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Abstract. MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers’s 
ANSWERS® Software Service.  MCBEND is well established in the UK shielding community for radiation shielding 
and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same 
calculation on many processors.  This works very well except when the memory requirements of a model restrict the 
number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP 
has been used to implement  shared memory parallelism in MCBEND.  This paper describes the reasoning behind  the 
choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and 
assesses the performance of the parallel  method implemented in MCBEND.  

1 Introduction  
MCBEND[1] is a well-established powerful Monte Carlo 
software tool for general radiation transport analysis for 
shielding and dosimetry applications. MCBEND is 
developed and licensed for use by AMEC Foster 
Wheeler’s ANSWERS Software Service.  The MCBEND 
package comprises not only the Monte Carlo code itself 
but also nuclear data libraries, user documentation, 
productivity tools of various kinds and user support 
services. Supporting geometry model visualisation and 
verification tools are also available. 

The existing parallel capability in MCBEND known 
as the ‘grid’ option, effectively involves running the same 
calculation on many processors and combining the 
results. Because there is minimal communication 
required between processes the method scales almost 
linearly. MCBEND performs the combining of results 
and the user is presented with the output as if from a 
single run. When the accompanying user interface 
VisualWorkshop[2] is used the user is largely unaware of 
the activity.  This system works well except when the 
memory requirements of the model are such that it 
reduces the number of instances that will fit on a 
workstation or node of a cluster.  

To more effectively make use of parallel hardware the 
decision was taken to implement multi-threading in 
MCBEND in order to maximise the potential for shared-
memory, and eliminating the memory constraints of the 
existing `grid' option. Multi-threading has been achieved 
within MCBEND using OpenMP[3]. The rationale for 

implementing a shared memory model using OpenMP is 
given in Section 1.1.  

A description of the major design considerations and 
choices when implementing OpenMP are given in 
Section 2. Here, specific attention is given to the shared 
memory data management within a MCBEND 
calculation. Further implementation details are also given 
for the accumulation of scored quantities (Section 2.1) 
and the necessary requirement of re-producible results 
(Section 2.2) through the design of a new random number 
generator. Finally, the functional specification for the 
OpenMP multi-threaded parallel version of MCBEND is 
given in Section 2.3 

1.1 Why OpenMP  

When implementing a shared memory multi-threaded 
model there are several existing application technologies 
from which to choose. The following list gives the 
rationale behind the choice of OpenMP for MCBEND 
� OpenMP is a mature technology with detailed 

documentation and advice on its implementation. 
� OpenMP is implemented by the compiler and 

additional software is not required by clients to run on 
a given system. 

� The multi-threaded behaviour is controlled by 
directives in comment lines within the Fortran source 
code. Since the implementation of OpenMP is applied 
on at coarse gain level over the main sample loop of a 
MCBEND calculation, see Section 2, load balancing 
considerations do not apply. Therefore, relatively few 
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directives are required, making the implementation of 
OpenMP less intrusive on the existing code base and 
making future maintenance an easier task. 

� OpenMP directives can be turned on or off, meaning 
that the same source code can be compiled as a 
sequential or parallel application. This is particularly 
useful when having a code base shared with other 
ANSWERS products and for debugging and 
maintenance purposes. 

2 OpenMP Implementation. 

In a simplified form a MCBEND calculation can be 
viewed in three stages: 
Stage 1: Reading and set up, input data is read, data 
libraries are read and the data are pre-processed ready for 
the calculation to begin. 
Stage 2: The calculation, basically a loop processing 
where individual particle histories are tracked from 
source through interaction events with the materials in the 
model until it escapes via absorption or moves out of the 
geometric or energy domain of the problem. During this 
processing, scores (tallies) are accumulated. The process 
is repeated until a specified number of histories are 
reached or a time limit is exceeded. 
Stage 3: Post processing, where scored data are analysed 
and formatted for writing to output files. 

Typically the reading, set up, post-processing and 
output, performed in stages 1 and 3, constitute <1% of the 
total run time for a MCBEND calculation. As such, there 
is very little to gain from the significant amount of effort 
needed to apply multi-threading to stages 1 and 3. 
Therefore, the multi-threaded parallelisation of 
MCBEND has only been applied to stage 2, the main 
calculation. The basis of this implementation can be seen 
by the simple ‘fork join’ model detailed in figure 1. 

 

 
Figure 1. Multi-threading model for MCBEND. 

Since each ‘sample history’ within stage 2 of a 
MCBEND shielding calculation is statistically 
independent from all the others, implementing multi-
threading to the simple model presented in figure 1 is 
conceptually a simple problem involving a single coarse 
grain parallel region which encompasses the main 
sampling loop.  A finer grain approach, that is using 
OpenMP to parallelise local sections of the code, for 
example, loops, was considered but it was decided that it 
would likely not deliver the performance or reduction of 
memory requirements desired. 

When designing and implementing the coarse gain 
multi-threaded region within MCBEND, the most 
important consideration was for data to be correctly 
managed. The data within stage 2 of a MCBEND 
calculation fall into the following three categories. 
Thread-private: Data which is private to a specific 
thread and should not be accessed, read from or write to, 
by any other thread running in the parallel region. 
Examples are the current attributes of individual sample 
histories such as the location, direction and energy. 
Global read: Data which all threads within the parallel 
region can read, such as material cross-section values and 
data structures describing the geometry of the problem. 
Global read-write: Data which all threads within the 
parallel region can read from and write to, such as 
scoring tally accumulators which are updated within the 
main sample loop when necessary. 

With regards to data management it is a requirement 
that all thread-private data associated with a given sample 
should not be corrupted by other threads within the 
parallel region. Also, as global data cannot be specified 
within OpenMP as read-only, attention must be given to 
avoid the potential for so called ‘data race’ conditions 
when multiple threads within the parallel region have 
read and write access to the same variable. Violation of 
these conditions can lead to incorrect or irreproducible 
calculation results (reproducibility is necessary for 
verification, see Section 3). 

Within the parallel region all thread-private data is 
duplicated for each individual thread. It was therefore 
critical to intelligently analyse the data present within the 
parallel region to identify a minimum set that needs to be 
thread-private. Having unnecessary amounts of thread-
private data increases both the processing overhead of a 
multi-threaded application and the amount of memory 
used, which, in the limit that everything is declared 
thread-private, would mean that a multi-threaded 
MCBEND would have no advantage over the current 
‘grid’ option. 

The main effort in implementing multi-threading 
within MCBEND was to determine which data should be 
thread-private, shared globally but read only, or shared 
globally and writeable by all threads. In order to feasibly 
implement the correct assignment of all data within the 
parallel region, parts of the code and data structures were 
re-factored. The most challenging aspect of this process 
was to ensure that Fortran derived data types requiring to 
be thread-private were correctly initialised within the 
parallel region, as the OpenMP standard does not ‘deep 
copy’ such data structures, and therefore these had to be 
achieved explicitly. 

Aside from the complexities of data management, the 
implementation of OpenMP within MCBEND has the 
following basic structure. 
� Before entering the main parallel region, a global 

shared copy is made of all derived data type structures 
which are required to be thread-private. 

� The main parallel region is opened. 

Process History (Thread 1)

Next History

Process History (Thread 2)

Next History

Process History (Thread n)

Next History

Post Process and 
Output (Thread 1)

Sequential Section Sequential SectionParallel Section

Read and setup 
(Thread 1)
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� Thread-private copies of derived data types are 
created for each thread using globally shared initial 
values. 

� The number of samples within the calculation is 
divided across the number of active threads using an 
OpenMP parallel ‘DO’ loop. 

� Individual samples are tracked in parallel until all 
histories have been completed, with contributions 
from each sample to scoring tallies accumulated 
where necessary (see Section 2.1 for further details). 

� Once tracking has been completed and the parallel 
‘DO’ loop has been exited, any diagnostic data which 
has been accumulated within each individual thread is 
combined. 

� The main parallel region is closed. 
� Output files are generated sequentially. 

In addition to the data management and basic 
structure described above, the final design of the 
OpenMP implementation required consideration of two 
remaining issues; the appropriate approach for 
accumulating scored quantities within the parallel region 
and the design of a new random number generator which 
generates reproducible calculation results. 

2.1 Scoring Tallies 

During the main calculation it is necessary to regularly 
update values from each sample to scoring tallies within 
the parallel region. For the OpenMP implementation, 
scoring is restricted to the Unified Tally (UT) feature of 
MCBEND, see Section 2.3. The use of UT scoring 
meshes can impose large memory usage on a MCBEND 
calculation, specifically when multiple fine resolution 
meshes are used. It is therefore impractical to define the 
data structures which define the UT scoring meshes as 
thread-private since large amounts of memory would be 
copied for each thread used.  

Instead it was decided that the data structures 
responsible for storing accumulated scoring results would 
be shared globally, with each thread in the parallel region 
having write access. In order to avoid ‘data race’ 
conditions and ensure the validity of scored results, only 
one thread at a time is allowed to update values within a 
scoring mesh, achieved using the OpenMP ‘ATOMIC’ 
directive. When multiple threads attempt to 
synchronously update the same scoring mesh then any 
number of threads above unity are forced to wait idle 
(blocked) until the current thread has finished updating. 

While using shared global data for UT scoring meshes 
does not require duplicating large amounts of memory, it 
has the potential to limit the performance of the code 
when increasing the number of processors used. When 
large numbers of threads are active in the parallel region, 
the likelihood that threads are blocked while updating 
scoring meshes is increased. This can result in a reduction 
of the performance gained from using additional 
processors, i.e. non-linear scaling. 

While the issue of having shared global UT scoring 
mesh data potentially reducing the scaling performance is 

a genuine concern, it is overridden by the practical 
limitations duplicating thread-private UT meshes has on 
the memory requirements of typical system architectures 
used to perform MCBEND calculations. Since the 
maximum number of active threads for typical systems 
running MCBEND calculations is currently of the order 
of 10’s, scaling issues relating to scoring within UT 
meshes are not expected to be fundamentally limiting to 
the performance of calculations.  Looking to the future, 
as numbers of available cores increases further thought 
may need to be given to the treatment or scoring meshes. 

2.2 Random Number Generator 

The Monte-Carlo method of a MCBEND calculation uses 
random numbers to decide the outcome of every event 
that occurs within a sample history. In the sequential 
version of MCBEND each random number is provided by 
a combined lagged Fibonacci generator and linear 
congruential random number generator (RNG). The RNG 
provides a sequence of pseudo-random numbers which 
can be based on an initial user provided seed. If identical 
seeds are used for the same calculation then the same 
random number sequence will be generated enabling 
calculations to be exactly re-produced.  

Unlike the sequential version of MCBEND, within 
the main sampling loop of the multi-threaded parallel 
region the exact sequence of samples is undetermined and 
will be different each time the same calculation is 
performed. Here, the nth random number using the 
sequential RNG’s will be used for a different purpose, 
creating different results, making it impossible to re-
produce a calculation exactly. 

In order to provide re-producible calculation results a 
new RNG has been designed for use within the 
multithreaded parallel region. The new RNG is seeded by 
a user supplied value (if present) and the unique sample 
number of the history being tracked. This new ‘thread-
safe’ RNG therefore produces a unique random sequence 
for each sample history, which is independent of the 
order in which samples are tracked. This allows a direct 
comparison between the results from a sequential 
calculation with those from a multi-threaded parallel 
calculation, or indeed multi-threaded parallel calculations 
generated with differing numbers of threads. The ability 
to generate such reproducible calculation results is 
essential for verification of the multi-threaded parallel 
version of MCBEND as detailed in Section 3. The thread-
safe RNG is the default mode when performing multi-
threaded parallel MCBEND calculations. 

2.3 Functional Specification  

The implementation of OpenMP does not cover all of 
the features contained within MCBEND; implementation 
has been limited to a subset of the more modern 
functional units associated with both neutron and gamma 
particle tracking and scoring.  The main functionality 
omissions that will be included later are the IGES based 
CAD import and electron tracking.  Other omissions 
include the DICE and multi group collision processing, 
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legacy source options and some of the more advanced 
variance reduction methods. OpenMP multithreading has 
been applied to the following functionality within 
MCBEND;  
� FG Simple body geometry, including polygon surface 

CAD import. 
� Unified Tally. 
� BINGO (Neutron and Gamma-ray collision 

processing). 
� Splitting and Roulette (variance reduction). 
� Dump and Restart. 
� Hole Geometry (Woodcock tracking). 
� Looping. 

3 Verification  

When creating the multi-threaded parallel version of 
MCBEND, verification that the developed code is correct 
is of the highest importance. The approach for 
verification was as follows;  
� An ‘intermediate’ MCBEND was created that used 

the new random number generator, detailed in 
Section 2.2, with no other modifications. 

� Each calculation in the test set, see Section 4, was 
performed using a sequential version of the 
‘intermediate’ MCBEND. 

� The results from the ‘intermediate’ MCBEND were 
compared against those from a standard MCBEND 
run. While the exact comparison of results for each 
test case is not possible they were confirmed to be 
statistically equivalent, which provides evidence that 
the new thread-safe RNG is producing the same 
distribution (to within acceptable limits) of random 
numbers as the RNG in the standard MCBEND. 

� The results from the parallel OpenMP MCBEND 
were compared with identically seeded results from 
the ‘intermediate’ MCBEND and an exact match was 
expected.  

Using this intermediate MCBEND allows us to prove 
(for the cases in the test set) that the introduction of 
multi-threading has not changed the basic calculation. 
Here, identical comparisons are only possible due to the 
new thread-safe RNG.  

4 Test Set
For verification purposes the test set comprised 43 cases 
from the standard MCBEND verification set. The 
reduced functionality of the multi-threaded MCBEND 
necessitated this reduced set. Six of these models were 
used for performance testing of the multi-threaded 
version of MCBEND. This subset was chosen to cover 
the range of functionality that has been multi-threaded, as 
detailed in Section 2.3, including both FG and Hole 
geometry features, variance reduction through splitting 
and importance mesh generation, scoring of flux and 
response within UT meshes, different source options and 

collision type processing for neutron, gamma and coupled 
cases. A brief description of each test is given below.  
� 311_bingo: An infinite slab model with a 

monoenergetic uniform source. Scoring of flux occurs 
in a user supplied importance map mesh when 
boundaries are crossed.  

� fuel_flask_gamma: A real world fuel flask example 
for gamma-ray dose rate calculations. Includes 
general, nest and array part FG features. Importance 
mesh is generated using the Calculate option and 
scoring occurs for both flux and response functions. 

� s17_t002: Test of the Unified Tally unit for a gamma 
collision case with a line source. 

� s17_tab001: Uses the pipe hole geometry with 
neutron collision processing. Uses looping 
functionality to produce tabular output for both flux 
and response function scored in UT mesh. 

� v2_aspis_onestep: A coupled neutron-gamma case 
within a complex general part geometry. Scoring is 
for both flux and response function in a UT mesh. 

� v2_b2_hole: Similar to the fuel_flask_gamma test 
case with the inclusion of Square and Plate hole 
geometry features. 

5 Results 
Performance testing of the multi-threaded version of 
MCBEND was performed on both Windows and Linux 
platforms. For Windows the testing was run on a 
standalone machine which has 12 processors. For Linux 
the testing was run on a single node of a HPC which has 
16 processors. For each platform the multi-threaded 
version was compiled using the Intel Fortran 2015 
compiler with the appropriate OpenMP option selected. 

All test cases were run with the number of active 
threads in the parallel region ranging from unity to the 
maximum allowed for the specific platform, 12 for 
Windows and 16 for Linux. The results from all 
calculations were compared to those from the 
‘intermediate’ version of MCBEND and were found to 
match identically.  

Performance results were obtained by measuring the 
total computer processing unit time spent within the 
parallel region and comparing this with timings over the 
same code region (the main calculation sampling loop) 
for the ‘intermediate’ version. All performance timings 
were calculated from wall clock times obtained from calls 
to the Fortran system_clock function 

5.1 Scaling  

Scaling results for the v2_aspis_onestep test case from 
Windows and Linux are shown in figures 2 and 3 
respectively. Here the scaling factor is plotted as a 
function of the number of threads used in the calculation. 
For each plot there are two scaling factors defined as,  

������
��	     and     

���
�
��	  
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where REFseq is the reference time using the 
sequential ‘intermediate’ version of the code, REF1T is 
the calculation time from the OpenMP version using a 
single thread and RUN is the calculation time from the 
OpenMP version for the number of threads being used 

From figure 2 we find that on Windows the scaling 
factors when using the sequential reference times follow 
a linear trend based on the number of threads used, 
however with a constant offset from the exact (‘perfect’) 
linear scaling trend shown in black. Defining an offset 
factor as, 

�
����� �� �ℎ�����
������� !��"�� −  1# ∗ 100 

the offset between the OpenMP results and the exact 
linear trend is approximately 50%, i.e. for 6 threads the 
speed up factor is 4 and for 12 threads the speed up factor 
is 8. 

The linear trend seen in the scaling factors of figure 2 
are a positive sign that OpenMP has been implemented 
correctly, and that performance issues related to the 
scoring (noted in Section 2.1) are not apparent when 
using the order of 10 threads. However, the relatively 
large offset factor noted above is less positive. While an 
offset factor is always expected when implementing 
OpenMP a value of 50% is greater than expected. A 
discussion of reasons behind this offset factor is given in 
Section 6. 

 

 
Figure 2. Scaling results for the v2_aspis_onestep test case on 
Windows. (blue) Scaling factor when the sequential model is 
used as reference run time. (red) Scaling factor when the 
OpenMP model with a single thread is used as the reference run 
time. (black) Exact linear scaling. 
 

 

Figure 3. Scaling results for the v2_aspis_onestep test case on 
Linux. (blue) Scaling factor when the sequential model is used 
as reference run time. (red) Scaling factor when the OpenMP 
model with a single thread is used as the reference run time. 
(black) Exact linear scaling. 

From figure 3 we find that the scaling results for 
Linux have the same form as those found for Windows. 
The scaling factors again follow a linear trend based on 
the number of threads used. However the offset factor 
seen when using the sequential reference times are larger 
than those found under Windows. Here the offset factor is 
of the order 120%, i.e using 8 threads results in a scaling 
factor of slightly less than 4 and using 16 threads results 
is a scaling factor of slightly less than 8. 

It should be noted that all models within the test set 
exhibit scaling behaviour of the same form as that shown 
for the v2_aspis_onestep case, and as such these results 
are not displayed. 

5.2 Test Set Performance  

In addition to the scaling results presented above, the 
performance of all test set models under Windows and 
Linux are presented in tables 1 and 2 respectively. Here, 
SFSEQ is the scaling factor when using sequential times as 
the reference, SF1T is the scaling factor when using time 
from OpenMP with a single thread as the reference and 
the RUN times are those obtained with the maximum 
number of threads available on each platform,  

Table 1. Windows test set performance results. 

Test Name REFseq(s) REF1T(s) RUN(s) SFseq SF1T 
311_bingo 42.29 68.89 6.77 6.24 10.17 

fuel_flask_gamma 94.64 119.12 12.54 7.54 9.49 
S17_t002 32.51 46.69 4.6 7.06 10.14 

S17_tab001 288.47 288.23 30.60 9.42 9.41 
v2_aspis_onestep 100.76 128.09 12.43 8.10 10.30 

v2_b2_holw 114.75 149.82 14.60 7.85 10.26 

Table 2. Linux test set performance results. 

Test Name REFseq(s) REF1T(s) RUN(s) SFseq SF1T 
311_bingo 14.71 35.15 2.37 6.2 14.81 

fuel_flask_gamma 33.6 59.75 6.38 5.26 9.35 
S17_t002 10.86 21.21 1.96 5.53 10.81 

S17_tab001 100.12 180.56 19.24 5.2 9.38 
v2_aspis_onestep 29.41 59.54 4.05 7.26 14.70 

v2_b2_holw 39.95 70.11 7.99 4.99 8.76 

 
From table 1 we find that the scaling factor when 

using the sequential reference times ranges from ~6-9.5 
when using the maximum 12 threads. The offset factor 
for these results ranges from ~25-100% with an average 
offset factor of ~60%. 

From table 2 we find that the scaling factor when 
using the sequential reference times ranges from ~5-7 
when using the maximum 16 threads. The offset factor 
for these results ranges from ~120-200% with an average 
offset factor of ~180%. The performance results for the 
Linux platform are therefore consistently poorer than 
those seen under Windows. 
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6 Discussion and Conclusions 
The magnitude of the difference in scaling factors 
observed when the OpenMP model with a single thread 
and the sequential model were used as the reference was 
not expected.  The same source code was used to build 
the sequential and OpenMP versions that were used for 
performance testing. The only difference was the build 
option to enable OpenMP.  What we have observed is 
that OpenMP running a single thread is approximately 
twice as slow as sequential code on Windows and 
between two and three times as slow on Linux. 

An analysis of this performance issue using a simple 
test program revealed a problem associated with 
accessing data that is private to a thread but declared 
outside the scope of the parallel region, for example, 
Fortran module data declared using the OpenMP 
‘THREADPRIVATE’ clause.  For production code we 
use the Intel Fortran compiler and we have seen the 
problem using versions 13, 15 & 16 on the Windows and 
Linux operating systems.  Intel has informed us that the 
performance issue is caused by additional run time 
checking that the data exists. Intel suggested not using 
THREADPRIVATE. This solution would require 
considerable re-factoring and is not a desirable option for 
us at this time.

Trials with version 6.1 of the Gfortran compiler on 
Linux do not show this problem and the difference 
between the OpenMP model with a single thread and the 
sequential case is of the order of a few percent.  We are 
considering using an alternative compiler for the 
production version of the OpenMP MCBEND. 

Another aspect of the performance is the memory use, 
especially as reducing the memory requirements of a 
parallel run is the main driver for this work.  A multi-
threaded case uses more memory than a sequential case 
but less than the equivalent ‘grid’ case.  For example, a 
calculation using 12 threads uses four times the memory 
of a sequential calculation.  This is a significant saving 
compared to the ‘grid’ option. 

In conclusion we are very pleased with the linear 
nature of the scaling graphs which show, at least for the 
current test cases and current number of threads, that we 
have not yet reached a point where there is excessive 
interaction between threads.  The main objective of 
reducing the memory requirements of a parallel 
calculation by using OpenMP has been met. The highest 
priority for us is to effectively remove the difference in 
offset factor between OpenMP with a single thread and 
the sequential case before we would consider a 
production version of MCBEND with multi-threading. 
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