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Abstract

In this work, we investigate the quantum coherence and purity in hydrogen atoms under

dissipative dynamics, with a focus on the hyperfine structure states arising from the

electron–proton spin interaction. Using the Lindblad master equation, we model the time

evolution of the density matrix of the system, incorporating both the unitary dynamics

driven by the hyperfine Hamiltonian and the dissipative effects due to environmental

interactions. Quantum coherence is quantified using the L1 norm and relative entropy

measures, while purity is assessed via von Neumann entropy, for initial states, including a

maximally entangled Bell state and a separable state. Our results reveal distinct dynamics:

for the Bell states, both coherence and purity decay exponentially with a rate proportional

to the dissipation parameter, whereas for a kind of separable state, coherence exhibits

oscillatory behavior modulated via the hyperfine coupling constant, superimposed on an

exponential decay, and accompanied by a steady increase in entropy. Higher dissipation

rates accelerate the loss of coherence and the growth of von Neumann entropy, underscoring

the environment’s role in suppressing quantum superposition and driving the system

towards mixed states. These findings enhance our understanding of coherence and purity

preservation in atomic systems and offer insights for quantum information applications

where robustness against dissipation is critical.

Keywords: hydrogen atoms; Lindblad master equation; coherence; von Neumann entropy;

hyperfine Hamiltonian

1. Introduction

The hydrogen atom, with its elegantly simple structure, has historically served as a

cornerstone of quantum mechanics understanding, offering profound insights into the

behavior of electrons and nuclei in diverse physical, chemical, and biological contexts [1–4].

Beyond its foundational role in quantum theory, the hydrogen atom emerges as a pivotal

element in quantum information science, providing a natural system for exploring quan-

tum correlations. The electron and nuclear spins in the hydrogen atom offer a physically

intuitive framework and a well-defined Hilbert space for investigating bipartite quantum

entanglement, whose entanglement, quantified by two-qubit concurrence, can be directly

linked to fundamental constants such as the Planck constant, the Boltzmann constant,

electron and proton masses, the fine-structure constant, the Bohr radius, and the Bohr

magneton. At low temperatures, the hyperfine structure (HFS) states of the hydrogen atom

exhibit inherent entanglement, which diminishes rapidly as the temperature increases,

eventually disappearing beyond a critical threshold of τc ≈ 5.35µeV. This phenomenon is
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rooted in the thermal equilibrium behavior of the HFS states, where the entanglement is

sensitive to the balance between the energy gap and thermal energy [5–7]. Recent studies

have further revealed nuclear-polarized phases of hydrogen atoms embedded in solid

H2 films [5,8], showcasing significant deviations from the Boltzmann distribution at low

temperatures [5–7], which raises intriguing questions about the role of quantum effects in

such systems. The electron- and nuclear-spin degrees of freedom in the hydrogen atom

provide a platform for studying entanglement and connecting to broader applications in

quantum information. Earlier research on electron-spin dynamics in two-electron double-

quantum-dot systems [9,10] has demonstrated the potential of such systems as qubits

for quantum information technologies [11–13]. Similarly, nuclear spins, particularly in

systems like nitrogen-vacancy centers in diamonds, have been identified as valuable re-

sources for quantum information processing [14–17]. In contrast to previous works that

explored electron–proton coordinate entanglement [18] or provided a formalism for HFS

entanglement [19], this study uncovers a novel aspect: the ability of an external magnetic

field to induce and sustain HFS entanglement even at temperatures well above the critical

threshold τc. This magnetically induced entanglement defies the thermal degradation

typically observed in such systems, offering a new avenue for entanglement engineering in

low-temperature environments, including gases and solids.

Quantum coherence (QC), a phenomenon emerging from the superposition princi-

ple, constitutes a cornerstone of quantum mechanics and serves as an essential resource

across a spectrum of quantum information processing applications, including quantum

reference frames [20–22], quantum transport within biological systems [23–25], and quan-

tum thermodynamics [26–28]. The task of quantifying QC represents a critical challenge

both in the theoretical foundations of quantum mechanics and in the practical domain

of quantum information science, drawing significant research focus in recent years [29].

This framework has notably elucidated the role of coherence in underpinning quantum

advantages, such as quantum state merging [30], deterministic quantum computation with

one qubit [31], the Deutsch–Jozsa algorithm [32], and Grover’s search algorithm [33]. Fur-

thermore, the resource theory of coherence provides a robust foundation for interpreting

the wave-like characteristics of quantum systems [34], as well as the intrinsic nature of

quantum correlations, encompassing entanglement [35] and an array of discord-like mea-

sures [36]. Baumgratz et al. [29] have recently advanced a resource-theoretic framework

to systematically quantify QC in quantum states, paving the way for the development of

diverse coherence measures rooted in distinct physical principles. The initial proposals

included the norm of coherence and the relative entropy of coherence, both based on

distance-based metrics [29]. This was followed by subsequent measures that leveraged

entanglement [37], operational perspectives [38,39], and convex-roof constructions [40,41].

These quantitative tools have enabled detailed investigations into QC’s multifaceted proper-

ties, such as its interconnections with other quantum resources [37,42,43], its manifestation

in infinite-dimensional Hilbert spaces [44,45], its complementarity relations [46], and the

quantification of macroscopic coherence [47]. This resource-theoretic approach to QC

quantification has thus catalyzed a broad array of further explorations into the nature and

implications of QC [48–51].

The theory of open quantum systems examines the dynamics of quantum systems

that interact with their surrounding environments, a topic of significant interest since the

foundational development of quantum mechanics [52]. Despite considerable theoretical

progress, fundamental challenges remain unresolved, notably the phenomenon of decoher-

ence, which involves the loss of quantum coherence due to interactions between a system

and its environment.
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Recent progress has considerably deepened our understanding of quantum coherence,

particularly its behavior in decoherence and noisy environments. Key studies have explored

phenomena such as frozen coherence, analytical evolution equations, noise coherence-

generating power, and coherence dynamics in correlated channels [53–56]. These contribu-

tions provide essential tools and perspectives for analyzing coherence loss and preservation

in open quantum systems.

Building on these developments, it is clear that understanding coherence dynamics is

essential not only from a fundamental perspective but also for practical uses. This process

has attracted substantial attention in the fields of quantum information and computation,

where decoherence remains one of the central challenges in the realization of scalable

quantum information processors [57–59]. The preservation of QC is indispensable for the

operation of quantum computers, quantum cryptography, and quantum teleportation.

Furthermore, decoherence serves as a critical mechanism for understanding the quantum-

to-classical transition, wherein the emergence of classical properties from quantum systems

is interpreted as a consequence of environmentally induced decoherence. In this study,

we investigate the QC and purity in hydrogen atoms under dissipative dynamics using

the Lindblad master equation. We will show that Bell states exhibit exponential decay in

both coherence and purity, while separable states show oscillatory coherence with decay

and rising entropy, effects that worsen with higher dissipation rates. The results obtained

highlight the role of the environment in the degradation of the QC and purity, providing

critical insights for the preservation of quantum properties in atomic systems.

This manuscript is structured as follows. Section 2 describes the system Hamiltonian

and presents the solution to the physical model. In Section 3, we introduce the coherence

measure and analyze its time-dependent behavior for the model under consideration.

Finally, Section 4 summarizes the key findings of this study.

2. The Hamiltonian and Quantum Dynamics

The ground state of the hydrogen atom exhibits a fascinating interplay of spin de-

grees of freedom governed by the hyperfine interaction Hamiltonian. This Hamiltonian

captures the magnetic dipole–dipole coupling between the electron and proton spins and is

mathematically expressed as

HHF = A(σe · σp). (1)

Here, σe = (σx
e , σ

y
e , σz

e ) represents the vector of Pauli operators for the electron spin, while

σp = (σx
p , σ

y
p , σz

p) denotes the corresponding vector for the proton spin. These operators act

on the spin-1/2 nature of both particles, encoding their quantum mechanical spin properties

along the three spatial axes. The parameter A, termed the hyperfine structure constant,

quantifies the strength of this interaction. It arises from a combination of fundamental

physical constants, including the fine-structure constant α, which governs electromagnetic

interactions; the electron and proton g-factors, ge and gp, which adjust the magnetic

moments relative to the Bohr magneton and nuclear magneton; the vacuum permeability

µ0; the reduced Planck constant h̄; the Bohr radius a0, a measure of the electron–proton

separation in the ground state; and the masses of the electron me and proton mp. The precise

form of this constant is given by A = 8
3 α2gegp

µ0
4π

h̄2

a3
0

me
mp

. This hyperfine Hamiltonian dictates

the energy level structure of the hydrogen atom’s ground state by coupling the electron

and proton spins into a total spin system. Given that both the electron and the proton are

spin-1/2 particles, their spins can either align to form a triplet configuration with total

spin Stotal = 1 or anti-align to form a singlet configuration with Stotal = 0. The eigenvalues

of HHF reveal this splitting: the triplet states, characterized by parallel spin orientations,

possess an energy of E = A, whereas the singlet state, with antiparallel spins, has an energy
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of E = −3A. The energy separation between these levels, known as hyperfine splitting, is

thus ∆E = 4A.

The effective Hamiltonian in Equation (1) describes the hyperfine interaction in the

hydrogen atom, valid when the electron occupies the ground (1s) state. In this regime, the

dominant spin-dependent interaction is the magnetic dipole–dipole coupling between the

electron and proton spins. The Coulomb binding and spin–orbit coupling are either already

accounted for in the energy level structure or negligible (e.g., spin–orbit vanishes for l = 0).

The Hamiltonian eigenstates span a four-dimensional Hilbert space given by the

computational basis B = {| ↑e↑p⟩, | ↑e↓p⟩, | ↓e↑p⟩, | ↓e↓p⟩}. Here, | ↑⟩ and | ↓⟩ denote

spin-up and spin-down states along the z-axis for the electron (subscript e) and proton

(subscript p). The energy eigenvalues are derived using the total spin operator S = Se + Sp.

For triplet states (Stotal = 1), S2 = 2h̄2, giving energy E = A; for the singlet state (Stotal = 0),

S2 = 0, giving E = −3A. The singlet eigenstate, |a⟩, is a Bell state:

|a⟩ = 1√
2

(

| ↑e↓p⟩ − | ↓e↑p⟩
)

, (2)

with energy Ea = −3A. The triplet eigenstates (E = A) include two separable states:

|d⟩ = | ↑e↑p⟩, (3)

|b⟩ = | ↓e↓p⟩, (4)

with energies Ed = Eb = A, representing spins aligned up or down. The third triplet state,

|c⟩, is another entangled Bell state:

|c⟩ = 1√
2

(

| ↑e↓p⟩+ | ↓e↑p⟩
)

, (5)

with energy Ec = A. The presence of entangled eigenstates such as |a⟩ and |c⟩ within

the hyperfine structure illustrates the hydrogen atom’s intrinsic quantum mechanical

richness. These states, alongside the separable triplet states |b⟩ and |d⟩, fully characterize

the spin dynamics of the system in its ground state. The energy difference ∆E = 4A drives

observable phenomena, such as the 21 cm spectral line. This structure not only provides

insight into atomic physics but also serves as a foundational example for understanding

quantum correlations in more complex systems, enabling studies of QC and von Neumann

dynamics under dissipation, as explored in this work.

The system is characterized by the hyperfine Hamiltonian and dissipative interactions

modeled via Lindblad operators representing spin-flip processes for the electron and proton.

The time evolution of the density matrix ρ(t) is governed via the Lindblad master equation,

which accounts for both unitary evolution and dissipation

dρ(t)

dt
= −i[HHF, ρ(t)] +D(ρ(t)), (6)

where D(ρ(t)) is the dissipation superoperator. The dissipative term is expressed as

D(ρ) =
γ

2

4

∑
k=1

(

LkρL†
k −

1

2
{L†

k Lk, ρ}
)

, (7)
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where γ represents the dissipation rate, and Lk are the Lindblad operators describing

spin-flip processes. These operators are defined as

L1 = σ
e
+ ⊗ Ip, (electron spin-up transition) (8)

L2 = σ
e
− ⊗ Ip, (electron spin-down transition) (9)

L3 = Ie ⊗ σ
p
+, (proton spin-up transition) (10)

L4 = Ie ⊗ σ
p
−, (proton spin-down transition) (11)

Here, σ+ = | ↑⟩⟨↓ | and σ− = | ↓⟩⟨↑ | denote the raising and lowering operators for

the respective spin systems. Further, we assume equal rates for the excitation and decay

processes, corresponding to the high-temperature limit of a thermal reservoir, where n̄ → ∞

and Γ → 0, such that the product Γn̄ ≡ γ remains finite. This approximation leads to

symmetric noise channels and is consistent with the infinite-temperature limit described

in Ref. [60] (see Equation (112) and its discussion). Although we adopt equal rates for

simplicity, the model can be extended to include temperature-dependent asymmetric rates,

which will be explored in future work.

The time derivative
dρ

dt yields a set of coupled differential equations for the matrix

elements ρij(t), where i, j = 1, 2, 3, 4 correspond to the computational basis. These equations

account for coherent interactions, parameterized by the coupling strength A, and dissipative

processes, characterized by the dissipation rate γ. The equations are separated into those

governing the diagonal elements (populations) and the off-diagonal elements (coherences)

for clarity.

The diagonal elements ρii(t) represent the probabilities of finding the system in each

basis state. Their time evolution is given as follows:

dρ11

dt
= γ(ρ22 + ρ33 − 2ρ11), (12)

dρ22

dt
= −2iA(ρ23 − ρ32) + γ(ρ11 + ρ44 − 2ρ22), (13)

dρ33

dt
= 2iA(ρ23 − ρ32) + γ(ρ11 + ρ44 − 2ρ33), (14)

dρ44

dt
= γ(ρ22 + ρ33 − 2ρ44). (15)

Here, the terms involving γ describe population transfer due to dissipation, while the terms

with A in ρ22 and ρ33 arise from coherent coupling between states | ↑e↓p⟩ and | ↓e↑p⟩.
The off-diagonal elements ρij(t) (for i ̸= j) represent the coherence between the basis

states. Their dynamics are governed via the following:

dρ12

dt
= −2iA(ρ12 − ρ13) + γ(ρ34 − 2ρ12), (16)

dρ13

dt
= −2iA(ρ13 − ρ12) + γ(ρ24 − 2ρ13), (17)

dρ14

dt
= −2γρ14, (18)

dρ23

dt
= −2iA(ρ22 − ρ33 + ρ23)− 2γρ23, (19)

dρ24

dt
= −2iA(ρ24 − ρ34) + γ(ρ13 − 2ρ24), (20)

dρ34

dt
= −2iA(ρ24 − ρ34) + γ(ρ12 − 2ρ34). (21)

These equations include both coherent evolution (terms with A) and decoherence (terms

with γ). In particular, ρ14 decays purely dissipatively, indicating that there is no coherent
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coupling between states | ↑e↑p⟩ and | ↓e↓p⟩. The remaining off-diagonal elements (ρ21, ρ31,

ρ32, ρ41, ρ42, ρ43) are determined by Hermitian conjugation, ensuring the density matrix re-

mains Hermitian (ρ† = ρ). Specifically, ρji = ρ∗ij for all i, j. These differential equations fully

describe the dynamics of the system under the combined effects of coherent interactions

and dissipation. They can be solved analytically under specific initial conditions.

3. Quantum Coherence and Results

In the resource-theoretic framework of QC, the l1-norm of coherence serves as a

fundamental measure to quantify the coherence present in a quantum state, is given by [29]

Cl1(ρ) = ∑
i ̸=j

|ρi,j|, (22)

where ρ is the density matrix, and the sum captures the absolute values of its off-diagonal

elements. This metric provides a straightforward and computationally efficient way to

assess the magnitude of quantum superpositions, making it particularly valuable for

analyzing coherence dynamics in systems like hydrogen atoms under dissipative conditions,

as explored in this manuscript. Complementing this, the relative entropy of coherence,

given by

Crel(ρ) = S(ρdiag)− S(ρ), (23)

where S denotes the von Neumann entropy, and ρdiag is the diagonal part of ρ, which

measures coherence through the entropic difference between the incoherent (diagonal) state

and the full quantum state. This information-theoretic measure effectively captures the

quantum information encoded in off-diagonal terms and adheres to essential properties

such as vanishing for incoherent states, monotonicity under incoherent operations, and

convexity. Both measures align with the resource theory of coherence, ensuring that

coherence remains a non-increasing resource under free (incoherent) operations.

Contemporary studies have shown that entropy generation within the framework of

classical thermodynamics can be understood as the development of correlations between

an open quantum system and its surrounding environment [61–64]. For a quantum state, ρ,

representing a qubit, the von Neumann entropy is defined by the expression

S(ρ) = −tr(ρ ln ρ). (24)

In the context of a bipartite quantum system, the entropies of the individual subsystems

and the combined system conform to the inequalities

|S(ρA)− S(ρB)| ≤ S(ρAB) ≤ S(ρA) + S(ρB), (25)

where A and B designate the two distinct subsystems.

Given the initial state,

cos α| ↑e↓p⟩+ sin α| ↓e↑p⟩, (26)

the non-zero elements of the time-evolved density matrix ρ(t) can be analytically derived

from the Lindblad master equation (see Appendix A). The density matrix at time t is found

to be

ρ(t) =











ρ11(t) 0 0 ρ14(t)

0 ρ22(t) ρ23(t) 0

0 ρ32(t) ρ33(t) 0

ρ41(t) 0 0 ρ44(t)











(27)
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where

ρ11(t) =
1

4

[

1 − e−4γt
]

,

ρ44(t) =
1

4

[

1 − e−4γt
]

,

ρ22(t) =
1

4

[

1 + e−4γt + 2 cos(2α) cos(4At)e−2γt
]

,

ρ33(t) =
1

4

[

1 + e−4γt − 2 cos(2α) cos(4At)e−2γt
]

,

ρ23(t) =
1

2
e−2γt[i cos(2α) sin(4At) + sin(2α)],

ρij(t) = 0 for all other i, j,

(28)

illustrating the decay of coherences and redistribution of populations over time. These

solutions highlight the interplay between coherent oscillations (driven by A) and decoher-

ence (governed by γ). The coherence between the states |1⟩ and |4⟩ decays exponentially

with time, while the populations in the diagonal elements approach a uniform distribution

due to the dissipative interactions.

In Figure 1, we present the time evolution of the L1-norm of coherence for the electron–

proton system in a hydrogen atom, initially prepared in a maximally entangled Bell state

(α = π/4), under dissipative dynamics modeled with the Lindblad master equation. This

measure, defined as the sum of the absolute values of the off-diagonal elements of the

density matrix, quantifies the QC in the system. The figure illustrates an exponential

decay of the L1-norm for dissipation parameters γ = 0.1 (solid line), γ = 0.5 (dashed line),

and γ = 1.0 (dash-dotted line), with the decay rate increasing as γ grows. This behavior

underscores the rapid loss of quantum superpositions due to environmental interactions,

highlighting the detrimental effect of dissipation on coherence in atomic systems. Comple-

menting this, Figure 2 depicts the time evolution of the von Neumann entropy for the same

electron–proton state under identical dissipative conditions. Starting from zero for the pure

Bell state, the entropy increases toward a maximum value, indicating the system’s transition

to a fully mixed state. The plot shows this rise for γ = 0.1 (solid line), γ = 0.5 (dashed line),

and γ = 1.0 (dash-dotted line), with the rate of entropy growth accelerating with higher γ.

This trend emphasizes how stronger dissipation hastens the erosion of quantum purity and

correlations. Together, Figures 1 and 2 provide a comprehensive view of how dissipative

dynamics undermine quantum features in hydrogen atoms. The exponential decay of the

L1-norm of coherence and the corresponding increase in von Neumann entropy reveal

the challenges of maintaining quantum properties under environmental noise, critical for

applications in quantum information technologies. By quantifying these effects, this study

establishes a foundation for developing strategies to preserve coherence and purity in

atomic systems against dissipation.

In Figure 3, we present the time evolution of the L1-norm of coherence for the electron–

proton system in a hydrogen atom, initially prepared in a separable state (α = 0), under

dissipative dynamics governed by the Lindblad master equation. The figure illustrates oscil-

latory behavior driven by the hyperfine coupling constant A, overlaid with an exponential

decay envelope governed by the dissipation parameter γ = 0.1 (solid line), γ = 0.5 (dashed

line), and γ = 1.0 (dash-dotted line). Higher values of γ accelerate the coherence loss,

demonstrating the sensitivity of quantum superpositions to environmental interactions in

atomic systems. Similarly, Figure 4 displays the time evolution of the L1-norm of coherence

for the electron–proton system in a hydrogen atom, initially prepared in a partially entan-

gled state with α = π/3. The system evolves under dissipative dynamics governed by the

Lindblad master equation, and the plot shows the effect of different dissipation rates.
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Figure 1. Time evolution of the L1-norm of coherence for the electron–proton system in a hydrogen

atom, initially prepared in a maximally entangled Bell state (α = π/4), under dissipative dynamics

modeled by the Lindblad master equation. The plot illustrates the coherence decay for dissipation

parameters γ = 0.1 (solid line), γ = 0.5 (dashed line), and γ = 1.0 (dash-dotted line). The behavior of

coherence highlights the detrimental effect of environmental interactions on QC in atomic systems,

emphasizing the challenges of maintaining quantum properties under dissipation.
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Figure 2. Time evolution of von Neumann entropy for the electron–proton state in a hydrogen atom,

initially prepared in a maximally entangled Bell state (α = π/4), under dissipative dynamics modeled

with the Lindblad master equation. The plot illustrates the entropy increase for varying dissipation

parameters γ = 0.1 (solid line), γ = 0.5 (dashed line), and γ = 1.0 (dash-dotted line). Each curve

shows a rise from an initial zero entropy toward a maximum value. The rate of entropy growth

accelerates with an increasing γ, underscoring the role of environmental dissipation in eroding

quantum purity.

The oscillatory pattern, modulated by A, is progressively suppressed by increasing

γ, underscoring the detrimental impact of dissipation on quantum resources essential for

applications such as quantum computing. Complementing these observations, Figure 5

depicts the time evolution of von Neumann entropy, an indicator of the system’s quan-

tum purity. Starting from a low initial value for the separable state, the entropy rises

steadily toward a maximum, signaling the system’s progression toward a more mixed state

in the long-time limit, though not reaching the maximally mixed state, I4/4, for which

S(ρ) = ln(4) ≈ 1.3863.The rate of this increase is directly tied to γ, with stronger dissipation

hastening the loss of purity. Collectively, Figures 3–5 illustrate how dissipative dynamics

degrade key quantum features, coherence and purity, in hydrogen atoms. Despite the

different initial states—with Figure 2 starting from a maximally entangled Bell state and

Figure 5 from a separable state—the behavior of von Neumann entropy is remarkably simi-
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lar in both cases. This similarity indicates that the entropy’s increase toward its maximum

value, signaling the transition to a fully mixed state, is independent of the initial state of the

system. Such behavior underscores the universal role of dissipation in eroding quantum

purity, regardless of the system’s starting configuration. On the other hand, it is worth

noting that coherence and mixedness are not independent quantities: for a given quantum

state, ρ, the l1 norm of coherence Cl1(ρ) and the linear mixedness Ml(ρ) =
d

d−1 (1 − Tr[ρ2])

satisfy a tradeoff relation, as discussed in [65,66]. This means that, as the system becomes

more mixed (higher Ml), coherence tends to decrease, a behavior that is consistent with our

numerical observations.

0 2 4 6 8 10
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0.2

0.4

0.6

0.8

1.0

At

C
l 1

Figure 3. Time evolution of the L1-norm of coherence for the electron–proton system in a hydrogen

atom, initially prepared in a separable state (α = 0), under dissipative dynamics governed by the

Lindblad master equation. The plot illustrates the coherence dynamics for varying dissipation

parameters γ = 0.1 (solid line), γ = 0.5 (dashed line), and γ = 1.0 (dash-dotted line). Each curve

displays oscillatory behavior driven by the hyperfine coupling constant, A, overlaid on an exponential

decay envelope influenced by γ.
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Figure 4. Time evolution of the L1-norm of coherence for the electron–proton system in a hydrogen

atom, initially in a partially entangled state (α = π/3), under dissipative dynamics governed by the

Lindblad master equation. The coherence dynamics are shown for dissipation parameters γ = 0.1

(solid line), γ = 0.5 (dashed line), and γ = 1.0 (dash-dotted line). The plot illustrates the coherence

decay for dissipation parameters γ = 0.1 (solid red line), γ = 0.5 (dashed blue line), and γ = 1.0

(dash-dotted black line). The behavior of coherence highlights the detrimental effect of environmental

interactions on QC in atomic systems, emphasizing the challenges of maintaining quantum properties

under dissipation.
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Figure 5. Time evolution of the von Neumann entropy for the electron–proton state in a hydrogen

atom, initially prepared in a separable state (α = 0), under dissipative dynamics governed by the

Lindblad master equation. The plot illustrates the coherence dynamics for varying dissipation

parameters γ = 0.1 (solid line), γ = 0.5 (dashed line), and γ = 1.0 (dash-dotted line). Each curve

displays oscillatory behavior driven by the hyperfine coupling constant A, overlaid on an exponential

decay envelope influenced by γ.

4. Conclusions

In this paper, we have investigated the QC and purity in hydrogen atoms under

dissipative dynamics, with a particular focus on the hyperfine structure states arising

from electron–proton spin interactions. By employing the Lindblad master equation, we

modeled the time evolution of the system’s density matrix, accounting for both the unitary

dynamics driven by the hyperfine Hamiltonian and the dissipative effects due to environ-

mental interactions. QC was quantified using the L1-norm and relative entropy measures,

while purity was assessed via von Neumann entropy. We examined two distinct initial

states: a maximally entangled Bell state and a separable state. The results revealed distinct

dynamical behaviors, depending on the initial state. For the Bell states, both coherence and

purity decayed exponentially, with the decay rate directly proportional to the dissipation

parameter γ. This underscored the significant impact of environmental interactions on

quantum superpositions and correlations. In contrast, for certain separable states, coher-

ence exhibited an oscillatory behavior modulated via the hyperfine coupling constant

A, superimposed on exponential decay. This oscillatory pattern was accompanied by a

steady increase in entropy, indicating a gradual loss of quantum purity. Furthermore, we

observed that higher dissipation rates accelerated the loss of coherence and the growth of

von Neumann entropy, highlighting the environment’s critical role in suppressing quantum

superpositions and driving the system toward mixed states. These findings provided

deeper insights into the preservation of coherence and purity in atomic systems, with im-

portant implications for quantum information applications that demand resilience against

environmental noise. These results may offer practical insights for quantum information

protocols, including robust state initialization, strategies for mitigating decoherence, and

exploiting hyperfine interactions for encoding and manipulating qubits.
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Appendix A. Derivation of the Time-Evolved Density Matrix Elements

This appendix derives the analytic solution for the time-evolved density matrix ρ(t)

of the hydrogen atom’s hyperfine structure, starting from the initial density matrix,

ρ(0) =











0 0 0 0

0 cos2 α cos α sin α 0

0 cos α sin α sin2
α 0

0 0 0 0











,

with non-zero elements ρ22(0) = cos2 α, ρ33(0) = sin2
α, ρ23(0) = cos α sin α, and

ρ32(0) = cos α sin α. The Lindblad master equation yields a set of coupled differential

equations for the density matrix elements,

dρ11

dt
= γ(ρ22 + ρ33 − 2ρ11), (A1)

dρ22

dt
= −2iA(ρ23 − ρ32) + γ(ρ11 + ρ44 − 2ρ22), (A2)

dρ33

dt
= 2iA(ρ23 − ρ32) + γ(ρ11 + ρ44 − 2ρ33), (A3)

dρ44

dt
= γ(ρ22 + ρ33 − 2ρ44), (A4)

dρ23

dt
= −2iA(ρ22 − ρ33 + ρ23)− 2γρ23, (A5)

with ρ32(t) = ρ∗23(t) due to the Hermitian property of ρ(t). Other off-diagonal elements,

such as ρ14, are found to remain zero under the given dynamics, consistent with the ini-

tial condition ρ14(0) = 0. To solve these equations, define s(t) = ρ22(t) + ρ33(t). When

Equations (A2) and (A3) are summed, the coherent terms cancel since ρ23 − ρ32 = 2iIm(ρ23),

yielding
ds

dt
= 2γ(ρ11 + ρ44 − s).

Since Tr[ρ(t)] = ρ11 + ρ22 + ρ33 + ρ44 = 1, we have ρ11 + ρ44 = 1 − s. Thus,

ds

dt
= 2γ(1 − s − s) = 2γ(1 − 2s).

Solving with the initial condition s(0) = cos2 α + sin2
α = 1, we obtain the following:

s(t) =
1

2
+

1

2
e−4γt.

Since ρ11 + ρ44 = 1− s = 1
2 (1− e−4γt), and noting the symmetry in Equations (A1) and (A4)

with ρ11(0) = ρ44(0) = 0, we find

ρ11(t) = ρ44(t) =
1

4
(1 − e−4γt).
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Define d(t) = ρ22(t) − ρ33(t) and ρ23(t) = c(t) = cr(t) + ici(t). The system becomes

the following:

dd

dt
= −2γd − 8Aci, (A6)

dcr

dt
= 2Aci − 2γcr, (A7)

dci

dt
= −2A(d + cr)− 2γci, (A8)

with initial conditions d(0) = cos2 α − sin2
α = cos 2α, cr(0) = cos α sin α = 1

2 sin 2α, and

ci(0) = 0. Solving this coupled system analytically, we find that the coherent dynamics

introduce oscillations at frequency 4A, modulated by dissipative decay. The solutions are

ρ22(t) =
1

4

[

1 + e−4γt + 2 cos(2α) cos(4At)e−2γt
]

, (A9)

ρ33(t) =
1

4

[

1 + e−4γt − 2 cos(2α) cos(4At)e−2γt
]

, (A10)

ρ23(t) =
1

2
e−2γt[i cos(2α) sin(4At) + sin(2α)]. (A11)

The conjugate ρ32(t) = ρ∗23(t) =
1
2 e−2γt[−i cos(2α) sin(4At) + sin(2α)].
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