

AAS-PROVIDED PDF • OPEN ACCESS

Improved Limits on Relativistic Interstellar Objects near Earth

To cite this article: James M. Cline 2024 *Res. Notes AAS* **8** 247

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2024 The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

DRAFT VERSION SEPTEMBER 25, 2024
 Typeset using **L^AT_EX modern** style in AASTeX631

Improved limits on Relativistic Interstellar Objects near Earth

JAMES M. CLINE^{1,2}

¹McGill University Department of Physics & Trottier Space Institute, 3600 Rue University, Montréal, QC, H3A 2T8, Canada

²CERN, Theoretical Physics Department, Geneva, Switzerland

Abstract

It was recently shown [Loeb (2024)] that exotic asteroid-sized objects moving at relativistic speeds in the vicinity of the Earth could be detected by their gravitational waves in the LIGO-Virgo-KAGRA experiments, thereby leading to a constraint on their local number density. Here I show that a much stronger limit can be derived from the fact that no such object has ever impacted the Earth.

Loeb (2024) recently argued that exotic asteroid-sized objects moving at relativistic speeds could be detectable through their gravitational wave emission at ongoing experiments. Based on the lack of any corresponding signal so far, a limit on their number density was derived, $n < 30 \text{ au}^{-3}$, assuming masses $m > 10^{14} \text{ g}$. If a population of such objects existed, saturating this bound, it is pertinent to ask how often they would impact the Earth. The answer is

$$\frac{1}{\tau} = n\sigma c \cong \frac{1}{90 \text{ y}}, \quad (1)$$

where σ is the cross sectional area of Earth. Would we have noticed such an event?

Given that a conventional asteroid is expected to impact the Earth with a speed of $v \sim 10 \text{ km/s}$, while the relativistic one has a kinetic energy of order $mc^2 > 10^{28} \text{ J}$, such an impact would deposit the same amount of energy as a conventional asteroid of mass 10^{20} kg . Let us compare that to a previous impact event. The Chicxulub event, 65 million years ago, produced the second largest extant crater on Earth and led to the extinction of the dinosaurs. It was estimated that the diameter of the impacting asteroid was around 10 km [Alvarez et al. (1980)], corresponding to a mass of order 10^{15} kg , five orders of magnitude smaller than the effective mass of a relativistic interloper. The Vredefort event was of a similar size Allen et al. (2022), but occurring 2 billion years ago. There is no evidence for any impact larger than these over the history of the Earth,

allowing us to set the stronger limit on the density of such relativistic objects,

$$n < 30 \text{ au}^{-3} \left(\frac{90 \text{ y}}{4.5 \times 10^9 \text{ y}} \right) \sim 10^{-8} \text{ au}^{-3}. \quad (2)$$

Hence LIGO-Virgo-KAGRA will have to observe for some time before they reach the needed sensitivity. It should be noted that no plausible mechanism for accelerating an object of mass 10^{14} g to relativistic speeds has been proposed.

REFERENCES

Allen, N. H., Nakajima, M., W  nnemann, K., Helhoski, S., & Trail, D. 2022, Journal of Geophysical Research: Planets, 127, e2022JE007186, doi: <https://doi.org/10.1029/2022JE007186>

Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. 1980, Science, 208, 1095, doi: [10.1126/science.208.4448.1095](https://doi.org/10.1126/science.208.4448.1095)

Loeb, A. 2024, Res. Notes AAS, 8, 214, doi: [10.3847/2515-5172/ad73da](https://doi.org/10.3847/2515-5172/ad73da)