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Abstract: In this work, using the noncommutative integration method of linear differential equations,

we obtain a complete set of solutions to the Schrodinger equation for a quantum asymmetric top

in Euler angles. It is shown that the noncommutative reduction of the Schrodinger equation leads

to the Lame equation. The resulting set of solutions is determined by the Lame polynomials in a

complex parameter, which is related to the geometry of the orbits of the coadjoint representation

of the rotation group. The spectrum of an asymmetric top is obtained from the condition that the

solutions are invariant with respect to a special irreducible λ-representation of the rotation group.

Keywords: quantum asymmetric top; noncommutative integration method; λ-representation

1. Introduction

The problem of the asymmetric top in quantum mechanics is a standard one, dealt
with by a number of authors [1–8]. The quantum asymmetric top has many applications,
ranging from quantum information [9] to high-resolution spectroscopy [10], especially in
the fields of molecular [11,12] and nuclear [13–15] physics. It should be noted that the
problem of scalar waves in a frozen Mixmaster universe is mathematically identical to that
of the asymmetric top, except that half-integral angular momenta [16–18].

The stationary Schrodinger equation for a quantum asymmetric top does not allow
the separation of variables in the general case [1] because the necessary and sufficient
conditions for the theorem on the separation of variables are not satisfied [19]. However,
for wave functions that depend on only two variables, the equation admits a separation
of variables in an elliptic coordinate system, which makes it possible to find the spectrum
of an asymmetric top [20]. In this case, the eigenfunctions in the standard approach are
sought in the form of a series of Wigner D-functions.

In this paper, to integrate the Schrodinger equation for a quantum asymmetric top, the
noncommutative integration method of linear differential equations [21–24] is used, which,
unlike the method of separation of variables, allows us to reduce to an ordinary differential
equation in the general case. Note that [25] used this method to study the semiclassical
spectrum of an asymmetric top.

The paper is organized as follows. In Section 2, we introduce the basic concepts from
the quantum theory of an asymmetric top and describe it in terms of the rotation group
SO(3). Section 3 is devoted to finding a complete set of solutions to the Schrodinger equa-
tion using the noncommutative integration method. In Section 4, we study the connection
between the Wigner D-function and a special irreducible representation (irreps) of the
group SO(3), from which the completeness of the obtained set of solutions follows. In the
last Section 5, we summarize and discuss the main results. Some useful technical details
are placed in the Appendix A.

Here, we are using the natural system of units c = h̄ = 1.
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2. The Quantum Asymmetric Top

The Hamiltonian of the quantum top is defined as the operator

Ĥ = AL̂2
1 + BL̂2

2 + CL̂2
3, A ≥ B ≥ C > 0, (1)

where (2A)−1, (2B)−1and (2C)−1 are the principal moments of inertia, L̂a are the compo-
nents of the angular momentum operator along the three principal axes of inertia of the top
and satisfying the commutation relations

[L̂a, L̂b] = L̂a L̂b − L̂b L̂a = −iϵabc L̂c,

where ϵabc is the completely antisymmetric tensor with ϵ123 = 1. The quantum spherical
top corresponds to the case A = B = C and the quantum symmetrical top to the case
A = B ̸= C. A top is called an asymmetric top if A ̸= B ̸= C.

The square of the total angular momentum operator L̂2 = L̂2
1 + L̂2

2 + L̂2
3 commutes

with the Hamiltonian Ĥ, [L̂2, Ĥ] = 0.
Let us describe quantum top problem in terms of rotation group SO(3). We describe

the orientation of the top by Euler angles g = (ϕ, θ, ψ), ϕ ∈ [0; 2π), θ ∈ [0; π), ψ ∈ [0; 2π),
referred to as axes fixed in space. We note that Euler angles parameterize the group element
g ∈ SO(3) (see Appendix A). Projections of the angular momentum operator L̂ with respect
to the axes of the body-fixed reference frame are

L̂1 = iξ1, L̂2 = iξ2, L̂3 = iξ3, [L̂1, L̂2] = −iL̂3,

where ξa are left-invariant vector fields (A2) (see Ref. [16]). Operators for the components of
angular momentum along the axes fixed in space (space-fixed reference frame) are given by:

Ĵx = iη1, Ĵy = iη2, Ĵz = iη3, [ Ĵx, Ĵy] = −i Ĵz,

where ηa are right-invariant vector fields (A3). The square of the total angular momentum
operator is the Casimir operator of the SO(3) group and the same in both reference frames:

L̂2 = K(−iξ) = K(iη) = − 1

sin2 θ

(

∂2

∂ψ2
+

∂2

∂ϕ2
− 2 cos θ

∂2

∂ϕ∂ψ

)

− ∂2

∂θ2
− cot θ

∂

∂θ
,

where K( f ) = f 2
1 + f 2

2 + f 2
3 .

There are three mutually commuting operators X ={L̂3, Ĵ3, L̂2}. We denote the com-
mon eigenfunctions of the set as |j, m, n⟩,

L̂2|j, m, n⟩ = j(j + 1)|j, m, n⟩, j = 1, 2, 3, . . . ,

−L̂3|j, m, n⟩ = n|j, m, n⟩, n = −j, . . . , j,

Ĵz|j, m, n⟩ = m|j, m, n⟩, (2)

They correspond to states with a given angular momentum j and its z-projection
n, with respect to the axes of the body-fixed reference frame and z-projection m, with
respect to the space-fixed reference frame. An explicit form of the states |j, m, n⟩ is given
by the Wigner D-functions that are matrix elements of the irreps of the group SO(3) (see
Ref. [3,26]):

⟨g | j, m, n⟩ = D
j
mn(g) = eimϕ+inψd

j
mn(θ),

d
j
mn(θ) = (−1)m−n

√

(j+m)!(j−m)!
(j+n)!(j−n)!

sinm−n θ
2 cosm+n θ

2 P
(m−n,m+n)
j−m (cos θ), (3)
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where P
(α,β)
n (z) are Jacobi polynomials,

P
(α,β)
n (z) = (−1)n

2nn! (1 − z)−α(1 + z)−β dn

dzn

[

(1 − z)n+α(1 + z)n+β
]

.

The completeness and orthogonality conditions for the Wigner D-function have the form:

1

8π2

∫ 2π

0
dψ

∫ π

0
sin θdθ

∫ 2π

0
dϕD

j
mn(g)D

j̃
m̃ñ(g) =

δjj̃

2j + 1
δmm̃δnñ, (4)

j

∑
n=−j

D
j
mn(g)D

j
m̃n(g) = δmm̃. (5)

Thus, the Hamiltonian (1) is expressed in terms of the left-invariant vector fields on
the group SO(3),

Ĥ = H(−iξ), H( f ) = A f 2
1 + B f 2

2 + C f 2
3

and commutes with right-invariant vector fields ηa. The states of a quantum top are
determined by the wave function, which is a function on the group SO(3).

There is a set of two mutually commuting symmetry operators (the Casimir operator
K(−iξ) and one of the operators ξa). The state of the top with a certain value of quantum
numbers j and m is described by the system

Ĥ | j, m⟩ = E | j, m⟩, (6)

L̂2 | j, m⟩ = j(j + 1) | j, m⟩,
Ĵz | j, m⟩ = m | j, m⟩.

Note that the system (6) cannot be solved by the separation method variables. In the
standard approach [1,16], the solution of Equation (6) is sought as:

| j, m⟩ =
j

∑
n=−j

aj,n|j, m, n⟩. (7)

Substituting (7) in Equation (6), we obtain a (2j + 1)-dimensional linear system

j

∑
n=−j

aj,n′
(

Hn,n′ − Eδn,n′
)

= 0, Hn,n′ = ⟨j, m, n | Ĥ | j, m, n′⟩, (8)

for the quantities aj,n. The roots of equation

∥

∥Hn,n′ − Eδn,n′
∥

∥ = 0 (9)

determine the energy levels of the top, after which the system of Equation (8) allows one to
determine the wave functions of an asymmetric top with given values j and m.

The secular Equation (9) is of degree 2j + 1. In fact, the eigenvalues E are independent
of m. This is so because the Hamiltonian Ĥ commutes with the raising and lowering
operators Ĵ± = Ĵ1 ± i Ĵ2. The specialization of the eigenvalue (6) equation to m = 0,

Ĥ | j, 0⟩ = E | j, 0⟩,
L̂2 | j, 0⟩ = j(j + 1) | j, 0⟩,
Ĵz | j, 0⟩ = 0 (10)
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admits separation of variables in the elliptic coordinates [20]. The elliptic coordinates
(ρ1, ρ2), ρ1 ∈ (B, A), ρ2 ∈ (C, B) are defined as

sin θ sin ψ =

√

(A − ρ1)(A − ρ2)

(A − B)(A − C)
,

sin θ cos ψ =

√

(B − ρ1)(B − ρ2)

(A − B)(A − C)
, cos θ =

√

(C − ρ1)(C − ρ2)

(C − A)(C − B)
.

The solution of the system (10) in elliptic coordinates ψj(ρ1, ρ2) = ⟨ρ1, ρ2 | j, 0⟩ has the
form:

ψj(ρ1, ρ2) = Λj(ρ1)Λj(ρ1),

where function Λj(ρ) satisfies the differential equation

{

4
√

P(ρ)
d

dρ

(

4
√

P(ρ)
d

dρ

)

− j(j + 1)ρ + E

}

Λj(ρ) = 0, (11)

which can readily be identified to be a Lame equation in algebraic form.
It follows from the theory of the Lame differential equation that for integers j, there

are 2j + 1 linearly independent and mutually orthogonal functions Λj,s(ρ) (the Lame
polynomials) corresponding to 2j + 1 different eigenvalues Ej,s, s = −j, . . . , j. Solutions to
the Equation (11) are represented as series

Λ
(1)
j (ρ) = ∑

∞
k=0 ak(ρ − B)j/2−k,

Λ
(2)
j (ρ) =

√

ρ − A ∑
∞
k=0 bk(ρ − B)(j−1)/2−k,

Λ
(3)
j (ρ) =

√

ρ − C ∑
∞
k=0 ck(ρ − B)(j−1)/2−k,

Λ
(4)
j (ρ) =

√

(ρ − A)(ρ − C)∑
∞
k=0 dk(ρ − B)j/2−k−1. (12)

From Equation (11), the recurrent relations for the coefficients ak, bk, ck and dk follow,
where al = bl = cl = dl = 0 for l < 0. The eigenvalues of Ej,s are obtained from the
finiteness conditions for the series (12):

a⌊j/2+1⌋ = b⌈j/2⌉ = c⌈j/2⌉ = d⌊j/2⌋ = 0, (13)

where ⌊x⌋ = max{m ∈ N | m ≤ x} is the floor function and ⌈x⌉ = min{m ∈ N | m ≥ x} is
the ceiling function.

From (13), the eigenvalues Ej,s are determined. For even values of j, we have one
equation of degree j/2 + 1 and three equations of degree j/2, whose solution is 2j + 1
different eigenvalues Ej,s. For odd values of j, we obtain three equations of degree (j + 1)/2
and one equation of degree j/2, the solution of which is also 2j+ 1 different eigenvalues Ej,s.

3. The Noncommutative Integration

In this section, we obtain a complete set of solutions to the stationary Schrodinger
equation

ĤΨ(g) = EΨ(g) (14)

with the Hamiltonian (1). Equation (14) can be thought of as the quantum equation on the
SO(3) group. To construct solutions of quantum equations on the Lie groups, it is efficient
to use the noncommutative integration method [21–23,25,27]. We apply this method to the
Equation (14).

First, we must construct a special representation of the Lie algebra so(3) of the group
SO(3). Following the papers [21,23,25,27–29], we introduce an irreducible λ-representation
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(λ-irrep) of the Lie algebra so(3), which is parametrized by the parameter j = 1, 2, . . . and
acts in the space F j functions of the form

Ψ(q) =
j

∑
n=−j

cneinq, q ∈ Q, cn = const, (15)

where Q = {q = α + iβ | α ∈ [0; 2π), β ∈ (−∞,+∞)}. The λ-irrep of the Lie algebra so(3)
in space F j is given by the operators

ℓ1(q, ∂q, j) = −i sin q∂q + ij cos q,

ℓ2(q, ∂q, j) = −i cos q∂q − ij sin q,

ℓ3(q, ∂q, j) = ∂q, [ℓa(q, ∂q, j), ℓb(q, ∂q, j)] = ϵabcℓc(q, ∂q, j). (16)

The operators f̂a = −iℓa(q, ∂q, j) are Hermitian with respect to the scalar product

(Ψ1, Ψ2)
j
Q =

∫

Ψ1(q)Ψ2(q)dµj(q), Ψ1, Ψ2 ∈ F j,

dµj(q) = Cj
dq∧dq

(1+cos(q−q))j+1 , Cj =
(2j+1)!

2j(j!)2 , (17)

and satisfy the commutation relations

[ f̂a, f̂b] = iϵabc f̂c, K( f̂ ) = f̂ 2
1 + f̂ 2

2 + f̂ 2
3 = j(j + 1).

The set of functions ψn(q) = einq is orthogonal with respect to the scalar product (17):

(ψn, ψñ)Q =
1

Bnj
δnñ, Bnj =

(j!)2

(j − n)!(j + n)!
.

This follows the formula for the decomposition coefficients (15):

cn = Bnj(Ψ, ψn)Q.

Then, the generalized Dirac function in space F j,

Ψ(q) =
∫

Q
Ψ(q′)δj(q, q′)dµj(q

′), Ψ ∈ F
j

is given by the expression

δj(q, q′) =
j

∑
n=−j

Bnjψn(q)ψn(q′) =
2j + 1

Cj

(

1 + cos(q − q′)
)j

. (18)

The λ-irrep (16) corresponds to a non-degenerate integer coadjoint orbit of the group
SO(3) that passes through the covector λ(j) = (j, 0, 0) (see Ref. [22]),

Oj = { f ∈ R
3 | K( f ) = j2, f ̸= 0}. (19)

The Kirillov form ωj = (d f1 ∧ d f2)/ f3 in the orbit Oj sets a symplectic structure [30].
It is well known that on the symplectic manifold, the Darboux canonical coordinates exist
in which the symplectic form is canonical. There is the linear canonical transition

f1(p, q, j) = −ip sin q + j cos q,

f2(p, q, j) = −ip cos q − j sin q,

f3(p, q, j) = p
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from the coordinates on the orbit to the Darboux coordinates (p, q), ωj = dp ∧ dq. Note

that the operators f̂a can be considered as a result of qp-quantization of the orbit Oj,

f̂a = fa( p̂, q̂, j), p̂ = −i∂q, q̂ = q (see Ref. [25]), and the set Q is a Lagrangian submanifold
to the orbit Oj.

Within the noncommutative integration method of linear differential equations, wave
functions of asymmetric top are sought as a solution system of equations

Ĥ(g)Ψ(q, j; g) = EΨ(q, j; g), (20)
[

ηa(g) + ℓa(q, ∂q, j)
]

Ψ(q, j; g) = 0, (21)

where the operators ηa commute with Hamiltonian, [Ĥ(g), ηa(g)] = 0. Note that since

[ηa(g) + ℓa(q, ∂q, j), ηb(g) + ℓb(q, ∂q, j)] = ϵabc

(

ηc(g) + ℓc(q, ∂q, j)
)

,

then the system (21) is consistent. Integration of the system of Equation (21) gives

Ψ(q, j; g) = (cos θ + i cos(q + ϕ) sin θ)j
Φj

(

2 arctan
[

eiθ cot
(

q+ϕ
2

)])

. (22)

Substituting (22) into the Equation (20), we obtain the reduced equation

H(−iℓ(q′, ∂q′ , j))Φj(q
′) = EjΦj(q

′). (23)

The Equation (23) describes a quantum asymmetric top in λ-representation. The
Hamiltonian H(−iℓ(q′, ∂q′ , j)) = H( f̂ ) can be considered as the result of qp-quantization
of the classic top on the coadjoint orbit (19).

Taking into account the explicit form of the λ-irrep operators (16), we obtain an
ordinary differential equation for the function Φj(q

′):

{

(A sin2 q′ + B cos2 q′ − C)
d2

dq′2
+ (sin q′ cos q′)(1 − 2j)(A − B)

d

dq′
(24)

+(A cos2 q′ + B sin2 q′)j2 + j(A sin2 q′ + B cos2 q′)− Ej

}

Φj(q
′) = 0.

What is remarkable is the fact that by replacing

Φj(q
′) =

(

2(A − C)(B − C)

ρ(q′)− C

)

j/2Λj

(

ρ(q′)
)

, (25)

ρ(q′) =
2(A − C)(B − C)

A + B − 2C − (A − B) cos 2q′
+ C,

we obtain the Lame equation in algebraic form (11) on the function Λj(ρ):

{

4
√

P(ρ) d
dρ

(

4
√

P(ρ) d
dρ

)

− j(j + 1)ρ + Ej

}

Λj(ρ) = 0.

Thus, we arrive at the same Equation (11) as in the case of separation of variables in
the elliptic coordinate system but on a function of the complex variable ρ = ρ(q′). As will
be shown below, in contrast to the set of solutions ψj(ρ1, ρ2), the set of solutions Ψ(q, j; g)
forms a complete set.

Solutions that respond to Lame polynomials (12) will be labeled as follows:

Φ
(N)
j (q′) =

(

2(A − C)(B − C)

ρ − C

)j/2

Λ
(N)
j (ρ), ρ = ρ(q′), N = 1, 2, 3, 4.
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Let us write it explicitly:

Φ
(1)
j (q′) = (2(A − B)(B − C))j/2

×∑
∞
k=0

ak

(B−C)k (cos q′)j−2k(
a − cos2 q′

)k
,

Φ
(2)
j (q′) = i(2(A − B)(B − C))j/2

√

A−C
B−C sin q′

×∑
∞
k=0

bk

(B−C)k (cos q′)j−2k−1(
a − cos2 q′

)k
,

Φ
(3)
j (q′) = (2(A − B)(B − C))j/2

√

A−C
A−B

×∑
∞
k=0

ck

(B−C)k (cos q′)j−2k−1(
a − cos2 q′

)k
,

Φ
(4)
j (q′) = i(2(A − B)(B − C))(j−1)/2√A − C sin q′

×∑
∞
k=0

dk

(B−C)k (cos q′)j−2k−2(
a − cos2 q′

)k
,

where a = (A − C)/(A − B).

Functions Φ
(N)
j (q′) belong to the function space F j only when they contain positive

powers in cos q′. For this, it is necessary and sufficient that

a1+j/2 = bj/2 = cj/2 = dj/2 = 0, (26)

for even j and
a(j+1)/2 = b(j+1)/2 = c(j+1)/2 = d(j−1)/2 = 0, (27)

for odd values of j. Note that the conditions (26) and (27) coincide with the conditions (13),
and they determine the known spectrum Ej,s of the quantum asymmetric top.

The coefficients a0, b0, c0 and d0 are defined from the normalization condition for
eigenfunctions

Φj,s(q
′) =

(

2(A − C)(B − C)

ρ − C

)j/2

Λj,s(ρ)

of the operator H(−iℓ(q′, ∂q′ , j)), corresponding to the eigenvalues Ej,s:

(

Φj,s, Φj,s′
)

Q
= (2j + 1)δss′ . (28)

Then, the wave functions

Ψq,j,s(g) = ⟨g | q, j, s⟩ = (cos θ + i cos(q + ϕ) sin θ)j

×Φj,s

(

ψ + 2 arctan
[

eiθ cot
(

q+ϕ
2

)])

(29)

corresponding to the eigenvalues Ej,s satisfy the Equation (20) and the normalization
condition

⟨q, j, s | q, j, s⟩ = 1

8π2

∫ 2π

0
dψ

∫ π

0
sin θdθ

∫ 2π

0
dϕ

∣

∣Ψq,j,s(g)
∣

∣

2
= δj(q, q).

We give expressions for the wave functions (29) and the eigenvalues Ej,s for the lowest
values of the quantum number j. For j = 0, we have E0,1 = 0 and Ψq,0,1 = 1. For j = 1,
we have

E1,1 = A + C, E1,2 = A + B, E1,3 = B + C
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and wave functions

Ψq,1,1(g) =
√

3

{

1

2
[cos(q − θ + ϕ) + cos(q + θ + ϕ) + 2i sin θ] cos ψ

− sin(q + ϕ) sin ψ

}

,

Ψq,1,2(g) =
√

3(cos θ + i cos(q + ϕ) sin θ),

Ψq,1,3(g) =
√

3(cos ψ sin(q + ϕ) + [cos θ cos(q + ϕ) + i sin θ] sin ψ),

respectively.
Thus, we have obtained a set of solutions (29), which is parameterized by a set of

parameters {q, j, s}, where j is the quantum number corresponding to the eigenvalue
operator L̂2, and q ∈ Q is a complex number that is not an eigenvalue of any integral of
motion.

4. Wigner D-Function and λ-Representation of so(3) Group

Note that the solution (22) can be represented in the integral form

Ψ(q; g) = T j(g)Φ(q) =
∫

Q
D

j
qq′(g)Φ(q′)dµ(q′), Φ(q′) ∈ F

j, (30)

where the kernel

D
j
qq′(g) = (cos θ + i cos(q + ϕ) sin θ)jδj

(

ψ + 2 arctan

[

eiθ cot

(

q + ϕ

2

)]

, q′
)

(31)

satisfies the system of equations

(

ηa(g) + ℓa(q, ∂q, j)
)

D
j
qq′(g) = 0,

(

ξa(g) + ℓa(q′, ∂q′ , j)
)

D
j
qq′(g) = 0, (32)

with the initial condition D
j
qq′(0, 0, 0) = δj(q, q′). Using the Equation (18) for the generalized

delta function, we obtain

D
j
qq′(g) = 2j(j!)2

(2j)!

{

[cos(ϕ + q) cos(q′ − ψ) + 1] cos θ

+i
[

cos(ϕ + q) + cos(q′ − ψ)
]

sin θ

+ sin(ϕ + q) sin(q′ − ψ)

}j

. (33)

It is shown in [22] that for a generalized function satisfying the system of Equation (32)
on some unimodular Lie group, the relations

D
j
qq′(g · g′) =

∫

Q
D

j
qq′′(g)D

j
q′′q′(g′)dµj(q

′′), D
j
qq′(g) = D

j
q′q(g−1). (34)

From Equation (34), it is implied that the operators T j(g) in (30) are the operators of
the unitary λ-irrep of the group SO(3) in the space F j.

Let us find a connection between the Wigner D-function (3) and the D
j
qq′(g) function.

Note that the Wigner D-function can be uniquely defined as a solution to the system of
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Equation (2), with the initial condition D
j
mn(0, 0, 0) = δmn. Then, we will look for a solution

to the system (2) in the form

D
j
mn(g) = C

j
mn

∫

Q
Fm(q)Φn(q

′)D j
qq′(g)dµj(q)dµj(q

′). (35)

Substituting (35) into (2), by the functions Fm(q) and Φn(q′), we obtain

−iℓ3(q, ∂q, j)Fm(q) = mFm(q), (36)

−iℓ3(q
′, ∂q′ , j)Φn(q

′) = nΦn(q
′). (37)

Whence Fm(q) = eimq, Φn(q′) = einq′ . The coefficient C
j
mn has the form

C
j
mn =

√

BnjBmjexp

[

iπ

2
(m − n)

]

.

From (4) and (5) and the relation (35), it follows that the functions D
j
qq′(g) are complete

and orthogonal:

∫

G

D
j
qq′(g)D

j̃
q̃q̃′(g)dµ(g) = 1

2j+1 δj(q, ¯̃q)δj(q
′, ¯̃q′)δjj̃,

∑
∞
j=0(2j + 1)

∫

Q×Q

D
j
qq′(g)D

j
qq′(g̃)dµj(q)dµj(q

′) = δ(g · g̃−1). (38)

The expression (35) can be written in the form

| j, m, n⟩ = √

BnjBmje
iπ(m−n)/2

∫

Q×Q einq′−imqdµj(q)dµj(q
′) | j, q, q′⟩

where ⟨g | j, q, q′⟩ = D
j
qq′(g). Here is an expression for the expansion of the states | j, q, q′⟩

in terms of Wigner D-functions | j, m, n⟩:

| j, q, q′⟩ =
j

∑
n=−j

j

∑
m=−j

√

BnjBmje
−inq′+imq−i π

2 (m−n) | j, m, n⟩. (39)

Since the operator H(−iℓ(q′, ∂q′ , j)) is Hermitian in the space F j with respect to the
inner product (17), then the set of eigenfunctions Ψq,j,s(g) is complete:

j

∑
s=−j

Φj,s(q′)Φj,s(q
′)

2j + 1
= δj(q, q′), (40)

where the sum over s means the sum over the spectrum of the asymmetric top. From (40)
and (38) follows the completeness of the set (29),

| q, j, s⟩ =
∫

Q dµj(q
′)Φj,s(q

′) | j, q, q′⟩, Ψq,j,s(g) = ⟨g | q, j, s⟩,

∑
∞
j=0 ∑

j
s=−j

∫

Q dµj(q) | q, j, s⟩⟨q, j, s |= 1.

5. Concluding Remarks

In this article, using the noncommutative integration method, we find the complete
system of solutions to the Schrodinger Equation (6) for an asymmetric top. It is shown
that the noncommutative reduction of the Schrodinger equation reduces it to the Lame
Equation (11), which arises when separating variables in an elliptic coordinate system for
the states | j, 0⟩. In this approach, the spectrum of the asymmetric top arises from the
requirement that the solution of the reduced Equation (24) belong to the space F j, which is
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invariant under the irreducible λ-irrep of the group SO(3). In this case, the set of solutions
is expressed by an explicit formula (29), in contrast to the solution in the form of a series (7).
It is shown that the complete set of solutions is parametrized by the quantum number q,
which takes complex values from the set Q, which has the Lagrangian submanifold to the
coadjoint orbit of the SO(3) group.

We also obtained a connection (35) between the kernels λ-irrep and the Wigner D-
function, which allowed us to show the completeness of the set (29).

Note that the constructed solutions are not coherent [31–34] since they do not minimize
the uncertainty relation (∆K)2 ≥ j. Since they are in states that correspond to the basis
| q, j, s⟩, we have

(∆K)2 = j(j + 1)δj(q, q)

=
2j(j!)2

(2j)!
j(j + 1)(cosh 2Imq)j

≥ 4j(j!)2

(2j)!
j(j + 1) ≥ j2 log 4 > j, j > 0.

Therefore, the states | q, j, s⟩ differ significantly from the coherent states of the quantum
asymmetric top [35].

By a direct check, one can verify that the set of states

| j, m, s⟩ =
√

Bmj

∫

Q
dµj(q) e−imq | q, j, s⟩

=
√

Bmj

∫

Q×Q
dµj(q)dµj(q

′) e−imqΦj,s(q
′) | j, q, q′⟩ (41)

are eigenstates for the complete set of operators {Ĥ, L̂2, Ĵ3} and satisfies Equation (6) for
| j, m⟩ =| j, m, s⟩. Thus, the states of an asymmetric top with a given value of j and m are
determined by the expression (41).

Note that since the rotational energy and rotational terms of a large number of poly-
atomic molecules are described by quantum asymmetric tops, the new solutions obtained
in this work can be used in rotational spectroscopy of molecules. The sets of solutions (29)
and (41) can be useful for studying the static mixmaster cosmological model (see Refs.
[16–18,36,37]).
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Appendix A. Vector Fields on the Group SO(3)

In the Lie algebra so(3) of the rotation group SO(3), we introduce some basis {e1, e2, e3},
with respect to the commutation relations of the algebra that have the form [ea, eb] = Cc

abec,
where the structure constant Cc

ab = ϵabc is the completely antisymmetric tensor, with
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ϵ123 = 1, [·, ·] denoting the Lie brackets; a, b, c = 1, . . . , 3. The adjoint representation
matrices (ada)c

b = [ea, eb]
c have the form

ad1 =





0 0 0
0 0 −1
0 1 0



, ad2 =





0 0 1
0 0 0
−1 0 0



, ad3 =





0 −1 0
1 0 0
0 0 0



.

The group element of the SO(3) will be parametrized using the Euler angles ϕ, θ
and ψ:

g(ϕ, θ, ψ) = gz(φ)gx(θ)gz(ψ) ∈ SO(3), φ, ψ ∈ [0; 2π), θ ∈ [0; π),

where gx(t), gy(t) and gz(t) are rotation matrices by the angle t about the axes Ox, Oy and
Oz, respectively:

gx(t) = etad1 =





1 0 0
0 cos t − sin t
0 sin t cos t



,

gy(t) = etad2 =





cos t 0 sin t
0 1 0

− sin t 0 cos t



,

gz(t) = etad3 =





cos t − sin t 0
sin t cos t 0

0 0 1



. (A1)

To find generators of an arbitrary irrep of SO(3), one has to examine representations
in the space of functions f = f (φ, θ, ψ) on the group. The left regular representation TL(g)
acts in the space of functions f (g), g = g(φ, θ, ψ) ∈ SO(3) on the group as follows [38]:

TL(g′) f (g) = f (g′−1 · g), g′ ∈ SO(3),

whereas the right regular representation TR(g) acts in the same space as follows:

TR(g′) f (g) = f (g · g′), g′ ∈ SO(3).

The decomposition of the left (and right) regular representation contains any irrep of
the group.

For generators that correspond to the one-parameter subgroup ω(t) in the left TL(g)
and right TR(g) regular representations, we obtain, respectively:

ξω(t) f (g) =
d

dt
TR(ω(t)) f (g)

∣

∣

∣

∣

t=0

, ηω(t) f (g) =
d

dt
TL(ω(t)) f (g)

∣

∣

∣

∣

t=0

.

Vector fields ξω(t) are called left-invariant vector fields, and ηω(t) are called right-
invariant vector fields, corresponding to the subgroup ω(t). Let us choose one-parameter
subgroups as (A1). The straightforward calculations yield the following expressions for
generators [35]:

ξ1 = ξgx(t) =
sin ψ

sin θ

∂

∂ϕ
+ cos ψ

∂

∂θ
− cot θ sin ψ

∂

∂ψ
,

ξ2 = ξgy(t) =
cos ψ

sin θ

∂

∂ϕ
− sin ψ

∂

∂θ
− cot θ cos ψ

∂

∂ψ
,

ξ3 = ξgz(t) =
∂

∂ψ
(A2)
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and

η1 = ηgx(t) = cot θ sin ϕ
∂

∂ϕ
− cos ϕ

∂

∂θ
− sin ϕ

sin θ

∂

∂ψ
,

η2 = ηgy(t) = − cot θ cos ϕ
∂

∂ϕ
− sin ϕ

∂

∂θ
+

cos ϕ

sin θ

∂

∂ψ
,

η3 = ηgz(t) = − ∂

∂ϕ
. (A3)

The following standard commutation relations hold:

[ξa, ξb] = ϵabcξc, [ηa, ηb] = ϵabcηc, [ξa, ηb] = 0.
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