EPJ Web of Conferences 153, 07042 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715307042

Implementing Shared Memory Parallelism in MCBEND

Adam Bird" David Long"", and Geoff Dobson""™

"Amec Foster Wheeler, Kings Point House, Queen Mother Square, Poundbury, Dorchester, Dorset, DT1 3BW, United Kingdom

Abstract. MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers’s
ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding
and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same

calculation on many processors. This works very well except when the memory requirements of a model restrict the

number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP
has been used to implement shared memory parallelism in MCBEND. This paper describes the reasoning behind the
choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and
assesses the performance of the parallel method implemented in MCBEND.

1 Introduction

MCBEND[1] is a well-established powerful Monte Carlo
software tool for general radiation transport analysis for
shielding and dosimetry applications. MCBEND is
developed and licensed for use by AMEC Foster
Wheeler’s ANSWERS Software Service. The MCBEND
package comprises not only the Monte Carlo code itself
but also nuclear data libraries, user documentation,
productivity tools of various kinds and user support
services. Supporting geometry model visualisation and
verification tools are also available.

The existing parallel capability in MCBEND known
as the ‘grid’ option, effectively involves running the same
calculation on many processors and combining the
results. Because there is minimal communication
required between processes the method scales almost
linearly. MCBEND performs the combining of results
and the user is presented with the output as if from a
single run. When the accompanying user interface
VisualWorkshop[2] is used the user is largely unaware of
the activity. This system works well except when the
memory requirements of the model are such that it
reduces the number of instances that will fit on a
workstation or node of a cluster.

To more effectively make use of parallel hardware the
decision was taken to implement multi-threading in
MCBEND in order to maximise the potential for shared-
memory, and eliminating the memory constraints of the
existing “grid' option. Multi-threading has been achieved
within MCBEND using OpenMP[3]. The rationale for

e-mail: Adam.Bird@amecfw.com
** e-mail: David.Long@amecfw.com
*** e-mail: Geoff.Dobson@amecfw.com

implementing a shared memory model using OpenMP is
given in Section 1.1.

A description of the major design considerations and
choices when implementing OpenMP are given in
Section 2. Here, specific attention is given to the shared
memory data management within a MCBEND
calculation. Further implementation details are also given
for the accumulation of scored quantities (Section 2.1)
and the necessary requirement of re-producible results
(Section 2.2) through the design of a new random number
generator. Finally, the functional specification for the
OpenMP multi-threaded parallel version of MCBEND is
given in Section 2.3

1.1 Why OpenMP

When implementing a shared memory multi-threaded
model there are several existing application technologies
from which to choose. The following list gives the
rationale behind the choice of OpenMP for MCBEND

e OpenMP is a mature technology with detailed
documentation and advice on its implementation.

e OpenMP is implemented by the compiler and
additional software is not required by clients to run on
a given system.

e The multi-threaded behaviour is controlled by
directives in comment lines within the Fortran source
code. Since the implementation of OpenMP is applied
on at coarse gain level over the main sample loop of a
MCBEND calculation, see Section 2, load balancing
considerations do not apply. Therefore, relatively few

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution

License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 153, 07042 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715307042

directives are required, making the implementation of
OpenMP less intrusive on the existing code base and
making future maintenance an easier task.

e OpenMP directives can be turned on or off, meaning
that the same source code can be compiled as a
sequential or parallel application. This is particularly
useful when having a code base shared with other
ANSWERS products and for debugging and
maintenance purposes.

2 OpenMP Implementation.

In a simplified form a MCBEND calculation can be
viewed in three stages:

Stage 1: Reading and set up, input data is read, data
libraries are read and the data are pre-processed ready for
the calculation to begin.

Stage 2: The calculation, basically a loop processing
where individual particle histories are tracked from
source through interaction events with the materials in the
model until it escapes via absorption or moves out of the
geometric or energy domain of the problem. During this
processing, scores (tallies) are accumulated. The process
is repeated until a specified number of histories are
reached or a time limit is exceeded.

Stage 3: Post processing, where scored data are analysed
and formatted for writing to output files.

Typically the reading, set up, post-processing and
output, performed in stages 1 and 3, constitute <1% of the
total run time for a MCBEND calculation. As such, there
is very little to gain from the significant amount of effort
needed to apply multi-threading to stages 1 and 3.
Therefore, the multi-threaded parallelisation of
MCBEND has only been applied to stage 2, the main
calculation. The basis of this implementation can be seen
by the simple ‘fork join’ model detailed in figure 1.

Post Process and
Output (Thread 1)

Process History (Thread 1)

Read and setup
(Thread 1)

Process History (Thread 2)

Process History (Thread n)

Parallel Section

Sequential Section Sequential Section

Figure 1. Multi-threading model for MCBEND.

Since each ‘sample history’ within stage 2 of a
MCBEND shielding calculation is statistically
independent from all the others, implementing multi-
threading to the simple model presented in figure 1 is
conceptually a simple problem involving a single coarse
grain parallel region which encompasses the main
sampling loop. A finer grain approach, that is using
OpenMP to parallelise local sections of the code, for
example, loops, was considered but it was decided that it
would likely not deliver the performance or reduction of
memory requirements desired.

When designing and implementing the coarse gain
multi-threaded region within MCBEND, the most
important consideration was for data to be correctly
managed. The data within stage 2 of a MCBEND
calculation fall into the following three categories.

Thread-private: Data which is private to a specific
thread and should not be accessed, read from or write to,
by any other thread running in the parallel region.
Examples are the current attributes of individual sample
histories such as the location, direction and energy.

Global read: Data which all threads within the parallel
region can read, such as material cross-section values and
data structures describing the geometry of the problem.

Global read-write: Data which all threads within the
parallel region can read from and write to, such as
scoring tally accumulators which are updated within the
main sample loop when necessary.

With regards to data management it is a requirement
that all thread-private data associated with a given sample
should not be corrupted by other threads within the
parallel region. Also, as global data cannot be specified
within OpenMP as read-only, attention must be given to
avoid the potential for so called ‘data race’ conditions
when multiple threads within the parallel region have
read and write access to the same variable. Violation of
these conditions can lead to incorrect or irreproducible
calculation results (reproducibility is necessary for
verification, see Section 3).

Within the parallel region all thread-private data is
duplicated for each individual thread. It was therefore
critical to intelligently analyse the data present within the
parallel region to identify a minimum set that needs to be
thread-private. Having unnecessary amounts of thread-
private data increases both the processing overhead of a
multi-threaded application and the amount of memory
used, which, in the limit that everything is declared
thread-private, would mean that a multi-threaded
MCBEND would have no advantage over the current
‘grid’ option.

The main effort in implementing multi-threading
within MCBEND was to determine which data should be
thread-private, shared globally but read only, or shared
globally and writeable by all threads. In order to feasibly
implement the correct assignment of all data within the
parallel region, parts of the code and data structures were
re-factored. The most challenging aspect of this process
was to ensure that Fortran derived data types requiring to
be thread-private were correctly initialised within the
parallel region, as the OpenMP standard does not ‘deep
copy’ such data structures, and therefore these had to be
achieved explicitly.

Aside from the complexities of data management, the
implementation of OpenMP within MCBEND has the
following basic structure.

e Before entering the main parallel region, a global
shared copy is made of all derived data type structures
which are required to be thread-private.

e The main parallel region is opened.

EPJ Web of Conferences 153, 07042 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715307042

e Thread-private copies of derived data types are
created for each thread using globally shared initial
values.

e The number of samples within the calculation is
divided across the number of active threads using an
OpenMP parallel ‘DO’ loop.

e Individual samples are tracked in parallel until all
histories have been completed, with contributions
from each sample to scoring tallies accumulated
where necessary (see Section 2.1 for further details).

e Once tracking has been completed and the parallel
‘DO’ loop has been exited, any diagnostic data which
has been accumulated within each individual thread is
combined.

e The main parallel region is closed.
e Output files are generated sequentially.

In addition to the data management and basic
structure described above, the final design of the
OpenMP implementation required consideration of two
remaining issues; the appropriate approach for
accumulating scored quantities within the parallel region
and the design of a new random number generator which
generates reproducible calculation results.

2.1 Scoring Tallies

During the main calculation it is necessary to regularly
update values from each sample to scoring tallies within
the parallel region. For the OpenMP implementation,
scoring is restricted to the Unified Tally (UT) feature of
MCBEND, see Section 2.3. The use of UT scoring
meshes can impose large memory usage on a MCBEND
calculation, specifically when multiple fine resolution
meshes are used. It is therefore impractical to define the
data structures which define the UT scoring meshes as
thread-private since large amounts of memory would be
copied for each thread used.

Instead it was decided that the data structures
responsible for storing accumulated scoring results would
be shared globally, with each thread in the parallel region
having write access. In order to avoid °‘data race’
conditions and ensure the validity of scored results, only
one thread at a time is allowed to update values within a
scoring mesh, achieved using the OpenMP ‘ATOMIC’
directive. ~ When multiple threads attempt to
synchronously update the same scoring mesh then any
number of threads above unity are forced to wait idle
(blocked) until the current thread has finished updating.

While using shared global data for UT scoring meshes
does not require duplicating large amounts of memory, it
has the potential to limit the performance of the code
when increasing the number of processors used. When
large numbers of threads are active in the parallel region,
the likelihood that threads are blocked while updating
scoring meshes is increased. This can result in a reduction
of the performance gained from using additional
processors, i.e. non-linear scaling.

While the issue of having shared global UT scoring
mesh data potentially reducing the scaling performance is

a genuine concern, it is overridden by the practical
limitations duplicating thread-private UT meshes has on
the memory requirements of typical system architectures
used to perform MCBEND calculations. Since the
maximum number of active threads for typical systems
running MCBEND calculations is currently of the order
of 10’s, scaling issues relating to scoring within UT
meshes are not expected to be fundamentally limiting to
the performance of calculations. Looking to the future,
as numbers of available cores increases further thought
may need to be given to the treatment or scoring meshes.

2.2 Random Number Generator

The Monte-Carlo method of a MCBEND calculation uses
random numbers to decide the outcome of every event
that occurs within a sample history. In the sequential
version of MCBEND each random number is provided by
a combined lagged Fibonacci generator and linear
congruential random number generator (RNG). The RNG
provides a sequence of pseudo-random numbers which
can be based on an initial user provided seed. If identical
seeds are used for the same calculation then the same
random number sequence will be generated enabling
calculations to be exactly re-produced.

Unlike the sequential version of MCBEND, within
the main sampling loop of the multi-threaded parallel
region the exact sequence of samples is undetermined and
will be different each time the same calculation is
performed. Here, the n™ random number using the
sequential RNG’s will be used for a different purpose,
creating different results, making it impossible to re-
produce a calculation exactly.

In order to provide re-producible calculation results a
new RNG has been designed for use within the
multithreaded parallel region. The new RNG is seeded by
a user supplied value (if present) and the unique sample
number of the history being tracked. This new ‘thread-
safe’ RNG therefore produces a unique random sequence
for each sample history, which is independent of the
order in which samples are tracked. This allows a direct
comparison between the results from a sequential
calculation with those from a multi-threaded parallel
calculation, or indeed multi-threaded parallel calculations
generated with differing numbers of threads. The ability
to generate such reproducible calculation results is
essential for verification of the multi-threaded parallel
version of MCBEND as detailed in Section 3. The thread-
safe RNG is the default mode when performing multi-
threaded parallel MCBEND calculations.

2.3 Functional Specification

The implementation of OpenMP does not cover all of
the features contained within MCBEND; implementation
has been limited to a subset of the more modern
functional units associated with both neutron and gamma
particle tracking and scoring. The main functionality
omissions that will be included later are the IGES based
CAD import and electron tracking. Other omissions
include the DICE and multi group collision processing,

EPJ Web of Conferences 153, 07042 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715307042

legacy source options and some of the more advanced
variance reduction methods. OpenMP multithreading has
been applied to the following functionality within
MCBEND;

e FG Simple body geometry, including polygon surface
CAD import.

e Unified Tally.

e BINGO (Neutron
processing).

and Gamma-ray collision

e Splitting and Roulette (variance reduction).
e Dump and Restart.

e Hole Geometry (Woodcock tracking).

e Looping.

3 Verification

When creating the multi-threaded parallel version of

MCBEND, verification that the developed code is correct

is of the highest importance. The approach for

verification was as follows;

e An ‘intermediate’ MCBEND was created that used
the new random number generator, detailed in
Section 2.2, with no other modifications.

e FEach calculation in the test set, see Section 4, was
performed wusing a sequential version of the
‘intermediate’ MCBEND.

e The results from the ‘intermediate’ MCBEND were
compared against those from a standard MCBEND
run. While the exact comparison of results for each
test case is not possible they were confirmed to be
statistically equivalent, which provides evidence that
the new thread-safe RNG is producing the same
distribution (to within acceptable limits) of random
numbers as the RNG in the standard MCBEND.

e The results from the parallel OpenMP MCBEND
were compared with identically seeded results from
the ‘intermediate” MCBEND and an exact match was
expected.

Using this intermediate MCBEND allows us to prove
(for the cases in the test set) that the introduction of
multi-threading has not changed the basic calculation.
Here, identical comparisons are only possible due to the
new thread-safe RNG.

4 Test Set

For verification purposes the test set comprised 43 cases
from the standard MCBEND verification set. The
reduced functionality of the multi-threaded MCBEND
necessitated this reduced set. Six of these models were
used for performance testing of the multi-threaded
version of MCBEND. This subset was chosen to cover
the range of functionality that has been multi-threaded, as
detailed in Section 2.3, including both FG and Hole
geometry features, variance reduction through splitting
and importance mesh generation, scoring of flux and
response within UT meshes, different source options and

collision type processing for neutron, gamma and coupled
cases. A brief description of each test is given below.

e 311 bingo: An infinite slab model with a
monoenergetic uniform source. Scoring of flux occurs
in a user supplied importance map mesh when
boundaries are crossed.

o fuel flask gamma: A real world fuel flask example
for gamma-ray dose rate calculations. Includes
general, nest and array part FG features. Importance
mesh is generated using the Calculate option and
scoring occurs for both flux and response functions.

e 517 _t002: Test of the Unified Tally unit for a gamma
collision case with a line source.

e 517 tab001: Uses the pipe hole geometry with
neutron collision processing. Uses looping
functionality to produce tabular output for both flux
and response function scored in UT mesh.

e V2 aspis_onestep: A coupled neutron-gamma case
within a complex general part geometry. Scoring is
for both flux and response function in a UT mesh.

e v2 b2 hole: Similar to the fuel flask gamma test
case with the inclusion of Square and Plate hole
geometry features.

5 Results

Performance testing of the multi-threaded version of
MCBEND was performed on both Windows and Linux
platforms. For Windows the testing was run on a
standalone machine which has 12 processors. For Linux
the testing was run on a single node of a HPC which has
16 processors. For each platform the multi-threaded
version was compiled using the Intel Fortran 2015
compiler with the appropriate OpenMP option selected.

All test cases were run with the number of active
threads in the parallel region ranging from unity to the
maximum allowed for the specific platform, 12 for
Windows and 16 for Linux. The results from all
calculations were compared to those from the
‘intermediate’ version of MCBEND and were found to
match identically.

Performance results were obtained by measuring the
total computer processing unit time spent within the
parallel region and comparing this with timings over the
same code region (the main calculation sampling loop)
for the ‘intermediate’ version. All performance timings
were calculated from wall clock times obtained from calls
to the Fortran system_clock function

5.1 Scaling

Scaling results for the v2 aspis onestep test case from
Windows and Linux are shown in figures 2 and 3
respectively. Here the scaling factor is plotted as a
function of the number of threads used in the calculation.
For each plot there are two scaling factors defined as,

REFseq REF;

—%€4 g —X

RUN RUN

EPJ Web of Conferences 153, 07042 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715307042

where REF,, is the reference time using the
sequential ‘intermediate’ version of the code, REF 1 is
the calculation time from the OpenMP version using a
single thread and RUN is the calculation time from the
OpenMP version for the number of threads being used

From figure 2 we find that on Windows the scaling
factors when using the sequential reference times follow
a linear trend based on the number of threads used,
however with a constant offset from the exact (‘perfect’)
linear scaling trend shown in black. Defining an offset
factor as,

Number of Threads
(- - 1) * 100

Scaling Factor
the offset between the OpenMP results and the exact
linear trend is approximately 50%, i.e. for 6 threads the
speed up factor is 4 and for 12 threads the speed up factor
is 8.

The linear trend seen in the scaling factors of figure 2
are a positive sign that OpenMP has been implemented
correctly, and that performance issues related to the
scoring (noted in Section 2.1) are not apparent when
using the order of 10 threads. However, the relatively
large offset factor noted above is less positive. While an
offset factor is always expected when implementing
OpenMP a value of 50% is greater than expected. A
discussion of reasons behind this offset factor is given in
Section 6.

v2_aspis_onestep

Scaling Factor

0 2 i 6 8 10 12

Number of Threads
Figure 2. Scaling results for the v2_aspis_onestep test case on
Windows. (blue) Scaling factor when the sequential model is
used as reference run time. (red) Scaling factor when the
OpenMP model with a single thread is used as the reference run
time. (black) Exact linear scaling.

v2_aspis_onestep

e
N s o

-
=]

Scaling Factor
Lo+]

00 2 4 6 a 10 12 14 16

Mumber of Threads

Figure 3. Scaling results for the v2_aspis_onestep test case on
Linux. (blue) Scaling factor when the sequential model is used
as reference run time. (red) Scaling factor when the OpenMP
model with a single thread is used as the reference run time.
(black) Exact linear scaling.

From figure 3 we find that the scaling results for
Linux have the same form as those found for Windows.
The scaling factors again follow a linear trend based on
the number of threads used. However the offset factor
seen when using the sequential reference times are larger
than those found under Windows. Here the offset factor is
of the order 120%, i.e using 8 threads results in a scaling
factor of slightly less than 4 and using 16 threads results
is a scaling factor of slightly less than 8.

It should be noted that all models within the test set
exhibit scaling behaviour of the same form as that shown
for the v2 aspis_onestep case, and as such these results
are not displayed.

5.2 Test Set Performance

In addition to the scaling results presented above, the
performance of all test set models under Windows and
Linux are presented in tables 1 and 2 respectively. Here,
SFsgq is the scaling factor when using sequential times as
the reference, SFr is the scaling factor when using time
from OpenMP with a single thread as the reference and
the RUN times are those obtained with the maximum
number of threads available on each platform,

Table 1. Windows test set performance results.

Test Name REF(s) REF,;1(s) RUN(s) SFieq SFr
311 bingo 42.29 68.89 6.77 6.24 10.17
fuel flask_gamma 94.64 119.12 12.54 7.54 9.49
S17 t002 32.51 46.69 4.6 7.06 10.14
S17 _tab001 288.47 288.23 30.60 9.42 9.41
v2_aspis_onestep 100.76 128.09 12.43 8.10 10.30
v2 b2 holw 114.75 149.82 14.60 7.85 10.26

Table 2. Linux test set performance results.

Test Name REF(s) REF,;1(s) RUN(s) SFieq SFr
311 _bingo 14.71 35.15 2.37 6.2 14.81
fuel_flask_gamma 33.6 59.75 6.38 5.26 9.35
S17_t002 10.86 21.21 1.96 5.53 10.81
S17_tab001 100.12 180.56 19.24 5.2 9.38
v2_aspis_onestep 29.41 59.54 4.05 7.26 14.70
v2_b2_holw 39.95 70.11 7.99 4.99 8.76

From table 1 we find that the scaling factor when
using the sequential reference times ranges from ~6-9.5
when using the maximum 12 threads. The offset factor
for these results ranges from ~25-100% with an average
offset factor of ~60%.

From table 2 we find that the scaling factor when
using the sequential reference times ranges from ~5-7
when using the maximum 16 threads. The offset factor
for these results ranges from ~120-200% with an average
offset factor of ~180%. The performance results for the
Linux platform are therefore consistently poorer than
those seen under Windows.

EPJ Web of Conferences 153, 07042 (2017) DOI: 10.1051/epjconf/201715307042
ICRS-13 & RPSD-2016

6 Discussion and Conclusions Answers Shielding and Criticality Codes, ICRS12-
RPSD2012, Nara, Japan.

The magnitude of the difference in scaling factors 3. OpenMP Architecture Review Board OpenMP
observed when the OpenMP model with a single thread Application Program Interface Version 3.0, (2008).
and the sequential model were used as the reference was

not expected. The same source code was used to build

the sequential and OpenMP versions that were used for

performance testing. The only difference was the build

option to enable OpenMP. What we have observed is

that OpenMP running a single thread is approximately

twice as slow as sequential code on Windows and

between two and three times as slow on Linux.

An analysis of this performance issue using a simple
test program revealed a problem associated with
accessing data that is private to a thread but declared
outside the scope of the parallel region, for example,
Fortran module data declared using the OpenMP
‘THREADPRIVATE’ clause. For production code we
use the Intel Fortran compiler and we have seen the
problem using versions 13, 15 & 16 on the Windows and
Linux operating systems. Intel has informed us that the
performance issue is caused by additional run time
checking that the data exists. Intel suggested not using
THREADPRIVATE. This solution would require
considerable re-factoring and is not a desirable option for
us at this time.

Trials with version 6.1 of the Gfortran compiler on
Linux do not show this problem and the difference
between the OpenMP model with a single thread and the
sequential case is of the order of a few percent. We are
considering using an alternative compiler for the
production version of the OpenMP MCBEND.

Another aspect of the performance is the memory use,
especially as reducing the memory requirements of a
parallel run is the main driver for this work. A multi-
threaded case uses more memory than a sequential case
but less than the equivalent ‘grid’ case. For example, a
calculation using 12 threads uses four times the memory
of a sequential calculation. This is a significant saving
compared to the ‘grid’ option.

In conclusion we are very pleased with the linear
nature of the scaling graphs which show, at least for the
current test cases and current number of threads, that we
have not yet reached a point where there is excessive
interaction between threads. The main objective of
reducing the memory requirements of a parallel
calculation by using OpenMP has been met. The highest
priority for us is to effectively remove the difference in
offset factor between OpenMP with a single thread and
the sequential case before we would consider a
production version of MCBEND with multi-threading.

References

1. P. Cowan, G. Dobson, J. Martin, Release of
MCBENDI 1, ICRS12-RPSD2012, Nara, Japan.

2. A. Bird and T. Fry, Visual Workshop 2: A Model
Viewer, Editor and Results Display Package for the

