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Abstract. The Dirac equation of g-deformed hyperbolic Manning Rosen potential in D
dimension was solved by using Supersymmetric Quantum Mechanics (SUSY QM). The D
dimensional relativistic energy spectra were obtained by using SUSY QM and shape invariant
properties and D dimensional wave functions of g-deformed hyperbolic Manning Rosen
potential were obtained by using the SUSY raising and lowering operators. In the non-
relativistic limit, the relativistic energy spectra for exact spin symmetry case reduced into non-
relativistic energy spectra and so for the wave functions. In the classical regime, the partition
function, the vibrational specific heat, and the vibrational mean energy of some diatomic
molecules were calculated from the non-relativistic energy spectra with the help of error
function and imaginary error function.

1. Introduction

One of the important tasks of relativistic quantum mechanic is finding an accurate exact solution of
Dirac equation for a certain potential. The bound state solutions of Dirac equation for some potentials,
central and non-central, have been investigated by some authors [1-6]Jusing NU method, SUSY QM
method [7-11], and Romanovski polynomial method [12-16]. It is known that for very limited
potential, three dimensional radial Dirac equation is exactly solvable only for s-wave (I = 0).
However, the three dimensional radial Dirac equation for the spherically symmetric potentials can not
be solved analytically for [ # 0 states because of the centrifugal term ~r~2[17-19]. the Schrodinger
equation can only be solved approximately for different suitable approximation scheme. One of the
suitable approximation scheme is conventionally proposed by Greene and Aldrich [23-20].
Furthermore, the extension in higher dimensionalspaces for some physical problems is very important
in some area. The multidimensional non-relativistic andrelativistic physical systems have been
investigatedby many authors, such asring-shaped pseudoharmonic potential[21], isotropic harmonic
oscillator plus inversequadratic potential [22], Pseudoharmonic potential[23], Kratzer-Fues
potential[24-25],hydrogen atom [26],modified Poschl-Teller potential[27], linierly energy dependent
quadratic potential [28], trigonometric scarf potential [29], ring-shaped Kratzer potential [30].

In this paper we will attempt to solve the Dirac equation for a charged particle moving in a field
governed by hyperbolic Manning Rosen potential [31] using supersymmetric quantum mechanic
(SUSY QM) with idea of shape invariance. SUSY QM method is developed based on Witten proposal
[32] and the idea of shape invariant potentialis proposed by Gendenshtein [33]. SUSY QM is a
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powerful tool to determine energy spectrum and wave function of a class of shape invariant potentials.
The relativistic energy spectrum obtained by using the idea of shape invariance and the wave functions
are achieved by using lowering and raising SUSY operator. Some of hyperbolic and trigonometric
potentials are exactly solvable within the approximation of centrifugal term and their bound state
solutions have been reported in the previous papers[10-11]. In the non-relativistic limit, the relativistic
energy equation reduces the non-relativistic energy equation that will be applied to study the thermal
properties including vibrational mean energy U, and specific heat C[34,35]. This paper is organized as
follows. Brief review of SUSY quantum mechanics is presented in section 2, solution of Dirac
equations are presented in section 3 and conclusion is presented in section 4.

2. Review of Supersymmetric Quantum Mechanics Approach Using Operator

2.1. Supersymmetry Quantum Mechanics (SUSY QM)
According to the definition proposed by Witten, in a supersymmetry quantum system there are super
charge operators Q, which commute with the Hamiltonian H_ [32] and given as

[Q.H.]=0 with, i=1,2,3,..N (1)
and they obey to anti commutation algebra

JlQi’QJ'}z b‘inss 2

with H is called supersymmetric Hamiltonian. Witten proposed that the SUSY QM is the one
dimensional model of SUSY field theory and he stated that the simplest SUSY QM system has N=2

[32] where
(J/x/—)(al(p/«/%)Jraz(o(X)) and Q, = (1/42)(o; (p/V2m )+ o0() ©)

where o; are the usual Pauli spin matrices, p =—iz(5/ox) is the usual momentum operator, and #(x) is

superpotential. By inserting equation (2) into equation (1) we get,
_mdt L h dg()

Ho_| 2madx’ m dx () 0 :[H+ 0] 4)
+¢*(X)

0 4 = 8
2mdx®2  +2m  dx

Here H_ and H, & are supersymmetry partner of the Hamiltonian, V_(x) and V, (x) are the

supersymmetry partner potential. To simplify the determination of the energy spectrum and the wave
functions, the new operators are introduced given as

n d
A= —— and A= "9, (®)
T e +(X) Tam dx ¢(x)
A" as raising operator, and A as lowering operator. By inserting equation (5) into equation (4) we get
H_ (x)=AA,and H, (x) = AA" (6)
It is always possible to factorize the usual Hamiltonian as
2 2
H=H +E,=- ;’ §2+V(xa0)+E (7

From equations (4) and (7) we get,
V(x)=v_(x:ao)+Eo=¢2(x:%)—r¢(x a,) + Eq (8)

where V (X) is the effective potential, while ¢(X) is determined hypothetically from equation (8)
based on the shape of effective potential from the associated system.
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2.2. Shape Invariance

The supersymmetry only gives the relationshipbetween the eigenvalues and eigenfunctions of the two
Hamiltonian partners but does not yield the actual spectrum [36]. The energy spectrum is obtained by
applying the shape invariant condition proposed by Gendenshtein [33]. If the pair of supersymmetric

partner potentials V., (X) are similar in shape and differ only in the parameters, then they are said to be
shape invariant. More specifically, if V, (X, &,) satisfy the requirement that

V+(X; aj) = V—(X; aj+l) + R(aj+1) (9)

with
V+(x;a,-)=¢2(X;aj)+%¢'(X;aj) (10)
V.(xa,.,) =4 (% a,.) —%qﬁ'(x; a,.,) (12)

where j =0,1,2,.., and a is a parameter in our original potential, V., whose ground state energy is zero,
a; = f;(a,) where fjis a function applied j times, the remainder R(@;) is a’s dependence.

The energy eigenvalue of the Hamiltonian H_ is given by [33]

E.” =2, .R@) (12)
and by using equations (7) and (12) we get the total energy spectra,
E =E" +E, (13)

Based on the characteristics of lowering operator, the ground state wave function is obtained from
condition that,

Ay, =0 (14)

The n™ level of the the wavefunctions are obtained by applying raising operator operated to the lower
wave function [37], given as

(G a) = AT(X 8g) AT (X&) AT (X, 8, )yd (%) (15)

The potential partners V, (X,a,) and the SUSY operators, A" and Aare obtained from equations (4),

(5), and (8), and the energy spectrum from equations (8), and (12), the wave function obtained from
equations (14) and (15).

3. Solution of Dirac Equation in D Dimension
The Dirac equation with the scalar potential S(F) and magnitude of vector potential V (T') is given as
[38]

{@.p+pM +S()y(r) ={E-V(F)}y(r) (16)
where M is the relativistic mass of the particle, E is the total relativistic energy, and P is the three-
dimensional momentum operator, —iv

“2(2 ‘gj,and ﬂ:[(l) _OJ (17)

with & are the three-dimensional Pauli matrices and | is the 2 x 2 identity matrix. The potential in
equation (16) is spherically symmetric potential, and we have taken # =1, c=1. The Dirac equation
expressed in equation (16) is invariant under spatial inversion and therefore its eigen states have
definite parity. By writing the spinor in D dimension [39-40]as

;(f)j_ 1 (FHK(r)Y,-'m(e.(p)J 18)

w(f)Z[Q(r) —E iG (NY/,(0,9)
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If we insert equations (17) and (18) into equation (16) and use matrices multiplication, we achieve
&.pQ(r) ={-M =S(r)+E-V ()} () (19)
&.pS (M) ={M +S(r)+E -V (rH(r) (20)
In the exact spin symmetric case, when the scalar potential is equal to the magnitude of vector
potential S(I') =V (F') , then from equations (19) and (20) we have

|v| E ={-M -2V (r)+E}{(F) (21)

By applying the Pauli matrices, it is simply shown that if (6.p)(5.p)= p?, then equation (21)
becomes
p*+2V (r)(M+E)¢(r) =(E*-M?)<(r) (22)
Since in D dimensions [39-40], p° = —A, =—V2 where
N, 4 0 L2
V2D=I’1D— 1< D L2|
or or] r?

then we get the Dirac equation in D dimension for the case of exact spin symmetry by inserting
equations (18) and (23) into equation (22) as
D-1 D-3

2 I+ )(| +—)
Tl S22 R - OM )R =-E M) @9

By setting V — (]/ 2)V in equation (24) then the Dirac equation in equation (24) reducesinto one
dimensional Schrodinger type equation. Forthe similar vector and scalar potentials which is given as
hyperbolic Manning-Rosen potential, V (1) = (t2 (77(77 —1)/sinh? tr) —2tvcoth, tr) , equation
(24) becomes

=1(1+D-2)Y,, (23)

m

-3
2 (1 + )(I + —)
Fucl) 2 Fy(r) —(tz 77.(7:] ;tlz —2tvcoth, trJ(M +E)F(r) =—(E2 = M?)F, () (25)

or? r? sinh ?
where0<tr<z/2, n>1, v>0, and in this case, t > 0, thet parameter has to control the width of

the hyperbolic Manning-Rosen potential. In order to solve theradial Dirac equation in equation (25),
we use the approximation value for the centrifugal term as in Greene and Aldirch, and in lkdhair

1
[13, 23], 7= Z(do +WJ , fortr <<landd, =1/12. In the centrifugal approximation scheme,
q
equation (25) becomes
D3

D-1
) t*n(-D(M +E)+(+— )1+
0 F”Kz(r)— S 2 _2tv(M +E)coth, tr |F, (r)
ar sinh tr (26)

%I——aa———ﬁd—( —Mﬁ}@«)
By setting

01 -1)(M +E)+ (1 +2 Xl——ﬂ 7~ V(M +E)=v 27)
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{a ; Dz_l)(l ; D2_3)t2d0 (IR 2)} —_E

(28)
in equation (26) then it becomes
2 1 " 2
‘ ';”Kz(r) —(77 @h zlt)t —2tv'coth, tr [Fy (1) = —E'Fiy (1)
r sinh ; tr (29)
and the effective potential in equation (29) is given as
1 I_ 2
V= M —2tv'coth, tr (30)
sinh | tr

Equation (29) is solved using SUSY QM and by introducing thehypothetical super-potential as in [32-
33]

¢(r) =tacoth, tr +g (31)

By inserting equations (30) and (31) into equation (10) and by taking the ground state energy as &,we
get

2,2 2 2 2 [ L
taq +t2a2+2tbcothqtr+%+[ tqa J:t n'(n 1)}—Ztv'cothqtr—go (32)

sinh % tr sinh % tr sinh 7 tr
From equation (32) we have
] U 2
a2+a=M, b=—v',(t2a2+—2j=—go (33)
g a
and thus from all expressions in equation (33) we get the values of a,b, and &, that have physical
meaning as,
_ n'm'-1) 1] . po_y
bZ
Ey = —(tzaz +¥J (35)

where equation (35) is the ground state relativistic energy equation of the system. By using equations
(30), (33) and (34), the super-potential is obtained, given as

¢(r) =tacoth,, tr +g (36)
By inserting equation (36) into equatons (5) and (6) we get the super-partner potentials as
t’ga(a +1) N
V_ (r,a,) =——5——+2tbcoth tr +t"a” + — 37
(1) sinh 2tr ‘ a’ (37)
t’ga(a-1) 2, . b
V. (r,a,) =—————=>+2tbcoth tr+t“a” + — 38
(1,8) sinh 2 tr a a’ (38)
Fora—a-1
t*{(a-1)(a) , b?
V(r,al):W_Ztv coth tr +t*(a—1) + a1 (39)

By comparing the coefficient of the variables in equations (37) and (38) we obtain the mapping
parameters 8,,d;,....8, givenas: a,=a,a =a—1...,a,=a—-n (40)
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By using equations (37) and (40) we have

a-2)(a-1)}

(41)
sinh 2 tr

2 2
V.(r,a,) =" { 2tv'cothtr +t?(a—2) + b
2 (a

_ 2)2
From equations (39) and (41) we can see thatV+(r,a0) have the same function form as V_(r,a,) and
by using the shape invariance condition in equation (11),we get

b 2 b
R(a)=V.(r;a,)-V (r;a)=t*a*+——| t*(a-1)" + 42
() =V.(r;a) -V (r;a) 2 ( (a-1) (a_l)zj (42)
Using generalizations of equation (42) and by using the mapping condition equation (40) we obtain

R(a,)=V,(r;a,,)-V. (r;a,) =t*(a—(n —1))2 +ﬁ—[tz (a—n)2 + (aEZn)Z) (43)

Using equations (14), (15), (42) and (43) we get

g(‘):t2a2+ﬁ— tz(a—n)2+b—2 (44)
n a‘2 (a_n)Z
that gives
g, =E'=—|t*(a-n)"+ b’ (45)
n— - (a_n)Z
a:—1/2+\/{@+1/4}=—1/2+J{%um—llmq)} (46)

By inserting equation (27) into equation (46) we get

D-1 D-3

nn-D(M+E)+(+ (I + )
a=-1/2+ 2 2 " i1/4lb=—v'=—v(M+E) (7

q
By inserting equations (28)and (47) into equation (45) we obtain the relativistic energy equation given
as
D-1 D-3 2 b?

E?’-M?)=(+ |+ t’d, —|t*(a—n) + —— 48
( ){( )X 2)o(( )(a—n)zJ} 48)

with a and b are expressed in equation (47).
The relativistic energy spectrum in Table 1 is obtained numerically from the relativistic energy
equation in equation (48) with the help of the Math-Lab software application.

Table 1. Relativistic energy spectra (do, = 12,t =08,n=11l=2,M=

12
10 fm~Ln=2,v=15)

E(fm™)
Parameter

q=0.1 q=0.2 q=03 q=04 ¢g=05
D=2 -13.88 -13.30 -12.72 -12.16 -11.69
D=3 -17.22 -16.40 -15.52 -14.65 -13.84
D=4 -21.54 -20.46 -19.24 -17.99 -16.81
D=5 -26.85 -25.47 -23.88 -22.22 -20.60
D=6 -33.15 -31.45 -29.44 -27.30 -25.18
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In the non-relativistic limit, the relativistic energy reduces to non-relativistic energy as follows since
(E-+M)—21, 4 is the non-relativistic mass, and (E-M)— E,, E,z is the non-relativistic energy then

we have
EZ—MZZ(E-i-M)(E—M):ZILIENR (49)

and equation (47) becomes

D-1 D-3
0 —D2ur A+ =0+ =05 (50)
q

ayg =—-1/2+

The relativistic energy equation in equation (48) for special case, D = 3, reduces the the non-
relativistic energy given as

2
t2 —1/2+.J{"07_92§*('+D'+1/4}—n
d+pt3d, 1 (51)
E =27 "0 - 2,2
NR 2. 2| + 4V i
—412+—J{”O7_DZ”*('+D'+1/4}—n
q

which is in agreement with the energy of the hyperbolic Manning-Rosen potential obtained using other
methods [41], and for any dimensions, D, the non-relativistic energy is given by

1 D-1 D-3.., ) ) v'?
ENR :Z{(H‘ 2 )(|+ 2 )t do_[t (aNR_n) —j} (52)

+ 2
(aNR - n)

witha, is expressed in equation (50).

D-1 D-3 R :
For small value of do, (I + > )1+ > )t?d, ~0 , therefore the non-relativistic energy is

approximated by: __ e RO 53
PP y Eve w@@mn%W%_WJ (53)
By manipulating equations (7), (16), (17), and (41) we obtain the relativistic ground state and first
excited state wave function as follows. By inserting equations (41) and (7) into equation (16), we get
the radial ground state wave function as

d V' - o Yt
(aJr(tacothqtr—ngo =0->F =(S|nh qtr) “ea (54)
The first exited state of wave function is obtained by

F = (_ % +tacoth, tr — ng F,—F = Z{at(cothq tr)- [Vgﬂ(sinh Jtr)%es  (55)

and the second exited state wave function is

F, = 2{[at2q(csc hetr )]+ Z[at(coth tr)— (Vgﬂz (sinh tr)® e;r} (56)

and for the higher levels of the relativistic wavefunctionscan be obtained using SUSY operators.
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3.1. Thermodynamical Properties

In classical regimes [42], the vibrational partition function, vibrational mean energy, and specific heat
are obtained from the non-relativistic energy equation in equation (53).The vibrational partition
function is defined as

4
2. )= e p =% (57)

k is Boltzman constant, En is non-relativistic energy spectrum of the system. The non-relativistic
energy of the system in equation (53) for special case whenv is very small then the non-relativistic
energy in equation reduces to

~(Y2u)(t* (n-¢)) (58)
and therefore the vibrational partition function in equation (57) reduces to
1 (n=5)
Py ( (n—¢) <
Z($,p) = Ze PEn =Ze Z { } (59)
n=0
By setting
D-1 D-3
1 - n01=D2p+(1+= )1+ =)
_z___y;gzaNR=—1/2+ +1/4
2u 8% 6 q (60)

in equation (59) and in the classical regime when the temperature, T, is high enough, causes the value
of ¢ ishigh,and /£ is small then equation (59) could be written into integral form as
¢/

Z(c, ) = Zey = jey dy = (J_/z)erfu (¢/5) _|(J_/2)erf i£/5) (61)

In this section, the thermodynamlcs properties will be expressed in terms of two
mathemathicalfunctions: the Dawson function and the imaginary error function. The Dawson function
or Dawson integral (named for John M. Dawson) is denoted as [43]

Jre X erfi (x)

F()=e™ [e'dy= 62
(x)=e e’ dy : (62)
and the imaginary error function is defined by
erfi(x) = ierf (ix) (63)
where erf is the error function given as
erf (x e dt (64)
-2

By applying equations (58,61-64) the vibrational specific heat and the mean energy are obtained.The
vibrational mean energy is

T B AT

The vibrational specific heat is
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tc 7 2 2u) 2./2up (66)
2 2
2\/2,uﬂ Dawson F(t\/ﬁgj Dawson F 7t\/zg
N2u N 2u
The vibrational mean energy and the vibrational specific heat of the system of diatomic molecules

governed by hyperbolic potential are calculated numerically using equations (65) and (66) with the
help of Math-Lab software, which is shown in figure 1 below,

12

C(5.0) =—8%U(;,ﬂ) ——kp?

Of==z==

n N2 mmmmmT
\

1003 H -
H -500 L
} -

i
8 v 1 -1000
1

Up.g)
Cip.t)

-1500

4 5 E 2000
N

¢
2 ha's 1 -2500 78 e 12

0 -3000 L L s L
0 02 04 06 08 1 0 02 04 06 08 1

B B
(a) (b)
Figure 1. Graph of (a) mean energy U (3,¢) as a function of £, (b)vibrational specific heat

C(B,<) as afunction of S (for D=3)

From figure 1(a) and 1(b) we see that vibrational mean energywhose is governed by g-deformed
hyperbolic Manning-Rosen potential are positives and specific heat for system are negatives. The
negative specific heat may occur at the astronomical objects [44], at the glass transitions [45] and
refers to previous research[46,47].

4. Conclusion

The relativistic and non-relativistic energy equations for g-deformed the hyperbolic Manning-Rosen
potential are obtainable by using SUSY quantum mechanics. The g-deformed hyperbolic potential is
used to describe the behavior of diatomic molecules. In the non-relativistic limit, the relativistic energy
equation reduces to the non-relativistic energy. By using the imaginary error function and the Dawson
function, the vibrational partition function, specific heat and the mean energy are derived from the
non-relativistic energy equation in the classical regime.
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