-dual intdarof ' = 4, d = 4 super-Yang-Mills
has been known for a while. We hope to understand the fieldyttral of the non-extremal
D-instantons, which may be pointing us toward non-selftduper-Yang-Mills instantons.

The next part of this thesis was concerned with another kiretalar-gravity solution that
depends on one parameter: FLRW cosmologies. Chapter 4litteal the basics of the standard
cosmology and modern cosmology. Inflation and present degle@tion are experimentally
undeniable events in our universe. If string theory is theotk of everything, it must be able to
derive a realistic scenario for them. At the end of the chapsummarized a few of the many
string theory based approaches toward modern cosmologysiftg on models that reduce to
theories of four-dimensional gravity with scalar fields.

In chapter 5 we studied the gravity-scalar system with alsiagponential potential. First,
we showed that, by a proper field redefinition, the systéimcévely has only one scalar in
the exponent of the potential. Then, the equations of matiere rewritten in the language of
autonomous systems. We saw that, in this terminology, thelita FLRW power-law and de
Sitter solutions can be thought of as critical points, arartiore interesting solutions are the
ones that interpolate between those two regimes. This showdiow to recognize solutions
that have periods of transient acceleration, which is phrearmlogically interesting for models
of both inflation and present day acceleration.

In chapter 6, we dropped all simplifications by studying ith@stgeneral multi-exponential
potential for an arbitrary number of scalars. A general faafor finding critical points was
derived, which unveiled de Sitter critical points that haler been discovered. The general
formula was then applied to some specific cases coming fraluctens of pure gravity over
three-dimensional group manifolds. At the end of the chaptenments on possible extensions
of this work were made. Theses possibilities are includitguatropic fluid in the system to
mimic matter, and including spatial curvature. One possitgplication of such an extension is
the cosmic coincidence problem, which might be solved biirsgaolutions.

Chapter 7 was the concluding chapter that tied D-instardaodsosmologies together. Their
mathematical similarity, due to the fact that both are sohg to scalar-gravity models that
depend on only one coordinate, was translated into two et@@orrespondences. First, we
saw that some D-instantons are related to S(-1)-branes igk kbtation. In the second part
of the chapter we developed a formalism that put both typeshitions on equal footing. By
interpreting the scalar fields as coordinates of a two-dsiteral target space, and subsequently
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performing coordinate transformations on this target spae realized that instanton solutions
can be thought of as the trajectories of particles disaspace. The three families of instantons
correspond to massive, massless and tachyonic partidiescdsmologies on the other hand are
interpreted as trajectories of a particle on a EuclidHarspace.

The Ansatze for the spacetime metrics of both the instardadghe cosmologies are such
that both metrics have only one degree of freedom. By in&dimg this degree of freedom as
anextratarget space coordinate, we were able to combine both sgstemthe action of one
particle in a three-dimensional Minkowski spacetime. lis tiormalism, an instanton and a
cosmology are patched together, and are viewed as two psrtibthe trajectory of a single
particle. This suggested a possible scenario to resolvaalogjical singularities. For instance,
in this target space language, the Big Bang is preceded bgstaniton phase, which is itself
preceded by a Big Crunch.

Understanding the deeper links between instantons andatogies may lead to interesting
and unexpected results. For instance, by using/8&% to further knowledge about the cor-
respondence between gravity and gauge instantons, one esigiblish new cosmologyauge
correspondences in the context of@5T.
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Appendix A

2-D Quantum Mechanics

In this appendix, we will study the point particle in £21)-dimensional quantum mechanics.
In [44], Lee introduced this example as a toy model to show tieapath integral of a positive-
definite action canféectively be computed by finding the saddle points of an adtiahis not
positive-definite. This toy model will allow us to understiamhy we are solving a system with
a negative kinetic term for the axion in (3.5).

A.1 Path integral for momentum eigenstates

Let us begin by defining the system and its path integral. Wet ¥zastudy quantum mechanics
of a unit mass particle moving in two spatial directions, bing polar coordinates(t) andé(t).
The partition function and path integral between positigjerstates are defined and computed
as follows:

(re.6el €T [r.6) = f (mr(t’))d[r(t)]d[e(t)]exp[—% tpdt(r2+r2é2)], (A1)
b.c. t

wherel andF stand for initial and final, respectively; = t —t;; and ‘b.c’ stands for Dirichlet
boundary conditions, i.e(ti ) = rir andé(t g) = 6, F, respectively. The product in the inte-
gration measure is simply the Jacobian for polar coordmater convenience, we will omit the
integration over(t) and its kinetic term, and reinsert it when it is needed. Asaaly mentioned
in chapter 2, this partition function can, but need not baitii of as an imaginary time path
integral. In this appendix, we will think dfas real time.

Suppose that we want to compute the partition function betweitial and final angular
momentum eigenstat¢é), as opposed to angular position eigenstpies Using the following
definition for the angular momentum states

|5>Efdaé“’|a>, (A.2)
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we see that all we have to do is Fourier transform the patlyiatén (A.1) with respect to its
boundary conditions:

(res Cele T, 6) = fdgl dor exp(=i e O +i 6, 6)) (re, 0l €T [r,6)) . (A.3)

The Dirichlet path integral can be combined with the intégver boundary conditions to yield
one path integral without boundary conditions:

te i
d[e)] exp[—% A2+ 2 —ite O +i 66|, (A4)
C.

Y

<rF,fF|e—”T|r.,5.>=f

no h

where this sums over all possil#¢) with arbitrary boundary values. If we try to compute this
path integral via the standard saddle point approximattosm Euler-Lagrange variation of the
action w.r.t.6 will be the following:

5S = — fF dt [at(rzé) 50] +(r?0 —io) 50|:|F . (A.5)
t

Notice we do not throw away the total derivative, becauseetlage no boundary conditions.
Since this must vanish for arbitrary variatiafts both terms must vanish independently. Hence,
we get the following equations:

d(r?6) =0,
r2é|tl_F =il . (A.6)

The first equation is a normal equation of motiondphowever, the second is a constraint that
is inconsistent with the assumption ti#iar, andt are real. Therefore, the path integral must be
computed by means of aftérent method. In what follows, two methods for doing thid wé
presented.

A.2 Computing the path integral: first method

In this section, we will present one of two methods for conmmuthe path integral in (A.4). It
involves splitting up the integration into bulk and then bdary values of) as in (A.3). We
can easily compute the bulk integral using the usual methb#siler-Lagrange variations with
Dirichlet boundary conditions. Then, by Fourier transforgithe result w.r.t. the boundary
conditions, we obtain the final result.

We start by evaluating the angular part of (A.1), which hasdblet boundary conditions
for o: "

(re,0ele T n,0) = f dle(v)] exp[—% dtr?¢?
b.c.

Y

. (A7)

This is easily done by finding a saddle point through the Euégrange variation, which yields
the following equation: _ .
o (r20)=0=r20="tq, (A.8)
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where the constartt, is the classical angular momentum. The solution is the ofig:

t dt/ tp
Q(t)zfd jt: m-ﬁ-& where lo) = (HF 0|)f r2(t’ . (Ag)

Definingl[r] = ftltF dt'/r2(t"), and substituting the solution into the action, we obtaafbllow-
ing:
-6)?
dtr?6* = -3 &4 1r _Ge—6) A.10

4 [ 1 = -5 (A10)
Because the action is quadraticdnthe semiclassical approximation provides us with an exact
result for the path integral. Hence, evaluating the actibthia saddle point and computing
the functional determinant (as we saw in chapter 2) is an aot@wvaluation of this part of the
path integral. The functional determinant contains dg(and ¥ (I1; r(t)), which cancels the
Jacobian in the path integral ovgt). Now, in order to finish the evaluation of (A.4) (or (A.3)),
all we have to do is Fourier transform this result w.r.t. toemdary condition$, r:

fd9| dér em(-% — il O +i¢ 9|) = fde.déexp(—%;r] —ifFé+ i 6, (¢ —ZF))

£21r]
= \2x1[r]6(¢e - €) exp(— Fz ) (A.11)

where thes-function comes from the, integral, and the exponential comes from the integral
over the shifted variablé = 6 — 6,. The path integral enforces conservation of angular mo-
mentum. Substitutinigthis result into the full path integral, we are left with traléwing:

e
—Ef dt(r +r—2) .
1t

Performing the saddle point approximation on the remaiimiggration over (t), we find the
following equations of motion:

(e Cele T n, 0 = 6(te - ) f V2 I[r]d[r(t)] exp (A.12)

f+—L =0. (A.13)

However, had we derived the normal Euler-Lagrange equsfi@m the standard path integral
with Dirichlet boundary conditions (A.1), these would hdwad a relative minus sign between
these two terms. The resultin (A.13) can atffectivelybe obtained by finding the saddle point
of the following pseudo-action

te i
= % j: dt(f‘z - r282) — (g O+ 4,6, (A14)
I

and evaluating the action of the solution with it. The bougdanditions are then enforced by
the surface term. The wrong sign in front of the kinetic tefmd @ analogous to the sign in front

1The fact that we have expressgglas a functional of (t) and thed boundary conditions means that this substitution
is legal. What would be wrong, would be to explicitly ke&p and subsequently treat it as a constant upon integrating
overr(t), which it is not.
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of the axion kinetic term in (3.5). This is as though we hadkbsbfor imaginary saddle points
of the action in (A.4). Some papers in the litterature haveegas far as saying that one needs
to rotate the contour of integration @fnto the imaginary line in the complex plane. However, |
would like to stay away from such an unnecessary and unnattegoretation of what is really
taking place in this calculation.

The method we have presented in this section makes use oathehfit we can easily
expresy in terms of the boundary values éf This is, however, due to the fact that we are
doing (2+ 1)-dimensional quantum mechanics, or{@)-dimensional quantum field theory.
In higher dimensions, this task becomes mor@adlilt; and the definition of a boundary is no
longer unique, which it was in this case. Therefore, we nesi@ covariant way to compute
the path integral that can be applied to higher-dimensifigldl theory.

A.3 Computing the path integral: second method

The second method we will be exploring involves the concéplualization. The basic idea
behind this is the realization that, if one wants to compupath integral with initial and final
momentunstates, one should be working with momentum variables ifitstegplace, as opposed
to position variables.

We begin by rewriting (A.4) as follows:

tp 2 .
(rF,€F|e’HT|r|,€|)=f d[e]d[f]exp[—%f dt(f2+f—2+2i0£)}, (A.15)
b.c. t

where we have inserted an integration over a dummy vartgblewe impose Dirichlet bound-
ary conditions ort, i.e. {(t; r) = ¢, and no boundary conditions @n Let us first show how
this reduces to (A.4) upon integratidigout. Integrating the last term by parts
te . te i
- dtioc = dtico—i(Octr -0, 4). (A.16)
t| t|
we recognize the surface term as the one in (A.4). The first tem used to complete a square
in the action as follows:

2. 1 . :
—ﬁ+|€0=—ﬁ(€—|r20)2—%r202. (A.17)
The remaining integral ovétis easy to perform:

f d[¢] exp

where we have used the shift invariance of the measure bipgétt= £ — ir26. Because the
boundary values of are fixed, they are not being integrated over, hence, thegatrdtected
by this shift. This integral is simply a Gaussi@riThe end result is the original path integral

- '
-1 fdt (f—z +r? 02) + surface terr]\, (A.18)

2The result of the determinant is a faci@rr(t), which can be absorbed with the other equal factor we saw.ib) (
in the measure?d[r] — d[r3]. This is a bijective transformation of variables, and heyields no problems in the
extremization process.
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(A.4) overd. It should not come as a big surprise that one can write atjpartiunction in
terms of a path integral ovéotha variable and its momentum conjugate. Usually, in deriging
path integral from first principles, one obtains such angrakand subsequently eliminates the
momentum variable as we just did above.

Now that we have proven that the right-hand-side of (A.18)ds (A.4) upon integrating
out, let us change the order of integration, and elimiddtest. The integral oveé is simply a

o-functional:
f d[e] exp[i f dteé] =sf]. (A.19)

This simply imposes conservation of angular momentum. Egthe path integral overyields
the following:

: £? 2
f da1s|¢| exp[—% f dt(r—z)] =6(te - 0) exp[—% f dt(r—z)]. (A.20)
Therefore, the final result is the following:

t 2
(e, Gl e T I, ) = 6(¢e - ) f (I r(t)) d[r(t)]exp[—% f dt(f2+f—2] . (A21)

which is what we obtained with the previous method.

In terms of our dilaton-axion system in chapter 3, the radoardinater is roughly anal-
ogous to the dilatog, and the angular coordinafeis analogous to the axion The angular
momentum, which is the conjugate variabl@iis analogous to théX - 1)-form field-strength.
There, the restriction thatF = O implies that, locallyF = dC. Here, this translates to the
constraint? = 0, which implies that is a constant. The conservation of angular momentum in
the two-dimensional quantum mechanical system trandlath® conservation of axion charge.

This method of dualization is preferable to the previous, drezause it does not require
an explicit choice of parametrization of the boundary, andsinot require us to split up path
integrals into bulk and boundary integrals. Hence, we vg# this method in chapter 3.
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Appendix B

Useful formulae in Riemannian
geometry

In this appendix, | will spare the reader the annoying worlcaltulating the curvatures of
metrics with spherical or hyperbolic symmetry that arevaie in this thesis. | will first write
down some basic definitions for the sake of clarity, and tal#isth my conventions.

The Christdfel symbols are defined as follows:

rpyv = % gpa— (6;19\/0' + 6\/9}10’ - aa'gyv) . (Bl)
In this thesis, | have used the following definition for the&itensor:
Ry = 0,0" 0 — 0,17, + TP, Ty =175, T, (B.2)

The convention for metrics with Lorentzian signature is tlyoglus, i.e. ¢, +, ... ,+). For
Euclidean metrics the convention is, well ... all plus.

The general Ansatz that encompasses all instanton and tagiced metrics that have been
used in this thesis can be written as follows:

dg = e?A0 dr? 1+ P80 2g52 | (B.3)
wheree = +1 depending on the desired signature, and the two functgnsand B(r) are

undetermined. In the second tendI,ﬁ!D_l is the line element of &Y — 1)-dimensional sphere,
plane or hyperbolic space fer= 1, 0, and-1 respectively:

2
do S +12d02, . (B.4)

ds2 =
k,D-1 1—k,0

This can also be written as follows:

dzf 5y = dy? + F2(y) dQ2., . (B.5)
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where
V4 ifk=0 . (B.6)
sinh(y) if k=-1

I will now write down the radial component of the Ricci tens@R,; and will denote transverse
components byRy:

sin@) if k= +1
f(y) = {

Ry =—-(D-1) (B”+B’2—A’ B'+2$—AT), (B.7)
Rop = —€ gy €24 (B” +(D-1)B?-AB +2(D- 1)% - AT + (Dr; 2)) (B.8)
(D=2
+kg¢)9828%. (Bg)
All other components vanish. The non-vanishing Chfisiesymbols are the following:
Frrr =A s
r —2A ’ 1
Mgy = —€0w € (B + F) s (BlO)
1
rger = B + F N

where no sum ovef is intended in the last component.

Sometimes one needs to compute the Ricci tensor of a me#idghrelated via a Weyl
rescaling to another metric whose Ricci tensor is alreadykn There is a very useful identity,
which can save time in this situation. Lgt, be the components of a metric with Ricci tensor
R., and letg,, be the components of a metric that is related to the first magiollows:

G = Mg, (B.11)
whereo(X) is some function on the manifold. Define the tenBgf as follows:
B.* = =,0 00 + 3 (00)? 5, + V,(9°0) (B.12)

where the covariant derivative is defined in terms of the imef,. Then, the Ricci tensdR,,
of §,, is related taR,, as follows:

Ru =Ry —guw B! = (D-2)B,,. (B.13)

This formula is derived in [140]. Note that it applies to angtnic, and does not require any
Ansatz for either the metric or the functiot{x).
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Homogeneous spaces and group
manifolds

In this appendix, | will define homogeneous spaces and igptagiving some examples. Then,
| will define group manifolds and illustrate with one example

C.1 Homogeneous spaces

This section is based on a section in the book by Nakaharg.[L#0ll assume that the reader
is familiar with Lie groups.

Let us begin by defining the action of a group on a manifold.
Definition: Given a Lie groups and a diferentiable manifoldvl, we define aractionof G on
M to be a diferentiable map-: G x M — M, which satisfies the following conditions:

(i) o(ep)=pforanype M,
(i) (91, o(92, p)) = o(91 Go, P) for anygs, g2 € G and anyp € M,

wheree is the identity element of the group. The first condition reeed explanation, and the
second one just means that the group action has to respegting multiplication. Notice that
each group elemeigtdefines a dfeomorphism from the manifold to itself as follows:

(@) M- M. (C.1)

From basic Physics we already know many examples of groupsyaan spaces. The classic
example is SO(3) acting oR® as the group of rotations. More generally, whenever a group
G c GL(n, F) acts on am-dimensional vector spadé over some fieldF, we call that specific
action ofG onV ann-dimensional representation of the gradp

An actiono of groupG on a manifoldM automatically induces an actieri on the tangent
spaceT,M of any pointp on the manifold. | will not state the mathematical definitioere,
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but I will briefly give an intuitive picture of it. Given a veatV € T,M, tangent top, one can
always drawintegral curvesi.e. curves passing througithat are tangent t¥. Take one such
integral curvec(t), and leto (g, - ), for someg € G, act on it point by point. This will yield a
curve((t) = o(g, c(t)) that passes through = o(g, p). DefineW = o (V) as the vector in
TqM that is tangent ta(f) atg. This defines what is called @anduced actiorof G on T M.

We also need to define the following properties for grouposast
Definition: Let G be a Lie group that acts on a manifdtiby o : G x M — M. The actiornr
is said to be

(a) transitiveif, for any p;, p2 € M, there exists an elemegt G such that(g, p1) = p2;

(b) freeif every non-trivial elemeng # e of G has no fixed points iM. In other words, given
an elemeng € G, if there exists an elememt e M such thair(g, p) = p, theng must be
the identity elemeng.

Now we are ready to define a homogeneous space. A manifiddsaid to be homogeneous,
if there exists a Lie grouf® that actdransitivelyon M. For instance, Lie groups act transitively
on themselves via the group multiplication. Thephere is homogeneous because its group
of rotations SO + 1) acts transitively on it. It is tempting to think that onendaen simply
identify a manifold with the group that acts transitively ibnby choosing a base poit on
the manifold, which one would identify with, and identifying all other points with the group
elements required to go fropto them. In general, however, given any two poiptgndp, on a
homogeneous manifold, there could be several group elentigaitconnect them. For instance,
given two points on a sphere, there are infinitely many rotetithat can bring one point to the
other. One can easily show that this implies that for any fpoime can find rotations that leave
it fixed. More generally this means that the action of the grisunotfree This leads to the
concept ofisotropy group
Definition: Let G be a Lie group that acts on a manifditl Theisotropy groupof p€ M is a
subgroup ofs defined by

H(p) = [g € G|o(g. p) = p]. (C.2)

In other wordsH(p) c G is the group of elements that leapdixed. This is also called thétle
groupor stabilizerof p. If G acts transitively orM, one can show that the isotropy groups of
all points inM are isomorphic to each other. Let us take the example of th2re. Given a
point p, we see that any rotation along the axis passing thrgughl leave the point fixed. So
the isotropy 0fS? is SO(2).

There is a remarkable theorem that states that, under cexaiditions, if one has a homo-
geneous manifold/l with the groupG acting on it and with isotropy groud, then the coset
spaceG/H is a manifold (i.e. it has a fierentiable structure), and it isttBomorphic toM, i.e.
G/H = M. The following are a few of the classic examples:

SOM+ 1)/ SOM) = S,
O((n+ 1)/ O(n) = S",
U(n+ 1)/ U(n) = S2™1, (C.3)
O(n+ 1)/[0(1)x O(n)] = S"/Z, = RP".
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As the reader may have noticed, a manifold can have more thamepresentation as a coset
space. It is this fact that will be exploited in the next secthbout group manifolds.

In section 4 we saw an intuitive definition of &otropic manifold. We are now ready to
give a more mathematical one:
Definition: Let M be a manifold with a grouf® acting on it viao- (not necesarily transitively),
and letH(p) be the isotropy group of some poipte M. M is isotropic at p if for any two
vectorsV; andVs in T, M, there exists an elemehte H(p) such thatr;;’p(vl) = V. In other
words, M is isotropic atp if all tangent vectors ap can be rotated into each other by elements
of the isotropy group op. This matches our intuition that isotropy means that a sflaoks’
the same in every direction, because all directions ar¢ectlda a symmetry transformation. It
can be shown, that if a manifold is isotropic at every poimrtit is also homogeneous. Spaces
that are homogeneous and isotropic are said tm@&emally symmetric

None of the definitions and concepts we have defined so far teapuéred us to define a
metric on the manifold in question. But when dealing with g relativity, there is always a
metric at hand. So, all of these definitions must be slightlsrad from the physicist’s point of
view. Namely, every manifold must be endowed with a metn] avery groufs acting as a
group of diteomorphisms on the manifold must leave the metric invariantit must be a group
of isometries This means for instance, that thesphere will only be considered homogeneous,
if its isometry groupacts transitively on it. IfS" is endowed with the standard metric, then it
will be homogeneous, since its isometry group 8@(1) acts transitively on it. If, however,
it is endowed with a metric that has, for instance, no isoeivhatsoever, then it will not be
called homogeneous. The concept of isotropy also changémirthe isotropy group has to
be a subgroup of the isometry group. Again, a manifold care lealarger or smaller isotropy,
depending on the metric defined on it. A manifold will be cdlleaximally symmetridf it is
homogeneous and isotropic under the physicist’s defirstafrthese two concepts.

C.2 Group manifolds

In this section, we will take thphysicsdefinitions of homogeneity and isotropy.

A group manifoldis a Lie group endowed with a metric that makes it homogenetus
other words, it is a manifold that isftitomorphic to a Lie group and it has a metric, such that
its isometry group acts transitively on the manifold. Onage example is th&? with the
standard metric

ds’ = dy?® + sinf(y) dQ3, . (C.4)

This manifold is difeomorphic to the group SU(2). Endowed with this metric, i 190 (4)
isometry and SO(3) isotropy, so we can write it as the qub®(4)y SO(3). It is maximally
symmetric.

However, as we mentioned before, there are more ways tdfilamhanifold with a quotient
of groups. We could endow it with a metric that has less isoegtand hence less isotropy. The
manifold S® can be regarded as a U(1) principal bundle d&&known as theHopf fibration
This means thdbcally

S¥=s?2xst. (C.5)
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So we can in principle write down a locally defined metric & that has SO(3x SO(2) as
its isometry group, and SO(2) as its isotropy group. | wilt woite down the explicit formulae
because they are not clarifying, but they can be found in.[9%lerefore, we can rewrite our
manifold as the following coset:

SO(3)x SO(2)

32
ST= SO(2)

) (C.6)
where the SO(2) in the denominator is a subgroup of the S@¢REinumerator, i.e. the quotient
SO(3Y SO(2) forms thes? factor of the Hopf fibration. This manifold is no longer mavsity
symmetric, it isanisotropic

We can even go further and write down a metric with the leagitarhof isometry that can
still act transitively on the manifold. The isometry groupshthen be at least three-dimensional.
Such a metric will then have no isotropy group left. In thatesave will be writing our manifold

as follows: SO(3
532 SOG) (C.7)
where the “ represents the trivial group. This space is totally anigoic. All of these state-
ments are valid only locally. Globally, of cours®? = SU(2), and SO(3% SU(2)/Z.
To summarize, we have written our manifold as threedent quotients in the order of
decreasing isometry and isotropy:

SO(4) _ SO(3)x SO(2) _ SO(3)

s SO(B)  so@)

I3

(C.8)

The first two forms are referred to as tfeeind and thesquashe®-sphere respectively. In gen-
eral relativity, one sees group manifolds as generalimatad maximally symmetric spaces, in
that they are homogeneous but potentially completely émpi. In the standard terminology,
which | personally find confusing, one names the group méhétier its isometry group. In the
case of the 3-sphere one would call the cases in (C.8) the)Saddifold, the SO(3x SO(2)-
manifold, and the SO(3)-manifold respectively.

All three-dimensional group manifolds were completelyssified by Bianchi [141]. In
[95] they were used as internal spaces to compactify seirmarsional pure gravity. This
yielded four-dimensional theories with gravity and scslavith interesting exponential poten-
tials, which could be used to obtain cosmological solutisith periods of transient accelera-
tion. In [128] some of those theories were studied as aut@usraystems to find solutions with
periods of acceleration.
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Samenvatting

In dit proefschrift zijn twee onderwerpen behandeld: instaen en kosmologieén in scalar-
zwaartekracht truncaties van superzwaartekracht en larsoaaartekracht theorieén in het al-
gemeen. In het laatste hoofdstuk werd aangetoond dat deeeveerpen gerelateerd zijn.

Het eerste hoofdstuk behandelde de fundamentele beginsaiede bosonische snaartheo-
rie en de supersnaartheorie. We hebben geleerd dat elkaridesin een kwantummechanische,
relativistische snaar als een deeltje kan worden opgearhij zijn massa en spin de kwan-
tumgetallen van de snaatrtrillingstoestand zijn, in tetgdliisg tot Casimir operatoren (i.e. vaste
eigenschappen). De nadruk van dit hoofdstuk ligt op de wldsorie limiet van de snaartheo-
rie. Als we veronderstellen dat snaren zwak koppelen, aedd koppeling van snaren bepaald
door de constante waarde van de dilaton klein is, dan kunreeeen twee-dimensionale CFT
op het wereldoppervlak van de snaar definiéren. Velden zigatsimtetijd (arget spacgme-
triek worden gezien als veld-afhankelijke koppelingen katu-model. Ze kunnen ook worden
gezien als operator inserties van coherente toestandemetamarenspectrum, zoals het spin-2
toestandeeltje dat graviton wordt genoemd. Om de klassieke cordampariantie van de CFT
ook te laten gelden op het kwantumniveau, moeteg-fiencties voor de veld-afhankelijke kop-
pelingen op nul worden gezet. Deze beperkingen zijn peatighin o’ en, in de lage energie
benadering, houden we alleen de nulde-orde termen. Dit gasfbeperkingen die eruit zien
als de bewegingsvergelijkingen van ruimtetijd velden [gake Einstein vergelijking voor de
ruimtetijd metriek). Door deze ruimtetijd bewegingsvdijgagen weer te geven als acties,
verkrijgen wij de superzwaartekracht acties, welke gédvzijn in dit proefschrift.

In het tweede hoofdstuk werden de basisbeginselen vamtosin uitgelegd. We begonnen
met het voorbeeld van het niet-relativistische kwanturtiieia de dubbele-put en de periodie-
ke potentialen. We hebben geleerd dat instantonen extrgmean de Euclidische actie die
gebruikt kunnen worden om tunnelingsamplitudes te bermkebeze tunnelingd@cten leren
ons dat de naieve ontaarde perturbatieve vacua van deetysmmn stationaire toestanden zijn
omdat het deeltje ze kan verlaten. Dit stelt ons in staat leekelijke vacuiim van de theorie
te definiéren, wat ruwweg een lineaire combinatie is van deveavacua. Vervolgens gingen
we verder met de toepassing van instantonen in de kwantdewvisleorie, door het voorbeeld
van de Yang-Mills instanton te behandelen. Dit toonde ores dh@ principes van instantonen
en werkelijke vacua generaliseren tot kwantumveldentaéaor We zagen dat een padintegraal
die rekening houdt met defecten van instantonen, i.e. een padintegraal dieatdévaculim-
tot-echtvacutim amplitude geeft, in essentie een topologigeteem in zijn actie krijgt. Aan
het einde van het hoofdstuk heb ik uitgelegd hoe instantom@&nEuclidische dimensies soms
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overeen kunnen komen met solitonerb+ 1 ruimtetijd dimensies.

In het derde hoofdstuk konden we deze kennis toepassen iscatar-zwaartekracht theo-
rie. Allereerst hebben we een aantal subtiliteiten meeli&ing tot de Euclidische padintegraal
voor de zwaartekracht naar voren gebracht. Daarna defilieeve een theorie van zwaarte-
kracht met twee scalairen, welke kunnen worden ingebedpe t\B superzwaartekracht voor
bepaalde waarden van de dilaton koppeling. We vonden dessiptgen voor deze theorie en
waren in staat ze te classificeren in termen van hun R)Zonjugatieklassen’. Er bleken drie
SL(2 R)-ongerelateerde families van oplossingen te zijn. Dooimdeoofdstuk 2 besproken
correspondentie tussen instantonen en solitonen toe sepa®aliseerden wij ons dat de drie
families van D-instantonen gezien kunnen worden als rdifkeggebieden van superextremale,
extremale en subextremale electrisch geladen zwarte .ghlzre tunneling interpretatie van
deze oplossingen naar voren te hebben gebracht, hebbenmegddijkheid besproken dat zij
leiden tot niet-perturbatieve® correcties aan de type |IBfectieve actie.

Ten slotte heb ik enkele onderwerpen besproken, die oneleudmaken van mijn nog lo-
pende onderzoek. Het plaatsen van D-instantonen in een étiSrgrond kan leiden tot inte-
ressante toepassingen in de ADBT correspondentie. De correspondentie tussen de exteema
D-instanton in type 11B superzwaartekracht en de zelf-duradtanton vav = 4,d = 4 super-
Yang-Mills, is sinds enige tijd bekend. Wij hopen de velderie duale van de niet-extremale
D-instantonen te begrijpen, wat ons in de richting zou kunmigzen van niet-zelf-duale super-
Yang-Mills instantonen.

Het volgende deel van dit proefschrift heeft een ander swafar-zwaartekracht oplossing
behandeld, dat ook afhangt van één parameter. FLRW kosieélog Hoofdstuk 4 introdu-
ceerde de basisprincipes van de standaard kosmologie eerm@okbbsmologie. Inflatie en de
tegenwoordige versnelling zijn experimenteel gemetergabnissen in ons universum. Als de
snaartheorie daadwerkelijk de theorie van alles is, mgegeri realistisch scenario voor deze
gebeurtenissen toelaten. Aan het eind van het hoofdstulkresdn samenvatting gegeven van
enkele van de vele op de snaartheorie gebaseerde benaaeviany de moderne kosmologie,
gericht op modellen die te reduceren zijn tot theorieén viendimensionsele zwaartekracht
met scalaire velden.

In hoofdstuk 5 bestudeerden we het scalar-zwaartekrastéesy met een enkele exponen-
tiele potentiaal. Allereerst toonde we aan dat, door eestgweldherdefinitie, het systeem
effectief slechts één scalair veld in de exponent van de patdiiteeft. Daarna werden de be-
wegingsvergelijkingen herschreven in de taal van autoreystemen. We zagen dat, bij gebruik
van deze terminologie, de gebruikelijke FLRW ‘machtswptWer-law en de Sitter oplossin-
gen kunnen worden gezien als kritische punten en de meeeéstnte oplossingen zijn diegene
die interpoleren tussen deze twee regimes. Dit toonde oasvija@e oplossingen kunnen her-
kennen die periodes met tijdelijke versnelling hebben,feabmenologisch interessant is voor
modellen van zowel inflatie als de tegenwoordige versrgellin

In hoofdstuk 6, hebben we alle vereenvoudigingen laterematloor demeestalgemene
multi-exponentiéle potentiaal voor een willekeurig adistalaire velden te bestuderen. Een
algemene formule voor het vinden van kritische punten wégeleid, welke de Sitter kriti-
sche punten blootlegde die nog nooit ontdekt waren. De agenfiormule werd vervolgens
toegepast op enkele specifieke gevallen afkomstig van tiedw@an pure zwaartekracht op drie-
dimensionale groepvariéteiten. Tenslotte werden mdgelijtbreidingen van genoemd werk
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beschreven, namelijk het toevoegen van een barotropischistof in het systeem om materiaal
na te bootsen en van ruimtelijke kromming. Een mogelijkpéssing van een dergelijke uit-
breiding is het ‘kosmische samenvallen probleecasmic coincidence problgrwat mogelijk
opgelost kan worden door ‘schalende oplossingsecaling solutionk

In het afsluitende hoofdstuk 7 werden D-instantonen en kdgigen samengebracht. Hun
wiskundige overeenkomstigheid, te wijten aan het feit @add®oplossingen van scalar-zwaarte-
kracht modellen zijn die afhankelijk zijn van slechts éémrdinaat, werd vertaald in twee
concrete correspondenties. Allereerst zagen wij dat enRehstantonen gerelateerd zijn aan
S(-1)-branen via de Wick rotatie. In het tweede deel van betdstuk ontwikkelden wij een for-
malisme dat beide typen oplossingen op gelijke voet brddgbr het interpreteren van scalaire
velden als codrdinaten van een twee-dimensionale scaiiteia (target spacgen het vervol-
gens uitvoeren van codrdinatentransformaties op dezarseakteit, realiseerden wij ons dat
instanton oplossingen gezien kunnen worden als de banedesdtjes in eenlS, ruimte. De
drie SL(2 R) families van instantonen komen overeen met respectjkvakhssieve, massalo-
ze en tachyonische deeltjes. De kosmologieén, aan de akalgzavorden geinterpreteerd als
banen van een deeltje in een Euclidiséheruimte.

De Ansatze voor de ruimtetijd metriek van zowel de instaatoals de kosmologieén zijn
zodanig dat beide metrieken slechts één vrijheidsgraaoemeloor het interpreteren van deze
vrijheidsgraad als een extra scalarvariéteit coording@tden wij in staat gesteld beide syste-
men te combineren in de actie van een deeltje in een drierdiimieale Minkowski ruimtetijd.
In dit formalisme zijn een instanton en een kosmologie sayapakt en worden beschouwd als
twee delen van de baan van een enkel deeltje. Dit suggememmegelijk scenario om kos-
mologische singulariteiten op te lossen. Bijvoorbeeldjéze scalarvariéteit taal wordt de Big
Bang voorafgegaan door een instanton fase wat in zichzelfalgegaan wordt door een Big
Crunch.
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