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Chapter 1

Overview

1.1 Introduction

The field of spintronics (”spin-based electronics”) uses the intrinsic spin of charged
particles in a semiconductor nanostructure to carry information, treating it as an ad-
ditional degree of freedom which can potentially enhance the functionality of conven-
tional electronics [288, 309]. Low dimensional quantum structures such as spin-based
transistors, wires and dots may become the basic building blocks of future quantum

storage, computation and information processing technologies [18, 100].

One intriguing property of such systems is the inherent coupling between the spin
of a charged particle and its orbital motion, which can be used as a mechanism to
control the spin properties of a particle using electric fields from metallic gates built
into the device, rather than external magnetic fields [194]. In comparison to electrons,
spin-3/2 holes arising from the valence band possess strong spin-orbit interaction,
due to their non-zero angular momentum and exhibit a rich variety of spin-based
physical phenomena, much of which still remains unknown. There have been compar-
atively fewer studies into GaAs holes compared electron systems, as it was only after
the discovery of modulation doping, that high mobility hole transistors could be cre-
ated [56, 275], and stable, low dimensional nanostructures fabricated. More recently,
hole devices based upon the dopant-free “induced” style of architecture have been

developed [130]. These devices possess even higher mobilities than their doped couter-
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14 1. Overview

parts, as the main source of scattering of charge carriers, off the ionized impurities is
eliminated [104]. Recent theoretical work has also resulted in some exotic and seem-
ingly counter-intuitive predictions unique to hole-based systems, such as: anisotropy
in the Landé ¢ factor [284], anomalous out-of-plane spin-polarisation due to crys-
tal symmetry [284], negative-differential Rashba effect [97] and longer-lived, coherent
spin-states in quantum dots [30, 33]. A number of these results are still incomplete or
inconclusive, and further research is necessary in order to develop a complete theoret-
ical framework and improve our understanding of the complex behaviour of spin-3/2
systems.

This body of work aims to contribute to the field by perform transport measure-
ments on two main types of low-dimensional devices with a focus on p-GaAs semi-
conductors. The first involves a rare demonstration of the anomalous out-of-plane
spin-polarisation in a low-symmetry, high-mobiilty two-dimensional (2D) hole system,
due to the presence of off-diagonal elements in the anisotropic g tensor. In the same 2D
system we also observe for the first time, the presence of the non-abelian gauge field in a
semiconductor system, as a modulation to the phase of the magneto-oscillations in lon-
gitudinal resistivity and demonstrate that these results cannot be reconciled with the
paradigm of abelian Berry phases alone. In the second half of this thesis, we move onto
studying isolated charge and spin transport properties of zero-dimensional (0D) quan-
tum dots. Here we fabricate and characterize quantum dots in the few-electron (hole)
regime, using an induced-style of architecture, which employs a one-dimensional (1D)

quantum point contact as a charge sensor to confirm the last hole has been reached.

1.2 Context and Scope

In this thesis we present studies in two main types of in quantum confined p-type
GaAs/AlGaAs semiconductor systems, with the goal of understanding the behaviour
of spin-3/2 phenomena in low-dimensional systems and the development of new devices
to enable such studies. The thesis content is structured as follows:

The background chapter first introduces the theory behind low-dimensional struc-

tures with a specific focus upon charge and spin transport relevant to the thesis.
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Beginning with a 2D heterostructure and the response of charge carriers to a magnetic
field, followed by conductance quantization in 1D devices and the tunneling of single
charge carriers through a 0D system. Next we briefly introduce the band structure
of GaAs, the material system upon which devices in this thesis are based, with an
emphasis on the valence band. We outline the different spin-orbit mechanisms of holes

and the effect of the crystal lattice symmetry upon the spins of such carriers.

Chapter 3 the fabrication of such 2D heterostructures, briefly comparing the bene-
fits of the induced architecture to doped architectures. An outline of the process-flow

used to fabricate our induced devices is also provided.

Chapter 4 introduces the need for a g tensor treatment of holes in a low-symmetry
GaAs structure and the origin of the anomalous out-of-plane spin polarisation. We
describe the concept behind our tilted field measurement setup to detect this non-
collinear spin polarisation followed by results from our transport measurements which
demonstrate its presence only along the low-symmetry crystal axis. The results are
explained in terms of the interplay between the symmetric and off-diagonal elements of
the anisotropic g tensor followed by details of the subtle complexities of the electronic

band structure of such systems in tilted magnetic fields.

Chapter 5 further investigates the subtleties of spin dynamics in a 2D hole system.
We begin with a brief introduction to Berry phase and its extension into non-abelian
gauge fields and how this general theory can be applied to semiconductor hole systems.
Our transport measurements demonstrate a strong modulation in the phase of the
longitudinal magnetoresistivity, which is indicative of the matrix-valued phase of a
non-abelian gauge field. Furthermore we show that only the non-abelian Berry model
is able to reproduce the coincidence angles of our dataset along 3 different crystal
directions, whilst the abelian Berry model falls short and thus constitutes the first

demonstration of a non-abelian gauge field in a 2D semiconductor system.

To bypass the complexities of a 2D system, Chapter 6 focuses upon isolating a single
spin states by fabricating quantum dots using an induced architecture using 2 designs.
The chapter begins by introducing quantum dots as artificial atoms, highlighting the

challenges faced in creating robust, reproducible quantum dots and how a QPC charge
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sensor can be used to independently determine dot occupancy in the few-N regime. We
fabricate and show preliminary characterization results of a small electron quantum
dot, followed by some modelling in Nextnano+-+ which was used to optimize the
quantum dot and charge sensor design for the hole quantum dot. We implement the
new, optimized design in a hole quantum dot and characterize the dot down to the
last hole with charge sensing. We demonstrate the presence of excited states in both
the dot and charge sensor conductances and some preliminary measurements of the
shell filling of this structure.

The thesis concludes with a summary of the results stemming from this body of

work and address possibilities for future research to be taken.



Chapter 2

Background

2.1 Introduction to low dimensional systems

This chapter briefly introduces the physics of low dimensional systems with a focus
towards the influence of different length scales upon the spin and charge transport
properties of such systems. This is followed by a brief introduction to the GaAs
material system, central to this thesis, with an emphasis on the role of spin-orbit

coupling in hole-based systems.

2.1.1 Dimensionality

The classical picture of transport through a bulk semiconductor treats charges as a ‘gas’
as they are free to travel in all directions and transport is independent of the sample
size. However as the size is reduced, the electronic properties of the semiconductor
become increasingly affected by the shape and size of the sample. The dimensionality of
a system is defined by the number of spatial dimensions in which a particle’s eigenstates
are free to evolve and hence transport charge. Considering the wave-like nature of an
electron with boundary conditions on the wavefunctions, the single particle energy
level spacings are governed by sample’s dimensions L, W, D (where L>W>D) in the
x-, y- and z-directions respectively.

For large samples, the energy levels are closely spaced, appearing as a continuum,

but if the dimensions are made sufficiently small the energy level spacings become

17



18 2. Background

significant, drastically altering the properties of the sample. If D is reduced so that
the level spacings become greater than the level broadening and kg7, electrons are
no longer free to travel in the z-direction. Instead they form a series of discrete
standing waves in the z-component and the semiconductor system is now considered
two-dimensional [22]. The thinner the 2D plane is, the larger the separation between
energy levels. The exact value of D at which the system transitions from 3D — 2D,
Lp, is system specific but is typically around the order of the Fermi wavelength Ag.
If both D and W are comparable to Lp the system becomes one-dimensional, like the
quantum point contacts and wires and energy spectroscopic studies can be conducted
which allow us to measure the energy levels of a 1D system directly [178]. If L is also
comparable to Lp, the system becomes zero-dimensional, as in the case of quantum
dots, where the only way for a particle to travel into and out of the dot is via quantum
tunneling [22, 245].

This thesis covers all 3 lower-dimensional structures starting from spin dynamics
in a 2D hall bar to using a 1D quantum point contact to detect the spin and charge
states of 0D quantum dots. The sizes of 2D GaAs samples considered in this thesis
are typically determined by the Hall bar, with L and W typically in the range of 10x

- 100pm whilst D is around 10nm or less.

2.1.2 Length scales (scattering times)

In the Drude model the probability of an electron undergoing a collision which changes
its momentum within time Atf is At/7. Thus the momentum relaxation length is
l = vpT, where vp is the velocity of an electron at the Fermi energy. Scattering can

be divided into two broad categories:

1. Elastic scattering: where energy and wavelength remain unaltered after the col-

lision.
2. Inelastic scattering: where electron gains or loses energy during the collision.

Elastic scattering processes are predominantly due to Coulomb scattering from

ionized impurities, whilst inelastic scattering processes stem from electron-electron or
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electron-phonon interactions. The total scattering time 7 can be expressed as

where 7. and 7, are the elastic and inelastic scattering times respectively.
In the 2DEG at low temperatures scattering is mostly elastic, i.e. 75, > 7. and

the length scales for elastic and inelastic scattering are:

le = vpTe

lin = Drn (2.2)

where D is the diffusion constant. At low temperatures (T<10K) 7, is temperature
independent and determined by the ionized impurity concentration. On the other hand
as the temperature trends to zero, electron-electron and electron-phonon scattering
rates also tend to zero i.e. T;,—00. Thus [ = [, and is temperature independent.
Nominally obtaining 7 from the measured mobility does not give the total scattering
time 7y~, rather it gives an upper limit, since 7 is only affected by large angle scattering
events which change the electron’s momentum significantly. A more direct measure
of 75~ comes from the Dingle time extracted from the rate at which the amplitude
of Shubnikov-de Haas oscillations grow with magnetic field. This gives the quantum
lifetime of an electron eigenstate in a Landau level [10, 49].

As an electron travels through a 2DEG, it may undergo several collisions and
still retain sufficient phase memory that its coherence needs to be considered. The
phase relaxation (coherence) length l4 is the average distance an electron diffuses
before its phase becomes uncorrelated with respect to its initial value. As phase is
only randomized by inelastic collisions and for a 2DEG 7, > ¢, Iy is related to the
corresponding phase relaxation time 74 by [y = \/Dde, Nominally in a 2DEG Iy = I3,
but sometimes [4 may be larger than /;, as phase memory is not lost immediately after
the collision if the change in energy is small.

These length scales can now be used to identify 3 main conduction regimes in

metallic semiconductors of decreasing size L:

1. Diffusive regime (L > [,): classical transport, similar to that of the free electron
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gas model. Sometimes small corrections due to phase coherence within small

regions of [, may be applied.

2. Quantum coherence regime (I, > L > Iy): classical transport models break down
due to quantum phase coherence and the device must be treated as a complex

quantum mechanical system

3. Ballistic regime (Iy; > L): the mean free path of an electron is longer than the
sample length, so electrons move through the structure without scattering and
can be modelled as a simpler quantum mechanical system. The coherence length

can be simply written as Iy = vpT7y.

If a magnetic field threads through the system, another length scale becomes im-
portant. This is shown by the effect of a perpendicular field upon the 2DEG, where in
the classical picture, electrons (at the Fermi energy Fr) will tend to move in circular
orbits of radius

m*vep VR

. = = 2.3
" eB, We (2:3)

where w, = Pfj is the cyclotron frequency.

If the momentum relaxation length [>r. (i.e. w.7>1 = uB,>1), the electron can
complete one full cyclotron orbit without being scattered, thus entering the magnetic
localization regime. A full quantum mechanical treatment results in an expression for

the spatial extent of the electrons wavefunction in terms of the magnetic length

h 25nm
Ip = _oonm 2.4
B~ VeB. ~ /BT 24)

where a radius of [p encloses one magnetic flux quantum h/e.

2.2 Electron transport in 2D

A 2D system sandwiched between a top-gate and a back-gate can be treated as a
parallel plate capacitor, where applying a voltage to the gate electrode causes charges
to spread over the entire gate layer, inducing an opposing charge across the other

plate. This can be expressed as @ = (nape)A = C(V, — V), where A is the surface



2. Background 21

area of the ‘plates’, nop is the 2D electron density, e is the electronic charge and
Vy — Vr refers to the voltage difference between the gate and the 2DEG. C' = <4 A is
the capacitance over the plate area, d is the distance between the gate and the well,
€0 = 8.854 x 107?F.m~! is the permittivity of free space and ¢, = 13.2 for GaAs.
This voltage gradient can be controlled by the applied voltage to the gate electrode,
where increasing the voltage causes the 2DEG well to become deeper and increases

the number of bound states available for electrons to occupy.

2.2.1 2D density of states

The energy of a heterostructure is governed by the density of states (DOS) and the
Fermi-Dirac distribution, where the density of states depends upon the number of
dimensions in the system. The product of these gives the density of occupied states in
the system, when summed across all available k states within a Fermi circle of radius

kp (i.e. the wave vector at the Fermi energy) [57]:

N = /OO N(E)f(E)dE . (2.5)

The Fermi-Dirac distribution f(E), determines the probability of an energy state
being occupied at a given temperature. At T = 0K, the distribution is effectively a
step function, where all energy states are populated between 0 and the Fermi Energy
Er (energy of the highest occupied state), such that f(E) = 1 within this region and
zero elsewhere:

Ep
N(T =0K) = (E)E . (2.6)
—00
Since the 2D DOS is constant, i.e. it has the same number of available states for

each energy level, so the density of states n(E) per unit area A over the 2DEG, for an

infinitesimal energy range dE can be written as [57]:

n(E) _om’
LB = TodE (2.7)

Where m* is the effective mass and A corresponds to the surface area of the 2DEG.
From this expression it can be seen that the number of states available remains constant

with energy. To find the total density of charges at a given energy, we multiply the
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DOS by the likelihood of occupation and sum over all available energies. For low
temperatures close to 0K we can integrate the DOS up to the Fermi energy, to get the

number of charges per unit area, and the expression for density becomes [57],

_ gsm”*
s = oppe

(2.8)

where g, refers to the spin degeneracy of the electron and at zero field g; = 2.

The corresponding Fermi wavevector and wavelengths are given as

V2 E
kp % = 2, (2.9)
21 2w
Ap = =L 2.10
F kF Ng ( )

Using the model of a parallel plate capacitance, we can infer that when we apply
a voltage across a uniform gate to increase the electron density, the Fermi level in the
2D system will also increase linearly.
2.2.2 Transport in a magnetic field
We now turn our attention to the effects of a magnetic field upon the transport prop-
erties of electrons in a 2D system.
Zero field transport

From the Drude model we can express conductivity as ¢ = nseu. Relating conductivity

to the properties of the sample using the Einstein relation in the degenerate limit,

= %%"E*, in a 2DEG the conductivity becomes
o= 22 _ 2pn,, (2.11)
5E . .

The 2D diffusion constant D in terms of the Fermi velocity vr and the mean free
path [ is given by
1 1

D= QU%T = 5vrl . (2.12)

In 2D ballistic transport however, it is the conductance g (or resistivity p) rather
than the conductivity o (and resistance R) which plays a key role in transport, as

sample resistance is independent of its shape and size. Resistance in units of 2 are
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related to the sample’s length L and width W via a dimensionless quantity R = p%.
Hence the units of resistivity (€2/0) are given in terms of the number of squares covered

by the 2D region and conductance in terms of the conductance quantum 2e¢?/h.

Low field transport (B< 0.1T)

In the semi-classical picture at low fields, the Hall voltage cancels out the average
Lorentz force on the electrons and longitudinal magnetoresistance is negligible. How-

ever, there are 2 corrections necessary to this picture:

e Electron-electron interactions: In the free electron model these tend to be ignored
and if there is no disorder present, no corrections are required. However if a
small disorder potential is present, this resulting correction is a small positive

magnetoresistance [155].

e Weak localisation (quantum interference): If the phase coherence length is larger
than the mean free path [4>>[ it is possible for the path of scattered electrons
to form a phase coherent loop. A zero field enhancement of backscattering
occurs due to constructive interference of the time reversed paths at the entry
point of the loop. A magnetic field introduces a phase shift between the two
paths around the loop, shifting the point of constructive interference around
the loop. Averaging over many of these loops in low fields results in a reduced

backscattering probability due to the presence of the field [4, 151].

In a typical 2DEG the dominant effect is weak localization, resulting in an overall
negative magnetoresistance at low fields. However in some instances, such as parallel
conducting planes or two hole bands with different effective masses within a 2DHG,
a positive magnetoresistance may be observed [99, 190]. In this thesis, such low field
effects can be used to help tune the operating point of our samples, which we discuss

in Section 2.6.3.
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Higher field transport (B> 0.1T)

As mentioned briefly, the classical effect of a magnetic field applied perpendicular B,
to the plane of the 2DEG causes charge carriers to move in circles. At low fields, these
charge carriers scatter before completing one cyclotron orbit, resulting in diffusive
transport. In the case of higher B fields, the magnetic length is reduced and carriers
are able to complete an orbit without scattering, changing the nature of their transport

dramatically.

Effect of the magnetic field upon the density of states

The motion of both electron and hole states in the presence of a magnetic field perpen-
dicular B, to the 2DEG plane, differ for those of an in-plane field B)| - electrons move
in curved trajectories within the plane, normal to B,, induced by the Lorentz force.
As mentioned earlier, the magnetic length scale becomes important. To understand
the quantum mechanical behaviour of such a situation, we start with the Schrodinger

equation with momentum,

p=—ihV —cA . (2.13)

To understand the quantum mechanical behaviour, we can represent the influence

of the magnetic with the Hamiltonian (neglecting the Zeeman term)

_ 1 2
H=5—(p—ecA), (2.14)

where A is the magnetic vector potential. For a perpendicular field B = VAA =
(0,0, B) there are 2 common gauge choices for A: the symmetric gauge 24 = B(—y, z,0)
and the Landau gauge A = (0, B,,0). Although the Schrédinger equation wavefunc-
tions depend upon the gauge choice, the physical observables remain gauge invariant.

Using the Landau gauge, if we assume a plane wave moving in the y-direction, the
Schrédinger equation is reduced to [57]:

o2, 2( hky>2
+-omwl |+ —5

53ty B Y(x) =e(x) . (2.15)

Where the plane wave cancels out on both sides leaving an equation in x only.

This describes the motion of the particle inside a parabolic potential proportional
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to cyclotron frequency squared, perpendicular to the direction of momentum ¥y and
centered around the point xg = % Since the Schrédinger equation is in the form of
a 1D harmonic oscillator, its solution yields energies of the form:

En = (n+ %)m}c . (2.16)

Only certain energy levels are allowed to exist for n = (0,1,2,...). representing
these discrete cyclotron orbits and are called Landau levels. In the presence of a
perpendicular field, each Landau level separates into its two spin components, cor-
responding to two peaks in the SdH oscillations which become more pronounced at
larger fields. Each energy level can be described as follows, where n is the Landau

level index and g* the effective Landé g factor,

*

1
By = huc(n + 5) + %,uBBzUZ . (2.17)

Here energy states of the solution are dependent upon n rather than k, meaning
that states with the same n but different k& are degenerate. This effectively collapses
the 2D DOS to a series of delta functions at these energies, separated by an amount
proportional to B as illustrated in Fig. 2.1b. In a non-ideal system, these delta func-
tions broaden into peaks whose widths increase with temperature and the amount
of scattering shown in Fig. 2.1c. Landau levels are best observed at low tempera-
tures, kT < hw.. Moreover, the number of states within each level n, increases with
increasing B, although the radius of these semi-classical cyclotron orbit decreases.

Fig. 2.2 plots energy over magnetic field, illustrating the effect of these Landau
levels upon the Fermi energy. As the field is increased, the Landau levels spread out
and successively cross through the Fermi energy Efr. In order to conserve charge, both
the Fermi energy and the DOS oscillate with B,. Each of the diagonal lines in Ep
marks the region where a Landau level is being depopulated. Epr tracks the Landau
level to minimize the total energy, until it is empty and becomes more energetically
favourable to drop to the next lowest Landau level (indicated by a dashed vertical line).
At higher fields, the levels are further spread apart in energy, hence the oscillation takes

on a greater change in amplitude. In the case of electrons, the spread of Landau level
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Figure 2.1: Schematic showing the effect of a magnetic field upon the 2D DOS. (a) At
zero field, the DOS remainst constant. (b) In the presence of a perpendicular field, the
DOS splits into a series of discrete Landau levels (assuming no disorder). The dashed
lines mark the positions of these levels without spin splitting, separated by fuw.. (c) In
a real system disorder is present which broadens the levels and creates localized states
along the band edges. Figures modified from Ref. [57].
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12

Figure 2.2: Changing Fermi energy level (thick black line) as a function of perpendic-
ular magnetic foeld in a 2DEG. Initial value of Er = 10meV at zero field. Thin fan
of lines indicates the Landau levels. Reproduced from Ref. [57].

energies is linear in B and cross Er periodically in 1/B, where the number of occupied
Landau levels below the Fermi level is given by the filling factor v = }%2

These oscillations in the DOS set up Shubnikov-de Haas (SdH) oscillations in the
longitudinal resistivity pz, of a 2D system as a function of magnetic field. When the
Fermi energy lies in between two Landau levels, the DOS at that point drops to zero,
hence the conductance at Fr follows suit, dropping to zero. If the Fermi energy is
aligned with one of the DOS peaks, the longitudinal conductivity will correspondingly

reach a maxima. Since the Landau levels cross the Fermi energy periodically in 1/B,

the SAH oscillation period is also periodic in 1/B, and increases linearly with density:

2e  on

Here dn is the difference between two adjacent levels and §(1/B,) corresponds
to the spacing in inverse B between the two peaks, n. Since this periodicity of the
SdH oscillations in B is known, this relation allows us to calculate the density of a
2D system from the frequency of the SdH oscillations. Another method to calculate
density is to take the Fourier transform of the SAH traces.

Just as the longitudinal resistance oscillates with the DOS, so does the transverse
resistance R;,. The classical Hall Effect works when charge carriers move through a

conductor in the presence of a perpendicular magnetic field, they experience a force
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perpendicular to both the direction of current and the magnetic field. The Lorentz
forces cause the charges to curve and accumulate on one side, resulting in a voltage
drop across the width of the conductor, known as the Hall Voltage V.

Classical theory predicts that Vg = —% increases linearly with increasing field,
whilst the longitudinal voltage Vi, = IR = const. remains constant. But in a con-
fined 2D quantum device, both the Hall voltage and longitudinal voltage oscillate, in
phenomena known as the integer quantum Hall effect and SdH respectively, the latter
first predicted by Ando et al. [9].

From the integer quantum Hall effect, plateaus occur when the Fermi energy lies
in between two Landau levels and the DOS at that point drops to zero, which also
corresponds to a minima in the SdH. Similarly, the greatest slope in the Hall voltage
is seen when the DOS peaks at each Landau level, as does the SAH. Hence another
method to determine the density of the 2D system is by taking the slope of the Hall

voltage trace and multiplying it by a quantum of conductance %, resulting in a density

relation nop = e%R%y From this it can be inferred that the number of occupied levels
below Er indicated by the filling factor is v = hZfBD.

These concepts are crucial to this thesis. In subsequent chapters we shall perform
magnetotransport studies in 2D samples, using the Hall effect to align and calibrate
the sample as it is tilted in a magnetic field. Moreover 2D heterostructures provide
a convenient platform from which lower-dimensional structures can be fabricated and

studied.

2.3 Electron transport in 1D: QPCs and wires

A one-dimensional (1D) system can be formed within a 2DEG by lateral confinement
to a narrow channel using a number of techniques. One example involves using electron
beam lithography to etch a narrow channel into the surface of a p+ GaAs cap layer,
which induces electrons at the 2DEG. The base 2D Hall bar structure shown in Fig. 2.3
is created by optical lithography [53] and aligned along the direction which corresponds
to the highest mobility axis of the crystal structure. The 1D quantum point contact

(QPC) is formed by dividing the p+ layer into 3 separate, independently biasable
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Figure 2.3: Microgram of a split gate design Reproduced from Ref. [53, 138]. Etched
dark regions divide the cap into 3 gates; Top Gate, Side Gate 1 and Side Gate 2. The
top gate narrows into a 1D channel in the middel region, on which either side are the
source and drain areas of the 2DEG.

gates.

This standard ‘split gate’ configuration was first developed in GaAs by Thornton
et al. [261], in a modulation doped heterostructure, to define a 1D channel in a 2D
electron gas, where ohmic contact to the 2D regions allow them to act as a ‘source’
and a ‘drain’ on either end of the wire. The width of the 1D channel can be controlled
electrostatically by applying a voltage over the two side gates [53, 138]. To reduce
the amount of scattering experienced by charge carriers moving through the wire, the
length of the split gates and the 1D channel L is reduced until it is smaller than the
mean free path of the carriers and ballistic transport is achieved [142, 277].

If the junctions between the 1D and 2DEG regions are smooth enough, the electron
eigenstates entering the channel will evolve adiabatically from 2D — 1D as a travelling
wave. For N occupied subbands in a 1D channel (assuming no scattering), the total

conductance can be expressed as

I 2¢2
G=——=—N . 2.19
Vep ~ (2.19)

The phenomena of conductance quantization was first discovered by van Wees et
al. [272] and Wharam et al. [277]. Assuming globally adiabatic transmission, the 1D

confinement can be modelled as a saddle point potential [34, 179] and tuned using the

side gates. In this model, transverse 1D subbands are generated in the 1D constriction
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Figure 2.4: Plot of conductance through a quantum point contact (dimensions in
insert) as a function of side gate voltage, exhibiting distinct steps in units of the
conductance quantum. Reproduced from Ref. [272].

as current passes through the constriction. Increasing the bias between the split gates
constricts the channel, squeezing the (parabolic) confining potential and raising the
saddle point up in energy. This allows one to tune the 1D subbands through the Fermi
energy of the 2D reservoir, until only the lowest subband n = 1 is occupied, at which
the channel has reached the 1D limit. Increasing the split gate bias further raises the
n = 1 subband above the 2D Fermi energy and the channel becomes completely depop-
ulated, also known as the ‘pinch-off” point. This results in a staircase-like trace shown

in Fig. 2.4, where each additional subband sequentially contributes to the current.

The phenomena of conductance quantization has allowed experimentalists to per-
form spectroscopic transport measurements to study the behaviour of the individual
energy levels and map out their g factors along different crystal axes [178, 192, 250].
More recently it has been shown that 1D channels also behave as ultra-sensitive charge
detectors, and have been used to independently count the number of charges passing
through a nearby low-dimensional structure such as a quantum dot [76]. In this thesis

we shall use QPCs as charge sensors to study induced few-hole quantum dots.
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2.4 Electron transport in 0D: Quantum dots

A quantum ‘box’ (or ‘dot’) is created within a 2DEG by laterally confining it in both
z- and y-directions, so all edges of the box are smaller than Lp. If the size of the
quantum dot is comparable to the Fermi wavelength of the electrons occupying it, the
system exhibits discrete, bound eigenstates which are zero-dimensional (0D), similar
to those seen in naturally occurring atoms. As a result quantum dots are sometimes
referred to as “artificial atoms” [16, 133].

These small, confined islands of charge are capacitively coupled to one or more
gates, which can be used to tune the electrostatic potential of the dot with respect
to its reservoirs and hence change the number of electrons (occupancy) on the island,
depicted in Fig. 2.5. Transport of charge between the dot and its source and drain
reservoirs can only occur via tunnelling, where the entry and exit tunnel barriers can

be formed and controlled by a pair of quantum point contacts [137, 175, 238].

2.4.1 The constant interaction model

Following from the generalization of charging theory for metallic systems in 0D [17,
20, 183], the constant interaction (CI) model provides a simple picture describing how
electrons in a dot interact with each other and with their reservoirs. The model is
based upon 2 assumptions: (1) Coulomb interactions amongst electrons and those in
the surrounding environment can be parameterized by a single constant capacitance
Cs;, which is the sum of capacitances between the dot and the source Cg, drain Cp
and gate Cg, i.e. Oy = Cg+ Cp + Cg. (2) The single-particle energy (AFE) level
spectrum is independent of these Coulombic interactions and hence independent of
the number of electrons on the dot. A schematic representation of a lateral quantum
dot is given in Fig. 2.5a, and its equivalent circuit diagram in (b). For more details on
the constant interaction model refer to reviews [101, 150].

Based upon the two main assumptions of the CI model, the total energy of a dot

U(N) possessing N electrons in the ground state can be expressed as

N 2
—le|(N — N, by
U(N) = ZE” " [—lel( 0) + Cs;/g+ CpVp + XC, V] ' (2.20)

n=1
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Figure 2.5: Schematic picture of a lateral quantum dot. (a) Depicts tunneling of a
charge particle from the source reservoir onto the island and off into the drain reservoir.
(b) Equivalent circuit diagram showing the capacitive coupling between the reservoirs
and the dot as well as the metallic gates to the dot. Adapted from [101, 237].

The first term is a discrete sum over all occupied single-particle energy levels E,.
In the second term, e is the electronic charge, N — Ny is the number of electrons,
where Ny corresponds to the dot’s state at zero gate bias. The remaining terms CsVg,
CpVp and CyV, can be continuously varied and represent an effective induced charge
that changes the electrostatic potential defining the dot [101].

From this, we can derive the ground state electrochemical potential energy of the

dot u(N), i.e. the minimum energy needed to add the Nth electron to the dot as

1(N)

UWN)-U(N-1)
= (N — No — ;) E. — ’E(;T(CSVS +CpVp +2C,Vy)+ E,, (2.21)
where E, = ¢?/C is the charging energy and the first 2 terms constitute the elec-
trostatic part, whilst the last term is the ‘chemical part’ [101]. More specifically, p(NV)
denotes the transition between the N-electron ground state GS(N) and the (N—1)-
electron ground state GS(N—1). The electrochemical potential is linearly dependent
upon the gate voltage, whilst energy has a quadratic dependence. This dependence is
the same for all IV, thus enabling the whole ‘ladder’ of electrochemical potentials to

be shifted whilst keeping the distance between levels constant [101].

The difference in the electrochemical potentials of transitions between successive
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ground states is referred to as the ‘addition energy’ Fyqq

Eadd PN +1) = pu(N)

= UN+1)—2U(N)+U(N —1)
= FE.+Eny1— En

= &?/C+AE . (2.22)

The addition energy consists of a purely electrostatic part (the charging energy
E.) plus the single particle energy level spacing AFE between two discrete quantum

levels. The single particle level spacing can be approximated as

~ 2k

AE= (2.23)

where m™* is the effective mass, A the dot area. In the case of a large quantum dot,

AE—0 and so Eoaa = 62/02.

2.4.2 Single electron transport and Coulomb blockade

Electron tunnelling relies upon the alignment of the dot’s electrochemical potentials
with respect to those of the source ug and the drain pup. By applying a bias voltage
between the source and drain reservoirs Vgp = Vg—Vp, an energy window of yug—pup =
—le|Vsp is opened, known as the ‘bias window’. From the perspective inside the bias
window, electron states in one reservoir ug appear full, whilst the other up appears
empty. So when an appropriate dot electrochemical potential level falls within this
bias window ps > p(N) > wup, electrons can tunnel from one reservoir, onto the
dot and off into the empty states of the other reservoir, as illustrated in Fig. 2.6b.
If no electrochemical potential falls within the window, tunneling cannot occur and
no current flows. This condition is known as Coulomb blockade and is depicted in
Fig. 2.6a.

If the temperature is negligible compared to the energy-level spacing AE > kgT,
the size of the bias window creates 2 different transport regimes; the low bias regime

and the high bias regime.
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Figure 2.6: Schematic of electron transport in different quantum dot biasing regimes.
(a,b) Show the low-bias regime - the bias window set by ug and up is large enough
to accommodate only a single dot level. In (a) no dot level falls within the source-
drain bias window and transport is blockaded. The occupancy of the dot is fixed at
N —1. In (b) one dot level p(N) falls within the bias window, the occupancy of the dot
alternates between N and N + 1 and single-electron transport occurs. The magnitude
of the current is dependent upon the tunnel rate between the dot and the source I'g as
well as the dot and drain I'p. (c) Schematic plot of dot current as a function of gate
voltage, showing the alignment of scenarios (a) and (b). Panels (d,e) illustrate the
electrochemical potentials of the dot in the high-bias regime, where transport through
an excited state is marked in green. In (d) Vsp > AE and electrons can tunnel
through 2 dot levels. In (e) Vgp > Egqq for N electrons, and we enter the regime of
double-electron tunneling. Figures reproduced from [101].
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Low-bias regime (—|e|Vsp < AE, Eyqq)

This regime is similar to the situation described previously, where only one dot level
falls within the bias window at most. This results in single-electron tunneling, from
the source to the dot (increasing the number of electrons on the dot from N to N +1)
and out to the drain (after which another electron is free to tunnel onto the dot) as
per Fig. 2.6b. In this transition the number of electrons on the dot oscillates between
N and N + 1 and the magnitude of the current is determined by the tunnelling rates
through the source I'g and drain I'p, which are limited by the thickness of the barriers.

As gate voltage is swept, and current through the dot (I4,;) measured, a series
of peaks are obtained known as Coulomb blockade oscillations, shown in Fig. 2.6c.
At a peak position, a dot level corresponding to transport between 2 ground states
falls within the bias window and single-electron tunneling current flows. In between
peaks, the number of electrons on the dot remains fixed as current is blockaded. By
tuning the gate voltage Vj, the occupancy of the dot can be precisely controlled. The
capacitance ratio of the gate to the dot known as the ‘leverarm’ o = Cy/Cy, can be

extracted from the distance between adjacent Coulomb blockade peaks

1\ Cx e?
AV, = |- ) =< AF + — . 2.24
Yo <e> Cy { - CE} ( )

There are 2 main conditions required to observe Coulomb blockade. Firstly the
number of electrons in the dot must be well defined, implying that the energy uncer-
tainty of an electron due to its dwell time on the dot should be smaller than the charg-
ing energy (Ag,t < E¢). Secondly, the thermal distribution of charges near the Fermi

level in the leads must be much smaller than the charging energy (i.e. kT < E.).

High-bias regime (—|e|Vsp > AE and/or E,qq)

Bias window is large enough to allow multiple dot levels to participate in electron
tunneling. For example, if Vgp is increased so that an excited state (ES) transition
falls within the bias window, there are two paths available for electrons to tunnel
through the dot Fig. 2.6d. How the current changes depends upon the tunnel coupling

of the 2 levels involved. Increasing Vsp even further such that the bias window is
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Figure 2.7: Schematic representation of a high-bias measurement. (a) Energy levels for
N electrons U(N) and N+1 electrons U(N+1), where possible transitions of GS and
ES are indicated using arrows. (b) Corresponding electrochemical potential ladder for
the transitions given in (a). (c¢) Schematic map of differential conductance dlj,:/dVsp
over source drain bias versus gate voltage, for the transitions between occupancies
N < (N+1). The alignment of the chemical potentials of the source, drain and dot
levels for different configurations of Vgp and V; are given. Figures adapted from [101].

larger than the addition energy, allows the occupancy of the dot to alternate between

N—1, N and N+1, leading to a double-electron tunneling current shown in Fig. 2.6e.

Fig. 2.7a,b maps out the transitions between two successive ground states GS(N)
and GS(N+1), and excited states ES(N) and ES(N+1) to energy, which are sep-
arated from the GSs by AE(N) and AE(N+1) respectively. These transitions in-
clude the ground state transitions GS(N) < GS(N+1), and 2 excited state transi-
tions GS(N) <» ES(N+1) and GS(N+1) <» ES(N), where the transition between
ES(N) <» GS(N+1), is lower in energy than the transition between the 2 ground

states. In this figure we leave out the excited state transitions for simplicity.

Such behaviour allows us to perform source-drain bias spectroscopy measurements
to map out and study the individual energy levels of the quantum dot. A plot of
differential conductance dlg.:/dVsp as a function of Vgp and Vi, shows a splitting
of the ground state for Vgp # 0 (solid black lines forming a ‘V’ shape), shown in
Fig. 2.7c. If the drain is grounded i.e. Vp = 0V, as Vgp is varied, only the source
potential changes and the two slopes can be described as —eCy/(Cx. —Cg) and Cy/Cs.
For the positive slope of the black line, g, is fixed at the dot level corresponding to

transition GS(N) <+ GS(N+1) is aligned with the drain electrochemical potential
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Figure 2.8: Source drain bias spectroscopy schematic showing Coulomb diamonds
in green. The pink regions correspond to regions of single-electron tunneling (SET)
and further out, regions of double-electron tunneling (DET) are also indicated. The
addition energy E,qq = AFE + ¢?/Cx, can be extracted from half the diamond height,
whilst the single particle level spacing AE comes from the distance between the V,
axis and the intersection of the ES line (blue) with the GS diamond edge.

up lead as the source electrochemical potential pg increases in energy. Conversely,
following the negative sloped black line, the same GS transition is aligned with the

source lead and changes in energy together with the source lead.

The intersection between the blue ES and black GS lines marks point where the dot
level ES(N+1) aligns with the source lead allowing transition ES(N+1) <+ GS(N)
to occur. Likewise, at the corresponding section between the orange and black line
ES(N) aligns with the drain lead and the transition between ES(N) <+ GS(N+1) is

allowed.

In Fig. 2.8 the ground states which split as a ‘V’-shape are extended to form a
series of diamond-like fully blockaded regions in dl4./dVsp in the Vsp vs V; map.
The orange regions indicate where single electron tunneling occur in the higher-bias
regime. The addition energy F,5q = AE + ¢?/Cyx can be extracted from half the
diamond height and the single particle level spacing AFE from the vertical separation
between the V; axis and the intersection of the ES line to the diamond GS edge. The

gate coupling factor can also be calculated from o = Eqqq/Vj.

Such transport measurements in the different bias regimes can be used to map out

the energy spectra of a quantum dot. These techniques will be employed later in this
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thesis to characterize induced quantum dots.

2.5 Electronic band structure of GaAs

We shall now turn our attention to the band structure of GaAs with a focus upon the
unique, complex properties of holes in valence band. We shall highlight the effects of
spin-orbit coupling in holes travelling through the lattice and briefly touch upon the
role crystal symmetry plays in the spin response of these holes to the presence of an

external magnetic field.

2.5.1 GaAs bulk 3D valence band structure

One way to understand the electronic band structure of bulk (3D) semiconductors, is to
use the k - p method [131, 284] which can be derived from the Schrédinger equation for
a Bloch function, with a periodic crystal lattice potential Vj(r), to describe interactions
of the charge carrier as it moves through the lattice. The Schrédinger equation for an
electron in state n, with wave function v, ; can be expressed as

{p2 i vo<r>} b = Bn(k) (2.25)

2m0

where the wave vector k lies within the first Brillouin zone such that |k| < 27/a,
where a is the lattice constant, p = —iAV the momentum operator and mg the free

electron mass. In Bloch notation the wavefunction is

U = € U 1 () (2.26)

such that ™7 is the plane wave and w, x(r) has the periodicity of Vy(r). Sub-
stituting this back into Eq. 2.25, we get the Schrédinger equation for the periodic
function w, 1 (7):

2 27.2
P h°k h
Vi L k. nk = En n 2.2
{Qmo o(r) 2mg mok p}iﬂ ok (k)y ok (2.27)

A popular method to describe charge carriers travelling through a crystal lattice
in the presence of electric and magnetic fields that vary slowly over the length scale

of the lattice constant, is to generalize k - p theory in terms of the envelope function
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approximation (EFA). These fields can be internal or externally applied via metallic
gates or external magnets. To accommodate these, the Schrodinger equation [from
Eq. 2.25] can be extended to

{ (—ihV + eA)?

2o + Vo(r)+V(r) + N o - B} Un k(1) = En(k)tnk (2.28)

2

On top of the original crystal lattice potential V(7), there is an additional slowly

changing potential V' (r) plus a vector potential A=A (r) which gives rise to a magnetic

field B = VXA. up = 22730 is the Bohr magneton and gg is the g factor for a free
electron. In second-order Lowdin pertubation theory, using the simplest description
of non-degenerate, isotopic, parabolic energy bands, gives rise to an effective-mass
Hamiltonian (without SO interaction, but with spin) [284]:

(—ihV +eA)?

= 2m0

FV(r) + %OMBU .B (2.29)

Electrons in the nth energy band are treated like free particles possessing an ef-
fective mass m* and an effective g factor g*, moving within an external potential
V(7). However the simple effective-mass approximation (EMA) cannot account for
the complexities of holes in the valence band.

For most applications of the k - p method, we are interested only in a few adjacent
bands, where we want the FE, (k) dispersion relations close to the vincinity of the
k = ko expansion point, and all remote bands are considered via Lowdin pertubation
theory. By using a matrix of eigenfunctions at the I' point kg = 0, Kane extended the
k - p method to solve the Schrodinger equation, where the accuracy of the calculations
is limited by the number of energy bands considered. Models such as the 4 x4 Luttinger
Hamiltonian [173] provide an adequate description close to the k = 0 band edge (which
is adequate for most low temperature transport measurements). For a more accurate
treatment at finite k, the ‘extended Kane model’ can be employed, which uses higher
order matrices for greater accuracy. The resulting dispersion curves for GaAs obtained
by using a 24 x 24 matrix are depicted in Fig. 2.9.

Despite being at the I' point, the valence (I's, I'7) bands exhibit more complex be-
haviour than the conduction (I'¢) bands. This is due to the phenomenon of spin-orbit

(SO) coupling. Charge carriers in semiconductors possess an intrinsic spin angular
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Figure 2.9: 24 x 24 k - p calculation of the GaAs dispersion relation, plotted as a
function of wavevector where k = 0 at the I' point. Image reproduced from Ref. [37].

momentum, which interacts with the electrostatic potential from atoms in the crys-
tal lattice. Spin-orbit can be introduced into the Hamiltonian via a nonrelativistic

approximation to the Dirac equation [284], resulting in the Pauli SO term [131]

Hso [VVo x p] - o (2.30)

= W(Q)CQ

where h is Planck’s constant, mg is the mass of a free electron, c is the speed of
light, p is the momentum operator, Vj is the Coulomb potential of the atomic cores
and o = (04, 0y,0) is a vector of the Pauli spin matrices.

A schematic band diagram for bulk GaAs zinc blende semiconductor with a direct
band gap of F, = 1.52eV is illustrated in Fig. 2.10a, which assumes parabolic bands
close to k = 0 for simplicity. At the I" point, the Bloch wavefunctions of the valence
band edge (defined to be at £ = 0), have the same symmetry properties under Ty
group operations as p—like atomic orbitals, and are six-fold degenerate at k = 0.
On the other hand, the conduction band edge is s—like in nature with a two-fold
degeneracy. When spin-orbit is introduced (in Fig. 2.10b), the conduction band states

simply split into spin s = 4+1/2. Since their orbital angular momentum [ = 0, there
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Figure 2.10: Schematic parabolic dispersions of GaAs showing the effect of reduced
dimensionality for (a) Bulk 3D without spin, (b) 3D with spin-orbit interaction, (c)
2D with spin-orbit.

is no direct SO coupling to the spin states and SO interaction can only take place
via the valence band [154]. This leads to a weak SO interaction for electrons in large
band gap materials like Si, GaAs and stronger SO for narrow band gap materials
like InGaAs [178]. However, since [ = 1 in the valence band, the I' point six-fold
degeneracy is lifted into: (i) a four-fold degeneracy whose states are described by a
total angular momentum J =1+ s = 3/2 (I's in Fig. 2.9), (ii) a separate J = 1/2
doublet known as the ‘split-off band’ (I'; in Fig. 2.9) which is generally ignored in
transport measurements as a large SO gap A, = 0.341eV in GaAs, means the split-off
band remains unoccupied at low temperatures. At larger non-zero values of k, the
four-fold degeneracy is lifted to form two distinct bands: heavy-holes (HH) with a
m; = £3/2 (projection onto J) and light-hole (LH) with m; = +1/2. The terms
‘heavy’ and ‘light’ stem from the inverse relation between their effective masses and

. 2 j—
curvature of their energy bands m* = 7 - [‘;T‘QE] !

2.5.2 2D confinement

When a 3D system is spatially confined into two-dimensions (2D) such as in a quantum
well, the energy bands become quantized into a series of discrete standing waves along
the quantum well and the four-fold degeneracy of the uppermost valence band is lifted
(Fig. 2.10c), resulting in a k = 0 splitting between the heavy-hole and light-hole bands

Ajp—pn, where only the lowest energy hole band (i.e. heavy-holes), are occupied at
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low temperatures [284]. Moreover, the different m* values of the light- and heavy-hole
bands, introduces extra complexity to the spin behaviour, such as anticrossings at
larger values of k [192].

This k = 0 spin splitting defines a natural quantization axis of angular momentum
J along the growth direction (z-axis), perpendicular to the 2D plane of the quantum
well. Due to the non-zero orbital component of the heavy-hole states, the SO interac-
tion results in the spin axis of the heavy-holes J being locked perpendicular to the 2D
hole plane, leading to a spin projection of m, = £3/2 onto the z-axis. The amount
of HH-LH splitting determines the degree of HH-LH mixing and other SO phenomena
such as asymmetry induced B = 0 spin splitting, become higher order effects which

compete with the HH-LH splitting [284] as discussed in the following sections.

2.6 Spin-orbit interactions: Inversion asymmetry and B =

0 spin splitting

Inversion symmetry results in a two-fold degeneracy, E (k) = E_(k) [284]. However
if charge carriers move within an inversion-asymmetric potential, the spin degeneracy
is lifted even without a magnetic field, producing a B=0 spin splitting between two
separate energy dispersion bands E (k) and E_(k). In a quasi-2D system there are
two main sources of inversion symmetry: bulk inversion asymmetry (BIA) of the
underlying crystal lattice structure, and structural inversion asymmetry (SIA) in the
confinement potential of the quantum well [284]. Both BIA and SIA vary depending
upon the material, density and geometry of the sample and will be discussed in the

following sections.

2.6.1 Bulk inversion asymmetry (Dresselhaus spin-orbit)

The zinc blende crystal structure of GaAs is non-centrosymmetric (i.e. lacks a center of
inversion), resulting in the presence of BIA spin spitting, also referred to as Dresselhaus
spin splitting [63]. BIA depends only upon the crystallographic orientation of the

heterostructure (i.e. varies with k), and is independent of any external fields.
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In a bulk 3D zinc blende semiconductor, BIA spin splitting can be regarded as the
result of an effective magnetic field upon the spin of an electron, where the electron
precesses around this field with an effective momentum dependent Larmor vector €.
In this framework BIA spin splitting (or the Dresselhaus term) for electrons can be

expressed as [19, 63]

Q1alk) =

St

(ko (K — K2), ky (k2 — k2), k(K2 — k)] (2.31)

Here 7 is the Dresselhaus coefficient and k = (k;, ky, k) is the electron wave vector
in 3 spatial directions. For electrons in a 2D quantum well, where k along the growth
axis z is quantized, the form of the Dresselhaus term depends upon the direction of
the in-plane crystal axes. For example the effective field for the high symmetry (100)
direction is

Qpra(ky) = 3 (k2) (ko +ky,0) (2.32)

where (k?) is the averaged squared wave vector along the growth direction and k

is the in-plane wave vector. The corresponding Hamiltonian can be expressed as [284]:

"= %<k§)(k+a+ ko) (2.33)
where ky = k; = iky, 04 = g\/g'y and are the corresponding 2 x 2 Pauli spin

matrices.

In the case of 2D holes in the valence band, grown along the high symmetry
(100) direction, the 2 x 2 Pauli spin matrices are replaced with a 4 x 4 total angular
momentum matrix J. Due to the extra complexity of spin-3/2 holes, the BIA term

becomes cubic in k£ [33] and the Hamiltonian becomes:

H - B(k*kJrk*JJr - k’+l€7k'+<]7) (234)

where the coefficient g = 37,;"’ < L > [33]. Here 7y is the Luttinger parame-

2monAip—nhh

ter [172], ~y is the Dresselhaus coefficient, mq the free electron mass, n = Ag/(E4+ Ao)
where Ay is the split-off gap (in Fig. 2.10) and Ay,_pp is the HH-LH splitting.

The BIA SO interaction can be controlled by selecting the crystal orientation along
which the length and width of the heterostructure is fabricated and the amount of HH-

LH splitting (admixture) can be controlled by the width of the quantum well. But
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once the heterostructure is grown, the Dresselhaus effect remains fixed and cannot be

tuned.

2.6.2 Structural inversion asymmetry (Rashba spin-orbit)

Another source of zero-field spin splitting comes from asymmetry in the confinement
potential due to the presence of an electric field, known as structural inversion asym-
metry (SIA) or the Rashba SO interaction [35]. This electric field £ can be either
built into the sample during growth, (such as a layer of dopant atoms within the het-
erostructure) or later applied by an external electric field e.g. using metallic gates
deposited onto the sample, which allows one to tune the SIA spin splitting, unlike
BIA which is a fixed material property [168, 194, 204].
The general first order Rashba SO Hamiltonian for electrons in the conduction
band is [284]:
H=cao-(kxe) (2.35)

where ¢ is the electric field vector characterizing the confining potential, k is the
wave vector, o = (04,0y,0,) refers to the Pauli spin matrices and « is a material
specific prefactor for GaAs. From the reference frame of an electron moving within
an electric field, Rashba SO appears as an effective magnetic field which can interact
with the spin of the electron. Hence Eq. 2.35 takes on a similar form to the Zeeman
Hamiltonian when the effective magnetic field k x e is substituted with B.

In a 2D system, where electrons are confined to move within a plane k|| = (kz, ky, 0),
only an electric field applied perpendicular to the growth direction can contribute to

STA spin splitting and the Rashba term becomes [283]
H=oac,i(k_oy —kio_) (2.36)

Where « is a material dependent prefactor and e, is the (effective) electric field.

From the reference frame of an electron, this can be expressed in a Zeeman form [286]
1
H= §B(k:||) o (2.37)

where B(k|) = 2ace,(ky, —kz,0) is an effective magnetic field such that B orients

the electron spin along the 2D plane. The corresponding energy dispersion relation



2. Background 45

461
391
o
g
&
32
25
0.0 02 0.4 06 08 1.0

B(M

Figure 2.11: Beating pattern in the SAH oscillations due to the presence of two distinct
spin subbands for 2D electrons in an InGaAs quantum well [55].

can be expressed as:
h2kﬁ
Eyi(k)) = o + aeg.k) (2.38)
The Rashba SO yields an additional kj-linear term, resulting in the loss of spin
degeneracy and a lateral shift between the two bands in k, rather than in energy.
The Rashba spin splitting behaviour of spin—1/2 electrons, is weak in wider band
gap materials such as GaAs [154] but stronger in narrow gap semiconductors such as

InGaAs.

The end result is two unequal spin populations N for the 2 spin subbands at zero
magnetic field where Ny, = N4 + N_ is the total carrier population [68, 252]. This
effect has been observed in transport measurements as a pronounced beating pattern
in the Shubnikov-de Haas (SdH) oscillations in electron systems with strong SOI, due
to the superposition of two frequencies fi close to each other, where Ni = 55 fo.
This beating was first studied by Das et. al. [55] in an InGaAs/InAlAs heterostructure

at low fields, shown in Fig. 2.11.

For the case of 2D hole systems the Rashba spin splitting is more complex and
the Pauli spin matrices o need to be replaced by the 4 x 4 total angular momentum

matrix J = (J, Jy,J.). The general Hamiltonian for a perpendicular electric field
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vields [283, 286]

H = Be.i (k> Jy — k3 J) (2.39)
where Jy = JIL\/%J%‘ To lowest order, the spin splitting dispersion now becomes [284]
Ex(ky) o< 02k} . (2.40)

The orbital component in hole spins results in a SIA spin splitting proportional to
kﬁ) which is qualitatively different to the kj-linear case of electrons [286]. Moreover the
prefactor § is dependent upon the HH-LH splitting, which in turn depends upon the
geometry of the 2D quantum well. Using third-order pertubation theory, the following
expression for the prefactor of the first heavy-hole subband can be obtained [97],

4
P 1 /1 1 1
10 = —avy3(v2 +3) [ ( — + , (2.41)
my AR NAY A ) AMAR

where a = 64/972 for an infinitely deep rectangular quantum well and A™ is the
HH-LH splitting.

The definition for the effective magnetic field B given in Eq. 2.37 remains valid
for holes, and its tendency is to orient the holes in-plane. But due to the presence of
HH-LH splitting (since the spin axis of the HHs are locked perpendicular to the 2D
plane whilst the spin-1/2 LHs maintain a kj-linear relation like electrons), the Rashba

zero-field spin splitting becomes a higher order effect [286].

2.6.3 Tuning Rashba spin-orbit interaction

The tunability of the magnitude of the Rashba SO interaction, provides an important
experimental handle in the study of spin dynamics. It provides the capability to change
the shape of the confining potential and in some circumstances, even allows for the
compensation of the nominally fixed Dresselhaus SO interaction, enabling other subtle
spin-orbit physics to be highlighted. We shall use a similar technique in our study of
a 2D hole system later in this thesis.

Zero-field spin splitting due to the lifting of Kramer’s degeneracy in the absence of
inversion symmetry in a GaAs single heterojunction interface (which yields a roughly

triangular confining potential) was first observed by Stormer et al. [252], as a beating in
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Figure 2.12: Top panel shows the SdH trace for a triangular confining potential made
from a single heterojunction interface, exhibiting a distinctive beating pattern due to
the presence of inversion asymmetry. The bottom panel shows a corresponding SdH
trace for a symmetric quantum well, where only a single frequency is resolvable [68].

the Shubnikov-de Haas oscillations. This was attributed to the presence of two carrier
species with two different effective masses, resulting in two distinct Fermi surfaces

contributing to the 2D transport at two separate frequencies.

This was followed shortly after with a study by Eisenstein et al. comparing the
effect of a single heterojunction to a symmetric square well made by joining two equal
but opposite interfaces together [68]. Fig. 2.12 shows the results for the two scenarios
in a perpendicular field at similar carrier densities (4.7 — 4.8x10em=2). The SdH
oscillations for the triangular well exhibit a distinct beating pattern, indicative of
two frequencies, whilst there is no resolvable beating in the case of the symmetric
square well. The frequencies of the oscillations at low field were extracted, 2.4 for
the triangular well, and 0.98 for the square well, suggesting near zero splitting for the
latter [68]. Moreover the relative spin populations were found to be independent of
the magnetic field, implying the presence of spin splitting at B = 0T right from the
beginning.

The ability to tune Rashba spin splitting via an electric field across the 2D sys-
tem, was first demonstrated by Wieck et al. [278] in a p—channel Silicon metal-oxide-

semiconductor structure, followed shortly by Lu et al. in a GaAs hole system [168].
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This study was taken further by Papadakis et al. [204], whose device featured metal
gates deposited on both the top and back of the sample, allowing the electric field across
the quantum well to be varied, whilst keeping the density constant. SAdH oscillations
were then measured over a series of different front/back gate voltage combinations,
whilst the electric field was adjusted from positive to negative. The SAH oscillations
for each setting of the electric field are shown in Fig. 2.13a [204]. Panel (b) gives
the Fourier transform of the corresponding magnetoresistance trace, highlighting the
presence of two spin species as two distinct frequencies. Panel (¢) roughly illustrates
the corresponding confining potential shape over the quantum well. When the electric
field across the well is positive, a clear beating in the SdH and two spin subbands are
seen (top datasets) and likewise for a negative electric field (bottom datasets). When
the front /back gate bias voltages are adjusted such that there is a net zero electric field
across the quantum well, no beating observed is observed and there is only a single

spin degenerate heavy-hole band (middle traces).

2.7 Zeeman spin splitting

The Zeeman effect was discovered in 1987 [301], and describes the splitting of a de-
generate spin state in the presence of a magnetic field. For electrons in bulk GaAs,

the Zeeman Hamiltonian is:

*

M= %MBB o (2.42)
where the isotropic bulk effective Landé g factor is g* = —0.44 for electrons, up is

the Bohr magneton and o = (0,,0,,0;) are the Pauli spin matrices. When confined
to 2D, subband quantization causes the g factor to decrease and the Hamiltonian can
be expressed in its components

9 9z
H= o 1B (Byoy + Byoy) + ?,uBBZUZ (2.43)

As the 2D quantum well becomes narrower, the g factor becomes smaller and even-
tually changes sign [284]. Moreover the reduced symmetry of a 2D system compared

to bulk, leads to the out-of-plane Zeeman spin splitting arising from coupling between
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Figure 2.13: Tuning the Rashba SO over a 20nm GaAs quantum well at a temperature
of 25mK. Figure reproduced from [204]. (a) Oscillations in magnetoresistivity as a
function of perpendicular field, taken at different front/back gate biases along the
[011] (top) and [233] (bottom) directions. (b) Corresponding Fourier transforms of
the SAH oscillations showing 2 distinct frequencies for asymmetric confining potentials
and only one for a symmetric well (¢) Schematic of the shape of the confining potential
corresponding to the 3 main biasing conditions, with the symmetric condition in the
middle.
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Figure 2.14: Theoretical plot of the electron ¢g* over quantum well width, exhibiting a
slight anisotropy [284].
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Figure 2.15: (a) Two-fold spin degenrate subband in the absence of a magnetic field.
(b) When a parallel field is applied the Zeeman effect causes the bands to split by
AFE = g*upB and become spin polarised [284].

adjacent energy bands, and hence g, is larger than the in-plane gl’T. The variation of
the two g* components are presented for a range of well widths in Fig. 2.14 [284].

For a quantized 2D system in the absence of a magnetic field, the subbands are spin
degenerate, equally occupied and no spin-polarization is present, shown in Fig. 2.15a.
When an in-plane field B is applied, the bands split by an amount proportional to
the field, increasing the number of occupied states in one spin subband and decreasing
the number of occupied states in the other (illustrated in part b). An electron system
is considered fully spin polarized when the Zeeman energy from an in-plane magnetic
field is greater than the Fermi energy i.e. g*ugB > EF.

This results in two distinctly different areas covered by the Fermi circle for each

spin subband. Since the total carrier density must remain constant, the Fermi energy



2. Background 51

adjusts itself as one spin subband becomes depopulated, and the system becomes
fully spin polarized. By measuring the energy splitting between the subbands, we
can calculate the effective g factor and hence characterize the spin properties of the

System.

2.7.1 Zeeman splitting in 2D holes

Similar to the electron case, using a first-order approximation the Zeeman splitting for
bulk holes is isotropic, where g* is equivalent to the Luttinger band parameter k = 1.2

in GaAs [284]. The general Zeeman Hamiltonian to lowest order is
H=—2kupB-J (2.44)

where the quantization axis J, is determined by the momentum k. Holes in a quantum
well, have a pre-defined quantization axis J. perpendicular to the 2D plane, when a
magnetic field is applied along J., we get a large Zeeman splitting of heavy hole
(HH) states. The most commonly accepted value for the out-of-plane hole g factor
is [271, 284]:

gl — 6k =172 (2.45)

This out-of-plane g factor applies to 2D heavy-holes in GaAs for any crystal growth
direction. However, in the case of in-plane Zeeman splitting, the growth direction
becomes important due to crystallographic anisotropy, and higher order terms in the

Hamiltonian are required to fully describe the underlying physics.

2.7.2 In plane Zeeman splitting for 2D heavy holes on high symmetry

growth directions

When an in-plane field B = (B, By,0) is applied, at the band edge there is no
direct coupling between HH states as they remained locked to J., meaning there is

no Bj-linear Zeeman splitting term. The lowest order term is proportional to Bﬁ’ at

k:” =0:
3

B
AB() x —— (2.46)
HH—-LH
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This yields an effective in-plane g"‘k ~ 0 for heavy-holes. However this is only applicable
at the k| = 0 band edge. At finite k|, HH-LH mixing results in a non-zero g factor

and we obtain a linear Zeeman splitting at kj > 0 [284]:

2
ki B

AE,(||) x ———
S ye—

(2.47)

2.7.3 Experimental review of hole g factor anisotropy in high-symmetry

GaAs

The anisotropy of hole g factors, was first discovered by van Kesteren et al., whose
measurements on optically excited electron-hole pairs (excitons) for different quantum
well thicknesses grown on a high symmetry (100) GaAs crystal, yielded values of g}, =
2.5 and g3, = g, < 0.01 [271]. Measurements of the g factors in confined excitons have
also been conducted using photoluminesence [88, 230]. These measurements exhibit
a large variation in the out-of-plane g factor, —0.7 < ¢, < 2.9, and are much lower
than the theoretically predicted value of 7.2. This discrepancy has been attributed to
the bound state of the exciton which is effectively zero-dimensional, thus suppressing
the in-plane momentum. On this basis, excitons are not a good representation of a
2D system. Faraday/Kerr rotation experiments [152, 255] also yield small values of
gs,, due to admixing between the HH and LH exciton states which can dramatically
reduce the g factor [255].

Other studies of GaAs g factors include transport measurements of the out-of-plane
bulk ¢ factor using 2D devices [201, 282], quantum point contacts (QPCs) and 1D
quantum wires where the quasi-1D channel width has been widened to reach higher
subband indexes, approaching the 2D-limit [53, 141, 144, 251]. Despite numerous
attempts, it was only recently that the theoretical out-of-plane g%, = 7.2 bulk limit
was experimentally verified in a [001] GaAs, 1D device for higher subbands N = 6,7
[192]. Other transport experiments in QPCs and quantum wires yield small in-plane
g factors for holes, which is consistent with theoretical predictions for both high-
symmetry (100) [39, 148] and lower-symmetry (311) growth planes [50, 53, 141, 144].

An experimental review of the anisotropic g factors in low-symmetry GaAs crystals

is provided in Chapter 4.2.3 as a prelude to our magnetic field studies of a (311) 2D
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hole system.



Chapter 3

Fabricating 2D hole systems

3.1 Introduction

In this chapter we shall briefly introduce the high mobility electron transistor, a two-
dimensional system which forms the basic underlying structure of the low-dimensional
devices under study in this thesis. We shall compare and contrast two main meth-
ods used to generate a 2D gas within a heterostructure - doping versus electrostatic
induction, followed by two main types of induced structures. We then outline the ba-
sic steps used to fabricate these induced 2D transistors followed by some preliminary

tests, characterizing hysteresis in such devices.

3.2 Background

3.2.1 High mobility electron transistors (HEMT)

The earliest two-dimensional electron gas (2DEG), was realized in a Silicon metal-
oxide-semiconductor field—effect transistor (MOSFET) at Bell Labs in the 1960s, based
upon the working principle of a FET from a US patent filed in 1925. The cross-section
of a typical device consists of a p-type Si substrate covered by a SiOo layer which
acts as an insulator between the Si substrate and a metal electrode gate. Applying
a positive bias to the gate causes an inversion layer to form at the Si/SiOy interface,

resulting in a conducting channel connecting the source and drain electrodes. In 1957
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Schrieffer [233] proposed that charge carriers confined in the inversion layer do not
behave classically since the confining potential is so narrow that motion perpendicular
to the interface becomes quantized and if only a few quantum states are occupied, the

system effectively becomes a 2DEG.

An alternative semiconductor material to Silicon is GaAs, a III-V semiconductor
with a zinc blende crystal structure and unlike Silicon has a direct bandgap of 1.424eV
at room temperature, which eliminates complications from inter-valley scattering. In
particular, further work on lattice matched GaAs/Al,Ga;_; heterojunctions has even-
tually led to the achievement of high mobilities up to 11.7x10%cm?V~1! [209], making it
a popular system from which to fabricate High Electron Mobility Transistors (HEMT).
In such semiconductor-insulator-semiconductor (SIS) structures, the AlGaAs layer re-

places the SiOq layer in the MOSFET.

The fabrication of a high quality HEMT relies upon the ability to grow epitax-
ial heterojunctions between different semiconductors, forming a single crystal with an
artificially engineered band structure and doping profile. One of the most popular
growth methods is Molecular Beam Epitaxy (MBE), where epilayers of semiconductor
material are grown with controlled chemical composition and levels of dopants. The
ability to engineer the bandstructure of such semiconductors has led to a wide range of
different structures and layer compositions. For the purposes of this thesis, we shall fo-
cus upon two main methods for introducing charge carriers into these heterostructures

- doping and inducing.

3.2.2 Induced versus doped 2D HEMT architectures

The method of doping involves the deliberate introduction of “impurity” atoms into a
layer, usually the Al,Gaj_,As. This is typically followed by a Al,Gaj_,As spacer layer
before contact to the GaAs layer is made. Although techniques such as modulation
doping have led to unprecedented mobilities [209], it is not without its deficiencies.
Disorder is inevitably introduced into the material by the presence of remote ionized
dopants, which can be a limiting factor to the mobility in high quality modulation-

doped samples [8, 66] and Random Telegraph Signal (RTS) noise. Moreover, both the
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Figure 3.1: Energy band diagrams for GaAs modelled with a Poisson-Schrédinger
solver reproduced from Ref. [231]. (a) d-doped 300nm 2DEG with an 80nm spacer
layer between the heterojunction and the doping layer. (b) Induced device with a
500nm thick polyimide insulating layer, giving a threshold voltage of V;;, ~ 1.5V.

carrier type and density of doped structures are fixed once the material is grown.

An alternative to doping which removes the problems caused by doping altogether
is to induce carriers into the Al,Ga;_,As/GaAs interface via an externally applied
electric field, through a metallic gate [130]. This technique is much more flexible as it
allows both carrier types (holes and electrons) to be produced with adjustable carrier
densities, which are limited only by tunnelling through the Al,Gaj_,As barrier. Once
the bias on the top gate (used to induce carriers) goes over a certain threshold voltage,
conductance through the channel increases linearly with gate voltage until a saturation

point is reached.

The difference between modulation doped and induced heterostructures can also
be seen in their band structures, shown in Fig. 3.1 [231]. Here the chemical poten-
tial is discontinuous and not well defined in the insulator, and for the purposes of
the calculation it is varied linearly for simplicity. Doped systems contain a dip in
the conduction band towards the narrow region of doping. At the Al,Ga;_,As/GaAs
heterointerface the conduction band drops below the Fermi level and the 2D electron
gas can form. Panel (a) shows a §-doped 300nm 2DEG with an 80nm spacer layer be-
tween the interface and the dopant layer. For induced systems, the chemical potential
is not constant throughout the structure, shown in panel (b). Here an accumulation
gate (top gate) modulates the conduction band. If the bias voltage V¢ is sufficiently

high (over the threshold voltage) the conduction band dips below the Fermi level at
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Figure 3.2: A graph of mobility vs density for an induced 2DEG vs a modulation doped
2DEG [104], exhibits a distinct drop in the mobility of a doped device compared to
the undoped structure.

the heterojunction and populates with electrons forming a 2DEG. If Vpg < Vi, the
conduction band remains above the Fermi energy (dashed black line) and no 2DEG is

formed [231].

3.2.3 Random telegraph signals and charge noise

A major contributor to disorder in shallow HEMTs where the 2D layer is close to
the surface are dopants in the AlGaAs layer of a modulation-doped or d-doped struc-
ture [31, 212]. These ionized dopant impurities can significantly lower the mobility
in a 2D system at low carrier densities [232] as charge carriers scatter due to their
Coulomb interaction with these impurities. Fig. 3.2 [104] demonstrates the effect of
these impurities on mobility, plotted vs carrier density for 2 samples: one with mod-
ulation doping and the other undoped. Each wafer was grown in the same chamber
via Molecular Beam Epitaxy (MBE), resulting in similar background impurity lev-
els. At carrier densities below 10'cm™2 there is a significant drop in the mobility of
the doped device compared to the undoped device, indicating that remotely ionized

impurity scattering is dominant in the low density limit [104].
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Figure 3.3: Comparison of the effect of surface states upon mobility as a function of
density, in devices with different shallow 2DEG depths from the wafer surface.

3.2.4 Surface states

Another potential source of noise comes from surface states, located at the top of
the heterostructure where the lattice abruptly terminates, resulting in a number of
dangling bonds; some of which join with those from adjacent atoms to reconstruct the
surface, thus minimizing the surface energy; some react to atmospheric species such
as oxygen; whilst others remain free. The end result of this complex surface chemistry
is a large peak in the density of states at the wafer surface, in the middle of the band
gap of the semiconductor, effectively pinning the Fermi energy at this peak, leading
to the characteristic Schottky barrier of deposited metallic surface gates [54, 84]. The
net charge associated with these unwanted surface states causes charge carriers in
the 2DEG to scatter, and their impact upon mobility becomes more prominent in
shallower 2DEGs shown in Fig. 3.3. In this study by Mak et al., samples with a small
(20 — 30nm) AlGaAs thickness, were found to have a substantially lower mobility
than samples with thicker AlGaAs layers, an effect which saturates when the 2DEG
is over 100nm below the surface. Although such surface states lower mobility in 2D
systems, their direct impact on quasi-stationary systems like quantum dots in induced

heterostructures is still unclear.
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3.2.5 Types of induced architecture

Although the technique of modulation doping has led to the fabrication of higher
quality devices [209] the main drawback is the inevitable introduction of disorder
and charge noise, due to the presence of remote ionized dopants. This also limits
the mobility of such devices as charge carriers scatter off these dopants due to the
Coulomb interaction [130]. Furthermore, the dopant layer may partially screen surface
gates (via hopping conduction) and/or facilitate gate leakage, rendering many such
heterostructures ungateable by metallic gates [175] deposited directly onto the wafer

surface.

One way to bypass this problem is to eliminate the need for modulation doping al-
together by using an “induced” or “undoped” structure, first pioneered by Solomon et
al. in 1984 [247] and further developed by Kane et al. [130]. In such a semiconductor-
insulator-semiconductor FET (SISFET) design, a heavily doped GaAs cap layer func-
tions as a gate, drawing charge carriers to form a 2DEG at the heterojunction interface,
below the Al,Gaj_,As insultating barrier [130] and above the GaAs substrate (see
3.4b). Ohmic contacts are made to electrically connect to the 2D gas. Such induced
devices were found to be more stable and reproducible between thermal cycles [239]
and also possess higher mobilities at lower carrier densities than devices fabricated on

modulation doped wafers with a small AlGaAs spacer layer [104].

In this thesis we will take this one step further and focus upon a type of induced
hetrostructure which removes the need for doping altogether. This provides an im-
portant platform for creating stable hole dots as discussed later in this thesis, since
the level of noise in a modulation doped system may potentially become problematic
when detecting the flow of single charges through the dot.

The metal-insulator-semiconductor FET (MISFET), was first developed by Harrell
et al. [104], which relies upon a global metal surface gate to electrostatically induce
the charge carriers. A cross-section of the heterostucture is shown in Fig. 3.4a.

A titanium gold (Ti/Au) global top gate, used to induce holes to form the 2DHG,
is deposited on top of an insulating layer (polyimide or aluminium oxide in our case),

to reduce the chance of current leakage directly to an ohmic. Fig. 3.5 illustrates the
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Figure 3.4: Comparison of two induced architecture types [174]. (a) MISFET induces
via an overall top gate, followed by a polyimide insulating layer to reduce the chance
of current leakage between the ohmics and the top gate. (b) SISFET induces via a
degenerately doped GaAs cap just above the AlGaAs barrier and has a higher chance
of leakage between the ohmics and the doped cap compared to the MISFET structure.

difference in the energy band diagram of a MISFET, under different biasing conditions.

In Fig. 3.5a with zero voltage applied to the top gate, the Fermi energy remains
in the middle of the energy band gap. When a negative voltage is applied as in
Fig. 3.5b, the bands bend upwards, and eventually the valence band crosses the Fermi
energy, forming a triangular well just below the heterojunction sandwiched between
the AlGaAs and GaAs layers, populated with holes. If a positive voltage is applied as
in Fig. 3.5¢, the opposite occurs i.e. the conduction band bends downwards below the

Fermi energy and electrons accumulate in the well.

The advantage of such MISFET structures is their ability to easily switch between
charge carrier types, simply by changing the sign of the voltage applied to the global
top gate (and the corresponding type of ohmic metal contacts). One example of its use
includes a study conducted into ambipolar devices [40]. Moreover in order to create
fine structures like quantum dots, it is important to define small features at the 2D
gas, which is much easier to accomplish if the 2DEG is close to the surface. However in
the SISFET design, it is more difficult to form ohmic contacts to such shallow 2DEGs

without directly shorting to the doped cap.

More recently, Mak et al. have demonstrated that these undoped, shallow GaAs/AlGaAs
MISFET heterostructures can be used as a basis to fabricate stable, single-electron

quantum dots 30nm from the GaAs surface [175], defined electrostaically by metal sur-
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Figure 3.5: Schematic band structure illustrating the response of the MISFET to
different top gate voltage biasing configurations. (a) At zero bias the FET is nominally
off, (b) applying a negative bias induces holes to form a 2DHG, (c) whilst a positive
bias induces electrons into the 2DEG.

face gates on top of the wafer, beneath the insulating layer. Moreover, the flexibility
of the induced MISFET architecture combined with its potential for reduced charge
noise, has seen it extended to create few-electron quantum dots in other material sys-
tems such as Silicon Metal-Oxide-Semiconductors [196, 291] and electron double-dots

in Si/SiGe [29, 181] and Silicon [164].

3.3 Fabricating induced 2D transistors

3.3.1 Fabrication process flow

The standard process of fabricating induced 2D transistors has been used to create
2D systems from which a wide range of nanostructure devices can be fabricated, and
can be found in other theses e.g. Refs. [38, 103, 142, 216, 231]. A brief outline of
the major processing steps performed in a cleanroom (provided by the Australian
Nanofabrication Fabrication Facility at UNSW) are given below. A photo of the end

result of each of the corresponding steps is given in Fig. 3.6.
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Mesa

After scribing and cleaving a piece of the GaAs wafer of the correct size, the first step is
the definition of a mesa from the wafer via wet etching. The shape of the mesa typically
takes the form of a Hall bar as shown in Fig. 3.6a. The process of photolithography is
used to define a mesa pattern: this involves spinning a UV sensitive photoresist (S1813
or AZnLLOF2020) onto a cleaned sample surface, pre-baking it at 110°C to allow it to
harden, exposing the surface to UV light through an appropriate mesa mask pattern,
developing the pattern (in AZ300MIF or AZ826MIF), rinsing the developer off in
deionized water and blow-drying the sample with nitrogen. The definition of the mesa
is necessary in induced structures to electrically isolate the conducting regions of the
2D device. To achieve this isolation we typically etch the pattern below the 2DEG,
removing some of the AlGaAs spacer layer. Different etchants are available, but for
our purposes we typically use a H3PO4(85%):H202(31%):H20 (2:2:40) acid mix, as it
etches both GaAs and AlGaAs isotropically. The target etch depth depends upon the
depth of the heterojunction below the surface and for extra precision, the etch time
is usually calibrated using a spare piece of GaAs or wafer if available. The etching
process is halted by rinsing the sample in deionized water, after which the sample is

N5 blow-dried.

Ohmic contacts

Achieving a good electrical connection to the 2D gas is critical to the quality of the
2D device. Electrical contact is realized by thermal annealing of surface electrodes
deposited in the shape of bonding pads. These electrodes have a typical area of
150 x 150pum? and are placed around edge of the mesa such that no edge currents can
flow around an ohmic contact. Depending on whether the device is to be n-type or
p-type, an appropriate eutectic mixture of metal compound is deposited. To create p-
type ohmic contacts we typically evaporate 0.2g AuBe. For n-type ohmic contacts we
evaporate a tri-metallic stack consisting of Ni/AuGe/Ni. The intial, 10nm nickel layer
acts as a diffusion barrier, promoting lateral diffusion towards the 2DEG interface,

followed by the gold germanium (290mg:40mg) layer hosting the n-type dopants, then
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a thicker 120nm nickel capping layer to reduce surface roughness of the ohmics and
hence reduce shorting to the top gate after annealing.

Next the metal is annealed into the semiconductor at a temperature of 530°C for
90s for AuBe and 470°C for 120s for Ni/AuGe/Ni, in a quartz tube oven using No flow

to prevent oxidation.

Metallic surface gates

This step involves the definition of nano-structures such as QPCs and quantum dots
and is skipped during the fabrication of 2D transistors. Since the wavelength used in
optical lithography does not provide enough resolution to define features on the nano-
scale, the method of electron beam lithography (EBL) is used to write the pattern
in the center of the mesa. The procedure for preparing the sample with EBL resist
is very similar to that used in optical lithography where the step involving exposure
to UV via a mask, is replaced by the EBL writing process. Once the nano-pattern is
developed metal is evaporated onto the surface - first a thin layer of titanium used as a
sticking agent, followed by gold for conduction. Extra care should be taken during the
metal lift-off process to ensure the fine features are not damaged and sometimes the
sample is left in a heated NMP solvent for several hours. Sometimes a combination of
optical lithography and EBL is necessary to extend the gate pattern from the electrical
contact pads at the edges of the mesa to the middle of the mesa where the nano-pattern

is located.

Insulating dielectric

The two main dielectrics explored during fabrication of our devices are polyimide and
aluminium oxide.

To use polyimide, the polyimide (HD4104) is first mixed with a thinner (T9039) in
a ratio of (2:1). The polyimide is treated like a resist undergoing optical lithography
- it is spun onto the sample until it reaches a thickness of ~ 1um and baked at
65°C for 90s, placed under the insulating dielectric pattern and exposed to UV light,
before being developed (401D) and rinsed (400R). Once completed, the sample with
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the polyimide covering is baked at 250°C for 1lhr to cure and set. During the baking
process the solvent is evaporated and the polyimide layer shrinks to 400 —600nm thick.

The aluminium oxide layer on the other hand is deposited over the entire sample
conformally to the required depth via atomic layer deposition (ALD). To open windows
in the AlOx layer to contact the ohmic and surface gate pads, optical photolithography
is used to define the areas to be opened and the sample dipped in a buffered HF acid
mix, which is designed to stop etching once the GaAs surface is reached. After a
pre-calibrated etch time, the sample is rinsed thoroughly in deionized water and No
blow-dried. The device after the AlOx has been deposited and etched is shown in
Fig. 3.6d.

Metallic top gate

Standard optical photolithography is used to define the pattern of the global top gate,
which covers the hall bar shaped mesa. Enough metal needs to be deposited to climb
the mesa to connect the top gate and the contact gate pads below the mesa without
breaking. We typically deposit 20nm of titanium to act as a sticking layer followed by

80nm of gold for good electrical conduction.

Wire bonding

The device is finally cleaved to fit within an LCC20 chip carrier and held down using
resist or low-temperature compatible GE-Varnish. An Au-ball wire bonder is used to
make electrical contact between the contact pads of the device and the bonding pads

of the LCC20 chip carrier.

3.4 Characterizing 2D heterostructures

Initial characterization of the devices under study involves dipping them into a cryo-
stat of liquid helium and measuring the 4-terminal conductance through each pair of
ohmics. Data showing the response of an induced electron device and an induced hole

device for different top gate voltages are given in Fig. 3.7 and Fig. 3.8 respectively.
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Figure 3.6: Photos of a low-dimensional induced device taken at the end of each main
fabrication step. (a) Resulting mesa pattern in the shape of a hall bar shown after
etching the wafer surface. (b) Addition of ohmics to enable electrical contact to the
2D gas after annealing. (c) Definition of the ‘Sunbeam’ quantum dot nano-structure
(to be used later in Chapter 7) via a combination of optical and EB lithography. This
step for creating lower dimensional (j2D) nanostructures is bypassed when fabricating
2D transistors. (d) Application of the insulating dielectric layer, photo depicts AlOx.
(e) Picture of the final device after the top gate metal has been evaporated and lifted-
off. (f) Photo of the final device within an LCC20 chip carrier with Au wire bonds
providing the electrical connection between device to the chip carrier.
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The 2D electron transistor in Fig. 3.7 was fabricated from wafer W0639 (single
heterojunction located 160nm below the surface), grown in the Cavendish Laboratory
by the Semiconductor Physics group, using the electron recipe for ohmics. A 600nm
thick layer of polyimide was used as the insulating dielectric to prevent direct shorting
between the ohmics and the global top gate (TG). This style of 2D device will be used

as a basic platform to create an electron quantum dot later in Chapter 6.1.

For this test, the top gate was swept to a larger bias voltage, and swept back to
zero bias. This was repeated for increasingly larger values of TG. For target top gate
voltages below Vpg = —12V, the threshold voltage beyond which the device turns
on, remains constant at V;;, = +1.5V. Beyond the threshold voltage, the conductance
(lower panel) shows a linear increase until it hits a saturation point at Vs, = +12V
beyond which the conductance remains at a maximum of 2mS despite any increase in

top gate bias, behaviour similar to a typical transistor characteristic curve.

For mid-range top gates of —8V, —10V and —12V closed-loop hysteretic behaviour
in the 2-terminal current is observed between the forwards and backwards sweeps,
although none in seen when converted into 4-terminal conductance. At higher top
gate voltages above Vg = —12V, the hysteretic behaviour is no longer closed i.e.
the return sweep to zero bias no longer reaches zero conductance/current at the same
threshold voltage as the forward sweep. Hysteretic behaviour can also be observed in
the 4-terminal conductance as well as the 2-terminal current. Sweeping to higher top
gate targets shifts the threshold voltage to larger values. Despite this shift, no leakage

current between the ohmics and the global top gate was detected.

Similarly a 2D hole transistor was fabricated from wafer W0640 (110nm deep single
heterojunction) grown in the Cavendish Laboratory by the Semiconductor Physics
group, using the AuBe hole recipe for ohmics. The 600nm thick layer of polyimide
was replaced with a 30nm thick, conformal Aluminium oxide dielectric layer, which
allowed for the 2D hole gas to be induced at lower top gate voltages (due to the higher
dielectric constant of AlOx (e = 8) compared to polyimide (¢ = 3.5)). This 2D device

will be used later in Chapter 6.5 to fabricate an induced hole quantum dot.

The same series of tests with different top gate targets was conducted on this device
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Figure 3.7: Plot of raw 2-terminal current (top panel) and 4-terminal conductance
(bottom panel) as a function of top gate voltage for different target voltages. Solid
lines correspond to sweeps towards increasing bias, to induce more carriers, whilst
dashed lines correspond to sweeps back to 0V. Measurements were taken at 4K for a
160nm deep 2DEG created from wafer W0639, with a 600nm thick layer of polymide
as an insulating dielectric. The top gate voltage marked with an asterisk indicates the
largest top gate bias which can be applied before the onset of hysteresis.
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Figure 3.8: Plot of raw 2-terminal current (top panel) and 4-terminal conductance
(bottom panel) as a function of top gate voltage for different target voltages. Solid
lines correspond to sweeps towards increasing bias, to induce more carriers, whilst
dashed lines correspond to sweeps back to 0V. The device under study is a 110nm deep
2DHG created from wafer W0640, with 30nm of Aluminium Oxide as an insulating
dielectric, taken at a temperature of 4K. The top gate voltage marked with an asterik
indicates the largest top gate bias which can be applied before the onset of hysteresis.
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and the results shown in Fig. 3.8, where the sign of the bias applied to the top gate
is reversed to induce holes. This device exhibited similar behaviour to the electron
2D transistor. An initial V;;, = —0.82V remained constant for both forward bias and
reverse bias sweeps until the saturation voltage at —1.6V was reached. Beyond this
voltage, hysteretic behaviour between forward and backwards TG sweeps appear in
both the 2-terminal current and 4-terminal conductance traces, despite no leakage

current to the top gate being detected.

Such behaviour occurring in two different types of dielectric with different thick-
nesses suggests that beyond the saturation voltage, the insulating dielectric may be
charging up. A study done by Huang et al. [121] in a Si/SiGe undoped 2DEG het-
erostructure, with a metallic top gate separated from the wafer surface by a 90nm
thick Aluminium oxide layer, reports a sudden drop in the density beyond a certain
(saturation) voltage. The authors attribute this drop at higher gate voltages to the
formation of a nearly immobile surface electron layer between the AlOx dielectric and

the Silicon surface.

The rationale behind this mechanism is illustrated in Fig. 3.9 which depicts the
change in the band structure in the 3 major operating regimes of the transistor.
Fig. 3.9a corresponds to the regime where a non-zero top gate bias is applied, but
Vra < Vip, so although charge is accumulating in the quantum well, the 2D density
nop lies below the critical density of the metal-insulation transition for the quantum
well n. ow so no current flows from the ohmic contacts into the quantum well. The 2D
transistor behaves as an insulator. Panel (b) describes the regime where Vg > Vi.
Above this threshold voltage, the critical density for the metal-insulator transition
(MIT) is reached and electrons begin to flow from the ohmic contacts through the
quantum well, forming a 2DEG. However, since the critical density for the surface layer
is much higher than the quantum well, no charges populate the surface layer [121].
Panel (c) is a schematic of the cross-section of the 2D heterostructure for the scenario
depicted by the band structure in panel (d). Here the top gate bias is over the sat-
uration voltage Viq:. At this point, electrons tunnel from the 2DEG into the surface

layer, and the density is raised above critical density of the metal-insulator transition
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Figure 3.9: Schematic illustrating the formation of the surface layer, reproduced from
Ref. [121]. Panel (a) corresponds to the regime 0 < Vpg < Vip,. Charge accumulates
in the quantum well, but nap < n.ow so the 2D transistor behaves as an insulator.
In panel (b) Vrg > Vi, and neow < nap < nesr, where current flows through the
quantum well forming a 2DEG but no charges populate the surface layer. The regime
of Vrg > Viar and nap > ne sz, is given in panels (c) which is a schematic of a cross-
section of the 2D device, showing electrons in both the quantum well and the surface
layer and the equivalent band structure in (d), where both the quantum well and the
surface layer are populated with electrons at the same Fermi level.
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for the surface layer, resulting in a current flowing from the ohmic contacts into the
surface layer. From Gausss law, for a fixed gate voltage, the electron density of the
2DEG must be reduced as the density of electrons in the surface layer increases, in
order for charge to be conserved. In this regime electrons exist in both the surface and
the buried quantum well, with the same Fermi level for both layers.

These 3 regimes correspond to those seen in our data, where above the saturation
voltage Vsq¢, this tiny current through the surface layer does not leak to the metallic
top gate hence no leakage current is detect. Rather this surface layer serves to screen
the 2DEG (or corresponding 2DHG) from the top gate, resulting in the observed shift
in the threshold voltage towards larger bias.

For the quantum dot devices to be fabricated from the 2D heterostructure later
in this thesis, we wish to prevent the formation of this surface layer charge as it may
interfere with the operation of the dot. Hence we shall use operating voltages below
the saturation voltage of Vpg = +10V for the W0639 2DES device and Vpg = —1.6V
for the W0640 2DHS device.

Due to this shift, when characterizing the density and mobility of our wafers we
did not push the top gate bias beyond the saturation voltage. Several 2D devices
made from different wafers, were characterized for both holes and electrons, shown in
Fig. 3.10 and Fig. 3.11 respectively. These measurements were taken at temperatures

below 250mK.

3.5 Conclusion

In this section we outline the fabrication process of an induced 2D transistor (with and
without low-dimensional nanostructures). We show characterization curves of two 2D
transistors taken at 4K and found that if the top gate is biased beyond the saturation
voltage, we enter a regime of hysteretic behaviour between the forward bias and reverse
bias sweeps in conductance. This hysteresis and shift in the threshold voltage towards
higher bias can be explained by the presence of an induced surface layer of charge
between the insulating dielectric and the wafer surface, which screens the 2DEG from

the top gate. For our quantum dot measurements in later chapters we wish to avoid
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Figure 3.10: Plot of mobility versus density for a series of induced 2D hole transistors
made from different wafers, for a combination of single heterojunctions and quantum
wells, as marked in the legend. This data is a compilation of measurements performed
by members of the QED group including, A. Srinivasan, D. Q. Wang and myself.
Wafers were grown by different groups including the Semiconductor Physics group in
Cavendish Laboratory and Bochum.
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Figure 3.11: Plot of mobility versus density for a series of 2D electron transistors
made from different wafers, for a combination of single heterojunctions and quantum
wells, as marked in the legend. This data is a compilation of measurements performed
by members of the QED group including, A. Srinivasan, D. Q. Wang and myself.
Walfers were grown by different groups including the Semiconductor Physics group in
Cavendish Laboratory and Bochum. Note: The mobility for wafer W0640 was much
lower than expected (it should be similar to W0641) and is most likely due to the 2D
device being fabricated from a piece near the edge of the wafer.
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hysteretic behaviour in conductance and hence the top gate bias applied should remain

well below this saturation voltage for any given 2D structure.



Chapter 4

Out-of-plane spin polarisation in

a 2D hole system

4.1 Introduction

In the background Chapter 2.7.3, we briefly introduced literature describing the spin
response of 2D GaAs heterostructures grown along high-symmetry crystal axes such
as (100). It is well known that the spin-orbit interaction leads to anisotropy in the
g factors g* = (g3,9,,9:), such that the perpendicular g factor, is larger than the
in-plane g factors g7 > gy, g5 [284] and that these in-plane g factors g, g; are close to
Z€ero.

This chapter explores the concept of the anisotropic spin response and crystal
symmetry, showing that the Landé g factor has a tensor structure, which is necessary
to accurately describe the spin response of devices grown along low-symmetry crystal
directions. We show that for a 2D system grown on a (311) substrate, applying an
in-plane magnetic field B, can generate a net spin polarization o, perpendicular to
the applied field. This body of work constitutes one of the rare occasions in which we
are able to directly probe off-diagonal elements in the gyromagnetic tensor and was
recently published: L. A. Yeoh et al., Phys. Rev. Lett. 113, 236401 (2014).

We begin the chapter by introducing the unique properties of low-symmetry crys-

tals in GaAs, and review measurements of the anisotropic g factor in such systems,

73
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followed by tilted field measurements in 2D systems. This is followed by an explaina-
tion of the experimental concept, measurement setup and calibration. We then present
our tilted field transport datasets, comparing the differences between data taken along
a high-symmetry axis, to the data taken along a low-symmtry axis and discuss the

complexities of modelling the band structure of a 2D hole system in tilted fields.

4.2 Background

4.2.1 Low symmetry crystals and non-collinear spin polarisation

A general (mmn) crystal lattice can be described by a Cartesian co-ordinate system
with unit vectors &, ¢, 2, where 2 (which is the vector normal to the (mmn) plane)
is rotated by an angle 6 from the high-symmetry [001] crystal direction, illustrated
in Fig. 4.1. The corresponding g factors can be expressed as a function of this an-
gle 0 between the high symmetry [100] direction and the arbitrary growth direction
[nmm] [286]:

Gaw = gpy = —6K (2 — 3sin” ) sin® 4, (4.1)

g, = 12K(2 — 3 sin? ) sin 6 cos 0, (4.2)

and g5, = 6k = 7.2 is the same as that given in the background Chapter 2.7 [284].
Here K is a coefficient based upon the Luttinger parameters scaled by 6 [286].

These numerical calculations of g factors at the k = 0 band edge, along the two
orthogonal in-plane directions are given in Fig.4.1b. From this figure, higher symmetry
growth directions such as [100] have zero in-plane g factors g5, (k=0) = g;, (k=0) =0
(indicated by a purple diamond). However, for the lower symmetry [311] direction,
the g factors exhibit a distinct in-plane anisotropy such that gz, = gy, = —0.16 and
gx, = 0.65 (shown by green circles) [286].

k - p theory predicts that 2D hole quantum wells grown along a low symmetry
surface, within a non-centrosymmetric zinc blende crystal structure, possess strong
spin-orbit (SO) interaction, leading to exotic spin behaviour [284, 286]. One such
surface is the experimentally popular (311) growth plane, due to its higher mobilities

compared to other crystal directions [111]. The reduced symmetry results in non-
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Figure 4.1: Crystal anisotropy of the hole g factor (a) Schematic of the co-ordinate
system for lower-symmetry crystal directions as a function of angle # with respect to
a high symmetry [001] lattice orientation reproduced from Ref. [282]. (b) Numerical
diagonalization of the 4 x 4 Luttinger Hamiltonian Hg,s, adapted from Ref. [286],
demonstrating the anisotropic behaviour of the effective g factor of the first hole sub-
band, for a GaAsAlGaAs quantum well, plotted as a function of crystal orientation
where 6 is the angle between [001] and the growth directions as defined in panel (a).
Note: Refs. [282, 284], also plot ¢g* as a function of 6 similar to that in panel (b). For
our purposes the figure from Ref. [286] is preferred for greater clarity - it provides a
segregates the g factor contribution from the off-diagonal elements of the gyromagnetic
tensor (in the form of g;,), from the diagonal element contributions (g;,,9;,), unlike
the other two references which plot the sum of gy, and g;,.

vanishing Bj-linear Zeeman terms and finite g factors at k| = 0, resulting in the need
for higher order terms in the Hamiltonian to be taken into consideration in order to
fully describe the underlying spin behaviour.

Quantum wells grown along the low-symmetry [311] direction exhibit spatial sym-
metries described by the point group Cyy, - this includes mirror symmetry in the plane
perpendicular to the [011] direction and two-fold rotational symmetry within that
plane [284]. To describe these lower symmetries, we define a Cartesian co-ordinate
system where the unit vectors 2, ¢, 2 are parallel to crystal directions [233], [011]
and [311] respectively. The most general effective Zeeman Hamiltonian describing the
lowest heavy hole subband that is consistent with this symmetry [210, 284], in the
presence of a magnetic field B = (B, By, B,)T is given by

HZ:%BT-Q*'U 5 (43)

where o = (04, 0y, 0.)T are the spin-1/2 Pauli matrices, T' denotes the transpose of
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the matrix and g* is a tensor of the form [287, 298]

9z 0 Gys
g = 0 g5, O . (4.4)
9z 0 g,

This general Hamiltonian Eq. 4.3 makes a few predictions about the anisotropic in-
plane response of ¢g* to the direction of the magnetic field. If the field is applied along
the higher symmetry [011] direction, the only Zeeman splitting contribution would
come from gy, . On the other hand, if the field is applied along the lower symmetry
[233] direction, there is an in-plane Zeeman contribution from g, plus an extra gF,

contribution.

4.2.2 Anomalous out-of-plane spin polarisation on low symmetry (311)

substrates

As seen from Eqs. 4.3 and 4.4, the Zeeman Hamiltonian for any arbitrary crystal

growth direction [nmm] at k| = 0, can be expressed as [286],

B
H{iﬁm} = %(Q;xBxU:c + 92.Bz0: + Q;yByUy + 9., B20. + g2, B.0.) . (4.5)

The Hamiltonian contains an unusual off-diagonal term g, B0, which couples the
in-plane field B, to the out-of-plane spin ¢, when the in-plane field is applied along the
low symmetry [233] direction, i.e. B, — o0,. This generates an additional, anomalous
out-of-plane spin polarization on top of the in-plane component denoted by g%, By0,.
The value of g5, = 0.65 is >4 times larger than its corresponding in-plane counterpart
9%2| = 19;,] = 0.16. This non-collinear spin response phenomenon is unique to low
symmetry zinc blende structures and does not occur for 2D systems grown in the high

symmetry [100] direction?.

LAt present not much is known about the effect of the g7, term contained within the general g
tensor, since most magnetic field studies to date have been performed with either a fully perpendicular
field (where g7, dominates over g3,) or a fully in-plane field, in which there is no B., resulting in a
non-existent g;,B.o. term, such as Eq.10a in Ref. [286]. From symmetry considerations one may
anticipate gi, to be of the same order of magnitude as g;.. However in our 2D system, this term
is negligible within the high parallel field, low perpendicular field parameter space considered in our
experiment as demonstrated in the supplementary material of Ref. [298], and thus this term will be
discarded from subsequent Hamiltonians in the remainder of this chapter.
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4.2.3 Experimental review of hole g factor anisotropy for low-symmetry

GaAs crystals

Demonstrations of the in-plane ¢* anisotropy in a low symmetry (311) hole system have
been performed by Papadakis et al. [201] and Winkler et al. [282], in a 20nm GaAs
quantum well. Two hall bars were fabricated to form a L-shaped pattern, aligned
along the two orthogonal in-plane directions [233] and [011]. Magnetoresistance traces
taken for two current directions along each crystal axes, indicated by dashed and
solid lines in Fig. 4.2 [286]. Although the resistivity traces have different slopes due
to mobility anisotropy between the two crystal directions [111, 202], changing the
current direction (parallel and anti-parallel) does not affect the subband depopulation
point By (indicated by arrows). However, the depopulation field is significantly larger
when the field is applied along [011] (By ~ 10T") compared to along [233] (By ~ 4T).
In such 2D transport measurements, g* is averaged over g*(k|) up to the Fermi wave
vector kp, due to the dependence of g* upon k|, rather than representing a pure g*
at k| = 0.

Despite this, the result provides evidence for the in-plane anisotropy where 9[%33] >
g[*om. The k - p calculations by Winkler suggest this large anisotropy was due to the
presence of a non-collinear spin response stemming from the reduced symmetry of the
lattice. Despite this theoretical understanding of the origins of the anisotropic in-plane
g factor, to-date there has been no direct observation of the non-collinear contribution

to spin-splitting due to the off-diagonal ¢}, component.

4.2.4 Tilted field measurements and the coincidence method

One way to probe the non-collinear spin response stemming from the off-diagonal
gs.Bz0, component is to measure its contribution to Zeeman spin splitting of the
Shubnikov-de Haas (SAH) oscillations for a series of different in-plane fields. This can
be achieved by performing transport measurements of the longitudinal magnetoresis-
tance whilst tilting the sample within a magnetic field.

When studying spin splitting in the longitudinal magnetoresistance (Shubnikov-de

Haas, SdH) oscillations of a 2D system in a perpendicular magnetic field, a naive ap-
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Figure 4.2: Anisotropy of the depopulation field B, (arrows) along the two crystal
directions [233] and [011]. No change in By occurs when the direction of the current is
switched, indicating this in-plane anisotropy is purely a crystal symmetry effect [286].

proach may be to derive the spin splitting energies, through comparing the separation
of the two spin states in field, to the separation of adjacent energy levels Aw,.. However,
due to the discontinuity in the Fermi energy as it jumps between spin states in a 2D
system, the peak positions of the SAH oscillations cannot be directly related to the

energy spacing.

This can be overcome by using the tilted field Landau level ‘coincindence method’,
developed by Fang and Stiles for 2D electrons in silicon [75] which involves rotating
a 2D sample in a magnetic field by a known angle 6. Applying a total magnetic field
Bt at an angle 6 with respect to the normal of the 2D plane, the perpendicular
field component becomes B, = By, cosf. Since the formation of Landau levels are

exclusively dependent upon B,, and described by hAw. = h%>2, whilst the Zeeman

e
m* 7

splitting is dependent upon the magnitude of the total field By, [75], the spin splitting

can be calculated at certain critical angles, where the Zeeman splitting is equal to half
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the Landau level separation [75, 193]
. 1
|97 1B Brot] = 15 hwe (4.6)

where the parameter r = (1,2, 3, ...) corresponds to a ladder of coincident spin-up and

spin-down energy levels from different Landau levels, and r = (%, %, %, ...) corresponds
to a ladder of alternating spin-up and spin-down energy levels [193]. From this the g

factor can be calculated provided m* is known

_1 eh
- 2mup

*

g

cos @ (4.7)

This analysis rests upon the assumptions of an isotropic ¢g* and ignores orbital

coupling of the in-plane field due to the finite thickness of the quantum well width.

4.2.5 Experimental review - tilted field measurements of 2D systems

The tilted field coincidence angle technique has been successfully used to study the
evolution of the Landau level energy gaps in a variety of 2D electron systems such as:
InAs [246], GaAs [193, 203, 307] and paired with other material combinations [143],
InGaAs [60, 61], ZnO [267], Graphene [304] and HgTe [292] to name a few. Some were
performed in conjunction with cyclotron resonance to provide an independent measure
of the effective mass [60, 193, 203] and hence calculate the g factor, whilst others have
instead focused upon the evolution of anticrossings due to SO coupling in narrow gap
heterostructures [61] and the fractional quantum hall effect [73].

In comparison there have been fewer tilted field studies performed in 2D hole
systems. Preliminary research into the Landau level spectrum of GaAs include studies
into the symmetry of the confining potential [125] and the effect of strain [177] in
narrow quantum wells. Both studies discovered that the amplitude of the spin-split
(odd) minima remains constant and unaffected by the increase in total field, which
was interpreted in terms of decoupling between light and heavy holes. A brief study
into the effect of the in-plane field upon magnetoresistance oscillations by Heuring et
al. comparing theory with transport data, also showed that only certain minima are
affected by the parallel field, whilst the rest remain unchanged [112]. The authors

attribute this effect to strong level mixing.
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Figure 4.3: Tilted field SAH traces for a (100) asymmetrically doped 15nm GaAs
quantum well showing coincidence at 85° [300].

A few tilted field measurements have been performed to study the g factor of GaAs
2D hole devices grown on a (100) surface. Rahimi et al. [218] performed compressibility
studies in tilted fields and found that despite the application of a 10T in-plane field,
there was no systematic dependence of the spin splitting for Landau level filling factors
v =1 and v = 3, upon the parallel component of the field, which suggests that the in
plane g factor for high symmetry zinc blende crystals is close to zero [218]. On the other
hand, transport measurements in a (100) carbon-doped 15nm GaAs quantum well were
performed by Yuan et al. to study the SAH oscillations at different tilt angles, shown
in Fig. 4.3 [300]. The authors measured m* ~ 0.4 in a separate cyclotron resonance
experiment (taken at 4K), and for a coincidence angle of 85° calculated the out-of-plane
g factor to lie between 7.2 > g%, > 5 [300]. However, the coincidence method assumes
equally spaced energy levels, isotropic g* and parabolic energy bands, so although this
method works well for electron systems, the authors mentioned that difficulties arose
when applying this method to hole systems due to their complex, non-parabolic band
structure. The non-linear behaviour of the Landau levels and the anisotropy of both

g* and m* in hole systems will be discussed in greater depth in Section 4.6.2.

More recent transport studies into the effective mass of holes in a dilute low-
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symmetry (311)A GaAs quantum well 20nm wide have shown that m* ~ 0.2 [41].
Using a sufficiently strong parallel magnetic field (up to 16T) to fully depopulate one
of the spin subbands, and measuring m* for the populated subband, the authors found
that m* obtained from the spin polarized subband is very close to the unpolarized
value, and concluded that in contrary to expectations stemming from previous work
in 2D electrons [268], the perpendicular field has the greatest effect upon m*. This
is a suprising contradiction to theoretical expectations which predict that a large in-
plane field should couple to the hole’s orbital motion leading to an enhancement in
m* compared to the electron case [268], although the reason behind this lack of m*
enhancement in 2D holes is not obvious [41]. However Chiu et al. [41] measured an
increase in m* with increasing perpendicular field, a similar trend to that previously
reported by [68, 96]. Once again, the authors mentioned that the origin of this is not
fully understood [41], but is likely related to the non-linear dependence of the 2D hole
Landau levels [48, 200, 217].

From these experiments, Chiu et al. [41] also deduced the spin susceptibility (x* o
g*m*) of the 2D hole system from the depopulation field and obtained a value of
g*m* = 0.19 which is an enhancement of 1.5 when compared to the theoretical values
of m* ~ 0.2 and ¢}, = +0.65 at the k=0 band edge [284]. The authors remarked that
this enhancement in g*m* is smaller than the factor of two seen in equivalent electron
systems and suggest that this lack of enhancement could be due to the holes band
structure and large effective spin [285].

These experiments show that much still remains unknown about the unusual spin
behaviour of holes in low symmetry 2D systems and further investigation is needed.
Although magnetic depopulation studies have suggested the presence of an off-diagonal
contribution to spin polarization from g7 ., no direct measurement of its effect has been

made to date.

4.3 Detecting non-collinear spin polarization

In this section we demonstrate that the interplay between quantum confinement and

the crystal structure means that the Zeeman splitting in confined hole systems is not
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merely anisotropic, but that a magnetic field applied in one direction can generate a
net spin polarisation of the delocalised 2D holes at right angles to the applied magnetic
field. Since the number of holes in a 2D quantum well is low, it is hard to directly
detect this polarisation with torque magnetometry or SQUID techniques [69, 182, 279].

Instead we use tilted field transport measurements to achieve the required sensitivity.

4.3.1 Experimental concept

To access the off-diagonal elements of the g tensor in Eq. 4.4 and hence observe the
unusual out-of-plane spin polarisation via transport measurements, we use tilted fields
shown in Fig. 4.4 to control the interplay between the terms contributing to the out-of-
plane spin polarisation in the Hamiltonian described by Eq. 4.5. In transport measure-
ments of the SAH oscillations in perpendicular field, we effectively detect the density
of states at the Fermi energy which are affected by both an orbital component and a
Zeeman component. Applying a large in-plane field B, along the [233] direction gen-
erates a spin polarization in the out-of-plane [311] direction due to the non-collinear
g, By term. Simultaneously, a perpendicular magnetic field B, can be applied along
the [311] direction which generates a perpendicular spin polarization proportional to

gs.B.. The resulting total Zeeman energy can be expressed as,

Tilting the sample with respect to a total magnetic field Bi,y = B + B, by an
angle 6 changes the total Zeeman energy, which manifests as a splitting in the SdH
oscillations at larger in-plane fields. Varying this tilt angle enables us to control the
sign of the ratio B, /B, through the sign of 6, as the total Zeeman energy is being
varied. If 4 is positive as depicted in Fig. 4.4a, a positive B, results in the term ¢}, B,
adding to g;,B,, enhancing the anomalous out-of-plane spin polarization arising from
the in-plane field, which increases the spin-splitting in the SAH oscillations. In contrast,
if  is negative as shown in Fig. 4.4b, the negative sign of B, means that g}, B, is
subtracted from g}, B, resulting in a suppressed out-of-plane spin polarization and a
reduction in the splitting of the SAH oscillations. The amount of interplay between

the two terms can also be studied by changing the magnitude of 6.
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Figure 4.4: Experimental concept for detecting the out-of-plane spin polarisation. (a)
Positive tilt angles 46 correspond to +B) and g;, adds to g7, resulting in a net spin
polarization P. (b) The opposite occurs for negative tilt angles — which introduces
a —Bj|, so g, subtracts from g7, and P is reduced.

4.3.2 Device details and measurement setup

The high-mobility 2D hole system (2DHS) samples, fabricated by Prof. A. R. Hamil-
ton, were grown on a low-symmetry (311)A surface, from a GaAs/Aly33Gag 7As het-
erostructure in a T335 wafer by the Semiconductor Physics group at Cavendish Labo-
ratory. The conducting substrate doubles as an in situ back-gate, located 2.6um away
from a symmetrically modulation Si-doped 20nm wide GaAs quantum well [243]. At
zero gate bias the device has a density of pop = 1.33 x 10'cm? and a corresponding
mobility of p = 0.678 x 10cm?V~!'s™!. The energy spacings between subbands are
large enough that only the lowest HH band is occupied.

To perform transport measurements in tilted magnetic fields, the sample was
mounted on a ‘home’ built in situ piezoelectric rotation system, featuring an in-built
angle readout mechanism with an accuracy of £0.01° [299], shown in Fig. 4.5¢. This
allowed for single-axis rotation to be conducted at a base temperature of 35mK cooled
by an Oxford K100 dilution refrigerator, within the bore of a 15T superconducting
magnet (refer to Appendix A.1 for more information about the system). The magni-
tudes and relative signs of B,, B, and B, are controlled by tilting the sample with

respect to the total field of the magnet by some angle 6, shown in Fig. 4.5(a,b).
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Figure 4.5: (a) 3D model with co-ordinate axes, showing sample orientation aligned
to rotate between the [311] perpendicular direction and the [233] in-plane direction
within a magnetic field. (b) Sample oriented to rotate between the [311] and [011]
directions. (c) Photo of a device within sample holder mounted onto the piezoelectric
rotator.

Electrical setup for 2D transport measurements

To study the Shubnikov-de Haas (SdH) oscillations transport measurements were per-
formed using standard ac lock-in techniques, with a constant ac current of 10nA at a

frequency of 5Hz. The measurement setup is depicted in Fig. 4.6.

4.4 Preliminary measurement setup, calibration and de-

vice checks

4.4.1 Characterizing the measurement setup

Before beginning the experiment, the following calibration and characterization checks
were performed at a temperature of 4K prior to cooling the fridge to its base temper-

ature.

1. Calibrating the angle readout of the sample and rotator with respect to the
magnetic field: achieved by using the 2D Hall bar as a Hall sensor and rotating
it in field to find the exact angles where the plane of the 2D sample is parallel and
perpendicular with respect to the total field. Refer to Appendix B for calibration

graphs and more details.

2. Characterize magnet hysteresis: with the sample oriented perpendicular to the
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Figure 4.6: Electrical setup used to perform the tilted field transport measurements. A
SRS830 lock-in amplifier provides an ac excitation current to the source ohmic which
travels along the length of the hall bar, as well as a DC voltage via a RCR filter to the
back gate to tune the confining potential. Separate probes were used to simultaneously
measure the Hall and longitudinal voltages.
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Figure 4.7: Plot of 2D density (blue) on the left axis, and mobility (red) on the right
axis, versus back-gate voltage for our 20nm wide GaAs quantum well heterostructure
fabricated from a T335 wafer and measured at 35mK.

magnetic field, the magnetic field was swept through B = 0 to a series of dif-
ferent +£B targets at different sweep rates and the Hall resistance measured.
We discovered a small hysteresis of £235mT at B = 0. As the area enclosed
by the hysteresis loop is constant, a hysteresis correction procedure was written
which was then applied to the longitudinal resistivity measurements taken at
tilted fields, scaled for tilt angle. More details on the correction procedure and

hysteresis characterization are given in Appendix B.

4.4.2 Characterizing the 2D hole device

As the device is modulation doped, it is nominally on (non-zero density and mobility
at Vg = 0V), though the 2D hole density increases linearly with more negative back-
gate bias and the device effectively behaves as a transistor. Measurements of density
and mobility taken at 35mK are given in Fig. 4.7. The density was obtained from the
Hall resistance and the mobility p calculated from the density and measured zero field

longitidinal resistivity p., according to pu = where e is the electronic

1
Pzz(BZO)pQDe ’
charge.

The mobility in this device increases with density. At Vg = +1.50V, correspond-
ing to pap = 9.26 x 10'%m~2, the hole mobility is 0.6 x 108cm?V~1s~!, which gives a

mean free path [ ~ 3um at this gate voltage.
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Figure 4.8: Plot of SAH oscillations p,, (in red) and corresponding Hall plateaus (in
blue) as a function of perpendicular field B, taken at the symmetric operating point of
Vea = +1.50V, where the 2D carrier density is p = 9.26x10%cm ™2 and the mobility
pw=0.6x10cm?V—1s71,

4.4.3 Aligning sample axes to the magnetic field

Initially the 2D sample was rotated to 8 = 90°, so the magnetic field lay perpendicular
to the sample plane, B, # 0, B = 0. The sample orientation was confirmed by the
rotator’s pre-calibrated angle readout mechanism, detailed in Appendix B. An initial
measurement was taken at § = 90°, of the Hall plateaus as a function of perpendicular
field, shown in Fig. 4.8 (blue) to check the device was functioning at base temperature.
The corresponding low-field oscillating longitudinal resistivity is shown in red, with
spin splitting appearing for B, > 0.35T. This alignment was performed at the start of
every cooldown and the hall plateaus were also used to independently verify the angle

of rotation readout for every change in tilt angle 6.

4.4.4 Tuning the confining potential via Rashba SO

Once the sample was aligned such that the 2D plane is fully perpendicular to the
magnetic field, we tuned the symmetry of the confining potential.

To minimize the B = 0T spin splitting due to inversion asymmetry, Rashba SO
coupling was used to compensate the splitting due to Dresselhaus SO, by tuning the
electric field across the quantum well using the in situ back-gate, such that their

combined effect upon the spin splitting seen in the SdH oscillations p,, and hence
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the total SOI is minimized. The longitudinal resistivity was measured for a series of
different back-gate biases, and plotted as a function of inverse filling factor 1/v, shown
in Fig. 4.9. Here v = %BLZ’ where h is the Planck constant, e the electronic charge
and p is the 2D density at a given back gate voltage. The column on the right is the
corresponding Fourier transform of each SAH trace, with the z-axis (frequency) scaled
by the 2D carrier density to align the 1f and 2f peaks associated with the presence
of two spin species.

The optimum operating point was identified as the back-gate bias where beating
in the low field SAH oscillations was minimized, and the classical magnetoresistance
dip at B = 0T arising from two-band transport (due to two different carrier densities
and mobilities from the two spin species of heavy holes (o4 and o_)) was eliminated
(68, 99, 190, 204].

This symmetric point was found to be Vpg = +1.50V, where the 2D hole density
was pop = 9.26x10%cm ™2 with a mobility of y = 0.6x105cm?>V~!s~!. At this point
the Fourier transform shows a single peak and the dip at B = 0 in the SdH is reduced
compared to the others. For this experiment only the lowest HH band is occupied.

To confirm the symmetric operating point, we examined the low field SdH oscilla-
tions in greater detail to check that the beatings of the SAH at this point were minimal.
Fig. 4.10 plots the corresponding SdH traces for each back-gate voltage showing their
periodicity in 1/B,. The amplitudes of these oscillations are normalized for clarity
by multiplying the datasets by e% to remove the envelope. From these traces we
confirm that the operating voltage of Vpg = +1.50V exhibits the least amount of
beatings, indicating that the combined effect of the Dresselhaus and Rashba SO inter-
actions adequately compensate one another and are thus both minimized at B = 0.

This operating point was selected as the final voltage used throughout the rest of the

experiment.

4.5 Experimental Data

The low symmetry (311)A heterostructure under study possesses both a high symme-

try axis [011], and a low symmetry [233] axis within the same sample, making it an
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Figure 4.10: Corresponding plots of the SAH oscillations p,, in Fig. 4.9 periodic in

0.337
inverse B,, for different back-gate biases, with their amplitudes normalized by e B- .

The tilt angle 6 = 90°, so that B = 0T. In the top panel where Vg = +1.50V,
the 2D carrier density is p = 9.26x10'%cm ™2 and increases to p = 1.53x10" em ™2 at
VBg = —0.75V in the bottom panel. The back gate voltage Vg = +1.50V, produces
SdH oscillations with the least beating and hence this was selected as the operating
point for the rest of the experiment.
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ideal candidate for this study.

The experiment was conducted on two separate cooldowns, during one cooldown
the sample was oriented within the sample holder, such that the total applied field
B rotated between the crystal axes [311] in the perpendicular direction and the [011]
in-plane direction as depicted in Fig. 4.5b. The sample was rotated to its target angle
and the total magnetic field swept both positive and negative, whilst the longitudinal
resistivity was measured. This was repeated for a series of different angles. To study
the other crystal axis, the sample was warmed back to room temperature, rotated by
90° and reinserted into the sample holder to tilt the total applied field B between the
[311] perpendicular direction to the [233] in-plane direction, illustrated in Fig. 4.5a.

The series of measurements with field sweeps were repeated.

4.5.1 Tilted field results along high symmetry direction [011]

In this section we shall first consider the effect of tilted fields along a high symmetry
crystal axis, where there is no out-of-plane spin polarization. In the case of high
symmetry axes, there are no off-diagonal components in the g tensor and Eq. 4.4 can
be reduced to g* = (974, 9yy» 922)-

Along the high symmetry [011] crystal axis direction in our system, the effective

Hamiltonian used in Eq. 4.5 becomes

KB, *

and the equivalent Zeeman energy splitting is described by

1 1
AEz = \/(QQ;yﬂBByUy)Q + (iggzﬂBBzazy ‘ (4.10)

For the first part of this experiment, we orient the sample with respect to the total
magnetic field as shown in Fig. 4.11a, so that the sample rotates along the yz-plane
(and B, = 0). The field is first aligned along the [311] crystal growth direction and
the sample rotated to introduce a field component parallel to the [011] direction.

The magnetoresistance p;, data are plotted as a function of B, in Fig. 4.11c, for
different tilt angles £6. Starting with the magnetic field fully perpendicular to the

quantum well (top trace, 8 = 0°), the SAdH oscillations show no sign of beating at
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Figure 4.11: (a) Sample orientated in magnetic field, to rotate along the yz-plane
(B, = 0). Initially the total field was aligned along [311] (Bt = B, 8§ = 0°) and was
rotated by 6 to increase the component of field B, along [011] and study the higher
symmetry direction. (b) Schematic of the Landau level fan chart, starting with a purely
perpendicular field B, and illustrating the spin splitting introduced by a parallel field
component B, as the sample is tilted. (c) Magnetoresistivity traces taken at a series
of tilt angles for +6 (solid red) and —6 (dashed blue). Filling factors v=16 and v=17
are marked by dashed vertical lines and the traces are offset by 802/0 for clarity.
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low fields and the even filling factors veye, are dominant. The Landau levels remain
spin degenerate up to B, ~ 0.25T, with a well-defined p;, minima at v=16 and a p,,
maxima at ¥v=17. This is qualitatively different to the result of Yuan et al. [300] for an
asymmetrically doped quantum well, who observed a dominant v,4y throughout their

dataset.

By tilting the sample, an in-plane field component By, is introduced along [011],
which lifts the spin degeneracy of the Landau levels as indicated schematically in
Fig. 4.11b. This can be seen by following the odd filling factors v,44 such as v=17 in
Fig. 4.11c, where the peak at 8 = 0° evolves into a weak minimum at § = £80°. This
dip becomes more prominent with increasing in-plane field and by 8 = £85° the v=17
Pz Mmaximum has evolved into a p;; minimum. The opposite happens for even filling
factors Veyen. For example, v=16 starts as a well defined p,, minimum at § = 0° and

evolves into a p,, maximum at 6§ = £85°.

The most striking feature of the Fig. 4.11 dataset is its symmetry between traces
taken at the same ||, which is remarkably similar to what is expected for a 2D electron
system. The SdH data are identical for both positive tilt +6 (solid red) and negative
tilt —@ (dashed blue) angles. Moreover, the traces remain symmetric for both signs of
+B,, for both combinations of +6, and changing the sign of the ratio B, /B, has no
effect (demonstrated in Fig. 4.13). This result reflects the symmetry of the Hamiltonian

where the corresponding g tensor contains no off-diagonal elements.

A naive approach is to analyse the data and attempt to extract g factors using the
‘coincidence’ method for 2D electrons [75, 203], by comparing the cyclotron energy
gap (dependent on B.,) to the Zeeman energy gap (dependent on total field), to calcu-
late the product |¢g*m*|. However as previously mentioned, this coincidence method
assumes parabolic bands (constant m*) and an isotropic g factor, neither of which is

the case for 2D holes.

Nevertheless, a crude estimate of the product |gi,m*| can be obtained from the
6 = 0° data by comparing the magnetic field at which the SdH oscillations first become
visible (Aveyen = hwe — g5, upB at 0.12T) with the field at which spin splitting first

appears (Avyqq = gi,upB at 0.35T). This suggests that gi,m* ~ 0.5, which is much
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lower than the theoretical expectation of g}, m* = 1.4 (where m* = 0.2 and g}, = 7.2

[284]. The reason for this apparent discrepancy will be addressed in later Section 4.6.2.

4.5.2 Tilted field results along low symmetry direction [233]

Having checked the SdH oscillations are symmetric despite a change in the sign of the
parallel field along the high symmetry [011] orientation (i.e. pzq(By) = pza(—By)), we
now turn our attention to the low symmetry direction to observe the effect of the out-
of-plane spin polarization due to the presence of off-diagonal elements in the g tensor
described by Eq. 4.4. In this case, we expect to detect the presence of a non-zero g,
component as an asymmetry between corresponding SAH traces of £0 = +B,/B,.

In our system, Eq. 4.5 can be rewritten so the first-order Zeeman Hamiltonian

specific for the low symmetry direction [233] is expressed as

H[gig} = H?B(g;xBCCUI + g;szo'z + g;zBZO-Z) ) (4.11)

and the corresponding Zeeman energy as

1 1 1
AEz = \/(QQ;xMBBx)z +(39%m8B: + 595.1B:)? (4.12)

To perform the second part of the experiment, the sample was thermal cycled and
reoriented to rotate along the xz-plane (so By = 0). Once again the total magnetic
field was first aligned along the [311] direction and the sample rotated to increase the
in-plane field component B, applied along the low symmetry [233] direction, as shown
in Fig. 4.12a. The back gate bias was then re-tuned to symmeterise the confining
potential, with the symmetry point occuring under similar conditions to the previous
cooldown (the back-gate bias applied differs by 1.3% and the hole density by 0.6%).

The low-field magnetoresistance data taken at different tilt angles are shown in
Fig. 4.12d. The top trace was taken at § = 0°, where the field is perpendicular to the
quantum well and is identical to the corresponding [011] trace in Fig. 4.11¢c, where B,
causes the Landau levels to split and generate an out-of-plane spin polarisation.

When an in-plane field component B, is introduced by tilting the sample, an

additional out-of-plane spin polarization proportional to g}, B, is generated, that either

adds to or subtracts from, the out-of-plane spin polarization due to B,. This difference
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Figure 4.12: (a) Sample orientated in magnetic field, to rotate along the xz-plane
(By = 0) and study the low symmetry direction. Initially the total field is aligned
along the [311] crystal direction (Bt = B, # = 0°) and is rotated by 6 to increase
the field component B, parallel to [233]. (b,c) Schematic of the Landau level fan
chart, starting with a purely perpendicular field B, and illustrating the spin splitting
introduced by a parallel field component as the sample is tilted to +B, by +6 in (b)
and —B; by —0 in (c¢). (d) Magnetoresistivity traces taken at a series of tilt angles for
+6 (solid red) and —6 (dashed blue). Filling factors v=16 and v=17 are marked by
dashed vertical lines and the traces are offset by 40Q2/0 for clarity.
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in behaviour is most pronounced at high in-plane fields, such as # = +85° and § = £86°
where the SAH oscillations for opposite signs of £6 are completely out of phase with
each other. This is in stark contrast to the equivalent SdH trace in the [011] dataset
(e.g. 8 = £85° in Fig. 4.11c) which is completely symmetric, i.e. pz.(By) = pre(—By).

We can obseve this asymmetry by following the evolution of p,, maximum at v=17
starting with zero tilt angle in Fig. 4.12. For the —0 traces (dashed blue lines) we can

identify three main regimes (similar to the [011] but occuring at different angles):

i) A small spin splitting at v=17 is first noticeable at § = —77°.

ii) By 6 = —80.5° the minima for both odd and even filling factors (v=16 and v=17)

are equally well defined.

iii) Going to larger tilt angles, the p,, maximum at v=17 evolves into a minimum,
while the p;, minimum at v=16 becomes a maximum. These three regimes
correspond to the three regimes shown in Landau level schematic of Fig. 4.12c.
Here the negative in-plane field component —B, (due to —6), results in ¢}, B,

subtracting from ¢}, B, reducing the effective Zeeman splitting.

In contrast to the negative tilt angles, the g, B, and ¢},B, terms in Eq. 4.12 add
for positive tilt angles, and the spin splitting develops more rapidly for corresponding
+0, illustrated in Fig. 4.12b. By comparing the evolution of v=17 for +6 (solid red

lines) to their equivalent —6:

i) The onset of spin splitting at ¥=17 is first resolvable at a much lower in-plane field,

at 0 = +62°.
ii) At # = +72° the minima at =16 and v=17 are equally well defined.

iii) At § = +77° the p;, maxima at ¥=17 has evolved into a minima, whilst the
minima at =16 has become a maxima. Tilting the sample further causes the

oscillations to invert a second time at 8 = +86° and a third time at 6 = +87°.

From this dataset, we observe that the spin splitting of the Landau levels evolve

much faster for positive tilt angles than it does for negative tilt angles. This suggests
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Figure 4.13: Magnetoresistance data plotted versus +B, (solid lines) comparing the

sign of the ratio %’;‘ where +60 = i—gz (solid red), —0 = jrg: (solid blue) and corre-
sponding traces plotted versus —B, (dashed lines) for +6 = :gj (dashed red) and

-0 = f—gj (dashed blue). Part (a) shows symmetric SdH traces along [011] for
6 = £85° in all four cases (here the parallel field is denoted B, rather than B,).
In part (b) along [233] the traces are distinctly different for +%;” compared to —g—z.
Traces in each panel are offset vertically by 70Q/00.

that this difference between +60 and —6 traces stems from the interplay between the

g, and g%, terms in Eq. 4.11.

To confirm that this asymmetric behaviour with respect to the sign of £6 is not an
artefact or a measurement error, we compare the symmetry of the datasets with respect
to the sign of B, by plotting both +B, on the same axis |B,| in Fig. 4.13. Here, all
four combinations of the signs of £ B, and +B, are given for a tilt angle of |5°|. Along
the [233] direction, the resistivity traces are symmetric only when the signs of both B,
and B, are reversed, so that the total sign of the ratio B, /B, remains the same. This
striking result suggests that effect of the non-collinear spin polarization due to the off-
diagonal element g, is a maximum when the two terms of the Hamiltonian g}, B0,
and g}, B,o, are added together, whilst the effect of the non-collinear spin polarization
can likewise be reduced when the same terms act to counterbalance each other. This
rules out the possibility of measurement artefacts and confirms the existence of the
unusual non-collinear g}, contribution to the spin response of a low-symmetry 2D hole

system.
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4.6 Discussion - Modelling the hole bandstructure

Although we can experimentally verify that the non-collinear spin polarization due to
the off-diagonal element g}, is a maximum when a positive in-plane field is applied
along the [233] crystal direction, a quantitative comparison of g*, with the theoreti-
cal value would be ideal. However we discovered that achieving such a quantitative
comparison between the tilted field experimental data and numerical calculations per-

formed using the traditional approach is currently impractical.

In this section we attempt to extract values for the g factors and compare them
with theory. Due to the complexity of the hole bandstructure, the standard approach
of determining Landau level energies by diagonalizing the effective Hamiltonian in a
large basis of harmonic oscillator functions [58, 74, 83|, becomes a non-trivial task
for holes in tilted fields, with both components of magnetic field B, and B applied
simultaneously [287]. We shall first introduce the naive ‘electron-like’ approach to ex-
tracting g factors using the ‘coincidence’ method, assuming parabolic bands (constant
m*) and an isotropic g factor and discuss the limitations of this model. This is followed
by full k - p calculations of the energy fan diagram and dispersion relations where we
explore the anisotropic behaviour of both m* and ¢* in the presence of a magnetic

field.

4.6.1 ‘Electron-like’ parabolic band model

A naive approach is to analyse the data and attempt to extract g factors using the
‘coincidence’ method described in Section 4.2.4 for 2D electrons [75, 203], by comparing
the cyclotron energy gap (dependent on B,) to the Zeeman energy gap (dependent on

total field) and extracting the product |g*m*|.

As a first approximation to modelling a simple non-interacting Landau fan diagram
of the 2D hole system, we assume parabolic bands (constant m*) and constant g
factors, replacing the electron ¢g* = —0.44 with the relevant hole g factor in each

crystal direction, where the nth energy level can be expressed for the [011] and [233]
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respectively as:

1. eB 1 1
Bt = 0+ D022 g sBp + QaunBr a9

1. eB 1 1 1
Efgzy) = (n+ 3)h mf + \/(QLCJSEJJMBBI)2 + (392188 + 595.1B:)? (4.14)

A schematic model is shown in Fig.4.14, where the parameters used are g%, = 3.0,
9rz = Gyy = —0.16, gz, = 0.65 and m* = 0.19. The Landau levels for a small,
purely B, field up to 0.1T are shown in panels (a) and (c). If the theoretical values
of g%, = 7.2 and m* ~ 0.2 are applied directly to this model, we obtain a Zeeman
gap which is much larger than the cyclotron gap. However for our experimental data
taken at 6 = 90° (B)=0), we observe that the cyclotron gap is larger than the Zeeman
gap. To achieve agreement with the experimental data, g;, was reduced to ~ 3 in
order for the Landau levels to exhibit a smaller Zeeman gap (Av,qq = AE, = g*upB)
SO AVeyen > Avyqq. Panel (b) models the Landau levels along the high-symmetry
[011] direction. The levels behave symmetrically for both signs of the in-plane field,
as expected from the symmetric form of Eq. 4.13. On the other hand panel (d) shows
a distinct shift in the Landau level crossings when an in-plane field is applied along
[233]. For +B, the crossings appear earlier (at smaller values of B,) compared to
equivalent —B,, level crossings, due to the presence of the g}, B, term interacting with
a fixed ¢, B, term.

Although the simple model yields a reasonable approximation in electron systems,
the behaviour of g, in holes is far from a simple offset in B, and despite numerous
tweaks we were unable to achieve a match for coincidence angles between the simple
Landau model and the experimental data. This discrepancy clearly demonstrates
that this simple model cannot be directly compared with the experimental data, since
its basic assumptions of constant m* and parabolic energy bands alone, do not take
into account HH-LH couplings, interaction and higher order effects, arising from the
highly non-parabolic band structure of spin-3/2 holes. In the following section we will
show that, both g* and m* are anisotropic and vary with parallel field, which has a

significant impact upon the Landau level structure of a 2D hole system.
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Figure 4.14: Landau fan chart produced using a naive approximation. (a) A small
perpendicular field B, is first applied along [011], which spin resolves the Landau
levels. (b) Next, adding an in-plane field B, splits the Landau levels at the same rate
for both signs of £B,. (c) Similarly a small B, is first applied along [233] (d) followed
by an in-plane field B, which shows a distinct offset between +B,.
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4.6.2 k- p models - 8 x 8 Kane Hamiltonian

To obtain a more complete description for our low-symmetry tilted field 2D hole data,
the k - p method was applied to model our system. The non-parabolicity of the hole
band structure for quantum wells grown along low symmetry GaAs directions, is al-
ready present at zero-field and is further enhanced with the application of an in-plane
field. Theoretical calculations of the energy versus in-plane wave-vector k| dispersion
curves, for bound hole states in shallow (311)A GaAs quantum wells (<10nm), re-
veal an enhanced anisotropy for some hole subbands compared to equivalent subbands
in (100) quantum wells [108, 269], with some higher bands exhibiting a pronounced
‘camel-back’ structure with a saddle point at kj = 0. Other dispersion calculations
for a 15nm quantum well along different crystal growth directions, also yield much
richer and complex bandstructure effects along [311] compared to higher symmetry

directions [284].

Dispersion relations for our 20nm GaAs quantum well, were calculated using the
k - p method with an 8 x 8 Kane Hamiltonian, by R. Winkler. These calculations
account for Dresselhaus SO by including the remote band contributions to second-
order in k. Fig. 4.15(a) illustrates the dispersion relation for the lowest five hole
bands: HH1 (at —0.67meV), HH2, LH1, HH3 and HH4 respectively along both [233]
(solid purple) and [011] (dashed blue). Here the presence of 2D confinement pushes
the unoccupied HH2 band down to —4.31meV, and the LH1 band to —6.73meV. In
the case of zero in-plane field, the HH1 bands are nearly isotropic in the 2D plane,
although there is a tiny spin-orbit splitting of HH1 at finite k|, seen as the bands cross

the Fermi energy, due to the presence of bulk inversion asymmetry.

Fig. 4.15b and ¢, show the effects of applying an in-plane magnetic field upon
the dispersion relations for two orthogonal in-plane crystal axes. For an in-plane field
applied along [011] there is almost no splitting of the HH1 subbands (AE = 0.025meV)
at the k = 0 band edge in Fig. 4.15(b), as the heavy hole spins are locked along the
[311] confinement axis due to the HH-LH splitting. However, at finite k| the in-plane
field couples to the orbital momentum due to the finite well width, distorting the

Fermi surface and lifting the spin degeneracy. In contrast when the magnetic field is
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Figure 4.15: (a) 2D Hole dispersion relations for a 20nm wide GaAs quantum well from
8 x 8 k - p calculations, showing the Fermi energy (horizontal red line at —1.95meV)
and E(k) along [233] (solid purple) and [011] (dashed blue) at zero field. (b) Dispersion
plot for B, = 4T along [011], exhibits a tiny k| = 0 spin splitting AE in the HH1
subbands, (c) Dispersion relation with B, = 4T along [233] shows a comparatively
larger k|| = 0 spin splitting due to the presence of gy, [R. Winkler].

applied along the lower symmetry [233] axis (Fig. 4.15(c)) the k| = 0 splitting is ~ 6
times larger, AF = 0.145meV. Since the states at k = 0 are locked perpendicular to
the quantum well by the 2D confinement, this enhanced spin-splitting is due to the
out-of-plane spin-polarization generated by the in-plane field due to g}, as described

in Eq. 4.11.

In the case of a purely perpendicular field, the non-parabolicity of the band struc-
ture and HH-LH coupling also yield a more complex hole Landau fan diagram com-
pared to that for electrons. A Landau fan chart of our system is presented in Fig. 4.16(a),
obtained from an equivalent k - p calculation, taking into account the self-consistent
Hartree potential, and bulk inversion asymmetry through remote-band contributions
to second order in k in the 8 x 8 Kane Hamiltonian. The calculations show the spin
splitting of the Landau levels is highly non-linear with increasing field.

Fig. 4.16b plots the product |gi,m*|, extracted from the energy gaps between

Landau levels at the Fermi energy EFr. Here m* is extracted from the Landau fan

diagram of Fig. 4.16a in a similar manner to how it is determined from temperature
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Figure 4.16: (a) 8 x 8 k - p calculations of the first 20 energy levels in the Landau
fan diagram for a 20nm GaAs quantum well in a purely perpendicular field. The
dashed orange line marks the position of the Fermi energy. (b) Plot of the product
lg%,m*| where gf, is extracted from the Zeeman energy gap between adjacent even-
odd-indexed energy levels around the Fermi energy, and m* from the cyclotron gap
between adjacent odd-indexed energy levels, from panel (a) [R. Winkler].

dependent SAdH measurements. For a fixed B, m* is extracted from the gap between
adjacent energy levels with the same spin. Likewise, (¢3,) is determined from the
Zeeman gap (Av,qq) between adjacent even and odd indexed Landau levels at a fixed
B, AEz = g}, upB,. From these values the product |g},m*| could be calculated.

Due to the non-parabolicity of the bandstructure, the product |g},m*| decreases
from 1.32 (where ¢, = 6, m* = 0.22) at B, = 0.12T, to 0.88 (where g}, = 3.7,
m* = 0.23) at 0.3T, in Fig. 4.16b. The 8 x 8 k - p calculations show that g%, m* trends
to ~ 0.6 at higher perpendicular fields, due to the anisotropy of both g}, and m* in
the presence of a perpendicular field. This result is more consistent with g, m* ~ 0.5
obtained from the experimental data at 6 = 0° and is much lower compared to that
predicted by the naive theory described in the ‘electron-like’ model.

Another contributing factor to the non-parabolic band structure is the anisotropic
behaviour of ¢g* and m* in a parallel magnetic field. Calculations of these are plotted
as a function of in-plane field along [011] in Fig. 4.17a and along [233] in panel (b),
courtesy of R. Winkler.

Along the [011] direction, gyy decreases to ~ 0 at large in-plane fields, whilst one
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Figure 4.17: Plot of the anisotropy of two species of m* (blue) on the left axis, and g*
(red) on the right axis versus an in-plane field applied along the [011] direction in (a)
and along [233] in (b). These values were taken from k - p calculations of our sample’s
20nm QW, based upon the numerical diagonalization of the 8 x 8 Kane Hamiltonian
accounting for the self-consistent Hartree potential. Calculations were performed by
R. Winkler.

*

effective mass species, Moy

remains about constant and the other, m}_ . approxi-
mately doubles. For the [233] direction, g}, decreases slightly with in-plane field, m;,,
remains mostly constant, whilst once again mJ_ = roughly doubles in value. These
plots suggest that the anisotropy of ¢g* and m* are non-negligible in our system, as
most of our data was collected at large in-plane fields.

However, the problem of achieving realistic k - p calculations taking into account

the variation in ¢g* and m*, for both B) and B, simultaneously, remains outstanding

and further theoretical investigation is required.

4.7 Conclusions and future work

In summary, we report the direct observation of an out-of-plane spin polarization
of itinerant 2D holes generated by an in-plane magnetic field applied along the low
symmetry [233] direction. This non-collinear spin polarization is due to a non-zero
off-diagonal element g}., whose combined effect upon the spin splitting of the SdH
oscillations reaches a maximum when the two terms of the Hamiltonian g}, B0, and
g:,B,0, are added together. This phenomenon is unique to 2D holes formed in a

low symmetry zinc blende crystal structure such as GaAs, and stems from the in-
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terplay between quantum well confinement and lattice symmetries. Our experiment
constitutes one of the rare ocassions where off-diagonal elements in the gyromagnetic
tensor g* are accessible to experimental study. From our numerical calculations of the
bandstructure, the complex and highly anisotropic behaviour of ¢g* and m* in both
perpendicular and parallel fields, means that the coincidence method using tilted fields
cannot be directly applied to extract g factors.

Of further interest would be to repeat the same experiment in a 2D system with
both a front and back gate, as this would allow one to independently tune the density
(and keep it constant) and the confining potential (and hence the Rashba SO). The
experiment could be performed at different densities and for differing confining poten-
tial symmetries for comparison. Moreover, performing the experiment within a 3-axis
vector magnet system would allow for independent control of each field component
being applied.

Finally, on top of a method to perform k - p calculations which accounts for both
By and B, simultaneously, another aspect of low-symmetry systems which requires
further consideration, both theoretically and experimentally is, g%, of which very little

has been mentioned in the literature.



Chapter 5

Non-abelian spin dynamics in a

2D hole system

5.1 Introduction

In the previous chapter we examined the static properties of hole spins and showed
the presence of an unusual non-collinear spin-polarization caused by the presence of
an off-diagonal ¢}, contribution in the g tensor. For this chapter we now explore the
dynamics of 2D hole spins, concentrating upon how the spins behave in tilted magnetic
fields. Previous studies have predicted the presence of Berry phase in systems with
strong spin-orbit coupling [13, 189], and holes which intrinsically possess strong spin-
orbit coupling provide a convenient platform to study this phenomena. In particular,
we demonstrate that holes undergo non-abelian spin evolution in tilted magnetic fields,
which can be modelled using the paradigm of the non-abelian gauge field.

This chapter begins with an overview of the key concepts underpinning the abelian
and non-abelian gauge formalisms and their generalizations, followed by examples of
experiments conducted to observe the Berry phase, with an emphasis on semiconductor
systems. Section 5.3.2 outlines a non-abelian formalism for our 2D hole system and
describe the conditions needed to generate and detect the elusive non-abelian Berry
curvature in a semiconductor system. In section 5.4 we use a 2D GaAs hole system

grown on a low-symmetry plane to present tilted-field transport measurements taken
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along two crystal axes and study the phase changes in Shubnikov-de Haas oscillations.
We found that unlike the ‘electron-like’ model discussed in the previous chapter, the
adapted non-abelian formalism predicts the position of the coincidence angles correctly,
thus providing the first experimental evidence for the existence of the non-abelian
Berry curvature in a solid-state semiconductor system.

This work (to be published) was done in collaboration with theorists T. Li and O.
P. Sushkov, who derived the non-abelian formalism to explain the unusual behaviour
of our 2D hole system (to be published). Note that the theoretical formalism and all
calculations in this chapter were performed by T. Li. The experiment was performed
by the author of this thesis and the analysis was a joint effort.

To highlight the difference between a system with no spin dynamics, one with
abelian behaviour and one with non-abelian behaviour, the spin trajectories of a par-
ticle moving around a circular path (in momentum space) are illustrated in Fig. 5.1.

Each of the 3 panels corresponds to the 3 different situations:

a) No spin dynamics: There is no spin-orbit interaction and the spin (red) simply
aligns with the external magnetic field B¢y (blue), e.g. the trajectory followed

by a non-relativistic electron in the presence of an external magnetic field.

b) Abelian (adiabatic) spin dynamics: Although spin is precessing, it remains aligned
with the driving field B,y which itself is parallel to the momentum, B.yr ~
B, x k. The abelian picture assumes the adiabatic limit holds for the system
under study [167], i.e. the spin precession frequency is much larger than the
orbital frequency around the closed loop due to the presence of Bg,:. This
precession of spin around a closed orbit generates a geometric Berry phase which
appears as the m-phase shift observed in Shubnikov-de Haas oscillations [6, 198|.

e.g. in the case of an ultra-relativistic Dirac electron.

c) Non-abelian spin dynamics: Describes a system where corrections to the adiabatic
scenario are required, e.g. a system where the spin is effectively rotating around
two axes simultaneously, such as 2D holes with strong spin-orbit (SO) coupling,

undergoing non-adiabatic spin precession in the presence of an external magnetic
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Figure 5.1: Spin dynamics along the closed trajectory in momentum space (green
circle) due to B, in three qualitatively different situations, where spin (red arrows)
is driven by a local effective magnetic field B.s; (blue arrows). (a) Absence of spin
dynamics. This corresponds to the case of an electron moving within an external
magnetic field in the absence of spin-orbit interaction. (b) Abelian spin dynamics.
Spin is changing, but it remains parallel to the driving field B.s; o< k. (c) Non-
abelian spin dynamics. The spin is parallel to the vector sum of the driving field By
and the non-abelian gauge field.

field with non-zero in-plane and perpendicular components. In this instance the
particle’s spin (red) is driven by a local effective magnetic field B¢ (blue), which
consists of both the external magnetic field B¢,; and the momentum-dependent
SO field By, (not shown). Here, the driving field B,y is not collinear with spin

and this non-collinearity is proportional to the non-abelian gauge field.

5.2 Background

In this literature review we cover the key concepts used to formulate the non-abelian
gauge field derivation for our experimental data and provide context for this body of
work. This includes: introducing the concept of gauge theory, the geometric Berry
phase and its generalization, followed by the non-abelian paradigm. Finally we high-
light experiments conducted and proposed in solid-state systems to observe the abelian
Berry phase and detect the non-abelian gauge field.

Gauge theories are a class of field theories possessing a local (continuous) symme-
try. The symmetry transformations do not change observable quantities. In classical
physics, the gauge field which appears in the Lagrangian (e.g. the vector potential in
the case of electromagnetism) cannot be measured directly and different configurations

of the field can result in identical observable quantities (e.g. the electric and magnetic
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fields). Cornerstone to all gauge theories is a property called gauge invariance (or
gauge symmetry), which is the invariance of the Lagrangian with respect to group
transformations of a gauge field. The continuous group of transformations form a
Lie group. Locally the Lie group is described by the Lie algebra which consists of the
group generators. A gauge field is considered abelian if the group generators commute.
On the other hand, if the symmetry group of transformations are non-commutative,

the gauge field is non-abelian, such as in the Yang—Mills theory [293].

Although the gauge field is not a physically meaningful object in classical physics,
it results in a shift of the phase of the quantum wavefunction which may be directly
observed in quantum interference measurements [23]. Let us consider, as an example,
the case of electromagnetism. The phase shift in the semiclassical wavefunction is
equal to the integral of the magnetic vector potential A along the classical path [,
7 JA-dl. For an electron moving around a closed loop, the phase accumulated in
the vector potential is equal to the magnetic flux in units of Z, which results in a
shift of the Bohr-Sommerfeld quantisation condition. This flux appears even when
the electron is confined to move in a region which is unpenetrated by the magnetic
field; this surprising result is known today as the Aharonov-Bohm effect [3, 23]. In
this thesis, the analogous flux for a non-abelian gauge field due to the spin-orbit
interaction has been observed for the first time via the quantum interference of holes
moving along a cyclotron trajectory (i.e. Shubnikov-de Haas oscillations), and appears

as a modulation to the phase of these oscillations. This will be detailed in Section 5.3.2.

Although originally conceived to describe the interactions of elementary parti-
cles [89, 293], through the principle of ‘emergence’, gauge fields have been extended to
describe the behaviour of a wide variety of quantum systems. The concept of emergent
gauge fields arise naturally in many geometrical contexts, giving rise to the idea that
physical systems can be classified according to their geometrical properties. One ex-
ample of such an abelian gauge theory is the geometric phase, more commonly known
as the Berry phase [23], which describes the adiabatic evolution of a non-degenerate
quantum state. The emergence of non-abelian gauge fields in degenerate quantum sys-

tems was first proposed by Wilczek and Zee [280]. The concept of the abelian gauge
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field has been used to describe a broad range of physical phenomena such as the topo-
logical Chern number formulation of the quantum Hall effect [145, 262], 3D topological
insulators [82, 117, 118, 290], superconductors [79, 214] and superfluids [98, 215]. Sim-
ilarly the non-abelian gauge field has been theoretically predicted to exist in a number
of many-body systems e.g. fractional quantum Hall liquids [187], spin-orbit coupled
systems [13, 189], self-assembled quantum dots [253], cuprate semiconductors and en-
sembles of ultracold atoms [156] (see review Ref. [87] for more examples). But to
date there has been no experimental evidence for the non-abelian gauge field in a
semiconductor system.

In this literature review we shall begin with a classical interpretation of Berry
phase, followed by Berry’s original derivation and its generalization to an abelian
gauge field, followed by the non-abelian Berry phase derivation and its generalization
into a gauge field and an observable trace. We briefly cover how Berry curvature can
be used to describe spin and charge transport through a crystal lattice and highlight
some experiments and proposals to measure and detect the abelian and non-abelian
Berry phase.

Note that we shall only be providing a brief summary of the theoretical results and
their implications. For more details of the derivations for the abelian and non-abelian

Berry phase, connection and curvature, refer to Appendix D.

5.2.1 The geometric Berry phase

In 1984 Berry [23] discovered that a phase difference can be acquired over the course
of a cycle, when a system is subjected to cyclic adiabatic processes, resulting from
the geometrical properties of the parameter space of the Hamiltonian. This additional
phase factor is now known as the Berry phase.

Since the conception of Berry phase, many generalizations have been proposed
to the original definition. In this chapter we shall focus on two main extensions:
1) the relation between Berry phase, Berry connection and Berry curvature; 2) the
generalization from a single non-degenerate state to m degenerate states evolving to-

gether, resulting in a whole matrix rather than a single phase factor, giving rise to
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non-abelian behaviour [280]. Such a flexible theory can be used to explain the spin
and charge transport of electrons/holes through a semiconductor crystal by taking
the periodic lattice potential into consideration and the effect of spin-orbit interac-
tion upon the Landau level structure. Moreover the semiclassical formalism can be
amended to include quantization effects such as Bloch oscillations and cyclotron orbits
via the Onsager quantization condition [199]. More recent developments have shown
that the Berry connection plays an explicit role in spin dynamics and is related to the
spin-orbit interaction e.g. applications include the relativistic Dirac electron and the

Kane model in semiconductors [91, 289].

Classical Berry phase

The Berry phase has been observed in classical systems such as the Foucault pen-
dulum [105] and the Pancharatnam phase in optical fibers [265]. In these systems,
the classical analog to Berry phase highlighting its geometrical origin is the geometric

angle, which can be explained as follows [7]:

We now describe how the Berry phase can manifest in a classical system. Suppose
we travel along a closed path C on the surface of a sphere. Initially we define a vector
v; tangential to the surface along the direction of travel, illustrated by the long vector
in Fig. 5.2 at position (1) marked in red. As we move along the curve we apply the
principle of parallel transport of v around C, i.e. for each infinitesimal displaced point
along the curve, we ensure that v remains parallel to its previous state. Once back at
the starting point (7), we find that final vector vy has rotated and is now at an angle
~ with respect to its initial direction Fig. 5.2. The underlying cause for this rotation
is purely geometrical and is connected to the intrinsic curvature of the sphere. This
geometric angle depends on the path enclosed and is related to the integral of the
curvature on the surface bounded by the loop. In this case, the geometric angle v
equals the solid angle € subtended from the center of the sphere. In this example the

loop covers 1/8th the surface area such that Q = 7 = ~.
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Figure 5.2: Classical analog of Berry phase depicting parallel transport of vector v
around a closed path C on the surface of a sphere, where the difference in angle
between the vector’s initial v; and final vy state is equal to the solid angle enclosed
by C, where v = Q. Figure reproduced from Ref. [90].

Cyclic adiabatic evolution

We shall briefly outline the concept of Berry in terms of cyclic adiabatic evolution and
introduce the local description of the Berry phase in terms of the Berry curvature. For
a full set of derivations please refer to Appendix D.1.

For a quantum system in an eigenstate, of a Hamiltonian H with time varying
parameters R = (Ry, Ra, ...), such that between time ¢ = 0 to time ¢t = T', R circulates
around a closed path denoted C in the parameter space [23].

If the environment and hence H is slowly altered (i.e. the characteristic frequency
27 /T is much smaller than the energy spacing between adjacent levels, | E,—E, |), the
effects of the slowly changing degrees of freedom upon faster moving degrees of freedom
can be estimated using the adiabatic approximation. The adiabatic theorem [135, 186]
predicts that a system starting off in one of its eigenstates |n(R(0))) will remain as
an instantaneous eigenstate [n(R(t))) of the Hamiltonian H(R(t)) during the whole
process, at any time ¢. So the only degree of freedom available to change is the phase
Yn(t) of the quantum state, whose wave-function can be expressed as

[¥n(t)) = exp{—i/ dt,En(R(t/))} @ |n(R(1))) - (5.1)

0
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The first exponent is the dynamical phase factor, which describes the slowly varying
time evolution of the stationary state. This dynamical phase is not geometrical, rather
it depends only upon R(t) which parameterizes the path followed, and on the arbitrary
gauge choice of a “zero phase” of the basis state at each point along the path. The
second exponent is the additional geometrical phase factor of interest, which is acquired
by the quantum state during adiabatic evolution. Its phase 7, (f) cannot be written
as a function of R only and is path dependent.

The total phase change of state |¢), around a path C is given by the evolution of
the wave-function between ¢ = 0 and ¢ = T', where the geometrical phase change is
described by a path integral in parameter space and is independent of how the circuit

is traversed in the adiabatic approximation [23]

(€)= 7{: dR - A,(R), (5.2)

where A, (R) is a vector-valued function now known as the Berry connection (or Berry
vector potential) [289]
An(R) =i (n(R)|Vr|n(R)) , (5.3)

and 7, (C) is defined up to an integer multiple of 27 under the gauge transformation.
For any closed path, e/, the geometric Berry phase 7,(C) is gauge invariant and is
given by

Yn = fédR -An(R) . (5.4)

From this defintion, the Berry phase only depends on the geometry of the closed
path and is independent of the time variation of R(¢) in the adiabatic limit. The Berry
phase is a measurable quantity. Unlike the Berry phase, the local Berry connection
A, (R) is gauge dependent and hence can never be physically observable. Due to the
geometric character of the Berry phase, in systems where electrons/holes behave as
ultrarelativistic particles, Berry phase directly reflects the shape of the spin trajectory.
Measurements of the Shubnikov-de Haas oscillations in graphene [198, 305] and in
topological insulators [227] have highlighted the contribution of this geometric phase
arising from the internal degrees of freedom (pseudospin and spin respectively) of the

systems under study.
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Berry curvature and gauge fields

The Berry phase can be generalized into a field by defining an anti-symmetric second-
rank, gauge invariant field (curvature) tensor, derived from the Berry vector potential

An(R) in Eq. 5.3 [289], F},,(R) which is called the Berry curvature,

R = 2 anm) -0 AnR)
i [ <ag](£) ‘ 6ggf>> — (v & u)} : (5.5)

From Stoke’s theorem, for a closed path C forming the boundary of a surface S, the

Berry phase can be expressed as a surface integral
1
o = /S AR N ARV LFL(R) (5.6)

where S is the surface enclosed by the path C. Unlike the Berry vector potential
(Berry connection), the Berry curvature described by Eq. 5.5 is gauge invariant and
observable. In a 3D parameter space, we can recast the Berry curvature Eq. 5.5 and

the closed-loop Berry phase 5.6 into pseudovector form

Fn(R) = VRXAn(R),

" = /S dS - F,(R) . (5.7)

The abelian Berry paradigm covers the situation where a single energy level is
separated out in the adiabatic evolution, but if the energy levels are degenerate, then
the corresponding dynamics must be projected onto a subspace spanned by these

degenerate eigenstates, resulting in a non-abelian Berry curvature [280)].

5.2.2 Non-abelian Berry paradigm

In contrast to a system where electrons/holes behave as ultrarelativistic particles, the
concept of Berry phase is not as straightforward in 2D semiconductors due to the
existence of two coupled Fermi surfaces with opposing spins.

The following section briefly summarizes how the concept of Berry phase can be

extended to such systems, comprising of degenerate (or nearly degenerate) energy
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bands. Since degenerate Bloch states possess multiple components, the Berry curva-
ture becomes a matrix with a non-abelian gauge structure, ultimately resulting in a

non-abelian Berry curvature (i.e. the non-abelian field).

Non-abelian Berry phase

Beginning with the adiabatic problem, Wilczek and Zee [280] derived the non-abelian
Berry phase in a similar manner to that for the geometric Berry phase for multiple,
M, degenerate states. For a full derivation please refer to Appendix D.2.

For a closed path the Wilson loop is obtained, which is a matrix analogy to the

geometric Berry phase and can be expressed as

U="P cap {z’fAudR“} . (5.8)

Note that ¢(t) and A(7) are now matrices, where U(t) and A(7) do not commute with
U(t') and A(7) respectively.
A is the corresponding non-abelian analog for the Berry connection defined in

Eq. 5.3 and can be expressed as [91]
Ay =i (na Oyl ms) (5.9)

The non-abelian Berry connection A" (R) is now a matrix-valued vector indexed by
(a,b) for all indices of the degenerate subspace (1,..., M), where u refers to a set of
matrices A and 9, is shortened notation for %. The specific form of A from Eq. 5.9

depends upon the choice of basis states |n,(R(t))). For a different choice e.g.
n(R(t)) = Qt)p() (5.10)
the set of fields A" then transform as full gauge potentials

A (1) = 00! + QAFQT! (5.11)

Deriving the non-abelian Berry curvature

When considering a set of degenerate bands, conventional adiabatic theorem is no
longer valid and we can extend the non-abelian Berry formalism to describe a non-

abelian Berry curvature, as done for the Berry phase. For the semiclassical framework,
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a correct treatment of the system involves a wave packet constructed from the degen-
erate levels [52, 241]. Thus, the Berry curvature tensor Fj, (R) from the abelian
Eq. 5.5 must be extended to a matrix definition ng(R) in analogy to non-abelian

gauge theories [280], by substituting the curl with the covariant derivative [91, 241]

FO(R) = 9uAL — 9,A% +i[A,, A"
= {i(Ouna(R) | Oymp(R)) — i (Oyna(R) | Ouny(R))}
+ i [(Oyna(R) [ ne(R)) (ne(R) | Ounp(R))]
— 1 [{(Ouna(R) [ ne(R)) (ne(R) | Oynp(R))] (5.12)

Just as in the abelian scenario where the Berry connection (Berry curvature) have the
same mathematical structures as the vector potential (magnetic field), this correspon-
dence also holds for the non-abelian gauge theory e.g. SU(2) gauge theory [280]. The
non-abelian Berry connection A", (R) under the gauge transformations, is transformed
according to Eq. 5.11 and the corresponding non-abelian Berry curvature ]—"gﬂ(R)
to [91]

FP(R)=U'(R) F%(R) U(R) . (5.13)

Thus the non-abelian Berry curvature matrix fﬁfj(R) is changing under a gauge rota-
tion and therefore cannot be directly observed [36]. But we can derive gauge invariant
quantities from it which are physically meaningful, such as the trace of the Berry cur-
vature matrix, trF. This trace will play a crucial role in interpreting our experimental

data which we will discuss in Sections 5.3.2 and 5.4.

5.2.3 Gauge fields in crystal lattices

The advent of Berry connection and curvature allows the non-abelian gauge field to
be extended to describe the spin and charge transport of electron wave packets in

crystals, using the semiclassical approach [91, 289).

The abelian gauge field

For the case of a crystal lattice, the crystal momentum vector k is equivalent to the

general parameter R used in the previous sections of this chapter. Starting with the
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Schrédinger equation for the Bloch state 1,k (r) = €*"u,(r, k) (where n and k are

the band index and crystal momentum and w,(r, k) is a cell-periodic function),

h2
{—vaf + V(T)} Vnke (1) = Entetnie(T) - (5.14)
Rewriting it for the periodic part of the Bloch function we arrive at
h2
{—2m(V,~ +ik)? + V(r)} Un(r, k) = enpun(r, k) . (5.15)

Generally the differential equation for ¢,x(r) is a simultaneous eigenfunction of the
translation operator and the Hamiltonian, and so it does not depend on the wave
vector k, since it only labels eigenvalues of the translation operator. However for the
above scenario, k appears as a parameter and hence the Berry phase, connection and
curvature now apply directly to the periodic part of the wave function w,(r,k) as
well [91]. So for each band n, there is now an abelian Berry connection associated

with every k of the form
A, (k) = i / Br (v, k) Viun(r, k) | (5.16)

where integral is made over one unit cell uc. And the corresponding abelian Berry

curvature can be expressed as
F,k) = VepxA,(k) |, (5.17)

which is the quantity that appears in the semiclassical equations of motion for the wave
packet (see Ref. [91] for further details of the derivation). Hence the Berry connection
and curvature associated with band n are properties of the periodic wu,(r, k) part of
the Bloch function.

For vanishing periodic potentials the Bloch functions reduce to plane waves and
constructing the wave packet from plane waves results in u,(r,k) = 1. This means
that both A, (k) and F, (k) also disappear. Hence the physical origin of the Berry
connection and curvature stems from the periodic crystal potential breaking up the full
spectrum of the parabolic, free-particle dispersion relation into bands. These bands
are usually separated by gaps, and states are selected only from a limited number of

these bands to represent the wave packet [91, 289].
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The non-abelian gauge field

As briefly discussed for the abelian case, the non-abelian Berry connection and curva-
ture can also be used to describe the spin and charge transport of particles through
crystal lattices as demonstrated by Culcer et al. [52] and Shindou et al. [241]. The au-
thors describe the coherent wave packet evolution of a particle in the valence band, for
M degenerate bands, under the action of an electric field and show that this leads to
the separation of spins (denoted by indices , j), which require non-abelian corrections
due to the additional degree of freedom stemming from the spin-orbit interaction [52].

The matrix described by the Wilson loop now takes the form of
U=Pexp {zj{fl”(kz)dk'} . (5.18)
The non-abelian Berry connection from Eq. 5.9 can be rewritten as
Aij(k) =i (u;(k) | Viu;(k)) . (5.19)
The corresponding non-abelian Berry curvature from Eq. 5.12 becomes
Fij(k) = 0, A9 — 0, A +i[A,, A))Y (5.20)

Likewise the matrices describing the non-abelian Berry connection A;;(k) and curva-

ture F;;(k) can be transformed according to [91]

Ak) = Ul(k) A k) Uk) + iU (k) Vi Uk)
F(k) = U'(k) F(k)Uk) . (5.21)

5.2.4 Experimental evidence for abelian and non-abelian Berry phase

In this section we review existing experimental literature in which the abelian Berry
phase has been observed with an emphasis on semiconductor systems. This is followed

by proposals to detect the presence of the non-abelian Berry curvature.

Abelian Berry experiments

The abelian Berry phase has been experimentally observed in a wide variety of physical
systems ranging from optical fibers [265], to neutron spin rotation [26, 254], Bose con-

densates of ultra cold atoms [165], graphene [198, 305] and topological insulators [227].
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There are many more examples of experiments and corresponding extensions and gen-

eralizations of theory which can be found in reviews [7, 36, 191, 219, 220, 289].

Although such experimental evidence for Berry phase was obtained shortly after
the theory was proposed, its observation in a solid-state condensed-matter system
proved to be more challenging. More recently the Berry phase has been observed in
the ensemble average spectrum of Aharonov-Bohm (AB) conductance oscillations in
2D semiconductor rings within an InAs 2D electron gas, in the presence of strong
Rashba spin-orbit interaction [188, 195]. In its rest frame, a electron moving in the
plane of a 2DEG “sees” the Rashba SO interaction as an inhomogeneous, momentum-
dependent intrinsic in-plane magnetic field B;,; that is perpendicular to the particle’s
momentum. The total magnetic field experienced by the carrier is Bot = Bezt + Bint
where B+ is an external field perpendicular to the 2D plane, shown in the insert
of Fig. 5.3a. The particles spin precesses around B, and accumulates an additional
geometric phase upon completing one cyclic evolution. In the adiabatic limit, the
precession frequency of the spin around the local field By, is much faster than the
orbital frequency [167], and the ring can be considered to consist of two uncoupled
types of carriers with opposite spins [94]. The total phase acquired by the electron is
determined by the angle (1) between the net field and the normal to the plane, and
is composed of the AB phase and the SO induced geometric phase, which is different
for the two spin species, ot = Pap + 5o, and the superposition of the oscillatory

contributions from both spin species is detected in the magnetoresistance of the ring.

Due to the requirement of strong SO interaction to create a sufficiently strong B, ¢
for spin precession to follow momentum, another semiconductor material in which
Berry phase has been observed is in GaAs 2D hole systems, in semiconductor rings
via Aharonov-Bohm oscillations [94, 295, 296] and Aharonov-Bohm-like oscillations
in a GaAs hole antidot array [132]. Holes naturally possess strong SO coupling at
B = 0, with an inversion asymmetry resulting from its zinc blende crystal structure.
This leads to significant spin splitting of the energy bands in the absence of an applied
magnetic field and the basic behaviour of holes in the ring is virtually same as that

described in the previous paragraph for the electron case.
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Figure 5.3: Aharanov-Bohm oscillations in a mesoscopic ring in a GaAs 2D hole sys-
tem. (a) Insert shows an SEM image of the ring, and the effect of the fields felt by a
particle as it travels through the ring. Low field oscillations in the magnetoresistance
as a function of perpendicular field. (b) Normalized magnetoresistance oscillations
showing a distinct beating pattern. Reproduced from Ref. [94].

Non-abelian gauge field experiments

The non-abelian gauge field has been theoretically predicted to exist in a number
of many-body systems e.g. fractional quantum Hall liquids [187], spin-orbit coupled
systems [13, 189, self-assembled quantum dots [253], cuprate semiconductors and en-
sembles of ultracold atoms [156] (see review Ref. [87] for more examples). One of
the earliest examples of a non-abelian gauge field is Thomas precession [260], which
describes the geometric precession of a spinning axis due to a non-abelian gauge field.
In this case, the gauge field is precisely equal to a local Lorentz transformation pro-
jected onto the co-moving frame [180]. Just like the abelian Berry phase, detecting
the non-abelian gauge field in a solid-state system is challenging. To-date the only
experimental evidence of non-abelian Berry behaviour in such a system was found in
the nuclear quadrupole resonance of 3>C1 in a single crystal of sodium chlorate [311].

One of the conditions to observe a non-abelian gauge structure is the need to map
a path in parameter space where the spin varies by two angles. In the aforementioned
experiments on Berry phase, mesoscopic rings were used to curve the particle’s tra-

jectory along a single axis (in the adiabatic limit B.s¢ follows the particle’s orbital
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momentum), thus varying one angle and exploiting only one parameter subgroup of
the full non-abelian structure. To achieve a change in two axes, Zwanziger et al. use
a double rotor where the sample holder containing the crystal spins freely on an air
bearing and is contained in a larger spinner, which itself spins about a different axis
from the sample holder [311]. A radio-frequency coil around the larger spinner of
the double rotor is used to excite and detect the Cl resonance. A nonzero magneti-
zation is prepared with a radio-frequency pulse and its time evolution monitored as
the crystal undergoes the double rotor trajectory. The experiment was conducted in
the adiabatic regime where the frequency of both rotors (360Hz for the spinner and
2020Hz for the sample holder) were much lower than the transition frequency of the
quadrupole splitting at 29.94MHz. Under double rotation this spectrum breaks up
into five lines, which required simulations to use the path-ordered integration of the
full non-abelian gauge potential to match the dataset, and could not be reduced to
the simplified abelian Berry form [311], thus providing evidence for the non-abelian
geometric phase.

Since the experiment by Zwanziger et al., experimental proposals have been made
to detect the non-abelian Berry phase in systems with strong spin-orbit coupling such
as p-type semiconductors [13, 189], however confirmation is yet to be established. The
effective Luttinger Hamiltonian for bulk holes in the spherical approximation can be

expressed as [189]

h? 5 5 9
Ho = 2m{<71+2’72>k —27(k - S) } ) (5.22)

where S is the spin-3/2 matrix and ~; are the Luttinger parameters. For a given
wave vector k the Hamiltonian has 2 eigenvalues which form Kramers doublets, corre-
sponding to the light- (J = £3) and heavy- (J = £2) hole bands. Rather than being
characterized by an B, as in the electron case, the hole Hamiltonian is characterized
by the effective quadrupole tensor field, leading to non-abelian effects [13].

Murakami et al. predicted that an electric field can induce a substantial amount of
dissipationless spin current at room temperature, in hole-doped semiconductors [189].
One example uses an external electric field applied in the 2D plane (along z) of a

p-GaAs semiconductor material, to induce a spin current along y. In order to detect
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Figure 5.4: Proposals to detect non-abelian spin dynamics in p-type zinc blende semi-
conductors. (a) Experimental setup proposed by Murakami et al. to detect non-abelian
effects by attaching a ferromagnetic electrode to a GaAs semiconductor, and measur-
ing the dependence of current I flowing into the electrode on the direction of the
magnetization M [189]. (b) Arovas et al. propose to use figure-8 mesoscopic rings
within an external in-plane electric field to detect the non-abelian Berry phase through
interference [13].

spin-dependent transport, a ferromagnetic electrode with magnetization M along +x
is attached to the positive y side of the sample and the other connecting lead attached
to the p-GaAs as shown in Fig. 5.4 to complete the circuit [189]. The authors predict

a change in the electric current I depending on the direction of M.

A different approach to studying non-abelian spin dynamics was suggested by
Arovas et al. who propose an experiment which uses a figure-8 mesoscopic ring to
bend the trajectory of the holes along the 2D plane [13]. To achieve rotation in
another axis, the authors effectively place the system in a rotating frame by imposing
a static magnetic field in the plane of the ring. Transport measurements in this setup
operate in a similar fashion to previous single ring structures in which Aharanov-
Bohm oscillations were observed. Unlike the examples previous mentioned to detect
the abelian Berry phase, the figure-8 ring like structure is designed to isolate non-

abelian interference effects and cancel out the abelian effects [13].

In the rest of the chapter, we shall outline a new Onsager-like theory which predicts
the existence of the non-abelian gauge field in a 2D hole system and discuss an alter-
native experimental setup to detect its presence. We then compare the experimental

data with the predictions of the outlined theory, thus providing the first experimental
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evidence for the non-abelian gauge field in a solid-state semiconductor system.

5.3 Non-abelian gauge fields in a GaAs 2D hole system

In this section we shall describe how the non-abelian gauge field manifests itself in a
2D hole system. We begin with outline of the semiclassical formalism which general-
izes the Onsager quantization condition, where the quantum evolution equations are
explicitly solved for non-abelian spin dynamics, and the spin-dependent phases appear
alongside the Aharanov-Bohm contribution in the Lifshits-Kosevich formula. Such a
semiclassical picture provides an effective technique to elucidate the role of spin-orbit
coupling in transport and provides evidence for the matrix-valued phase, a signature
of the non-abelian gauge field. Next we describe the conditions under which the non-
abelian gauge field can be detected in a 2D hole system, using transport measurements
in tilted magnetic fields to rotate the spins along two different axes, and control the
magnitude of the spin-orbit coupling. This forms the basis of our experimental setup.

Note that the theoretical formalism and all calculations in this chapter were per-
formed by T. Li. The experiment was performed by the author of this thesis and the

analysis was a joint effort.

5.3.1 Conditions for generating and detecting the non-abelian gauge

field

In order to generate and detect a non-abelian gauge field in a semiconductor system,

the following conditions need to be met:

1. The system must possess degenerate (or nearly degenerate) energy bands to make
use of the full matrix structure of the non-abelian Berry curvature. Valence band
holes are ideal candidates as they naturally possess a four-fold degeneracy at k=0.
This strong spin-orbit coupling term is unique to holes and is represented by the

term (k- S)? in the spherical approximation of the Luttinger Hamiltonian 5.22.

2. Particles should follow a closed loop trajectory and according to Onsager [199],

for a stationary state to exist the total phase accumulated along the trajectory
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must be quantized. Rather than using mesoscopic patterned rings as in Ref. [13],
we apply a small (<1T) magnetic field perpendicular to the 2D hole plane to
curve the hole trajectories and form a closed cyclotron orbit. The perpendicular
field induces quantum magnetic oscillations which can be detected with transport

measurements.

The momentum relaxation length [ of the particle must be larger than the cy-
clotron radius [ > r. so that w.r > 1, in order for the particle to complete one
cyclotron orbit without being scattered. Likewise the phase coherence length
ly = vp7y should be much greater than the mean free path of a carrier, which is

greater than the sample length, in a ballistic system.

In order to probe non-abelian effects, the spin degree of freedom must undergo
double axis rotation. To achieve this, in addition to the perpendicular field, an
in-plane field component (of several Tesla) is introduced, which is coupled to the
spins via the Zeeman effect. The combination of the in-plane Zeeman contribu-
tion to the Hamiltonian and the intrinsic spin-orbit coupling of holes introduces
the other degree of freedom to the spin precession, resulting in non-abelian be-
haviour. This behaviour can be observed in the phase of the quantum magnetic
oscillations generated by the perpendicular field, as an additional matrix-valued
phase, which is the gauge-invariant observable trace of the SU(2) matrix de-

scribing the non-abelian gauge field.

5.3.2 Non-abelian Berry curvature formalism for a GaAs 2D hole

system

The theoretical formalism describing the author’s data was developed by T. Li and O.

P. Sushkov (to be published). In this section we only summarize the main aspects of

this derivation.

Hole states in GaAs originate from atomic ps/, orbitals and hence possess an an-

gular momentum J=3/2. The electric quadrupole interaction leads to strong coupling

between the angular momentum (J) and the linear momentum (k), which is described

by the Luttinger Hamiltonian [172]. The z-confinement in a low-dimensional 2D het-
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erostructure enforces quantization of J along the z-axis. Therefore, a hole quantum
state with a given in-plane momentum k = (k,,k,) splits into two doublets with
J, = £3/2 (heavy holes) and J, = £1/2 (light holes). Since light holes lie significantly
higher in energy, we shall only consider heavy holes for the low energy dynamics in
our work.

The heavy-hole Kramers doublet can be described by an effective spin s = 1/2,
|J, =43/2) = |1), |J. = —3/2) = |}). The Hamiltonian describing heavy holes con-
sists of three parts — the kinetic energy, the Zeeman interaction and the spin-orbit

interaction, H = Hx + Hz + Hso (hereafter we set h = 1),

Hrx = (k—eA)?/2m

A
Hz = _5027 A= gzzMBBz
— 1 2 2
Hso = —Bk) o= —5 o4 B_k> + 0_By k7] (5.23)

where 04 = 0, £i0y, B+ = B, £ 1By, k+ = k; £ik,; m is mass of the heavy-hole, A
is the in-plane vector potential created by B,, e is the electronic charge, o; are Pauli
matrices describing the spin, up = e/2m, is Bohr magneton, g.. ~ 7.2 [284], m. is
the electron mass and « is the spin-orbit coefficient. Note that for holes, the sign of
the energy compared to Ref. [284] has been reversed. The SO interaction arises purely
from a small mixing between heavy and light holes due to the presence of the in-plane
field, and does not describe Dresselhaus SO or Rashba SO. The kinematic structure
of Hso in Eq. 5.23 is dictated by the fact that the Pauli matrices o+ correspond to
AJ, = £3. A more detailed derivation of the SO interaction H, is presented in
Appendix C.

If the perpendicular magnetic field is zero, A o< B, = 0, then the hole trajectories
are straight lines and Hs, in Eq. 5.23 simply splits the doubly degenerate band, € =
k2 /2m, into a pair of chiral bands. In the presence of the perpendicular field, the hole
trajectory forms a closed circle, k = k(cosf,sin6).

Semiclassically, using the wave packet picture, the angle of the orbit enclosed by
the hole trajectory is, # = —w.t (the sign corresponds to B, > 0), where w. = e|B,|/m
is the cyclotron frequency. The spin-orbit field B(k) varies along the trajectory. This

variation can be removed by a local gauge transformation of the spinor wave function
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Y — ' = g (k). Taking g(k) = e we gauge out the angle dependence of the
SO field,

Bk)-o=g"'[B-0lg, B =ak’B|. (5.24)

Since our choice of g(k) ensures that we perform a transformation to the co-rotating
frame of the hole, it follows that 3’ does not vary along the trajectory. The gauge
transformation results in the covariant derivative V — V —iAy, where Ay, is the non-
abelian gauge field (or vector potential) possessing a vortex structure in 2D momentum

space

(5.25)

. kyo. ko
Ak:Zg lvkg:<_ Z‘Z P2 ) .

The field tensor corresponding to this gauge field is zero, F,, = 0,4, — 0, A, —
[Au, A)] = 0. However, the gauge field has a nonzero circulation along the hole
trajectory

j{flk -dk =2mo, (5.26)

and this circulation manifests as quantum magnetic oscillations.

In order to appreciate the full dynamics which underlies quantum magnetic oscil-
lations, we need to consider the impact of the SO interaction (Hs,) upon the Landau
level structure. For this analysis, we restrict ourselves to a semiclassical approxima-
tion, where the Landau levels are determined by the Onsager quantization condition.
Consider a hole traversing the circular trajectory, where the hole is initially prepared in
a polarization state ¥(0). Under the combined action of Hs, and Hyz spin will precess
along the trajectory, as shown in Fig.5.1c. After one full cycle the spin wave function
becomes 9 (2m) = Up(0), where U € SU(2) is a unitary evolution matrix. In order to
form a standing wave (and hence satisfy the semiclassical quantization condition), it is
necessary for ¢(0) to be an eigenvector of U, i.e. 1(2m) = e*®1)(0). Here e**® are the
complex conjugate eigenvalues of . Hence, depending on the spin state, an additional
phase +£® appears in the Onsager quantization condition due to spin dynamics.

SdH oscillations in the resistivity are described by the Lifshits-Kosevich formula
[163]. Accounting for the additional phase ® we obtain,

27TEF

We

Apry = paz(B) — pgz(0) = D(B) cos ® cos (5.27)
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Here Er is the Fermi energy and the amplitude factor D(B) depends on the hole
scattering time 7, D(B) e wer Spin dynamics enters only via the spin evolution
phase factor tr i/ = 2 cos ®. For the semiclassical approximation we assume large filling
factors v = i—f > 1, hence only the lowest harmonic of magnetic oscillations is taken
into consideration.

The matrix phase & may be explicitly expressed as a path-ordered exponential

which can be calculated using the gauge transformation from Eq.(5.24)

u = Pexp{—(j%[,@-o‘—&—?az]dO}

= exp{ij{flk-dk—iiw {B’-a—kﬁaz]} . (5.28)

[

It is this matrix phase U/ that we detect via transport measurements, which is
comprised of both a geometrical (the first term) and a dynamical (the second term)
component. In our experiment these terms can be identified individually due to the
fact that the path-ordered exponential can be evaluated in a simple form as described
in the equation above. So by using Egs. 5.26 and 5.24 we find the prefactor ® in
Eq.(5.27) for the amplitude of the SdH oscillations, 2 cos ® = trif,

27 A\? 9
O = S\ w5 ) + lakz|?(B2 4 B2) . (5.29)

Here kp is Fermi momentum and the geometric contribution is simply equal to
we (inside the square root), which comes from the non-abelian gauge field. As previ-
ously mentioned, the gauge field cannot be observed without the in-plane field. This
is evident from Eq. 5.29: if B = 0 the gauge contribution is exactly 27 and hence
the phase shift is determined only by the Zeeman splitting, tr i/ = 2 cos(mA/w.). The
Zeeman splitting with B # 0 is 6E7 = \/(%)2 + |ak%|?(B2 4+ B2). A naive expec-

tation for the spin accumulated phase draws a direct relation to the Zeeman splitting
D, give = 2m0E 7 /w., however Eq. 5.29 differs from this. A semi-naive expectation
takes into account the abelian Berry phase ¢p on top of the Zeeman splitting. The
phase pp is given by the first term of the square root expansion in Eq. 5.29 in powers
of we, yielding

2wdE n _ 2m6Ez  TA

We ¥ We 0Bz

Dap = (5.30)
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The subscript “AB” in ® stands for “abelian Berry”. Although this abelian Berry
phase approach has been shown to provide a good description for magneto-oscillations
in Dirac fermion systems [6, 198], and quantum interference in mesoscopic rings [94,
296], we discover that both the “naive” ®,,4ive and abelian Berry phase ® 45 approaches
are inconsistent with our data.

As shown in the previous chapter for a GaAs 2D hole system grown on the low-
symmetry (311)A crystal plane, the gyromagnetic tensor is not diagonal in the z, y
and z axes. Hence we need to account for this in the expression for A presented in

Eq. 5.23, which is now replaced by
A = pp(g:2B: + g;.Bz) - (5.31)

This off-diagonal tensor component g}, causes the magnetic response to be asym-
metric between B, — —B,..

Substituting the effect of the low-symmetry crystal directions upon the gyromag-
netic tensor into the spin evolution phase in Eq. 5.29, the additional phase can be

expressed as

2 ZZBZ . BI 2
o= (wc— (922 Bz + G- )> + k% |2(B2 + B2). (5.32)

We 2

5.4 Experimental Results

5.4.1 Experimental concept and methodology

In order to meet the stringent conditions outlined in Section 5.3.1 to generate and de-
tect a non-abelian gauge field, we conduct transport measurements using high-mobility
2D hole system (2DHS) samples with standard Hall bar geometry, fabricated by Prof.
A. R. Hamilton. These were made from a GaAs/Alj 33Gag ¢7As heterostructure, grown
on a low-symmetry (311)A surface, from a T335 wafer, by the Semiconductor Physics
group at Cavendish Laboratory. A conducting substrate doubles as an in situ back-
gate, located 2.6um away from a symmetrically, modulation Si-doped 20nm wide GaAs
quantum well [243].

Control over the individual components of the magnetic field, was achieved using a

tilted-field measurement technique, similar to that performed by Fang and Stiles [75].
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The sample was mounted on an in situ piezoelectric rotator, featuring an in-built angle
readout mechanism with an accuracy of £0.01° [299], detailed in Chapter 4.3.2. This
allowed for single-axis rotation to be conducted at a base temperature of 35mK cooled
by an Oxford K100 dilution refrigerator, within the bore of a 15T superconducting
magnet. Transport measurements were performed using standard ac lock-in tech-
niques, with a constant ac current of 5nA at a frequency of 5Hz. For this experiment

only the lowest heavy hole band is occupied.

The relative positions of the magnetic field and the crystal axes of the sample was
first calibrated by rotating the 2D Hall bar at a fixed field through an angle of 90°
and noting the positions where the sample plane is fully perpendicular to the field,

0iiir = 90° and fully parallel 6;;;; = 0°. For details see Chapter 4.4.3 and Appendix B.

As the spins travelling through the quantum well are free to evolve kinematically
under the effect of several competing interactions, including the Zeeman, Rashba and
Dresselhaus couplings further tuning of the sample was necessary to eliminate un-
wanted parasitic effects in this study. Despite the symmetric doping on either side of
the quantum well, there was still in beatings of the Shubnikov-de Haas even without
any tilting of the magnetic field [68]. As the Rashba interaction is sensitive to the con-
fining potential, by varying the bias voltage applied to the in situ back-gate, we tune
the system by compensating the fixed effect of the Dresslehaus SO using the Rashba
SO, to the point where their combined influence on the spin dynamics is negligible.
This was detected by finding the back-gate bias at which the beating in the low field
SdH oscillations were minimized as described in Chapter 4.4.4. A back gate voltage of
+1.50V was selected where the carrier density is p = 9.26x10'%m™2 and a mobility
of ;1 = 0.6x10%cm?V~1s~!. This back-gate voltage is the operating point used for the

rest of the experiment.

If we fix the perpendicular field and vary only an in-plane field, we will observe
the effect of the non-abelian gauge field as a phase shift. But due to the tilted-field
nature of the experiment, as the in-plane component is varied in proportion with the
cyclotron frequency (controlled by the perpendicular component), the effect of the

gauge field is manifested as a modulation to the amplitude of the magnetoresistivity
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oscillations in the form of beatings. At certain tilt angles where the frequency of the
oscillations double, the phase simultaneously undergoes a w-phase shift (as seen in the

coincidence method [75]). Several such angles are observed in our experiment.

The crystallographic anisotropy of the low-symmetry (311) surface leads to an
orientation-dependent response to the in-plane field component and in Chapter 4.5 we
discovered that the off-diagonal g tensor component g, causes the magnetic response
to be asymmetric with respect to B, — —B,. Such a low symmetry crystal enables us
to study the effect of the non-abelian gauge field along a high symmetry [011] direction
and compare this case to its effect upon the spin dynamics in the low symmetry [233]

and [233] directions, allowing for 3 sets of independent tests of the non-abelian theory.

5.4.2 Tilted field transport measurements

To perform tilted field transport measurements, the device was first mounted on the
rotator such that the total magnetic field rotates, between the crystal axes [311] and
[011], where the 2D plane is perpendicular to the field at 6;;;;=90°, shown in Fig. 5.5.
The sample was then rotated towards the [011] direction till 6;;;= + 10° to introduce
a parallel field component B, and the total field By, swept, changing the sign of
the in-plane field +B,. This procedure was repeated for a number of different +6;;;
with increasing in-plane field components. The experiment was then repeated for an
equivalent —6y;;; and the results shown in Fig. 5.5.

During a second cool down, the sample was reoriented to perform tilted measure-
ments along the [311] and low symmetry [233] crystal axes. The quantum well was
re-symmetrized using the procedure described in Chapter 4.4.4 and the measurement
procedure was then repeated for both +6y;;. The results are graphed in Fig. 5.6.

From the experimental results shown in Fig. 5.5 and Fig. 5.6, we are interested
in the changing phase of the magnetoresistivity oscillations. For the purposes of our
analysis we will focus upon the low field oscillations between B, = 0.16T and 0.5T.
Both Figs. 5.5 and 5.6 plot resistivity versus 1/B, where the sample is tilted with
respect to the magnetic field over a range of angles 0y, such that B, = ]B” | tan ;.

Fig. 5.5 corresponds to tilting in the yz-plane (B, = 0) and Fig. 5.6 corresponds to
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Figure 5.5: Sample orientation in the magnetic field when the in-plane field B, is ap-
plied along the [011] crystal direction. The sample rotates in an external magnetic field
By, by an angle 0y, to the 2D heterostructure, |By| = B, tan0y;;. SdH oscillations
are plotted as a function of B% for an applied field of B, > 0, B, = 0 (green solid lines
= +0u1t) and By < 0, B, = 0 (purple dotted lines = —0y;;). SAH traces are offset for
clarity. The amplitude of the oscillations was normalized by multiplying the data by
e033/B= - At 0, = 7.5+ 0.5° the oscillations exhibit an inversion corresponding to the
change in sign of cos ® in Eq.(5.27). The data in (c) is identical to that presented in
Fig. 4.11, where 6;;;; = 90° is defined for the sample in perpendicular field to maintain
consistency with the new calculations, rather than the 6;;; = 0° reference in Fig. 4.11.
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Figure 5.6: Dataset where the relative orientation of the magnetic field components
to the sample axes is such that B, lies along the [233] crystal direction. The sample
rotates in an external magnetic field By, by an angle 0 to the 2D heterostructure,
|Bz| = B,tan6y;;. SAH oscillations are shown where the applied field is B, > 0,
B, = 0 (red solid lines = +6y;;) and B, < 0, By = 0 (blue dotted lines = —6y;).
Due to crystallographic anisotropy, the oscillations are distinctly different for different
signs of B,. The filling factors v are indicated by arrows at the tops of panels (b,c). In
these panels we indicate negative B, or By by negative tilt angles. The data in (c) is
identical to Fig. 4.12, with the perpendicular field orientation of the sample defined as
01 = 90°, to maintain consistency with the new calculations, as opposed to 6;;;; = 0°

in Fig. 4.12.
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tilting in the zz-plane (B, = 0). The magnetoresistivity oscillations in Fig. 5.5 are
symmetric with respect to B, — —B,, whilst the traces in Fig. 5.6 exhibit asymmetry

with respect to B, — —B, due to the nonvanishing g}, in Eq. 5.31.

To visualize the phase evolution of the SAH oscillations along the [233] direction
i.e. wz-plane (B, = 0), the positive tilt data and negative tilt data are plotted in
separate panels in Fig. 5.7. The top of both panels begins with the sample plane fully
perpendicular to the field (B, = 0), with subsequent SdH traces taken at tilts with
an increasing parallel field component (B, # 0). To observe where the phase changes
occur, each SAH trace can be compared with that taken in the fully perpendicular
orientation (dashed black). If we follow the v = 20 minimum for +6y;; starting at 90°,
we find this minimum evolves into a maximum at +6;;;; = 18°, back into a minimum
between 5 — 6° and a maximum between 3 —4°. In contrast, the v = 20 minimum for
—0;;1: undergoes a single phase change between —6° to —7°, where the feature appears
nearly flat. Interestingly for —#;; the exact angle at which this phase flip occurs
appears to change with filling factor, trending slightly towards smaller —#,;;; values at

lower fields.

According to Eqs. 5.27 and 5.29, the normalized amplitude of resistivity oscillations
cos @, is a function only of 6;;; and is independent of the magnitude of the total
magnetic field B. At tilt angles corresponding to changes in the sign of trif = 2 cos @,
the first harmonic of the SdH oscillations invert (i.e. maxima become minima, and vice
versa). At these “coincidence” angles the phase ® must coincide with a half-integer

multiple of .

To determine these angles of coincidence, we extract the phase difference for every
filling factor between v = 6 and v = 26, with respect to its original position at 90°,
for each subsequent +#6y;;;. The corresponding phase evolution versus tilt angle plots

are given in Fig. 5.8.

From these phase plots, the coincidence angles are observed at the tilt angle 6;;;; =
7 4+ 0.5° for the field applied along the yz-plane in Fig. 5.8(a,b) for both signs of the
tilt angle. For the field applied in the zz-plane in Fig. 5.8(c,d), there are multiple
coincidence angles at 6;;;; = 18 £1°, 5.5 £ 0.5°, 3.5 £ 0.25° for B, > 0 and a single
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Figure 5.7: SdH oscillations in the magnetoresistance p,, plotted versus 1/B, where
the field component B, is aligned along the [233] crystal direction as shown in Fig. 5.6,
obtained from tilting in the zz-plane (B, = 0). Here +0;;; traces (red) are plotted in
a separate panel (left) from —6y;; traces (blue, right panel) for clarity. To visualize
the phase evolution at each 6, the py, trace taken at Oy = 90° is plotted in
dashed black for each tilt angle. In this orientation, the oscillations invert at angles
+0tp = 18 £1°,5.5 £0.5°,3.5 £ 0.25° for B, > 0 and —64;; = 6.5 £ 0.5° for B, < 0.
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Figure 5.8: Phase evolution of the SdH resistivity oscillations ® versus tilt angle, for
all 4 combinations: (a) By = B, along [011] for 46, and (b) By = By along [011]
for —0y;¢, extracted from SdH resistivity oscillations in Fig. 5.5. (c) B| = B, along
233] for +6,; and (b) B) = B, along [233] for —fy;, extracted from SdH resistivity
oscillations in Fig. 5.7. For any filling factor between v = 6 and v = 26, the phase for
each tilt angle is compared to its initial position at 90°.
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coincidence angle at 0y = 6.5 + 0.5° for B, < 0. Thee angles of coincidence can
be described using Egs. 5.32, which are based upon three independent, device-specific
parameters: g.,m*, 2ak%/(g..up), and ¢%,/g... A commonly accepted value for the
diagonal g-factor is g,, = 7.2 [284]. We adopt this value and are hence left with
unknowns m*, A = 2ak% /up, and g&.. Numerical calculations with realistically shaped
quantum wells yield an effective mass of m* =~ 0.2m., although due to significant
uncertainty in such calculations we will also set m* as a free fitting parameter, with
possible values in the range of 0.1m, < m* < 0.5m,. Calculations of A and g}, are even
less reliable than that of m™*, therefore we also treat them as free fitting parameters,

as described in the following section.

5.4.3 Modelling the data - abelian vs non-abelian paradigm

We now turn our attention to modelling the experimental data in order to draw a
comparison between our experimental results and the non-abelian gauge field theory.
Altogether we have 3 fitting parameters to describe 5 coincidence angles. To compare
the experimental coincidence angles to those of theory, a least squares fit to the phase
of the SdH resistivity oscillations, ®, was performed using the observed 4 coincidences
angles for the orientations [233]: B, > 0,B, = 0 and [011]: B, # 0,B, = 0. We
then use these fitting parameters to predict the coincidence angles for the orientation
233]: B, < 0,B, = 0. Fitting the data in Fig.5.9a, gives the fitting parameters:
m* = 0.21m, (in good agreement with the numerical prediction), |[A\| = 1.1 and ¢}, =
—0.9. Substituting these parameters into Eq. 5.32 allows us to predict the coincidence
angles for B, < 0,B, = 0, graphed in Fig. 5.9b as an open circle. Here, a single
coincidence angle is predicted at y;;; = 4.5°, which is in good agreement with the only
observed coincidence at 6y, ~ 6.5° £0.5°. The small discrepancy is most likely due to
a third-order in-plane field correction to the effective Hamiltonian which only becomes
apparent at low tilt angles, i.e. large in-plane fields (see Appendix C for details).
Show that the data cannot be described without non-abelian spin dynamics, we
have attempted to fit the observed data using the abelian Berry formula Eq. 5.30
instead of Eq. 5.32. Using Eqgs. 5.30 and 5.31 we repeat the same procedure de-
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Figure 5.9: Comparison of experimentally observed coincidences angles to the non-
abelian (a,b) and abelian (c,d) theories. Expressing the envelope of the SdH oscillations
as cos @, we find that ® /7 becomes a smooth function of tilt angle. This function is
plotted for the experimental range of tilting angles. Angles at which ® crosses a half-
integer multiple of 7 correspond to inversions of the SAH oscillations. Both theories
contain three unknown parameters m*, g*,, A. In (a,c) we show the least squares fits
of ® to the observed coincidence angles for an applied B, > 0,B, = 0 (red) and
By # 0,B; = 0 (green). The plots of ® in (b,d) show the predicted coincidences
for B, < 0,B, = 0. The non-abelian gauge theory (b) predicts a single angle of
coincidence (open circle) which is close to the observed coincidence point (square).
In contrast, the abelian theory (d) predicts three coincidences whilst experimentally
only one angle of coincidence was observed. The two coincidence angles predicted by
theory but are not present in the experimental data are marked in orange circles.
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scribed above and fit ® 45 to the observed 4 coincidence angles for the orientations
B, > 0,B, = 0 and the single angle for B, # 0,B, = 0, as shown in Fig. 5.9c.
These parameters were then used to predict the coincidence angles occurring for the
orientation B, < 0, By = 0, shown in Fig. 5.9d as open circles. The fitting parameters
obtained are m* = 0.33m,, |A\| = 0.41,¢%, = +0.61. Unlike the non-abelian case,
3 coincidence angles are predicted for the B, < 0, B, = 0 direction (the extra 2 are
coloured orange), compared to the single coincidence angle observed in the experiment.
This discrepancy suggests that the experimental data cannot be reconciled with the
paradigm of abelian Berry phases alone and provides evidence for the existence of

non-abelian gauge fields in 2D hole systems in tilted fields.

The number of coincidence angles is a robust prediction of the abelian theory which
could not be changed even after significant variation of the fitting parameters. This
can be seen in Fig. 5.10 where we compare the calculated phase for different fitting
parameters (lines) against the experimentally observed coincidence angles (circles and
squares). Here the phase % is graphed as a function of tilt angle for varied parameters
A, g», and m*. The top panel shows the calculated phase and the experimental
coincidence points for orientations of the external field B, > 0, B, = 0 (red) and B, #
0, B, = 0 (green). The bottom panels show the calculated phase and experimental
coincidence points for the field orientation B, < 0, B, = 0 (blue). The solid lines
correspond to fitting parameter values A = 1.1, g5, = —0.90 and m* = 0.21 used in
Fig. 5.9 to fit the data. Dashed and dotted lines corresponds to variations in A by
+30% in panels (a,b), g%, by £30% in panels (c,d) and m* by £10% in panels (e,f).
Only one green line is present in panel (c) since at By, # 0, B, = 0 the phase is

independent of g ..

Similarly, to demonstrate the robustness of the abelian Berry fit, the fitting pa-
rameters used in the abelian Berry model were varied by the same amount as in the
non-abelian case and the results plotted in Fig. 5.11. Despite this variation in the
fitting parameters, the abelian Berry paradigm still predicts three coincidence angles
for the B, < 0, By = 0 direction, compared to the single coincidence actually observed

in experiment.
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Figure 5.10: Plot of phase % (defined by the envelope of the resistivity oscillations
pzz X cos @) as a function of tilt angle (6y;;) for varied parameters A, gi, and m*
using the non-abelian model. The top panel shows the calculated phase and the
experimental coincidence points for orientations of the external field B, > 0, B, = 0
(red) and By # 0, B, = 0 (green). The bottom panels show the calculated phase and
experimental coincidence points for the field orientation B, < 0, By = 0 (blue). The
solid lines correspond to fitting parameter values A = 1.1, g5, = —0.90 and m* = 0.21
used in Fig. 5.9 to fit the data. Dashed and dotted lines corresponds to variations in
A by £30% in panels (a,b), ¢, by £30% in panels (c,d) and m* by £10% in panels
(e,f).
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Figure 5.11: plot of % (defined by the envelope of the resistivity oscillations p,, o
cos @) as a function of tilt angle for varied parameters A, g%, and m* using the abelian
Berry model. The top panel shows the calculated phase and the experimental coinci-
dence points for orientations of the external field B, > 0, By = 0 (red) and By # 0,
B, = 0 (green). The bottom panels show the calculated phase and experimental
coincidence points for the field orientation B, < 0, By, = 0 (blue). The solid lines
correspond to fitting parameter values A = 0.41, g7, = 0.61 and m* = 0.33 used in
Fig. 5.9 to fit the data. Dashed and dotted lines corresponds to variations in A by
+30% in panels (a,b), g&, by £30% in panels (c,d) and m* by £10% in panels (e,f).
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5.5 Conclusions and future work

In summary, we have observed the effect of the non-abelian gauge field in a low-
symmetry 2D hole system with strong spin-orbit coupling, using the technique of
tilted field transport measurements to observe the matrix phase of the non-abelian
gauge field as a modulation in the Shubnikov-de Haas oscillations as the magnetic
field is varied. This result is one of the few measurements of the non-abelian gauge
field and the first of its kind in a semiconductor crystal lattice.

Due to the nature of the system, as future work one suggestion may be to extend
the tilt angle range in the [011] to cover the same angle range as [233] to achieve
more phase flips. Another suggestion would be to gather data at lower angles in both
directions. However, this would require a significantly larger in-plane field component
around > 10T, which would lead to significant distortion of the band structure due to
orbital effects stemming from the finite width of the quantum well. Instead it may be
of interest to repeat the experiment within a similar parameter space, but use samples
with different quantum well widths and hence energy spacings between the light-hole
and heavy hole subbands and mixing probabilities which should influence the spin
dynamics. Another alternative is to perform a similar set of measurements at different

densities.



Chapter 6

Induced quantum dots

6.1 Introduction

In the previous 2 chapters, we discuss the unusual spin dynamics of 2D hole systems, in
this chapter we turn our attention to isolating single spin states by fabricating quantum
dots using an induced architecture. The chapter begins by introducing quantum dots
as artificial atoms and a quick overview of the development of electrostatically induced,
lateral gated quantum dots in a variety of material systems. We describe the concept
of using a quantum point contact as a charge sensor to independently determine dot
occupancy in the few-N regime and introduce the concept of shell filling in electron
systems. We highlight the unique challenges involved in creating robust, reproducible
small quantum dots due to charge noise and random telegraph signals, and show how
these challenges can be overcome by using a flexible, induced-style of architecture for
such devices.

The final goal is to demonstrate a working few-hole, induced quantum dot which
can be operated down to the last hole with integrated charge sensing. Due to the

challenges of fabricating quantum dots, we achieve this using a two-stage approach:

1. We begin by demonstrating the fabrication of an induced GaAs electron quantum
dot and characterizing it to see how well the dot design works with an induced,
global-top gate architecture. Since electron dots possess larger energy scales

than hole dots, they are easier to measure and we can draw comparisons with
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results from other dots in literature. Once the geometry for the electron dot
works well, the plan was to use the same quantum dot gate pattern to create
a hole dot. During characterization, however, we found that although we were
able to demonstrate Coulomb blockade behaviour, current directly through the
dot was lost very shortly after the gates were defined and the charge detector

was not sensitive.

2. To understand the role of the quantum dot confining potential within an induced
architecture better, we perform simulations in Nextnano++ and discovered that
the depth of the 2D gas below the surface, combined with the type of insulating
dielectric, plays a critical role in the definition of good tunnel barriers. We
also explore an alternative gate pattern using a symmetric design with increased
coupling between the charge detector and the quantum dot, and make small
adjustments to optimize the dot design for an electrostatically induced, small

single-dot geometry.

3. Finally we apply this new design to a hole quantum dot and demonstrate the

ability to tune the dot down to the last hole with charge sensing.

6.1.1 Quantum dots as artificial atoms

When a two-dimensional system is spatially confined along its remaining free direc-
tions, a ‘zero-dimensional’ quantum dot is formed, which possesses the unique ability
to trap charge carriers on a small conducting island. The term “artificial atom” was
coined to describe quantum dots [16, 133] as the energy spectrum of the trapped
charges exhibit discrete, bound states similar to those seen in naturally occurring
atoms, and electrons fill each discrete orbital according to Hund’s rules [258]. Quan-
tum dots are typically larger than natural atoms and can be easily manipulated and
studied by applying electric and/or magnetic fields, making them ideal candidates for
isolating and studying single spin states.

The first demonstration of single electron tunnelling behaviour was discovered by
Scott-Thomas et al. in a 1D Silicon Field Effect Transistor (FET) [236], followed

shortly by the first controllable single electron transistor by Meriav et al. in GaAs [184].
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Since then extensive transport experiments have been conducted in electron quantum

dots and summarised in reviews [100, 101, 134, 150].

6.2 Background

Since their conception, many experiments have been performed to study the charge [150]
and spin states [101] of electron quantum dots. The idea to use semiconductor dots as
spin qubits [166] has fuelled the development of well-controlled, small quantum dots
operating down to the few-electron regime [150]. Due to the wide variety of differ-
ent styles, types and single-to multi-dot architectures, for the purposes of this thesis
we will narrow the focus to electrostatically defined lateral gated quantum dots and

induced FET structures.

6.2.1 Few electron regime and single electron dots

Few-electron quantum dots [101] are ideal systems in which to study the behaviour
of single spin states, where the ability to confine, manipulate, and probe individual
electrons is a prerequsite to such studies. The ability to construct a quantum dot
where one can simultaneously tune the number of electrons and interrogate them
spectroscopically is important. This capability was first achieved in GaAs vertical
quantum dots in the 1990’s where the number of confined electrons was successfully
controlled down to zero, resulting in the discovery of the shell filling structure and spin
effects, studied using both capacitance and Coulomb blockade transport techniques [14,
258].

Despite the flexibility provided by lateral gated dots, achieving high tunability in
this dot type proved to be more difficult, since reducing the electron number by driving
the gate voltage to more negative values tended to decrease the tunnel coupling to the
leads. The resulting current through the dot can become unmeasurably small before
the few-electron regime is reached [101]. However, by optimizing the design of the
surface gate geometry, it is possible to compensate for this decrease in the tunnel
coupling. The very first demonstration of a small lateral dot, controllably emptied

down to the last electron was performed by Ciorga et al. [43]. The dot was defined in a



6. Induced quantum dots 145

a
) |N=2
o
o ¢ N=6
~———— ¢ | N=12 N=20
[— Q | |
—  ——— W
— o 5 10 15 20
—[12
C
§e]
=
7]
o
o
o &
©
o
o
L e
-2
0
L
0 _1 ) -0.96 \\h
Magnetic Field [T] 015 Ve (V) | 030
R

Figure 6.1: Lateral quantum dot designs. (a) Lateral dot design by Ciorga et al. [43],
shown in the bottom right insert, used to measure the addition spectrum, shown in the
top right insert, via magnetospectroscopic measurements up to 2T. (b) Scanning elec-
tron micrograph of the first lateral, coupled double-dot design by Elzerman et al. [71]
with integrated QPC charge detectors. White circles indicate the two quantum dots
and white arrows indicate possible current paths. (c) Greyscale log plot of dot current,
showing the honeycomb charge stability diagram of Vi, vs Vpg from the double-dot in
(b) over the last few electrons, as both dots are tuned until both are emptied.

GaAs 2DEG, where the authors used a combination of Coulomb blockade spectroscopy
measurements to construct the addition spectrum of the first 20 electrons. The device
shown in Fig. 6.1, uses two types of gates designed to have different functionalities.
The set of gates used to define the dot is large and thick, enclosing the electrons. The
second type of gate is thin and the corresponding voltage applied has a very small
effect on the dot potential, which makes it ideal for setting the tunnel barrier. This
gate combination allowed for the dot potential and hence number of electrons on the
dot to be tuned over a wide range, whilst keeping tunnel rates high enough for electron
transport directly through the dot to be detected.

The small-dot design was later adapted by Elzerman et al. [71], who created a few-
electron lateral double dot in GaAs with integrated charge sensing and demonstrated

control over the electron number in both dots whilst maintaining tunable tunnel cou-
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pling to the reservoir. By sweeping the two barrier gates and observing conductance
through the double dot, the authors were able to obtain a charge stability “honey-
comb” diagram over the first few electrons in the dot, showing the point at which
both dots are emptied of electrons. This was followed shortly after by a number of
studies including; demonstration of excited-state spectroscopy in a nearly closed quan-
tum dot [71] and the electrical single-shot read-out of an individual electron spin [72]
with a long single-spin energy relaxation time (up to 77 = 0.85 ms at a magnetic field
of 8T) due to its isolated state.

This small double-dot design by Elzerman et al. has since become the standard
for lateral coupled double-dots in the GaAs material system and has been used with
minor adjustments in a number experiments such as: coherent quantum control of a
logical qubit based on two-electron spin states with an average spin dephasing time of
T3y = 10ns [127, 206-208], singlet-triplet spin blockade in few-electron lateral double
quantum dot [128, 211]. More recently the design has been extended to demonstrate
coherent control of three-spin states in a triple quantum dot [85]. Similar device
designs for double- and triple- dots [234] in GaAs have been used to study the QPC
back action upon the quantum dot [92, 102].

The double-dot design has also been successfully used to fabricate and study elec-
tron quantum dots in the Si/SiGe material system, examples including the demonstra-
tion of tunable spin loading through an orbital excited state and a 77 = 136ms. [242],
and a double dot in an isotopically enriched 2®Si quantum well [281].

More examples on studies performed in electrostatically induced, lateral gated few-

electron quantum dots, can be found in reviews [100, 101, 134, 150].

6.2.2 Major types of hole quantum dots

The first single hole quantum dot transistor was made by Leobandung et al. in
1995 [157], etched into Silicon and contained a single gate, plus source and drain
leads. Since then, hole quantum dots have been fabricated and characterized in a va-
riety of different structures and materials, each with their own set of advantages and

disadvantages. Similar to the electron dots mentioned in the previous chapter, lateral
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hole quantum dots have also been electrostatically defined within a 2D hole gas in
GaAs [93, 137, 146, 147, 266] and multiple well GaAs heterostructures [264]. Similar

hole dot structures have also been created in Silicon [62, 160, 249].

Transport measurements in GaAs quantum dots

Despite the recent resurgence of interest in hole quantum dots, surprisingly little work
has been done in GaAs electrostatically defined hole dots compared to other systems.
In this subsection we explore existing literature related to the theory, fabrication and

characterization of GaAs lateral hole quantum dots.

Initial theoretical studies in GaAs hole quantum dots predicted that spin relaxation
and decoherence due to the heavy-hole phonon interaction could be comparable to or
longer than that of equivalent electron dots [33]. For HHs, it was shown that the form
of the nuclear-spin interaction is predominantly Ising-like in quasi-2D hole systems [77]
and that it is possible to operate in a regime where the hyperfine decoherence can be
effectively “switched off” [78], so that the dynamics of hole dots are dominated by
other interactions such as spin-orbit (SO) and nuclear dipole. Later it was shown that
in such a regime, the BIA spin-orbit interaction becomes more dominant than the
LH-HH mixing in lateral gated quantum dots [45]. The Rashba SO interaction also
has a profound effect particularly on hole quantum dots [176]. It appears that the
relative dominance of each of the SO mechanisms is strongly influenced by the shape
of the confining potential and varies dramatically with the type of quantum dot under
study, and much still remains unknown.

The first single-hole transistor in GaAs was created by Grbié et al. [93], with
the quantum dot pattern defined using local anodic oxidation (LAO). This oxidization
process locally etches the GaAs wafer slightly, depleting the 2D hole gas directly below
the oxidized regions. The LAO technique was used instead of directly depositing metal
onto the wafer surface, as Grbi¢ et al. found current leakage from the surface Schottky
gates to the 2DHG led to instabilities in the dot. From the Coulomb blockade peaks,
Grbié estimated the hole dot to have a charging energy of Fc ~ 1.5 meV and its size

to be similar to its lithographic dimensions.
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Figure 6.2: GaAs quantum dot formed by Komijani et al., which was later extended
to include QPC charge sensing (CS circuit not shown) [147]. (a) AFM image of the
quantum dot topology. The oxide lines break up the 2DHG into different regions, and
a dashed circle indicates the location of the quantum dot with respect the a source
and drain regions. Coupling between the dot and its leads is tuned via in-plane gates
QPC1 and QPC2 and the quantum dot occupancy tuned with the plunger gate. (b)
Observed excited states through the quantum dot.

The LAO technique was next used by Komijani et al. to study a hole dot with
smaller dimensions on a C-doped (100) GaAs wafer, possessing sufficiently large en-
ergy spacings for excited states to be observed [147], see Fig. 6.2. Whilst determining
the number of holes in the small quantum dot, Komijani et al. found that the dot size
calculated directly from the single-particle level spacing (AE =~ 20ueV) was noticeably
different from that estimated using the charging energy via the constant interaction
model. They thus concluded that the simple constant interaction model breaks down
in the small-N regime, and other effects such as hole-hole interactions may be more
dominant [147]. Hence another method such as charge sensing is required to deter-
mine the exact number of holes for dots with small occupation numbers. Further
studies were performed which combined the p—type GaAs quantum dot with an ad-
ditional charge sensing circuit to observe dot counting statistics as well as perform
time-averaged and time-resolved charge detection [146].

More recent work in GaAs hole dots have included the development of a large

induced hole dot using a SISFET architecture [137] and more recently, an induced
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SISFET double dot [266]. As well as studies into the Kondo effect [139, 140].

Hole quantum dots in other material systems

Another more recently developed popular type of quantum dot are self-assembled
quantum dots (SAQDs) in InAs [27, 221], InGaAs [30, 64] and SiGe [12] as well as
hybrid superconductor-semiconductor SiGe devices [136]. Although small, pyramidal
shaped quantum dots with heavy-hole ground states could be formed in these exper-
iments, studies in SAQDs so far have been patterned with source and drain contacts
plus a single gate. Attaching an external charge detector to an SAQD to independently
verify when the last hole has been reached, is non-trivial due to their self-assembled
nature, with results reported in existing literature solely relying upon the small size

of the SAQD to ensure operation the few-hole regime.

Another major class of hole dots are made from p—type nanowire structures in
Ge/Si[119, 120, 171, 223], NiSi-Si-NiSi [310] and InSb [213]. These nanowire structures
also exhibit sharp Coulomb blockade peaks and multiple, distinct excited states. Unlike
SAQDs they are gateable and hence easy to tune electrically. The shape of such dots
are generally elongated and cylindrical, leading to the dominance of light-hole like
states as opposed to heavy-hole states, depending upon the height-to-diameter ratio
of the dot under study [308]. From a fabrication point of view, the main disadvantage
of nanowires is the difficulty in controlling the precise location of the dot on the
semiconductor surface. To perform charge sensing on nanowire style dots, 2 nanowires
located within reasonable proximity of each other are used, where a coupling gate is
patterned from the nanowire containing the dot circuit to the second wire, where a
separate quantum dot style of electrometer is created, demonstrated by Hu et al. [119,
120]. An alternative method developed by Choi et al. [42] involves using a vertically
coupled charged detector, realized by etching a QPC into a GaAs/AlGaAs 2DEG
directly below an InAs nanowire which houses the gate-defined quantum dot (although
this was performed in an electron system it could be also implemented in a hole
system).

More recently hole dots have been created using single acceptor dopant atoms
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embedded in a bulk semiconductor such as silicon FinFET devices [270]. These possess
a symmetric dot shape more akin to that of a natural atom and hence a unique bulk
fourfold hole spin degeneracy [24, 25]. As this result is fairly recent, to date no external

charge sensing has been reported in such systems.

6.2.3 Charge sensing with quantum point contacts

The push towards the few-electron regime to study single spin states in quantum dots
has resulted in some unexpected challenges. One of these is that the current through
the dot can become unmeasurably small before the few-electron regime is reached [101].
To overcome this, external charge sensors can be integrated into the quantum dot
setup, to provide a non-invasive method to monitor the occupancy of the quantum
dot, making it possible to verify when the last electron has been isolated [122, 226].
Although the concept of charge sensing was first demonstrated by Ashoori et al. in
1992 [15] and Field et al. in 1993 [76], the potential of the charge detector as a

spectroscopic tool has only been recently fully developed [71, 126].

To date several implementations of electrometers coupled to a quantum dot have
been explored. These include; a single-electron transistor fabricated on top of the
heterostructure [15, 170], a second electrostatically defined quantum dot [80, 114] and
a quantum point contact (QPC) [76, 248]. Out of all the implementations, the QPC
is most commonly used because of its ease of fabrication and experimental operation.
In the following section we shall detail the operation of a QPC as a charge detector,
which we implement later in our device design.

The technique of using a quantum point contact (QPC) as a charge sensor to
monitor the charging of a quantum dot by individual electrons was first introduced by
Field et al. in 1993 [76]. Fig. 6.3a shows the device developed by Field et al.. It consists
of 2 separate circuits (one for the charge sensor, the other for the quantum dot) in
sufficiently close proximity to allow for direct coupling. The QPC charge detector can
be tuned to its most sensitive operating point by changing the bias voltage applied to
the QPC gate, until the QPC conductance lies between the first conductance plateau

G = % and complete pinch-off, shown in Fig. 6.3b. As the plunger gate is swept the
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Figure 6.3: (a) First charge sensing circuit and initial measurements by Field et
al. showing direct correspondence between the charge sensing sawtooth signal and
Coulomb blockade peaks [76]. (b) Data from Elzerman et al. where the cross marks
the most sensitive operating point of the QPC charge sensor at e2/h [70]. (c) Circuit
design and data from Sprinzak et al. shows that charge sensing can be used to sense the
last electron, even when the current through the dot is too weak to be detected [248].

occupancy of the dot is changed, inducing a corresponding change in potential in the
QPC detector. As electrons tunnel in and out of the dot, we see a series of Coulomb
peaks in the dot conductance and a corresponding sawtooth feature in the conductance
of the QPC on top of a falling background. As charge enters (leaves) the quantum
dot island, conductance through the dot increases (decreases), whilst corresponding
conductance through the charge detector decreases (increases). This is more clearly
seen in the rightmost panel of Fig. 6.3c, which zooms into a single Coulomb blockade
peak and corresponding charge sensor sawtooth feature.

The main advantage of the charge sensor is that it allows one to determine the

absolute number of electrons in a dot, even when current passed directly through the
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dot is too small to be measured [248].This can be seen in the bottom-most panel of
Fig. 6.3c, where the derivative of the charge sensor current shows dips which persists
beyond the last Coulomb blockade peak, down to the last electron. Further work
was also conducted to optimize the response of the QPC to single electron charging
events in small quantum dots [302, 303]. Such integrated QPC charge detectors are
now routinely used in double quantum dot devices as they provide a simple method to
establish the regime where each of the two dots are occupied with a single electron [70,
206].

The advent of QPC charge sensing has made it possible to study a variety of differ-
ent types of quantum mechanical behaviour in a quantum dot, which cannot otherwise
be accessed e.g. excited states in a nearly closed dot [71, 126]. In particular the charge
sensor is able to measure extremely slow electron dynamics, when current directly
through the quantum dot itself (charge per unit time) becomes too small to be de-
tected for systems with slow moving electrons. Replacing the measurement of current
with a time-resolved measurement of charge has enabled studies into the counting
statistics of single electron transport [95], the electrical control of spin relaxation [5],

the spin dynamics of random telegraph signals [116] and many others [122].

6.2.4 The electronic structure of quantum dots

In this section we briefly introduce shell filling and the constant interaction model
which has been used to successfully explain the behaviour of electron quantum dots
in different systems. We compare this to existing experiments conducted in different
types of hole dots with different geometries and describe how their behaviour differs

from the electron case and from each other.

Electron shell filling and the constant interaction model

Like all quantum low dimensional systems, the symmetry of a quantum dot is also
responsible for degeneracies in the energy spectrum. The 3D spherically symmetric
confining potential of natural atoms, gives rise to degeneracies known as shells (1s,

2s, 2p, 3s, 3p...), which are most stable when completely filled with electrons. These
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Figure 6.4: Illustrations introducing shell filling. (a) Greyscale plot of quantum dot
current versus gate and source-drain bias voltage, showing a distinct enlargement
of the Coulomb diamonds (and therefore addition energies) at the magic numbers
N =2,6,12. Figure adapted from Ref. [134]. (b) Single trace of quantum dot current
versus gate voltage, exhibiting enlarged spacing between Coulomb blockade peaks at
the magic numbers. Insert depicting a plot of addition energy versus quantum dot
occupancy, with enlarged energy spacings at the magic numbers. (c) Illustration of
the shell filling sequence for a quantum dot in terms of atomic orbitals, where the N=2
electron must overcome the charging energy Ec = e2/C of the first electron to fill the
same shell. The N=3 electron, on top of the charging energy requires an additional
single-particle energy AFE to jump to the next orbital. Panels (b,c) are reproduced
from Ref. [150].

occur at the atomic magic numbers of 2, 10, 18, 36... [150]. In the case of an artificially
induced quantum dot in a 2D gas, the quantum dot shape is more akin to a 2D disc
- assuming a circularly symmetric confining potential which can be described by a
harmonic oscillator with a 72-dependence rather than % in the case of natural atoms.
This lower degree of symmetry leads to a 2D shell structure with a lower magic number
sequence of 2, 6, 12, 20... [150] as explained in Fig. 6.4.

One way to understand these magic numbers is to treat them as single-particle
states in a 2D harmonic oscillator, ignoring Coulomb interaction between electrons on
the dot. Extending the 1D harmonic oscillator spectrum (described by E,, = (n—i—%hw))
to 2D yields E,,; = (2n+|l|+1)hw,, where n = (0, 1, 2...) is the radial quantum number,
I =(0,£1,42,...) is the angular momentum quantum number and w, is the oscillator
frequency.

The eigenenergies F(, ;) as a function of magnetic field can be solved for a 2D
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parabolic confining potential V(r) = %m*wﬁrQ, giving rise to the Fock-Darwin spec-
trum [150]:
1 1
Eny = 2n+ |l + Dh(w? + Zw?)V? - 1o (6.1)

The electrostatic confinement energy is described by Aw, and the cyclotron energy
by hw. = heB/m*. Each orbital state E(y ) is two-fold spin-degenerate, which is lifted
at non-zero B and a single-particle state with a positive (negative) [ will shift to lower
(higher) energy. The lowest energy state (n,l) = (0,0) is two-fold spin degenerate
(neglecting Zeeman splitting in B). The second state has double-orbital degeneracy
E,1) = E(,~1), which forms the second shell and is full with a total of N=4 electrons.
The third shell possesses triple-orbital degeneracy (1, 0), (0,2) and (0, —2) and can hold
another 6 electrons, leading to a magic number of N=12. When the field is increased,
the electron occupying the highest energy state is forced into a different orbital state
and transitions occur in the spectrum where energy levels cross, with an increase in the
number of crossings at larger N. After the last crossing, electrons occupy states forming
the lowest orbital Landau level characterized by (0,7) such that [ > 0 and including
spin degeneracy is denoted with filling factor v=2, analogous to the quantum Hall
effect in a 2DEG [150]. However, unlike a 2D system the presence of the electrostatic
confining potential defining the dot lifts this degeneracy. The Fock-Darwin spectrum
provides a comprehensive method to study the evolution of the ground states of an
electron dot in field, especially towards the few-N regime.

For the Constant Interaction model, a Coulomb charging energy is added to the
non-interacting Fock-Darwin states as a first order approximation to model electron-
electron interactions [150]. This modifies the addition spectrum such that the topmost
filled state is added to the charging contributions, resulting in the spin-degenerate
states appearing twice, separated by the charging energy. The magic numbers are
visible as an anomalous enhancement in the energy separation at B=0. An even-odd
parity effect is observed where energy spacings for Ngye, are larger than those for
Nogqq. These wiggles approximately in phase with B (which stop at ¥=2), suggesting
that the Nth and (N+1)th electrons occupy the same single-particle state but possess

opposite spin.
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6.2.5 Hole shell filling and magnetic field dependence studies

We now turn our attention to studies of the shell structure in different types of hole
quantum dots to-date and provide a brief overview of the literature. Valence band holes
are much more complex and possess stronger spin-orbit coupling than electrons [33, 78],
arising from bulk inversion asymmetry (Dresselhaus spin-orbit) [63], structural inver-
sion asymmetry (Rashba spin-orbit) [35] plus additional spin-orbit coupling between
light-hole (LH) and heavy-hole (HH) subbands [67]. Recently it has been shown that
both the quantum dot geometry and spin splitting energy [45] play a critical role in
determining the interplay between these spin-orbit mechanisms and much still remains

unknown about the spin behaviour of hole quantum dots.

One such phenomena is the incomplete shell filling observed in InAs self-assembled
quantum dots (SAQD) resulting in a highly polarized few hole ground state. This
was first observed by Reuter et al. 221, 222], through capacitance-voltage (C-V) spec-
troscopy measurements, who discovered that once the s-like ground state is completely
filled with two holes, the d-shell starts filling before the p-shell is full. The authors
attribute this behaviour to the increased Coulomb interaction and smaller quantiza-
tion energies of holes due to their larger effective mass. A different explaination for
the anomalous filling was proposed by He et al. [109, 110] who address the limits of a
2D-EMA parabolic model of the confining potential, by combining an atomistic pseu-
dopotential description of the electronic structure with a many-body configuration
interaction description. Their model involves sequential shell filling (like the 2D-EMA
parabolic model), but rather than filling all shells sequentially, once the first p-shell
is filled, the second p-shell is skipped completely and the first d-shell starts to fill
instead. A third alternative provided by Climente et al. [44], suggests that the inter-
action between heavy hole and light hole subbands is the key factor in explaining the
anomalous behaviour, rather than the Coulomb interaction and the shell fillings are

actually sequential, as opposed to Reuter’s proposal.

A later experiment employing both C-V and polarized photoluminescence spec-
troscopy in InAs SAQDs, also confirmed that holes in InAs SAQDs cannot be described

purely by the Fock-Darwin model and spin-orbit coupling effects in the valence band
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need to be considered to fully describe the system [27]. More recent optical studies
in InAs SAQD holes have mapped out an anisotropic g factor and noted its strong
variance with orbital level [21, 235, 256, 257]. Optical experiments have been ex-
tended to other types of self-assembled quantum dots such as InGaAs [30, 64] and
GaSb/GaAs [86, 106, 197].

Transport experiments in SAQDs such as SiGe [12] and hybrid superconductor-
semiconductor SiGe devices [136] have also reported larger, anisotropic g factors of
2 ~ 3. Furthermore, due to their pyramidal dot shape, these g factors are highly

sensitive to a vertical electric field [12].

On the other hand, experiments in p—type nanowire dots have demonstrated se-
quential spin filling, in stark contrast to that reported for self-assembled quantum dots
in both Ge/Si core shell structures [119, 223] and single-crystal p-type silicon [306, 310].
Magneto-transport measurements in these nanowires yield g* between 1 — 2 in both
material systems, characteristic of a spin-1/2 particle where the dominance of LH
as opposed to HH states in nanowires is dependent upon the quantum dot height to
diameter ratio [308]. Electric-dipole spin resonance (EDSR) experiments in hybrid am-
bipolar InSb nanowires [213] have observed a g* anisotropy varying between 1.5 — 4.5
depending upon the in-plane magnetic field angle to the nanowire axis. Similarly to
the other types of nanowire dots, the g* of InSb nanowires is also suppressed compared
to the bulk hole g-factor, which the authors attribute to hole subband mixing. Prib-
iag et al. also demonstrate a significant difference in hole double-dot spin-blockade

anisotropy compared to electron double-dots [213].

Recent magneto-transport measurements of a single acceptor atom in a silicon
FinFET [270], have observed the lifting of the bulk hole fourfold spin degeneracy [24,
25] with an applied magnetic field, into its four spin states [270]. Their degenerate HH
and LH subbands stem from their more symmetric dot shape which is closer to that

of a natural atom than the other types of hole dots mentioned [149, 185, 259].
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6.2.6 Quantum dot challenges: random telegraph signals, charge

noise and reproducibility

As the size of nanostructure devices continue to decrease, they become more suscep-
tible to local charge fluctuations. Such noise in the signal can exhibit ubiquitous
1/f [65, 115, 276] or random telegraphic behaviour, where 1/f noise can stem from
the summation of many random telegraphic signals (RTS), and each RTS is formed
when the measured current switches between 2 distinct states [129]. In particular the
precision of the state readout of QPC charge sensors, used to detect changes in the
state of individual charges on quantum dots, can be affected by fluctuations in con-
ductance caused by the motion of background charges [113]. This background charge
noise may lead to fluctuations in the energy levels of the quantum dots themselves,
resulting in decoherence in both charge [107, 124, 205] and spin states [51, 159].
Several mechanisms have been suggested as the origin of this low-frequency noise

in GaAs-based devices:

1. FElectron hopping between the two-dimensional electron gas (2DEG) and charge
trap sites: Charge traps with energy levels within a few kg7 of the Fermi energy
can capture (trap) or emit (detrap) single electrons, causing fluctuations in the
Coulomb potential of the 2DEG, and contributing to RTS noise when the cur-
rent switches between two states, demonstrated in both GaAs QPCs [59, 229]
and electron dots [228]. Such trap centers may come from; crystal dislocations
or damage incurred during the fabrication process [229] and deep traps from

metastable DX centers [32].

2. Current leakage through the Schottky barrier: Other sources of charge traps con-
tributing to noise include, tiny current leakages through the Schottky barrier,
where electrons tunnel from the gate into the 2DEG. In the process, some elec-
trons become trapped in long-lived localized states near the active region of the
device and cause RTS before they reach the 2DEG [212]. Such switching be-
haviour due to leakage exhibits a strong, direct dependence upon gate voltage

unlike switching behaviour stemming purely from impurities [46, 161]. It is also
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possible to determine the spatial distribution of such traps if their switching

behaviour is gate voltage dependent [47, 162].

3. Charge hopping between ionized impurities in the remote-doping layer: This is
detected by the charge sensor and/or quantum dot via the Coulomb interaction.
Their effects have been observed as discrete time dependent changes in the con-
ductance of a 1D wire [263]. Kurdak et al. [153] have observed their presence as
fluctuations in both QPC measurements and 2D Hall voltage measurements in
field. By comparing the conditions needed to observe fluctuations in both QPCs
and the 2D Hall voltage, the authors conclude that the only possible source of
their measured noise comes from remote impurities. A major contributor to such
impurities are dopants in the AlGaAs layer of a modulation-doped or é-doped
structure [31, 212]. Ontop of contributing to RTS noise, the proximity of these
ionized dopant impurities to the 2DEG significantly lowers mobility at low car-
rier densities [232] as charge carriers scatter due to their Coulomb interaction

with these impurities, as discussed in Fabrication Chapter 3.2.2.

Common to all 3 noise sources mentioned above, the low-frequency charge noise
increases as the voltage applied V, to the surface Schottky gate is decreased (more
negative). Since the Schottky barrier becomes less opaque with decreasing Vy, the ob-
served noise dependence upon V,; was interpreted as evidence that the current leakage
through the Schottky barrier was responsible for charge noise [113].

This strong V, dependence of the noise, allowed for the reduction of charge noise
by employing techniques such as bias cooling (which involves applying a voltage to
the Schottky gates at room temperature and holding it as the sample is cooled, which
effectively freezes out charge traps) [162, 212]. Another option is to apply an additional
global top gate [31] both of which shift the operation point to a less negative voltage.
Other experimentalists have also employed thermal cures [81], to reduce RTS noise.
These techniques have been used with varying degrees of success between devices.

A more recent study by Hitachi et al. [113], have proposed a totally different origin
to RTS noise, where rather than being an intrinsic feature of doped devices, RT'S noise

comes from external sources and is related to damage incurred during the fabrication
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process which induces charge trap sites. In contrast to previous reports, the authors
observed no switching noise or random telegraphic noise, originating from tunneling
through a Schottky barrier, for measurements obtained over a number of hours in their
d-doped structures [113] and that these RTSes were virtually gate independent and
not affected by the presence of the superlattice barriers. Gate-dependent RTS appear

only in devices fabricated with a high-damage process that induces charge trap sites.

Ontop of a robust, damage-free fabrication technique, one effective way to elim-
inate the charge noise associated with doping is to avoid doping the heterostructure
altogether. Recently, single-electron transistors based upon undoped structures have

been fabricated [175, 238] and will be discussed in the following section.

6.2.7 Induced vs doped architecture for quantum dots

As discussed in Chapter 3.2, although the technique of modulation doping has led to
the fabrication of higher quality devices [209], however the main drawback is the in-
evitable introduction of disorder and charge noise, due to the presence of remote ionized
dopants as discussed in the previous section, on top of reduced mobility. Furthermore,
the dopant layer may partially screen surface gates (via hopping conduction) and/or
facilitate gate leakage, rendering many such heterostructures ungateable by metallic
gates [175] deposited directly onto the wafer surface. One way to bypass this problem
is to eliminate the need for modulation doping altogether by using an “induced” or
“undoped” structure, as discussed in Chapter 3.2.2. Such structures provide a starting

platform from which to fabricate eletrostatically induced, lateral gated quantum dots.

Recent work in such induced devices created from a SISFET architecture by See et
al. [239] use billiards to probe the disorder potential, and demonstrate that by remov-
ing the ionized dopants and populating the dot electrostatically, the device becomes
more stable and the electronic properties of the dot become reproducible between
thermal cycles. The authors measure low temperature magnetoconductance of two
billiards with identical geometry, one undoped and one modulation-doped, before and
after thermal cycling to room temperature. The magnetoconductance traces exhibit

quantum interference fluctuations stemming from the dot geometry, plus artifacts due
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Figure 6.5: Magnetoconductance fluctuations versus perpendicular magnetic field in
quantum dots of identical geometry fabricated from (a) modulation doped before (blue)
and after (red) thermal cycling to room temperature; and (b) induced structures be-
fore (black) and after (red) thermal cycling. The sequence of traces was taken at
increasing top gate voltage, from +930 (top) to +955 mV (bottom) in 5mV steps.
Figure reproduced from Ref. [239].

to the disorder distribution with the latter changing between different cool downs.

The results are reproduced in Fig. 6.5.

These plots show that the magnetoconductance is reproducible after thermal cy-
cling for the undoped device, but not for the modulation doped device, suggesting that
the disorder due to remote ionized impurities in doped devices cannot be ignored. The
authors suggest that such disorder produces small-angle scattering (which is not ac-
counted for in mobility measurements as they are heavily weighted towards large-angle
scattering) which has a major effect upon transport at smaller length scales approach-
ing those used in quantum dots and can potentially explain the lack of reproducibility
under thermal cycling in modulation-doped dots.

More recently, Mak et al. have demonstrated that undoped, shallow GaAs/AlGaAs
MISFET heterostructures can be used as a basis to fabricate stable, single-electron
quantum dots 30nm from the GaAs surface [175], defined electrostaically by metal
surface gates on top of the wafer, beneath the insulating layer. The authors observed
an improvement of more than one order of magnitude in mobility (a 2 x 10''em™2)
with respect to doped heterostructures with similar depths, due to the absence of
dopants [175].

Such shallow two-dimensional electron gases (2DEGs) have 2 main advantages
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over their deeper cousins for quantum dot fabrication: Firstly, finer features can be
transferred from the surface metallic gates to the 2DEG without the confining potential
broadening or smearing out at the level of the 2DEG. Secondly, the energy scales
of the dot levels tend to be larger, which enable more robust operation at higher
temperatures. Such shallow induced structures have the advantage that the 2DEG
can be brought much closer to the surface without sacrificing mobility.

The flexibility of the induced MISFET architecture combined with its potential
for reduced charge noise, has seen it extended to create few-electron quantum dots

in other material systems such as Silicon Metal-Oxide-Semiconductors [196, 291] and

electron double-dots in Si/SiGe [29, 181] and Silicon [164].

6.2.8 Induced hole quantum dots

Due to problems with unstable gates, the first stable gated defined p-type GaAs/AlGaAs
quantum dots [93] were only created 15 years after their n-type counterparts [184]. The
first induced SISFET style hole dot was fabricated on a high-mobility (311)A GaAs
heterostructure [137] with a Si-doped p™—GaAs cap, that was wet-etched to create
7 gates, to independently control the entry and exit barriers and the dot density.
Random telegraph signals were observed in the source-drain bias data, which were

attributed to surface state traps in the etched trench [137].

A different style of lateral (planar) induced, silicon metal-oxide-semiconductor
(MOS) hole dot was trialled by Li et al. [160]. Rather than using a doped cap to
induce the dot, the dot and tunnel barriers were formed using a combination of metal-
lic gates, similar to a MISFET style architecture, except rather than using a global
top gate to induce carriers in both the leads and the dot, there are separate inducing
gates for the source and drain reservoirs and the dot. This multiple gate design allows
for considerable flexibility over device operation, including independent control of the
carrier density in the dot and reservoirs [160]. A similar design has also been adopted
by Ref. [249], who also report the observation of instabilities in the dot current which
were attributed to disorder or roughness at the disorder at the Si/SiOy interface, or

impurities and charge traps within the silicon oxide dielectric itself.
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During measurement of our hole quantum dot, we have become aware of recently
published work, in which a double quantum dot with charge sensing was fabricated
using a similar MISFET style architecture in an undoped (100) GaAs wafer with an
aluminium global top gate [266]. Unlike the source-drain bias plot in Fig. 6.2b, taken
from the doped device by Komijani et al. [147], the source-drain bias map from Tracy
et al. [266] shows no discontinuities or jumps, which are signatures of random telegraph
signals. The authors report little to no electrical instabilities as anticipated for such
an induced architecture, and demonstrated the transition between a large single-dot,
into a small double-dot regime, using two QPC charge sensors to detect the occupancy
of each dot [266].

Although the architecture of the devices presented in the following sections, are
similar to that reported by Tracy et al. the focus of this thesis chapter is to characterize
a single rather than a double dot and observe excited states in the charge detector

signal.

6.3 Electron quantum dot characterization

In the remainder of this chapter, we shall borrow the best of both worlds and build
upon the concepts from the background review, starting off by fabricating and char-
acterizing an induced single electron quantum dot before moving onto hole dots. We
begin by using a variation of the standard small-quantum dot design pattern devel-
oped by Elzerman et al. [70, 72] with QPC charge sensing in order to reach the few-N
regime, combined with an undoped MISFET architecture similar to that used by Mak
et al. [175].

This is followed by Nextnano++ simulations of the confining potential for our given
dot geometry, and some adjustments made to optimize the dot design for an induced

small dot geometry.

6.3.1 Device design and measurement setup

The induced electron dot was fabricated from wafer W0639 (100) GaAs from the

Semiconductor Physics group at Cavendish Laboratory, its layout shown in green in
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Figure 6.6: (a) W0639 wafer layout for the 160nm deep 2DEG, together with the etched
ohmics and the EBL gates defining the quantum dot pattern on the wafer surface. The
structure is covered by a 600nm thick Polyimide insulating dielectric followed by an
overall top gate. (b) SEM image of the “asymmetric curved quantum dot” pattern
scaled for a deeper 2DEG, replicated from the design by Elzerman et al. [70]. The
quantum dot location is highlighted by a green circle. A separate QPC charge sensing
circuit is created using gates Q and LB, and the 2 current paths for the quantum dot
and charge sensor are shown in green, where the crossed-boxes represent the ohmic
contacts. (c) SEM image of a variation to the design in (b) the “asymmetric square
dot” pattern, in which the large gate LB is replaced by a small, thinner, straight gate
for easier fabrication.

Fig. 6.6a. A tri-metallic stack consisting of Ni/AuGe/Ni was evaporated to create
n—type ohmic contacts and annealed into the heterostructure. Next the quantum dot
pattern was defined by electron beam lithography (EBL) and deposited with a thin
layer of titanium followed by gold. This was then covered by an insulating polyimide
dielectric layer followed by an overall Ti/Au global top gate (TG), which we use to
induce carriers into the 2DEG.

A scanning electron microscope image of the 2 patterns trialled are shown in
Fig. 6.6b,c. Panel (b) shows a direct translation of the standard design created by

Elzerman et al. [70] for electron dot systems. This version only contains half of the
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original double-dot pattern, similar to Refs. [71, 72] as we are interested in single dots
for this study. The lithographic dimensions have been scaled up by % ~ 2.2,toa
dot length of ~ 350nm, to compensate for the deeper 2DEG at 160nm from the surface
metallic gates (compared to a ~ 200nm dot length for a 90nm depth in the original
design [70]). The lithographic dimensions of the quantum dot and QPC charge sensor
width are: 342 x 349nm and 418nm respectively. Fig. 6.6c is a simplified variation
of (b) which uses the same geometry and layout but replaces the wide, curved gate
LB with a straight thin gate. A 2DEG depth of 160nm was initially chosen due to
fabrication challenges in obtaining a 100% yield of working ohmics in shallower struc-

tures, although a depth closer to the 90nm used by Elzerman et al. would have been

preferred to allow a more direct comparison to be drawn.

These designs use 4 gates to define the quantum dot: LB and RT to define the
top (entry) tunnel barrier, RT and RB define the right (exit) tunnel barrier, whilst
the plunger gate P is a thin gate used to tune the occupancy of the quantum dot. An
extra gate QQ on the left of the dot defines the QPC charge sensor together with LB.
The metal gates screen the 2DEG directly underneath them when a voltage is applied

to the global top gate, forming the quantum dot and a 1D constriction.

During the course of measuring both devices with the two slight variations in
design, we found that both devices (if operated at similar voltages) behaved in a very
similar fashion to one another, so for the measurement results we shall concentrate on

and present data for the simplified variation, design (c).

Using the constant interaction model for a large dot, we make some ball park
estimates and set boundaries for the quantum dot parameters. From measurements
of density versus top gate from an equivalent W0639 electron Hall bar, an operating
point of Vg = +6.0V was selected which gave a 2D density of nop = 1.4 x 10" em 2.
This value was chosen as it was high enough to give a reasonable density, and yet
remain well below the onset of hysteresis in the 4 terminal conductance across the 2D
hall bar, as discussed in Chapter 3.4. From the lithographic area of the square dot,
we estimate the dot can hold no more than ~ 500 electrons. A Fermi wavelength of

2 2Warc
F

. . 2
Ap = /72~ ~ 6Tnm gives a maximum of =~

o =~ 10 conductance modes through
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the right tunnel barrier of the quantum dot and a maximum of ~ 11 through the
charge sensor, where Wgpc is the width of the 1D channel. However due to the larger
depth of the 2DEG below the surface, we anticipate the lateral depletion to also be
increased by a similar scale factor of ~ 2.2 and hence estimate that the actual number
of conductance modes through both the QPC and the dot should be halved (or less),
down at the 2DEG.

To observe single electron transport through the dot (as Coulomb blockade peaks)
the quantum dot charging energy must be larger than its thermal energy, Fc > kgT.
FE¢ can be approximated using a simple parallel plate capacitor model such that EFc =
e?/Cx, where Cx is dominated by the sum of capacitances between the dot and its
defining gates. Given that the top gate has the largest overlapping area A with the
quantum dot, and is located a total distance of d = dajgaas + dpr = 760nm directly
above it, we can make a first-order approximation which assumes that the top gate
is the dominant contributor to the total capacitance, hence Cpg =~ Cx. Applying the
series plate capacitor model to sum the capacitances across both the Polyimide and

AlGaAs layers we get;

1 d d
Cx  epreoA  €algaascoA

where epr = 3.5 is the dielectric constant of Polyimide, € ;445 = 12.5 is the dielectric
constant of AlGaAs [1], g = 8.854 x 1072 F/m the electric permeability of free-space
and A is the lithographic dot area 0.377um?.

This gives us a Cx; = 18aF, corresponding to a charging energy of Fo ~ 8.9meV

or an equivalent temperature of Ty = % ~ 100K. The average single particle spacing

AE ~ Z*hj is estimated to be 19ueV (or ~ 2.2K), where m* = 0.067m, is the effective
mass of electrons in GaAs and spin degenracy is ignored [11]. These ball-park values
act as upper limits, since at 160nm below the wafer surface, the effective quantum dot
dimensions due to broadening of the confining potential are expected to be different
i.e. much smaller.

The quantum dot was characterized inside a Kelvinox 100 dilution refrigerator at a

base temperature of 20mK, using standard two-terminal ac lock-in techniques which si-

multaneously readout both quantum dot and charge sensing signals (see Appendix A.1
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Figure 6.7: Part (a) shows a Yokogawa DC voltage source followed by a low pass RCR
filter, used to apply a bias to tune each of the EBL gates (Q, RT, LB, P, RB), labelled
in blue in Part (b). A SRS830 lock-in amplifier provides a 100uV ac excitation voltage
to the source ohmic on the device. Here the circuit splits into two parts: One path
travels through the quantum dot, out through the dot drain, into a SRS830 lock-in
amplifier current readout via a 47uF blocking capacitor. The other leg goes into the
charge sensor drain, to a secondary SRS830 lock-in amplifier for simultaneous readout

of the charge sensor.
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for further information on the K100). The measurement setup is illustrated in Fig. 6.7.
In this setup we have a common source for both the dot and the charge sensing circuits
and two separate drains. This configuration was selected over that with two sources
and a common drain, to reduce noise in the common drain. We adopted a common
ohmic for this design as it gave us enough ohmics to fit two quantum dots onto the

same Hall bar, rather than one dot to one Hall bar.

6.3.2 Experimental Data and Results

To study single electron transport through the quantum dot, the tunnel barriers be-
tween the quantum dot and its source and drain reservoirs need to be sufficiently

opaque (generally G < %)

To achieve this condition, we first investigate the be-
haviour of different pairs of gates by applying a negative bias simultaneously to them,
with unused gates set to 0V, and measuring the current through the quantum dot to
find their pinch-off points. The drain contact was then swapped over to the charge

sensing (CS) circuit and the measurement repeated for the QPC charge sensor. The

data is shown in Fig. 6.8.

From this first set of data, the top barrier pinches-off before the right barrier and
both of them exhibit small features below the first conductance plateau G ~ % ~
77uS which suggests that some of the gates may be partially defined at 0V, as they

screen the 2DEG from the top gate.

To investigate the pinch-off characteristics of the asymmetric dot geometry, we
paired the gates and swept the pair to pinch-off, whilst all unused gates were unbiased
to +1V to ensure they are not defined in the 2DEG. With both gates at the pinch-off
voltage, one of the gates was unbiased whilst the other was held fixed at the pinch-off
point. The same procedure was then repeated for the other barrier gate. All 3 gate
pair combinations are plotted in Fig. 6.9. The right barrier (green sweeps) exhibit
a similar profile between both pairs of gates, due to the symmetric geometry of the
barrier. On the other hand the top barrier (red/pink), exhibits distinctly different
behaviour for each gate - the top barrier closes off shortly after RT is defined (red),

whilst LB appears to be strongly defined with little rise in current until the unbiasing
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Figure 6.8: Pinch-off characteristics of the quantum dot where the raw dot current is
converted to 2-terminal conductance for the; right barrier (green), top barrier (pink)
and the QPC charge sensor (blue). For each pinch-off curve, the corresponding pairs
of gates were simultaneously swept to a more negative bias, whilst the others remained
at OV. This was done at a top gate of Vg = +6.0V. Note the data is plotted in 2T
conductance rather than units of the conductance quantum in order to observe the
full behaviour of the gates as they are unbiased to 2D.
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Figure 6.9: Pinch-off characteristics of the quantum dot where the quantum dot current
is converted to 2-terminal conductance. For each pinch-off curve, the corresponding
pairs of gates were simultaneously swept to a more negative bias, whilst the others
remained at OV. This was done at a top gate of Vg = +6.0V. Note the data is in 2T
conductance rather than units of the conductance quantum in order to observe the
full behaviour of the gates as they are unbiased to 2D.
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Figure 6.10: Colour maps of transconductance through the dot with varying barrier
gates RB vs LB. (a) with Vgr = —0.60V (b) and Vrr = —0.62V. In both cases
Vo = Vp = 0V. Both graphs indicate that the moment gate RT is defined, current
through the dot disappears rapidly. Both maps barely show any Coulomb blockade
like behaviour before the dot barriers are closed off.

point at +1V (pink). The charge sensor (blue sweeps), which shares LB as a common
gate with the top barrier, also exhibits an unexpected asymmetric pinch-off profile,
which could be explained if the depletion region underneath gate LB is much broader

than originally anticipated.

To understand the gate behaviour better, we conducted a series of barrier maps
where we stepped RB and swept LB, shown in Fig. 6.10. As gate RT defines both
entry and exit tunnel barriers, we kept this fixed at a voltage where the gate is just
defined ~ —0.6V in (a) and ~ —0.62V in (b). Between the two colour maps, we ob-
serve that a small change in RT (compared LB and RB) shifts the active region of
the dot significantly. Moreover, both panels do not exhibit a series of ‘diagonal lines’
alternating with clear regions of zero current, as expected from a typical stability dia-
gram which would result in well defined Coulomb blockade peaks. Rather the current
through the dot dramatically drops from 10nA to zero. This suggests that once gate
RT is defined, current through the dot is almost immediately cut off. This behaviour
remained despite varying combinations of gate voltages. Both colour map also exhibit
a distinctively curved region of conductance, which suggests strong crosstalk between
gates LB and RB, as the gates influence each other by coupling through the quantum
dot.

To operate the dot in the single electron tunnelling regime, voltages were set on each
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Figure 6.11: Coulomb blockade oscillations as a function of plunger gate voltage (blue),
where Vg = —0.6V, Vgr = —0.6V and Vrp = —2.2V. Subsequent repeat sweeps (or-
ange), taken 10 minutes after the blue sweeps sit on top of the initial sweeps, indicating
little hysteresis in the device as expected from an induced architecture. Unbiasing RT
slightly to —0.59V (green) dramatically shifts the peak profile, suggesting that gate
RT is highly coupled to the dot compared to P. The charge sensor gate Q remains
unused at 0V.

gate corresponding to the points where the barriers were close to pinch-off but opaque
enough to let some current through the dot. Initial values of Vrr = —0.6V, Vrp =
—2.2V (so the voltage sum across the right barrier is —2.8V) and Vg = —0.60V, were
chosen and the plunger gate P, was swept towards pinch-off to decrease the occupancy
of the quantum dot. The result is shown in Fig. 6.11 where a series of Coulomb
blockade (CB) oscillations were observed on top of a falling conductance background.
Beyond Vp = —1.1V the minima between CB peaks fall to zero conductance, indicative
of single-electron tunneling. Subsequent repeat up-and-down sweeps showed little
hysteresis in the behaviour of the dot and the CB traces taken 10minutes apart sit
on top of each other, suggesting the device is reasonably stable as expected from an
induced architecture. Beyond Vp = —2.0V the current dies off rapidly due to strong
crosstalk between the plunger and the barrier gates. As gate RT defines both dot
barriers, we backed this off to Vgpr = —0.59V, which resulted in sharper CB oscillations

beginning at a larger plunger gate voltage (green), in Fig. 6.11.

To study the relative coupling of each gate to the quantum dot, we sweep each gate

(including the top gate) over the same set of Coulomb blockade oscillations obtained
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Figure 6.12: Plots of the same set of Coulomb blockade peaks swept using different
quantum dot gates; gates LB, P and RB are displayed in (a) the short period gate RT
in (b) and the overall top gate in (c) [the discrete steps are due to the lower resolution
limit of the instrument voltage source for a larger total voltage range]. Bias voltages
on all gates which are not being swept are Vpg = +6V, Vg = —0.6V, Vp = -1V,

Vrp = —2.2V and Vgr = —0.59V.
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Gate | AV, | Cy=e/AV,; | a=Cy/Cx
RB 258mV 0.621aF 0.00843
P 279mV 0.574aF 0.00780
L 154mV 1.04aF 0.00141
RT 2.99mV 53.6aF 0.728
TG | 9.00mV 17.8aF 0.242

Table 6.1: The period for each gate AV, was obtained from the Coulomb blockade
oscillations in Fig. 6.12. Corresponding gate capacitances C; were calculated using
the approximation AV, = e/Cy, and sum to Cygqtes = 73.6aF. From this we estimate

the charging energy to be Eg = €2/ Csgates = 2.18meV. The lever arms a = Cy/Cx,

for each gate are also given .

from the plunger gate. The data is displayed in Fig. 6.12, where the period of the
oscillations is related to the gate capacitance via AV, = e/C, (assuming AFE is negli-
gible) shown in Table 6.1. From this table gate RT is the most capacitively coupled
to the quantum dot, even more so than the top gate whilst the plunger gate has the
weakest coupling. These numbers indicate that the quantum dot is not only small,
but located much closer to gate RT than previously anticipated. Since Crg < Cgrr,
our initial large dot estimate based upon the constant interaction model is not a good
approximation, even though the value of Cpg is close to our first estimate. From the
values in Table 6.1 we obtain a total capacitance of Csgqtes = 73.6aF and a charging
energy of Ec ~ 2.18meV (or ~ 25.3K), which is much smaller than the lower bound
Ec = 8.9meV (Cs ~ 18aF) estimated in our model. ! Comparing to literature, our
charging energy is smaller than the Ex = 3.7meV obtained by Elzerman et al. [70],
for adding a second electron to the dot. This suggests that although our dot is small,
larger gate biases are required to squeeze the confining potential further in order to
reach the last electron. However, beyond this point the tunnel barriers are quite high
and current directly through the dot can no longer be detected, hence an independent
method to determine the number of electrons remaining within the dot, such as a

charge detector is essential.

To find out more about the dot, bias spectroscopy was performed on the Coulomb

! Note that this value of charging energy estimated by summing the gates, neglects the effect of
capacitance contributions from the source and drain leads, which would increase Cs; and thus decrease
the value of E¢. It also means that decreasing the leverarm values calculated in Table 6.1 by a factor
of 3 will give a more realistic set of values.
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Figure 6.13: Source-drain bias spectroscopy of the Coulomb blockade peaks from
Fig. 6.11. The colour scale is a log plot of differential conductance, versus plunger
gate voltage Vp along the y-axis and dc source-drain bias voltage Vgp on the x-axis.
For this measurement Vg = —0.59V, Vrg = —2.2V, Vg = —0.6V at Vpg = +6.0V.
The dashed green lines outside each coulomb diamond mark the location of the excited
states.
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blockade peaks in the quantum regime. Fig. 6.13 is a log-scale colour map of the
differential conductance plotted against Vp and the DC source-drain bias Vgp. The
colour map shows no indication of random telegraphic signals nor switching noise,

demonstrating the stability of the MISFET architecture.

A series of Coulomb diamonds is highlighted by solid blue-green lines and their
relative occupancy N labelled, starting from the first diamond where electron transport
is fully blockaded (indicated by a dark, black region). The diamonds rapidly grow in
size, indicating the dot is in the few-electron regime. Finer featured bright coloured
lines, outside of the diamond running parallel to the diamond edge indicate transport
through excited states [101]. From the source drain bias colour map we extract a
single particle level spacing between the excited state and its parallel ground state
using Vgp, of AE = 200ueV for diamond N and AE = 300ueV for the N — 1
diamond (Tag ~ 2.3 — 3.5K). These values are once again much smaller than the
1.8 meV difference between the first excited state and the ground state measured by
Elzerman et al. [70]. Recalculating the quantum dot size based upon AE = 300ueV
via the relation AE ~ 7h?/m*I? gives us a estimated [ ~ 110nm in the N—1 state.
This rough estimate assumes that E%D = F%! which may not be the case for a small
dot. Although it is possible to tune the dot to lower occupancies, the current directly

through the dot soon becomes too small to measure, and a charge sensor is required.

Charge Sensing

For this particular device at a top gate of Vpg = 4+6.0V, we found that the charge
sensor was not sensitive over the operating voltage ranges of the quantum dot. No
distinctive sawtooth features coinciding with Coulomb blockade peaks in the dot con-
ductance were detected.

To test the charge sensor, we first kept the same voltages used to define the
quantum dot (Vg = —0.6V, Vrr = —0.59V, Vg = —2.2V at Vg = 4+6.0V) and
hooked up the charge sensing circuit. Despite pulling Q back to its maximum voltage
Vo = —0.2V (beyond which Q becomes undefined), the charge sensor conductance

dropped dramatically as plunger gate is swept, tuning the dot to lower occupancies.
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Moreover the charge sensor conductance appeared to exhibit Coulomb blockade oscil-
lations of its own which were uncorrelated to the Coulomb blockade peak period in the
dot, shown in Fig. 6.14a,b. This suggests that there may be an unwanted quantum dot
forming within the 1D channel of the charge sensor as the channel width down at the
2DEG may be quite narrow, since the depletion region below LB may be broader than
previously anticipated, as suggested by the unexpectedly large capacitive coupling of

the dot to gate RT.

Attempts were made to widen the charge sensing channel to remove the undesired
dot by incrementally unbiasing gate LB from —0.6V to Vg = +0.2V, to reduce the
depletion region under LB and retuning the other gate voltages to retain the original,
wanted quantum dot. Gate Q was then set to its maximum operating voltage where
the conductance through the charge detector was just below the first % plateau
for maximum CS sensitivity.A corresponding simultaneous measurement of both the
quantum dot and charge sensor conductance is shown in Figs. 6.14(c,d). In the region
of Coulomb blockade through the dot where there minima do not reach zero, a peak in
the Coulomb blockade corresponds to a slight dip in the CS (marked in dashed purple
lines). However towards lower occupancy, the oscillations in the CS no longer coincide
with the peaks through the dot. Rather double-peak like features start to appear in
the dot conductance (starting from the dashed orange mark), as oscillatory behaviour
in the CS becomes more pronounced, suggesting that the unwanted dot in the CS
circuit may have formed despite the larger channel width and our wanted dot, may be
behaving as a charge detector and ‘back-sensing’ the presence of the undesired dot in
the 1D channel. Further tests were performed with different gate voltage configurations
up to Vg = +0.4V; beyond this point the top tunnel barrier of the dot becomes too

transparent and no distinct zeros were obtained between Coulomb blockade peaks.

This was an unexpected result which suggested that the current quantum dot and
charge sensing layout was not optimal for the 2DEG depth and voltage parameters
available. We also characterized a quantum dot with a different configuration, the
“asymmetric curved dot” device from Fig. 6.6b, using the same process as we have

just described for the “asymmetric square dot” device in Fig. 6.6c. But we discov-
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Figure 6.14: Simultaneous measurement of 2-terminal conductance, corrected for series
resistance, through both the charge detector (top panels a,c) and quantum dot (bottom
panels b,d) as the plunger gate is swept (x-axis, right to left) to reduce the occupancy
of the dot. Left panels (a,b) with Vz,p = —0.6V and the QPC charge sensor pulled back
to a maximum of Vg = —0.2V. The CS signal does not correlate with the quantum
dot Coulomb blockade peaks but rather appears to behave as an unwanted dot within
the 1D channel. Right panels (c¢,d) correspond to dot and charge sensor conductance
respectively, with gate LB unbiased to Vg = +0.2V, in an attempt to widen the
CS 1D channel. Q is set to Vg = —0.460V so that Gcg lies just below the first
conductance plateau to cover the range of maximum sensitivity over the range of Vp.
However, the orange dashed line at Vp = —1.03V is the last position where Coulomb
blockade peaks in Ggp are sensed as dips in the CS signal and beyond this the wanted
quantum dot appears to still ‘back-sense’ the unwanted dot formed within the CS
channel despite widening the CS channel. For more information about potential effects
of the 3-terminal setup upon this dataset, please refer to Appendix E.
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Figure 6.15: Source-drain bias spectroscopy of curved dot design from Fig. 6.6b. The
colour scale is a log plot of differential conductance, versus plunger gate voltage Vp
along the z-axis and dc source-drain bias voltage Vgp on the y-axis. For this mea-
surement, the voltages used were Vpr = —0.732V, Vg = —0.712V, Vg = —0.1V at
Vra = +6.0V. The ground states forming Coulomb diamonds (dashed purple) appear
broken into a series of smaller diamonds within what should be the blockaded region,
suggesting parallel dot transport. Excited states are marked in dashed green.

ered that the behaviour of this curved design is virtually the same as the square dot
design; including the non-sensitivity of the charge sensor, over the operating voltage
range of the quantum dot. Unexpectedly, during source-drain bias measurements, the
quantum dot appeared to fragment into two dots as seen in Fig. 6.15. Rather than
exhibiting a single diamond with fully blockaded current within the enclosed region,
lines of conductance taking the form of smaller diamonds with alternating, different
sizes suggest that transport is occurring through two dots in series with each other.
This could potentially have been caused by a nearby disorder potential near gate RT,
however the exact cause is still unknown. After these measurements were performed,
Tracy et al. published results on an induced hole double quantum dot [266] using a
similar variation of the Elzerman double-dot design [70] in a 110nm deep quantum

well without fragmenting.

6.3.3 Electron dot summary

In conclusion, we have demonstrated that we can electrostatically define a small, stable

electron quantum dot of size [ ~ 110nm, in a 160nm deep 2DEG using a completely
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undoped heterostructure. However this design is still not fully optimized and we were
unable to perform transport measurements down to the last electron as the charge
sensor was not sensitive in the few-N regime and direct current through the dot was
lost shortly after gate RT was defined. The unusual behaviour of gate LB suggests the
depletion region beneath it was unexpectedly large, pushing the quantum dot away
from the charge sensor towards gate RT and reducing the sensitivity of the QPC charge
detector. Part of this could be due to a smeared out confining potential at a depth
of 160nm below the metal gates defining the dot combined with an asymmetric dot
geometry. Moreover the presence of a global top gate could screen coupling between
the dot and charge sensor, further reducing its sensitivity. This suggests that there may
be other subtleties involved in transferring a quantum dot pattern from a modulation
doped architecture directly into an induced architecture, which requires finer tuning
of the design. To investigate this further, in the following section we perform some
simulations and suggest an alternative, more optimize the design of the dot geometry

for an induced architecture.

6.4 Quantum Dot Simulations

To understand the behaviour of the electrostatic potential defining the quantum dot
down at the 2DEG, some 3D simulations were performed in the Schrodinger-Poisson
solver, Nextnano++ [273]. These allowed us to qualitatively examine the effect of the
quantum dot gate geometry upon the shape of the confining potential and model the
effect of insulating materials with different dielectrics. The dependence of broadening
of the confining potential upon the distance between the 2DEG and the global top gate
was also investigated. Details of the modelling parameters and setup are described in
Appendix F.

The lithographic dimensions of the quantum dot pattern were transferred into a
Poisson solver software package, Nextnano++, shown in Fig. 6.16a, where the accu-
racy of the result is limited by the grid resolution and computation time to run the
simulation. Panel b) of the figure shows the resulting electron density at the 2DEG,

below 160nm of AlGaAs and 600nm of Polyimide to the top gate, using the same
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dielectric constants as in the previous section. Areas of white represent a maximum
electron density nop = 1.4 x 10" em ™2, modelled with a higher top gate voltage of

+8.0V, whilst black regions represent areas where the 2DEG is depleted.

Biases have been applied to the the quantum dot gates to define the dot. From this
picture, since the gates LB,P,RB are close and act together, forming a large depletion
region at the 2DEG which pushes the quantum dot farther away from the charge
sensor and up against gate RT, resulting in a small, irregular ‘banana’ shaped dot.
This complements the experimental data which yielded a capacitive coupling of RT
to the quantum dot which was even stronger than the capacitive coupling to the top

gate.

In panels (d) and (f) of Fig. 6.16, we simulate the effect of reducing the distance of
the 2DEG to the GaAs surface, by 110nm in panel (d) and 60nm in panel (f) whilst
keeping the EBL gate biases the same for a direct 1:1 comparison of the effect of
the 2DEG depth only. These depths were chosen as they correspond to wafers with
reasonable density and mobility characteristics that we have available from which we
could fabricate dots (see Chapter 3.4 for wafer characteristics). This reduction in
2DEG depth appears to have a drastic impact upon the spread of the depletion region
and hence the shape of the quantum dot. At 110nm from the surface, the defining
electrostatic potential is much sharper and the tunnel barriers as well as dot shape
become more distinctly defined. Going further to 60nm results in an open quantum
dot with undefined tunnel barriers and an open CS channel. This depletion width
profile suggests that it is much easier to define a dot with a sharp, tunable confining
potential using the 60nm deep 2DEG compared to 160nm, simply by increasing the

gate voltage biases to close the gap (not shown).

The change in electron density caused by using an insulating material with a higher
dielectric constant such as Al;Og is explored in panels (c) and (e). All parameters are
kept constant in both panels except that in panel (c) the Polyimide insulator with
e = 3.5 (from panel (b)) is replaced with amorphous Aluminium Oxide (in panel
(c)) modelled with e = 8 with an applied top gate bias of —1.34V" to keep the same

density as the Polyimide simulations. Despite the increase in € by a factor of 2, there
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appears to be little difference between the two simulations (b,c), which could be due
to the large 760nm effective distance between the top gate and the 2DEG. In panel
(e) the thickness of the Aluminium oxide layer is reduced to 30nm. This shows that
reducing the thickness of the insulating dielectric also helps to reduce broadening of
the depletion region underneath the defining gates at the 2DEG, resulting in a better
defined quantum dot becomes. Although its impact is not as drastic as bringing the

2DEG closer to the defining gates, as seen in panels (b,d,f).

From these sets of simulations, applying a combination of shallower 2DEG and a
thinner insulating material with a higher dielectric constant should result in a better
defined quantum dot with sharper tunnel barriers. As the study of surface charges
[174], showed that their effect on mobility is minimized when the 2DEG is ~ 100nm
from the surface, we decided to use the W0640 wafer where the 2DEG is 110nm from
the surface, rather than the 60nm and combine it with 30nm of Aluminium oxide for
the insulating layer. This combination also worked better for us in a practical sense,
since we were unable to obtain a 100% ohmic yield for heterojunctions shallower than
150nm using the 600nm thick polyimide dielectric for p-type ohmics. On the other
hand, we were able to achieve this using an ALD dielectric, which had the added
advantage of a lower ohmic turn-on (threshold) voltage, consistent for all ohmics with

a 100% yield on shallower wafers including 60nm.

As we are interested in studying the behaviour of a single quantum dot rather
than a double dot configuration, we also modelled a symmetric design, similar to that
used in the Field paper [76] with a few minor changes, shown in Fig. 6.17a dubbed
‘Sunbeam’. This pattern (along with minor variations and extensions) has also been
used to successfully fabricate small electron dots down to the last electron [29, 158,
291]. In this configuration, an electrostatically defined barrier made from gates LT and
RT, separates the charge sensing circuit from the quantum dot circuit. The quantum
dot is formed via 3 gates pressing against the separating gates. The QPC charge
sensor on the other side of the separating gates, is positioned so the 1D channel is
squeezed directly against the quantum dot increasing the proximity between the two

nanostructures. In this design we have also introduced a 20nm gap in the separating
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Figure 6.16: Nextnano++ simulations depicting the effect of changing different pa-
rameters upon the 2D electron density seen at the 2DEG for the asymmetric square
dot design. Parameters affecting the confining potential profile include, the type and
thickness of the insulating dielectric (Polyimide (PI) and Aluminium Oxide (AlOx)

between the global top gate and wafer surface, and the depth of the 2DEG below the
GaAs surface.
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minium Oxide (AlOx) between the global top gate and wafer surface, and the depth
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barrier to increase coupling between the dot and the charge sensor as suggested by
Rossler et al. [225], who demonstrated that the charge detector sensitivity increased

by a factor of 4 when a small gap was introduced.

In the previous asymmetric design, we found that having 3 gates in parallel close
to each other results in a much larger total effective depletion region. To reduce the
size of this effective depletion region and the amount of crosstalk between the gates,
we have deliberately angled LB, P and RB to increase the spacing in between them.
In this simulation we also doubled the charge sensor channel width to 800nm, since in
the previous experiment we had to operate the detector with gate Q nearly unbiased

due to the unexpectedly large depletion region under LB.

The simulation for the symmetric design with a 110nm deep 2DEG and 30nm of
AlOx is shown in Fig. 6.17c. Using the same top gate of —1.34V results in a maximum
electron density of nop = 1.4 x 10 em ™2 in the white regions of the image. Just like
the case of the asymmetric design, the quantum dot gates are defined at zero bias,
as their presence effectively screens the top gate. However even in this configuration,
the region in which the quantum dot will be formed is distinct. Panel (d) simulates
the same configuration as (c¢) but with EBL gate biases applied to define the quantum
dot. In panel (b) we maintain the same EBL gate biases as in (c¢) but switch back
to the polyimide insulator configuration for comparison. From this we can see that
using the much thinner AlOx insulating dielectric is a much better choice compared
to polyimide, since finer features such as surface metallic gates used to define the
quantum dot, are not as smeared out by broadening of the confining potential down

at the 2D gas.

Although we will be using a 30nm AlOx dielectric, we can compare the effect of
the gate geometry upon the steepness of the confining potential of the dot, between
the asymmetric square pattern in Fig. 6.16d with the symmetric sunbeam pattern in
Fig. 6.17b, as both have a 600nm thick polyimide and a 110nm 2DEG. Between thee
2 patterns, we can immediately see that the confining potential is much steeper for
the asymmetric square pattern and the corresponding tunnel barriers much thinner.

The Sunbeam design appears to have thicker tunnel barriers, which makes them com-



184 6. Induced quantum dots

paratively less tunable and possesses a shallower confining potential compared to the
asymmetric design. However there are two main advantages to the Sunbeam design:
firstly its symmetry means it is much easier and quicker to form a dot (in fact as
shown in Fig. 6.17c, the dot is almost formed already even without any bias added to
the gates) and to tune it. The second advantage is the two completely independent
circuits of the charge detector and the quantum dot. This allows for greater opera-
tional flexibility e.g. the ability to lower the excitation voltage used on the dot circuit
to enable excited states to be detected whilst raising the excitation voltage over the

charge sensor to increase its signal to noise ratio.

From these simulations and the ease of operation of the symmetric design, we
elected to use the Sunbeam design to fabricate our hole quantum dot. However the
doubling of the charge sensor channel width to 800nm made it too large (the gaps of
the QPC channel width in Fig. 6.17 is very large) and a very large voltage on gate
Q was required to pinch-off the 1D channel. In the final design we reduced the QPC
width back to 400nm.

6.4.1 Simulation summary

Simulations to visualize the quantum dot electrostatic confining potential, showed that
a shallow 2DEG located closer to the metallic surface gates defining the dot pattern
provides much better definition of the confining potential and sharper, more tunable
barriers. Reducing the thickness of the insulating dielectric and selecting a material
with a higher dielectric constant also increases the definition of the confining potential.
A symmetric lateral gate geometry with a gap between the gates separating the charge
sensor and quantum dot circuits may enhance the sensitivity of the CS and allow for
operation of the dot in the few-N regime even after direct current through the dot
is lost. Combined with the ease of operating a symmetric design plus the flexibility
of completely independent quantum dot and charge detector circuits, in the following
section we shall explore this design for an induced few-hole quantum dot, with a 110nm

deep 2DHG and a 30nm thick AlOx insulating dielectric.
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6.5 Hole quantum dot characterization

In this section we apply the Sunbeam design modelled in the simulation section and
demonstrate the successful fabrication and characterization of a lateral, electrostat-
ically induced, few-hole quantum dot, down to the last hole with an operational,
integrated QPC charge sensor within a MISFET architecture. We observe Coulomb
blockade with corresponding charge sensing features and use the technique of source
drain bias spectroscopy to observe the presence of excited states through both the
quantum dot circuit and the charge detector. Although the charge detector by itself
does not provide information about the quantum dot energy spectra, since transport
through the dot is not always available or desirable, combining the technique of source
drain bias spectroscopy with charge detection offers a potential alternative to map-
ping out the energy spectra in the few-hole regime. Here we employ the use of a QPC
charge sensor, compare its behaviour with measurements taken directly through the
dot and demonstrate the presence of hole excited states via the charge sensor signal

in an induced quantum dot.

6.5.1 Device design and electrical measurement setup

The induced hole dot was fabricated from wafer W0640 (100) GaAs, its cross-section
depicted in Fig. 6.18a. Gold beryllium (AuBe) was evaporated to create p—type ohmic
contacts and annealed into the heterostructure (as opposed to AuGe for electrons).
This was followed by EBL gate definition of the ‘Sunbeam’ quantum dot pattern,
deposited with a thin layer of Ti/Au. The metallic surface gates were then covered by
30nm of an insulating AloO3 dielectric via atomic layer deposition (ALD), followed by
an overall Ti/Au global top gate, which we use to induce carriers into the 2DHG.

A SEM image of the ‘Sunbeam’ pattern is shown in Fig. 6.18b, which uses 5 gates
to define the quantum dot: LT and LB to define the left (exit) tunnel barrier, RT and
RB define the right (entry) tunnel barrier, whilst the plunger gate P is used to tune
the occupancy of the quantum dot. An extra gate Q is used to define the QPC charge
sensor together with the gates LT and RT which separate the two circuits from each

other. These metal gates screen the 2DHG directly underneath them, as a voltage is
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Figure 6.18: Part (a) shows the W0640 wafer layout for the 110nm deep 2DHG,
together with the etched ohmics and the EBL gates defining the quantum dot pattern
on the wafer surface. The structure is covered by a 30nm Al,Ogs insulating layer
followed by an overall top gate. Part (b) shows the SEM image of the symmetric
quantum dot pattern, where the quantum dot location is highlighted by a green circle.
A separate QPC charge sensing circuit is created using gates Q, LT and RT, and the
2 current paths for the quantum dot and charge sensor are shown with light green
arrows.

applied to the global top gate, thus forming a quantum dot and a 1D constriction.

From these lithographic dimensions we once again begin with some initial, rough
estimates about the quantum dot parameters. an operating point of Vpg = —1.40V

2 as it lay just below

was chosen, which gave a 2D density of pop = 2.33 x 10 em™
the onset of hysteresis. From the lithographic area of the dot pattern 297 x 215nm,
we estimated the dot to hold a maximum of ~ 400 holes. A Fermi wavelength of
Ap = \/% ~ 52nm would give a maximum of mf\% ~ 8 conductance modes
through each tunnel barrier and a maximum of & 14 through the charge sensor, where
Wgpc is the width of the 1D channel. However as demonstrated in the electron dot,
down at the 2DHG due to broadening of the depletion region beneath the gates, we

expect to see half the number of modes, i.e. =~ 4 conductance modes through each

tunnel barrier and ~ 7 through the charge sensor.

A first-order estimate of Ec can be made using a simple series plate capacitor model
as per the electron dot 6.2, with similar approximations so Ec = e? /Cs. €a10: = 8
is used as the dielectric constant of amorphous AlsO3 instead of ep;. The distance

between the top gate and quantum dot is now shortened to d = dajqeas + daiox =
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140nm. This gives us a Oy, ~ 138akF, corresponding to a charging energy of Fg ~

1.2meV or an equivalent temperature of Ty = FE¢/kp ~ 14K. The average single

particle spacing AE =~ if*hj [11] is estimated to be a minimum of 12ueV or ~ 0.14K.

Due to the large effective mass of holes m* =~ 0.2 compared to electrons, the single
particle level spacing is much smaller and harder to resolve.

Measurements were once again performed inside a Kelvinox 100 dilution refrigera-
tor at a base temperature of 45mK, using standard two-terminal ac lock-in techniques
to simultaneously readout both quantum dot and charge sensing signals from each
corresponding circuit. Unlike the asymmetric design used for the electron dot with
a common source between the dot and charge detector circuits, this time the charge
sensing circuit is independent of the quantum dot circuit for greater flexibility, al-
lowing us to operate the charge sensor using a greater source excitation voltage for
better signal-to-noise ratio and a reduced quantum dot excitation voltage to observe
excited states. The measurement setup used is illustrated in Fig. 6.19. In this setup,
an 8-channel Basel LNHR (Low Noise High Resolution) DC voltage source was used

to obtain the small step increments necessary to resolve hole excited states.

6.5.2 Experimental data and results
Dot characterization and charge sensing

To determine a good set of initial operating voltages, once the top gate was biased to
—1.4V (for a density of p = 2.33 x 10*! /em?) we first investigate the behaviour of each
gate (Q, LB, P, RB) as a QPC by pinching it off against the gates separating the dot
circuit from the charge sensing circuit (LT and RT). The pinch-off traces for each gate
are shown in Fig. 6.20 for different values of LT and RT (where LT and RT are kept
at the same voltage due to design symmetry). For each trace, all unused gates were
biased to Vg = —0.8V to induce holes underneath them.

For this small dot design, at a depth of 110nm below the surface, 3 to 4 conductance
modes were present through the quantum dot gates in panels (b-d), as predicted by
our initial estimates. The gates defining the dot (LB, P, RB) had to be unbiased to

open up the channel and allow current to flow through the dot, with the 1D to 2D
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Figure 6.19: Part (a) shows a Basel LNHR DC voltage source followed by a low pass
RCR filter, used to apply a bias to tune each of the gates (Q, LT, RT, LB, P, RB),
labelled in blue in Part (b). Two completely separate circuits are used for the charge
sensor and the quantum dot with different source frequencies and excitation voltages.
In both cases, a SRS830 lock-in amplifier provides an ac excitation voltage, that is
passed through an isolation transformer (to break a ground loop), into a x10* voltage
divider through to the source ohmic on the device. From here it travels through
the nanostructure, out through the drain and into a SRS830 lock-in amplifier current
readout via a 47uF blocking capacitor. Due to the small dot signal, an external
variable-gain, Femto current preamplifier was used to boost the signal before readout.
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unused gates were unbiased to 2D region at —0.8V for a top gate of Vpg = —1.4V.
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transition for each gate occurring at —0.72V. From these plots, for values of LT&RT
smaller than +0.1V, we start to observe hysteretic behaviour in both the plunger gate
and charge sensing gate traces. To maintain reproducible, stable gate behaviour, we
do not operate LT&RT below this voltage for a top gate of —1.4V. An initial operating
voltage of Virg,rr = +0.20V was selected as it provided the best compromise, allowing
current through the small dot (after all the gates were defined) whilst retaining good

definition of the separating barrier.

To operate the dot in the single hole tunneling regime, voltages on LB, RB and
P, were set so that Ggp < %, i.e. close to pinch-off but transparent enough to let
some current through the dot. The charge sensor ) was also moved to its sensitive
operating point on the slope of the riser of the first conductance plateau. The dot

excitation voltage was also lowered from 60ueV used in the pinch-off traces to 30ueV.

Fig. 6.21 shows a series of wall-wall plots of the quantum dot barriers, where
gate P was kept fixed whilst stepping LB and sweeping RB. Panel (a) is a map of
conductance directly through the dot, with Vipgerr = 0.20V and Vp = —0.35V whilst
panel (b) shows the corresponding charge sensor transconductance conductance for
greater clarity. The CS signal continues beyond the point where current through the
dot disappears. Both barrier maps show a distinct wobbling in the lines, indicative of
a strongly coupled double dot, due to the relatively larger bias on the plunger gate
breaking up the single-dot into two dots, similar to Ref. [266]. In panels (c,d), the
same barrier map is repeated over a larger range of LB, with the plunger gate pulled
back to —0.42V. This yields straighter lines more akin to single-dot behaviour. The
bias on the separating barriers LT&RT was backed off slightly to —0.18V to increase
current through the dot. The lineshape and symmetry of the Coulomb blockade peaks
and lower signal to noise ratio in the charge detector conductance suggest that the
barriers of the dot are not symmetric. After further barrier tuning we arrive at the
stability diagrams in panels (e,f), which exhibit distinct, well defined, straight lines in

both the dot and CS maps, indicative of single hole tunnelling.

Keeping the dot barriers fixed whilst sweeping the plunger gate yields a series of

Coulomb blockade peaks through the dot, with clear zeros and a distinct sawtooth
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Figure 6.21: Colour maps of the entry and exit barriers to the quantum dot, stepping
and sweeping RB. (a) Plot of conductance directly through the dot where
Virerr = 0.20V and Vp = —0.35V. (b) shows its corresponding charge sensor re-
sponse as a derivative of the conductance. Panels (c,d) similarly plot conductance
through the dot and charge sensor for Vipgrr = 0.18V and Vp = —0.42V, yield-
ing straighter lines. Stability diagrams in (e,f) show distinct straight lines in both
quantum dot and CS maps after further barrier tuning, with Vyprgrr = 0.18V and
Vp = —0.33V.
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signal in the charge sensor conductance, corresponding to each Coulomb blockade
peak as shown in Fig. 6.22a. The step height of the charge sensor signal is about
AGes/Ges = 12% at Vp = —0.22V, on the same order of magnitude as that reported
in Ref. [226].

To extract the capacitance ratios and hence determine the lever arms « of each gate,
each gate was swept over a voltage range to cover the same features as the plunger gate.
The traces are plotted in Fig. 6.22b-d, and a table of values are provided in Table 6.2.
From this table we see that the global top gate maintains the largest capacitive coupling
to the dot, followed by gates LT&RT combined. The bottom gates LB and RB have
very similar capacitances, consistent with the symmetry of our dot pattern. As LT
and RT were swept simultaneously, from the symmetric geometry we estimate each
gate to have a capacitive coupling to the dot equivalent to half the total i.e. Crpr =
Crr = 5.7aF and apr = argr = 0.027, which is similar to that of the relatively
symmetrically coupled bottom barrier gates LB and RB. Features with a red asterisk
mark the starting point of the sweep, common to each panel. In panels (c,d) although
distinct Coulomb blockade was present, barely any charge detector signal was observed
as gates LT&RT, and TG were swept respectively. Perhaps the sensitivity of the charge
sensor to the dot could have been reduced by the large capacitance of the gates which
also couple to the dot, i.e. Ages ~ Cop-cs/(Cop—gates + CQD—reservoir + Cop—C5)-
As these higher capacitance gates are swept, it effectively reduces (screens) the coupling
between the charge sensor and the dot, resulting in a detector signal that is not visible
over the steep falling background conductance. Fig. 6.22b shows the opposite case for
the gates LT and RT, which define the entry and exit barriers of the dot - as the gate
is swept to pinch-off the dot conductance shuts off very rapidly and only one Coulomb
blockade peak can be seen before current through the dot is too small to be detected,
whilst the charge detector is able to continue detecting the reduction of occupancy on

the dot.

To extract the charging energy and single particle spacing of the dot, source-
drain bias spectroscopy was performed on the same set of Coulomb blockade peaks

in Fig. 6.22. Fig. 6.23 is a colour map of the differential conductance through the
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Figure 6.22: Conductance versus gate voltage plots generated to determine the capaci-
tance ratios of each gate from the period for (a) plunger gate (pink) (b) LB (dark blue)
and RB (green), (c) LT and RT simultaneously (aqua) and (d) top gate. Once again,
current is corrected for series resistance, converted to 2-terminal conductance and plot-
ted in units of the conductance quantum. When not being swept, each gate was kept
at a fixed voltage of Vrg = —1.4V, Vg = —0.45V, Vp = —0.33V, Virgrr = +0.18V,
Vi = —0.51V and Vg = —0.39V. Note the features from which dV are extracted
from all gate traces, correspond to the N+3 Coulomb diamond in Fig. 6.23, as marked
in purple in panel (a). The Coulomb blockade peak marked with a red asterisk corre-
sponds to the first feature, common to each panel.
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Gate AV, | Cy=¢e/AV, | a=Cy/Cx
P 26mV 6.3aF 0.030
RB 28mV 5.7aF 0.026
LB 2TmV 5.9aF 0.027
LT&RT | 14mV 11aF 0.052
TG 37TmV 43aF 0.20

Table 6.2: The period for each gate AV, was obtained from the Coulomb blockade
oscillations in Fig. 6.22. Corresponding gate capacitances C; were calculated using
the approximation AV, = e/C,, and sum to Cxgqes = 73aF. From this we estimate

the charging energy to be Egc = €2/ Csgates = 0.77meV. The lever arms a = Cy/Cx,
1

for each gate are also given ".
quantum dot plotted as a function of Vp and the DC source-drain bias Vgp in panel
(a); the corresponding map of the charge sensor conductance derivative is given in
panel (b). In both cases, ‘N’ refers to the dot occupancy.

For Coulomb diamond N+3 we extract an addition energy of E,qq = 0.98meV (av-
eraged from both arms of the diamond). Fainter lines outside of the diamond running
parallel to its edge and terminating at the next highest diamond indicate transport
through excited states [101], from which we obtain AE = 0.31meV. Subtracting this
from the addition energy yields a charging energy of E. = 0.67meV, which is smaller
than the ~ 1.2meV obtained from our initial estimate. This suggests once again that
the series plate capacitor model breaks down for small dots. Recalculating the dot area
based upon this new single particle energy spacing gives us an estimated quantum dot
occupancy of ~ 18 holes in the N+3 state. This analysis provides an estimate on the
lower bound of the quantum dot size and lies upon the assumption that the excited
state comes from the same orbital as the corresponding Coulomb diamond and that
the single particle spacing is not equal to zero.

The charging energies, single particle level spacings and corresponding leverarms
for the remaining diamonds are extracted and shown in Table 6.3. Going from N+3
to N we see a general increase in the single particle level spacing towards lower dot
occupancy, indicative of a small dot approaching the few-hole limit. For diamond N the
charging energy is Fc ~ 0.813meV and from the excited state spacing AFE ~ 419uV,
using AE ~ wh?/m*I?, we roughly estimate the dot diameter to be [ ~ 100nm at the

2DHG 110nm below the metal surface gates, where we use a value of m* ~ 0.5 [169].
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Occupancy | AV, Ec a=AVsp/AV, | AE

N +2 31mV | 0.93mV 0.040 300uV
N +1 26mV | 0.89mV 0.045 290uV
N 30mV | 0.81mV 0.041 420V

Table 6.3: Table of charging energies, leverarms and single particle level spacings
obtained from the Coulomb diamond occupancies as labeled in Fig. 6.23.

In comparison, both our charging energy and single particle spacing is smaller that
reported in recent literature i.e. Ec ~ 1.6meV and AE ~ 0.5meV respectively [266],
hence our estimated dot size is slightly larger, but of similar magnitude to [ ~ 100nm
reported by Tracy et al. [266]. Our smaller charging energy compared to Tracy et al.
could be due to the difference in the shape of the confining potential between the two
designs as discussed in the simulation Section 6.4. Our Sunbeam design tends to yield
a shallower dot with a broader confining potential which leads to a smaller energy level

spacing and hence reduced charging energies.

Source-drain bias measurements combined with charge sensing also allows us to
gain further insight into the symmetry of the quantum dot tunnel barriers and their
relative tunneling rates. When comparing the two arms of the equivalent Coulomb
diamond in the charge sensor panel Fig. 6.24, at higher occupancies, the arm with
a negative slope is dominant, whilst the arm with a positive slope is barely visible,
despite it showing up in the quantum dot map. This effect can be explained in terms
of the source (drain) tunnel barriers into (out of) the dot, as illustrated in Fig. 6.25.
Panel (a) depicts a schematic source drain bias map similar to that introduced in
Chapter 2.4.2 but adjusted for holes, which (unlike electrons) are sourced from the
drain. Here the tunnel barriers are even, such that the tunnel rate of a hole from
the source reservoir into the dot I'g, is equal to the tunnel rate from the dot into
the drain reservoir I'p. A schematic energy diagram is given in Panel (b), showing
alignment of the quantum dot ground states (GS) with respect to the source and drain
electrochemical potentials as marked in panel (a). The negative slope (solid red circle)
corresponds to the GS(N+1 < N) transition, whilst the positive slope (open blue
circle) corresponds to GS(N <> N—1). As the tunnel rates between the two barriers

are similar, the hole spends an equal amount of time in both N+1 and N states,
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Figure 6.23: Source-drain bias spectroscopy starting with the last 3 Coulomb blockade
peaks with corresponding states labelled in pink in Fig. 6.22a. The colour axis repre-
sents (a) log plot of differential conductance directly through the dot,versus plunger
gate voltage along the y-axis and dc source-drain bias voltage on the z-axis. Dashed
green lines highlight the Coulomb diamonds formed by the ground states and ex-
cited states are marked in longer period dashed blue lines. For this measurement
Virerr = +0.18V, Vg = —0.51V, Vrp = —0.39V and VQ = —0.415V.
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Figure 6.24: Derivative of differential conductance through the charge detector, cor-
responding to the dot conductance map in Fig 6.23. The derivative was taken with a
moving average window of 13 datapoints to enhance the weaker signal of the excited
states. Source-drain bias spectroscopy starting with the last 3 Coulomb blockade peaks
with corresponding states labelled in pink in Fig. 6.22a. The charge sensor conduc-
tance is plotted against plunger gate voltage along the y-axis and dc source-drain bias
voltage on the z-axis. Dashed green lines highlight the Coulomb diamonds formed
by the ground states and excited states are marked in longer period dashed orange
lines. For this measurement Vire¢rr = +0.18V, Vg = —0.51V, Vgg = —0.39V and
Vo = —0.415V.
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tn4+1 ~ ty for the positive slope. The same goes for the negative slope ty ~ ty_1,
and both arms of the diamond exhibit similar signal amplitudes in the charge detector

at finite source drain bias.

On the other hand, Fig. 6.25c¢ illustrates what happens when one tunnel barrier
is less transparent than the other, similar to the data in Fig. 6.24 and the equivalent
energy diagram is given in panel (d). Since the drain tunnel barrier is much thicker
than the source barrier, it takes a longer time for a hole to tunnel out of the dot than
it does to tunnel in, I'g > I'p resulting in the dot spending more time in the higher
occupancy state of the transition. This scenario is known as ‘source resonance’. In the
source-drain bias schematic shown in panel (c), for the case of the positive slope (open
blue circle) rather than transitioning between N <> N—1 from the dot to the drain,
the hole spends more time in state IV, causing this arm to remain virtually invisible,
resulting in a series of diagonal lines with a negative slope. The larger I'g also increases
the capacitive coupling between the source to the dot, compared to the dot and the
drain C's > Cp, seen as a brighter negative slope in the Coulomb diamond compared

to the positive slope in the quantum dot conductance Fig. 6.23.

In the charge sensing panel Fig. 6.24, at higher occupancy the areas where the
excited states occur appear as broad, smeared out, dark lines. This could be caused
by two factors; firstly although the dot is small there are still a fair number of holes
in the dot which reduces the excited state spacing, make them harder to resolve,
especially if the quantum dot potential is shallow and wider, rather than tall and deep
(as in the case of the nanowire dots described in Chapter 6.2.2). The second is by
uneven tunnel barriers. As the plunger gate couples to its neighbouring barrier gates
RB and LB, increasing its bias slightly may help to define the dot confining potential
and tunnel barriers further, as seen towards lower occupancies in both Fig. 6.23 and
Fig. 6.24. The charge sensor map, like the quantum dot map, also reflects the increase
in both the charging energy and excited state spacing towards lower dot occupancy,
with better resolved excited states showing up in the charge sensor map parallel to

the N—1 diamond.

Fig. 6.24 also exhibits a change in behaviour of the relative tunneling rates between
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Figure 6.25: Effect of tunnel barriers upon the charge detector signal during source
drain bias spectroscopy. (a) Hole-based source drain bias schematic of the charge
sensor for even tunnel barrier rates I's ~ I'p. The negative slope marked with a
filled red circle corresponds to GS(N+1 <+ N) and the leftmost diagram of panel (b),
where the dot energy level is aligned with the source electrochemical potential. The
positive arm with an open blue circle corresponds to GS(N <+ N—1) and the rightmost
diagram of panel (b) where the dot energy level is aligned with the drain. (¢) Source
drain bias schematic for the case of source resonance where I'g > I'p, characterized
by a dominance in the negative slope of the diamond and undetectable positive arm.
(d) The equivalent energy diagram schematic for source resonance in (c), where holes
spend more time in the higher occupancy state of the transition. Panel (e) shows the
energy diagram for the opposite scenario of drain resonance I's < I'p, where holes
spend more time in the lower energy state of the transition, leading to the source drain
bias diamond exhibiting a dominant positively sloped arm and non-existent negative
arm (not shown).
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the source and drain reservoirs and the dot, for the transition N+1 — N compared
to N - N—1. For the N4+1 — N diamond, once again source resonance is observed,
characterized by a dominant negative slope and the absence of the positively sloped
arm. On the other hand, between the N to N—1 diamonds, the opposite occurs i.e.
the light colored positive slope is more dominant than its negative slope counterpart,
despite the positive slope not showing up in the dot conductance map. In this case we
have drain resonance as illustrated in Fig. 6.25e, where I'g < I'p and the holes prefer
to remain in the lower occupancy state of the transition. Here for the N < N—1
transition in the positive arm, the hole tunnel out quickly to the drain and the dot
spends more time in the N—1 state. For the V <+ N—1 negative arm transition, holes
take a longer time to tunnel from the source onto the dot and the dot once again
spends more time in the N—1 state. In this region parts of the negative slope still
remain visible in the charge sensor map, indicating more symmetric tunnel barriers
compared to those with occupancies greater than N+1. Although the excited states
running parallel to the negative slopes are still present, barely any excited states

running parallel to the positive slopes can be observed.

Preliminary results in perpendicular field

After characterizing the dot at zero field, we now turn our attention to some prelimi-
nary measurements taken at a fixed perpendicular magnetic field of B, = 3T.

The spin behaviour of the excited states in the hole dot, at B, = 3T was studied
by repeating the source drain bias measurement over the last two diamonds N+1 and
N, shown in Fig. 6.26. Here we observe a shift in the energy spectrum towards higher
occupancy by AVp = 0.013V compared to the zero field picture - only the tip of the
N—1 state falls within a map over the same plunger gate voltage range, whilst at 3T
the full N+1 diamond can be seen. This can be potentially be due to the magnetic field
effect upon the orbital component of the holes, which increases the charging energy
and energy spacing between holes in dot, shifting the Coulomb blockade peaks to more

negative Vp values.

In Fig. 6.26 the signal through the dot is significantly diminished in field due to an
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Figure 6.26: Source drain bias spectroscopy at 3T, over the same gate voltage range
as Fig. 6.23. Panel (a) plots quantum dot differential conductance against plunger
gate voltage (y-axis) and source drain bias (z-axis), and (b) maps the corresponding
charge sensor derivative of the signal, taken with a moving average of 13 datapoints.
Dashed green lines indicate ground states and orange lines the excited states.
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Figure 6.27: Source drain bias spectroscopy linecuts to compare movement of ES.
Panel (a) taken at 0T is a linecut of raw quantum dot current along positive Vsp
at the intersection of the 2 ground states, forming the rightmost corner of diamond
N extracted from Fig. 6.23. Panel (b) is an equivalent linecut taken at 3T, of raw
quantum dot current along positive Vgp at the rightmost corner of diamond N from
Fig. 6.26a. In both plots, dashed green lines mark the position of the ground state
features and orange lines the excited states.

increase in ohmic contact resistance, resulting in a much lower signal to noise ratio.
As a result only the more dominant, source resonance negative slopes of the Coulomb
diamond exhibit excited states. Fig. 6.27 shows the linecut along Vgp taken at the
rightmost corner of diamond N, at the intersection of the two ground states (dashed
green) for B, = 0T and B, = 3T respectively. The second excited state 0.37mV
(dashed red) at B = 0T in panel (a) appears to split into two peaks in panel (b)
shown in dashed pink at 0.25mV and 0.48mV. If we neglect orbital effects, this suggests
that the two excited states have opposite spins. From the relation AE = % gupB we
obtain a g factor of g%, = 2.7 £ 0.52. This value of the out-of-plane g* is lower than
the g%, = 7.2 predicted by theory, but is consistent with optical measurements of
hole g factors performed on confined excitons [88, 230, 271]. It would be interesting
to conduct further studies into the g factor, such as introducing a parallel field by
performing an situ rotation of the sample whilst sweeping the source-drain bias to
determine how the split peaks and hence the ¢ factor evolves with magnetic field
orientation, as well as to investigate the separation of orbital and spin contributions.
For this to be done, the setup and the quantum dot device needs to be optimized
further. Since both the dot and charge sensing signal is significantly reduced in field,

the increased electrical noise and thermal load incurred during rotation meant that it
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was difficult to resolve the excited states from the background noise.

Going to the last hole

To determine the exact number of holes in the dot as opposed to a crude estimate
based upon the dot energy spectrum, we squeeze the dot down to the last hole using a
combination of gates to maintain the relative shape of the dot during the process. From
the initial barrier maps in Fig. 6.21, we showed that if the bias on the plunger gate is
too large the single dot fragments into a double dot. To prevent this from occurring,
P was held fixed whilst the barrier gates LB and RB were swept simultaneously using
the same increment (due to their similar « values), but with an offset of +0.12V in
RB. To maintain the strength of the separating barrier confining potential, LT and
RT were stepped simultaneously with increasing bias and the charge sensor Q was
compensated after each increment in LT&RT. The resulting colour map is given in

Fig. 6.28.

A series of straight lines starting from state N are observed in both the dot
Fig. 6.28a, and charge sensor in panel (b). The quantum dot lines become unre-
solvable beyond N —2, however the features in the charge sensor signal continue until
the last hole has been reached, beyond which there is no visible signal, which is the
main goal of this chapter. The straightness of the charge sensing lines in panel (b)
indicate that the single dot was maintained down to the last hole without fragmenting,
where state N corresponds to hole number 8.

At Virerr = +0.22V, Q has been pulled back to its maximum operating value
and beyond this the charge sensor signal diminishes as the increased bias on the sep-
arating barrier pinches-off the charge detector channel. Around Vipgrr = +0.18V
we observe switching behaviour, followed by a small drift in the features of the colour
map, probably due to fluctuations caused by a nearby charge trap or an additional
parasitic dot.

We also observe that the transition between 0 <> 1 exhibits greater jitter compared
to the other transitions as the tunnelling time into (out of) the last hole state varies

significantly and the spread of the jitter decreases with increasing bias on LT&RT.
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Figure 6.28: Colour maps of (a) conductance through the dot and (b) the correspond-
ing conductance derivative through the charge sensor, as the dot is squeezed down
to the last hole. LT and RT were biased simultaneously starting at Vi = Vpr =
+0.18V, whilst LB and RB were swept simultaneously starting at Vg = —0.51V and
Ve = —0.39V. P was kept fixed to start from dot state N. The corresponding color
maps for the unbias sweep direction for (a,b) are given by (c,d) respectively.
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Such jitter and hysteresis behaviour that only appears towards the few-N regime has
been associated with the presence of a secondary dot, whose occupancy affects the
energy levels of the main dot under study and hence its tunnel rate [224, 294]. In this
case of a single dot, a similar effect could be caused by the presence of a small, nearby
unwanted charge trap or additional parasitic dot. We tried different combinations of
biasing voltages on the gates in an attempt shift the quantum dot away from the area

of charge, but were unable to completely remove the jitter in the 0 <> 1 transition.

From Fig. 6.28a, the shell filling as a function of occupancy over the last 5 holes
at a fixed Virgrr = 0.22V is plotted in Fig. 6.29. Gate voltage was converted into
an estimated addition energy by summing the alpha factors for gates being swept (LB
and RB) from Table 6.2. Note, this conversion does not take into consideration the
rapidly increasing charging energy towards the last hole and thus only provides a lower
bound estimate on the actual charging energy of the dot at the last hole. From this
picture, we observe the general trend of a decrease in addition energy towards higher
occupancy, indicating a smoothly increasing capacitance as the dot area is increased
with gate voltage. We do not observe any distinct enhancement in energy at certain
values of N, that is indicative of a magic number sequence, such as that reported in

electron dots (see Section 6.2.4).

The lack of a distinct magic number sequence, combined with the comparatively
few, faint excited states suggests the shape of the dot is shallow and wide, with smaller
orbital spacings, consistent with the larger effective mass of holes (m*~0.2 —0.5) [169,
284] compared to electrons (m* = 0.067). One possible route to obtaining orbital level
spacings similar to those seen in electron systems, is to use shallower wafers with the
2DHG < 100nm from the surface metal gates, which should help to decrease the size of
the electrostatic confinement potential and reduce the thickness of the tunnel barriers

for greater tunability.

Comparing the forward gate sweeps in Fig. 6.28(a,b) to the reverse sweeps Fig. 6.28(c,d),
reveals a small hysteresis between sweep directions, which is most pronounced towards
lower bias voltages on LT&RT (Virgrr = 0.18 — 0.19V). This hysteresis also shows

up as a small, constant offset (~ 24.8ueV) in addition energy, in Fig. 6.29, when com-



206 6. Induced quantum dots

Addition Energy (meV)

Occupancy (N)

Figure 6.29: Shell filling sequence extracted from Fig. 6.28b for decreasing occupancy
(green circles), and (d) for increasing occupancy (blue diamonds) at a fixed Virgrr =
40.22V. The leftmost marker indicates the point where the first hole enters the dot
and the number of holes NV, increases by one for each increase in N. The y-axis marks
the lower bound on the addition energy, calculated by converting gate voltage into
energy from the alpha factors in Table 6.2, assuming the coupling remains the same
all the way down to the last hole.

paring the forward gate sweep (green circles) to the reverse trace (blue diamond). One
reason for this hysteresis could be due to the formation of a surface layer of charge
between the GaAs surface and the AlOx dielectric as described in Chapter 3.4, which
leads to a hysteresis in the 4-terminal conductance across a 2D hall bar. This hysteresis
only appeared at a top gate of —1.6V and higher for wafer W0640. However, despite
selecting a lower top gate voltage of —1.4V for this experiment, it may be possible
that a very small layer of charge may have been induced at the surface, which is not
enough to cause hysteresis in the large 4-terminal conductance, but enough to affect

the Coulomb blockade peaks and charge sensing features in the few-hole regime.

To test this, we reduced the top gate bias (significantly) to —1.0V and retuned the
dot. Over the last 5 holes, we found that there was virtually no hysteresis between
the bias and unbias sweeps, except for the jitter in the 0 <> 1 transition, which still
remained. As the small dot pattern was designed to operate at a higher top gate
voltage, it was difficult to obtain a set of operating voltages which allowed current to
flow directly through the dot whilst maintaining well defined tunnel barriers. At this

point it was decided that it was better to stop and re-design the quantum dot, for
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operation at a lower top gate for the given dielectric type and thickness.

6.6 Conclusions and Future Work

In summary we have successfully fabricated and characterized an induced, few-hole
single quantum dot, down to the last hole with QPC charge sensing. For the first
time we have observed excited states through the charge sensor via source drain bias
spectroscopy and showed that they split in perpendicular field. It would be interesting
to perform further magnetic field experiments to characterize the spin filling of the last
few holes, and study the influence of the magnetic field upon the orbital component
of holes with a heavier effective mass and the spin response in a parallel field. In the
process we discovered that the quantum dot geometry could be optimized further to
operate with greater tunability at a lower density, to eliminate hysteresis stemming
from a surface layer of charge.

To facilitate magnetospectroscopic studies of the last few holes using the charge de-
tector where traditionally direct current through the dot was used, some modifications
to the current quantum dot design to improve the tunnel barriers of future devices
could include: (1) The use of heterostructures with shallower 2DHGs (< 100nm from
the wafer surface) combined with thinner metallic gates. This allows for the creation
of a smaller but deeper dot with steeper and sharper tunnel barriers to improve the
resolution of the finer featured excited states, increase the tunability of the tunnel
barriers, as well as increase the orbital level spacings to compensate for the heavier
effective mass of holes. (2) Potentially redesigning the dot pattern to run with the
separating barrier LT&RT and two gates, such as LB and RB and remove the third
gate to prevent the single dot fragmenting into two dots, or use an equivalent double-
dot pattern instead. (3) Rather than using a single global top gate, one could consider
breaking up the top gate into different segments, to allow for independent control of
the dot density and the 2D source and drain reservoirs. Splitting the top gate into
localized regions may also be done in such a way to reduce screening between the dot

and charge sensor, as well as enable rf-measurements to be performed.



Chapter 7

Summary and Future Directions

7.1 Summary of thesis

In this thesis we have explored ballistic transport in GaAs low-dimensional systems,
namely two-dimensional hole systems and quantum dots. We now present a general
conclusion of the research conducted.

In Chapter 4 we observe the effect of an unusual non-collinear spin polarisation due
to the presence of off-diagonal components in the gyromagnetic tensor, by applying
an in-plane magnetic field and generating a net spin polarization perpendicular to
the sample plane. Tilted-field measurements of magnetoresistivity oscillations were
performed in a low-symmetry (311)A GaAs quantum well. We study the changes in
spin splitting when the in-plane field is oriented along the high-symmetry [011] crystal
direction, compared to the low-symmetry [233] direction. Along the high symmetry
crystal axis, the SAH oscillations are symmetric with each other for both +6 and
—0, desite a change in sign of the ratio £B,/B,. In contrast, when the in-plane
field is applied along the low-symmetry direction, the SdH oscillations are distinctly
asymmetric and appear out-of-phase between corresponding +6 and —6 traces at high
in-plane fields. This unusual behaviour is due to a non-zero off-diagonal element g,
which couples the in-plane field to the out-of-plane spin, and is present only along the

low-symmetry crystal direction of a 2D hole system in a zinc blende crystal structure.

In Chapter 5 we further investigate the complex spin dynamics of 2D holes, show-

208
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ing that the presence of such non-collinear behaviour observed in Chapter 4 can be
explained by the non-abelian spin evolution of holes in tilted magnetic fields, due to
mixing between the light hole and heavy hole subbands. The phase of the SdH os-
cillations were extracted as a function of tilt angle and compared to two theoretical
models - the abelian Berry and the non-abelian gauge field. We demonstrate that the
anisotropic phase evolution observed between +6 along the low-symmetry direction, is
in good agreement with the paradigm of non-abelian gauge fields, even after significant
variation of the fitting parameters.

Chapter 6 focuses upon the fabrication and characterization of lateral, gated, in-
duced quantum dots, to create a device which can isolate single charge and spin states
for transport studies. By replicating a standard few-N quantum dot pattern, with an
integrated QPC charge sensor into an induced architecture with a 160nm deep het-
erojunction and Polyimide insulating layer, we begin by fabricating a small electron
quantum dot. During characterization we discover that although we can form a dot
with an estimated < 33 electrons, the electrostatics of a dot within an accumulation
mode structure with a global top gate, are different to those in a modulation doped
dot and the charge sensor lacked sensitivity due to strong coupling to the global top
gate. After performing simulations in Nextnano++, we adapted the design to increase
the sensitivity of the charge detector, including using a shallower 2D gas, thinner in-
sulating layer with a stronger dielectric constant and spacing out the gates evenly to
increase their tunability. We finally present preliminary results from a hole quantum
dot with the adapted small dot design with an estimated length of ~ 50nm down
at the 2DHG. Using this pattern we are able to tune the dot down to the last hole,
verified by an operational charge sensor with a step height of 12% versus its travel
in gate voltage. We also present some initial source-drain bias measurements in a

perpendicular magnetic field observed the splitting of an excited state.

7.2 Future work

In chapter 4 and 5 we have for the first time experimentally demonstrated non-collinear

spin behaviour in a 2D hole system, and clarified the mechanism driving the asym-
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metric spin-splitting of holes in a low-symmetry crystal axis. Despite this, much still
remains unknown about the interplay between confinement and the crystal lattice
symmetries and their influence upon the heavy hole, light hole spin dynamics.

It would be interesting to repeat the experiment with a 2D sample possessing both
a front-gate and a back-gate, to allow us to control the density and keep it constant
whilst independently tuning the confining potential and the Rashba SO. The exper-
iment could also be repeated at different densities and different confining potential
symmetries. Such an experiment would be best performed in a 3-axis vector magnet
system which would allow for independent control over all 3 field components. On
the theoretical front, further investigation is required to develop a practical model of
the bandstructure of holes in tilted magnetic fields. Although we have presented mea-
surements probing the off-diagonal g}, component of the g tensor, much still remains
unknown about its counterpart the g7, term.

Another direction of curiosity would be to perform the same study over samples
with different quantum well thicknesses and hence energy spacings between the light-
hole and heavy hole subbands, which may lead to different LH-HH mixing probabilities
and compare their spin behaviour to that seen in the 20nm quantum well.

In Chapter 6 we present preliminary results on induced small dots with charge
sensing, operating within the few-IN regime, with different gate geometries. Although
we have been able to isolate and detect single holes, the geometry of the quantum dot
design can still be optimized for greater tunability of the tunnel barriers. Additionally
it would be interesting to try different dot geometries: including splitting the top gate
into different regions to allow for independent tuning of the charge detector circuit
and the quantum dot circuit. This will also enable rf and pulse-gate measurements to
be performed and pave the way for further studies into the unusual spin behaviour of

such 3/2 particles.



Appendix A

Low temperature experimental

apparatus

A.1 Kelvinox 100 dilution refrigerator and magnet

All experiments reported in this thesis were performed in a Kelvinox 100 dilution
refrigerator from Oxford Instruments, with a 15T superconducting magnet [123] and
an in situ rotation system [2], which allows the sample to be configured in differing
orientations with respect to the field, and rotated whilst maintaining temperatures
below 100mK [299]. For full details on the design and specifications of the rotation
system, its integration into the dilution refrigerator and preliminary test results, please
refer to Ref. [297].

The K100 is a type of pumped 3He/4He wet dilution refrigerator and is the main
apparatus used to obtain base temperatures as low as 20mK for studying semicon-
ductor nano-structures. A photo of the K100 fridge insert, focusing upon its main
operating components is shown in Fig A.la together with the rotation stage at the
end of the coldfinger. Part (b) is a corresponding general schematic drawing of the
K100 fridge insert with the major stages of the fridge labelled. The schematic illus-
trates how the fridge insert sits within the cryostat housing the liquid Helium and the
alignment of the sample holder within the bore of the superconducting magnet.

Once the sample is mounted in its holder on the rotation system at the end of the
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Figure A.1: K100 dilution refrigerator layout. (a) Photo of the main working com-
ponents of the fridge with the rotation system attached to the end of the coldfinger,
upon which the sample is mounted. (b) Corresponding K100 general fridge schematic
sitting within the cryostat, with the major fridge components labelled, from Oxford
Instruments [123]. Dimensions are given in millimeters.
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coldfinger, the radiation shield followed by the outer vacuum can (OVC) are bolted
in place over the insert and sample holder and the fridge is slowly lowered into the
cryostat containing the liquid Helium. Once fully lowered, the sample sits at the
field center of the superconducting magnet. Initially the sample equilibrates with the
temperature of the liquid helium (4K), during which all the initial system checks such
as rotation calibration and sample-to-field alignment are performed, see Appendix B.

Once completed, the sample is cooled to base temperature (~ 20mK).

This cooling to base temperature is a process unique to dilution fridges and is
achieved through the phase separation of 3He/4He mixture in the mixing chamber,
illustrated in Fig. A.2. When a mixture of 3He and 4He is cooled below a critical
temperature of 0.87K, it will separate into 2 phases; where the lighter ‘concentrated’
phase at the top of the mixing chamber is rich in 3He, whilst the heavier ‘dilute’
phase at the bottom is 4He rich. This results in the 3He from the concentrated phase
‘evaporating’ down into the dilute phase. Since the specific heat of 3He is larger in
the dilute phase than it is in the concentrated phase, cooling is achieved at the phase

boundary [123].

To maintain cooling power, the process must be continued/repeated. To achieve
this, the 3He is extracted from the dilute phase and returned to the concentrated phase,
thus maintaining dynamic equilibrium. This is done by sucking up and pumping on
the surface of the dilute phase mixture (containing both 4He and 3He) in the still. The
still is kept at a temperature of 0.6-0.7K so the vapour pressure of 3He is much greater
than that of the 4He, causing the 3He to preferentially evaporate [123]. As result,
pumping on the still reduces the concentration of 3He, creating an osmotic pressure
difference between the mixing chamber and the still, driving the 3He flow across the
rich-dilute phase boundary in the mixing chamber. The 3He vapour is pumped out of
the still and into the condenser located within the 1K pot. The condenser is cooled
by the 1Kpot and the 3He recondensed back into the mixing chamber, forming the

‘concentrated’ phase and the cycle repeats itself.

To cool the condenser, the 1K pot forms a part of a separate subsystem where the

liquid 4He from an external reservoir (in this case, the main bath of the cryostat) is
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Figure A.2: Schematic illustrating the working principle of the Kelvinox 100 dilution
refrigerator. Picture reproduced from Ref. [123].
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drawn up into the 1K pot. By pumping on the 4He vapour, the temperature of the 1K
pot is cooled to below 1.5K. This cools the condenser, allowing the 3He vapour inside
it to condense and the cooling cycle to be maintained, such that the fridge eventually
reaches temperatures as low as 20mK. As the fridge is a closed cycle system, this
cooling power can be maintained indefinitely as long as there is a continuous supply

of 4He from the main bath of the cryostat [123].



Appendix B

2D hole systems measurement

setup

B.1 Sample and rotator angle calibration

The angle readout of the home built rotation system [299] was first calibrated against
the magnetic field to ensure the accuracy of the sample’s orientation with respect to
the total magnetic field for any given tilt angle 6. For more details of the measurement
apparatus see Appendix A.1. This was done by measuring the Hall voltage across the
2D device under study. Fig. B.1 plots the Hall voltage whilst the sample is rotated
between the parallel and perpendicular orientations with respect to a total field of
Byt = £0.1T. Fits were performed in the region where the Hall voltage changes sign
and 6 = 137.18° found to be the angle at which the sample is parallel to the field. The
corresponding angle at which the Hall voltage reached its maximum value, indicating
the sample was fully perpendicular to the total field was 227.18°. This preliminary

calibration procedure was performed at 4K.

B.2 Magnet hysteresis characterization and correction

To check the 15T superconducting magnet in the K100 dilution refrigerator for hys-

teresis and characterize the hysteresis, the sample was rotated until the 2D plane was
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—— Linear fit to B =+0.1T up sweep
Linear fit to B = +0.1T down sweep

—— Linear fitto B = -0.1T up sweep

Linear fit to B = -0.1T down sweep
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Parallel Field Calibration (Full Range) mq“i‘r%”
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The fits cross this point at angles (136.84° x2, 137.38°, 137.64°)
which is 137.18° averaged.
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Figure B.1: Angle calibration: plot of Hall voltage at By, = £0.1T as the sample is
rotated between the two main positions (and a bit beyond each), perpendicular to the
field and parallel to the field. Near the region where the Hall voltage changes sign,
0 = 137.18° is the angle where sample plane is parallel to the field. The corresponding
angle at which the sample was fully perpendicular to the total field was 227.18° (max
V).

fully perpendicular to the total magnetic field. The Hall resistance was measured as
a function of perpendicular magnetic field, sweeping through B = 0 and graphed in
Fig. B.2. For more details of the measurement apparatus see Appendix A.1. This
was done for a series of different sweep rates and different target total field values
at a temperature of 4K. Panel (a) shows the full sweep range where the hysteresis is
only noticeable in the low-field region. Panel (b) zooms into the area around B = 0,
where the magnitude of the hysteresis is ~ 35mT. We observe little variation in the
hysteresis loop between different sweep rates and target values which are symmetric
in £ Byo. Since this hysteresis encloses the same loop, upon each run, it is possible to
do a correction to account for the hysteresis. The greatest corrections are required for
transport measurements taken when the 2D hall bar sample is aligned perpendicular

to the magnetic field (compared to parallel).

The hysteresis correction procedure involves averaging the up and down sweeps
and mapping the measurement data onto the calibration data via interpolating the

number of data points and spacings.

Example code in Igor Pro is given below. Note, these corrected field waves can

then be used as is with the low field Rxx and Rxy data, or alternatively, the Rxx and
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Figure B.2: Magnet hysteresis characterization. Measurements of Hall resistance ver-
sus total field, for a series of different field targets £1T, £2T, £5T and +10T and
sweep rates 0.1T/min and 0.05T /min. (a) Shows the full sweep range tested, where
the black arrows indicate the sweep direction. (b) Zooms into the center of the hys-
teresis data from panel (a) around B = 0, which exhibits a +17.5mT hysteresis. The
red dashed line marks the average value of the Hall traces.

Rxy data can be interpolated with the corrected B waves.

//Copy data waves to be used into a new folder
Duplicate::’2T’: RxyUP RxyUP

Duplicate::’2T’: RxyDOWN RxyDOWN
Duplicate::’2T’: Bdatal Bup

Duplicate::’2T’: Bdata2 Bdown

Duplicate RxyUP interpUP

Duplicate RxyDOWN interpDOWN

//Set x-axis max/min limits of endpoints
setscale/I x -2,2, interpUP

setscale/I x -2,2, interpDOWN

//First create RxyUP data in even spaces of x
//(need Bup to get x-values for RxyUPdataset)
interpUP = interp(x, Bup, RxyUP)

interpDOWN = interp(x, Bdown, RxyDOWN)
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Duplicate/0 interpUP interpAvgUpDown

interpAvgUpDown = (interpUP + interpDOWN)/2

//Create waves to house corrected B values
Duplicate/0 Bup BcorrUP

Duplicate/0 Bdown BcorrDOWN

//Do actual interpolation/correction of B
BcorrUP = interp(RxyUP, interpAvgUpDown, Bup)

BcorrDOWN = interp(RxyDOWN interpAvgUpDown, Bdown)



Appendix C

Derivation of the spin-orbit

interaction for heavy holes

— In a zinc blende semiconductor the hole wave function originates from atomic
p3/2 orbitals resulting in an angular momentum J = 3/2. In the long wavelength
approximation, the effective Luttinger Hamiltonian for holes is second order in the

hole momentum (k) [172],

2

h 5
H = “No) k2 — 2v9(k - J)? . 1
5. (m+ 2’72) ~a( ) (C.1)

Here 71, 72 are the Luttinger-Kohn parameters; in GaAs vy, ~ 6.8, v2 ~ 2.9 [274].
Due to the confining potential V(z), motion perpendicular to the 2D plane of the
heterostructure is quantized, leading to the formation of 2D subbands, where only the
lowest subband occupied in the low-temperature experimental regime. Assuming a
square well confining potential of width d we have (k2) = Z—;. Since (k2) > k%, we
may expand —(k - J)? = —k2J2 + ..., with the leading term becoming diagonal in a
basis of states with J,. Due to the sign of the interaction, states with J, = :l:% (heavy
hole) are lower in energy, and the splitting between these and states with J, = :I:%
(light hole) at k, = k, = 0 becomes

B 2129 h?

Bl = o

~ 7.8meV . (C.2)

Here we take d = 20nm and only the heavy-hole band is populated. We describe
this band by the effective spin s = 1/2, |J, = +3/2) = | 1), |J. = =3/2) = | ).
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The off-diagonal part of (k-J)? in the Hamiltonian (C.1), (k-J)* — & (k—J+ + kyJ )2,

leads to heavy-light hole mixing.

3 1 ~
k1) = |l +5) +aki] = Z)| ™"
2 2
3 1 -
kL) = |- 5) +ak2[+5)| e
2 2
3 3
a V3 V3 : (C.3)
2m6Ahl 4<k§>
Taking the square well width d = 20nm and the hole density p = 10'cm™2,
we arrive at the following estimate for the mixing probability, azkzélJ = %d‘l]ﬂ =

1.2 x 1072. We will see below that the data is approximately consistent with this
estimate for an effective well width of 20nm. This very small mixing, of order 1% in
probability, is responsible for the SO interaction considered here.

The Zeeman interaction of a J = 3/2 hole with magnetic field B is [284],

SH = —%MBB J. (C.4)

Taking the matrix element of dH between states Eq. C.3 we find the effective

matrix of Hy,

(L [Heo| 1) = (L [0H| 1) = —j@,‘g@mi : (C.5)

Comparing this with Hg, in Chapter 5 Eq. 5.23 we determine the coefficient « in this

equation to be

gop
o= 42’]; . (C.6)

According to our fit of SdH data |A\| = 2|a|k%/up ~ 1.1. Hence we find that

~

k% /k? ~ 0.3 and the probability of the heavy-light hole mixing is azk:% = %% ~
1.7 x 1072, This estimate of the mixing magnitude is an approximate value, within the
range of 1-2%, since there is a comparable contribution to o which is not accounted
for by the calculations presented. So far, we have neglected the coupling to the vector
potential created by By, (k- J)> — ((k —eA)-J)% This coupling also gives a
contribution to the coefficient «, see Refs. [148, 284]. This contribution is highly
sensitive to the exact shape of the confining potential and therefore cannot be reliably

calculated [148]. The kinematic form of Hg, however remains unambigous and we can

fit the value of a to the experimental data.
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There is a small correction to Hg, which has a form different from that in Eq. 5.23,
and is third-order in H, see Eq. C.4. From this, a degenerate perturbation theory
calculation gives

H{, = —%0/ [0+ B2 +0_B1]

o (QONB)B
o = 736A,2ﬂ . (C.7)

Generally H!  is very small, H., < Hg,. However, since B x1 / tan O, the effect
of H!, becomes more pronounced at smaller tilt angles. A simple estimate shows that
in our experimental condition the ratio H.,/Hg, can reach 10% at 04;;; = 5°. Therefore,
the small disagreement between the experimental data and the theoretical prediction

in Chapter 5.4.3, Fig. 5.9 could be due to the unaccounted H.,.



Appendix D

Berry phase concepts and

derivations

D.1 The geometric Berry phase

In 1984 Berry [23] discovered that a phase difference can be acquired over the course
of a cycle, when a system is subjected to cyclic adiabatic processes, resulting from
the geometrical properties of the parameter space of the Hamiltonian. This additional
phase factor is now known as the Berry phase. There are 3 key properties to the Berry
phase which make the concept important [28, 240]. Firstly the Berry phase is gauge
invariant, which makes it a physically meaningful and hence measurable quantity,
with early experimental studies focused upon detecting it via interference phenomena.
Secondly Berry phase is purely geometrical which makes the Berry phase extensible, in
terms of local geometrical quantities within a parameter space e.g. the Berry phase can
be expressed as the integral of an emergent field known as the ‘Berry curvature’, over
a surface suspending the loop (Berry curvature). This enables Berry phase to describe
a broad range of physical phenomena undergoing adiabatic evolution [135]. Thirdly,
since the concept of Berry phase itself is very similar to a gauge field (with the Berry
connection analogous to the vector potential and the Berry curvature corresponding
to the electromagnetic field) [23], the Berry phase is a powerful, unifying approach.

To use an analogy, one can liken the Berry phase to the Aharonov-Bohm phase of a
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charged particle traversing a loop encircling a magnetic flux, whilst the Berry curvature
is like the magnetic field itself [289].

Since the conception of Berry phase, many generalizations have been proposed to
the original definition. In this chapter we shall focus on two main extensions: 1) the
relation between Berry phase, Berry connection and Berry curvature; 2) the general-
ization from a single non-degenerate state to m degenerate states evolving together,
resulting in a whole matrix rather than a single phase factor, giving rise to non-abelian
behaviour [280]. Such a flexible theory can be used to explain the spin and charge trans-
port of electrons/holes through a semiconductor crystal by taking the periodic lattice
potential into consideration. Moreover the semiclassical formalism can be amended
to include quantization effects such as Bloch oscillations and cyclotron orbits via the
Bohr-Sommerfeld quantization rule [199]. The Berry phase enters naturally as a shift
to the classical action, affecting the energies of the quantized Landau levels. More
recent developments have shown that the Berry connection plays an explicit role in
spin dynamics and is related to the spin-orbit interaction e.g. applications include the

relativistic Dirac electron and the Kane model in semiconductors [91, 289).

D.1.1 Cyclic adiabatic evolution

Here we discuss how the Berry phase arises during the adiabatic evolution of a non-
degenerate quantum state. We then introduce the local description of the Berry phase
in terms of the Berry curvature.

Consider a quantum system in an eigenstate, of a Hamiltonian H with time varying
parameters R = (R, Ra, ...), such that between time ¢ = 0 to time ¢ = T', R circulates
around a closed path denoted C in the parameter space [23].

The state |¢(t)) of the system evolves according to the time-dependent Schrodinger

equation
iﬁgt (1)) = H(R()) [¢(1)) - (D.1)

For the rest of this chapter, we shall set A = 1 for simplicity. At any instant in time,

the natural orthonormal basis consists of the eigenstates [n(R)) of H(R) at each value
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of the parameter R = R(t), which satisfy
H(R)|n(R)) = E.(R)|n(R)) , (D.2)

with discrete energies E,,(R), where n = (1,2, ..., N) is the energy level index. Note, for
simplicity we shall consider the case of a single non-degenerate energy level E,. This
eigenvalue equation alone does not completely determine the basis function [n(R)) -
it still allows for an arbitrary R-dependent phase factor of the eigenstates |n(R)). So
any (‘phase’ or ‘gauge’) choice of basis function can be made, provided that the phase
of the basis function is smooth and single-valued along path C within the parameter
space [23].

If the environment and hence H is slowly altered (i.e. the characteristic frequency
27 /T is much smaller than the energy spacing between adjacent levels, | E,—F, |), the
effects of the slowly changing degrees of freedom upon faster moving degrees of freedom
can be estimated using the adiabatic approximation. The adiabatic theorem [135, 186]
predicts than a system starting off in one of its eigenstates [n(R(0))) will remain as
an instantaneous eigenstate [n(R(t))) of the Hamiltonian H(R(t)) during the whole
process, at any time t. So the only degree of freedom avaliable to change is the phase

Yn(t) of the quantum state, whose wave-function can be expressed as

[¥n(t)) = eﬂfp{—i/o dt,En(R(t/))} @ |n(R(1))) - (D.3)

The first exponent is the dynamical phase factor, which describes the slowly varying
time evolution of the stationary state. This dynamical phase is not geometrical, rather
it depends only upon R(t) which parameterizes the path followed, and on the arbitrary
gauge choice of a “zero phase” of the basis state at each point along the path.

The second exponent is the additional geometrical phase factor of interest, which
is acquired by the quantum state during adiabatic evolution. Its phase 7, (t) cannot
be written as a function of R only and is path dependent.

As the phase function v, (t) requires |1, (t)) to satisfy the Schrodinger equation,
substituting D.3 into D.1 gives

u(t) =i (n(R(1) | VR |n(R(1)) - R(t) . (D.4)
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The total phase change of state |¢), round C is given by the evolution of the wave-

function between t =0 and t = T,

T
[ (T)) = eap {—z' / thn<R<t>>} 0 [, (0)) (D.5)

where the geometrical phase change is described by a path integral in parameter space

and is independent of how the circuit is traversed in the adiabatic approximation [23]

(@) =i § (0(B) | V| n(R) R . (D.6)

The above equation can be simplified to

(€)= i dR- A,(R) (D.7)

where A, (R) is a vector-valued function now known as the Berry connection (or Berry
vector potential) [289]
Au(R) =i (n(R)| VR |n(R)) . (D.8)

If we use a gauge transformation
n(R)) — ¢ |n(R)) (D.9)

where ((R) is an arbitrary smooth function, the Berry connection A, (R) transforms

according to

An(R) = An(R) — VR((R) . (D.10)

and the phase 7, (C) will be modified by ((R(0)) — ((R(T)) after the transformation,
where R(0) and R(T) refer to the initial and final points of the path C respectively.
Since ((R) is a single-valued function of R, the phase factor ¢(®) in the gauge

transformation Eq. D.9 is unity. This implies that

ei{(R(O))fiC(R(T)) — ei27r-integer -1 . (Dll)

Thus 7, (C) is defined up to an integer multiple of 27 under the gauge transforma-
tion. For any closed path, e, the geometric Berry phase 7v,(C) is gauge invariant
and is given by

Yo = fédRAn(R) : (D.12)
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From this definition, the Berry phase only depends on the geometry of the closed
path and is independent of the time variation of R(¢) in the adiabatic limit. The Berry
phase is a measurable quantitiy. Unlike the Berry phase, the local Berry connection

A, (R) is gauge dependent and hence can never be physically observable.

D.1.2 Berry curvature and gauge fields

Due to its universal description and elegance, it is useful to generalize Berry phase
further. To do this we define a anti-symmetric second-rank, gauge invariant field

(curvature) tensor, derived from the Berry vector potential A, (R) in Eq. D.8 [289]

F(R) = SO AL(R) — = AL(R)
- i[<ag}(%1§)‘8g;?)>—(v<—>u)} . (D.13)

This field Fj, (R) is called the Berry curvature. From Stoke’s theorem, for a closed
path C forming the boundary of a surface S, the Berry phase can be expressed as a

surface integral

1
S / dR" NdR" SF}L(R) | (D.14)
S

where S is the surface enclosed by the path C. Unlike the Berry vector potential
(Berry connection), the Berry curvature described by Eq. D.13 is gauge invariant and
observable. In a 3D parameter space, we can recast the Berry curvature Eq. D.13 and

the closed-loop Berry phase D.14 into pseudovector form

F,(R) = VrxA,(R),

Yoo = /SdS-Fn(R). (D.15)

The Berry curvature tensor F}, is related to the vector F, by the relation Fj,, =
€uvc(Fp)¢, where €,,,¢ is the Levi-Civita totally antisymmetric tensor [289]. In vector
form, the Berry curvature can be thought of as a magnetic field in parameter space.

Another way to express Berry curvature from Eq. D.13 is as a summation over the
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eigenstates, via the relation <n ‘ Vr ‘ n/> = <VR ’ n/> (B, —E,,) forn' # n (23, 289]:

n| 2L 0"y (n' | 2L \n) — (v
Fﬁ’y(R)ZiZ< ‘BR >(j<En_ag/)2> (v ) (D.16)

n' #n
This summation equation is advantageous as no differentiation on the wave function
is involved. Moreover it provides further insight into the origin of the Berry curvature
itself.

One implication of the Berry curvature summation equation, is that F ;‘V(R) be-
comes singular if two energy levels £,(R) and E /(R) are brought together at certain
values of R, resulting in a degeneracy point.

The abelian Berry paradigm covers the situation where a single energy level is
separated out in the adiabatic evolution, but if the energy levels are degenerate, then
the corresponding dynamics must be projected onto a subspace spanned by these

degenerate eigenstates, naturally resulting in a non-abelian Berry curvature [280].

D.2 Non-abelian Berry paradigm

The Berry phase itself is geometric in character and so in systems where electrons/holes
behave as ultrarelativistic particles, Berry phase directly reflects the shape of the spin
trajectory. Measurements of the Shubnikov-de Haas oscillations in graphene [198, 305]
and in topological insulators [227] have highlighted the contribution of this geometric
phase arising from the internal degrees of freedom (pseudospin and spin respectively)
of the systems under study.

In contrast the concept of Berry phase is not well defined in 2D semiconductors
due to the existence of two coupled Fermi surfaces with opposing spins. The follow-
ing section shows how the concept of Berry phase can be extended to such systems,
comprising of degenerate (or nearly degenerate) energy bands. Since degenerate Bloch
states possess multiple components, the Berry curvature becomes a matrix with a non-
abelian gauge structure, ultimately resulting in a non-abelian Berry curvature (i.e. the

non-abelian field).
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D.2.1 Non-abelian Berry phase

Beginning with the adiabatic problem, Wilczek and Zee [280] derived the non-abelian
Berry phase in a similar manner to that for the geometric Berry phase. Consider a
family of Hamiltonians H(R) varying continuously with parameters R, for a single
energy level with M degenerate states. For simplicity we set these energy levels to
E=0. Following the adiabatic theorem, if the parameters vary slowly from an initial
value R; to some final value Ry over time interval T, and assuming the given space of
degenerate levels do not cross other levels, we can solve the time-dependent Schrédinger
equation
oy

i = MR | (D.17)

with boundary conditions R(0) = R; and R(T) = R;. Wilczek and Zee found
that even for the closed path condition R; = Ry, the dynamics of the wave func-
tion 1 become non-trivial and gauge fields are necessary [280]. Although for a sin-
gle non-degenerate level M=1, the evolution of ¢;(R) — ¢(R) corresponds to a
phase multiplication, i.e. a U(1) gauge field similar to that used in the abelian Berry
phase [23, 244].

Choosing an arbitrary set of bases |nq(R(t))) (where a and b are indices of the

Mth degenerate state, analogous to spin 1,J) we obtain
Hap(R(1)) [np(R(t))) =0 . (D.18)

For solutions of the Schrodinger equation Eq. D.17 using the initial condition

|na(R(0))), and assuming the adiabatic limit [280] we obtain,
na(R(1))) = Uap(t) Inp(R(1))) (D.19)

where Uyp(t) is a unitary matrix. To determine Uy (t) we first assume that |ng(R(t)))

remains normalized so that

0 = (m]na)
= <nb ‘Uacnc> + <nb |uachc> (D.QO)

which leads to,

iU Upa =i (np | 1) = Aap(T) (D.21)
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where A is an anti-Hermitian matrix playing the role of a gauge potential, and the
(R(t)) term of the basis states have been dropped for simplicity. Solving the above

equation as a path-ordered integral yields,

Ut) = P eap {z /O t A(T)df} . (D.22)

Note that ¢(t) and A(7) are now matrices, where U(t) and A(7) do not commute with
U(t') and A(r) respectively. A is the non-abelian analog for the Berry connection

defined in Eq. D.8 and can be expressed as [91]
Al =i (na |0y |me) . (D.23)

The non-abelian Berry connection A%, (R) is now a matrix-valued vector indexed by
(a,b) for all indices of the degenerate subspace (1,..., M), where u refers to a set of
matrices A and 0, is shortened notation for %. The specific form of A from Eq. D.21

depends upon the choice of basis states |n,(R(t))). For a different choice e.g.
n(R(t)) = Qt)(t) (D.24)
the set of fields A* then transform as full gauge potentials
A (1) = 90T + QARQT! (D.25)
So the path ordered integral now becomes generalized to a U (M) matrix

Ult) = P eap {z /0 t A#(R(t))dR“} , (D.26)

which depends only upon its path and not upon its parameterization. For a closed
path we obtain the Wilson loop, which is a matrix analogy to the geometric Berry

phase,
U=P exp {i?{AudR“} . (D.27)

D.2.2 Deriving the non-abelian Berry curvature

To cover the case of degenerate bands where conventional adiabatic theorem fails, as
done for the Berry phase, we can likewise extend the non-abelian Berry formalism

to describe non-abelian Berry curvature. For the semiclassical framework, a correct
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treatment of the system involves a wave packet constructed from the degenerate lev-
els [52, 241]. Thus, the Berry curvature tensor Fj (R) from the abelian Eq. D.13
must be extended to a matrix definition ]:gfi(R) in analogy to non-abelian gauge

theories [280], by substituting the curl with the covariant derivative [91, 241]

Fi(R) = 0,AL —0,A% +i[Au, A)™
= {i (9una(R) | Dynp(R)) — i (Oyna(R) | 0umy(R))}
+ 1 [(Ona(R) | ne(R)) (ne(R) | 9umy(R))]
— i [(9una(R) | ne(R)) (ne(R) | 0,np(R))] (D.28)

Just as in the abelian scenario where the Berry connection (Berry curvature) have
the same mathematical structures as the vector potential (magnetic field), this corre-
spondence also holds for the non-abelian gauge theory e.g. SU(2) gauge theory [280].
The subspace of degenerate eigenstates is subject to a U(M) gauge freedom. The non-
abelian Berry connection AZb(R) under the gauge transformations, is transformed
according to Eq. D.25 and the corresponding non-abelian Berry curvature Fﬁfi(R)
to [91]

FU(R)=U'(R) F%(R) U(R) . (D.29)

Thus the non-abelian Berry curvature matrix fﬁfj(R) is changing under a gauge rota-
tion and therefore cannot be directly observed [36]. But we can derive gauge invariant
quantities from it which are physically meaningful, such as the trace of the Berry cur-
vature matrix, trF. This trace will play a crucial role in interpreting our experimental

data which is discussed in Sections 5.3.2 and 5.4 of the main body of this thesis.



Appendix E

Electron Quantum Dot:

3-terminal setup considerations

E.1 Model of electrical setup

Here we shall discuss the effect of the 3-terminal measurement setup used to measure
the electron quantum dot and address any anti-correlation effects due to Kirchoff’s
laws. A schematic of the single-source and dual-drain setup of the quantum dot (QD)
and charge sensor (CS) is given in Fig E.1, which takes into account the line resistances
of the fridge, ohmic contact resistances and other electronic components. A 10* voltage
divider brings the 1Vac input down to 100uV at the source terminal. The fridge lines
have a fixed resistance of Ry;,. = 1612 and the input impedance of the SRS830 lock-in
amplifier is Ry74 = 10002.

Initially, the contact resistances (Rsrc, Rop—prn, Rcs) as well as the resis-
tance of the quantum dot Rgp and charge sensor Rcog are unknown. As a 4-terminal
measurement was not possible, to estimate the contact resistance, the were unbiased
gates to ‘remove’ the presence of the CS and the dot, resulting in a 2D region so that
Rgp = Rcs — 0. From Fig. 6.9 in the main chapter, this happens around Vg ~ 0V
when the gates are pulled back. Here the corresponding dot current is igp = 15nA

and CS current is icg = 22nA.

Since both Rgrc and Rgp—prn lie along the length of the hall bar and the current

232
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IMQ Riine Rsre Rap Rap-orn Riine Rua T

1Vac «w 100Q

VAV \ \ // \ ' \f \ \, VoV o
} ‘ Res Res-orn Riine Rua T

Figure E.1: Schematic of the 3-terminal electrical measurement setup which simulta-
neously measures current through both the quantum dot and the charge sensor. The
configuration is that of a single source and two drains, taking into account other re-
sistances such as the contact resistances, fridge line resistances and other electrical
components.

through the dot circuit is smaller than the CS circuit, we can assume that Rgrc ~
Rgop-prn = Rc. The current through the quantum dot arm in 2D can be expressed
as:

100uV

(161 x 2 + 1000) 4 2R¢
R, = 26720 . (B.1)

15nA = =

From this value of Rgrc and the current through the CS arm we obtain

100V
161 x 2 + 1000 + 2672) + Ros—prN
o .Res_pry = 5510 . (EQ)

22nA = z(

Thus we can modify the circuit diagram to that shown in Fig E.2. Once again,
assuming the 2D limit where Rgp = Rcg — 0, we can solve for the equivalent circuit
and obtain a total resistance of R;; = 1,000,097.6€2. Given our 1Vac source, the
corresponding total current is I;,; = 100uA. The corresponding voltage output from
the divider is Vy;,, = 97.6uV = 100uV as anticipated, where most of the current passes
down the 10082 leg of the voltage divider. So, for the rest of the analysis we shall focus
upon a reduced region of the circuit starting from the Vy;, node onwards as depicted
in Fig E.3.

The circuit can be modelled using a series of equations. From Kirchoff’s current

law we first obtain

ltot =1CS +1QD - (E.3)
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Vdiv
X ~100HV N Vnode
T AT
IMQ RIine+SRC L
< <
Res<— Rap<—
il ~ _~ —
N <
1Vac(” | j‘) 1OOQ>
< <
R(CS-DRN)+Iine+LIA<<: R(QD-DRN)+|ine+L|A</

Figure E.2: Modified circuit diagram from Fig E.1 where the contact resistances, line
resistances and instrument resistances remain fixed and can be summed into a single

element.

Vdiv ~ IOOMV

itot
R|ine+SRC i

Vnode
lcs iQD
RCS l RQD l
R(CS—DRN)+Iine+LIA R(QD-DRN)+|ine+LIA

Figure E.3: Reduced circuit from Fig E.2, assuming a constant Vg, ~ 100uV, such
that it = ics + igp at the point Vjoq.. The values of the fixed resistances are

Riinet+sro = 28338, Ros—pRN+line+L14 = 17120 and Rop—pRN+line+r1a = 383342
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Performing a nodal analysis, we can break the circuit up into individual arms;

100/1"/ - Vnode

tot = Riine+sre ’ (E4)
Viode = ics X (Rcs + Res—DRN+line+L14) (E.5)
Viode = iQD X (RQD + RQD—DRN+line+LIA) - (E.6)
The following lumped element resistances remain fixed at:
Rijnersrc = 28334
Res—pRN+iine+Lra = 17120
RQp-DRN+line+1a = 38334
(E.7)

E.2 Comparision of model to experimental data: esti-

mating 3-terminal setup contributions

We will now apply the model to our experimental data, namely Fig. 6.14 of the main
text, to determine the impact of the 3-terminal setup upon the measurement and
in particular to see if the anomalous oscillations seen in the charge sensor current
Fig. 6.14c, is caused by the setup. To make this task easier, we re-plot the same dataset
seen in Fig. 6.14 panels (c),(d) in terms of raw current, rather than conductance shown
in Fig. E.4 panels (b),(d) for the charge sensor and quantum dot respectively.

From Fig. E.4, if we take the values of igp ~ 100pA and ics ~ 3.5nA (at V), =
—1.1V), substituting into Eq. E.3 gives

itot = 'iCS + ZQD =3.5nA + 100pA = 3.6nA

Subsequently Vo4 becomes:

100MV — Vnode
2833
Viode = 89.8uV

= 3.6n4d

(E.8)
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Figure E.4: Reproduced Fig. 6.14 in the main text, where current through the dot
(a) corresponds to Fig. 6.14d; and the charge sensor (b) corresponds to Fig. 6.14c; are
plotted as a function of plunger gate voltage which is swept to change the occupancy of
the dot. Dashed vertical blue lines indicate points where the Coulomb blockade peaks
in the dot correspond to dips in the charge sensor. Dashed orange lines mark the
beginning points at which these features start to diverge as V), is swept more negative.
At V,, = —1.1V (purple dashed), igp ~ 100pA and icg ~ 3.5nA.

To roughly quantify the effect of the 3-terminal setup upon the measured signals
when the quantum dot operates in the single-electron tunneling regime, a Coulomb
blockade peak was singled out for study. Here we choose the point at V,, = —1.1V in
Fig. E.4 where igp ~ 100pA and ics = 3.5nA (marked in longer dashed purple lines).
As igp goes from ~ 100pA to OpA, between tunneling and blockaded regimes,

e How much will Rgp change by? (If we assume Rcg remains fixed at the value
where icg ~ 3.5nA initially?)
e How will icg evolve?

Starting with the scenario where the dot configuration allows for tunneling to occur,
i.e. igp ~ 100pA:
First obtain Rgp from Eq. E.6,
89.8uV = 100pA x (Rgp + 3833)
Rgop = 894,167

(E.9)
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Likewise we obtain a value of Rgg from Eq. E.5, which is about half Gy i.e. ~

2 x 12,9099,

89.8uV = 3.5nA x (Res + 1712)

Reos = 23,9450

(E.10)
When the quantum dot is blockaded and igp — 0:
To determine icg we setup Eq. E.5 and Eq. E.3,
Viode = tcs X (23,945 + 1712)
itot = tcs+0
100/”/ - Vnode _ Vnode
2833 23,945 4+ 1712
(E.11)
substituting for V,,qe gives,
1OOMV - Vnode _ Vnode
2833 25,657
100V — (ics - 25,657)  (ics - 25,657)
2833 N 25,657
100uV = i¢g - 2833 +ics - 25,657
100pV = icg - 28,490
Sics = 3.51nA
(E.12)

this 100pA drop in igp results in a slight increase in ics by 10pA. Recalculating a

new value for V,,,4. from Eq. E.5 gives,

Viode = 3.51nA x (23,945 + 1712)
Viode = 90.1uV

(E.13)
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which is an increase in Vg of AVjp4e = 0.3V . The corresponding change (increase)

in icg due to AV,,,4e can be calculated from Eq. E.5,

AVipode = Aigg X (23,945 4 1712)
0.3uV
25,657
Aicg = 11.7pA

Aigg =

(E.14)

From this brief analysis, we find that the 3-terminal measurement setup results in
a small, inversely proportional relationship between the charge sensor and quantum
dot currents. The variation in the charge sensor current of 11.7pA, as the quantum dot
state alternates between tunnelling and blockaded and is quite small in comparison
to the amplitude of the oscillations seen in icg in Fig. E.4 beyond V, = —1.2V.
These anomalous oscillations in the data appear to have an amplitude ranging between
1—0.5nA, i.e. ~ 50— 100x larger than Aicg, which is not consistent with a purely

3-terminal setup effect as seen from our model.



Appendix F

Nextnano+-+ simulation code

snippets

F.1 Modelling the induced structure

The 3D nano device simulator nextnano++ Schrodinger-Poisson-current solver soft-
ware package for simulating low dimensional structures [273]. The modelling was done
with assistance from R. Li, by adapting an Si/SiOy template for our GaAs/AlGaAs
heterostructure. A schematic illustrating a cross section of the modified heterostruc-
ture is given in Fig F.1, where the thickness of each layer is supplied in brackets. This
was done by changing the parameters for the SiOs layer to match those of the poly-
imide or AlOx dielectric and thickness. Next is a layer of metal surface gates to model
the gates forming the quantum dot. Below that, parameters for the straight silicon
substrate were substituted with those of the AlGaAs dielectric. This was followed by
a 2000nm thick layer of GaAs to model the substrate and form the heterojunction
with the AlGaAs. Below this, two extra layers are added, a doping layer and a contact

plane, which acts as the global ground point.
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N
(50nm)
— UZDE_G . —
GaAs (2000nm)
\/
Figure F.1: Cross section of the GaAs/AlGaAs heterostructure setup for the

Nextnano+-+ simulation. The thickness of each layer is given in brackets where ap-

propriate.

The parameters used to model the electron quantum dot measured in Chapter 6.3

are:

#Begin NextnanoWizard parameter section

$sGb = -1.8
$LGb = -0.48
$PGb = -0.1
$RBGb = -0.8
$RTGb = -0.83
$TGb = 8

$BCb = 0
$SctBarHeight

# QPC charge sensor gate bias (V)
# Left gate bias

# middle thin plunger gate bias
# right bottom gate bias

# right top gate bias

# overall top gate bias

# back contact bias

3.075  #Schottky barrier height (modelled as Si02

to Si flat band condtn = 3.075)

$DOPING = 1.0e20 # doping concentration (cm~-3)

$XGRID
$YGRID

$ZGRID
$QUANTUM
$NUMEV

$ALPHA

10
10
50
=0
100
0.1

# grid spacing in x-direction (nm)

# grid spacing in y-direction (;m)

# grid spacing in z-direction (nm)

# use either classical (0) or quantum (1) density
# number of electron states to be calculated

# underrelaxation parameter for current equation
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$AVS = 1 # 2D output in AVS (1) or Origin (0) format

#Begin the parameter define

$GateWidth = 80 # Width of most gates (mm)
$PGWidth = 50 # Width of PG (um)
$QPCWidth

400 # Width of QPC channel

$QDBWidth

350 # Width of the quantum dot barrier
$SGLeng = 500 # Length of the QPC charge sensor gate
$RBGLeng

500 # Length of the right bottom gate (nm)

$RTGLeng

500 # Length of the right top gate
$REmptS = 500 # Empty space on the right hand side

$PGSep = ($QDBWidth-$PGWidth)/2 # Separation of the PG to other gates

$TGt = 140 # Thickness of the overall top gate

$PIt = 600 # Thickness of the PI with Dielectric const = 3.5
$sGt = 50 # Thickness of surface gate

$GDt = 160 # Thickness of the gate dielectric (AlGaAs)
$GaAst = 2000 # Thicnkess of GaAs

$Dopet = 50 # Thickness of bottom doping

$Contactt = 50 # Thickness of the bottom contact

#End parameter define

The parameters used to model the ‘Sunbeam’ induced hole quantum dot measured

in Chapter 6.5.1 are:

#Begin NextnanoWizard parameter section

$QGb = -1.8 # QPC charge sensor gate bias (V)
$LTGb = -0.9 # Left Top gate bias

$LBGb = -0.8 # Left Bottom gate bias

$PGb = -0.6 # middle Plunger gate bias

$RTGb = -0.9 # Right Top gate bias
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$RBGb = -0.8 # Right Bottom gate bias
$TGb = 1.34 # global Top Gate bias
$BCb = 0 # back contact bias

$SctBarHeight = 3.075  #Schottky barrier height (modelled as Si02
to Si flat band condtn = 3.075)

$DOPING = 1.0e20 # doping concentration (cm™-3)

$XGRID = 20 # grid spacing in x-direction (;m)

$YGRID = 20 # grid spacing in y-direction (nm)

$ZGRID = 50 # grid spacing in z-direction (nm)

$QUANTUM = 0 # use either classical (0) or quantum (1) density
$NUMEV = 100 # number of electron states to be calculated
$ALPHA = 0.1 # underrelaxation parameter for current equation
$AVS = 1 # 2D output in AVS (1) or Origin (0) format

#Begin the parameter define

$GateWidth = 80 # Width of most gates (um)

$BGWidth = 40 # Width of building blocks of Bottom Right

and Left gates (mm)

$QPCWidth = 800 # Width of QPC channel

$QDWidth = 320 # Width of the quantum dot area

$GateLeng = 400 # Length of most gates

$LTRTGLeng = 500 # Length of top barrier gates (left and right)

$PGSep = ($QDWidth-$GateWidth)/2 # Seperation of the PG to other gates

$TGt = 140 Thickness of the overall top gate

$PIt = 30 Thickness of the ALD with Dielectric const = 8
$sGt = 50 Thickness of surface gate

$GDt = 110 Thickness of the gate dielectric (AlGaAs)

$GaAst = 2000 Thicnkess of Gals

$Dopet = 50 Thickness of bottom doping

H O O H O H O H OH H®

$Contactt = 50 Thickness of the bottom contact
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#End parameter define
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