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Abstract: Josephson parametric amplifier (JPA) engineering is a significant component in the quantum

two-mode squeezed radar (QTMS) to enhance, for instance, radar performance and the detection

range or bandwidth. We simulated a proposal of using engineered JPA (EJPA) to enhance the

performance of a QTMS radar. We defined the signal-to-noise ratio (SNR) and detection range

equations of the QTMS radar. The engineered JPA led to a remarkable improvement in the quantum

radar performance, i.e., a large enhancement in SNR of about 6 dB more than the conventional QTMS

radar (with respect to the latest version of the QTMS radar and not to the classical radar), a substantial

improvement in the probability of detection through far fewer channels. The important point in

this work was that we expressed the importance of choosing suitable detectors for the QTMS radars.

Finally, we simulated the transmission of the signal to the target in the QTMS radar and obtained a

huge increase in the QTMS radar range, up to 482 m in the current study.

Keywords: engineered JPA; quantum illumination; quantum correlation; QTMS radar; SNR

1. Introduction

In general, radars transmit radio waves to one or more targets using transmitter an-
tennas and receive and measure echoes using receiver antennas to detect the presence
or absence of targets using a detector. Many factors, such as noise and clutter, can be
mentioned that call into question this simplicity [1]. The difference between a quantum
radar (QR) and a classical radar (CR) can be deduced even from their names. Basic quan-
tum concepts such as the correlation between a pair of entangled signals are present in
QRs [1–19]. The discussion about QRs has flourished for several years. Several research
teams, including Balaji et al. [1–3] and Barzanjeh et al. [15], etc., have implemented op-
erational prototypes of QR. All the results obtained by these teams showed a significant
improvement in the performance of QR, compared to the CR counterpart [2–9,15,19]. A
6 dB improvement in transmission power [11], 4 to 6 dB enhancement in SNR [2–9,15,19,20],
and an improvement of 6 dB in the QR receiver operating characteristic (ROC) curve [19,20],
compared to CR, can be considered. The quantum illumination (QI) range, which gives the
accuracy of the square of the mean of the delay of range, can be tens of dB above that of a CR
counterpart with the same bandwidth and transmitted energy [20]. In the QR, the samples
are much lower than in the CR, and the signal in QR has a higher correlation coefficient than
its classical counterpart [2–9,15,19]. The QRs can also be made impervious to hackers by
using quantum cryptography [9]. This means that it is possible to create a secure channel by
encoding the transmitted photons to protect the information against eavesdropping [9]. The
target may also be more visible by using QR rather than CR, due to a quantum effect on the
radar cross-section [21]. One type of QR is the quantum two-mode squeezed (QTMS) radar,
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which is very similar to conventional noise radars [1–3]. These radars use the Josephson
parametric amplifier (JPA) and can produce the signal and idler directly in the microwave
band [1–3,6,8,11,12,15,16]. On the other hand, one of the current disadvantages of QTMS
radars is their very high costs of implementation and equipment [1–3,6,8,11,12,15,16]. In
recent articles [1–3,6,8,11,12,15], it was observed that JPAs have limitations such as low
bandwidth, and therefore, we need to engineer them to improve the performance of the
QR. Hence, engineering JPAs in QTMS radars gives us the capabilities to build high-range
QTMS radars. One of the most important issues for engineers is the range measurement of
a QR. Therefore, in this study, the range equation of a QTMS radar is introduced, and the
results are reviewed. We simulate a QTMS radar proposal with a larger bandwidth, better
detection range, and improved SNR, taking into account the prototype of the QTMS radar
implemented in [1,3] and using the EJPA [22]. The QTMS radar has shown much more
enhancement from the classical than the 6 dB [2–9,15,19,20], and this paper purports to have
an additional 6 dB in SNR from those results. In this work, we present a simulation study
of a QR inspired by quantum illumination, which requires only independent measurement
of the signal and idler. After introducing QR and the basic principles of the QTMS radars,
we present and evaluate the EJPA and use it to simulate the radar’s design. Finally, after
post-processing, the results are presented to show and confirm the capability of our design.

2. Preliminaries

2.1. Quantum Radar (QR)

The basis of the work of a QR can be summarized as follows [1–19]:

1. Using a pump and a signal generator, we produce a current of entangled photon pairs
(signal/idler) using quantum sources.

2. To send a signal to the target, we need to amplify the signal with low-noise amplifiers,
and to determine the presence of the target, we have to record the idler.

3. After receiving the signal reflected from the target by the receiver antenna, the signal
and idler are amplified again, and an analog-to-digital conversion (ADC) is applied.

4. Using a suitable detector, the presence or absence of a target can be inferred. Figure 1
depicts the general block diagram of a quantum radar.
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Figure 1. Schematic block diagram of a QR.

2.1.1. QTMS Radar

A type of QR that we considered in the template is the quantum two-mode squeezed
(QTMS) radar, which is used as the operational prototype that was introduced
in [1–3,5,6,8,15]. Here, the term squeezed refers to the electromagnetic field state that
decreases the uncertainty of one component of the field relative to the coherent state (uncer-
tainty in the amplitude and phase of the electric field are the same), increasing uncertainty
in the other component [1,3,23]. In other words, the quantum noise decreases in linear
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compounds of some of the quadratures and increases in other compounds, and squeezing
appears [1–3,5,6,8]. In this paper, we deal with the correlating and squeezing in-phase (I)
and quadrature (Q) voltages. We can brief the operation of the QTMS radar as follows:

1. Utilize the JPA to generate a pair of entangled signals (signal and idler). Amplify
both the signal and the idler. Transmit the signal through the free space forward to
the target. Perform a heterodyne measurement on the idler, and hold a record of the
results in the form of a time series of I and Q voltages.

2. Receive a reflected signal. Fulfill a heterodyne measurement on it to create a time
series of I and Q voltages.

3. Correlate the I and Q voltages of the signal and idler.
4. If the correlation surpasses a preset threshold, notify a detection.

The main part of QTMS radars is the source of entanglement generation, the Josephson
parametric amplifier (JPA). JPAs are devices that generate a two-mode squeezed vacuum
(TMSV) state [1–3,5,6,8]. JPAs are placed in dilution refrigerators for two reasons: first,
because they have a resonant cavity with a superconducting quantum interferometer device
(SQUID) and superconducting properties and second, to prevent noise absorption in the
entangled signal [1–3,5,6,8,15]. Figure 2 shows a schematic representation of the JPA.
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2.2. Two-Photon Entanglement

A covariance matrix is a matrix whose elements show a correlation between different
system parameters. A special type of correlation is entanglement [24–26]. When two
beams of light are entangled, they have very strong correlations. The correlation power
resulting from quantum entanglement simply cannot occur in classical physics [1,3]. The
root of entanglement is in the quantum superposition principle and has no classical coun-
terpart [26]. In general, in a quantum state, if the measurement of the first qubit affects the
result of the measurement of the second qubit, we have an entangled state. Otherwise, it is
non-entangled [24,26].

As mentioned in Section 2.1.1, since the photons of the signal and idler originate from
the same pump photon, there is a strong quantum correlation between the signal and idler,
resulting in the squeezing of I and Q voltages [1–3,5,6,8,15]. It is important to emphasize
that squeezing is not solely a consequence of entanglement.

For better detection and measurement with classical instruments, the signal and
idler need to be amplified in stages. Unfortunately, amplification adds a lot of noise and
weakens the entanglement. Entanglement can easily be eliminated by factors such as loss
(e.g., antenna gain) and noise (e.g., the presence of amplifiers) [13,27–29]. However, as
shown in experimental results [1], there is a quantum enhancement (in the form of higher
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correlations) in the QTMS radar. In QTMS radars, we utilized the entanglement of continu-
ous variables of light squeezed by the JPA entanglement generation source [1–3,30].

3. Results and Discussion

3.1. Engineering JPA (EJPA)

The JPAs are commonly used as narrowband signal amplifiers, meaning that
they have limitations (i.e., narrow bandwidth) that prevent the improvement of their
performances [1–3,5,6,8,15,22]. Our EJPA is similar to that described in [22], where a
broadband EJPA by the pumped flux impedance method was presented. Therefore, we
used it to simulate the quantum radar. One of the advantages of this JPA is the wide
bandwidth at low gain rates [22]. By matching the impedance with the input amplifier, its
bandwidth is significantly increased from 1 MHz to 300 MHz. The input signal is reflected
as an amplified output signal, with a gain of about 20 dB [22]. Figure 3 shows a schematic
representation of the equivalent circuit of an EJPA device, in which the entire device is
fabricated integrally on intrinsic silicon (>10 kΩcm resistivity). The device operates in a
dilution refrigerator with a base temperature of 7 mK [22]. A SQUID loop is made with
two Josephson junctions placed in parallel on each side. If the flux line on the chip is
combined with two Josephson junctions, flux pumping is provided. The λ/4 resonator with
a characteristic impedance of 45 Ω reduces the JPA resonant quality factor. On the other
hand, the λ/2 resonator with a characteristic impedance of 80 Ω reduces the frequency
dependence in the system sensitivity matrix, and this leads to the amplification of the
bandwidth [22].

ff

tt

Ω

λ Ω
λ Ω

 
Figure 3. Schematic representation of an EJPA circuit.

A parallel plate capacitor with two top and bottom electrodes with a total input
capacity c = 2.03 ± 0.02 pF is located at the JPA input, which is connected to the ground. The
input line is galvanically connected to the lower electrode by impedance, which is directly
connected to the SQUID. The upper electrode of the capacitor is connected to the ground
in parallel with the SQUID with a non-galvanic connection. By connecting galvanically
to the input, the coupling quality coefficient decreases, and therefore, the amplification
bandwidth increases [22]. The JPA assumed in the current study is the degenerate four-
wave type, which means that the input and output frequencies are identical. The signal
(and idler) frequency here is 5.31 GHz [22].

3.2. A Proposed QTMS Radar Design with EJPA

The block diagram of the QTMS radar is illustrated in Figure 4. The JPA bandwidth
is increased from 1 MHz [1,3] by the pumped flux impedance method to 300 MHz. The
pump power is 5 dBm. The JPA is located inside the refrigerator, as shown in Figure 4,
and is connected to the T-bias via a microwave switch (which can turn the pump on or
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off) and a device called a shot-noise tunnel junction (SNTJ). These are considered a part
of the calibration process to confirm the entanglement of the JPA output signal [1–3,5,6,8].
The output signal is amplified to make it easier to measure and detect. Because amplifiers
add noise to the signal, and usually, the added noise is from the first amplifier, a high-
electron-mobility transistor (HEMT) (which is a low-noise amplifier) and a semiconductor
amplifier [1–3,5,6,8,15] should be used. HEMT is also placed in a dilution refrigerator,
and semiconductor amplifiers operate at 4 K. Our suggestion to experimental researchers
regarding the dilution refrigerator is the Bluefors LH250, which uses liquid helium for
cooling. It is used in experiments in which the cooling power of this refrigerator for a
temperature of 7 mK is about 10 µW [31].

tt

ffi

ff

 

 
Figure 4. Block diagram of the QR using EJPA.

After calibration, circulators are placed, which act as insulators for our system to
prevent additional signal and noise from reaching the JPA [1–3,5,6,8,15]. After amplification,
the signal is sent to the target by the C-band antenna, but we record the idler. It should be
noted that no measurements are performed on the idler before the signal arrives. The local
oscillators (LO), LO1, and LO2 are applied to the reflection signal of the target and the idler
to convert the frequency to the intermediate frequency (20 MHz) [15]. Finally, the signal is
amplified again and detected after digitization.

Note that in this work, we do not have a delay line, but there is a time delay to measure
the signal and idler [1]. The two pulses are measured at different times, with respect to
maintaining the correlation between them. The time delay between the two pulses is due
to the length of the free-space path of the transmitted signal [1,32,33].

The main idea of using EJPA comes from the fact that we need a high-range QR in
practice. Our EJPA has three wings that are very useful for improving our simulated
quantum radar: first, high bandwidth; second, high power; and third, low gain. In the
design of a QR, special attention should be paid to very important points, including various
parameters of the radar. For example, to implement a QR with a long-range, we need
high signal power. Of course, we need to know how high the power should be so as
not to suppress the correlation. What antennas should we use with what gains, or which
amplifiers should we use so that less noise will be introduced into the system? Therefore, all
the parameters of a QR must match each other to find an improvement in its performance.
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In this paper, we investigate the improvement of a QR according to the sensitivity of
choosing different parameters.

3.3. Post-Processing

As shown in Figure 5A,B, the idler and signal modes are recorded after amplifica-
tion with an analog-to-digital converter (ADC) card. (Our suggestion to experimental
researchers is to use a dual-channel ADC AD570JD with 8-bit resolution) [15]. The recorded
data from the ADC is split into shorter arrays of copies. To derive the measurement statis-
tics of the signal and idler mode quadratures, the digital fast Fourier transform (FFT) at
idler (ωl) and signal frequencies (ωs) after analog down conversion can be used on each
array separately. These measurement results are useful to compute the covariances of the
signal and idler modes.

1LO 2LO

l

s

Figure 5. The representation of the post-processing. (A) The recorded data from the ADC.

(B) Inferring the SNR of QTMS radar.

The M copies of the signal and idler modes from ADC are sent to the receiver
(Figure 5B). The task of the beam splitter (50:50) is to mix the signal mode reflected from the
target with the locally detected idler mode. The outputs of the beam splitter are detected
(which are used as the input to a threshold detector). (Output is the target absence or

presence decision.) According to Figure 5, Û (k)
η,S (received signal mode 1 ≤ k ≤ M) and Û (k)

I

(received idler mode 1 ≤ k ≤ M) are mixed by a 50:50 beam splitter, and the output is as
follows [15,34]:

Û (k)
η,± =

Û (k)
η,S ± Û (k)

I√
2

(1)

After detecting these modes, the photon counts are equal to the quantum measure-
ments of the corresponding number operator [15,34]:

N̂ (k)
η,± = Û †(k)

η,± Û (k)
η,± (2)

The total photon counts for the two detectors are equal to

N̂η =
M

∑
k=1

(

N̂ (k)
η,+ − N̂ (k)

η,−
)

(3)
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According to recent literature [15,34], the microwave mode of the signal return to
post-processing (η = 0 in the absence of the target, and η 6= 0 in the presence of the target)
is equal to [15,34]:

Û (k)
η,S =

√

Gs

[

√
η â†

S +

√

η(GA
s − 1)

GA
s

âA
n,S +

√

(1 − η)

GA
s

â†E
n +

√

(GD
s − 1)

Gs
âD

n,S



+
√

2âV (4)

Additionally, the idler’s microwave mode toward the post-processor is

Û (k)
I =

√

GI

[

âI +

√

(

GA
I − 1

)

GA
I

â†A
n,I +

√

(

GD
I − 1

)

GI
â†D

n,I



 (5)

Here, Gs = GD
s (dB)GA

s (dB) is the system signal gain, where GD
s and GA

s are
the detection signal gain and amplification signal gain, respectively. Additionally,
GI = GD

I (dB)GA
I (dB) is the system idler gain. The effective dissipation range is

−25 dB < η < 0 dB. âS and âI are the signal and idler annihilation operators, respec-
tively. â†A

n,S and â†A
n,I are the signal and idler amplification noise-creation operators at 4 K,

respectively. âE
n is the environment noise mode operator at room temperature, and âV is the

vacuum mode. â†D
n,S and â†D

n,I are the signal and idler detection creation operators at 290 K,
respectively [15,34].

The detection probability in terms of the false-alarm probability for the QTMS radar
with respect to detector A, which corresponds to detector 5 in [1], according to previous
publications [1–3,5,6,8,32,33], is expressed by:

PQR
DA = Q1

(

ρ
√

2N

1 − ρ2
,

√−2lnPFA

1 − ρ2

)

(6)

where N is the number of channels (or the number of samples integrated), Q1 is the Marcum
function [34], and the subscript DA denotes detector A. Furthermore, ρ is the quantum
correlation coefficient and is given by [35–45]:

ρ =
ρ0

√

1 + (1/SNRQR)
4

(7)

where the SNRQR is the signal-to-noise ratio of the QTMS radar and is defined as [15,34,36,37]:

(SNR)QR
M =

4M
[(

〈

N̂η,+
〉

H1
−
〈

N̂η,−
〉

H1
−
(

〈

N̂η,+
〉

H0
−
〈

N̂η,−
〉

H0

))]2

(
√

〈

∆N̂ 2
η

〉

H0

+

√

〈

∆N̂ 2
η

〉

H1

)2
(8)

Here, M = B·τ is the number of modes, B is the bandwidth, and τ is the integration
time. Additionally, the value expected indicates the average over the total M copy. The
terms in the above equation are expressed in Appendix A.

3.3.1. SNR and ROC

Using Equations (8) and (A1)–(A8) (in the Appendix A)) and the corresponding
parameter in Table 1, Figure 6 shows the SNR versus signal and the idler photon numbers
Ns plot, comparing the three scenarios: conventional JPA (the latest version of the QTMS
radar) [1,3], Josephson ring modulators (JRM) [15], and EJPA. The clear conclusion that can
be deduced from this plot is that the SNR performs better in the EJPA scenario than in the
other scenarios. The SNR for EJPA is about 5 dB better than JRM and about 6 dB better than
conventional JPA. Therefore, the EJPAs are promising to improve SNR, meaning a better
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performance of quantum radars. It means that we have a 6 dB improvement in SNR, in
addition to an improvement of 4 to 6 dB (latest version of the QTMS radar [1]) in SNR in
previous works [2–9,15,19,20].

Table 1. The calculated parameters of QTMS radar. * Calculated parameters based on the results reported

in [15]. † Calculated parameters based on the results reported in [1]. ‡ Parameters used from [22].

Quantity EJPA [This Work] JRM [15] JPA [1] Unit

Antenna C-band X-band X-band ---
Antenna gain (G) 6.4 15 * 15 dB

Antenna effective area (Ae) 8.8 × 10−5 - - m2

Target radar cross-section (σ) 1.0 - - m2

Bandwidth (B) 300 ‡ 20 1.0 MHz
JPA or JPC power gain (Gp) 20 30 20 † dB
HEMT gain (at 4 K) (GHEMT) 38 36 36 † dB

Signal gain (GS) 83.98 93.98 ~96 † dB

Detection gain (GD) 16.82 16.82 16.82 † dB

Amplifier gain (GA) 67.16 77.16 79.18 † dB
Signal power (Ps) 5 ‡ −128 * −82 dBm
Pump power (Pp) 6 ‡ −97 - dBm
Noise power (Pn) −145 4 −94 dBm

Pump frequency ωp = ωs + ωi 10.62 16.89 13.6821 † GHz
Signal frequency (ωs) 5.31 10.09 7.5376 GHz
Idler frequency (ωi) 5.31 6.8 6.1445 GHz

Signal-to-noise ratio (SNRQR) −13.48 −18 −19 dB

Range (R) (Ns = 0.1, η = 1 dB)

482
with signal

transmission to
target

1
with signal

transmission
to target

(a low-power
short-range radar)

0.5
without signal
transmission to

target
(a low-power

prototype radar)

m

1 2 2

22 ,
1 1

 
 
 
 

1

ffi

0
4

1 1/

1 1 0 0

0 1

2

, , , ,
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 

  

Figure 6. Comparison of SNRs for conventional JPA, JRM, and EJPA versus signal photon numbers Ns.

Using Equation (6), the ROC diagram for different scenarios is depicted in
Figures 7 and 8, which clearly show the superiority of the EJPA compared to other scenarios.
In Figure 7, the probability of detection in EJPA is better than in other scenarios.

The ROC comparison plot for conventional JPA, JRM, and EJPA is illustrated in
Figure 8. It is clear that the detection probability in an EJPA with a smaller number of N
channels reaches a maximum of one, demonstrating a significant improvement.
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Figure 7. The ROC comparison plot. Comparison between conventional JPA (green), JRM (red), and

EJPA (blue) for Ns = 0.1, N = 150, and ρ0 = 1.

(A) (B) (C) 

ff

1 2 ( ), 2

tt

1 2(1/ 2) ( (2 ) ) / 1ρ ρ

  

tt

ff  

Figure 8. The ROC comparison plots of EJPA (A), conventional JPA (B), and JRM (C), with different

channel numbers N.

In various articles [1,2,15,33,35], the superiority of the QTMS radars over conventional
classical radars has been discussed. In this work, we only investigate the superiority of
EJPAs with respect to conventional JPAs. However, in order to confirm the results ac-

cording to the PCR
D = Q1

(

√

2N(SNR),
√−2lnPFA

)

equation, as discussed in [35,36], and

Equation (6) for a conventional classical radar, the ROC comparison between a classical
radar and QTMS with EJPA with respect to detector A is plotted in Figure 9A. More-
over, with respect to detector B, which corresponds to detector 1 in [36] with equation

PQR
DB = (1/2)er f c

(

(er f c−1(2PFA)−
√

Nρ)/
√

1 + ρ2
)

, the comparison between the QTMS

radar and the conventional classical radar is depicted in Figure 9B. In Figure 9A, we see
that when detector A is used, the quantum radar is not superior to the classical radar, while
in Figure 9B, we see that, considering detector B, our quantum radar performs better than
the classical radar. Therefore, in the quantum radar, the choice of the suitable detector is
very important. Moreover, the same results are obtained for different N when comparing
the two cases.

In recent articles [46,47], important factors in improving the performance of the QTMS
radar have been investigated, with respect to the effects of decoherence and entanglement,
respectively. Here, the effects of the bandwidth and quantum correlation changes on
the SNR are investigated. Using Equations (8) and (A1)–(A8) in Appendix A and the
corresponding parameter in Table 1, the SNR plot is also examined versus a correlation
function 〈âS âI〉 in Figure 10A. This figure shows that when the correlation increases, the
SNR of the QTMS radar also increases. Therefore, the correlation and entanglement play
the most important roles in QTMS radars, and we need to fabricate more correlated signals
and idlers (by engineering the JPAs) [38–45,48]. Furthermore, in Figure 10B, we plotted the



Entropy 2023, 25, 1368 10 of 15

variation of SNR in terms of correlation 〈âS âI〉 and bandwidth B. This dependence between
correlation, bandwidth, and SNR is seen in Equations (A3) and (A4) in the appendix
and the general Equation (8). This figure shows that JPA engineering is not only related
to bandwidth; other important factors, such as maintaining correlation, are also very
important in radar SNR. The key point is that improving the SNR of a QTMS radar requires
high bandwidth and high correlation. Therefore, the results obtained from this figure
can be very useful in the design of operational radars. This means that in addition to
JPA engineering in terms of bandwidth, we need to perform a series of tasks to prevent
correlation suppression, such as using low noise amplifiers, choosing the correct antennas
according to their gain, and making JPAs that are acceptable according to the gain and
correlation, etc.

ff

1 2 ( ), 2

tt

1 2(1/ 2) ( (2 ) ) / 1

  

tt

ff  

 
(A) (B) 

 

− ρ

Figure 9. The ROC comparison plot. Comparison between the conventional classical radar (red) and

the QTMS radar with EJPA (blue) with respect to detector A (A) and detector B (B), under the same

condition, for SNR= −13.48 dB, N = 50, and ρ0 = 1.

ff
ff

ˆ ˆ

tt
ˆ ˆ

  ˆ ˆ

1/4

2 .
4

 
 
 
 

λ 2 / 4 ff

σ s

ff

Figure 10. SNR plot as (A) a correlation function 〈âS âI〉 for an EJPA and (B) the correlation function

and bandwidth B (MHz).
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3.3.2. QTMS Radar Range

As mentioned earlier, range evaluation is one of the most important tasks of the
quantum radar. Since QTMS radars are very similar to conventional noise radars, the
QTMS range equation can be obtained as follows [35,49]:

Rmax =

(

GAeσPs

(4π)2Pn(SNR)Q
min

)1/4

. (9)

where G is the antenna gain, λ is the wavelength, Ae = Gλ2/4π is the effective antenna
area, σ is the target radar cross-section, and Ps and Pn are the signal and noise powers,
respectively. The only difference between this equation and the conventional noise radar

equation is (SNR)Q
min, which is the SNR of the QTMS radar here. Figure 11 depicts the

detection range versus (SNR)Q
min. In previous papers [1–3,15], the authors either transmit

the signal to the target [1–3] or used a low-power short-range radar [15] for various
applications. Instead, in this work, we can see that the radar range has increased up to
482 m. Additionally, SNR loses performance efficiency with increasing range.

ffi

tt ff

 

ˆ ˆ

 

Figure 11. Detection range versus SNR of EJPA.

Note that a range of 482 m is just an estimation based on a large number of estimated
parameters, putting together devices and apparatuses of different kinds, which means the
range can reach the order of a few hundred meters.

3.4. Simulation Methodology

In this study, we assumed that the antenna works in the C-band (4–8 GHz). These
antennas have fewer losses than X-band antennas (8–12 GHz) [1–3]. System parameters
are calculated in Table 1 to compare with the corresponding parameters obtained from the
information reported in [1,15], as follows:

The question raised here is how the parameters in Table 1 are extracted and how the
simulation is performed in this paper. It can be answered by considering Equation (8), for
example. All the required expressions are given in Appendix A by Equations (A1)–(A8) so
that by placing them in Equation (8), we obtain a general relation for SNR, which includes
the correlation between the signal and idler 〈âS âI〉, the photon numbers of signal and
idler Ns and NI, gains of signal and idler GS and GI, amplifier gain GA, detection gain
GD, and other parameters mentioned in the appendix. Finally, by placing the relevant
parameters according to Table 1 in it and with a straightforward calculation, the results of
this simulation can be found in the following Figures shown. Additionally, the simulation
results for ROC and range are obtained in the same way.
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4. Conclusions

In this study, a proposed QTMS (quantum two-mode squeezed) radar based on an
EJPA (engineered Josephson parametric amplifier) quantum source was designed and
simulated, and its performance was evaluated and compared to two other radar scenarios:
the conventional JPA quantum source (latest version of QTMS radar) [1] and the Josephson
ring modulator (JRM) [15]. The application of an EJPA in the QTMS radar led to a significant
overall improvement in radar performance. The correlation between the signal and idler
was the most substantial part of QR. The greater the correlation, the better the performance
of QR can be. Therefore, we must fabricate JPAs that can generate signals and idlers with
much higher correlations (by engineering the JPAs). From our findings, the SNR of the
QTMS radar showed a performance efficiency of about 5 dB relative to the JRM [15] and
about 6 dB relative to the conventional JPA. It means that the QTMS radar, compared
to CR, showed an enhancement much larger than 6 dB [2–9,15,19,20], and this study
purports to have an additional 6 dB above those results [1]. The detection probability
was also remarkably higher than for the other two considered scenarios. Moreover, our
channel numbers in the detection probability were much lower, compared with the other
two scenarios. Additionally, in this paper, we considered two detectors, A and B, which
corresponded to the 5 and 1 detectors in [1,36], respectively. We compared the conventional
classical radar and the QTMS radar with the EJPA design under the same conditions,
showing that the QTMS radar in detector B was better than the conventional classical
radar. However, in detector A, we did not achieve any quantum advantage. Hence, the
choice of the detector in the QTMS radar is a significant way to improve performance.
Furthermore, the QTMS radar range equation we defined showed that as the range of the
QTMS radar increased, the SNR of the QTMS radar decreased proportionally. In previous
works [1,3,15] for the QTMS radar, the signal was not transmitted to the target (because of
its low power) [1,3], and only the transmitter and receiver antennas were facing each other,
similar to the results in [15] for a low-power short-range radar (1 m due to low power).
Instead, in our work, the transmission of the signal to the target was simulated over long
distances. Finally, we simulated the transmission of the signal to the target and obtained a
remarkable increase of 482 m for the QTMS radar range in EJPA (with signal transmission
to the target), which suggests that the range can reach the order of a few hundred meters.
Therefore, we have confirmed that the use of EJPA in the QTMS radar is very promising to
achieve a considerable improvement in radar performance.
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Appendix A

The terms in Equation (8) are expressed as follows [15,34]:

〈

∆N̂ 2
η

〉

H1

=
〈

N̂η,+
〉

H1

(

〈

N̂η,+
〉

H1
+ 1
)

+
〈

N̂η,−
〉

H1

(

〈

N̂η,−
〉

H1
+ 1
)

−

(

〈

Û †(k)
η,S Û (k)

η,S

〉
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−
〈

â†
I âI

〉

)2

2
, (A1)
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I âI

〉

)2

2
, (A2)

〈

N̂η,+
〉

H1
= Nv +

1
2

(

Gsη(Ns + 1) +
GsηnA,s(GA

s −1)
GA

s
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2
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. (A8)

The subscripts 1 and 0 in H1 and H0 represent the presence or absence of the target,
respectively. Additionally, Ns and NI are the signal and idler photon numbers, respectively.
nAdd,I and nAdd,s are the system noise averages of both measurement channels. nE is the
average number of environmental thermal photons. nD,s and nD,I are the average numbers
of signal and idler noises received. nA,s and nA,I are the photon number averages of signal
and idler amplifications, and Nv is the number of vacuum modes [15,34]. Moreover, in
Equations (A3) and (A4), the expression of 〈âS âI〉 represents the correlation between the
signal and idler. Furthermore, the other parameters are defined in Table 1.
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