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Abstract

This-doctoral-thesis-explores-some-of-the-remaining-unknowns-surround-
ing- the- Standard- Model- (SM)- Higgs- discovered- at- the- Large- Hadron-
Collider- (LHC),- including- its- potential- role- as- a- bridge- and- sensitive-
probe-to-new-physics-beyond.-

We-first-focus-on-Higgs-production-in-association-with-a-photon,-a-rare-
process- not- yet- observed- at- the- LHC.- We- show- that- it- is- sensitive- to-
significant-deviations- of- Higgs- couplings-to-first-and-second- generation-
SM- quarks- (particularly-the-up-type)-from-their- SM-values,- and-use-a-
multivariate-neural-network-analysis-to-derive-the-prospects-of-the-High-
Luminosity-LHC-to-probe-deviations-in-the-up-and-charm-Higgs-Yukawa-
couplings-through-h 4+-y production.- We-then-compare-the-sensitivity-of-
this-channel-to- existing- experimental-searches-and- other-methods-pro-
posed-in-the-literature.-

Secondly,- we-study-exotic- Higgs-decays-h — Z X ,-with- X an-invisible-
beyond-the-SM-particle,resulting-in-a-semi-dark-final-state.- Such-exotic-
Higgs-decays-may-occur-in-theories-of-axion-like-particles- (ALPs),-dark-
photons- or- pseudoscalar- mediators- between- the- SM- and- dark- matter.-
The- SM- process- h — Zvi-represents- an- irreducible- “neutrino- floor” -
background- to- these- new- physics- searches,- but- also- provides- a- target-
experimental-sensitivity-for-them.- We-analyze-h — Z + invisible searches-
at-the- LHC-and- a- future- ILC,-showing-that- these-exotic- Higgs- decays-
can-yield-sensitivity-to-unexplored-regions-of-parameter-space-for- ALPs-
and-dark-matter-models.-

Lastly,~we-explore-the-possibility-that-the-CP-violation- (CPV)-required-
for-baryogenesis-is-active-in- the-early- Universe- but-is-now-suppressed.-
A-scenario- well-motivated- by- the-strong- constraints- placed- by- electric-
dipole-moments-on-the-existence-of-beyond-the-SM-sources-of-CPV-that-
could-catalyze-the-latter.- By-considering- CP-violating-interactions-be-

tween- a- dark- and- the- Higgs- sectors,- the- multi-scalar- dynamics-in- the-
early-Universe-is-able-to-yield-a-transient-period-of-CPV-enhancement.-
This- CPV-then- leaks- to- the- visible- sector,- enabling- a- first-order- EW-
phase-transition-to-generate-the-observed-baryon-asymmetry.- We-argue-
that-the-requirement-to-generate-a-net-baryon-asymmetry-avoiding-cos-

mic- domains- naturally-leads- to-a- viable- DM- candidate.- Through-this-
two-step-phase-transition,-the-latter-becomes-the-catalyzer-for-baryoge-

nesis-via-its-CP-violating-interactions.- We-study-an-explicit-realization-



through-a-non-minimal-Higgs-sector-consisting-of-two-Higgs-doublets-and-
a-singlet-scalar-odd-under-a-Zs symmetry,-which-has-CP-violating-inter-
actions-with-the- Higgs-doublets.- We-analyze-the-regions-of- parameter-
space-where-such-an-early-Universe-period-of-CPV-enhancement-occurs,-
showing-that-the-required-thermal-history-leads-to-a-predictive-scenario,-
and-discuss-ongoing-efforts-to-test-it-through-a-combination-of-LHC-and-
dark-matter-searches.-



Resumen

Esta- tesis- doctoral- explora- algunas- de- las- incégnitas- restantes- dentro-
del- Modelo- Estandar- (SM,- por- sus-siglas- en-inglés)-en- torno- al- bosén-
de-Higgs- descubierto- en-el- Gran- Colisionador- de- Hadrones- (LHC,-por-
sus-siglas-en-inglés),-incluyendo-su-potencial-papel-como-puente-y-sonda-
sensible-a-nueva-fisica-maés-alla-del-mismo.-

En-primer-lugar, nos-centramos-en-la-produccién-del-Higgs-en-asociacién-
con-un-fotén-en-colisionadores-hadrénicos,-un-proceso-poco-probable-que-
todavia-no-ha-sido-observado-en-el- LHC.-Mostramos- que- es-sensible- a-
desviaciones-significativas-de-los-acoplamientos-del-Higgs-a-los-quarks-del-
SM-de- primera-y-segunda- generacion- (particularmente-los- de- tipo- up)-
con-respecto-a-sus-valores-en-el-SM,-y-utilizamos-un-analisis-multivari-
able-de-redes-neuronales-para-determinar-las-perspectivas-de-la-fase-de-
Alta-Luminosidad-del-LHC-de-probar-desviaciones-en-los-acoplamientos-
Yukawa- del- Higgs- a-los- quarks- up y- charm a-través-de-la- produccion-
de-h +-y.- Por-uttimo,-comparamos-la-sensibilidad-de-este-canal-con-las
bisquedas-experimentales- existentes- y-otros- métodos- propuestos-en-la-
literatura.-

En-segundo-lugar,-estudiamos-decaimientos-exéticos-del-bosén-de-Higgs-
h — ZX ,-donde-X es-una-particula-més-alld-del-SM-invisible,-lo-que-da-
como-resultado-un-estado-final-semi-oscuro.- Estos-decaimientos-exéticos-
del-Higgs-pueden-ocurrir-en-teorias-de-particulas-tipo-axién-(ALPs, por-
sus-siglas-en-inglés),-fotones-oscuros-o-mediadores-pseudoescalares-entre-
el-SM-y-la-materia-oscura.- El-proceso-del-SM-h — Zvv-representa-un-
fondo-irreducible,-un-”suelo-de-neutrinos” -para-estas-nuevas-busquedas-
de-fisica, pero-también-representa-un-objetivo-para-la-sensibilidad-exper-
imental-del-anélisis.- Analizamos-las-busquedas-de-h — Z + invisible en-el-
LHC-y-en-un-futuro-ILC,-demostrando-que-estos-decaimientos-exdticos-
del-Higgs-pueden- proporcionar-sensibilidad- a-regiones-inexploradas-del-
espacio-de-pardmetros-para-modelos-de- ALPs-y-materia-oscura.-

Por-ittimo,-exploramos-la-posibilidad-de-que-la-violacién-de-CP-(CPV)-
requerida-para-la-bariogénesis-se-encontrase-activa-en-el-Universo-prim-
itivo- pero- esté- suprimida- ahora.- Este- escenario- estaria- motivado- por-
las- fuertes- restricciones- impuestas- por-la- ausencia- de- momentos- dipo-
lares-eléctricos-a-la-existencia-de-fuentes-mas-alla-del-SM-de-CPV -que-
podrian-ser-las-encargadas-de-catalizar-dicha-bariogénesis.- Mediante-in-
teracciones-entre-un-sector-oscuro-y-el-sector-del-Higgs-que-violan- CP,-



la- dindmica- multi-escalar- es- capaz,- en- el- Universo- primitivo,- de- pro-
ducir- un- periodo- transitorio- de- aumento- de- la- violacién- de- CP.- Esta-
violacién-de-CP-se-filtraria-luego-hacia-el-sector-visible,-permitiendo-que-
una-transicion-de-fase-electrodébil-de-primer-orden-generase-la-asimetria-
bariénica- observada.- La-necesidad-de- generar- una-asimetria-barionica-
neta-evitando-dominios-césmicos-conduce-naturalmente-a-un-candidato-
viable-de-materia-oscura.- A-través-de-esta-transicién-de-fase-de-dos-eta-
pas,-esta-ultima-se-convierte-en-el-catalizador-de-la-bariogénesis-mediante-
sus-interacciones-que-violan- CP.-Estudiaremos-una-realizacién-explicita-
a-través-de-un-sector- de- Higgs- no- minimal- que- consta- de- dos-dobletes-
de-Higgs-y-un-singlete-escalar-impar-bajo-una-simetria- Zo,-que-tendria-
dichas-interacciones-que-violan-CP-con-los-dobletes-de-Higgs.- Analizamos-
larregién-del-espacio-de-parametros-en-la-que-ocurre-dicho-periodo-tran-
sitorio-de-CPV-aumentada,-mostrando-que-la-historia-térmica-necesaria-
conduce- a-un-escenario- predictivo,- y- discutimos-los- esfuerzos- en- curso-
para-probarlo-a-través-de-una- combinacién-de-busquedas-en-el- LHC-y-
experimentos-de-materia-oscura.-



Contents

List of Publications
List of Figures
List of Tables

Purpose and Motivation

1 The Higgs Boson and its Phenomenology
1- The Standard Model-. . . . . . . ... ... Lo
1.1-  Gauge Symmetry-. . . . . . ..o Lo
1.2-  Electroweak-Symmetry Breaking- .- .- .- .- - - - - s
1.3-  Fermion-Fields- . . . . . .. .. ... ... o
1.4-  Fermion-Flavor-. . . . . . .. ... ... ... ...,
2-  Higgs-Phenomenology:- Into-the-Era-of-Precision- .- .- .- .- .- .- - - - -
3-  Open-Problems-in-the-Standard-Model:- the-Central-Role-of-the-Higgs- 11-

2 Probing Higgs Yukawa Couplings to Light Quarks
1-  Stateofthe Art . . . . . . . . . ..

3.1-  h +-y Production-at LHC-

3.2-  Sensitivity-via-h - WW* — fvlv

3.3 Constraints-on-k. & Ky,

4-  Comparison with Existing-Methods

5- Conclusion- . . . . . . ..

3 Searching for Exotic Semi-Dark Higgs Decays
1- Introduction-. . . . . . . .. ... L
2-  Sweeping-the-Higgs-Neutrino-Floor:-h — Z +Fr . . . . .. . . ...
2.1-  LHC-Searches-for-h — ZX — 0 +Fp . . .. ... ... ...
2.2-  ILC-Searches-for-h — ZX — U +F . ... ... ... ....

3-  Constraints-on Dark Matter Scenarios-

3.1- Axion-like-Particles-. . . . . . . . . ...
3.2- 2HDMA4a . . . . . e e

111

VII

15

15-
17-
19-
20-
21-
25-
26-
29-

33

33
34-
34-
39-
40-
41-
44-



CONTENTS

3.3- A Comment-on Dark Photons . . . . . . . .. .. ... .... -
4-  Conclusion- . . . . . . . e -

4 Higgs CP-Violating Portal: Assisting Baryogenesis from the Dark
1- Imtroduction-. . . . . . . . . . ... -

2- The-Model:-2HDM-+-5? with CP Violation-. . . . . . ... ... .. -

3-  Transient-Enhancement-of-CP-Violation-in-the-Early-Universe- .- .- .-
3.1-  Tree-Level-Requirements- . . . . . . ... ... ... ..... -

3.2-  Finite-Temperature-Effective-Potential-.- .- .- .- .- .- - - - - - - -
3.3-  Thermal History Requirements- . . . . . . .. ... ... ... -
3.4-  Regions-of-Transient-CP-Violation-Enhancement- .- .- .- .- .- .- .-
4-  Outlook- . . . . . . . -

Summary and Conclusion
Sumario y Conclusién

References

II-



List of Publications

This-thesis-is-based-on-research-that-led-to-the-following-scientific-publications:-

[1]- More light on Higgs flavor at the LHC: Higgs boson couplings to light quarks
through h +-y production
J.-A.-Aguilar-Saavedra,-J.-M.-Cano,-J.-M.-No-
Phys. Rev. D 103 (2021)-095023-[2008.12538]-

[2]- Semidark Higgs boson decays: Sweeping the Higgs neutrino floor
J.-A.-Aguilar-Saavedra,-J.-M.-Cano,-J.-M.-No,-D.-G.-Cerdefio-
Phys. Rev. D 106 (2022)-115023-[2206.01214]-

o A Higgs CP-violating portal: Assisting baryogenesis from the dark
J.-M.-Cano,-S.-Gori,-K.-Mimasu,-J.-M.-No-
In preparation

also-published-during-the-development-of-this-thesis:-
e Data Driven Flavour Model

F.-Arias-Aragén,-C.-Bouthelier-Madre,-J.-M.-Cano,-L.-Merlo-
Eur. Phys. J. C 80 (2020)-854-[2003.05941]-

III-


https://doi.org/10.1103/PhysRevD.103.095023
https://doi.org/10.1103/PhysRevD.103.095023
https://arxiv.org/abs/2008.12538
https://doi.org/10.1103/PhysRevD.106.115023
https://doi.org/10.1103/PhysRevD.106.115023
https://arxiv.org/abs/2206.01214
https://doi.org/10.1103/PhysRevD.103.095023
https://doi.org/10.1103/PhysRevD.103.095023
https://arxiv.org/abs/2008.12538

List of Figures

2.1-

2.2-

3.1-

3.2-

3.3

Measured-Higgs-bosoncouplingstrengths-and-theiruncertainties-(68%-
CL)-versus-particlemasses.- Red-lineshows-expected-SM-behavior,-i.e.

couplings-that-are-linearly-proportional-to-the-corresponding-particle-
mass- (or-quadratically-for-the-W and-Z bosons).- Two-fit-scenarios-
with-k, =-k; (colored-circle-markers),-or-k. left-free-floating-in-the-
fit- (gray- cross-markers)-are-shown.- Loop-induced- processes- are- as-

sumed-to-have-the-SM-structure,-and-Higgs-boson-decays-to-non-SM-

particles-are-not-allowed.- Individual-x’s-are-shown-on-the-lower-panel.- 16-

Left:- Feynman-diagram-for-gg — h~y,-whose-amplitude-vanishes-due-
to-Furry’s-theorem.- Right:- Example-tree-level-Feynman-diagram-for-
qG— hvy (with-¢ =u,d,s,c,b) in the SM.- . . . ... ... ... ... -
Top:- M7 distribution- of- events- for- the- dominant- SM- backgrounds-
tul~ vy (red),-tty (green),-and-Z(— 777 )y (yellow), all-stacked -
at-the- HL-LHC- (/s =-14-TeV,-3-ab™!).- In-blue-the-corresponding-
My distribution- for-the- h +-v signal-with-x, ="k, =1, k. = 30.-
Middle:- same-as-above,-but-for- My,.- Bottom:- Normalized’Aqu’ET)

and-AR‘" distributions-for-signal-and-SM-backgrounds.- .- .- .- .- .- .- .-
Multivariate- NN-score-variable-Onn for-the-h +-y signal- (blue)-and-
dominant- SM- backgrounds- £Tvf~ 7y (red),- tt5 (green),- and- Z(—

7T77)7 (yellow)-in-the-charm-quark- Yukawa-sensitivity-study.- .- .- .-

My (top)-and-A¢(Z, Er) /7 (bottom)-for-Z; (blue)-and-Zs (red), see-
text for details.-. . . . . . ... Lo -
Score-On of-the-neural-network-discriminating- BSM-signal-vs- SM-
background-in-our-analysis,- for- the- BSM-signal-with-mx =-1-GeV-
(labeled- Z H - blue),- and- the- relevant- SM- backgrounds:- ZZ — 4/
(red), ZZ — 2027 (yellow), WW Z — 40+2v (green), ZZZ — 40+2v

20 exclusion-sensitivityfor-BR(h — ZX)xBR(X-— F)-as-afunction-
of-my for-an-LHC-integrated-luminosity-of-300-fb=! (red)-and-3000-
fb~! (HL-LHC,-blue).- The- Higgs neutrino floor is-shown-as-a-dashed-

black-line.- The-ILC-+/s =-250-GeV-(2-ab~!)-would-be-sensitivity-is-
shown-in green.- . . . . . . . .. ... ... -

20-

25-

37-



LIST OF FIGURES

3.4-

3.5-

3.7

4.3-

4.4-

Present- (solid)- and- projected- (dashed)- constraints- on- the- (mg, f4)-
plane-for-an- ALP-with-coupling-to-photons,-a-hidden-(DM)-fermion-
x and-the-SM-Higgs-(viara-c,zp coupling),-see-text-for-details.- .- .- .-
Present- (solid)- and- projected- (dashed)- constraints- on- the- (mg, fq)-
plane-for-an- ALP-with-coupling-to-the-hypercharge-field-strength,-a-
hidden-(DM)-fermion-x and-the-SM-Higgs-(via-a-c,zp coupling),-see-
text for details. . . . . . . . L -

43-

45-

Present-(solid,gray)-and-projected-(dashed)constraints-onthe-(m,, sinf)-

plane-for-the- first benchmark 2HDM+-qa scenario-analyzed-in-this-
work-(with-T'(h — aa) = 0), see text for details.-.- .- .- .- - - - - - - - -

Present-(solid,gray)-and-projected-(dashed)-constraints-onthe-(m,, sinf)-

plane-for-the-second benchmark 2HDM+-a scenario-analyzed-in-this-
work-(with-T'(h — aa) # 0), see text for details.-.- .- .- .- - - - - - - - -

(cg—a, 2)-plane-for-t, = 2,1-(left-to-right)-and-m, =-750,400-GeV-
(top-to-bottom)-for-the-benchmark-point-shown-in-Eq.{4.19).- Col-

ored- and- hatched- regions- show- the- areas- excluded- by- each- of- the-
constraints-discussed-in-the-main-text.- Boundedness-constraints-have-
been- split- for- illustrative- purposes:- Boundedness 2HDM labels-
the-region-excluded-by-the-2HDM-vacuum-stability-conditions—first-
line-of-Eq.(3.1),-whereas- Boundedness Singlet shows-the-impact-
of-considering-the-full-set-of-inequalities-resulting-from-the-addition-
of the singlet — the whole Eq. (3.1). . . . . .. ... ... ... .... -
(ms, Ag)-plane-for-t; = 2,1- (left- to-right)-and- Ag = 4, 1- (top- to-
bottom)-for-the-benchmark-point-shown-in-Eq.{4.32)-with-Age = 1.5
Ag.~ Colored-lines-and-hatched-regions-delimit-the-areas-excluded-by-
each-of-the-constraints-discussed-in-the-main-text.- .- .- .- .- .- .- .- .- - .-
(ms, Ag)-plane-for-Aga = 1.5A3,0.5Ag (left-toright)-and-Ag = 4, 1-(top-
to-bottom)-for-the-benchmark-point-shown-in-Eq.(4.32)-with-t; =-2.-
Colored-lines-and-hatched-regions-delimit-the-areas-excluded-by-each-
of-the-constraints-discussed-in-the-main-text-(note-the-left-column-of-
each-Figure is the same). . . . . . . . ... ... ... ... ... ... -
2-loop- “Barr-Zee” -contribution-to-the-electron-EDM.- .- .- .- .- .- .- .- - -

VI-



List of Tables

1.1-

2.1-

2.2-

4.1-

4.2-

Fermion-transformation-properties-under-G.- . . . . . . ... ... .. -

Summary-of-projected-and-experimental-observed-(expected)-95%-CL-
upper-limits-on-the- charm quark Yukawa-coupling-resulting-from

LHC- searches- (at- /s =- 14, 13- TeV- respectively,” unless- otherwise-
specified).- . . ... -
Summary-of-projected-and-experimental-observed-(expected)-95%-CL-
upper-limits-on-the-up quark Yukawa-coupling-resulting-from-LHC

searches-(at-y/s =-14, 13-TeV-respectively,-unless-otherwise-specified)

The-four-2HDM- Types leading-to-tree-level-flavor-conservation.- Each-
SM- fermion- couples- exclusively- to- one- of- the- doublets.- The-index-

1 = 1,2,3 runs over-generation space. . . . . . . ... ... -

Fermion-Yukawa-couplings-for-the-Type-I-and-1I-2HDM-as-defined-in-
Eq.{4.8),-where-c¢ and-s have-been-used-as-short-hand-notation-for-

sin and cos respectively.- . . . . ... ..o -

VII-

6,

30-

- 31

o7



Purpose and Motivation

Modern-theoretical- physics-is-built-upon-the-pillars- of- General- Relativity-and-the-
Standard-Model-(SM)-of-particle-physics.- Both-theories-have-been-thoroughly-tested-
and-found-to-describe-a-subset-of-reality-up-to-an-extraordinary-degree-of-precision.-
And-yet,neither-can-be-said-to-be-completely-satisfactory,~-whether-from-an-observa-
tional-standpoint-or-from-theoretical-considerations.- Notwithstanding-the-quantum-
nature-of-gravity,-two-of-the-most-pressing-issues-involve-the-evolution-and-current-
state-of-our-Universe.- On-the-one-hand,-an-increasing-amount-of-cosmological-and-
astrophysical-evidence-points-to-large-quantities-of-non-baryonic-matter,-its-presence-
inferred-only-through-its-gravitational-effects.- Dubbed-as-dark-matter-(DM),-for-its-
apparent-lack-of-interaction-with-the-visible-sector,-many-viable-candidates-beyond-
the- SM- (BSM)- have- been-identified,- but- we- have- yet- to- find- conclusive- evidence-
regarding-its-nature.- On-the-other,-the-visible-Universe-seems-to-be-comprised-al-
most-entirely-out-of regular-matter-(in-opposition-to-antimatter,-which-is-found-only-
sparsely),-in-what-is-referred-to-as-the-baryon-asymmetry.- However,-and-given-their-
similarities,-it-remains-highly-unclear-how-this-asymmetry-was-generated-in-the-first-
place.- While-in- principle- the- SM-does- in- fact- present- all- the- theoretical- ingredi-
ents-necessary-to-generate-this-asymmetry,-they-have-been-found-to-be-insufficient,-
leaving-open-the-possibility-for-alternative-explanations-involving-new-physics.- Per-
haps-a- more-theoretically- oriented- question,- the- why- of- the- very- particular-flavor-
structure-that-we-observe-for-the-SM-fermion-spectrum-(i.e. the-structure-of-their-
couplings-to-the-Higgs),-also-remains-a-mystery.- The-parameters-of-the-SM-appear-
to-need-a-significant-degree-of- fine-tuning to-fit-observations-(also-beyond-the-flavor-
sector),-historically-the-hallmark-of-an-incomplete-theory.-

Furthermore- and- beyond- these- and- other- open- questions,- many- properties- of-
the-SM-itself-have-yet-to-be-tested,~-most-notably-involving-the-neutrino-and-Higgs-
sectors.- Within- the- first,- and- despite- the- efforts- of- a- successful- and- now- mature-
program- of- neutrino- detection- experiments,- we- have- yet- to- conclusively- establish-
important-properties-of-the-neutrino-spectrum.- Most-prominently-the-neutrino-mass-
ordering-and-absolute-scale,-but-also-the-size-of-charge-parity-(CP)-violation-in-the-
lepton-sector-and-more-fundamentally,- the-intriguing- possibility-that-they-may-be-
Majorana-fermions.- The-situation-is-analogous-to-that-of-the- Higgs-sector,-where-
an-also-successful-LHC-program-has-yet-to-measure-properties-such-as-its-couplings-
to-itself-and-the-lighter-fermions-of-the-SM,-the-extent- of-its- CP-properties-or-its-
lifetime.- Hints-to-the-solutions- to-the- above- problems- could- very- well-be- hidden-



PURPOSE AND MOTIVATION

within- outstanding- measurements,- and- if- nothing- else,- it- is- our- duty- to- test- the-
extent-to-which-the-SM-is-a-good-description-of-reality.- It-is-thus-critical-to-devise-
and-implement-new-strategies-to-probe-the-remaining-unknowns.-
The-above-arguments-have-ultimately-constituted-the-driving-force-behind-this-
dissertation.- One-tantalizing-possibility-is-that-the-Higgs-boson-could,-in-one-way-
or-another,-be-at-the-forefront-of-a-significant-fraction-of-the-aforementioned-issues.-
It-is- for- this- reason- that- a- large- portion- of- this- thesis- has- been- devoted- to-it-in-
some- shape- or- form.- From- the- development- of- new-ideas- at- colliders- to- test-its-
couplings- (see- Chapter- 2)- or- the- consideration- of- novel- decay- signatures- into- the-
dark-sector- (see- Chapter- 3),- to- exploring- the- rich- possibilities- of- extended- scalar-
sectors-in-relation-to- CP-violation,-dark-matter-and-baryogenesis- (see- Chapter-4).-
The-preceding-Chapter-1-will-serve-as-an-introduction-and-provide-a-brief-review-of-
the-current-phenomenological-status-of-the-Higgs-boson.- Finally,-a-summary-of-our-
conclusions-is-presented-at-the-end-of-the-thesis.-



The Higgs Boson and its
Phenomenology

1 The Standard Model

1.1 Gauge Symmetry

Symmetry-and-the-gauge-principle-can-be-singled-out-as-the-main-drivers-of-success-
in-building-our-understanding-of-high-energy-particle-physics.- Their-implementation-
within-the- framework- of- quantum- field- theory-allows- for- the- prediction- of-experi-
mentally-observable-magnitudes-such-as-cross-sections-or-decay-rates,-among-many-
others.- The-SM-[3—6]-embodies-these-principles,-being,-at-its-core,-a-quantum-field-
theory-based-on-the-gauge-symmetry-group-

G =SU(3)c x SU2)L x U(L)y. (1.1)-

This-gauge-group-encodes-the-behavior-of-the-strong-and-electroweak-(EW)-in-
teractions,-along-with-the-description- of-the-spin- 1-bosons- which-form-part-of-the-
elementary-SM-particle-content-and-are-said-to-mediate-them.- The-strong-interac-
tions-manifest-between-those-particles-which-transform-under-the-gauge-symmetry-
group-SU(3)¢ (C stands-for-color),-and-are-thus-charged-under-it.- On-the-other-
hand,-the-EW-interaction-SU (2)1, x U(1)y,”comprises-the-weak-isospin-symmetry-
group- SU(2), and-the-weak-hypercharge-group-U(1)y.- Given-the-group-and-the-
coupling-constants-of-each-subgroup,-hereby-defined-as-g5 for-SU (3)¢, g for-SU(2)1,
and-¢' for-U(1)y at-a-certain-energy-scale- ui,- this-part-of-the-theory-is-completely-
determined.- A-number-of-spin-1-bosons-arise-as-a-consequence,-one-for-each-of-the-
generators- belonging- to- each- subgroup,- that- are- said- to- mediate- the- interaction.-
Thus-we-have-eight-gluons-for-the-strong-interaction,-three- W-bosons-as-the-medi-
ators-of-the-weak-isospin-interaction,- and-the- B-boson-mediating-the-hypercharge-
interaction.-

We-can-now-write-the-Lagrangian-density-for-the-gauge-sector-of-the-SM-
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1 1, 1-
—Ly =T (G Gpw) +5Te (WHWo) +-4 B By, (1.2)

where-p and-v are-contracted- Lorentz-indexes-following- Einstein’s- summation-
convention,-and-G,,, W, and- B,,, are-defined-as-the-field-strengths-of- SU(3)c,
SU(2)r and-U(1)y respectively-in-the-following-way-

Gu =0uGy — 0,G, +igs [G/“ Gl
Wuu :’8MWV - aVWM +/ig [W/M WV]? (1'3)/
B,, =0,B, - 0,B,,

with-G |, and-W , subsequently-defined-as-

G, = 3G, W,=%W,. (1.4)

GL denote’the/eight'gluon/vector—boson/ﬁelds,/WZ,*the/three*weak/isospin’medi—
ators,-and- B,,,-the-hypercharge-boson,-whereas- \;,-the-Gell-Mann-matrices,-are-the-
generators-of-SU(3),-and-o;,-the-Pauli-matrices, the-equivalent-of-SU (2).- The-above-
Lagrangian-describes-the-propagation-and-self-interaction-of-these-fields.- We-shall-
introduce-as-well-for-later-convenience-the-covariant-derivative,-which-will-allow-for-
their-interaction-with-the-rest-of-the-particle-content-of-the-SM,-defined-as-follows-

D, = 0, +1i9sG, +igW ;, +-ig' Qy By, (1.5)-

where-Qy will-be-the-hypercharge-of-the-field-the-covariant-derivative-is-acting-
upon,-while-G, and-W , will-only-be-present-if-the-latter-belongs-to-the-fundamental-
representation-of-the-corresponding-gauge-subgroup.-

1.2 Electroweak Symmetry Breaking

The- complete- description- of- the- SM- relies- yet- on- another- key- element.- Canoni-
cal-bare-mass- terms- cannot- be- added- directly- to- the- Lagrangian,- as- they-are-not-
invariant-under- G.- The- SM- circumvents- this- issue- through- the- celebrated- Higgs'
mechanism- [7-9],- which-requires- the-addition- of-a-SU(2), doublet-spinless-boson-
(scalar-under-Lorentz-transformations)-with-two-complex-components,-denoted- H -
with-the-following-transformation-properties-under-G

He(1,2,1/2). (1.6)-

Throughout this work we will refer to both particle and mechanism as “Higgs” for conciseness.
However, as it usually happens, the full extent of its development was due to the work of many
individuals. A more complete (but still probably non-exhaustive) list would include Anderson,
Brout, Englert, Guralnik, Hagen, Higgs, Kibble and ’t Hooft.
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Its-implementation-within-the-SM-Lagrangian-relies-on-the-addition-of-two-new-
parameters-

2\ 2
L = (D,H) DFH — ) <HTH U ) , (1.7)

one- with- dimensions- of- energy,- v,- which- implicitly- defines- the- EW-scale-v ~
246- GeV -and-the-dimensionless-self-Higgs-coupling-constant,- A &~ 0.13-[10].- Both-
parameters-are-experimentally-determined-by-the-measurement-of-the-Fermi-constant-
v=(+2G F)*l/ 2 from-muon-decay-measurements-and-Higgs-boson-massmy, = v2\v.-
The-second-term-in-Eq.{(1.7),-the-Higgs-potential,-is-minimized-for- HTH =v2/2,-
consequently-inducing-a-non-zero- vacuum- expectation- value- (VEV)- for- the- Higgs-
field.- When- expanding- around- this- vacuum,- its- interaction- with- the- rest- of- the-
fields-will-give-rise-to-the-mass-terms-needed-to-properly-accommodate-the-physical-
particle-spectrum.- This-interaction-is-in-turn-determined-by-the-Higgs-charges-(or-
equivalently,-transformation-properties)-under-G,-which-were-shown-in-Eq.{1.6).-

The-Higgs-non-zero- VEV-induces-the-spontaneous-symmetry-breaking-of-three-
out- of- the- four- generators- (often- referred- to- as- “directions” )- of- the- gauge- group-
SU(2)r, x U(1)y of the- EW-interactions,- a- phenomenon- commonly-referred-to-as-
Electroweak-Symmetry-Breaking-(EWSB).-Three-out-of-the-four-degrees-of-freedom-
in-the-Higgs-field-would-then-ordinarily-resolve-as-massless-Goldstone-bosons-under-
the- Goldstone-theorem.- However,- being- coupled- to-the- EW-gauge- fields- through-
the-covariant-derivatives-of-the-above- Lagrangian,-they-end-mixing-with-the-com-
binations-of-W and-B bosons-matching-the-broken-generators,-and-become,-in-the-
unitary-gauge,-the-longitudinal-components-of-the-physical-W™* ,-W = and-Z bosons,-
made-massive-as-a-result-of-their-inclusion.- The-single-remaining-degree-of-freedom-
in-the-doublet-becomes-a-new-massive-scalar-particle,~the-Higgs-boson.-

The-combination-of-generators-of-SU(2), x U(1)y that-still-preserves-the-vac-
uum,-and-thus,-defines-the-gauge-group-that-remains-unbroken-after-EW-symmetry-
breaking,-is-the-one-corresponding-to-the-electromagnetic-group-U (1), .- The-com-
bination-of-gauge-fields-pointing-in-this-direction-stays-massless,-and-amounts-to-the-
physical-photon—y.- All-in-all -after-the-rotation-from-the-weak-interaction-eigenstates-
to-the-mass-eigenstates,~we-are-left-with-the-physical-spectrum-of-gauge-boson-fields-

+ _ 1
WM :/i 1- —1 Wu
W, V21 4 f
(1.8)-
o costhy  sinfy B,

( <sin19W costy Wj’ <

where-the-weak-mixing-angle-fy = tan=!(g’/g)-has-been-introduced.- Expanding-
the-covariant-derivatives-in-Eq.{(1.7),-the-masses-of-the-W and-Z bosons-read-

=



1. THE HIGGS BOSON AND ITS PHENOMENOLOGY

SUB)e SUQR)L Uy

QL 3- 2 1/6-
Ug 3- 1- 2/3
Dg 3 1- -1/3-
0 1- 2 1/2-
Eg 1- 1 1-

Table 1.1: Fermion-transformation-properties-under-G.-

2,,2 2 4 _12N\,,2
g:, m%:fg*z%ﬁ). (1.9)

mly =

1.3 Fermion Fields

Next- in- order,- completing- the- sequence- of- intrinsic- angular- momentum- between-
the-spin- 1-vector-and-spin-0-scalar-bosons,-come-the-spin-1/2-fermions.- They-can-
be- classified- according- to- their- transformation- properties- under- G,- which- in- turn-
determine-the-way-they-interact-with-the-rest-of-the-fields-of-the-SM.-We-can-draw-
the- first- distinction- on- whether- they- are- able- or- not- to- interact- strongly- under-
the- gauge- group- SU(3)¢.- Those- who- can,- are- referred- to- as- quarks,- those- who-
cannot,-we-call-leptons.- We-can-split-them-even-further-according-to-the-way-they-
behave-under-the-weak-isospin-group-SU(2) .- Among-the-quarks,-we-can-distinguish-
between-the-doublets, Q1 ,-and-the-singlets,-Upr,-and-D g;-whereas-leptons-divide-into-
doublets,-f,,-and-singlets,- Er.- Lastly,-each-of-these-is-charged-differently-under-the-
hypercharge-U(1)y group.- The-transformation-properties-of-the-fermions-in-the-SM-
are-summarized-in-Table-1.1.-

The- representations- of- the- non-abelian- groups- (SU(3)¢ and- SU(2),)- form- a-
discrete-set,” e.g. the-fundamental-representation,- the-adjoint- representation,-etc.-
Every-fermion-in-the-SM-either-transforms-in-the-simplest-non-trivial-of-them,-the-
fundamental,-denoted-in-the-above-table-as-N for-SU (N ),-or-does-not-transform-at-
all,-acting-as-a-singlet,-denoted-by-1-in-the-first-two-columns- (we-already-used-this-
notation- for-the- Higgs-field-in-Eq.{1.6)).- As-for-the-abelian- gauge-group-U(1)y ,-
the-seemingly-random-choice-of-representations-(charges)-for-the-different-fermions-
comes-as-a-predictive-success-of-the-gauge-principle-(modulo-a-normalization-factor).-
The-cancellation-of-anomalies,-or-equivalently,-the-conservation-of-the-symmetry-at-
a-quantum-loop-level,-imposes-hard-constraints-on-the-assignment-of-hypercharges.-
The-subscripts-L and-R have-been-used-to-denote-the-left-and-right-handed-chirality-
components-of-fermions.-

The- interaction- between- fermions- and- gauge- fields- is- implemented- in- the- La-
grangian-through-the-covariant-derivative-in-the-kinetic-terms-



1 The Standard Model

PLroin =i ZEE\I/ (1.10)-
4

where- ' = ~#D,, with-v#* denoting- the- Dirac- matrices,- and- the-sum-over- ¥-
extends-over-the-fermions-in-Table-1.1.-

1.4 Fermion Flavor

There-is-yet-another-layer-to-the-fermion-structure-of-the- SM,-namely,- the-flavor.-
Three-copies-of-the-fermion-fields-described-in-Table-1.1-are-observed-in-nature,~with-
the-exact-same-charges-but-disorderly-masses.- These-are-commonly-referred-to-as-
families-or-generations,-and-can-be-arranged-in-the-following-way-

i ury, Cr, tL )
L= ’ j Up = (ur, crt
L sy, br, R (ur; cn, tr)
D% = (dr, Sr,br)", (1.11)-
H T .
0 = L : 'L , YL ER = (er, R, TR)
L mr TL

where-we-have-used-i as-the-index-running-in-flavor-space,-denoting-the-up,-down,-
charm,-strange,-top-and-bottom-quarks-as-u,-d, ¢,-s,-t and-b respectively;-and-in-the-
lepton-sector,-the-electron,-the-muon,-the-tau-and-their-corresponding-neutrinos-as-
e, 1,7 and-v;-finally-displaying-the-whole-fermion-spectrum-of-the-SM.-

In-the-simplest-realization-of-the-SM,-neutrinos-are-massless,-and-the-mass-terms-
for-the-rest- of- the- fermions- arise- through- Yukawa- interactions- between- these- and-
the-Higgs-field-once-the-latter-is-expanded-around-its- VEV-.- The-piece- of-the-SM-
Lagrangian-containing-this-mass-generating-terms-reads-as-follows-

—Lyur =QHYyUr +QHYpDp +4 HYpER +-H.c. (1.12)-

where- H = igo H* ,with-the-second-Pauli-matrix-o2 acting-over-the-weak-isospin-
space,-and-Yy,"Yp and-Yg denote-3 x 3-matrices-acting-over-flavor-space,-each-of-their-
entries-givingrise-to-the-different-Yukawa-couplings-between-quarks-and-leptons-and-
the-Higgs.- As-we-shall-see,-these-matrices-encode-the-entire-flavor-structure-of-the-
SM,-from-masses-to-mixings,-and-will-constitute-one-of-the-main-objects-of-our-study-
throughout-this-thesis.-

Without-loss-of-generality,-the- Yukawa-matrices-in-Eq.{1.12)-can-be-written-as-
the-product-of-a- unitary-matrix,-a-diagonal-matrix- of- eigenvalues,- and- a- different-
unitary-matrix-on-the-right-end,-explicitly-

Yy =ULyoUy, Yo =UPypUF, (1.13)-

Wherezugjg are-the-unitary-matrices-and-yy, p the-diagonal-matrices-composed
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by-the-eigenvalues-of-the-original-Yukawa-matrices.- The-following-redefinition-of-the-
quark-fields-in-flavor-space-

Qr - UWQL, Ur—UlUr, Dp—UDDg, (1.14)

simplifies,-while-leaving-therest-of the-Lagrangian-invariant,the-Yukawa-matrices-
in-Eq.{1.12)-to-the-form-

YU =Yu, YD :*ugTufyD, (1.15)

where-the-Cabibbo-Kobayashi-Maskawa- (CKM)-quark-mixing-matrix-Vogyr =
u(L”ulL? [11,-12]-has-been-made-apparent.- Its-appearance-is-ultimately-a-consequence
of-the-mismatch-between-the-weak-interaction-eigenstates-and-the-mass-eigenstates,-
those-which-propagate-freely.-

After-the-Higgs-takes-a-non-zero-VEV-breaking-the-EW-symmetry,-the-indepen-
dent-rotation-of-the-lower-component-of-the-quark-isospin-doublet:- D;, — Vogym Dr,
brings-us-to-the-mass-basis, rendering-the- Yukawa-terms-diagonal-in-flavor-space-

+h— h
\/’ UL UR yj \/‘

where-h is-the-physical- Higgs-boson.- Quark-masses-are-then-read-straightfor-
wardly-as-

L= DDl +H.ec., (1.16)

mg :yq\%@ yq 174-GeV. (1.17)
It-is-then- a- SM- prediction- that- their- couplings- to- the- Higgs- are- proportional-
to- their- masses,- making- light- quark- Yukawa- couplings- extremely- hard- to- access-
experimentally.- The-development-of new-ideas-to-probe-these-couplings-is-one-of-the-
main-goals-driving-the-research-on-this-thesis-(see-Chapter-2).-
This-rotation-to-the-mass-basis-goes-unnoticed-in-all-but-one-of-the-rest-of-the-
terms-in-the-Lagrangian,-the-one-coupling-the-two-components-of-the-quark-doublet-
through-the-EW-interaction,~-which-now-reads-

ZLoo :’i%’ULVCKMW—FDL +-H.c. (1.18)

The- end- result- is- that- the- flavor- violating- source- has- been- effectively- shifted-
from-the-mass-terms-to-the- coupling-of-the-quarks-to-the- W= gauge-bosons.- It-is-
important-to-note-why-this-mixing-matrix-emerges-in-the-SM.-We-cannot-diagonalize-
both-Yukawa-matrices-at-the-same-time-because-the-two-terms-involving-the-up-and-
down-quarks-contain-the-same-weak-isospin-doublet-Q ,,-causing-the-appearance-of-
an-irreducible-mixing-matrix.- Moreover,-this-mixing-matrix-only-has-an-effect-in-the-
first-place-because-Ur, and-Dy, interact-weakly,-since-its-unitarity-makes-it-drop-form-
the-rest-of-the-terms-in-the-Lagrangian.- Both-mass-terms-and-SU(2), interactions-
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are-needed-in-conjunction-for-flavor-violation-phenomena-to-manifest-in-the-SM.-The-
role-of-the-unitary-matrix-entering-the- Yukawa-couplings-has-been-made-apparent-
now,- the- mixing- matrix- parametrizes- the- change- of- basis- from- the- interaction- to-
the-mass-basis.- As-a-3-X 3-unitary-matrix,-the-CKM-can-be-parametrized-by-three-
mixing-angles-and-a-CP-violating-phase.- Conventionally,-it-is-often-written-as-

—is
( c12€13 512€13 s13€”" (
— i i
Verm = $12C23 — €12523513€"0  C12C23 — S12523513€" sozcrz | N (1.19)
512823 — C12C23513€"  —c12523 — S12C23513€"°  C23C13

where-s;; =-sint;;,¢;; =-cost);; and-d isthe-phaseresponsible-for-all-CP-violating-
(CPV)-phenomena-in-the-SM.-Experimentally,-the-CKM-matrix-is-found-to-be-close-
to-the-identity-[10],-with-a-very-hierarchical-structure-characterized-by-

sinf3 < sinflog < sinfljg < 1. (1.20)’

Due- to- the- uncertain- nature- of- neutrinos,- specifically- whether- they- are- Dirac-
or- Majorana-fermions,- providing-a-comprehensive- overview- of-the-lepton-sector-is-
beyond-the-scope-of-this-introduction.- However,-the-diagonalization-of-the- Yukawa-
matrices- can- proceed- in- analogous- fashion- to- what- we- have- shown- for- the- quark-
sector, with-the-Pontecorvo-Maki-Nakagawa—Sakata-(PMNS)-matrix-[13,-14]-taking-
the-place-of-the-CKM.-

2 Higgs Phenomenology: Into the Era of Precision

With-the-long-sought-discovery-of-the-Higgs-boson-in-2012-by-the- ATLAS-[15]-and-
CMS-[16]-collaborations-at-the-Large-Hadron-Collider-(LHC)-came-the-first-conclu-
sive- piece- of-experimental-evidence- supporting-the- EWSB-mechanism- depicted-in-
the-previous-Section.- In-a-relatively-short-span-of-time,-following- LHC-Run-1-and-
2-of-data-collection,we-have-gained-remarkable-insights-into-this-new-fundamental-
particle,- which- so- far- appears-to- conform-to- SM- expectations.- Despite- this-con-
siderable-success,-there-is-still-much-to-be-established-concerning-the-Higgs-sector.-
The-problem-is-two-fold,-on-the-one-hand,-there-exist-interactions-that-have-yet-to-
be-observed,-some-of-which-pose-significant-experimental-challenges.- On-the-other,-
while-the-SM-is-indeed-consistent-with-present-observations,-the-same-can-be-said-
for-other-theoretically-motivated-alternatives,-demanding-higher-levels-of-precision-
in-existing-measurements-to-conclusively-distinguish-between-them.- The-aim-of-this-
section-is-to-provide-a-concise-overview-of-this-progress,-serving-as-valuable-context-
for-the-work-presented-in-this-thesis.-
Starting-with-what-we-know,-the-LHC-has-made-substantial-progress-in-deter-
mining-the-properties-of-the-Higgs-boson-by-investigating-its-production-and-decay-
through-various-channels.- The-primary-production-mechanisms-for-a-Higgs-boson-in-
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a-proton-proton-collider-at-the-center-of-mass-energies-of-the- LHC-are,-in-descend-

ing-order-of-cross-section:- gluon-fusion-(ggF') ,-weak-boson-fusion-(VBF) -associated-
production-with-a-gauge-boson-(Vh),-associated-production-with-a-pair-of-top-and-
anti-top-quarks-(tth),-and-associated-production-with-a-single-top-quark-(thq).- No-

tably,- the- LHC- is- also- capable- of- producing- pairs- of- Higgs- bosons- (hh).- All- of-
these-Higgs-bosons-decay-promptly-inside-the-detector-after-they-are-created, - with-
the-dominant-decay- channels-being-h — bb and-h — WW* -followed-by-h — gg,-
h — 7777 -h — cc-and-h — ZZ*.- With-smaller- branching- ratios- yet- aided- by-
cleaner-experimental-signatures-come-the-decays-h — vy,-h — Z~,-and-h — p*pu= .-

While- it- is- impossible- to- disentangle- the- Higgs- couplings- involved- in- produc-
tion- and- decay- from- each- of- these- channels- individually- at- the- LHC,- observable-
combinations-can-be-grouped-together-and-compared-to-SM-predictions-to-gather-
information-on-each-of-these-couplings-separately.- These-comparisons,-often-referred-
to-as-signal-strengths,-along-with-other-approaches-like-off-shell-probes-or-the-com-
prehensive- use- of- kinematic- distributions,- enable- the- extraction- of- the- properties-
that-characterize-the-Higgs-boson.- These-include-its-couplings-to-itself-and-the-rest-
of-the-SM-particles-(and-potentially-to-other-BSM-particles), the-branching-ratios-of-
its-decay-modes-(that-could-include-exotic-BSM-decays),-its-mass,-lifetime,-spin-and-
CP-quantum-numbers.- Each-of-these-measurements-presents-its-own-experimental-
challenges,-making-them-difficult-to-varying-degrees.-

Overall,-assembling-the-information-obtained-from-the-methods-just-described,-
a- picture- of- agreement- with- the- SM- predictions- has-emerged-[17,-18].- Today-we-
are-fairly-certain-that-we-are-dealing-with-an-approximately- CP-even-scalar,- with-
a- precisely- measured- mass-of-mj, =-125.25-+ 0.17-GeV-[10].- We- have- also- been-
able-to-measure-Higgs-couplings-to-vector-bosons-and-third-generation-fermions,-the-
heaviest- particles-in- the- SM- spectrum- besides- the- Higgs,- and- thus- the- ones- that-
couple-more- strongly- to-it,- with- accuracies- that- range- from- just- a- few- percent-to-
0(10%),-having-found-them-to-be-in-agreement-with-SM-expectations.- However,-and-
despite-this-significant- progress,-to-claim-that-we-have-established-the- SM-picture-
would-be-highly-premature-at-this-stage.- While-experimentally-remarkable,-percent-
level- precision-is-simply-not-enough- to-rule-out-well-motivated- alternatives-to-the-
SM-that-address,-for-instance,-some-of-the-open-problems-that-will-be-outlined-in-
the-section-below.-

Moreover,- our- exploration- of- the- interactions- of- the- Higgs- boson- is- far- from-
complete.- Only-recently-have-the- ATLAS-and- CMS-collaborations-reported-data-
suggestive- of- the-observation-of- the- Higgs-decay-h — p*p~ [19,-20],- which-would-
provide-sensitivity-to-this-coupling.- Beyond-the-muon,-there-still-remains-the-chal-
lenge-of-measuring-the-Higgs-coupling-to-the-charm-quark,-potentially-accessible-at-
the-LHC-as-well,-but-also-its-couplings-to-the-strange-quark-and-the-charged-fermions-
of-the-first-generation- (not-to- mention-neutrinos).!  The-latter-are-fundamental-to-
our- understanding- of- the- Universe,- as- they- ultimately- shape- nuclear- and- atomic-
phenomena.- In-addition,~we-have-yet-to-measure-the-couplings-of-the-Higgs-to-itself,-
which-determine-the-scalar-potential-of-the-theory-and-thus-constitute-a-key-element-

!For a more complete review of the status of these measurements, refer to Chapter 2.
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in-the-description-of-the- EWSB-mechanism.- Owing-to- Higgs-pair-production,-the-
Higgs-tri-linear-coupling-might-become-accessible-within-the-lifetime-of-the-LHC.-

To- conclude- this- brief- (and- non-exhaustive)- summary- of- the- open- challenges-
in- the- Higgs-sector,- we- too- have- yet- to- test- the- SM- prediction- for- the- width- (or-
equivalently,-the-lifetime)-of-the-Higgs-boson.- Nevertheless,-both-the-width-and-the-
decays-that-contribute-to-it-constitute-a-particularly-well-motivated-avenue-to-search-
for-new-physics.- Since-the- Higgs-can-only-decay-into- particles-to-which-it-couples-
weakly-in- the- SM,- any- BSM- coupling- opening- new- decay- channels- could- provide-
a-sizable-contribution-to-its-width,-and-consequently,-lead-to-observable-branching-
ratios.- While-the-width-would-provide-sensitivity-to-these-decays-indirectly,-this-also-
opens-the-tantalizing-possibility-to-search-for-these-exotic-cBSM-decay-modes-directly-
in-various-final-states,-extending-the-reach-of-the- LHC- (and-future-colliders).- The-
investigation- of-one-such- possibility,- further-motivated- by-some- of- the- theoretical-
issues-we-will-review-in-the-next-Section,-will-be-the-primary-focus-of-Chapter-3.-

The- path- forward- is- relatively- clear,- the- LHC- will- need- to- collect- more- data-
(beyond-the-currently-running-Run-3,-a-High-Luminosity-phase-is-also-planned)-and-
eventually,~-we-might-require-the-construction-of-different-or-more-powerful-colliders-
(such- as- the- ILC- or- the- FCC).- In- the- meantime,- however,- it- is- critical- that- we-
continue-devising-novel-ways-to-optimally-exploit-the-full-extent-of-the-data.- The-
latter-has-been-one-of-the-main-goals-of-this-dissertation-and-the-motivation-for-the-
work-in-Chapters-2-and-3.-

3 Open Problems in the Standard Model: the Central
Role of the Higgs

The-SM-has-proven-a-remarkably-robust-framework-to-describe- physics-up-to-the-
energies-probed-by-the-LHC.-It-not-only-stands-in-agreement-with-the-Higgs-mea-
surements-outlined-in-the-previous-section,-but-also-with-a-myriad-other-observa-
tions-spanning-numerous-experiments-and-different-scales,- from- quantum-chromo-
dynamics-to-electroweak- physics,-including-varied-and-complex-flavor- phenomena.-
While-it-would-appear-natural-to-become-complacent-with-its-description-of-nature,-
there-are-still-several-fundamental-questions-for-which-the-SM-offers-no-compelling-
explanation.- Intriguingly,-the-Higgs-boson-plays-a-central-role-in-many-of-these-open-
problems,-which-raises-the-tantalizing-possibility-of-an-unified-explanation.- The-aim-
of-this-Section-is-to-briefly-review-three-of-these-issues, namely:- the-flavor-puzzle,-
observed-DM-abundance-and-the-baryon-asymmetry-of-the-Universe,-as-well-as-their-
connection-to-the-Higgs-boson,-which-has-ultimately-served-as-the-unifying-thread-
for-the-work-on-this-thesis.-
The-flavor-sector-of-the-SM-has-long-been-regarded-as-problematic.- On-the-one-
hand,-we-face-a-naturalness-issue-commonly-referred-to-as-the-flavor-puzzle:- there-
is-no-explanation-for-the-heterogeneity-of-fermion-masses-and-mixings,-which-in-the-
SM,-is- merely- displayed- parametrically.- On-the-other,- attempts- at- more-natural-
dynamical-explanations-are-often-met-by-phenomenologically-dangerous-predictions-
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of-flavor-violating-processes.-

Naturalness-is,- however,- a- subtle- theoretical-issue,- with-implications- that- are-
not-yet-clearly-understood.- In-this-context,- we-employ-the-term-"naturalness”-to-
refer-to-"t-Hooft’s-naturalness-criteria- [21,-22],-which-states-that-any-dimensionless-
parameter-in-the-theory-is-generally-expected-to-be-of-order-one,-and-all-dimensionful-
ones- should- be- of- the- order- of- the- scale(s)- of- the- theory.- Stronger-than- O(10%)-
adjustments-(typical-Clebsch-Gordan-coefficients)-are-usually-considered-to-be-fine-
tuned,-and-regarded-as-undesirable.- While-the-free-parameters-of-the-gauge-sector,-
gsy 9y ¢ and- \,-are-small-but- O(1)-at-the-typical-scale-of-the-theory- (namely,- the-
EWSB-scale-v &~ 246- GeV),-the- Yukawa- couplings- of- the- quark- sector-span- over-
five-orders- of-magnitude.- Moreover,- while-the-down- quark-happens-to-be-heavier-
than- the- up- quark- (a- fact- which- is- crucial- for- the- stability- of- the- proton),- the-
opposite- holds-true-for-the-other-two-families.- The-situation-is-even-worse-in-the-
leptonic-sector,- where-neutrinos-are-extremely-light- and-thus-demand-exceedingly-
small- Yukawa-couplings.- On-the-other-hand,-the-mixing-patterns-of-the- CKM-and-
PMNS-matrices- stand- as- a- mystery- of- their- own,- with- no- known- explanation- for-
their-particular-shape.- For-comparison,-in-the-gauge-sector,-hypercharges-turn-out-
to- be- heavily- constrained- by- the- consistency- of- the- theory.- Furthermore,- gauge-
invariance-forces-particles-into-representations-of-the-group,-so-that-the-dimension-
of-the-representation-dictates-the-number-of-particles,-e.g. there-are-up-and-down-
quarks-in-each-generation-to-fit-the-fundamental-representation-of-SU (2) .- It-is-this-
degree- of- fine-tuning- and- apparent- arbitrariness- characterizing- the- parameters-in-
the-flavor-sector-what-causes-us-to-refer-to-their-enigmatic-origin-within-the-theory-
as-the-flavor-puzzle.-

At-its-heart,- the-flavor- puzzle- is- an-issue- revolving- around- the- Higgs,- as-it-is-
ultimately-its- couplings-that-generate-this-non-trivial-structure.- In-order-to-shed-
light-at-this-matter,-it-is-thus-critical-to-devise-new-methods-to-probe-the- Yukawa-
couplings-of-the-Higgs-to-the-SM-fermions,-particularly-those-which,-as-discussed-in-
the-previous-section,-remain-difficult-to-measure-at-the-LHC.-In-Chapter-2,-we-will-
introduce-one-such-method-to-probe-light-quark-Yukawa-couplings.-

On-the-other-hand,-the-remaining-of-this-thesis-will-deal-with-two-major-issues-
that-involve-the-cosmological-evolution-and-state-of-our- Universe.- The-first-is-the-
existence- of-dark-matter,- designated- this- way-in- reference- to-its- apparent- lack- of-
interaction-with-visible-matter-beyond-the-gravitational-effects-it-is-inferred-for.- By-
now,-a-plethora-of-astrophysical-and-cosmological-evidence-has-mounted-towards-its-
existence,-from-the-formation,-evolution-and-morphology-of-galactic-structures,-stel-
lar-streams,-gravitational-lensing-effects-(and-more),-to-vast-galaxy-surveys-charting-
baryon-acoustic-oscillations-or-its-effects-on-the-cosmic-microwave-background,-that-
ultimately-lead-to-the-most-precise-determination-of-its-abundance.- However,-the-
reality-is-that-despite-accounting-for-approximately-26%-of-the-energy-budget-of-our-
Universe-and-84%-of-its-matter-[23],-the-microscopic-nature-of-DM-has-so-far-eluded-
our-experimental-efforts.- Although-the-SM-does-in-fact- predict- the-existence-of-a-
DM-component,-the-weakly-interacting-neutrinos,-their-abundance-is-predicted-to-
be-far-below-that-required-to-match-observations.- It-is-thus-clear-that-the-enigmatic-
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origin-of-DM-requires-new-yet-undiscovered-phenomena.-
A-very-plausible-resolution-to- this- conundrum-is-that-the- DM-is-composed-by-
yet-unknown-BSM-particles-that-interact- with-the-visible-sector.- Accordingly,-an-
ambitious-experimental-program-has-been-deployed-to-detect-these-and-identify-their-
nature.- This-program-operates-mainly-in-two-fronts,-that-are-commonly-referred-to-
as-direct-or-indirect-detection.- Experiments-on-the-first-look-closely-at-targets-placed-
on-isolated- environments,- with-the-hope- of-eventually-observing-any- disturbances-
caused-by-the-interaction-with-the-DM-passing-through-them.- Whereas-experiments-
of-the-second-kind-are-hoping-to-observe-the-annihilation-of-DM-into-visible-particles-
instead,looking-at-theregions-where-the-largest-abundances-of-thefirst-are-expected.-
Importantly- there- is- yet- another- complementary- avenue- for- discovery,- that-relies-
instead- on- producing- the- DM- ourselves- in- collider- experiments.- Generally,- this-
DM-will- escape- the- detectors- unnoticed,- so- that- the- aim- of- these- experiments-is-
to-either-detect-its-presence-through-missing-momentum-searches-triggered-by-the-
visible-particles-in-the-event,-or-to-search-for-the-particles-mediating-the-interaction-
between-the-DM-and-the-SM.-The-latter-could-manifest-either-as-new-resonances-or-
through-their-effect-on-the-kinematic-distributions-of-the-final-state.-

These-searches-are-theoretically-motivated-by-the-three-well-known-possibilities-
to-build-a- “portal”-from-the-SM-to-the-dark-sector,-the-hypercharge-[24],-neutrino-
[25],-and-Higgs-[26—28]-portals.- Building-on-the-SM-success,-portals-encompass-the-
idea-of-bridging-the-visible-and-dark-sectors-in-a-gauge-invariant-renormalizable-way.-
Given-its-apparent-lack-of-interaction,-it-is-only-natural-to-consider-scenarios-where-
the-DM-is-a-singlet-of- SU (3)-x SU(2)-x U(1).- If-this-is-the-case, the-Higgs-portal-
emerges- as- the- only- feasible- renormalizable- realization- of-its-interaction- with- the-
visible-sector,-highlighting-the-uniquely-central-role-of-the-Higgs-in-addressing-this-
issue.- This-connection-will-be-further-explored-in-both-Chapters-3-and-4.-

The-second,-but-no-less-important-issue,-is-that-we-have-yet-to-understand-how-
our-Universe-came-to-be-matter-dominated.- If-assuming-the-widely-accepted-infla-
tionary-scenario,-any-initial-baryon-asymmetry-would-have-been-washed-out-into-a-
symmetric,-hot-and-dense-plasma,-where-particle-antiparticle-pairs-would-have-been-
copiously- produced- and- annihilated.- Under-such- conditions,- a- balanced-universe-
with-equal-amounts-of-matter-and-antimatter-would-be-expected.- The-observation-
of-a-predominantly-matter-based-universe-challenges-this-expectation,-and-suggests-
a-dynamical-explanation-for-this-asymmetry,-a-baryogenesis mechanism.- There-are-
three-necessary-conditions-for-successful-baryogenesis,-known-as-the-Sakharov-condi-
tions-[29].- These-are-the-requirement-of-baryon-number-violation,-both-the-violation-
of-particle-antiparticle- (charge-or-C)-symmetry-and-its-combination-with-left-right-
(parity-or-P)-symmetry,-and-a-departure-from-thermal-equilibrium.- Together,-they-
ensure- the- presence- of-net- baryon-number- generating-interactions- that- cannot- be-
counterbalanced- by-other- processes-connected-to-them-through-these-symmetries,-
or-acting-in-both-directions.-

Remarkably,-the-SM-does-in-fact-present-all-the-necessary-ingredients-to-fulfill-
Sakharov- conditions.- Within- it,- the- combination- of- baryon- (B)- and- lepton- (L)-
numbers- B +-L,-is-found-to-be-anomalous,-i.e. broken-at-the-quantum-level.- This-
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breaking- happens- through- transitions- between- inequivalent- vacua- of- the- SU (2) 1,
gauge-group.- These-transitions-conserve-the-difference- B — L and-can-thus-generate-
net-baryon-number-differences- AB # 0.- If-active-at-temperatures-above-the- EW-
phase-transition,-these-non-perturbative-processes-could-induce-a-baryon-asymmetry-
during-the-latter-[30].- If-first-order,-this-transition-could-provide-sufficient-departure-
from- thermal- equilibrium- in- the- form- of- bubbles- of- the- EW- vacuum- expanding-
in-the-unbroken- phase.- Moreover,- the- SM- violates- parity- maximally,- with- right-
handed-fermions-that-do-not-engage-in-electroweak-interactions.- Since-the- SM-is-
CP-symmetric-in-the-limit-of-vanishing- Yukawa-couplings,-this-P-breaking-signals-
C-violation-as-well.- It-is-nevertheless-the-fact-that-these-couplings-do-not-vanish,-
that-leads-to-an-observably-small-amount-of- CPV-in-the-form- of-the- CP-phase-of-
the-CKM-(and-potentially-PMNS).-

As-it-turns-out,- however,- we- have-long-known- this- CP- violation- is-insufficient-
to- generate- the- observed- baryon-asymmetry- [31-34].- Furthermore,- and- after- the-
discovery-of-the-Higgs,-we-now-believe-the- SM-presents-a-second-order- EW-phase-
transition,-which-would-be-characterized-by-a-soft-rollover between-the-two-phases.-
[t-is-thus-clear-the- SM-cannot-account-for-the-observed-baryon-asymmetry-of-the-
Universe-by-itself,-and-instead,-the-latter-constitutes-further-evidence-for-the-exis-
tence-of-new-physics.-

While-there-are-various-proposals-for-baryogenesis,-one-well-motivated-possibility-
involves-addressing-both-of-these-limitations.- These-scenarios,-known-as-theories-of-
EW-baryogenesis-[35,-36],-require-both-the-presence-of-new-sources-of-CP-violation-
and-arsufficiently-strong-first-order-EW-phase-transition.- They-generally-incorporate-
extended-scalar-sectors-beyond-the-SM- (for-instance,-an-extra-singlet,-or-a-second-
Higgs-doublet)-and-thus-lead-to-relevant-phenomenological-predictions-for-the-ob-
served-Higgs-boson.- Typically,-it-is-difficult-to-achieve-both-while-satisfying-current-
experimental-constraints.- To-accomplish-such-has-been-one-of-the-goals-of-the-work-
in-Chapter-4.-
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2

Probing Higgs Yukawa
Couplings to Light Quarks

1 State of the Art

As-discussed- in- Chapter- 1,- Higgs- boson- couplings- can- be- measured- at- the- LHC-
through- combinations- of- the- different- production- and- decay- channels,- measured-
together-and-compared-to-SM-predictions-in-the-form-of-signal-strengths.- In-general,-
different-couplings-contribute-to-production-and-decay, so-that-the-combination-of-
all-measurements-is-necessary-to-constrain-each-individually.- In-the-SM,-there-is-a-
one-to-one-correspondence-between-these-and-particle-masses.- Any-deviation-could-
thus-become-the-first-signal-of-BSM-physics.-

So-far-these-tests-reveal-that-the- Higgs- boson- discovered- more-than-ten- years-
ago-is-remarkably- consistent- with- the- SM-expectation.- Nevertheless,-it-is- crucial-
to-measure- its- couplings- without-relying- on- the- SM-assumption.- This-requires-a-
framework- that- can- treat- deviations- coherently- within- quantum- field- theory- and-
provide- predictions- for- the- observables- to- be- confronted- with- experimental- data.-
One-such- approach- that- has- become-standard- in- the- field,- largely- because- of- its-
simplicity,-is-the-so-called-k-formalism-[37].- Within-it,-Higgs-couplings-are-rescaled-
by-free-factors, x’s, retaining-their-Lorentz-structure,-and-thus,-allowing-to-efficiently-
reuse-SM-computations.- These-x’s-can-then-be-fitted-to-experimental-observations-
and-compared-to-the-SM-hypothesis,-i.e. x, =-1,-where-q labels-each-of-the-couplings-
of-the-Higgs.- Figure-2.1- (extracted-from-Ref.{17])-depicts-the-agreement-between-
the-125-GeV-boson-discovered-at-the- LHC-and-the-expectations-for-the-SM-Higgs-
boson-within-this-formalism.-

It-is-important- to- note- the- k-formalism- comes- with-important- limitations,- as-
it-certainly-cannot-capture-the-whole-extent-of-the-effects-of-a-departure-from-the-
SM-in-the-framework-of-quantum-field-theory,-even-under-the-assumption-of-heavy-
decoupling-degrees-of-freedom.- Effective-field-theories-(EF T)-have-become-a-popular-
alternative-within-the-field-to-address-some-of-these-limitations-[38-42].- However,-
they-come-with-problems-of-their-own,-most-notably,-they-either-have-to-assume-the-
absence-or-account-for-any-possible-new-physics-at-a-lighter-scale.-
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Figure 2.1: Measured- Higgs-boson-coupling-strengths- and-their- uncertainties- (68%-
CL)-versus-particle-masses.- Red-line-shows-expected-SM-behavior,-i.e. couplings-that-
are-linearly- proportional-to-the- corresponding- particle- mass- (or- quadratically- for- the-
W and-Z bosons).- Two- fit- scenarios- with- k., =- k; (colored- circle- markers),- or- k.
left-free-floating-in-the-fit- (gray-cross-markers)-are-shown.- Loop-induced-processes-are-
assumed-to-have-the-SM-structure,-and-Higgs-boson-decays-to-non-SM-particles-are-not-
allowed.- Individual-x’s-are-shown-on-the-lower-panel.- Plot-extracted-from-Ref.{17]-by-
the- ATLAS-collaboration,-the-CMS-collaboration-has-presented-similar-results-[18].-
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Figure- 2.1- also- showcases- two- of- the- salient- features- of- Higgs- couplings- phe-
nomenology.- The-first-is-straightforward,-in-the- SM,-the- heavier-the- particle- the-
larger-its- coupling- to- the- Higgs.- Thus,- in- general,- couplings- of- the- Higgs-to- the-
heavier-particles-of-the-SM-spectrum-are-easier-to-observe-and-quantify-in-experi-
ments.- The-second-has-to-do-with-the-technical-characteristics-of-particle-detectors-
at-colliders.- Generally,- leptons- and- particles- decaying- into- them- provide- cleaner-
experimental-signatures-than-quarks,- which-undergo-showering-and-hadronization-
under-the-strong-interaction,-leading-to-more-complex-final-states-and-larger-back-
grounds.- The-combination-ofthesefactors-explains-the-chronology-of-Higgs-couplings-
measurements-at-the-LHC:-starting-from-its-coupling-to-the-W and-Z bosons, pro-
gressing-to-the-top,-tau-and-bottom,-completing-the-third-generation,-and-lastly,-the-
recent-reports-of-the-first-evidence-for-the-Higgs-coupling-to-the-muon-[19,-20].-

Following-the-path-of-discovery,~-we-now-turn-our-attention-to-the-Higgs- Yukawa-
coupling-of-the-charm-quark.- The-relatively-broad-constraints-on-its-magnitude-are-
the-rationale-behind-Figure-2.1,-which-displays-its-results-under- two-scenarios.- In-
the-first,- the-charm-coupling-modifier-is-set-to- that-of-the-top-quark, k. =-k¢,"in-
an- effort- to- address- the-limited- sensitivity- to- this- coupling.- The-second-scenario-
allows-k. to-remain-a-free-parameter-within-the-fit.- The-latter-approach-yields-an-
upper-limit-of- k. < 5.7-at-95%- CL-[17].- Nevertheless,-by-leveraging-novel-charm-
jet-identification- and- analysis- methods- using- machine- learning- techniques- applied-
to-the- H — cc-decay,-the-CMS-collaboration-has-been-able-to-establish-one-of-the-
strongest-direct-bounds-to-date,” 1.1-< |k.| < 5.5-at-95%- CL-[43].- Furthermore,-a-
combination-of-several-channels-recently-enabled-the-ATLAS-collaboration-to-report-
what-is-currently-the-most-stringent-constrain-on-this-coupling, x. € [—4.46, 4.81]
at-95%- CL-[44].- Given-these-and-ongoing-advances-on-detectors-and-experimental-
techniques,-there-arereasons-toremain-hopeful-going-into-the-High-Luminosity-(HL)-
phase-of-the-'LHC.-On-the-other-hand,-there-isno-clearroute-to-conclusively-establish-
Higgs-couplings-to-the-rest-of-the-light-SM-fermions,-which-are-believed-to-be-out-of-
the-reach-of-the-LHC.-This-includes-the-strange,-up-and-down-quarks,-electron-and-
neutrinos,-with-current-bounds-that-lie-orders-of-magnitude-above-SM-predictions-
(see-Section-4-for-a-more-comprehensive-review).-

Motivated-within-this-context,-this-Chapter-introduces-a-novel-approach-to-fur-
ther- constrain- Higgs- couplings- to- first-and-second- generation- quarks- (particularly-
the-up-and-charm- Yukawa- couplings).- Following-an-study- of-its- feasibility,-it- will-
be-compared-to-other-existing-and- proposed- methods,-including- the-experimental-
results-that-have-resulted-from-its-adoption-[45].-

2 Theoretical Motivation

Even-if-the-couplings-of-the-Higgs-to-the-first-two-generations-of-quarks-as-predicted-
by-the-SM-turn-out-to-be-beyond-the-reach-of-the-LHC -it-remains-crucial-to-maxi-
mize-its-sensitivity-to-them.- Doing-so-will-enable-exploration-of-well-motivated-BSM-
scenarios,-where-significant-enhancements-in-these-Yukawa-couplings-are-possible-or-
even-expected.- This-Section-will-present-a-concise-review-of-some-of-these-realiza-
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tions,- which- provide- motivation- to-search- for- these- couplings-even- when-resulting-
bounds-lie-far-above-SM-expectations.-

The- first- and- perhaps- simplest- idea- involves- Higgs- democracy- in- the- Yukawa-
sector-[46].- Such-models-propose-the-existence-of-a-“private-Higgs” -and-a-dark-scalar-
associated- with- each- fermion,- thus- addressing- the- large- hierarchy- among- fermion-
masses-and-decorrelating-the-corresponding- Yukawa-couplings.-

Alternatively,-Yukawa-couplings-could-be-dynamical-instead,-arising-when-a-given-
combination-of-scalar-fields- (usually-referred-to-as- flavons)-acquires-a- vacuum-ex-
pectation-value.- An-economical-solution-is-to-consider-the-Higgs-doublet-itself-[47].-
These- Higgs-dependent- Yukawa- couplings- would-explain- the- fermion-mass- hierar-
chy-through-appropriate-powers-of-the-Higgs-vacuum-expectation-value,-leading-to-
modified-Higgs-couplings-and-flavor-phenomenology-with-respect-to-SM-predictions.-

A-popular-extension-of-the-SM-considers-the-addition-of-a-second-Higgs-doublet -
as-there-isno-theoretical-priorthat-would-suggest-there-should-exist-only-one.- Known-
astwo-Higgs-doublet-models-(2HDM,for-areview-see-Ref.{48]) ,-they-featurerich-and-
complex-(flavor)-phenomenology,-and-could-realize-scenarios-with-enhanced-Yukawa-
couplings.- For-instance,-the-two-doublets-could-jointly-act-as-the-flavon-[49,-50],-as-
an-alternative-to-the-previously-discussed-single-Higgs-scenario.-

In-flavorful 2HDM-with-a-non-standard-Yukawa-sector,-one-Higgs-doublet-could-
give-masses-to-weak-gauge-bosons-and-third-generation-fermions,-while-the-second-
provides-mass-to-the-lighter-fermion-generations-[51,-52].- The-collider-signatures-of-
such-flavorful-Higgs-bosons-differ-significantly-from-well-studied-2HDM-with-natural-
flavor-conservation,flavor-alignment-or-minimal-flavor-violation,-traditional-hypothe-
ses-to-avoid-phenomenologically-dangerous-flavor-changing-neutral-currents-(FCNC).-
These-models-could-also-realize-enhanced-couplings-to-the-first-two- generations-of-
fermions,-in-which-case-new-production-mechanisms-and-decay-modes-involving-the-
latter-for- the-heavy-scalar,- pseudoscalar,- and-charged- Higgs- (characteristic- of- the-
2HDM),-could-become-dominant.-

More- generally,- one- could- consider- additional- contributions- to- these- couplings-
coming- from- higher- dimensional- operators- within- the- EF T~ framework- [53].- EFT-
capture-the-broad-effects-of-integrating-out-physics-at-higher-scales,~while-remaining-
agnostic-with-regards-to-any-particular-UV-completion.- They-are-usually-employed-
along-spurion! methods,- most- commonly- through- the- well-known- minimal- flavor-
violating- (MFV)-ansatz- [54],- to- address- the-flavor- puzzle.- But-it- was-also-noted-
they-could-be-the-source-of-non-standard-Yukawa-couplings-through-generalizations-
ofthis-ansatz-termed-aligned-flavor-violation-(AFV)-and-spontaneous-flavor-violation-
(SFV)-[55,-56].- AFV-allows- for- new- physics- couplings- to- quarks- that- align- with-
the- SM- Yukawa- couplings- but-do- not-necessarily-share- their- hierarchies- or- family-
universality.- SF'V ,-a-subset-of-AFV ,-naturally-arises-in-UV-completions-where-quark-
family-number-and-CP-groups-are-spontaneously-broken.- SF'V-extensions-of-the-SM-
lead-to-suppressed- FCNC-and-may-provide-a-connection-to-TeV-scale-new-physics-

!Spurions are auxiliary fields without mass-dimension used to parametrize the breaking of a
symmetry (in this case, the SM flavor symmetry arising in the limit of vanishing Yukawa couplings)
and determine the set of operators invariant under the latter.
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with-significant-and-preferential-couplings-to-first-or-second-generation-quarks.-
It-is-thus-clear-how-exploring-the-couplings-of-the-Higgs-boson-to-the-first-two-
generations-of-quarks-beyond-the-current-reach-of-the-LHC-holds-significant-impor-
tance-for-the-investigation-of-well-motivated-BSM-scenarios.- By-considering-diverse-
realizations,- such- as- those- discussed- above,- we- broaden- the- scope- of- new- physics-
that-can-be-tested-through-these-measurements.- These-efforts-ultimately-pave-the-
way-for-future-advancements-in-our-understanding-of-the-fundamental-nature-of-the-
Higgs-boson-and-its-role-in-the-broader-flavor-structure-of-the-SM.-

3 Higgs Couplings to Light Quarks through h + v Pro-
duction

This-Section-will-explore-the-sensitivity-of-the-LHC-to-the- Yukawa-couplings-of-the-
Higgs-to-light- SM-quarks-through-the- production- of-a- Higgs- boson- in- association-
with-a-photon, pp — h7y (see-[57-63]-for-other-Higgs-plus-photon- LHC-studies).-

Beyond-itsrole-as-a-probe-ofthese-couplings,-this-process-is-inherently-interesting,-
as-it-is-a-rare,-yet-unobserved-process-within-the-SM.-This-is-partially-because-the-
leading-order-(LO)-gluon-initiated-contribution-gg — h~y (see-Fig.-2.2-left)-vanishes-
as-a-consequence-of Furry’s-theorem-[64,-65].- This-theorem-states-that-any-Feynman-
diagram- with- an-odd-number- of- photon- insertions- on- a- closed- fermion-loop-leads-
to-a-vanishing-amplitude.- This-is-because-the-diagram-can-be-related-to-its-charge-
conjugate- by- reversing- the- direction- of- the- fermion-loop,- which- changes- its- sign.-
Therefore,- the- diagram- and- its- charge- conjugate- cancel- each- other.- In-the- case-
of-gg — h~, the-diagram-involves-a- closed- quark-loop- with- one- photon-insertion-
and- two- gluon-insertions.- It-thus- vanishes- because- of- the- odd- number- of- photon-
insertions.- The-gluons-do-not-affect-the-application-of-Furry’s-theorem-because-they-
are-in-a-color-singlet-state.- That-means-they-do-not-change-the-color-charge-of-the-
quark-in-the-loop,-and-thus,-the-diagram-is-still-related-to-its-charge-conjugate-by-
reversing-the-loop.-

On-the-other-hand,-the-largest-contributions-to-the-inclusive-h +-y production-
at- the- LHC- include- extra- objects- with- high- transverse- momentum- in- their- final-
states-[60].- In-the-absence-of-such-extra-final-state-particles-besides-the-Higgs-boson-
and- photon,- the- contribution- to- Higgs- plus- photon- production- at- the- LHC- from-
bottom-antibottom-(bb)-and-charm-anticharm-(c¢)-initial-states-(see-Fig.- 2.2-right)-
becomes-important,- making- this- process-sensitive-to-the-respective- Higgs- Yukawa-
couplings-y, and-y..- In-addition,-the-presence-of-a-large-deviation-from-its-SM-value-
in- the- Yukawa- couplings- of- the- quarks-q =-s,u,d (strange,- up-and-down)-would-
greatly- enhance- the- corresponding- ¢g-initiated- contribution- from- Fig.- 2.2-right.-
These- contributions-are-at-the-same-time- proportional-to-the-square-of-the- quark-
electric-charge-(),,-which-suppresses-the-cross-section-for-down-type-quark-initiated-
qG— hry processes-relative-to-up-type-quark-initiated-by-a-factor-(Q, /Qq)* =-4.-

In-the- following,- we- will- discuss- the- features- of- Higgs- plus- photon- production-
and-study- the- sensitivity- of- this- process- to- the- Yukawa- couplings-y, for-q =-u,c
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NI gl Q —— - h
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Figure 2.2: Left:- Feynman- diagram- for- gg — h+,- whose- amplitude- vanishes- due-
to-Furry’s-theorem.- Right:- Example- tree-level- Feynman- diagram-for-gG-— h~y (with-
q =u,d, s,c,b)-in-the-SM.-Diagrams-were-drawn-using-TIKZ-FEYNMAN [66].-

at-the- HL-LHC,-focusing-on-what-is-in-our-view,- the-most-promising- Higgs-decay-
channel-for-this-purpose,-h — WW* — {vlv (with-¢ representing-either-electrons-or-
muons).-

3.1 h+ v Production at LHC

As-outlined-in-the-previous-section,-the-dominant-¢g-initiated-contributions-to-the-
exclusive- production- of- a- 125- GeV- Higgs- boson- in- association- with- a- photon- at-
hadron- colliders- (see- Fig.- 2.2-right)-are- proportional- to- the-square- of- the- corre-
sponding- light- quark- Yukawa- coupling- yg .~ These- couplings- are- evaluated- at- the-
scale- of- the- Higgs- mass-my,,” the- relevant- mass- scale- for- this- process.- The-latter-
is- crucial- for- precise- results,- as- the- renormalization- group- running- for- these- cou-
plings-is-significant-between-light-quark-and-Higgs-mass-scales,-and-is-thus-essential-
for-a-realistic-comparison-between-theoretical-computations-and-experimental-cross-
sections.- The- running- masses- for- the- bottom,- charm- and- up- quarks,- evaluated-
at- the- scale- my, =- 125- GeV - are- given- in- the- tadpole-free- pure- M'S scheme- by-
mp(mp) = 2.777-GeV,-mq(my,) = 0.605-GeV,-my(myp,) = 0.0013-GeV-[67],-with-the
SM’valueS’of’the/Yukawa’couplings*at’thiS’scale*given*by’yEM (mp) =V2mg(myp)/v.-
We-then-parametrize-the-departure-of-the- Higgs- Yukawa- couplings-to-light-quarks-
from-their-SM-values-within-the-s-framework-as-k, =-y,(mp)/ yEM (mp,).- Note-this
definition-is-scale- (and- thus,- process)-dependent,-and-is- not- consistent- across-the-
literature.- This-fact-has-to-be-taken-into-account-for-a-realistic-comparison-between-
the-different-probes-(see-Section-4-below).-

The-respective-y/s =-14-TeV-center-of mass-(c.o.m.)- LHC-cross-sections-at-LO-
for-bb — hy,-cé— hy and-uii-—— h7y evaluated-with-MG5_aAMC@NLO v2.8.2 [68],-
for-a-photon- with- transverse-momentum-p.. > 20-GeV-and-pseudorapidity-|n?| <
2.5,-using-the- NNPDF31_NNLO_AS_0118_LUXQED [69]-parton-distribution-functions-
(PDF)-set,-are-

oy =K X 0.397-fb- | 0 =+K2 x 0.160-fb,

2.1
Oua = kK2 x 5.16-x 1072 ab-. 21)

For- the- SM,- the- cc- contribution- is- found- to- be- smaller- but- comparable- to-
oy (despite-the-large-hierarchy-between- Yukawa- couplings),- owing- to- the-relative-
(Q./Qp)? =-4-factor-and-larger-PDF-of-the-charm-quark-with-respect-to-the-bottom.-
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At-the-same-time,-while-o,5 in-the-SM-is-negligible,-an-enhancement-of-the-up-quark-
Yukawa-making-it-comparable-to-the-SM-charm-Yukawa-y,, (my )~ y>™ (my,)-(corre-
sponding-to-#,, ~ 500)-would-raise-the-ui-initiated-h +-y cross-section-to-~ 1.3-fb.!
This-might-allow-for-a-test-of-first-vs second-generation-Yukawa-universality-in-the-
up- quark-sector-via- this-process-at- HL-LHC-with-3-ab~! of-integrated-luminosity.-
We- also- note- that-subdominant- contributions-to-the-gG-— hy exclusive- produc-
tion,-such-as-qGg— v*/Z* — h~, quickly-become-negligible-for-sizable-light-Yukawa-
enhancements,-e.g. for-k. ~ 3-their-size-is-~ 5%-of-the-o,; +-0ce cross-section-sum.-
Before- presenting- our- analysis- in- the- next- section,- let- us- briefly- discuss- the-
production- of- a- Higgs- boson- and- a- photon- at- the- LHC- in- an- inclusive- manner,-
allowing- for-extra-high-pr objects-to-be-produced-in-the-process.- The-dominant-
contributions- to- the- inclusive- h +-y production- are- [60,- 61]- vector- boson- fusion-
(VBF,-h~vjj)-and-associated-production-with-a-W or-Z boson-(AP,-hyV').- Slightly-
smaller-than-the-latter-but-also-important-are-the-production-together-with-a-high-
pr jet- (hyj)-and- production- in- association- with- a- top- quark- pair- (tthy).- Cross
sections-for-these-processes-are-in-the-O(1— 10)-fb-ballpark,-and-they-do-not-depend-
on-kq (except-for-small-contributions-to-hvy;j and-h~jj, only-important-for-large-x.
values).- Thus,- to- gain-sensitivity- to- the- Higgs- Yukawa- couplings- to- light- quarks,-
these-processes-need-to-be-efficiently-suppressed-in-favor-of-the-bb and- cé-initiated-
ones.- Fortunately,-this-may-be-easily-achieved-by-vetoing-extra-hard-activity-in-the-
h~ event-selection-and-exploiting-the- different- kinematics- of-the- Higgs-boson-and-
photon-among-these-processes,-as-we-will-discuss-below.-

3.2 Sensitivity via h - WW* — (vlv

In- what- follows- we- will- focus-on- the- h — WW* — (Tvl~ - decay- of- the- Higgs-
boson- as-the- most-sensitive- channel- for-our-purposes.- Other- Higgs-decay- choices-
like-h — bb and-h — 777~ face- very-large- SM-backgrounds- (bby and-Z(— 77)y
respectively),- or- suffer- from- very- small- decay- branching- ratios,- as-is- the- case- of-
h — ~y and-h — ZZ* — 44.-

To search-for-the-h ~y signature-via-the-decay-h — WW?* — £Tvl~ -at-the-LHC-
with- /s = 14-TeV-c.o.m.- energy,” we- select- events- with- exactly- two- oppositely-
charged-leptons-(electrons-or-muons)-and-a-photon-with-pseudorapidities-|n®?| < 4.-
Theftransverse/momentum’offthe’photon’iS/required/t0'satisfy’p% > 25-GeV,-and-the-
transverse-momenta-of-the-leading- (¢; )-and-sub-leading- (¢2)-lepton-need-to-satisfy-
pfiﬁ > 18- GeV,’pgg > 15-GeV-or- png > 23-GeV,- pZT2 > 9-GeV,- following- Run-2-
ATLAS-di-lepton-triggers-[70].- Di-lepton-trigger-thresholds-are-in-fact-expected-to-
lower- for- HL-LHC- [71],-and- a- di-lepton- plus- photon- trigger- with-lower- thresholds-
could-also-be-implemented.- We-also-require- the- missing- transverse-energy-in-the-
event-to-be- o > 35-GeV.-In-order-to-suppress-events-with-extra-high-py activity,-
we-veto-events-having-a-jet-with-pr > 50-GeV-or-two-jets-with-pr > 20-GeV-and-a-
pseudorapidity-gap-An/tj2 > 3.-

!This is a factor ~ 10 larger than the SM value for 0.z from (2.1) due to the much larger PDF
for the up-quark inside the proton.
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The-dominant-SM-backgrounds-are-the-irreducible-processes-pp — ¢Tv¢~ vy and-
pp — Zv,-Z — 777~ with-both-7-leptons-decaying-leptonically,-together-with-the-
reducible-background-pp — tty (with-t — bl v -t — bl v).- Thelatter-can-be-further-
suppressed- by-imposing-a- b-tagged- jet- veto-on-the-selected- events.- We-note-that-
the-Z +-jets-and-Z(— €¢)y SM-backgrounds-have-very-large-cross-sections-(see-e.g.
[72-74]).- However,-the-above-selection,-in-particular-the- £ cut,-combined-with-a-
Z-mass-window-veto-on-the-invariant-mass-of-the-two-leptons-|mz — my| > 30-GeV-
greatly-suppresses-these-processes.- Selecting-the-two-leptons-in-the-event-to-be-of-
opposite-flavor-(OF)-would-provide-an-additional-suppression-for-these-backgrounds.-
In-any-case,-we-retain-both-OF-and-SF- (same-flavor)-lepton-events,! and-disregard-
Z +-jets-and-Z (— £¢)~ backgrounds-altogether.-

We-generate-our-signal-and-SM-background-event-samples-(both-at-L.O)-in-MAD-
GRAPH 5 [68]-with-subsequent-parton-showering-and- hadronization- with- PYTHIA
8 [75]- and- detector- simulation- via- DELPHES V3.4.2 [76],- using-the- anti-kr algo-
rithm-[77]-with-R = 0.4-for-jet-reconstruction-with-FASTJET [78]-and-the-DELPHES
detector-card-designed-for-HL-LHC-studies.- For-simplicity,-our-simulation-does-not-
include-pile-up-effects,-as-it-has-been-shown-that-the-contamination-of-experimental-
measurements- can- be- efficiently- mitigated- through- pile-up- subtraction- algorithms-
such-as-PUPPI [79],- SOFTKILLER [80],-or-constituent-level-subtraction-[81].- More-
over,-further-advancements-can-be-anticipated-towards-the-HL-LHC.-

After-event-selection,-SM-background-cross-sections-are-5.08-fb-forpp — £ vl vy,
3.86-fb-for-Zv,-Z — 777~ and-1.07-fb-for-tty,-where-the-latter-includes-the-effect-of-
the-various-vetoes-in-the-selection.- Assuming-SM-branching-fractions-for-the-Higgs-
boson- (we-discuss-variants-of-this-assumption-in-the-next-section),-the-signal-cross-
section- after-event-selection-is-27.6-ab-for-k, ="k, =-1,- k. =-10,-and-41.2-ab-for-
Kp ="Kke = 1,7k =-2000.- In-the-following,- we-consider-independently-the-possible-
enhancement-of-the-charm-and-up-quark-Yukawa-couplings-with-respect-to-their-SM-
values, performing-two-separate-sensitivity-studies.-

The- rich- event- kinematics- enable- efficient- signal- discrimination- following- the-
initial-event-selection-discussed-above.- An-important-role-is-played-by-the-transverse-
mass- Mr reconstructed-out-of-the-di-lepton-system-+-missing-energy:-

2 - 2
M} :(\/@ PR +Er) - BB (22)

with- ﬁf:’z the- vector-sum- of- the- lepton- transverse- momenta,- My, the-invariant-

mass-of-the-di-lepton-system-and- £, the-missing-transverse-momentum-of-the-event.-
Other-key-variables-are-the-di-lepton-invariant-mass-My, itself,-the-transverse-angular-

separation/AqS(“’E ) betvveerrdi—leptorrmomentumjﬁ’%z and-missing-momentum- £,
or-the-distance- AR = 4/ %qﬁ + An? between- each-lepton-and- the- photon- AR -

!Considering only OF even\s results in a ~ /2 reduction in our signal sensitivity. Yet, an
experimental analysis splitting the events into OF and SF categories would recover part of this
sensitivity. We also note that the SF signal events contain a minor contribution from h — ZZ* —
v 0.
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AR - In-Fig.- 2.3-we-show-the- Mr (top)-and- My, (middle)-distributions-for-the-
signal- (with- k, =k, = 1, k. =-30)- and- the- dominant- SM- backgrounds- at- the-
HL-LHC.- We-also-show-in-Fig.- 2.3- (bottom)-the-normalized- A¢(““#7) and-AR‘Y
distributions-for-the-signal-and-SM-backgrounds.- Performing-a-cut-and-count-signal-
selection- M7 € [80,150]- GeV,- My, € [5,55]-GeV,-ARY > 1,-AR®Y > 0.8 and-
A(;S(M’ET) > 2-allows-to-extract-a- HL-LHC-projected-sensitivity-| k.| < 13.9-at-95%
confidence- level- (C.L.),- using- a- simple- S/v/B =~ 2-estimate- (with-S and- B the-
number-of-signal-and-background-events)-and-assuming-Higgs-boson-SM-branching-
fractions.-

Given-the-variety-of-relevant-event-kinematic-variables-and-the-significant-cor-
relations-among-several-of-them,-it-is-possible-to-enhance-the-signal-sensitivity-with-
respect-tothe-above-“squared” -cut-and-count-analysis-by-accessing-the-full - kinematic-
information-of-the-events.- To-this-end,-we-adopt-a-multivariate-approach-and-em-
ploy-the-following-set-of-variables-(containing-all-the-relevant-kinematic-information-
of-each-event):-

MT ) MM ) MM’Y ap’jél ap’jéz 7p7’“y ) ET)
AP AT A AgUEET) ph pte 1 (2.3)-

to-train-a-neural-network-(NN)-to-discriminate-the-h 4+-y signal-from-the-various-
SM-backgrounds.- The-NN-architecture-uses-two-hidden-layers-of-128-and-64-nodes,-
with-Rectified- Linear- Unit- (ReLU)-activation-for- the-hidden-layers-and-a-sigmoid-
function-for-the-output-layer.- The-NN-is-optimized-using-as-loss-function-the-binary-
cross-entropy,-employing-the- Adam-optimizer-[82]- (other-generalized-loss-functions-
such-as-the-one-proposed-in-[83]-do-not-lead-to-an-appreciable-improvement).- Since-
the-experimental-dataset-is-unbalanced,-that-is,-the-SM-background-overwhelms-the-
signal,-it-is-useful-to-train-the-NN-using-more-SM-background-than-signal-events,-so-
that-the-NN-learns-optimally-to-identify-(and-reject)-the-former.- Specifically,-we-use-
1.5-x 10* events-for-the-¢/*v¢~ vy background,-10* events-for-the-tty background-and-
5000-events-for-the-Zv (Z — 7777 )-background-(a-total-of-3-x 10* SM-background-
events)-in-the-NN-training, together-with-1.5x 10* events-of-h v signal.- The-validation-
set-contains-the-same-number-of-events-from-each-class.-

The-signal- discrimination- power- achieved- by- our- multivariate- analysis-is- very-
high,-with-an-area-under-the-“receiver-operating-characteristic’ -(ROC)-curve-of-0.941-
and- 0.938- respectively- for- charm-quark- and- up-quark- Yukawa- sensitivity- studies.-
The-multivariate- NN-score-variable-Onn (which-may-be-regarded-as-a-highly-non-
linear-function-of-the-kinematic-variables-in-Eq.- (2.3) )-for-the-signal-and-dominant-
SM-backgrounds-in-the-charm-quark-Yukawa-study-is-shown-in-Fig.- 2.4.- In-this-case,
a-cut-in-the-NN-score-variable-Ony > 0.78-yields-a-signal-efficiency-~ 0.57-together-
with-SM-background-efficiencies-0.057,-0.034-and-0.003-respectively-for-£ v~ v~y -ty
and- Z(— 7777)7.- For-the-up-quark- Yukawa- study,- the- optimal- cut-is- also- found-
to-be-Onn > 0.78,-yielding-a-signal-efficiency-~ 0.56-and-respective-SM-background-
efficiencies-0.056,-0.031-and-0.003.-
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Figure 2.3: Top:- My distribution- of- events- for- the- dominant- SM- backgrounds-
Crul= oy (red),-tty (green), and-Z(— 7777 )y (yellow), all-stacked,- at- the- HL-LHC
(3/5 =-14-TeV -3-ab™1).- In-blue-the-corresponding-M7 distribution-for-the-h +-y signal-
with-kp, =Ky =-1,-k. =30.- Middle:- same-as-above,-but-for- My.- Bottom:- Normalized-
AQS(M’ET) and-AR*" distributions-for-signal-and-SM-backgrounds.-
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Figure 2.4: Multivariate-NN-score-variable-fny forthe-h++ signal-(blue)-and-dominant-
SM-backgrounds-¢T vl v~y (red),tty (green),-and-Z(— 7777 )y (yellow)-in-the-charm-
quark-Yukawa-sensitivity-study.-

In-addition-to-the-dominant-SM-backgrounds,-we-also-consider-the-VBF-and-AP-
h +-y production-processes-as-potential,-yet-minor-backgrounds-for-our-charm-and-
up-quark-Yukawa-sensitivity-analysis,-as-discussed-in-Section-3.1.- The-extra-high-pr
activity-vetoes-imposed-in-our-initial-event-selection-suppress-these-processes-down-
to-a-h(— ¢Tvl~ )y cross section- (assuming- SM-branching- fractions- for- the- Higgs-
boson)-of-32.6-ab-for-VBF -2.24-ab-for-hyW (with-W — jj or-W — /fv)-and-1.84-ab-
for-hyZ (with-Z — jj or-Z — vv), with-other-backgrounds-like-hyj and-tthy negli-
gible-after-the-event-selection.- Due-to-such-small-cross-sections,-these-backgrounds-
are-not-included-in-the-NN-training.- The-NN-selection-efficiencies-for-them-are-the-
following:- in-the-charm-quark-Yukawa-study,-the-cut-Oxn > 0.78-yields-the-efficien-
cies-0.42,-0.25-and-0.27-for-the- VBF -hvW and-hyZ backgrounds,-respectively;-for-
the-up-quark-Yukawa-case,-the-cut-Onn > 0.78-yields-the-corresponding-efficiencies-
0.42,-0.26-and-0.28.- Altogether,-these-backgrounds-do-not-appreciably-reduce-the-
sensitivity-to-x. and-k, from-our-multivariate-analysis,-which-is-driven-by-the-NN-
ability-to-reject-the-main-irreducible-SM-background,-pp — £T v~ .-

3.3 Constraints on x. & k.

For-SM-branching-fractions-of-the-Higgs-boson,-the-sensitivity-to-x. and-x, at-HL-
LHC-from-the-NN-analysis-of-the-previous-section-is-
95%-C.L.-(improving-on-the-cut-and-count-analysis-from-Section-3.2,-as-expected).-
This- assumes- that- the- statistical- uncertainty- of- the- SM- background- will- largely-
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dominate-over-its-systematic-uncertainty-at-the- HL-LHC,-which-is-justified-in-the-
present-scenario,-particularly-since-the-main-backgrounds-are-electroweak-processes.-
The-above-projected-bounds-also-assume-that-only-one-Yukawa-coupling-of-the-Higgs-
boson-departs-from-its-SM-value.-

Enhancing-y. ory, by-an-amount-that-makes-them-comparable-to-the-SM-bottom-
quark- Yukawa- coupling- would- modify- significantly- the- total- width- of- the- Higgs-
boson- and- therefore-its- branching-ratios.- Nevertheless,-it- has-long-been- realized-
that-light- quark- Yukawa- couplings-remain- essentially- unconstrained- by- global- fits-
to- Higgs- production- and- decay- rates- at- the- LHC- [84-86]- (see- also- [87]),” unless-
further-assumptions-are-made.- The-effect-of-an-enhanced- Higgs- Yukawa- coupling-
yq to-a-light-quark-q =-u, d, ¢, s on-the-Higgs-branching-ratios-may-be-compensated-
by-a-related-increase-of-the- Higgs-couplings-to- gauge- bosons- and- third-generation-
fermions,leadingto-a-“flat-direction” -in-theAfit-along-which-the-Higgs-signal-strengths-
remain-unchanged.- From-the-present-agreement-between-SM-predictions-and-LHC-
Higgs-measurements-[88-90],-this-flat-direction-may-be-approximately-described-by-
a-single-generic-kj, enhancement-factor-for-all-Higgs-couplings-other-than-the-light-
quark-Yukawa-y, of-interest-[87]-

1— Br%\/l \/(ﬁ*— BT%\/I)Q + 4’Br§é—v{ ﬁg
X

2
K, =~
h 2

, (2.4)

With*BT%\/I the-branching-fraction-for-h — ¢g-in-the-SM.-While-the-combination-
of-Higgs-signal-strengths-with-other-measurements,-e.g. with-electroweak-precision-
observables-or-an-indirect-measurement-of-the-Higgs-total-width-(model-dependent,-
see- [91])-can-help-lifting- the-flat- direction- (2.4),- this- discussion- highlights- the-im-
portance-of-complementary-probes-of-Higgs-couplings-to-light-quarks.-

Considering- k. and- k,, along-the- flat- direction- defined- by- (2.4)- weakens- our-
analysis’-sensitivity-with-respect-to-the-assumption-of-SM-branching-ratios,-as-the-
quadratic-growth-of-the-h +-y cross-section-is-partially-compensated-by-the-decrease-
in-the-branching-ratio-of-the-h — WW™* decay.- While-negligible-for-small- x4, the-
latter- becomes- significant- as-y,/ yEM 2 1-and-the-h — qG-decay- grows-into- the
dominant- contribution- to- the- total- width.- Beyond- this- point,- the- scaling- of- the-
total-cross-section-becomes-linear-instead.- The-projected-95%- C.L.-sensitivities-to-
ke and-k,, along-the-flat-direction-are-|r.| < 26.3-and-|x,| < 2280.-

4 Comparison with Existing Methods

The-aim-of-this-section-is-to-offer-a-concise-review-and-comparison-of-the-methods-
that-have-been-proposed-and-are-currently-employed- by-experiments-to-constrain-
light-quark-Yukawa-couplings.- This-review-will-contextualize-the-results-presented-
in-the-previous-section-and-provide-some-insight-into-the-complementarity-and-lim-
itations-of-the-various-probes.-

When- comparing-bounds-obtained- from- different-methods,- particularly- within-
the-k-framework,-several-aspects-must-be-considered.- First,-it-is-important-to-clar-
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ify- the- reference- value- used- for- normalizing- , to-the- SM-prediction,- as- Yukawa-
couplings- run- significantly- from- the-scale- of- the- lighter- quark- masses- to- the-rele-
vant-energy-scale-of-the-process- (in-many-cases, the-Higgs-mass-my, ).- Secondly,-the-
various-methods-generally-require-distinct-sets-of-assumptions-to-extrapolate-exper-
imental- results-into- bounds- on- the- targeted- coupling.- Often,- a- certain- degree- of-
similarity-to-the-SM-is-assumed,-constraining-the-degrees-of-freedom-in-the-analysis-
and-enabling-the-extraction-of-information-on-particular-couplings.- As-discussed-in-
the-previous-section,-consistency-with-current- Higgs-signal-strength-measurements-
requires-to-modify-Higgs-couplings-along-the-flat-direction-when-light-quark-Yukawa-
couplings-are-enhanced.- Nevertheless,- this-is-not-always-taken-into-account-when-
quoting-bounds-for-each-coupling-individually.- Lastly,-comparing-different-probes-in-
the-literature-frequently-involves-rescaling-to-account-for-the-varying-luminosities-at-
which-each-bound-was-reported.- Depending-on-the-method,-this-rescaling-might-not-
always-be-trivial.- We-will-highlight-these-differences-at-the-end-of-this-Section,-where-
the-results-of-the-various-probes-for-the-charm-and-up-quarks-will-be-summarized-
in-Tables-2.1-and-2.2-respectively.-

Light-quark-Yukawa-couplings-have-garnered-substantial-theoretical-and-experi-
mental-attention-in-recent-years.- This-is-especially-notable-for-the-charm-quark,-as-
it-remains-the-largest-coupling-we-have-yet-to-gather-evidence-for-among-those-po-
tentially-accessible-to-present-experiments.- As-a-result,-a-large-number-of-methods-
have-been-proposed-to-probe-these-couplings:-some-are-quark-flavor-specific, relying-
on-tagging- or-identifying-a- particular- quark-in-the-event;- while- others- are- flavor-
blind,-meaning-they-could-be-sensitive-to-deviations-in-any-of-the-Higgs-couplings-
to-first-and-second-generation-quarks.- Overall,-a-strong-interplay-exists-among-the-
different-probes,-which,-in-the-event-of-a-detection,-could-be-harnessed-to-pinpoint-
the-responsible-couplings.-

As-was-the-case-for-h +-y production,-some-methods-seek-to-gain-sensitivity-on-
these-couplings-through-their-role-in- Higgs-production-mechanisms.- One-example-
is- Higgs- production- in- association- with- a- charm-tagged- or-light-jet-pp — h(c/j),
which- has- been- proposed- as- a- probe- of- the- Yukawa- couplings- to- charm- and- first-
generation-quarks-[92,-93].- In-general -Higgs-pr distributions-have-been-pointed-out-
as-a-powerful-probe-of-light-quark- Yukawa-couplings,-as-enhanced-quark-mediated-
contributions-would-lead-to-a-softer-distribution-for-the-Higgs,-either-through-their-
interference- with- top- loops- or- directly- through- quark- fusion- for- second- and- first-
generation- quarks- respectively- [94-96].- Higgs- pair- production- has- been- similarly-
shown- to- be- sensitive- to- the- couplings- of- the- latter,- and- further,- to- that- of- the-
charm-if-the-h — cc¢-decay-is-considered-[97,-98].-

Alternatively,- the- charge- asymmetry-in- W*h production,- stemming- from- the-
variation- of- the- LHC- pp PDFs-under- charge- conjugation,- has- been- shown- to- be-
dependent-on-both,-first-and-second- generation- Yukawa-couplings.- Enhancements-
oftheir-values-could-wash-it-out-or-evenflip-it-with-respect-to-SM-predictions-[87,-99] .-

On-the-other-hand,-modifications-of-Higgs-couplings-can-also-manifest-through-
off-shell Higgs-channels,-following-the-idea-of- “measuring- Higgs-couplings-without-
the-Higgs”-[100].- The-key-observation-behind-this-approach-is-that-these-modifica-
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tions- can-influence- the- delicate- cancellations- that- prevent- the- violation- of- pertur-
bative-unitarity-in-high-energy-scatterings-involving-electroweak-gauge-bosons,-and-
could-lead-to-observable-energy-growing-effects.- The-recently-observed-triple-heavy-
vector-boson- production-pp — VVV (V' =-W, Z)-has-been-shown-to-be-sensitive-
to- the- up,- down- and- strange- Yukawa- couplings- [101].- While- the- charm- Yukawa-
could-be-probed-through-the-production-of-two-gauge-bosons-plus-a-charm-tagged-
and-light-jets-pp — VV¢j [102].- Off-shell-Higgs-production-has-also-been-shown-to-
be-sensitive-to-first-generation-couplings-through-kinematic-discriminants-similar-to-
those-employed-in-Higgs-width-measurements-[103].-
Beyond-production-channels,-there-are-other-methods-which-rely-instead-on-the-
growth-of-otherwise-rare- Higgs- decays-that- would- follow- an-enhancement- of- these-
couplings.- Some-of-them-involve-measuring-rare-Higgs-decays-of-the-form-h — MV -
where-M denotes-a-vector-meson-and-V represents-an-electroweak-gauge-boson-(such-
as-a-photon,-W or-Z boson)-[87,-104-109].- These-decays-can-be-sensitive-to-Higgs-
flavor-diagonal-couplings- to- first-and-second- generation- quarks-when-they-happen-
into-vector-quarkonia-(i.e.,-the-J /1 ,-¢,-p or-n mesons).- However,-these-searches-pose-
significant-experimental-challenges,-as-branching-ratios-are-typically-very-small.-

As-discussed-in-Section- 1,- currently-leading- constraints- on- the- charm- Yukawa-
originate-from-direct-searches-of-the-h — cc¢-decay,-assisted-by-significant-advance-
ments-in-jet-substructure-and-flavor-tagging-techniques.- This-avenue-has-been-ex-
plored-for-several-production-channels,-including-associated- Higgs-production-with-
W and-Z bosons-and-vector-boson-fusion-[87,-106,-107,-110],-which-offer-the-best-
prospects- for- this- measurement- in- light- of- the- substantial- QCD- backgrounds- in-
volved.- This- possibility- has-also-been- considered- for- vector- boson- fusion-along-a-
photon,-which-both-suppresses-the-latter-and-provides-an-effective-handle-to-trigger-
the-event-[111].

Furthermore,- there- are- other-low-energy- probes- which- have- been- proposed-to-
test-light-quark- Yukawa-couplings.- Isotope-shift-spectroscopy-in-atomic-clock-tran-
sitions-could-be-sensitive-to-the-Higgs-couplings-to-atomic-matter,-including-the-up,-
down-and-even-electron-Yukawa-couplings-[112].- Additionally,-flavor-processes-could-
provide-an-indirect- handle-on-up-and- particularly- down- quark- Yukawa- couplings,-
as-modifications- of- the- SM- Yukawa- matrices- that- affect- them- generically- also-in-
duce-modifications-in-off-diagonal-entries-in-the-mass-basis,-leading-to-potentially-
observable-FCNCs-[113].- Lastly, it-should-be-noted-modifications-of-the-up,-down-
or-strange-quark-Yukawa-couplings-could-also-affect-DM-direct-detection-prospects-
[114].-

Searches-conducted-with-present-experimental-data-include-those-for-the-exotic-
h — MYV decays-into-vector-quarkonia-[115-121]-and-the-direct-h — cé-decay.- The-
latter- have- predominantly- focused-on- Z/W associated- production- [43,- 122-124] -
but-recently,-this-decay-channel-has-also-been-investigated-for-high-pr Higgs-bosons-
produced-via-ggF-[125],-wherein-the-boosted-cé pair-isreconstructed-as-a-single-large-
radius-jet-and-identified-through-neural-network-techniques.- Additionally,-Higgs-pr
distributions- have-also-been-exploited-to-derive- constraints-on-the-charm- Yukawa-
coupling-[44,-90,-126].- Lastly, preliminary-results-for-the-h +-y search-proposed-in-

28



5 Conclusion

this-work-have-recently-been-reported-by-CMS-[45],-constraining-Higgs-couplings-to-
first-and-second-generation-quarks.-

While-direct-searches-are-potentially-more-sensitive-and-generally-rely-on-less-the-
oretical-assumptions,-global-combinations-of-Higgs-data-could-also-provide-bounds-
on-light-quark-Yukawa-couplings.- However,-as-previously-noted,-global-fits-to-Higgs-
production-and-decay-rates-at-the-LHC-leave-light-quark- Yukawa-couplings-essen-
tially-unconstrained-along-a-flat-direction.- Since-the-LHC-cannot-measure-the-Higgs-
width- directly,- limited- by- an-experimental- resolution- of- approximately- 1- GeV-on-
the-invariant-mass- distributions-of-the-h — 4¢ and-h — v channels,-it-becomes-
imperative-to-combine-this-data-with-either-additional-measurements-or-theoretical-
assumptions-to-derive-meaningful-bounds-on-these-couplings-[87,-106,-127].-

A-well-motivated-assumption-is-to-consider-|xy| < 1 (V =W, Z),-as-these-cou-
plings-are-generically-diluted-with-respect-to-the-SM-in-a-wide-class-of- BSM-models."
In-particular,-this-assumption-is-valid-in-models-featuring-any-number-of-Higgs-dou-
blets,- with- or- without- additional- Higgs- singlets- (such- as-2HDMs).- Alternatively,-
the-global-fit-to-signal-strengths-could-be-combined-with-an-indirect-measurement-
of-the-Higgs-total-width-[130,-131].- However,-it-is-important-to-highlight-that-the-
latter-relies-on-further-theoretical-assumptions.- Its-measurement-leverages-the-ratio-
between-the-on-shell-and-off-shell- Z Z production-cross-sections.- To-achieve-this,-it-
assumes-that-the-relationship-between-the-Higgs-couplings-involved-in-both-regimes-
is-as- predicted- by-the- SM,- and- furthermore,- that- no- new- particles- enter- the- ggF-
process.- Yet-another- possibility-is- to- combine- LHC- data- with- EW- precision- ob-
servables.- Assuming-a-3- TeV- cutoff-scale- for- the- new- physics,- the-latter-lead- to-
ky = 1.08-+ 0.07-[132].- Note,-however,- that-resulting- bounds- will-depend-on-the-
chosen-scale.-

To- summarize,- we- present- some- of- the- leading- bounds- stemming- from- both-
proposed- methods- and- experimental- results- for- the- charm- and- up- quark- Yukawa-
couplings-in- Tables- 2.1-and- 2.2- respectively.- The-results- of- this- work- have- been-
reported- in- a- variety- of- formats- for- comparison- with- existing- probes,- illustrating-
the- impact- of- these- choices- on- the- resulting- bounds.- These- tables- showcase- the-
sensitivity-of-the-different-approaches,- highlighting-some- of-their-assumptions-and-
limitations.- Given-the-particularities-of-each-method,-a-more-comprehensive-review-
of-these-features- would-merit- a-separate- analysis-and-is-thus-beyond-the-scope-of-
this-thesis.-

5 Conclusion

In-this-Chapter-we-have-studied-h +-y production-at-the-LHC.-While-interesting-in-
its-own-right,-as-this-process-remains-yet-to-be-observed,-we-have-demonstrated-its-
role-as-a-sensitive-probe-of-the-Higgs-boson-couplings-to-the-light-quarks-of-the-first-
two-generations-of-matter,-still-largely-unconstrained-by-present-measurements.- The-
associated-production-with-a-photon-is-quadratically-sensitive-to-a-combination-of-

! Although there are some exceptions, see [128, 129].
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(h — qq)-q =—¢,b

Probe- Refs.- | Normalization-| £ 95%CL-Bound- Observations-
Ye/Ke = [fb~1)- |ke| < /Kec €
138- 167- Flat-direction,-OF-
leptons-(hy — euy)-
11.8 SM-couplings-+-«.
SM . 3000~
Ye (mh) . .
26.3- Flat-direction-
This-work- [1]- )
9.86- SM-couplings-+-«.
6000-
19.2- Flat-direction-
\ 5.6- SM-couplings-+-k.
yMme) | 3000 plings 4 e
= 12.5- Flat-direction-
Q
2 921]- 2.6— 3.9- SM-couplings-+- k..
2 | pp— he 192] y3M(m.) 3000- pne
A [87] 2.1— 4.0- Flat-direction-
. . , SM-couplings-+-k.p
; . . SM (13— a3 ;
Higgs-pr dist. [94] y2 M (mp/2) 3000- | [—(1.3—0.6), 3.0-— 3.7] /5 =13 TeV-
pp — hh — bbyy [97]- y3M(m.) 3000- | [—(9.2— 4.8), 4.6— 9.0]- SMEFT-+-k. s
W*h asym.- [87,-99]- y3M(m,) 3000~ < 30- Flat-direction-
Zh (h — cc) [87,-133) ySM(m,) 3000- S 2.7 Flat-direction-
Z/Wh +- SM +0.21
- B < 1. - -fit-
VBE-(h - cc)- [110] y2 M (me) 3000 ke < 1477516 2Dk, (best)-fit
VBF«y (h — c¢)- [111]- y3M(m,) 3000- 13- SM-couplings-+- k.
Global-fit- [127]- ySM(m,) 6000- 1.2- lky| < 1-
| o= hy = epy [45]- yM(my,)- 138- 200-(110)- Flat-direction-
n
E h — J/{y [120]- y3M(m,) 139- | [—136-(123), 178-(164)]- | SM-couplings-—+ K./~
QE Z/Wh (h — cc)- [43]- ySM(m,) 138- 1.1-< |ke| < 5.5-(3.4)- SM-couplings-+-k.
E Higgs-pr dist.- [126]- y3M(m.) 138- [-5.3-(5.7), 5.2-(5.7)] SM, no-BSM-+-£. 4
Higes' pr + Vh () ySM (my,) 139- [—4.46, 4.81] SM-couplings-+ e

Table 2.1: Summary- of projected- and- experimental- observed- (expected)- 95%- CL-
upper-limits-on-the- charm quark Yukawa-coupling-resulting-from-LHC-searches- (at
/s =-14, 13- TeV-respectively, unless-otherwise-specified).-
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Probe- Refs.-| Normalization-| £ 95%CL-Bound- Observations-
Yu Ky = [fb~1]- |ku| < /Ky €
138 9780- Flat-direction,-OF-
leptons-(hy — euy)-
1920- SM-couplings-+-£,,
yM ()| 3000
“ 2280~ Flat-direction-
This-work- [1]- .
1600- SM-couplings-+-£,,
6000~
1820- Flat-direction-
% 1070- SM-couplings-+-k,,
5 ySM(2-GeV)- | 3000- ping
“g 1270- Flat-direction-
= .
& SM-couplings-+-£,, g
3 SM _ _ _ :
& [95] ySM (my,) 300 Ky < 0.27— 0.36 i3 TeV.
Higgs-pr dist.- .
i} i 3 SM-couplings-+-Kg v,a
[96] my(my) /v 3000 [—0.73, 0.33] /5 =13 TeV-
- 97]- 3000- —1771, 1750} SMEFT-+-k,,
pp — hh — bbyy 197] ySM (2-GeV)- [ ] .
98] 6000- 530- SMEFT-+-#,
pp = VVV [101]- yo M (my,)- 6000~ 830- SMEFT-+-k,
Off-shell-h — 44 [103]-| ySM(2-GeV)- | 6000- 194- SMEFT-+-k,,
Global-fit- [127)- | y2M(2-GeV)- | 6000- 560- lky | < 1-
E pp — hy — ey [45]- | ySM(2-GeV)- | 138 16000-(13000)- Flat-direction

Table 2.2: Summary-of-projected-and-experimental-observed-(expected)-95%-CL-upper
limits-on-the-up quark Yukawa-coupling-resulting-from-LHC-searches-(at-/s =-14, 13-
TeV-respectively,-unless-otherwise-specified).-
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these-couplings-weighted-by-theirrespective-electric-charges.- The-contribution-of-up-
type-quarks-is-thus-enhanced-with-respect-to-that-of-their-down-type-counterparts,-
providing-an-unique-way-to-disentangle-deviations-between-them.- This-makes-h +-y
highly-complementary-to-other-existing-light-quark-Yukawa-probes,-which-are-often-
flavor-blind-or-sensitive-to-their-masses-instead.-

Focusing-on-the-h — ¢Tv¢~ - decay- channel- of- the- Higgs- boson,- we- have- per-
formed-a- multivariate- neural-network- analysis- to- fully-exploit- the-rich-kinematics-
of-this-final-state,~and-derived-HL-LHC-projected-sensitivities-to-the-Higgs- Yukawa-
couplings-to-charm-and-up-quarks.- These-have-been-summarized-along-with-other-
representative-probes-in-Tables-2.1-and-2.2.- While-the-projected-bounds-on-«. which-
we-obtain-are-complementary-to-existing-methods-in-the-literature,- they- may-not-
be-competitive-with-the-most-sensitive-direct-probes-of-the- Yukawa-coupling-of-the-
charm,-which-benefits-the-most-from-flavor-specific-approaches-as-it-is-the-heaviest-
of-the-remaining-quarks.- In-contrast,-the-achievable-h +-y sensitivity-to-x, does-lie-
in-the-same-ballpark-of-other-currently-proposed-probes.- Particularly-in-the-latter-
case,”h +-y may-help-to-gain-further-insight-on-Higgs-flavor-at-the-LHC.-
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3

Searching for Exotic Semi-Dark
Higgs Decays

1 Introduction

In-this- Chapter-we-turn-our-attention-to-the-search-for-exotic-decay-modes-of-the-
Higgs-boson.- Exotic- Higgs-decays, i.e. decays-of-the- Higgs- boson-not- present-in-
the- SM,- constitute- a- primary- avenue- to- probe- the- existence- of- new- physics- [134].-
This-is-because,-as-previously-discussed, new-physics-with-light-degrees-of-freedom-
coupling-to-the-Higgs-generically-opens-new-decay-channels-with-sizable-branching-
ratios.- Additionally,- as-a-scalar-field,- the- Higgs-is-uniquely- positioned- within-the-
SM-to-interact-with-these-new-particles.- [t-is-therefore-no-surprise-that-these-decays-
have-been-the-target-of-an-intense-experimental-program-at-the- LHC-[135-146]-(see-
also- [147]- and- references- therein).- However,- these-searches- have- mainly- targeted-
either-fully-visible-final-states,-e.g. h — 2f 2f" (with-f, f SM-fermions)-or-the-fully-
invisible-Higgs-decay- (so-called-invisible Higgs width).-

Considering-all/part-of-the- Higgs-boson-decay- products-in- these- exotic-decays-
to-be-invisible- at- colliders-is- well-motivated- theoretically,- e.g. if-the-Higgs-boson-
directly-interacts-with-a-dark-(i.e. not-feeling-the-SM-gauge-interactions)-sector-of-
nature,-possibly-containing-the-DM-particle(s), or-if-the-Higgs-decay-products-are-
very-long-lived-and-decay-outside-the-LHC-detectors.- Yet,-partially-invisible-( semi-
dark)-Higgs-boson-decays-constitute-a-much-less-explored-avenue-to-search-for-new-
BSM- physics- coupled- to- the- Higgs-boson,- both- theoretically- and- experimentally.-
Studies- of- these- semi-dark- Higgs- decays- exist- in- the- literature- for- very- few- BSM-
scenarios- [148-150].- And-existing-experimental-searches-have-focused-on-two-final-
states:- one- or- two- photons- plus- missing- energy,- h — (2)y +-F1 [151-155],- or- a-
bottom-quark-pair,-h — bb +F [156].- Nevertheless,- semi-dark-searches-are-fully-
complementary-to-searches-for-invisible- Higgs-decays,-and-generally-probe-different-
regions-of-parameter-space-of-the-same-BSM-theories.- Furthermore,-semi-invisible-
Higgs-decays-can-also-provide-key-information-on-the-nature-of-the-coupling-between-
the-Higgs-and-the-invisible-state(s), by-reconstructing-the-visible-part-of-the-exotic-
Higgs-decay.-
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3. SEARCHING FOR EXOTIC SEMI-DARK HIGGS DECAYS

This- Chapter- will- introduce- a- promising- yet- largely- unexplored- semi-invisible-
Higgs-decay-topology.- Section-2-will-investigate-the-prospects-for-this-search-at-both-
the- LHC-and- a-future- ILC,-whereas- Section- 3- will- provide- a- brief- review- of-some-
well-motivated- BSM-realizations- that- can- be- probed-through- this-search.- Lastly,-
our-conclusions-are-presented-in-Section-4.-

2 Sweeping the Higgs Neutrino Floor: h — Z + Fr

In-this-Section-we-target-the-hitherto-unexplored-semi-dark-Higgs-decay-h — ZX -
with- X a- BSM- particle- invisible- at- the- LHC- (manifesting- as- missing- transverse-
energy-Fr),! and-we-show-it-is-a-promising-avenue-to-probe-various-well-motivated-
BSM-scenarios:- X could-be-an-axion-like-particle-(ALP)-or-dark-photon-that-decays-
invisibly- or- is- long-lived,- escaping- the- detector.- It- could- also- be- a- pseudoscalar-
mediator-particle-between-the-SM-and-a-dark-sector-of-nature-containing-the-DM-
particle(s).- These-realizations-will-be-further-explored-in-Section-3,-where-we-will-
also-present-the-resulting-constraints-on-their-parameter-space.-

To-search-for-this-channel-at-colliders,~we-focus-our-study-on-the-leptonic-decay-
of-the-Z boson,-Z — ¢ (with-¢ =-e, u), leading-to-the-Higgs-final-state-h — ZX —
00 +-Fp.- Incidentally,-the-SM-decays-h — ZZ* — llvv-and-h — WW* — (vlp-
yield-the-same-final-state.- Although-for-the-latter,-the-di-lepton-mass-distribution-
will-not-reconstruct-the- Z boson-mass-pole-myz ~ 91-GeV,-which-can-be-exploited-
to-differentiate-h — ZX from-this- SM-decay- process.- On-the-other-hand,-h —
Z7* — Llvv-completely- mimics-a-possible- BSM-signal.- The-SM-decay-h — Zvi-
then-constitutes-a- “neutrino floor”-to-experimental-searches-for-new-physics-in-the-
semi-dark-h — ZX (X — E7)-channel,? below-which-a-possible-BSM-signal-would-
be-buried.- However -it-also-provides-a-target-sensitivity-for-the-h — ZX (X — Fr)-
search-at-the- LHC- and- future- colliders- which- would- guarantee-a- detection- (albeit-
in- that- case- not- of BSM- physics!),- given- by- the- SM- branching- fraction- BR(h —
Zvv)sm = 5.4~ 1073 [158].-

2.1 LHC Searches for h - ZX — U/ + Fr

Our-analysisrevealsthe-convenience-of-focusing-on-the-production-of-the-Higgs-boson-
at-the- LHC-in-association-with-a- Z boson, pp — Zh:- for-gluon-fusion- (ggF')-and-
vector-boson-fusion-(VBF)-Higgs-production-channels,-the-Higgs-is-either-produced-
on- its-own- (ggF)-or-recoiling- against- jets- (ggF,- VBF).- Since- the- phase- space- for-
the-Higgs-decay-h — ZX is-fairly-small-(as-(mj;, — mz)/m;, < 1),-an-accurate- F'p
reconstruction-may-be-limited-by-the-transverse-momentum- (pr)-resolution-of-the-
jets.- In-addition,-the-£¢ +-F; +-jets-final-state-has-very-large-SM-backgrounds,-in-
particular-reducible-ones-if-the- /. reconstruction-is-not-perfect.- Higgs-production-
in-association-with-an-electroweak-gauge-boson,-pp — W*h and-pp — Zh,-is-thus-

'Ref. [148] briefly discussed this possibility in the context of dark photons.
2In analogy to DM direct detection experiments, where coherent elastic neutrino-nucleus scat-
tering can pose an irreducible background to DM searches, known as the “neutrino floor” [157].
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2 Sweeping the Higgs Neutrino Floor: h — Z +-F

better-suited-for-the-h — ZX (X — Fr)-exotic-Higgs-decay-search-at-the-LHC.-Yet,
the-leptonic-decay-of-the-W boson-in-pp — Wh adds-Fp to-the-final-state,-making-
it-challenging-to-disentangle-this-contribution-from-the-Higgs-boson-decay-products.-
In-addition,- the- LHC- cross-section-for- the-dominant- SM-background-in-this-case,-
pp — W*Z -is-very-large,- O(50)-pb.- In-contrast,- for-pp — Zh (h — Z +Fr)-
the-leptonic-decay- of-both- Z bosons- offers- a- sharp- reconstruction- of- the- two- di-
lepton-resonances-together-with-an-accurate- £/ measurement,-combined-with-SM-
backgrounds-that-can-be-efficiently-suppressed-or-are-very-small-to-begin-with,-as-
we-discuss-in-detail-below.-

For-our-analysis,-we-generate-the-BSM-signal-specifically-using-a-FeynRules [159]-
implementation-ofthetwo-Higgs-doublet-model-pluspseudoscalarsinglet-(2HDM+a)-
extension-of-the-SM-(see-e.g. [160-162],-c.f. Section-3),-through-the-decay-h — Za
(with-a invisible).- Nevertheless,- our- results- apply- to- any- two-body- Higgs- decay-
h — ZX,X — Fp.- Both-Z bosons-from-the-signal-are-considered-to-decay-lep-
tonically,- Z — /.- The-relevant- SM- backgrounds-are-pp — ZZ — 44 (with- Py
appearing-via-mismeasurements-and-detector-effects), pp — ZZZ, WW Z — 40+ 2v -
pp — 2, tW Z — 4+2v +jets,-and-pp — Zh (h — WW* — 20+ 2v).- We-generate
signal-and-SM-background-event-samples-with-MG5_AMC@QNLO v2.8.2 [68]-(using-
the-NNPDF31_NNLO [69]-parton-distribution-functions)-at-a-center-of-mass-energy-
Vs =-14-TeV - with- subsequent- parton- showering- and- hadronization- via- PYTHIA
8 [75]- and- detector- simulation- via- DELPHES v3.4.2 [76],- using- the- detector- card-
designed-for-High-Luminosity-(HL)-LHC-studies.- We-normalize-the-respective-cross-
sections-to-their-next-to-leading-order-(NLO)-in-QCD-values,-obtained-from-the-lit-
erature-[163,-164]- (for-the-pp — Zh and-pp — ZZ processes-the-normalization-is-
however-performed-to-the-NNLO-cross-section-[158,-165];-to-avoid-known-issues-at-
NLO-in-QCD-related-to-real-b-quark-emission-[166,-167],-tW Z is-kept-at-LO-with-a-
negligible-impact-on-our-analysis).- For-the-sake-of-simplicity,~-we-do-not-include-pile-
up-in-our-simulation:-in-the-experimental-measurements,-it-has-been-shown-that-the-
pile-up-contamination-can-be-very-efficiently-removed-by-using-pile-up-subtraction-
algorithms-such-as-PUPPI [79],-SOFTKILLER [80]-or-constituent-level-subtraction-[81].-
Selected-events-are-required-to-contain-exactly-four-reconstructed-leptons-after-de-
tector-simulation,-comprising-two-pairs-of-opposite-sign,-same-flavor-leptons.- Events-
must-pass-the-single,-two-or-three-lepton-trigger-requirements-from-the-ATLAS-2018-
Trigger-menu-[168].- When-multiple-di-lepton-combinations-satisfying-the-selection-
requirements-exist, the-one-minimizing-A% =-m,*[(me, —mz)?+ (mee, —mz)?]-(with-
mye, the-di-lepton-invariant-masses)-is-chosen.- Extra-hadronic-activity-is-vetoed-by-
rejecting-events-with-either-b-tagged-jets-or-hard-jets-with-pr > 50-GeV .-

Since- the- Higgs- decay-is- partially- invisible,- its- invariant- mass- cannot- be- fully-
reconstructed, nor-can-the-di-lepton-pair-from-its-decay-be-straightforwardly-iden-
tified.- The-latter,-however,-is-key-to-better-exploit-the-kinematic-properties-of-the-
BSM-signal-in-the-analysis.- We-may-identify-the-di-lepton-pair-corresponding-to-the-
Z boson-from-the-Higgs-decay-using-the-transverse-mass- M ,-given-by-
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2 - 2
M% :’(\/ 7(%@4“‘ Iz £|2+ET> - ﬁjée +FEr (3.1)

with- P andzﬁ{fz the-missing-transverse-3-momentum-and-Z boson-transverse-
3-momentum frespectively;/a/ omplementary-approach-would-be-to-select-the-Z bo-

son-closest-to- ET in-the-azimuthal- plane as-the-one-from-the-Higgs- decay Figure-

3.1-shows-the- My (top)-and-A¢(Z, ET) (azimuthal-angle-between- ET and-the-3-
momentum-of-the-di-lepton-pair,-bottom)-distributions-for-the-leptonically-decaying-
Z boson-from-the-Higgs-decay- (labeled-as- Z1)-and-the- Z boson-produced-in-asso-
ciation- with-the- Higgs- (labeled- as- Z3).- To-optimally-exploit- the- event-kinematic-
information-in-identifying-Z; and-Zs for-the-BSM-signal,-we-build-a-neural-network-
(NN)-(two-hidden-layers,-32-nodes-each,-using-rectified-linear-unit-activation-for-the-
hidden-layers-and-a-sigmoid-function-for-the-output)-which-takes-as-input- My and-
A¢(Z, Er)-for-both-di-lepton-pairs.- The-correct-and-wrong-Z; assignments-for-the-
NN-training-are-labeled-using-generator-level-information.- The-NN-is-trained-with-
a-Monte-Carlo-sample-of-20000-signal-events- (not-used-in-our-subsequent-analysis)-
with-mx =-1-GeV ,-using-the- Adam-algorithm-for-the-optimization.- The-efficiency-
obtained-for-a-correct-Zj o choice-for-the-signal-is-73%,-and-the-NN-is-then-applied-
in-our-sensitivity-analysis-to-both-the-BSM-signal-(for-mx € [1, 32.5]-GeV)-and-the-
SM-backgrounds.-

The-signal-cross-section- (for-BR(h — ZX)-=-1,BR(X — Fr)=1-andmyx = 1-
GeV)-afterthe-initial-event-selection-is-1.420-fb.- Therespective-SM-background-cross-
sections-after-event-selection-are-25.6-fb-for-Z2 — 44,-0.76-tb-for-ZZ — 20 + 27
0.169-fb-for- WW *) Z — 4¢ 4 2v (including-the-pp — Zh,-h — WW* contribution),
0.012-fb-for- ZZZ — 4¢ + 2v,-and-0.044- fb-for-ttZ, tW 7 — 4€ + 2v +-jets.- Our
h — Z X LHC-signalregion-must-targetrelatively-high-pr Zh associated-production,-
with-reconstructed- Z-boson- resonances- for- the- two- di-lepton- pairs- and- the- Higgs-
transverse-mass-Mr from-the-Z; di-lepton-candidate.- Re%uiring/a/moderatelyflargef
amount-of- fr,-demanding- Z; to-be-well-aligned- with- 1 in-the-azimuthal- plane-
and-rejecting-events-with-a-large-rapidity-gap-between-di-lepton-pairs-also-improves-
the-sensitivity-of-the-analysis.-

The-rich-event-kinematics-(four-visible-objects-in-the-final-state-plus-the-missing-
transverse- energy)- indicates- that- a- multivariate- approach- which- accesses- the- full-
kinematic-information-of-the-events-could-enhance-our-BSM-signal-sensitivity.- We-
use-another-NN-(two-hidden-layers-of-256-nodes, same-activation-functions-and-opti-
mization-as-before)-for-the-discrimination-between-signal-and-SM-background,-with-
input-variables:- Ep,-my, (four-lepton-invariant-mass),-myg, and-myg,, Ad(Z1, Br)-
and-A¢(Zs, ETT) -Myp (built-from-Z;), /p“1 and/péTE2 (di-lepton-transverse-momenta),-
pgﬂl; pgﬂ?; pl%, p7 (transverse-momenta- of-the-four-leptons,-ordered-from-higher-to
lower )-and-(pr, 2 4 ET)/p%.

The-NN-is- tramed with-an-unbalanced-Monte-Carlo-set-dominated-by-ZZ — 4¢
events,-precisely-to-optimize-the-rejection-of-this- SM-background- (as-it-has-by-far-
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Figure 3.1: My (top)-and-A¢(Z, E_‘T) /7 (bottom)-for-Z; (blue)-and-Zs (red), see-text-
for-details.-

the-largest-LHC-cross-section-among-SM-backgrounds).- For-the-training-set-we-use-
25000-ZH events,~20000-ZZ events-and-5000-WW Z events.- The- ZZ background-
with-Z — 77 is-not-used-in-the-training.- The-validation-sets-have-similar-size-as-
the-training-ones.- The-test-sets-have-respectively-82000-events-(Z H),~412000-(Z Z) -
57000-(WW Z)-and-36000-(ZZ,-Z — 77).- For-other-signal-masses,-the-test-sets-have-
around-150000-events.- The-NN-achieves-a-very-high-discrimination-power,-with-an-
area-under- the- curve- (ROC)-of-0.927.- The-NN-score-fyy for-the-myxy =-1-GeV-
signal-and-relevant-SM-backgrounds-is-shown-in-Figure-3.2-(for-X of-spin-1,-angular-
correlations-in-the- 77 di-lepton-pair-mildly-differ-from-the-spin-0- X case-analyzed-
here,-yet-our-signal-sensitivity-results-would-be-nearly-unchanged).-
Our-signalregion-is-defined-forthe-HL-LHC-as-0n > 0.997.- Theresulting-signal-
and-SM-background-efficiencies-(evaluated-on-the-NN-test-sets)-are-0.12,-1.5~ 1074 -
2.8-107°, 0.0013,-0.012,-0.0016-and- < 9.4~ 10~%,-respectively-for-the-signal- (with-
myx =1-GeV),ZZ - U -WWZ-ZZ — 20+ 27 ZZZ tW Z and-ttZ.-Since-O(s/b)
corrections-are-not-negligible,-we-employ-the- “Asimov-estimate”-[169]-to-derive-the-
20 exclusion-regions-on-BR(h — ZX)-x BR(X-— Er)-with-3-ab~! of integrated-
luminosity.- Bounds- cover- the-range-mx € [1, 32.5]- GeV,- but- they- may- also- be-
directly-extrapolated-to-the-mx — 0-limit.- We-find-our-NN-results-to-improve-by-
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Figure 3.2: Score-fyn of-the-neural-network-discriminating-BSM-signal-vs-SM-back-
ground-in-our-analysis,-for-the-BSM-signal-with-m x =-1-GeV-(labeled-Z H ,-blue),-and-
the-relevant-SM-backgrounds:- ZZ — 44 (ved),-ZZ — 2027 (yellow), WW Z — 40+ 2v
(green), ZZZ — 4€ + 2v (purple).-

~ 30%-the-sensitivity- of- a- cut-and-count- analysis,- and- come- close- to- probing- the-
Higgs neutrino floor (for-my =-1-GeV -it-probes-BR(h — ZX)-x BR(X-— Fr) =
2.8 x BR(h-— Zvv)gm at-20).- Werepeat-our-analysis-for-an-integrated-luminosity-of-
300-fb~! -with-a-less-stringent-signal-region-cut-f y ; > 0.985-to-increase-the-fraction-
of-signal-events-surviving-the-selection.- The-sensitivity-results-for-300-fb~! and-3-
ab~! (HL-LHC)-are-shown-in-Figure-3.3.-

Lastly,-we-note-that-while-mono-Z searches-could,-in-principle,-be-sensitive-to-
the-125-GeV-Higgs-h — ZE 1 decay, neither- ATLAS-[170]-nor- CMS-[171]-searches-
can- constrain- its- branching-ratio- effectively.- This-is- mainly- due- to- the- stringent-
cuts-applied-in-both-analyses-on-the-missing-energy- 1 and-transverse-mass-mr of-
the-events.- The-first-requires-a-hard-jet-on-ggF ,-while-the-former-(mp > 200-GeV-
in-both-searches)- virtually-excludes-the-entirety-of-the-signal,-since-the-transverse-
mass-is-expected-to-be-upper-bounded-by-the-resonance-mass-(my, )-barring-detector-
effects.- While-suitable- for- the- production- of- heavy- scalars- within- the- 2HDM+a,-
these-cuts-limit-severely-the-sensitivity-to-the-exotic-decays-of-the-125-GeV-Higgs-
boson,-stressing-the-importance-of-direct-searches.-
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Figure 3.3: 20 exclusion-sensitivity-for- BR(h — ZX)-x BR(X-— E1)-as-a-function-
of-mx for-an- LHC-integrated- luminosity-of-300-fb=1 (red)-and-3000-fb—! (HL-LHC,
blue).- The- Higgs neutrino floor is-shown-as-a-dashed-black-line.- The-ILC-4/s =-250-
GeV-(2-ab™1)-would-be-sensitivity-is-shown-in-green.-

2.2 ILC Searches for h > ZX — U/ + F

A-future-International-Linear-Collider- (ILC)-[172,-173]-operating-at-/s =-250-GeV-
would-be-able-to-probe-BR(h — Z X )-down-to-the-Higgs neutrino floor by-exploiting-
several-advantages-over-the- LHC-search-discussed-in-the-previous-section:-

(1) Higgstrahlung-ete™ — Zh is-now-the-dominant-Higgs-production-mode.-

(ii) The-eTe™ collisions-at-ILC-offer-a-much-cleaner-environment- (largely-void-of-
hadronic-activity)-and-the-3-momenta-of-the-incoming-particles-is-known-up-
to-radiative-and-smearing-effects,-allowing-for-full-missing-momentum-recon-
struction.-

(iii) The- Higgs- recoil- mass,- constructed- from- the- Z-boson- recoiling- against- the-
Higgs-boson-(Zy)-as- M., =s +-m3, — 2Ez,+/s, provides-a-straightforward-
way- to-correctly-identify- Z; o for-the-BSM-signal- (Meco built-out-of-the- Z-
boson-from-the-Higgs-decay,” Z1,-will-not-present-any-resonant-structure).-

For-our-analysis,-we-specifically-consider-/s =-250-GeV-with-2-ab~! ofintegrated-
luminosity- (90%- of-it- evenly- split- between- the- two- opposite- beam- helicities)- and-
beam-polarizations-of-80%-for-the-electrons-and-30%-for-the-positrons-respectively-
[173].- Again,-we-consider-the- SM-Higgs- produced-in-association- with-a- Z-boson,-
ete™ — Zh for-our-BSM-signal.- The-relevant-SM-backgrounds-are-now-ete™ — ZZ
(— 40,20+ 27)ete” = WWZ and-ete” — ZZvv-(including-VBF-initiated-con-
tributions;-Higgs-mediated-contributions-correspond-to-the-SM-Higgs neutrino floor,
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and-are-not-included).- Our-signal-and-background-event-generation-is-performed-as-
in-the-previous-section,-using-in-this-case-the- DELPHES detector-card-designed-for-
ILC-studies-[76,-174]- (a-study-of-lepton-collider-capabilities-including-the-effects-of-
initial-state-radiation-or-beamstrahlung-is-left-for-future-work).-
Our-initial-event-selection-mimics-that-of-the-previous-LHC-analysis.- The-cross-
sectionsforthesignal-(for BR(h — ZX)-=-1 andmx =1-GeV)-and-SM-backgrounds-
after-event-selection-are-respectively-1.421-fb,-5.64-fb- (for- ZZ — 4¢),-0.13-fb- (for-
Z7Z — 2027),0.073-b-(for- WW ) Z — 44 + 2v -dominated-by-the-e et — Zh,-h —
WW* contribution),-and-0.011-ab-(for-Z Zvv-— 4¢+ 2v).- For-the-ILC-environment,-
the-use-of-a- NN-does- not- offer- such- a- strong- advantage- over- a- simpler- (cut-and-
count)-analysis.- We-thus-define- our- kinematic- region- for- signal- extraction- in- the-
latter-way:-we-demand-reconstructed-Z-bosonresonances-for-the-two-di-lepton-pairs,-
myz, € [55,100]-GeV,-myz, € [80,105]-GeV;-we-require-the-recoil-mass-constructed-
out-of- Zy in-the-range- Mieco € [120, 135]- GeV,-together-with-pz, > 50-GeV-and-
F € [5,60]-GeV-(pz,, F respectively-the-modulus-of-the- Z5 di-lepton-candidate’s-
3-momentum- and- the- modulus- of- the- missing- 3-momentum );- the- invariant- mass

. = . 2 - 2
m* built-from-Z; and/E,/given/by/(m§;SS)2 :*< 221 +7?221 —i-’E) - Pz +F
isTequired-toreconstruct-the-125-GeV-Higgs-mass,-m liss € (95, 130]-GeV;-we-further

require-myg > 160-GeV,(pz, + F)/pz, < 1.8-and-(m}*)? :’<, /E%Q +73, +’E>2 -
Pz, +F ’ > (95-GeV)2.- These-signal-region-cuts-have-an-efficiehcy-of-0.89-for-the-
BSM-signal- (for-myx =-1-GeV),-and-1.7- 107?, 0.013,-0.085,-0.24-for-the- ZZ — 44,
727 — 2021 -WW Z and- Z Zvv-SM-backgrounds,-respectively.- Using-the- “Asimov-
estimate” ;- we- derive-a-20 sensitivity- BR(h — ZX)-x BR(X-— F) = 0.0045.- We-
show- the- corresponding- ILC- sensitivity- as- a- function- of- my in- Figure- 3.3.- We-
note- that- this-sensitivity-lies- below- the- SM- Higgs neutrino floor,  not-included-in-
our-analysis.- This-means-that-we-should-now-instead- consider-the- ILC-discovery-
potential-of- BR(h — Zvv)gy; the-expected-significance-over-the-background-only-
hypothesis-reaches-2.40 (the-significance-may-be-enhanced-to-~ 40 ,-at-the-expense-
of-our-BSM-analysis-not-yielding-a-uniform-sensitivity-in-mx).- The-ILC-can-thus-
sweep- the-entire-new- physics- parameter-space- of-semi-dark- Higgs- decays-down- to-
the- Higgs neutrino floor.-

3 Constraints on Dark Matter Scenarios

We-now- turn- our- attention- to-some- of-the- BSM-realizations- that- are- constrained-
by-our-projections-for-the-sensitivity-to-BR(h — ZX)-x BR(X-— F1)-(see-Figure-
3.3)- and- could- thus- be- probed- through- the- semi-invisible- h — ZX — 0 +Fr

decay.- In-particular,-we-will-consider-three-different-scenarios-where- X is-taken-to-
be:- an-axion-like-particle- (ALP)-that-couples-to-the-Higgs-and-decays-invisibly;-a-
pseudoscalar-mediator-(a)-to-the-dark-sector-within-a-two-Higgs-doublet-model-plus-
pseudoscalar-(2HDM+a);-or-a-dark-photon.- These-realizations-are-well-motivated-
theoretically,-as-they-can-provide-DM-in-quantities-sufficient-to-explain-its-observed-
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abundance.- They-also-suggest-that-the-dark-sector-may-be-accessible-through-the-
Higgs-boson- at- colliders,- highlighting- the- complementarity- of- these- searches- with-
traditional-direct-or-indirect-DM-detection-experiments.- In-the-following-we-provide-
a- concise- overview- of- these- realizations,- casting- our- results- into- their- respective-
parameter-spaces-and-offering-context-to-their-significance.-

3.1 Axion-like Particles

Axion-like-particles-(ALPs)-are-generally-defined-as-CP-odd-(pseudo) Nambu-Goldstone-
bosons-which-are-singlets-under-the-SM-gauge-group.- They-take-theirname-from-the-
eponymous-axion,-a-particle-first-formulated-as-a-solution-to-the-strong-CP-problem-
[175-177].- The-strong- CP-problem-can-be-succinctly-summarized- as-the- puzzling-
experimental-observations-that-seem-to-suggest-the-absence-of-a-CP-violating-term-
in- the- strong- sector- of- the- SM- which- is- nonetheless- perfectly- consistent- with- its-
symmetries.- The-paradigmatic-axion-solution-relies-on-an-anomalous-(i.e. broken-
at-the-quantum-level)-global-U (1)-symmetry-which-is-spontaneously-broken.- Since-
the-symmetry-is-anomalous,- the-latter- resolves- with- the- appearance- of-a- pseudo-
Nambu-Goldstone- boson- which- needs- not- be- massless,- the- axion,- leading- to- the-
dynamical- vanishing- of-the- CPV-term.- While- the- original- axion-is- disfavored- by-
present-data,-there-are-other-popular-constructions-which-remain-viable-such-as-the-
DFSZ-[178,-179]-and-KSVZ-[180,-181]-models.- The-requirement-that-they-solve-the-
strong-CP-problem-imposes-stringent-constraints-on-their-couplings-to-SM-particles.-
ALPs-on-the-other-hand-need-not-abide-by-this-requirement.- They-are-ubiqui-
tous-in-many-well-motivated-BSM-extensions,-arising-as-a-result-of-the-spontaneous-
breaking-of-one-or-several-global-U (1)-symmetries.- If-not-exact-or-broken-by-non-
perturbative-effects,-the-resulting- ALPs-can-have-small-masses-naturally-below-the-
EW-or-even-the-QCD-scale,-making-them-good-DM-candidates-as-well.- As-Nambu-
Goldstone-bosons,-their-signature-characteristic-is-that-they-can-only-couple-deriva-
tively-due-to-the-underlying-shift-symmetry- (which-is- only- softly- broken- by-mass-
dependent-terms).- Their-interaction-with-the-rest-of-the-SM-fields-is-most-generally-
implemented-in-terms-of-an-effective-Lagrangian,-for-which-there-exist-two-distinct-
phenomenologically-relevant-possibilities-[182,-183]:- a- SU(2), x U(1)y-symmetric-
expansion-in-terms-of-operators-invariant-under-the-SM-gauge-group-and-ordered-by-
their-mass-dimension-(referred-to-as-SMEFT-when-only-SM-fields-are-considered),-or-
a-U(1)em-symmetric-expansion-which-does-not-assume-the-Higgs-boson-necessarily-
belongs-to-an-EW-doublet-at-the-level-of-the-effective-Lagrangian-(similarly-referred-
to-as-Higgs-EFT-or-HEFT).-With-the-key-distinction-between-them-being-whether-
the-spontaneous-breaking-of-the-EW-symmetry-is- “linearly” -or- “non-linearly” -real-
ized-respectively.- While-the-second-expansion-is- more-general-and- covers-a- wider-
spectra-of-possible-new- physics- phenomena- (it- also- contains-the-first),-it-needs- to-
deal-with-the-phenomenological-disadvantage-of-having-a-significantly-largernumber-
of-degrees-of-freedom.-
Crucially,-both-realizations-feature-scenarios-where-light-ALPs-interact-with-the-
SM-Higgs,-for-which-exotic-Higgs-decays-represent-a-key-experimental-signature.- In-
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what-follows,~we-will-focus-on-the-Higgs-h — Za decay-relevant-to-our-search,-into-
a-SM-Z boson-and-an- ALP-a.- We-can-parametrize-the-partial-decay-width-of-this-
decay-as-

m myg m

T'(h — Za) :16%’}3 2 N2 (ﬂi mi) ( (3.2)
with- f, the-ALP-decay-constant, \(z,y)-= (1*— P y2)2 — 42%y? and-cqzp, an-
effective-tri-linear-coupling-between-the- ALP-and-the-SM-Higgs-and-Z boson-fields.-
In-the-non-linear-expansion,- the-leading- contribution- comes- from-dimension-5-op-
erators-and-this-effective-coupling-can-be-shown-to-be-a-particular-combination-of-
their-Wilson-coefficients.- In-contrast,-the-dimension-5-contribution-vanishes-in-the-
linear-expansion,-where-the-leading-contribution-comes-from-dimension-7-operators-
and-is-thus-suppressed-by-two-extra-powers-of-the-axion-scale.- Lastly,-both-expan-
sions-can-also-include-an-additional-contribution-coming-from-fermion-loop-graphs-
at-dimension-5.- The-latter-is-dominated-by-the-top-contribution,-as-both-the-Higgs-

and-the- ALP-couple-to-fermions-proportionally-to-their-masses.

If-a also-couples-to-some-hidden-sector-particle(s)-(see-e.g. [184,-185]),-its-dom-
inant-decay-mode(s)-may-be-into-the-dark-sector,- thus-invisible-at-colliders.- This-
encompasses-the-intriguing-possibility-that-the-ALP-may-be-a-mediator-between-the-
SM-and-the-DM-candidate-[184].- Alternatively,the-ALP-may-be-long-lived-and-leave-
the-LHC-detectors-without-decaying,-due-to-its-suppressed-couplings-to-photons-(i.e.
a-photo-phobic-ALP-[186])-and /or-leptons-(in-this-case,-even-if-a-coupling-to-gluons-
exists, the- ALP-will-be-invisible-for-masses-below-the-last-available-hadronic-decay-
threshold,-m, < 3m, [187]).- Higgs-decays-h — Za,-a — J can-then-probe-such-
ALP-scenarios.-

To-translate-the-model-independent- LHC-and- ILC- projected-sensitivities-from-
the-previous-Sections-into-a-probe-of-the-parameter-space-of- ALPs -we-specifically-
consider,-together-with-the-coupling-between-the- ALP-and-the-SM-Higgs,-an- ALP-
coupling-to-a-hidden-fermion-y,-given-by-y, x7*v°x Oua/ fo as-well-as-an-ALP-cou-
pling-to-photons-cey~/ fo a F* F, w (we-do-not-include-an-ALP-coupling-to-gluons-or-
SM-fermions-for-simplicity).- y,, does-not-have-a-preferred-value,- while-the-expec-
tation-for-the-bosonic- Wilson-coefficient-is-cqyy ~ apm [188]- (the-electromagnetic-
coupling-constant).- We-then-set-cq,y =" apMm(Q) (@ being-the-energy-scale-of-the-
process-considered),~and-y, =-1,-c,zn ="1,,m, = 0.45m, (to-allow-for-the-invisible-
ALP-decay-a — xX), and-show-in-Figure-3.4-the- LHC-projected-2¢ sensitivity-on-
BR(h — Za)xBR(a-— xX)-inthe(mg, f,)plane.- We-also-depict-the-Higgs neutrino
floor,-within-reach-of-the-/s =-250-GeV-ILC.-Figure-3.4-also-shows,-under-the-as-
sumption-that-x is-the-DM-particle, the-(m,, f,)relation-yielding-(for-the-choice-of-
parameters-described-above)-the-observed-DM-relic-abundance-Qpyh? = 0.12-[189]-
generated-via-thermal-freeze-out-in-the-early-Universe-(taken-from-[184]),-as-well-as-
the-existing-and-projected-constraints-on-this- ALP-scenario-from-searches-at- LEP,-
LHC-and-flavor-factories-(Babar, Belle-1I),-and-astrophysics-(supernova-1987A) .-

!See Refs. [182, 183] for more details on the EFT contributions to this decay.
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Figure 3.4: Present-(solid)-and-projected-(dashed)-constraints-on-the-(mg, f,)-plane-
for-an-ALP-with-coupling-to-photons,-a-hidden-(DM)-fermion-x and-the-SM-Higgs-(via-
a-cqzp coupling),-see-text-for-details.-

From-[184],-we-obtain-the-95%-C.L.-LEP-limits-from-mono-photon-searches-[190,-
191],- which- constrain-an- ALP- produced- via-its- coupling- to- photons-and-decaying-
invisibly,-as-well-as-the-90%- C.L.-limits- from-eTe™ — v +-F (with- F' the-missing-
energy-of-the-event )-and-rare-upsilon-decays-into-y +-F from-Babar-[192,-193]- (see-
also-[194])-and-the-projected-90%-C.L.-sensitivity-of-Belle-II-in-the-y + final-state.-
Also-shown-in-Figure-3.4-are-the-current-95%- C.L.-limits-from-heavy-ion- (Pb-Pb)-
collisions-at-the- LHC,-from- ALP-searches-in-light-by-light-scattering- (as-proposed-
in-[195])-performed-by-ATLAS-[196]-and-CMS-[197]-(see-also-[198]).- We-also-include-
a- projection- drawn- from- rescaling- the- current- ATLAS- expected- sensitivity- to- an-
(optimistic)- integrated- luminosity- of- 30-nb~!.- Finally,- we- show- the- bound- from-
the-energy-loss-of-supernova-1987A- from- ALP-emission,-as-taken-from-[184].- The-
supernova- 1987A- limit-is- stronger- than- usually- quoted- for- an- ALP- coupling- only-
to-photons-since-the-invisible-decay-of-the- ALP-allows-its-corresponding-energy-to-
escape- the- supernova- core- even- for- parameter- regions- with- a- sizable- coupling- to-
photons-(contrary-to-the-usual-case,-where-a-large-enough-coupling-to-photons-will-
result-in-the- ALP-being-trapped-in-the-core-[199]).-

We-note-that-the-existence-of-the-invisible-decay-mode-of-the- ALP-leads-(under-
the-assumptions-discussed-above)-to-a-strongly-suppressed- ALP-branching-fraction-
to-two-photons,-BR(a — y7)-~ 3-x 10~%.- Limits-from- ALP-searches-in-visible-final-
states,-like-tri-photon-searches-at-LEP-1-and- LEP-2-via-the-process-eTe™ — ~* —

43-



3. SEARCHING FOR EXOTIC SEMI-DARK HIGGS DECAYS

ya, a — vy (as-studied-in-[187,-200]) -and-searches-for-Z — ~~y decays' at-LEP-1-
have-to-be-rescaled-by-BR(a — ~7)-(assumed-to-be-100%-in-[187,-200]),-and-are-too-
weak-to-appear-in- Figure-3.4.- Similarly,- the-dominant-invisible-decay-of-the- ALP-
significantly- weakens-the-limits-from-beam-dump-experiments-as-compared-to-the-
case-of-visible- ALP-scenarios- (see-e.g. Ref.{201])-roughly-by-a-factor-BR(a — ~7v)-
~ 107%.- A-naive-re-scaling-of-beam-dump-limits-results-in-no-meaningful-constraints-
(beyond-what-is-currently-excluded-by-other-experiments/observations)-from-these,-
and-we-choose-not-to-include-them-in- Figure-3.4.- A-precise-re-derivation-of-these-
limits-requires-to-additionally-take-into-account-the-geometry-of-each-experiment-to-
obtain-the-expected-number-of-a — v events-in-the-detector-decay-volume,-which-
is-beyond-the-scope-of-this-work.-

Finally,-we-also-show-in-Figure-3.5-the-corresponding-limits-on-the-(m,, f,)-plane-
if-a-hypercharge-coupling-c,pg/ f. a B** B w (ratherthan-a-coupling-only-to-photons)-
is-assumed.- The-latter-introduces-a-coupling-of-the-ALP-to-Z Z and-Z~ (besides-the-
already-considered-coupling-to-photons),-givenrespectively-by-c,zz/ fo a ZH Z L and-
CaZ~ /faa FHvz Ly With-cazz =-sin0yy cupp and-c, 7y =—2sinty costy copp (With-
O the-weak-mixing-angle).- Fixing-c,pp = agm/cos?fy tomatch-the-ALP-coupling-
to-photons-cq,, we-assumed-before, the-abovelimits-donot-change,yet-from-cqz, # 0-
there-is-another-constraint- from- LEP-searches-for-rare-Z — v 4-a decays,-with-a
invisible.- The-L3-collaboration-at-LEP-has-set-a-limit-BR(Z — y+a)-< 1.1x107% at-
90%-C.L.-[202],~shown-in-Figure-3.5-(in-purple)-together-with-the-already-considered-
constraints-on-our-scenario-(Figure-3.4).- Other-potential-bounds-from-rare-Z decays-
at- LEP-and- LHC,- e.g. from-Z — 37 or-Z — ~¢{ (see- [183]),- do- not-lead- to-
meaningful-constraints-in-Figure-3.5.-

Lastly,- we- comment- on- the- possibility- of- probing- the- ALP-a via-exotic- Higgs-
decays-h — Za with-a — 7, as-discussed-in-[183].- We-note-that, while-the-corre-
sponding-final-state-allows-to- consider- Higgs- production-in- gluon-fusion- (resulting-
in-an-0(50)-enhancement-of-the-Higgs-production-cross-section-w.r.t.- our-scenario,-
which-must-rely-on-Higgs-associated-production ), this-is-counteracted-by-the-large-
suppression-from-BR(a — 7).~ A-preliminary-study-of-the-LHC-sensitivity-to-ALPs-
in-exotic- Higgs-decays-via-pp — h — Za,Z — {{-a — ~ including-the-leading-
SM-backgrounds-has-been-performed-in-[203],-indicating-that-such-decay-channel-is-
much-less-sensitive-than-the-one-discussed-in-this-work- (given-our-assumptions-for-
the- ALP-branching-fractions).-

3.2 2HDM+a

Two-Higgs-doublet-models-extended-by-a-singlet-pseudoscalar-mediator-(2HDM+a)-
and-a-fermionic-singlet-DM-particle-constitute-the-minimal-renormalizable-realiza-
tion-of-a-pseudoscalar-portal-to-DM-[160-162,-204,-205].- A-pseudoscalar-mediator-
would-nicely-explain-the-absence-of-a-signal-in-current-DM-direct-detection-exper-

!For light ALPs, with masses < 10 GeV, the two photons from the ALP decay would appear
merged in the detector, and eTe™ — v searches would be sensitive to the presence of the ALP
[200].

44-



3 Constraints on Dark Matter Scenarios

100 ;
------- DM relic density LHC heavy-ion !
--—- Higgs v floor (current ATLAS/CMS)
1
10_1 E \|| : "//
— | -
LEP (ete” —» v+ £) "~~~ P

— LHC heé?&?i;ﬁ’i
- 30 nb-1)

| -2 ( ¢
> 10 Babar (T — v + £) }bp(e\)

I 1 i e L |y
g g ,II/ ............. El ')‘8)
~ 1073, = o |
w3 % Be\\e—\\ oY - i

] h-Za(LHC300f>!)- This work ___--
1074 h - Za (HL-LHC 3 ab~") - This work___--
J
1075 : ;
107" 100 10! 102
m, (GeV)

Figure 3.5: Present-(solid)-and-projected-(dashed)-constraints-on-the-(mg, f,)-plane-
for-an- ALP-with-coupling-to-the-hypercharge-field-strength,-a-hidden- (DM)-fermion-x
and-the-SM-Higgs-(via-a-c,zp coupling),-see-text-for-details.-

iments-[206],-yielding-a-spin-independent-DM-nucleon-scattering-cross-section-only-
at-the-loop-level-[207,-208].- Pseudoscalar-portal-to-DM-scenarios-(and-in-particular-
the-2HDM+a)-have-also-been-proposed-to-explain-[204,-209-211]-the-y-ray-excess-
[212-214]-in-the- Fermi-L AT- observations- of- the- Milky- Way- Galactic- Center-[215].-
Furthermore,-the-2HDM+-a has-become-a-leading-benchmark-scenario-for-the-DM-
interpretation- of- LHC-searches- [216].- The-base- tree-level- 2HDM- scalar- potential-
reads-[48,-217]-

A A
Vanion =453 [Hi[* 4433 | Haf* — (i3 H{ Hy + H.c. <P; [+ | Haf*

. 2 2, o 2N T 2
+)\3|H1| |H2| +-M4 H1H2 —|—§/ A5 1H2 + H.c. (33)

where-both-CP-invariance-and-a-Zz-symmetry-between-the-doublets-(under-which-
Hy — H; and- Hy — —Hj)- have- been- assumed,- while- allowing- for- the- former-
to-be-softly-broken-by-the- us-dependent- term- (see- e.g. Ref.{218]).- Both-choices-
are-motivated-by-the-phenomenology-of-these-realizations:- CP-invariance-naturally-
suppress-electric-dipole-moments-in-accordance-with-experiments,-whereas-the-Zo-
symmetry- is- typically- extended- to- the- Yukawa- sector- so- that- each- fermion- type-
couples-exclusively-to-one-of-the-doublets-H 2 and-not-the-other,-avoiding-tree-level-
FCNCs-(see-Chapter-4-for-an-extended-discussion-on-these-topics).- Conventionally,-
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and-without-the-loss-of-generality,-up-type-quarks-are-always-coupled-to- Hy - leading-
to- four- different- possibilities- ( Types)- to- couple- down-type- quarks- and- leptons- to-
each- of-the-doublets:- Type-I-2HDM- couple-both- of-them-to- Ho as-well,- whereas-
Type-IT-assign-them-to- H; instead,-lastly,-the-lepton-specific and-flipped types-swap-
the-leptons-in-each-case-respectively-(c.f. Table-4.1-in-Chapter-4).-
The-EW-symmetry-isspontaneously-broken-bythe-VEVs-ofthe-doublets-( H j H;) =

v2 /2,-which-can-be-expanded-around-them-as-H; = (¢;, (vi+h;+n;)/v2)T (i = 1,2).
Customarily,-it-is-also-useful-to-define-v = I —H}% ~ 246-GeV-and-tan{3 = vg/v;.
After- EWSB, - the- scalar- spectrum- of- the- 2HDM- contains- a- charged-scalar- H*, a-
neutral- CP-odd-scalar- Ay and-two-neutral- CP-even-scalars-h and- H.- These-mass-

eigenstates-result-from-two-different-rotations-of-the-fields-in-the-doublets-by-mixing-
angles-a and-f3:-

H* =-cos3 d)g: — sin8 (bit, Ag =-cosBny —sinfn,

h =-cosa hy — sina hq, H =—sinahy — cosa hy.

(3.4)-

The-125-GeV-Higgs-boson-discovered-at-the- LHC-is-typically-identified-with-h,-
which-becomes-SM-like-in-the-alignment limit f — a =-1/2-(see-e.g. Refs.{48,-218]).-
The-2HDM+a builds-on-this-picture-to-provide-the-most-economical-realization-of-
a-pseudoscalar-portal-between-the- SM-and- a- fermionic- DM-candidate,- by- mixing-
an-additional-CP-odd-mediator-ag with-the-CP-odd-boson-Aq that-would-ordinarily-
result-from-the-two-doublets.- This-can-be-achieved-if-the-new-field-is-implemented-
by-an-expansion-of-the-scalar-potential-in-Eq.13.3)-of-the-form-[162]-

2
A .
Va =50ad + 20 ad +ao (inH] Hy + Hee) +ad (Yo [ 4202 | H) . (3.5)

The-interaction-between-the-real-pseudoscalar-mediator-ag and-a-Dirac-fermion-
DM-candidate-y with-mass-m,, (both-singlets-under-the-SM-gauge-group)-can-then-
be-implemented-as-

Ly =A@ —my) f = yx a0 Xir°x- (3.6)-

The- k-dependent-term-in-(3.5)-mixes-ay and- Ay, bridging-the-dark-and-visible-
sectors- and- leading- to- the- appearance- of- two- different- mass- eigenstates-a and- A
(with-mg, < m4)-parametrized-in-terms-of-the-mixing-angle-6 as-

a =-cosfag — sind Ay, A =-cost Ay +-sind ag. (3.7)-

For-alight-a (m, < 30-GeV),the-main-direct-experimental-probes-of-this-scenario-
are-the-exotic- Higgs-decays-h — Za and-h — aa.- Given-that-a naturally-decays-
to- DM- particles- with-a- branching- fraction-BR(a — xx)-~ 1-unless-the-relevant-

coupling- is- greatly- suppressed-y, < 1,- the-first-leads- to- the- semi-invisible- Higgs-
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decay- topology- targeted- in- this- work,- while- the- former- contributes- to- the- Higgs
invisible-width.- The-tree-level-hZa coupling-gy, z, =-sinf cos{( — a)mz /v (pz — ph )
[160,-162]-results-in-a-partial-width-

16mv2 — mp my,

3
T(h — Za) =—h g2 N3/ (mzmz>< (3.8)

where-syp = sinf,-and-csg_, = cos(f — a)-parametrizes-the-deviation-away-from-
the-alignment-limit.- Whereas-the-partial-width-for-the-fully-invisible-topology-is-

02
I'(h — aa) Rl r— Ghaa\/ 1— 4m2/m?2, (3.9)

with-the-Higgs-pseudoscalar-coupling- gy, given-by-

>\a1 +’t2)\a2 /\2—)\ 1)t
Ghaa = ()‘756—04 - )\86,3—01)’83 +2- H%Sﬁ—a - (al_‘_,t%)ﬁcﬁ—a 3,
(3.10)-

where-\7 g have-been-defined-as-

Aqv? = 2amg +2(mip — M?)—mj, + (mfy — mp)[1+-55-a(55-a — cg—alts — t51))],
Asv? = (M? —m¥y)(ts — tgl)’— ch—a(miy —mi)(sp—a — co—alts — tgl)). (3.11)

For-|cos(8 — a)| <« 1,-asneeded-to-satisfy-the-present-LHC-Higgs-signal-strength-
measurements-[88,-219],-we-generally-expect T'(h — aa)-> I'(h — Za), yet-in-certain-
(albeit-small)regions-of the-2HDM+a parameter-space,the-h — Za semi-dark-Higgs-
decay- can- provide-stronger-sensitivity-than-the-h — aa invisible- Higgs-decay.- In-
particular,- we- will- consider- two- benchmarks:- for-the- first,- we- will- restrict- to- the-
region- of-the- parameter- space- where-the-invisible- partial- widh- vanishes,- by- fixing-
Aal ="Aq2 and-setting-both-to-the-value-that-yields-gpo, =0;-for-the-second, we-will-
fix-Ag1 = Ag2 =0-instead,such-that-T'(h — aa) # 0.- Both-scenarios-involve-a-Type-I-
2HDM- (see-Ref.{48])-with-cg_o = 0.2,-tg = tanf =6, M = 2/spcs =600-GeV -
mpy =mg+ =my, = 700-GeV.-We-further-take-m, = 0.45m\ and-fix-y, to-yield-
the-observed-DM-relic-density-via-thermal-freeze-out- (see-e.g. Refs.{161,-211]-and-
discussion-below),- and-show-in-Figures-3.6-and- 3.7- the- projected- LHC- sensitivity-
(with-300-fb~! and-at- HL-LHC- with- 3-ab™1!)- of- the- semi-dark- Higgs- decay-h —
Z(0) +Fr in-the- (mg, sin- )- plane- for- both- benchmarks- respectively.- We- also-
depict-in-Figure-3.7-the-constraint-on-the-Higgs-invisible-width-from-h — aa decays,
which-at-present-is-BR(h — F7)-< 0.11-at-95%-C.L.-[220]-under-the-assumption-of-
SM-Higgs-production,-and-is-expected-to-be-BR(h — Fr)-< 0.04-at-95%-C.L.-[221]-
at-the-HL-LHC.-

Furthermore,-while-our-2HDM- (¢g_q, t3)-benchmark-satisfies-both-present-and-
HL-LHC-projected-limits- from- Higgs-signal-strengths-on-2HDM- parameters- [222],-
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Figure 3.6: Present-(solid,-gray)-and-projected-(dashed)-constraints-on-the-(m,, sinf)-

plane-for-the-first benchmark 2HDM+a scenario-analyzed-in-this-work-(with-I'(h —
aa)-=-0), see-text-for-details.-

the-2HDM+a is-further-constrained-by-additional-contributions-to-the-Higgs-total-
width-I'(h = Za), I'(h — aa) # 0.- For-cg_o = 0.2,-tg =-6,-we-have-performed-a-
global-x? fit-to-present-Higgs-signal-strength-measurements-via-the- HIGGSSIGNALS
[223,-224]-numerical-code-interfaced-to-SCANNERS [225],-yielding-a-95%-C.L.-upper-
bound-BR(h — Za)~+BR(h — aa)- < 0.042,- which-is-also- shown-in- Figures- 3.6-
and-3.7.- While-this-bound-will-certainly-improve-at-the-HL-LHC,-the-corresponding-
sensitivity- improvement-in-sin will-only- be- mild-since-T'(h — Za)- o< sin?6 and-
I'(h — aa) < sin*@ (for-our- A,y = A2 = 0-benchmark),- and- we- expect- direct-
searches- for-a in-exotic- Higgs- decays- to- remain- competitive- with-indirect- probes-
through-Higgs-signal-strength-measurements.-

Other-searches-for-the-state-a do-not-provide-meaningful-sensitivity-in-the-sce-
nario-we-consider:- searches-for-h — aa in-visible-final-states-(see-[147]-for-a-review)-
like-bbr7 [143]-and-7777 [139]-are-found-to-be-O(10?)-less-sensitive-than-probes-of-the-
Higgs-invisible-width,-and-fall-short-of-providing-any-limit-on-BR(h — aa)-by-a-fac-
tor-~ 50— 100,-with-searches-in-other-final-states-(e.g. bbuu [141],-77up [137,-138])-
yielding- even- smaller- sensitivity.- Such- visible-decays- of- a are-then- generally-not-
relevant-in-the-2HDM+a with-m, > 2-m,,-since-matching-the-observed- DM-relic-
density-requires-y, ~ 1-(see-below),-leading-to-BR(a — xx)-> 0.99-in-general.- We-
also-find-that-current- LHC-mono-jet-searches-[226]-fall-short-of-probing-any-region-
of-the-(mg, sin-0)-plane-of Figures-3.6-and-3.7-by-a-factor-~ 1/ (3*15% ).~ Lastly,-we-note
that,-while-the-hZa coupling-could-be-constrained-via-Higgs-boson-production-in-as-
sociation-with-missing-energy-at-LEP2-through-the-ete™ — Z* — ha process, these-
searches-do-not-yield-meaningful-constraints-on-the-2HDM-+a parameter-space:- the-
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Figure 3.7: Present-(solid,-gray)-and-projected-(dashed)-constraints-on-the-(m,, sinf)-
planefor-the-second benchmark 2HDM+a scenario-analyzed-in-this-work-(with-T'(h —
aa)#-0), see-text-for-details.-

analyses-for-h + vv signatures-by-the-OPAL-[227],-L3-[228]-and-ALEPH-[229,-230]-
experiments- at- LEP-impose- a- constraint- on- the- missing- mass- M;ss of the-event-
(equal-to-m, in-our-scenario)-which-is-not-fulfilled-by-our-signal-(e.g. the-OPAL-
analysis-[227]-requires-50-GeV-< Mpiss < 130-GeV,-and-it-is-thus-not-sensitive-to-
ma < 30-GeV).-The-corresponding-search-by-the- DELPHI-experiment-[231],-while-
not-imposing-such-a-cut-on- M ,iss,-does-not-consider-Higgs-boson-masses-above-120-
GeV.-

Moreover,- we- also- consider- possible- constraints- on- the-spin-0- states- from- the-
2HDM,- H* - H and- A (doublet-like).- Electroweak- precision-observables- (EWPO)-
constrain-(dominantly-via-the-oblique-T-parameter)-the-mass-splittings-among-the-
2HDM-scalars,-since-the-2HDM-scalar-potential-of-the-2HDM-is-custodially-invariant-
for-my, =mpy+ or-mpy =mpg+.- The-latter-is-chosen-for-our-benchmark-scenario,-
directly-satisfying- EWPO.- Potential- constraints- from- flavor- physics,- in- particular-
from- B-meson-decays:- B — X¢vy decays-(which-constrain-m g+ [232,-233])-and-from-
Bs — ptp~ (which- constrain- the- presence- of- a-light-a coupling-to- SM- fermions-
[234,- 235]),- are- also- directly- satisfied- for- a- Type-I- 2HDM- with- moderately- high-
tg (we-have-chosen-in-particular-¢g =-6-in-our- benchmark- analysis).- Finally,  we-
also-discuss-direct-searches-for-the-2HDM-states-as-a-probe-of-our-scenario:- away-
from-the- 2HDM- alignment-limit,- H — WTW ™~ and-H — ZZ decays-could-yield-
sensitivity- if- the- mass- scale- of- the- 2HDM- scalars- is- not- very- high.- At-the-same-
time,- H — Za decays-would-lead-to-resonant-mono-Z signatures-[160,-162],-which-
have-been-recently-been-searched-for-by-both-ATLAS-and-CMS-[170,-171]-(ATLAS-
also-searches-for-this-final-state-in-H — ZZ — ({viv-decays-[236]).- However,-in-all-
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these- cases,” we-find- that- for- \55,(17551 — c3_q| < 1-(as-our-scenario-features)-the
production-of- H at-the-LHC-is-suppressed,-and-no-meaningful-limit-is-obtained.-

To- conclude,- we- discuss- the- need- to- reproduce- the- observed- DM-relic-density-
Qpmh? = 0.12-[189]-within-the-2HDM-+a,-via-DM-thermal-freeze-out-in-the-early-
Universe.- For-m, 2 2-GeV,-the-DM-annihilation- cross-section-into- SM- particles-
(via-xX-— gsmgsm, with-gsy here-being-generic-SM-particles)-in-the-non-relativistic-
limit-is-

-1
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with-T', the-decay-width-of-a.- The-sum-over-SM-fermion- f annihilation-channels-
involves-quarks-(N¢ =-3)-and-charged-leptons-(No =-1).- Reproducing-the-observed-
DM- relic- density- via- thermal- freeze-out- requires- (ov) =~ 3-x 10726cm3/s,- which-
generically-leads- to- O(1)- values- for- y..- For-m, < 2-GeV-the- DM- annihilation-
into- SM- fermions- (b, c-quarks- and/or- 7-leptons,- depending- on- m, )- ceases- to- be-
the-dominant-DM-annihilation-process,-and-instead-annihilation-into-QCD-hadrons-
(via-the- 1-loop- coupling-of-a to-gluons)-dominates.- Due-to-its-complexity,- we-do-
not-explore-that-region-of-the-2HDM+a parameter-space,- which-may-also-involve-
Yy > 1,-in-this-thesis.-

3.3 A Comment on Dark Photons

Dark-photons-(see-e.g. Ref.{237]-for-a-review )-embody-the-idea-of-bridging-SM-and-
dark-sector- through- the- vector- portal,- with- the- interaction- between- them- arising-
as-a-result-of-the-kinetic-mixing-between-a-pair-of-dark-and-visible- Abelian- gauge-
bosons.- The-former-is-typically-considered-to-be-the-SM-photon,-the-gauge-boson-of-
the-electromagnetic-interaction-U (1)em,-or,-above-the-EWSB-scale,-the-hypercharge-
boson-of-the-U(1)y group.- While-the-first-can-be-identified-as-the-gauge-boson-of-a-
dark-U(1)p symmetry,-and-can-also-interact-with-other-particles-with-dark-charges-
within-the-dark-sector.- The-Lagrangian-of-a-dark-photon-interacting-with-the-SM-
via-hypercharge-kinetic-mixing-reads-[134,-238]-

1

1,
LD —iBWBW 1

4 :XWXW +-

nv .
mBMVX . (3.13)
The-dark-photon- Zp mixes-with-the-SM-Z boson,-so-that,-after-the-diagonal-
ization-of-the-kinetic-terms-in-Eq.1(3.13)-and-rotation-to-the-mass-basis,-there-is-an-
interaction-term-of-the-form-ox € hZ, Z", .- For-a-light-Z p ,-the-former-givesrise-to-the-
exotic-Higgs-decay-h — Z Zp.- If-coupled-to-the-dark-sector-and-invisibly-decaying,-
these-dark-photons-would-then-constitute-another-new-physics-scenario-that-semi-
dark-Higgs-decays-could-be-sensitive-to.- However,-current-95%-C.L.-bounds-on-the-
kinetic-mixing-parameter-e from-EW-precision-observables-set-¢ < 0.03-for-dark-pho-
ton-masses-mz, < 30-GeV-[239].- The-corresponding-h — ZZp branching-fraction-
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is-then-smaller-than-< 1073 (see-e.g. Ref.{134])-and-thus,-below-the- Higgs neutrino
floor.-

Departing-the- canonical- picture,- other-possibilities- have-been- discussed-in-the-
literature-involving-extra-sources-of-Z — Zp mass-mixing-[148,-240-243]-beyond-the-
kinetic-term-considered-in-Eq.{3.13).- This-mixing-could,-for-instance,-originate-from-
extended-scalar-sectors-(e.g. a-2HDM),-loop-effects-or-different-mechanisms-of-dy-
namical-symmetry-breaking.- These-sources-could-provide-an-additional-contribution-
decorrelated-from-e to-the-h — ZZp decay, potentially-enhancing-it-with-respect-to-
the-initial-expectation.- This-possibility-is-however-left-for-future-work.-

4 Conclusion

Semi-invisible-Higgs-decays-remain-largely-unexplored-both-theoretically-and-exper-
imentally- despite- constituting- a- rather- generic- prediction- of- many- well- motivated-
BSM- extensions,- specifically- those- seeking- to- provide- an- explanation- for- the- ob-
served-DM-abundance-in-the-form-of-dark-sectors.- In-this-Chapter-we-have-explored-
the-exotic- Higgs-decay-h — Z X ,-with- X an-invisible- BSM-particle-resulting-in-a-
semi-dark-final-state.- Such-exotic-Higgs-decays-may-occur-in-theories-of-ALPs,-dark-
photons-or-pseudoscalar-mediators-between-the-SM-and-dark-matter.- The-SM-pro-
cess-h — Zvv-represents-an-irreducible- “neutrino-floor”-background-to-these-new-
physics-searches,-but-also-provides-a-target-experimental-sensitivity-for-them.-
In-order-to-search-for-this- decay- we-have-targeted- Z H associated-production,-
leading-to-a-4¢ +-F (7) final-state-benefiting-from-both-a-clean-missing-energy-re-
construction- and- reduced- backgrounds.- We- implement- a- first- multivariate- neu-
ral- network- analysis- to- identify- the- Z boson- produced- by- the- Higgs- decay,- and-
a- second- to- discriminate- between- the- signal- and- the- relevant- SM- backgrounds.-
We-analyze-h — Z +-invisible searches-at-the- LHC- (both- at- present- and- future-
luminosities)- and- an- hypothetical-ILC,- and- derive- their- projected- sensitivities- to-
BR(h — ZX)xBR(X — FE(r)).- Present-luminosity-constraints-are- well- compet-
itive,- at-the-level- of- the- branching-ratio,- with- those- resulting- from- the- two- other-
semi-invisible-decays- currently- being-searched- for-at-the- LHC:-h — v +Fp [151—
155],-and-h — bb +F7 [156].- Whereas-the- HL-LHC- comes- close- to- being-able-to-
probe-the-Higgs neutrino floor (formyx =-1-GeV it-probes BR(h — ZX) x BR(X-—
F1) = 2.8 x BR(h-— Zvi)sy at-20).- The-ILC,-on-the-other-hand,-is-well-capable-
of-sweeping-the-entire-new-physics-parameter-space-of-semi-dark-Higgs-decays-down-
to-the-Higgs neutrino floor,-and-could-potentially-find-the-first-evidence-for-this-SM-
process.-
Finally,-we-have-translated-the-resulting-constraints-onto-the-parameter-space-of-
some-well-motivated- BSM-extensions.- While-direct-searches-for-this-decay-cannot-
compete-with-the-most-sensitive-probes-available-inthe-case-of-a-dark-photon-(at-least-
considering-its-simplest-realization-through-kinetic-mixing),-they-prove-competitive-
for-the-2HDM+-a,-where-there-is-a-strong-interplay-between-this-search,-Higgs-signal-
strengths-and-the-fully-invisible-decay.- This-is-also-particularly-true-for-the-case-of-
ALPs,-given-the-assumptions-discussed-in-the-previous-Section,-semi-dark-h — Za
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decays- could- probe- a- vast- region- of- otherwise- unexplored- parameter- space.- The-
latter-would-include-the-thermal-relic-line,-encompassing-the-tantalizing-possibility-
that-the- ALP-might-be-the-mediator-between-the-SM-and-the-dark-matter.-
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Higgs CP-Violating Portal:
Assisting Baryogenesis from the
Dark

1 Introduction

As- discussed- in- Chapter- 1,- while- the- SM- does- in- fact- present- all- the- necessary-
ingredients-to- fulfill-the-Sakharov-conditions,-and-as-such,-could-have-conceivably-
accommodated- the- generation- of- the- observed- baryon- asymmetry- of- the- Universe-
(BAU),-it-ultimately-fails-on-two-fronts.-

On-the-one-hand,-CP-conjugation-is-an-approximate-symmetry-of-the-SM,-only-
broken- as- a- consequence- of- the- mismatch- between- weak- and- mass- eigenstates- of-
three-families-of-quarks-and-leptons-(c.f. Chapter-1).- However,-the-presence-of-CP-
violation-in-the-early-Universe,together-with-baryon-number-violation-(which-occurs-
at-high-temperature-in-the-SM-via-sphaleron-processes-[30])-and-a-departure-from-
thermal-equilibrium,- is-required- to- generate- the- BAU-[29,-35,- 36,- 244,-245].- The-
amount-of- CP-violation- present-in-the- SM-is-well-known-to-be-insufficient-for-the-
generation-of-the- BAU-at-the- EW-scale-[31-34].- Nevertheless, new-sources-of- CP-
violation-beyond-the-SM-are-tightly-constrained-by-experimental-searches-of-electric-
dipole- moments- (EDM)- of- the- electron- [246],- neutron- [247]- and- atomic- elements-
like-mercury-[248].- These-constraints-pose-significant-challenges-to-successful-(EW)-
baryogenesis-scenarios.-

A-possible-way-to-alleviate- EDM- constraints-is-to-seclude-the- CP-violation,-so-
that-it-is- restricted- to- interactions- between- the- visible- and- dark- sectors.- Conse-
quently,-new-contributions-to- EDM-necessarily-involve-hidden-sector-particles-and-
are-thus-suppressed-with-respect-to-conventional-scenarios.- In-this-case,-some-dy-
namics-isneeded-to-enhance-the-CP-violation-in-the-early-Universe-such-that-baryo-
genesis-is-successful.- This-could-be-achieved-by-a-period-of-transient- CP-breaking-
in-the- early- Universe,- which- would- act- as- a- catalyzer- for- baryogenesis.- Then,-at-
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present-times,-the- EDM-limits-would-naturally-be-avoided.!

On-the-other-hand,-such-a-non-minimal- Higgs-sector-could,- at-the-same-time,-
yield-a-strongly-first-order- EW-phase-transition-(see-e.g. [255-260]), thus-address-
ing-the-second-shortcoming-standing-between-the-SM-and-successful-baryogenesis:-
a-second-order- EW-transition-unable-to-provide-the-necessary-departure-from-ther-
mal-equilibrium.- In-the-case-of-the-first,- this-departure-would-be-supplied- by-the-
nucleation-of- EW-vacuum-bubbles-expanding-in-the-unbroken-phase.- Together-with-
a- period- of- transient- CPV- enhancement,- they- hint- at- the- tantalizing- possibility-
that-the-Universe-might-have-undergone-a-two-step-phase-transition:- by-providing-
an- additional-source- of- spontaneous- CPV - the- first- transition- could- have-enabled-
successful-EW-baryogenesis-during-the-second.-

Nevertheless,-it-is-important-to-noterealizations-which-rely-on-spontaneous-CPV-
to-source-EW-baryogenesis-often-share-a-common-pitfall.- Generally-a-Zo-symmetric-
potential-(e.g. invariant-under-a-transformation-S — —S,-where-S is-the-field-that-
will-provide-this-breaking)-is-desirable,-as-it-avoids- phenomenologically-dangerous-
features- such- as- mixing- between- the- singlet- and- Higgs- states- at- the- EW- phase.-
Typically-however,-the-net-baryon-number-asymmetry-is-linearly-tied-to-the-VEV-of-
this-field-(e.g. a-higher-dimensional-operator-linear-on-S which-provides-a-complex-
mass- for- a- SM- fermion- [249,- 252]) - so- that- the- degeneracy- between- the- two- Zo-
symmetric-vacua-leads-to-the-creation-of-cosmic-domains-where-positive-and-negative-
numbers-of-baryons-are-created,-ultimately-washing-the-asymmetry-on-large-scales.-
One-possiblesolution-is-to-considerrealizations-wherethe-spontaneous-CPV-can-only-
happen-through-quadratic-terms-S? instead.- For-renormalizable-theories, these-can-
only-be-a-part-of-the-scalar-potential,-so-that-we-are-naturally-led-to-consider-a-Zo
symmetry-for-the-latter.- Successful-baryogenesis-then-requires-that-S be-protected-
by-it,-i.e. it-naturally-leads-to-a-dark-matter-candidate.- In-this-way, these-scenarios-
could-potentially-address-both,-the-observed-DM-abundance-and-the-BAU.-

In-this- Chapter,- we- show- that-this-setup-can-be-accommodated- by-a-suitable-
extension-of-the-SM-Higgs-sector-(see-also-[261,-262]-for-related-scenarios), specifi-
cally,~we-consider-a-2HDM-augmented-by-a-real-singlet-scalar-field.- The-singlet-has-
CP-violating-interactions-with-the-SM,-and-is-protected-by-a-Zs symmetry,-so-that-
it-also-constitutes-a-viable-DM-candidate.- We-explore-the-regions-of-the-parameter-
space-where-an-early-Universe-period-of-CPV-enhancement-occurs-and-the-required-
thermal-history-takes-place.- We-also-discuss-ongoing-work-studying-the-rich-phe-
nomenology-of-this-scenario,-including-its-testability-through-a-combination-of- LHC-
searches-and-dark-matter-constraints.-

2 The Model: 2HDM + S? with CP Violation

We-consider-a-2HDM-with-the-addition-of-a-real-singlet-scalar-field-S,-which-is-odd-
under-a-dark Zo-symmetry.- The-tree-level-scalar-potential-for-the-two-Higgs-doublets-
Hio and-S is:-

!See Refs. [249-254] for other weak-scale baryogenesis setups which avoid current EDM experi-
mental constraints via suppressed BSM contributions to EDM.
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A A
V(Hy, Hy, S) =11} [Hi[* +933 | Hof* = |uhy H]Hy + Hee| +-5 [Hi[* + 5 | Haf*
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The- u2, term- above- yields- a- soft-breaking- of- the- 2HDM- Zy-symmetry- which-
forbids-tree-level FCNCs.- Note-however-that-the-last-term-in-Eq.{4.1), proportional-
to-Agy, also-induces-a- (hard)-breaking-of-the-2HDM-Zs-symmetry.- This-breaking-
is-nevertheless-tied-to-the-connection-between-the-dark-and-visible-sectors,- which-
inhibits-the-appearance-of-other-Zo-symmetry-breaking-terms-in-the-2HDM-scalar-
potential,-i.e. g |Hy |2 HITHQ + A7 |Hy |2 H}L Hsy+H.c.-at-tree-level.- This-is-guaranteed-
because-the-singlet-scalar-S does-not-acquire-a-VEV-and-the-dark-Zs-symmetry-is-
exact.- The-implications-of-this-breaking-will-be-further-discussed-in-Section-4.-

The- parameters- uf2,/ A5 and- Ag, in-Eq.{4.1)- can, in- general,- be- complex,- so
that-the-resulting-Lagrangian-would-no-longer-be-invariant-under- CP-conjugation.-
Nevertheless,-identifying-the-physical-CP-violating-(CPV)-phases-which-intervene-in-
observable-processes-further-requires-finding-invariant-combinations-of-these-param-
eters-under-a-phase-redefinition-of-the-doublets,~which-should-lead-to-no-observable-
consequence.- Under-a-rephasing-of-the-form- H; — e WiH j,-it-is-possible-to-rede-
fine-p3y — 027002 - N5 — e2U02=00) N5 \g — €H02701) \g -s0-that-the-form-of
the-scalar- potential-is-unchanged.- It-follows-that-there-are-only-two-independent-
rephasing-invariant-CPV-phases.- To-build-a-basis,-it-is-sufficient-to-pick-any-two-of-
them,-for-instance-

81 = Arg[Ai (1)’
= ArglAg ). (12)

Other-possible-combinations-can-be-expressed-in-terms-of-these-two-(e.g. d3 =
Arg[(As;)?ME]-can-be-written-as-d3 =-8; — 282).- If non-zero,-these-phases-signal-the-
presence-of- CP-violation.- Upon-EW-symmetry-breaking,- the- two- Higgs-doublets-
read-

1 éF Rt 3

il — (4.3)
V2 vy +-hy +im V2 vo +-ho +-i12

with-v; the- VEVs-of-the-neutral-components-of- the-two- Higgs- doublets- which-
are,"in-general,-complex-v; =-|v; % .- For-the-purpose-of-this-discussion,-it-is-possible-
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to-perform-a-SU(2)r, x U(1)y transformation-so-that-the-VEV-of- H; becomes-real-
v] =-v1.- While-that-of-H» remains,-in-general,-complex-vy =- vo|e® ~with-¢ =& — &

denoting- the- relative- phase- difference- between- them,- which- is- preserved- by- this-
transformation.- Under-the-same-rephasing-H; — e WiH j,ythe-VEVs-can-be-trivially-
redefined-as-v; — vj e~ to-absorb- this- transformation.- We- may- then- construct-
further- rephasing- invariants- involving- the- VEVs,- such- as- Arg[A: 2,01 v5].- These,-
however,- are- not- independent- of- those- in- Eq.{4.2),- but- related- to- them- by- the-
minimization- conditions- of- the-scalar- potential- [263].- In-particular,- for-any- given-
complex-values-of- ,u%Q and- A5 the-phase-difference-between-the-doublets-£ is-set-by-

Im- ,umelg 61)11)21111/ )\5€2Z§)< (4.4)

For-the-rest-of-this-work,-we-will-restrict-to-the-case-where-6; =-0-in-Eq.(4.2).-
This-choice-guarantees-no-non-vanishing-physical-CPV-phase-can-be-built-without-
sy, effectively- secluding- the- CP- violation- to- interactions- mediated- by- the- dark

sector.! In-the- EW- minimum,- given- by- \/4% +v5 =-v =-246- GeV,- the- 2HDM
minimization-conditions-on-the-real-parametefs-are-

V2 A 13 A5
t —_— 4.5
Ml M12 5T t%—l—l/ ) (4.5)
2 H12 _ v? Aat] + Aass (4.6)

S A R N T

with-t; = tan8 =-ve/v; and-A345 = A3 +-A4 +Re (A5).- Under-the-assumption-
of- CP-conservation-in-the-2HDM-scalar-sector,-the-physical-2HDM-states-are-two-
CP-even-neutral-scalars,-h and-Hy with-masses-mpg, > my, (we-will-identify-h with-
the-observed-125-GeV-Higgs-boson ), plus-a-neutral-CP-odd-scalar-Ay and-a-charged-
scalar- H* .- These- mass- eigenstates- are- related- to- the- fields- in- Eq.{(4.3)- by- two-
different-rotations-of-mixing-angles-« and-3:-

* —cosB oy —sinBof, Ag =—cosBny —sinfn, (4.7)

h =-cosa he — sinw hq, —=-—sino hy — cosa hy.

As-previously-noted,the-2HDM-Zy-symmetry-of-the-scalar-potential-in-Eq.{4.1)-
is- typically- extended- to- the- Yukawa- sector- so- that- each- fermion- type- couples- ex-
clusively-to-one-of-the-doublets- H; o and-not-the-other,-avoiding-tree-level- FCNCs.-
Conventionally,-and-without-the-loss-of-generality,- up-type-quarks-are-always-cou-
pled-to-Hj, leading-to-four-different-possibilities-( Types)-to-couple-down-type-quarks-
and-leptons-to-each-of-the-doublets,-which-are-shown-in-Table-4.1.- Explicitly,-the-

!For some regions of the parameter space, Eq. (4.4) can also yield additional solutions leading
to spontaneous CPV within the 2HDM sector (see Refs. [263, 264]). Nevertheless, the regions of
phenomenological interest for the work on this Chapter are free from this issue.
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Type-I-| Type-II-| Lepton-specific-| Flipped-
ul Hy Hy H Ho
di, | Ho H,y H, H
e Hy Hy M Ha

Table 4.1: The-four- 2HDM- Types leading- to- tree-level-flavor- conservation.- Each-
SM-fermion-couples-exclusively-to-one-of-the-doublets.- The-index-¢ = 1, 2, 3-runs-over-
generation-space.-

Yukawa-Lagrangian-including-the-couplings-of-the-fermions-to-the-four-scalars-of-the-
2HDM-reads-(see-e.g. Ref.{48])-

f=u,dl

2,
— \v[ [ udHJrﬂ(yfflmuPL —l—’yfflmdPR)d +”ygmgH+ﬁ€R —l-/H.c.] ( (4.8)-

to- 3 2 (f{hff F YL HTf + +igh AT f) (

where- Pp 1, are- the-right/left- projection- operators- for- fermions- and- the- cou-
plings- y§( are- presented- in- Table- 4.2- for- the- Type- I- and- II- 2HDM.! In-terms- of
the- physical- masses-my,, My, My+, M4, and-the- parameters- M? = (¢, —i-/tgl )y
Cg—a = cos( — a)-and-ts,~the-2HDM-scalar-potential-parameters-in-Eq.{(4.1)-read-
(see-e.g. Ref.{265])-

H% _’M25§ - iz(m%‘ + (mEIO - m%)cs—a (cs-a +’Sﬁfat6)) )
1
=M — o (

s Z’C}% + (miro — M) (Coa — Ss-aly )
Mo? =mj — t5(MA~ mzlo) + (mi — mzlo)’[cgfa(t?, —1)— 2tg85_aCsa]

Av? =mji — ;2 (M? — m?{O) + (m3 — mio)/[cgfa(tﬁ_z —1)—2t; 185 ucsa]
A\sv? =mj, + 2m2 . — Mgy — M? — (m3 — m?{O) [26%7& +85-aCsalts — t;l)} ,
0 :/mio —2m? . +M?,

Asv? =M? —m3 . (4.9)-

Regarding-the-scalar-potential-parameters-involving-the-singlet-field-S,-the-cou-
pling- A3S?| H, |2 between- S and- the- linear- combination- of- Higgs- doublets- H, =
csHy +-s5Ho that-develops-the-EW-breaking-VEV-—i.e. working-in-the-Higgs basis
of-the-2HDM-[218]-—is-given-by-

1Our results can be generalized between Types I and II, and Lepton-specific and Flipped re-
spectively, as couplings to leptons will not play a significant role in the phenomenology discussed
in this Chapter.
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yr yd yh yYy yd vy | v yd v

Typel- | ca/sg | ca/sp Ca/S3 | Sa/S3 | Sa/58 | Sa/sp | cotB | —cotB | —cotf

TypeIl-| co/sg | —Sa/cs | —Sa/cs | Sa/Sp | Ca/cp | cafcp | cOtB | tanfB | tanf

Table 4.2: Fermion- Yukawa- couplings- for-the- Type-I- and- II- 2HDM- as- defined- in-
Eq.{(4.8),-where-c and-s have-been-used-as-short-hand-notation-for-sin-and-cos-respec-
tively.-

A&+A&m+ﬂ&%

4.10
1+12 ’ (4.10)

Ag ="As, C% +’)\528% +’)\§33565 =-

With*)\lg3 = Re{(\g,).- In-terms-of-\g and-the-singlet-scalar-mass-ms, the-singlet
squared-mass-parameter-in-Eq.{4.1)-reads-

p2 =m? — A2 (4.11)-

The-couplings-between-the-singlet-scalar-S and-the-neutral-2HDM-state-h,- Hy
and-Ag are-respectively-given-by-

)\Szh/v =- SB,Q)\B +Cs_0a [%(/\52 — /\5) +’)\§3/2}
A2, /U = Coadg — Sp-a [th(As, — Ag) +0E, /2] (4.12)
)\SzAO/’U =" )\ég/2,

vvith/)\{g3 = Im{\g,).- The-existence-of non-vanishing-couplings-of-the-dark-scalar-
S with-both- Ay and-h,- Hy is-a-sign-of-CP-violation-in-the-interactions-between-the-
dark-sector-and-the- 2HDM- states,- corresponding-to-de # 0-in-Eq.{4.2).- Yet,- for-
01 =-0,-it-can-be-seen-that-the-pure- 2HDM-sector- of-the-theory-is- CP-conserving-
at-tree-level,- as-the- only-source- of- bosonic- CP- violation- involves- the- interactions-
with-the-dark-sector.- It-is-nevertheless-expected-that-these-very-interactions-source-
CP-violation- among- the- 2HDM- states- at- 1-loop- order.- These- 1-loop- corrections-
would- yield- a- small-misalignment- between- the- neutral-states- h,- Hy and- Ag,- with-
definite-CP-properties,-and-the-mass-eigenstates- (physical-spectrum)-of-the-theory.-
A-proper-discussion-of-these-effects-would-require-the-1-loop-renormalization-of-the-
scalar-sector-of-the-theory,-which-we-will- pursue-in-the-future.- In-the-rest-of-this-
Chapter,- we- consider- the- CP-eigenstates- h,- Hy and- Ag to-be-physical-states-and-
perform- our- analysis- at- tree-level.- Nevertheless,- we- will- comment- briefly- on- the-
phenomenological-impact-of-such-loop-suppressed-effects-in-Section-4.-
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3 Transient Enhancement of CP Violation in the Early
Universe

In- the- present- scenario,- the- CP- violating- phenomenology- has- been- effectively- se-
cluded- at-tree-level-to-the-interactions- between- the-dark-and-visible-sectors,- only-
manifesting-itself-at-1-loop-in-the-scalar-spectrum-and-other-CPV-phenomena-such-as-
EDM.-Nevertheless,-as-briefly-discussed-in-the-introduction,-it-is-possible-to-enhance-
the-presence- of- CP-violation-in-the-early- Universe- by-sourcing-additional-sponta-
neous- CP-breaking-through-a-non-vanishing- VEV-for-the-singlet-field- S,-enabling-
successful-baryogenesis-(see- Ref.{266]-for-related-work).- Such-a-transient-enhance-
ment- of- CP-violation-would-end- after- the- EW- phase- transition,- so-that-expected-
signatures-in-low- energy- probes- (such- as- EDM- experiments)- could- be- well-below-
current-experimental-sensitivities.- In-this-Section-we-explore-the-viable-regions-of-
the-parameter-space-leading-to-this-transient-CP-violation-enhancement.-

3.1 Tree-Level Requirements

First,-in-order- to- guarantee-a- realistic- scenario,- we- need- to- consider- the- theoreti-

cal-constraints- stemming- from- unitarity,- perturbativity-and-stability-of- the-scalar-
potential-in-Eq.{4.1)-(see-e.g. Ref.{260]-for-an-analogous-analysis-of-the-2HDM).-
Tree-level-boundedness- from-below-of-a-potential-of-the-form- A 452 ¢§ requires-the

matrix-of-quartic-couplings-\,, to-be- copositive,-that-is,positive-semidefinite-when-
acting- on- non-negative- vectors- [267].- To- this- end,- we- can- parametrize- the- field-
bilinears-appearing-in-Eq.{4.1)-as-

|H\|* =hi, |Hy|* =-h3, H{Hy =phihae™, 5% =57, (4.13)-

where- £ represents- again-the-relative- phase- between-the- doublets-and- the- pa-
rameter-p is-bounded-by-|p| < 1-as-implied-by-the-Cauchy-inequality-0-< \HI H,| <

|H1||H2|.- With-this-parametrization,-the-scalar-potential-in-Eq.{4.1)-is-cast-into-the-
form-
A A A
Va =i+ 4+ f/ s* +-Ag1h2s? +-Agahds®

+-A3h2h3 +-Mh3h2p? 4| \s|h3h3p% cos(26 +-Arg[As]).  (4.14)-

Where-quadratic-terms-have-been-omitted,- as-their- contribution-is-subleading-
in-the-large-field-limit- (which-is- the-only-relevant-region- to- the- boundedness- of-a-
polynomial-potential).! Additionally,~we-have-neglected-terms-involving-s;,-which-
is-considered-in-the-following-to-be-hierarchically-smaller-than-the-rest-of-the-quartic-

!Quadratic terms could be important if V3 — 0 for a given direction in field space. We will
thus demand that the matrix of quartic couplings be strictly copositve (i.e. positive definite rather
than semidefinite over non-negative vectors), which forbids this possibility.
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couplings.- The- motivation- for- this- choice- is- two-fold:- on- the- one- hand- previous-
work-has-shown-baryogenesis-requires-only-a-small-amount-of- CPV- (linked- to- the-
imaginary-part-of- Ags,”see- Eq.{4.2) )-in-similar-setups- [266];- on- the-other,-a-small-
Ags will-further-suppress-potentially-dangerous- CP-and-Zs breaking-effects-in-the-
2HDM-sector-of-the-theory.!
To-find-the-set-of-necessary-conditions-for-the-boundedness-of-this-potential,-we-
must-minimize-with-respect-to-the-free-parameters-p and-§ in-the-large-field-limit.-
The-minimization-with-respect-to-¢ trivially-leads-to-cos(2€ +-Arg[\s])-=-—1.- Along-
this-direction,-the-matrix-of-quartic-couplings-in-the- (h2, h?, s)-basis-reads-

M s 020 — As]) As <
1,
A :/5, /\3 +/P2()\4 - ’/\5’)/ )\2 )\52 (4'15)
)\51 )\SQ >\S <

The-minimization-of-p depends-on-whether-the-combination-Ag4 — |A5| is-positive-
or-negative,- resulting-in- p?> =-0-or- 1-respectively.- Applying-the-strict-copositivity-
criteria-[267]-to-both-cases-yields-

A >0, X>0, Ag>0, Ao +-Ag3 > 0, Ao +A3 +Ng — |)\5| > 0,

2)\51 + 2)\1)\5‘ >0, 2)\5’2 + vV 2)\2)\5 >0,

AS1 A2 +A59v 2A1 A3V Ag +V/ A1 Ao Ag+-
+’\/< 12 +’)\3) ( As1 + v/ 2>\1)\5)
As1V 22X +Asa VI + Os +A4 — A3V As +

+/\/(\/)E72 A3 +Ag — M5!> ((x\m + \/m> ((x\sz + \/Mlé 0.

(4\16)-

The- first- set- are- the- well- known- 2HDM- vacuum- stability- conditions- [48],- but-
the-existence- of- the-singlet- yields- further-non-trivial- constraints.- Additionally,-in-
order-to-ensure-the-absolute-tree-level-stability-of-the-EW-minimum,-preventing-the-
existence- of-a- “panic- vacuum”- [268,-269]- (i.e. a-second-deeper- minimum-beyond-
the-one-which-we-currently-inhabit),-the-parameters-of-the-2HDM-must-satisfy-the-

condition-
2 2 2 2
A [As5] 7ﬁ £ VA=A
H*E 4 5 H 1A2 3
B _ - 4.1
[({;+—2> 4/]{vﬂ + 5 >0, (4.17)

! Additionally, Ass would obscure the analytical computation of the boundedness conditions, as
it would both require an enlargement of the monomial basis and complicate the minimization over
the spare degrees of freedom in the large field limit (see discussion below).

Ag2 + 4/ 2)\2)\5) 6 0,

A1 A2 A s+
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which-directly-translates-into-[260]-

Q= Sign-(F) V|| < my,, (4.18)-

with-Q2? = m?qo — 135 (ts +-t51).- Finally,-the-unitarity-of-the-scattering-matrix
also-imposes-upper-bounds-on-various-combinations-of-the-quartic-couplings-\; (see-
Refs.{270,-271]-for-a-tree-level-study-of-the-2HDM-and-Ref.{272]-for-a-more-recent-
one-loop-analysis-leading-to-slightly-stronger-bounds).- Similar-(although-generically-
less-stringent)-bounds-on- \; may-be-obtained-from-perturbativity-arguments.- We-
take-here-a-conservative-approach-and-demand-that-every-quartic-coupling-is-smaller-
than-|\;| < 27 -ensuing-both-unitarity-and-perturbativity.- The-different-constraints-
are-presented-in-Figure-4.1,-which-shows-the-resulting-bounds-on-the-(cs_q, 2)-plane-
for-a-set-of-(m, , t5)-parameter-choices-and-a-benchmark-point-

mHO ="M=+ :’400’GGV, )\ﬁ - 1, )\52 - 15)\5, )\53 >~ 0, >\S =1. (419)’

A-transient- period- of- CPV-enhancement- further-requires- a-negative- quadratic-
term-for-the-singlet-at-tree-level-u2 < 0,-so-that-S can-develop-a-non-vanishing-VEV-
in-the-early-Universe.! By-virtue-of-Eq.{4.11)-this-requirement-translates-into-

m? < Agv2. (4.20)

Further-requiring- that- the- tree-level- EW- minimum- be- the- global- minimum- of-
the-scalar-potential-leads-to-

2
v 1- 2
Vew =—— | i—kcg_a (m3, — m,%)] - ()\BUQ - mg) <0, (4.21)
8 0 d)g
with-Vey the-energy-of-the- EW-vacuum.- Combining-Eq.{(4.20)-and-Eq.{4.21)-
we-get-an-allowed-range-for-the-DM-mass-m

Asv? — 24/ Xs |[Vew| < m? < A2 (4.22)-

We-note-that-while-the- minimum-and-maximum allowed-values-for-m? depend-
on-Ag,-the-range-itself-dm? = m? —m? = 24/As |VEw| does-not.- Increasing

$,max $,min
As widens-the-viable-range-for-my.-

3.2 Finite-Temperature Effective Potential

Our-demands-include-a-non-trivial-thermal-history,-where-the-Universe-would-have-
started- from- a- phase- of- restored- EW- symmetry- at- high- temperatures-7T > v to-

!The leading thermal corrections to this quantity will be positive as we shall discuss below, so
that a singlet phase could not exist otherwise.
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Figure 4.1: (cg_q,Q)-plane-for-t, = 2, 1-(left-to-right)-and-m, =-750,400-GeV-(top-
to-bottom)-for-the-benchmark-point-shown-in-Eq.{4.19).- Colored-and-hatched-regions-
show-the-areas-excluded-by-each-of-the-constraints-discussed-in-the-main-text.- Bounded-
ness-constraints-have-been-split-for-illustrative-purposes:- Boundedness 2HDM labels-
the-region-excluded-by-the-2HDM-vacuum-stability-conditions-—first-line-of-Eq.{3.1),-
whereas-Boundedness Singlet shows-the-impact-of-considering-the-full-set-of-inequal-
ities-resulting-from-the-addition-of-the-singlet-—the-whole-Eq.{(3.1).-
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subsequently- generate- a- VEV- for- the- singlet- S via- a- second- order- phase- transi-
tion,- before- finally- tunneling- into- the- EW- vacuum- through- a- (strong)- first-order-
phase-transition- (FOPT).- The-following-Sections-aim-to-explore-the-regions-of-the-
parameter-space-leading-to-this-two-step-phase-transition.-
To-study-the-evolution-of-vacua-in-the-early-Universe,-we-have-to-make-use-of-field-
theory-at-finite-temperature.- Conventional- QFT-methods-such-as-those-employed-
so- far- on- this- thesis,- while- suitable- to- describe- observables- measured- in- approxi-
mately-empty-space-(e.g. particle-interactions-at-colliders),-are-based-on-hypotheses-
which-cannot-be-easily-formulated-on-the-highly-dense-matter-and-radiation-envi-
ronments-characteristic-of-the-early-stages-of-our-Universe.- Instead,-it-is-convenient-
toreplace-them-by-other-approaches,-which,-building-on-thermodynamics,-treat-this-
background-state-as-a-thermal-bath.- This-is-the-basis-of-field-theory-at-finite-tem-
perature,-and-through-its-methods,-it-is-possible-to-compute-the-finite-temperature-
effective-potential.- A-complete-derivation-of-the-latter-is-beyond-the-scope-of-this-
thesis-(see-e.g. Ref.{273]-for-a-review).- Instead,-we-will-be-focusing-on-the-impact-
of-the-leading-thermal-corrections-to-the-tree-level-potential-of-Eq.{4.1),-which-will-
nevertheless-showcase- all- of- the-relevant- phenomenology- to- our-discussion.- These-
one-loop-thermal-corrections-to-the-scalar-potential-are-found-to-be-

_r 2 I T
Vr = 32 ;nz /( x*log <<IF e i ) (a:, (4.23)

where-the-sum-is- carried- over-bosonic- (i =- B)-and-fermionic- (i =-F')-degrees-
of- freedom- (d.o.f.)- with- field-dependent-masses-m? (¢)-in- the- background-field- .-
The- sign- of- the- exponential- is- negative- (positive)- for- bosons- (fermions),- and-n;
denotes-the-number-of-d.o.f.- of-a-given-field:- 1-for-each-neutral-scalar,- 2-for-each-
charged-scalar,-3-for-the-Z boson,-6-for-the-W boson-and-—12-for-the-top-quark-(the-
contribution-from-the-rest-of-the-fields-is-subleading-and-can-be-safely-neglected).-
In-the-limit-where-m?(¢)/T? < 1,-Eq.{4.23)-admits-the-following-high-temperature-
expansion-

3
2 1-m2 1- /m%)\?2 1- m m2
VHT NT4 B B . Bl B
Z 90 24T T Ton \ T2 6472 T4 08\ cp12
4
F

1-m2 - m m?
T4 _F log- F
* Z(”F [{720 18T Team T 8 <CFT2>} <

with-cp =2 exp(% —2v)-and-cg =-16¢p.- In-the-so-called- Hartree approzimation
[274],- only- the- leading,- O(T?)- pieces- of- VHT are- retained, such- that- the- finite-
temperature- corrections- to- the- tree-level-scalar- potential- amount- to- modifications-
of-the-bare-mass-terms-in-the-potential.- This-approach-is-particularly-convenient-to-
study-the-vacuum-evolution-of-multi-scalar-models,-as-it-allows-to-gain-an-analytical-
understanding-of-the-symmetry-breaking-patterns-throughout-their-thermal-history-
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(see-e.g. Refs.{257,-275]).- For-this-reason, we-will-restrict-to-this-approximation-for-
the-rest-of-this-Chapter.-

For-a-transient-period-of- CPV-enhancement-to-occur-in-the-early- Universe,- we-
demand-that-the- VEVs-of-both-Higgs-doublets- H1 2 and-the-singlet-field-S vanish-
at-very-high-temperatures.- Then,- as-temperature- decreases- during- the-radiation-
dominated-era,-the-S-field-direction-should-be-destabilized-from-the-origin-of-field-
space-before-that-of-the-Higgs-doublets.- This-will-lead-to-a-two-step-phase-transition,-
proceeding-first-by-spontaneous-CP-violation-via-(S?) #-0-and-a-subsequent-breaking-
of- the- EW-symmetry- by- the- VEVs- of- the- Higgs- doublets- (with- ($2) — 0-in-this-
second-step).- We-then-have-to-consider-contributions-to-Vr from-all-relevant-d.o.f.-in-
the-singlet-scalar-background-field-s and-in-the-background-fields-of-the-four-neutral-
components-of-the- Higgs-doublets,- which-we-denote-h1,” ha (real-parts,-with-some-
abuse-of notation),-and-aj,-as (imaginary-parts).- The-contributions-to-Vp stemming-
from-SM-fermions-(the-top-quark)-and-EW-gauge-bosons-read-

F

EZCFm% — (14 172) 18 )

6m?2, + 3m?
Y fmp = —U S "E(h] a] +-h3 +-a3). (4.25)
gaugel v

where- the- overall- factors- T2 /48 for- fermions- and- T2 /24- for- bosons- have- been-
omitted.- The-contributions-to-Vp from-the-scalars-in-the- Hartree approximation can-
be-obtained-from-the-trace-of-the-field-dependent-scalar-mass-matrix.- Working-on-a-
basis-where-both-A5 and-i3, are-real,! the-diagonal-entries-of-the-scalar-mass-matrix-
read-

)\ As +A
Mpyp, = :u (3h1 +a )+’ - :

A
(13 +a3) +52 (13 — ) +-As, 5%

)\ As +A A

Migh, = i+ (8h5 +a3) +=—= (b7 +a7) +32(h — af) +s, %,
)\ As +A A

M771771 =" lu’2 - (h 2) +- - 2 : (h% +’CL%)’_ i(h% - CL%) +/)‘51827
)\ +-\, A

My, = w+ = (h2 +3a3) + = (h +ai)— i(hz —af) +’)\52527

Mgs = ,us—i—3)\ss +Xs, (hT +7a3) +As, (h5 +-a3) +AE (hihe +-a1az)-
—I—)\é?) (h2a1 — h1a2)

Myryo = 208 +M(h] +a]) +Xs (13 +a3) + 2, 5%,
M¢2+¢5 = 2/-1/2 +’)\2(h2 + (12) + )\3<h1 =+ 0,1) -+ 2)\32 . (426)/

Dropping-field-independent-terms,-which-only-provide-an-overall-energy-shift-to-

!The existence of such basis is guaranteed by 6; = 0, c.f. Eq. (4.2).
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the- potential - and- omitting- again- a- T2 /24- factor,- the- contribution- to- Vi can- be-

evaluated-as-

scalar

Z <’LBTI’LB = (3)\1 + 2)\3 + )\4 + )\Sl)(hl +’CL1)’+ (3)\2 + 2)\3 ’A4 + )\52)(h2 +’(12)

+(3Xs + 4Xs, + 4Xs,)s” +AL (hihg +araz) +AL (hoar — hiag).
(4.27)-

Altogether,-the-finite-T" effective-potential-in-this-approximation,-corresponding-
to-the-tree-level-scalar-potential-from-Eq.{4.1)-together-with-the-O(7?)-terms-from-

Vr,-reads-
VR = BR(T) (I +ai) +3(T)(h3 +-a3) +73(T)s” — [Z2(T) (hhs +-a1az)
A A A
= BEp(T)(haay = hiag) +5- (i +a})? + 22 (k3 +-a3)? +’fs4
Az A As A
+ (B ad) (e >+713 (1 +-ad) +732 5 (13 +-a3)
A
+ = [h1(h2 — (Iz) +’a1(h2 +’a2)]’[h1(h2a2) +-a1 (a2 — hQ)]
)\?3 2 >\£'3 2
+- TS (hlhg +’a1a2) —l—’?S (h2a1 — h1a2), (4.28)
with-
2 2 2 2
_ I T 6my, +3m
M%(T)’ = ?1’ + bYE <3>\1 +2X; +N\, +’)\sl +’7Wv2 Z> ,
P u3 T 6m2, + 3m? 6mt )
as5(T) = 2/+ 5L Ao+ 205 A, + A, + 2 +- 2 (1+1,°)-
2 T2
/TL%(T) == % —|— ﬂ’ (3)\5 + 4)\51 + 4)\52) 5
_ T
M%z(T)’ = :UJ%Q - ﬂ)‘i
-2 SN
(M) = AL, (4.29)

2493

At-this-point-it-is-worth-stressing-that-a-combination-of-the-background-fields-a;
and-ag can-be-rotated-away-in-the-tree-level-potential-of-Eq.{4.1)-by-an-equal-phase-
redefinition-of-both-Higgs-doublets- Hy o (leaving-all-of-its-parameters-unchanged).-
This- is- precisely- the- combination- that- corresponds- to- the- neutral- Goldstone- bo-
son- of-the- SM.-It-is- also- possible-to-reduce- the-number- of-dynamical-background-
fields-from-5-to-4-in-the- Hartree approximation for-Vp,-since-the-finite-temperature-
contributions-do-not-break-the-symmetry-that-allows-to-perform-the-corresponding-
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field-redefinition-in-Eq.{4.1)- (i.e. the- SM-photon-remains-massless-at-finite-7" in-
this-approximation).! Then,- without- the-loss- of generality- we- can-set-a; =-0-in-
Eq.{4.28).-

3.3 Thermal History Requirements

Having-computed-the-effective-thermal-potential-(in-the- Hartree approzimation), we-
are-finally-in-position-to-discuss-the-constraints-imposed-by-the-prescribed-thermal-
history.- The-requirement-that-both,-the-EW-symmetry-is-restored-at-high-tempera-

tures-and-the-CPV-enhancement-is-transient,-demands-that-the-origin-in-field-space-
be-a-minimum-for-T — oo.- The-5-x 5-Hessian-of-this-potential-is-block-diagonal-at-
the-origin,- with-a-diagonal-entry-for-the-singlet-and-a-4-x 4-block-for-the-neutral-
Higgs- field- directions.- This-requirement- can- then- be- cast-into- two- separate- con-

straints:- the- diagonal- entry- for- the- singlet- (its- quadratic- term)- must- be- positive-
p4(T) = p%/2 +CsT? > 0-for-T — 0o, whereas-the-thermal-mass-matrix-for-the

neutral-Higgs-field-directions-

(zﬁ%m— “@(T) 0 —pEp(T) (

125(T)- 2p3(T)-  jp(T 0
My (T) = fig5(T) 52( ) ch( ) )
0- ficp(T) 2p5(T) —pg(T)-
g (T) 0- —it2(T)- 203(T)
HOT bR 0 5, (
2 2
| A s GT? TIN5, 0
2 2
0- 2T, PO =y AR
2 2
( 5, e I Ra
(4330)-

should-have-only-positive-eigenvalues-in-this-limit.- The-coefficients-C',-Cs and-
Cs,which-can-be-read-directly-from-Eq.{4.29), need-then-to-be-positive.-

In-addition,- destabilizing- the- origin- of- field-space- along- the-singlet- field- direc-
tion- prior- to- EW-symmetry- breaking- requires- that- /Z% (T')-becomes- negative- at-a
temperature-Tg higher-than-the-temperature-Ty at-which-the-Higgs-field-directions-
are-destabilized,-which-happens-when- My (T')-develops-its-first-negative-eigenvalue,-
or-equivalently,- when-its- determinant-first- goes- negative- Det[M (T")]- < 0.- These-
temperatures-read-

1Going beyond this approximation for the finite-temperature potential Vz, the longitudinal
component of the photon can develop a thermal mass, and thus it is no longer possible to reduce
the number of dynamical background fields from 5 to 4.
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122
_3>\S +’4()\Sl +’>\52)”
KACs + 1301+ /12

T3

TH =—
2010 — |Xs,|?/288
V W@ +5C1 AN o /1207 — 2(ui 3 — ply) (2C1C — s, [*/288)
+ \ 2C1Cy — | A, |2/288 ’
(4.31)-
with-|Ag, |2 = ()\§3)2 + ()\{QS)Q.* Our-requirement-can-then-be-stated-as- Ty < T,

ensuing-that-the-singlet-phase-is-born-earlier-than-the- EW-phase.-

3.4 Regions of Transient CP Violation Enhancement

We-now-show-theregions-of-parameter-space-where-the-transient-CPV-enhancement-
occurs.- The-constraints-discussed-in-the-previous-Sections-are-presented-in-Figures-
4.2-and-4.3,-which-show-the-resulting-bounds-on-the-(m, Ag)-plane-along-theregions-
where-the-two-step-phase-transition-is-possible.- They-showcase-the-effect-of-varying-

(As,ts)-and-(Ag, Ag2)-respectively.- For-definiteness, we-also-set-

TTLHO

=my+ =400-GeV, Q-=200-GeV, cg_o =0, (4.32)-

so-that-these-figures-are-compatible-with-the-tree-level-constraints-discussed-in-
Figure-4.1,-with-the-red-hatching-showing-the-regions-where-the-potential-becomes-

unbounded.-

4 Outlook

To- conclude- this- Chapter,- we- discuss- the- outlook- of- the-results- presented- on-the-
previous-Sections,-including-preliminary-work-and-ongoing-efforts-to-study-the-phe-

nomenology-of-this-realization.- While-Figures-4.2-and-4.3-show-the-regions-of-the-
parameter-space-with-a-thermal-history-leading-to-the- EW-vacuum-after-a-period-
of-transient-CPV-enhancement-(i.e. after-the-singlet-phase),-it-is-important-to-note-
they-do-not-guarantee-the-absence-of-more-phases-in-between-them- (e.g. a-mixed-
one)-nor-the-strong-first-order-EW-phase-transition-required-for-successful-baryoge-

nesis.- Nevertheless,-it-is-still-possible-to-derive-semi-analytical-constraints-resulting-
from-demanding-both-a-two-step-phase-transition-(as-opposed-to-more-complicated-
thermal-histories)-and-a-barrier-between-the-singlet-and-EW-minima.- The-analysis-
follows-that-shown-in-the-previous-Section,-only-that-now,-instead-of-evaluating-the-
Hessian-at-the-origin-(c.f. Eq.{4.30)), it-is-evaluated-at-both-the-singlet-and-EW-
phases.- Just-as-before,-the-zeros-of-its-determinant-indicate-the-change-of-character-
of-its-extrema- and-thus- provide-information-on-the-evolution-of-its- phases.- If-the-
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Figure 4.2: (mg, \g)-plane-for-t, = 2, 1-(left-to-right)-and-Ag = 4, 1-(top-to-bottom)-
for- the- benchmark- point-shown- in- Eq.{(4.32)- with- A\ga = 1.5- Ag.- Colored-lines-and-
hatched-regions-delimit-the-areas-excluded-by-each-of-the-constraints-discussed-in-the-
main-text.-

singlet-and-EW-phases-coexist-for-a-given-range-of-temperatures,-a-potential-barrier-
between-them-is-guaranteed.- Of-course,-if-the-singlet-minimum-persists-all-the-way-
down-to-zero-temperature,-the-existence-of-a-barrier-is-not-enough-to-guarantee-a-
FOPT.-In-that-case,-one-should-also-check-that-the-Universe-is-not-trapped-on-the-
singlet- phase-and-can-actually-tunnel-in-cosmic-timescales- from-the-singlet-to-the-
EW-vacuum.- Theresults-of-this-analysis-are-preliminary-and-have-thus-been-omitted-
from-this-thesis,-but-they-suggest-the-existence-of-large-regions-of-parameter-space-
that-can-successfully-accommodate-this-thermal-history.- Finally,-a-realistic-assess-
ment- of- baryogenesis-should-also-include- the- computation- of- the-resulting- baryon-
abundance,-which-will-be-tied-to-the-size-of-ds.-
As-previously-noted,-the-singlet-scalar- .S is-also-a-viable- DM-candidate-due-to-
the-exact-dark-Zs-symmetry.- Nevertheless,- it-is-important-to- check-whether-the-
model- can- accommodate- the- production- of- the- observed- DM- relic- abundance- in-
the-early- Universe- and-the- desired- thermal- history-simultaneously.- Given-the-re-
gions-of-the-parameter-space-being-considered-for-the-latter,-this-production-would-
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Figure 4.3: (ms, Ag)-plane-for-Ags = 1.5Xg,0.5\5 (left-to-right)-and-Ag = 4, 1-(top-
to-bottom)-for-the-benchmark-point-shown-in-Eq.{4.32)-with-t, =-2.- Colored-lines-and-
hatched-regions-delimit-the-areas-excluded-by-each-of-the-constraints-discussed-in-the-
main-text-(note-the-left-column-of-each-Figure-is-the-same).-

be-mediated-by-thermal-freeze-out.- On-the-other-hand,-if-.S is-the-DM,-we-must-
also- require- agreement- with- the- bounds- on- the- DM-nucleon- scattering- cross- sec-
tion- from- DM-direct- detection-experiments.- At-tree-level,- DM-nucleon-scattering-
processes-occur-via- h,” Hy,” Ay single-exchange,- with-the-size- of-the- corresponding-
cross-section- controlled- by-the- couplings-in- Eq.{4.12).- Both-the-Ag2;, and- g2y,
couplings- contribute- to- the- spin-independent- DM-nucleon- scattering- cross- section-
aé\{ (via-h and-Hj exchange, respectively),~whereas-Agz 4, only-contributes-at-tree-
level-to-the-spin-dependent- [276]-cross-section- aéVD ,~for-which-DM-direct-detection-
experimental-bounds-are-much-weaker-[277].- At-1-loop,-Ag2 4, Will-contribute-to-the-
spin-independent-cross-section-via-double- Ay exchange-(see-e.g. Ref.{278]), yet-this-
loop-suppressed-contribution-may-be-safely-neglected-for-our-analysis.- Preliminary-
results-show-that- XENONnT-bounds-[279]-place-relatively-stringent-constraints-on-
the- parameter-space- of- the- 2HDM+5? discussed- in- this- work,- however,- it- is-still-
possible-to-find-regions-that-yield-the-correct-thermal-history.-

On-the-other-hand,-the-LHC-also-probes-viable-regions-of-the-parameter-space.-
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Figure 4.4: 2-loop- “Barr-Zee”-contribution-to-the-electron-EDM.-

In-particular,- Higgs-signal-strengths-constrain-the-couplings-of-the-125-GeV-Higgs-
boson,-which,-in-the- context-of-the- 2HDM, - translates-on- Type-dependent-bounds-
on-the-(cg_q, ts) plane.- Furthermore,- direct-searches-for-the-heavy-states- Hy,” Ag
and- H* also-yield-sensitivity-to-viable-regions- of-the- parameter-space,- and- could-
potentially-feature-striking-signatures-such-as-decay-chains,-e.g. Hq — Z A,  with-
Ay — SS.-

Finally,~while-both-the-CPV-and-explicit-2HDM-Zs breaking-are-secluded-and-
thus-suppressed-at-tree-level ,-the-model-will-also-be-subject-to-constraints-coming-
from-both-EDMs-and-FCNCs.- In-the-2HDM,-the-electron- EDM-receives-contribu-
tions-from-two-loop-diagrams,-the-dominant-of-which-are-the-so-called- “Barr-Zee” -
diagrams-(see-Figure-4.4).- For-the-2HDM+S5? model-discussed-in-this-work,-the-fact-
that- the- CP-violating-interactions- necessarily-involve- the- dark- matter- particle-.S,-
would-result-in-contributions-to-the-electron-EDM-with-a-further-loop-suppression,-
i.e. 3-loop-diagrams,- rendering- the- CP-violation- significantly- below- current- and-
foreseeable- future- electron- EDM- measurements.- Still,- computing- explicitly- these-
3-loop-contributions-to-EDMs-is-a-priory-a-daunting-task.- This-computation-might-
however-be-feasible-in-a-certain-limit-of- the- 2HDM+S5? - corresponding-to-the-sce-
nario-where-the-singlet-.S is-the-heaviest-particle-in-the-spectrum-and-can-thus-be-
integrated-out,-leading-to- an-effective-theory-for-the-two-doublets.- The-matching-
at-1-loop-would-result-in-contributions-to-| Hy |* H I Hy and-|Hy|* H 1T H, (traditionally
parametrized-as-A\g and- A7)-proportional-to- A\g3,- and-suppressed-by-a-loop- factor-
(47)~2.- The- CP-violation- could- then- be- understood- from- the- perspective- of- the-
general-2HDM.- The-same-procedure-could-also-provide-an-expectation-for-the-size-
of- FCNCs.-

Lastly,-it-is-important-to-note-the- CP-eigenstates-h,- Hy and- Ay can-no-longer-
be- considered- mass- eigenstates- beyond- tree-level - as- the- CP-breaking- tied- to- the-
dark-sector-bleeds-to-the-2HDM-spectrum.- The-impact-of-this-CPV-in-the-2HDM-
sector-at- 1-loop- could- be-assessed- by-a- perturbative-expansion- [280]- for- the- mass-
eigenstates-in-terms-of-the-small-CP-violating-phase-tied-to-ds.-
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Summary and Conclusion

This-thesis-covers-several-aspects-of-Higgs-phenomenology-in-connection-with-flavor,-
DM,-CP-violation-and-baryogenesis,-putting-emphasis-on-their-testability-at-present-
experiments,-and-particularly,-on-their-exploration-at-the-LHC.-

In-Chapter-2,-we-studied-h +-y production-at-the-LHC.-While-interesting-in-its-
own-right,-as-this-process-remains-yet-to-be-observed,-we-demonstrated-its-role-as-
a-sensitive- probe-of-the- Higgs-boson- couplings- to-the-light- quarks-of-the- first-two-
generations- of- matter,- still- largely- unconstrained- by- present- measurements.- The-
associated- production- with- a- photon- is- quadratically- sensitive- to- a- combination-
of- these- couplings,- each- weighted- by- the- respective- quark- electric- charges.- The-
contribution-of-up-type-quarks-is-thus-enhanced-with-respect-to-that-of-their-down-
type-counterparts,-providing-an-unique-way-to-disentangle-deviations-among-them.-
This-makes-h+ highly-complementary-to-other-existing-light-quark-Yukawa-probes,-
which-are-often-flavor-blind-or-sensitive-to-their-masses-instead.-

Focusing-on-the-h — £Tv{~ v-decay-channel-of-the-Higgs-boson,-we-performed-a-
multivariate-neuralmetwork-analysis-to-fully-exploit-the-kinematics-of-this-final-state,-
and-derived-HL-LHC-projected-sensitivities-to-the-Higgs-Yukawa-couplings-to-charm-
and-up-quarks.- Our-results-were-summarized-and-compared-to-other-representative-
probes-in-Tables-2.1-and-2.2,-including-the-experimental-limits-that- have-resulted-
from- a-preliminary- CMS- h +-y analysis-[45].- While- our- projected- bounds- for- .
are-complementary-to-existing-methods,-they-are-probably-not-competitive-with-the-
most-sensitive-direct- probes- of-the- charm- Yukawa- coupling-in-the-literature.- The-
latter-benefits-the-most-from-flavor-specific-approaches,-as-it-is-the-heaviest-of-the-
remaining-quarks.- In-contrast,-the-achievable-h 4+-y sensitivity-to-x, does-lie-in-the-
same- ballpark- of-other- currently- proposed- probes.- Particularly-in-the-latter-case,
h +-y may-help-to-gain-further-insight-on-Higgs-flavor-at-the- LHC.-

In- Chapter- 3,- we- turned- our- attention- to- the- search- for- semi-invisible- exotic-
decay- modes- of- the- Higgs- boson.- These- decays- remain- largely- unexplored- both-
theoretically- and- experimentally- despite- constituting- a- rather- generic- prediction-
of- many- well- motivated- BSM- extensions,- specifically- those- seeking- to- provide- an-
explanation-for-the-observed-DM-abundance-in-the-form-of-dark-sectors.- We-focused-
on-the-exotic-Higgs-decay-h — Z X ,-with-X an-invisible-BSM-particle-resulting-in-
a-semi-dark-final-state.- Such-exotic- Higgs-decays-may-occur-in-theories-of- ALPs,-
dark-photons-or-pseudoscalar-mediators-between-the-SM-and-dark-matter.- The-SM-
process-h — Zvp-represents-an-irreducible- “neutrino floor” - background- to-these-
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new-physics-searches,-but-also-provides-a-target-experimental-sensitivity-for-them.-

In-order-to-search-for-this-decay-we-targeted- ZH associated-production,-lead-
ing-to-a-4¢ +-F (7) final-state-benefiting- from-both-a- clean- missing-energy-recon-
struction- and- reduced- backgrounds.- We- implemented- a- first- multivariate- neu-
ral- network- analysis- to- identify- the- Z boson- produced- by- the- Higgs- decay,- and-
a- second- to- discriminate- between- the- signal- and- the- relevant- SM- backgrounds.-
We- analyzed- h — Z +-invisible searches- at- the- LHC- (both- at- present- and- fu-
ture- luminosities)- and- an- hypothetical- ILC,- and- derived- their- projected- sensitiv-
ities- to- BR(h — ZX)xBR(X — F(7)) in- Figure- 3.3.- Present- luminosity- con-
straints-are-well-competitive,-at-the-level-of-the-branching-ratio, with-thoseresulting-
from-the-two-other-semi-invisible-decays-currently-being-searched-for-at-the- LHC:-
h — v +-E7 [151-155],-and-h — bb +-Fr [156].- Whereas- the- HL-LHC- comes-
close-to-being-able-to-probe-the- Higgs neutrino floor (for-myx =-1-GeV,-it-probes-
BR(h — ZX)-x BR(X-— Fr) = 2.8x BR(h-— Zvv)gy at-20).- The-ILC,-on-the-
other-hand,-is-well-capable-of-sweeping-the-entire-new-physics-parameter-space-of-
semi-dark-Higgs-decays-down-to-the- Higgs neutrino floor,-and-could-potentially-find-
the-first-evidence-for-this-SM-process.-

Finally,-we-translated-theresulting-constraints-onto-the-parameter-space-of-some-
well-motivated- BSM-extensions.- While-direct-searches-for-this-decay-cannot-com-
pete-with-the-most-sensitive-probes-available-in-the-case-of-a-dark-photon- (at-least-
considering-its-simplest-realization-through-kinetic-mixing),-they-prove-competitive-
for-the-2HDM+-a,-where-there-is-a-strong-interplay-between-this-search,-Higgs-signal-
strengths-and-the-fully-invisible-decay-(see-Figures-3.6-and-3.7).- This-is-also-particu-
larly-trueforthecaseof-ALPs,-given-the-assumptions-discussed-in-the-text,semi-dark-
h — Za decays-could-probe-a-vast-region-of-otherwise-unexplored-parameter-space-
(see-Figure-3.5).- The-latter-would-include-the-thermal-relic-line,-encompassing-the-
tantalizing- possibility-that-the- ALP-might-be-the-mediator-between-the-dark-and-
visible-sectors.-

Lastly,-in- Chapter-4,-we-explored-the-possibility- that-the- CP-violation- (CPV)-
required-for-baryogenesis-is-active-in-the-early- Universe-but-is-now-suppressed.- A-
scenario-well-motivated-by-the-strong-constraints-placed-by-EDMs-on-the-existence-
of-BSM-sources-of-CPV-that-could-catalyze-the-latter.- By-considering-CP-violating-
interactions- between- a- dark- and- the- Higgs- sectors,- the- multi-scalar- dynamics- in-
the-early- Universe-is- able-to- yield- a- transient- period- of- CPV-enhancement.- This-
CPV-then- leaks- to- the- visible- sector,- enabling- a- first-order- EW- phase- transition-
to-generate- the- observed- baryon- asymmetry.- We-argued- that-the- requirement- to-
generate- a- net- baryon- asymmetry- avoiding- cosmic- domains- naturally- leads- to- a-
viable-DM-candidate.- Through-this-two-step-phase-transition,-the-latter-becomes-
the-catalyzer-for-baryogenesis-via-its-CP-violating-interactions.-

We-showed-that-this-setup-can-be-easily-accommodated-by-a-suitable-extension-of-
the-SM-Higgs-sector,-specifically,-a-2HDM-augmented-by-a-real-singlet-scalar-field.-
We- found- the- regions- of- parameter- space- that- are- consistent- with- perturbativity,-
unitarity-and-boundedness-from-below-constraints-(see-Figure-4.1)-and-lead-to-such-
an-early- Universe-period-of- CPV-enhancement- (see- Figures-4.2-and-4.2),-showing-
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that-therequired-thermal-history-leads-to-a-predictive-scenario.- Finally,-we-discussed-
preliminary-results-indicating-that-this-model- can-successfully-accommodate-both-
baryogenesis-and-the- observed- DM-abundance.- Along-with-the- possibility-to-test-
this-scenario-at-the-LHC-through-a-combination-of-Higgs-signal-strengths-and-direct-
searches,-the-latter-would-make-it-also-subject-to-DM-direct-detection-constraints,-
both-restricting-the-available-parameter-space.-
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Sumario y Conclusiéon

Esta-tesis-abarca- varios-aspectos-de-la- fenomenologia- del- Higgs-en-relacion- con-el-
sabor,-la-materia-oscura,-la-violacién-de-CP-y-la-bariogénesis, poniendo-énfasis-en-su-
testabilidad-en-experimentos-actuales-y,-en-particular,-en-su-exploracién-en-el-LHC.-

En-el-Capitulo-2,-estudiamos-la-produccion-h +-y en-el-LHC.-Si-bien-este-proceso-
es-interesante- por-si-mismo,- ya-que-todavia-no-ha-sido-observado,-mostramos-que-
también-es-sensible-a-los-acoplamientos-del-bosén-de-Higgs-a-los-quarks-ligeros-de-las-
dos-primeras-generaciones-de-la-materia,-atin-poco-constrenidos-por-las-mediciones-
actuales.- La- produccién-asociada-con-un-fotén-es-cuadraticamente-sensible-a-una-
combinacién-de-estos-acoplamientos,-cada-uno-pesado-por-la-carga-eléctrica-respec-
tiva-de-cada-quark.- La-contribucién-de-los-quarks-de-tipo-up se-ve-asi-potenciada-
en-comparacion-con-la-de-sus-contrapartes-de-tipo-down, proporcionando-una-forma-
Unica-de-distinguir-las-desviaciones-entre-ellos.- Esto-hace-que-h +-y sea-altamente-
complementario-a-otros-métodos-existentes-para-medir-los-acoplos-de-Yukawa-de-los-
quarks-ligeros,-que-a-menudo-son-ciegos-al-sabor-o-sensibles-a-sus-masas-en-su-lugar.-

Centrandonos- en-el- canal-de-decaimiento-h — ¢+ vf~ -del-bosén-de- Higgs,- re-
alizamos-un-andélisis- multivariable-de-redes-neuronales-para-aprovechar-al-maximo-
la- cinemética- de- este- estado- final,- y- derivamos- las- sensibilidades- proyectadas- del-
HL-LHC-a-los-acoplamientos-de- Yukawa-de-los-quarks-charm-y-up.- Resumimos-y-
comparamos- nuestros- resultados- con- otros- métodos- representativos- en-las- Tablas-
2.1-y-2.2,- incluyendo- los- limites- experimentales- que- han- resultado- de- un- analisis-
preliminar-de-h +-y por-parte-de- CMS-[45].- Mientras-que-los-limites- proyectados-
para- k. son-complementarios-a-los-de-métodos-existentes,- probablemente-no-sean-
competitivos-con-los-mas-sensibles-en-la-literatura-para-el-acoplamiento-de- Yukawa-
del-charm.- Este-ultimo-se-beneficia-méas-de-enfoques-especificos-al-sabor,-ya-que-es
el-mas-pesado-de-los-quarks-restantes.- En-cambio,-la-sensibilidad-alcanzable-para-x,,
via-h 4+ se-encuentra-en-el-mismo-orden-de-magnitud-que-otros-métodos-propuestos-
actualmente.- Particularmente- en- este- iltimo- caso,- h +-y podria-ayudar-a-seguir
explorando-la-fenomenologia-del-sabor-en-el-LHC.-

En-el- Capitulo- 3,- dirigimos- nuestra- atencién- a- la- busqueda- de- modos- de- de-
caimiento- exdticos- semi-invisibles- del- bosén- de- Higgs.- Estos- decaimientos- siguen-
estando-inexplorados-en-gran-medida- tanto-desde-un- punto-de-vista-teérico-como-
experimental,-a-pesar-de-constituir-una-prediccién-bastante-genérica-de-muchas-ex-
tensiones- BSM- bien- motivadas,- especificamente- aquellas- que- buscan- proporcionar-
una-explicacion- para-la-abundancia- observada- de-materia- oscura-en-forma-de-sec-
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tores-oscuros.- Concretamente,- nos- centramos- en- el-decaimiento- exdtico- del- Higgs-
h — Z X -siendo-X una-particula-BSM-invisible-que-resulta-en-un-estado-final-semi-
oscuro.- Tales-decaimientos-exoticos-del- Higgs-pueden-ocurrir-en-teorias-de- ALPs,-
fotones- oscuros- o- mediadores- pseudoscalares- entre-el- SM-y-la- materia- oscura.- El-
proceso-del-SM-h — Zvw-representa-un-fondo-de- “suelo de neutrinos”-irreducible-
para- estas- busquedas- de- nueva- fisica,” pero- también- proporciona- una- sensibilidad-
experimental-objetivo-para-ellas.-

Para-buscar-este-decaimiento, nos-enfocamos-en-la-produccion-asociada-de- Z H ,-
lo- que-conduce-a- un-estado-final-4¢ +-f (T) que-se-beneficia-de-una-reconstruccién-
de-energia-pérdida-limpia-y-de-fondos-reducidos.- Implementamos-un-primer-anélisis-
multivariable-de-redes-neuronales- para-identificar-el-bosén- Z producido-por-el-de-
caimiento-del-Higgs,-y-un-segundo-para-discriminar-entre-la-senal-y-los-fondos-rel-
evantes-del-SM.- Analizamos-las-busquedas-de-h — Z +-invisible en-el-LHC- (tanto-
a- luminosidades- actuales- como- futuras)- y- en- un- hipotético- ILC,- y- derivamos- las-
correspondientes-sensibilidades-proyectadas-para-BR(h — ZX)xBR(X — £ (1))-€en-
la-Figura-3.3.- A-luminosidades-actuales,-estos-limites-son-competitivos,-a-nivel-de-
branching ratio,- con-los- que-resultan- de-los- otros- dos-decaimientos-semi-invisibles-
actualmente- buscados-en-el- LHC:-h — ~v +Fp [151-155],-y-h — bb +-Fp [156].-
Mientras-que-el-HL-LLHC-se-acerca-a-poder-sondear-el-suelo de neutrinos del Higgs
(para-mx =-1-GeV sondea-BR(h — ZX)-x BR(X-— F1) = 2.8-x BR(h-toZvv)sm
a 20).- Por-otro-lado,-el-ILC-es-capaz-de-barrer-todo-el-espacio- de- pardmetros-de-
nueva-fisica-en-los-decaimientos-semi-oscuros-del-bosén-de-Higgs-hasta-el- suelo de
neutrinos,” y- seria- capaz- de- encontrar-los- primeros- signos- de- la- evidencia- de- este-
proceso-del-SM.-

Finalmente,-trasladamos-las-restricciones-resultantes-al-espacio-de-parametros-de-
algunas-extensiones-bien-motivadas-mas-alla-del-SM.-Si-bien-las-bisquedas-directas-
de-este-decaimiento-no-pueden-competir-con-los-métodos-mas-sensibles-disponibles-
en- el- caso- de- un- fotén- oscuro- (al- menos- considerando- su- realizaciéon- mas- simple-
a- través- de- mezcla- cinética),- si- son- competitivas- para- el- 2HDM+-a,- donde- existe-
una-fuerte-interaccion-entre-esta-bisqueda,- Higgs signal strengths y-el-decaimiento-
completamente-invisible- del- Higgs- (ver- Figuras-3.6-y-3.7).- Esto-es-especialmente-
cierto- en- el- caso- de- las- ALPs,- dadas- las- suposiciones- discutidas- en- el- texto,- los-
decaimientos- semi-oscuros-h — Za podrian- sondear- una- vasta- region- de- espacio-
de- pardmetros- hasta- ahora- inexplorada- (ver- Figura- 3.5).- Esta- incluiria- la- linea-
favorecida- por-la- relic density,- comprendiendo-la-intrigante- posibilidad- de- que-el-
ALP-pudiera-ser-el-mediador-entre-los-sectores-oscuro-y-visible.-

Por-uttimo,-en-el-Capitulo-4,-exploramos-la-posibilidad-de-que-la-violaciéon de CP-
(CPV)-requerida-para-la-bariogénesis-se-encontrase-activa-en-el- Universo-primitivo-
pero-esté-suprimida-ahora.- Este-escenario-estaria-motivado-por-las-fuertes-restric-
ciones-impuestas-por-la-ausencia-de-momentos-dipolares-eléctricos-a-la-existencia-de-
fuentes-més-alla-del-SM-de-CPV -que-podrian-ser-las-encargadas-de-catalizar-dicha-
bariogénesis.- Al-considerar-interacciones-que-violan-CP-entre-un-sector-oscuro-y-el-
sector-del-Higgs,-la-dindmica-multi-escalar-en-el-Universo-temprano-es-capaz-de-pro-
ducir-un-periodo-transitorio-de-aumento-de-CPV .-Esta-CPV-se-filtraria-luego-hacia-
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el-sector-visible,-permitiendo-que-una-transicién-de-fase-electrodébil-de-primer-orden-
generase-la-asimetria-bariénica-observada.- La-necesidad-de-generar-una-asimetria-
bariénica- neta- evitando- dominios- césmicos- conduce- naturalmente- a- un- candidato-
viable-de- materia- oscura.- A-través- de-esta-transicion- de-fase- de-dos-etapas,- esta-
ultima-se-convierte-en-el-catalizador-de-la-bariogénesis-mediante-sus-interacciones-
que-violan-CP.-

Mostramos-que-esta-estructura-se-puede-acomodar-facilmente-mediante-una-ex-
tensién- del-sector- de- Higgs-en-el- SM,- especificamente,- un- 2HDM- aumentado- por-
un-campo-singlete-escalar-real.- Encontramos-las-regiones-del-espacio-de-pardmetros-
que-son-consistentes-con-lasrestricciones-de-perturbatividad,unitariedad-y-potencial-
acotado-(ver-Figura-4.1)-y-que-conducen-a-un-periodo-en-el-Universo-primitivo-de-au-
mento-de-la-CPV-(ver-Figuras4.2-y-4.2),-mostrando-que-la-historia-térmicarequerida-
conduce-a-un-escenario-predictivo.- Finalmente,-discutimos-resultados-preliminares-
que-indican-que-este-modelo-podria-acomodar-con-éxito-tanto-la-bariogénesis-como-
la-abundancia-de-materia-oscura-observada.- Junto-con-la-posibilidad-de-probar-este-
escenario-en-el- LHC-a-través-de- Higgs signal strengths y-busquedas-directas,-este-
ultimo requisito-lo-someteria-también-a-los-constrenimientos-derivados-de-los-exper-
imentos-de-deteccion-directa- de- materia-oscura,-de-forma- que-ambos-restringirian-
espacio-de-parametros-disponible.-
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