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Abstract

In this work, we investigate the quantum coherence and purity in hydrogen atoms under
dissipative dynamics, with a focus on the hyperfine structure states arising from the
electron—proton spin interaction. Using the Lindblad master equation, we model the time
evolution of the density matrix of the system, incorporating both the unitary dynamics
driven by the hyperfine Hamiltonian and the dissipative effects due to environmental
interactions. Quantum coherence is quantified using the L; norm and relative entropy
measures, while purity is assessed via von Neumann entropy, for initial states, including a
maximally entangled Bell state and a separable state. Our results reveal distinct dynamics:
for the Bell states, both coherence and purity decay exponentially with a rate proportional
to the dissipation parameter, whereas for a kind of separable state, coherence exhibits
oscillatory behavior modulated via the hyperfine coupling constant, superimposed on an
exponential decay, and accompanied by a steady increase in entropy. Higher dissipation
rates accelerate the loss of coherence and the growth of von Neumann entropy, underscoring
the environment’s role in suppressing quantum superposition and driving the system
towards mixed states. These findings enhance our understanding of coherence and purity
preservation in atomic systems and offer insights for quantum information applications
where robustness against dissipation is critical.

Keywords: hydrogen atoms; Lindblad master equation; coherence; von Neumann entropy;
hyperfine Hamiltonian

1. Introduction

The hydrogen atom, with its elegantly simple structure, has historically served as a
cornerstone of quantum mechanics understanding, offering profound insights into the
behavior of electrons and nuclei in diverse physical, chemical, and biological contexts [1-4].
Beyond its foundational role in quantum theory, the hydrogen atom emerges as a pivotal
element in quantum information science, providing a natural system for exploring quan-
tum correlations. The electron and nuclear spins in the hydrogen atom offer a physically
intuitive framework and a well-defined Hilbert space for investigating bipartite quantum
entanglement, whose entanglement, quantified by two-qubit concurrence, can be directly
linked to fundamental constants such as the Planck constant, the Boltzmann constant,
electron and proton masses, the fine-structure constant, the Bohr radius, and the Bohr
magneton. At low temperatures, the hyperfine structure (HFS) states of the hydrogen atom
exhibit inherent entanglement, which diminishes rapidly as the temperature increases,
eventually disappearing beyond a critical threshold of 7. ~ 5.35 peV. This phenomenon is
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rooted in the thermal equilibrium behavior of the HFS states, where the entanglement is
sensitive to the balance between the energy gap and thermal energy [5-7]. Recent studies
have further revealed nuclear-polarized phases of hydrogen atoms embedded in solid
Hy, films [5,8], showcasing significant deviations from the Boltzmann distribution at low
temperatures [5-7], which raises intriguing questions about the role of quantum effects in
such systems. The electron- and nuclear-spin degrees of freedom in the hydrogen atom
provide a platform for studying entanglement and connecting to broader applications in
quantum information. Earlier research on electron-spin dynamics in two-electron double-
quantum-dot systems [9,10] has demonstrated the potential of such systems as qubits
for quantum information technologies [11-13]. Similarly, nuclear spins, particularly in
systems like nitrogen-vacancy centers in diamonds, have been identified as valuable re-
sources for quantum information processing [14—-17]. In contrast to previous works that
explored electron—-proton coordinate entanglement [18] or provided a formalism for HFS
entanglement [19], this study uncovers a novel aspect: the ability of an external magnetic
field to induce and sustain HFS entanglement even at temperatures well above the critical
threshold 1.. This magnetically induced entanglement defies the thermal degradation
typically observed in such systems, offering a new avenue for entanglement engineering in
low-temperature environments, including gases and solids.

Quantum coherence (QC), a phenomenon emerging from the superposition princi-
ple, constitutes a cornerstone of quantum mechanics and serves as an essential resource
across a spectrum of quantum information processing applications, including quantum
reference frames [20-22], quantum transport within biological systems [23-25], and quan-
tum thermodynamics [26-28]. The task of quantifying QC represents a critical challenge
both in the theoretical foundations of quantum mechanics and in the practical domain
of quantum information science, drawing significant research focus in recent years [29].
This framework has notably elucidated the role of coherence in underpinning quantum
advantages, such as quantum state merging [30], deterministic quantum computation with
one qubit [31], the Deutsch—-Jozsa algorithm [32], and Grover’s search algorithm [33]. Fur-
thermore, the resource theory of coherence provides a robust foundation for interpreting
the wave-like characteristics of quantum systems [34], as well as the intrinsic nature of
quantum correlations, encompassing entanglement [35] and an array of discord-like mea-
sures [36]. Baumgratz et al. [29] have recently advanced a resource-theoretic framework
to systematically quantify QC in quantum states, paving the way for the development of
diverse coherence measures rooted in distinct physical principles. The initial proposals
included the norm of coherence and the relative entropy of coherence, both based on
distance-based metrics [29]. This was followed by subsequent measures that leveraged
entanglement [37], operational perspectives [38,39], and convex-roof constructions [40,41].
These quantitative tools have enabled detailed investigations into QC’s multifaceted proper-
ties, such as its interconnections with other quantum resources [37,42,43], its manifestation
in infinite-dimensional Hilbert spaces [44,45], its complementarity relations [46], and the
quantification of macroscopic coherence [47]. This resource-theoretic approach to QC
quantification has thus catalyzed a broad array of further explorations into the nature and
implications of QC [48-51].

The theory of open quantum systems examines the dynamics of quantum systems
that interact with their surrounding environments, a topic of significant interest since the
foundational development of quantum mechanics [52]. Despite considerable theoretical
progress, fundamental challenges remain unresolved, notably the phenomenon of decoher-
ence, which involves the loss of quantum coherence due to interactions between a system
and its environment.
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Recent progress has considerably deepened our understanding of quantum coherence,
particularly its behavior in decoherence and noisy environments. Key studies have explored
phenomena such as frozen coherence, analytical evolution equations, noise coherence-
generating power, and coherence dynamics in correlated channels [53-56]. These contribu-
tions provide essential tools and perspectives for analyzing coherence loss and preservation
in open quantum systems.

Building on these developments, it is clear that understanding coherence dynamics is
essential not only from a fundamental perspective but also for practical uses. This process
has attracted substantial attention in the fields of quantum information and computation,
where decoherence remains one of the central challenges in the realization of scalable
quantum information processors [57-59]. The preservation of QC is indispensable for the
operation of quantum computers, quantum cryptography, and quantum teleportation.
Furthermore, decoherence serves as a critical mechanism for understanding the quantum-
to-classical transition, wherein the emergence of classical properties from quantum systems
is interpreted as a consequence of environmentally induced decoherence. In this study,
we investigate the QC and purity in hydrogen atoms under dissipative dynamics using
the Lindblad master equation. We will show that Bell states exhibit exponential decay in
both coherence and purity, while separable states show oscillatory coherence with decay
and rising entropy, effects that worsen with higher dissipation rates. The results obtained
highlight the role of the environment in the degradation of the QC and purity, providing
critical insights for the preservation of quantum properties in atomic systems.

This manuscript is structured as follows. Section 2 describes the system Hamiltonian
and presents the solution to the physical model. In Section 3, we introduce the coherence
measure and analyze its time-dependent behavior for the model under consideration.
Finally, Section 4 summarizes the key findings of this study.

2. The Hamiltonian and Quantum Dynamics

The ground state of the hydrogen atom exhibits a fascinating interplay of spin de-
grees of freedom governed by the hyperfine interaction Hamiltonian. This Hamiltonian
captures the magnetic dipole-dipole coupling between the electron and proton spins and is
mathematically expressed as

Hur = A(0 - 0p). 1)

Here, 0, = (0¥, 0¢,0%) represents the vector of Pauli operators for the electron spin, while

op = (0, ag ,0;) denotes the corresponding vector for the proton spin. These operators act
on the spin-1/2 nature of both particles, encoding their quantum mechanical spin properties
along the three spatial axes. The parameter A, termed the hyperfine structure constant,
quantifies the strength of this interaction. It arises from a combination of fundamental
physical constants, including the fine-structure constant &, which governs electromagnetic
interactions; the electron and proton g-factors, g, and g,, which adjust the magnetic
moments relative to the Bohr magneton and nuclear magneton; the vacuum permeability
Ho; the reduced Planck constant #i; the Bohr radius a¢, a measure of the electron—proton
separation in the ground state; and the masses of the electron m, and proton m,,. The precise
form of this constant is given by A = gzxz Se8p i Z’—; ZZ—’; This hyperfine Hamiltonian dictates
the energy level structure of the hydrogen atom’s ground state by coupling the electron
and proton spins into a total spin system. Given that both the electron and the proton are
spin-1/2 particles, their spins can either align to form a triplet configuration with total
spin Siotal = 1 or anti-align to form a singlet configuration with Sy, = 0. The eigenvalues
of Hyr reveal this splitting: the triplet states, characterized by parallel spin orientations,

possess an energy of E = A, whereas the singlet state, with antiparallel spins, has an energy
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of E = —3A. The energy separation between these levels, known as hyperfine splitting, is
thus AE = 4A.

The effective Hamiltonian in Equation (1) describes the hyperfine interaction in the
hydrogen atom, valid when the electron occupies the ground (1s) state. In this regime, the
dominant spin-dependent interaction is the magnetic dipole—dipole coupling between the
electron and proton spins. The Coulomb binding and spin—orbit coupling are either already
accounted for in the energy level structure or negligible (e.g., spin—orbit vanishes for | = 0).

The Hamiltonian eigenstates span a four-dimensional Hilbert space given by the
computational basis B = {| TeTp), | Tedp) | LeTp),| Lelp)}. Here, | 1) and | |) denote
spin-up and spin-down states along the z-axis for the electron (subscript e) and proton
(subscript p). The energy eigenvalues are derived using the total spin operator S = S, + .
For triplet states (Siota1 = 1), S2 =212, giving energy E = A; for the singlet state (Siota1 = 0),
S? =0, giving E = —3A. The singlet eigenstate, |a), is a Bell state:

1
V2

with energy E, = —3A. The triplet eigenstates (E = A) include two separable states:

|a) (| Te¢p> — | ieTp>)/ )

|d> = | TeTP>/ 3)
|b> = | l/e\lfp>r (4)

with energies E; = E, = A, representing spins aligned up or down. The third triplet state,
|c), is another entangled Bell state:

-1
V2

with energy E. = A. The presence of entangled eigenstates such as |a) and |c) within

|c) (| Te¢p> + | ieTp>)/ ®)

the hyperfine structure illustrates the hydrogen atom’s intrinsic quantum mechanical
richness. These states, alongside the separable triplet states |b) and |d), fully characterize
the spin dynamics of the system in its ground state. The energy difference AE = 4A drives
observable phenomena, such as the 21 cm spectral line. This structure not only provides
insight into atomic physics but also serves as a foundational example for understanding
quantum correlations in more complex systems, enabling studies of QC and von Neumann
dynamics under dissipation, as explored in this work.

The system is characterized by the hyperfine Hamiltonian and dissipative interactions
modeled via Lindblad operators representing spin-flip processes for the electron and proton.
The time evolution of the density matrix p(t) is governed via the Lindblad master equation,
which accounts for both unitary evolution and dissipation

dp(t)

B = il p(0)] + 2(o(1), ©

where P (p(t)) is the dissipation superoperator. The dissipative term is expressed as

,)/4
9((’):52

1
(LkaZ - Z{LZLW}), (7)
k=1
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where < represents the dissipation rate, and Ly are the Lindblad operators describing
spin-flip processes. These operators are defined as

Ly =0 ®1p, (electron spin-up transition) (8)
Ly =0 ®Ip, (electron spin-down transition) 9)
[3=I® O'i, (proton spin-up transition) (10)
Ly=L®cd", (proton spin-down transition) (11)
Here, oy = | 1)(J | and 0— = | ])(1 | denote the raising and lowering operators for

the respective spin systems. Further, we assume equal rates for the excitation and decay
processes, corresponding to the high-temperature limit of a thermal reservoir, where 7i — oo
and I' — 0, such that the product I'i = <y remains finite. This approximation leads to
symmetric noise channels and is consistent with the infinite-temperature limit described
in Ref. [60] (see Equation (112) and its discussion). Although we adopt equal rates for
simplicity, the model can be extended to include temperature-dependent asymmetric rates,
which will be explored in future work.

The time derivative % yields a set of coupled differential equations for the matrix
elements p;;(t), where i, j = 1,2,3,4 correspond to the computational basis. These equations
account for coherent interactions, parameterized by the coupling strength A, and dissipative
processes, characterized by the dissipation rate y. The equations are separated into those
governing the diagonal elements (populations) and the off-diagonal elements (coherences)
for clarity.

The diagonal elements p;;(t) represent the probabilities of finding the system in each
basis state. Their time evolution is given as follows:

% = 7(p22 + P33 — 2011), (12)
d% = —2iA(p23 — p32) + Y(o11 + pas — 2022), (13)
d% = 2iA(p23 — p32) + 7(011 + P44 — 2033), (14)
% = 7(p22 + 33 — 2044). (15)

Here, the terms involving 7y describe population transfer due to dissipation, while the terms
with A in py and p33 arise from coherent coupling between states | T¢lp) and | l.Tp).

The off-diagonal elements p;j(t) (for i # j) represent the coherence between the basis
states. Their dynamics are governed via the following:

dprz

g = —2A(e2 — p1a) +v(pss —2012), (16)
% = —2iA(p13 — p12) + (P21 — 2013), (17)
% = —297p14, (18)
% = —2iA(px — P33 + p23) — 27023, (19)
% = —2iA(p24 — p3a) + (013 — 2p24), 20)
% = —2iA(024 — p34) + ¥(012 — 2034). 1)

These equations include both coherent evolution (terms with A) and decoherence (terms
with 7). In particular, p14 decays purely dissipatively, indicating that there is no coherent
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coupling between states | T.1,) and | Je)p). The remaining off-diagonal elements (051, 031,
032, 041, P42, p43) are determined by Hermitian conjugation, ensuring the density matrix re-
mains Hermitian (o = p). Specifically, pji = pl’-‘j for all i, j. These differential equations fully
describe the dynamics of the system under the combined effects of coherent interactions
and dissipation. They can be solved analytically under specific initial conditions.

3. Quantum Coherence and Results

In the resource-theoretic framework of QC, the [;-norm of coherence serves as a
fundamental measure to quantify the coherence present in a quantum state, is given by [29]

Cy(p) =Y lpi
i#j

, (22)

where p is the density matrix, and the sum captures the absolute values of its off-diagonal
elements. This metric provides a straightforward and computationally efficient way to
assess the magnitude of quantum superpositions, making it particularly valuable for
analyzing coherence dynamics in systems like hydrogen atoms under dissipative conditions,
as explored in this manuscript. Complementing this, the relative entropy of coherence,
given by

Crel(p> = S(pdiag) - S(/))r (23)

where S denotes the von Neumann entropy, and pgjag is the diagonal part of p, which
measures coherence through the entropic difference between the incoherent (diagonal) state
and the full quantum state. This information-theoretic measure effectively captures the
quantum information encoded in off-diagonal terms and adheres to essential properties
such as vanishing for incoherent states, monotonicity under incoherent operations, and
convexity. Both measures align with the resource theory of coherence, ensuring that
coherence remains a non-increasing resource under free (incoherent) operations.
Contemporary studies have shown that entropy generation within the framework of
classical thermodynamics can be understood as the development of correlations between
an open quantum system and its surrounding environment [61-64]. For a quantum state, p,
representing a qubit, the von Neumann entropy is defined by the expression

S(p) = —tr(oInp). (24)

In the context of a bipartite quantum system, the entropies of the individual subsystems
and the combined system conform to the inequalities

1S(pa) — S(pB)| < S(pap) < S(pa) +S(ps), (25)

where A and B designate the two distinct subsystems.

Given the initial state,
cos | Telp) +sinal le1y), (26)

the non-zero elements of the time-evolved density matrix p(t) can be analytically derived
from the Lindblad master equation (see Appendix A). The density matrix at time ¢ is found
to be
pn(t) 0 0 pult)
o(t) g p22(t) p23(t) 0 (27)
pa2(t) pas(t) 0
par(t) 0 0 pu(t)
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where
pn(t) = 3 [1-e 7]
11 il ,
_ 1 —4yt
P44(t)—1[1—€ ],
1 -
t) = = |1+ e " +2cos(2a) cos(4At)e 27|,
pult) = | (20) cos(4At)e 2" 08)
1 -
p33(t) = 1 14 e 41" —2cos(20) cos(4At)e_27t] ,
1 . . .
p2s(t) = 56*2”” [i cos(2a) sin(4At) + sin(2a)],

pij(t) =0 forall other i, j,

illustrating the decay of coherences and redistribution of populations over time. These
solutions highlight the interplay between coherent oscillations (driven by A) and decoher-
ence (governed by 7). The coherence between the states |1) and |4) decays exponentially
with time, while the populations in the diagonal elements approach a uniform distribution
due to the dissipative interactions.

In Figure 1, we present the time evolution of the L1-norm of coherence for the electron—
proton system in a hydrogen atom, initially prepared in a maximally entangled Bell state
(« = 7t/4), under dissipative dynamics modeled with the Lindblad master equation. This
measure, defined as the sum of the absolute values of the off-diagonal elements of the
density matrix, quantifies the QC in the system. The figure illustrates an exponential
decay of the L1-norm for dissipation parameters y = 0.1 (solid line), v = 0.5 (dashed line),
and y = 1.0 (dash-dotted line), with the decay rate increasing as y grows. This behavior
underscores the rapid loss of quantum superpositions due to environmental interactions,
highlighting the detrimental effect of dissipation on coherence in atomic systems. Comple-
menting this, Figure 2 depicts the time evolution of the von Neumann entropy for the same
electron—proton state under identical dissipative conditions. Starting from zero for the pure
Bell state, the entropy increases toward a maximum value, indicating the system’s transition
to a fully mixed state. The plot shows this rise for y = 0.1 (solid line), v = 0.5 (dashed line),
and v = 1.0 (dash-dotted line), with the rate of entropy growth accelerating with higher .
This trend emphasizes how stronger dissipation hastens the erosion of quantum purity and
correlations. Together, Figures 1 and 2 provide a comprehensive view of how dissipative
dynamics undermine quantum features in hydrogen atoms. The exponential decay of the
Li-norm of coherence and the corresponding increase in von Neumann entropy reveal
the challenges of maintaining quantum properties under environmental noise, critical for
applications in quantum information technologies. By quantifying these effects, this study
establishes a foundation for developing strategies to preserve coherence and purity in
atomic systems against dissipation.

In Figure 3, we present the time evolution of the L;-norm of coherence for the electron-
proton system in a hydrogen atom, initially prepared in a separable state (¢« = 0), under
dissipative dynamics governed by the Lindblad master equation. The figure illustrates oscil-
latory behavior driven by the hyperfine coupling constant A, overlaid with an exponential
decay envelope governed by the dissipation parameter y = 0.1 (solid line), v = 0.5 (dashed
line), and v = 1.0 (dash-dotted line). Higher values of vy accelerate the coherence loss,
demonstrating the sensitivity of quantum superpositions to environmental interactions in
atomic systems. Similarly, Figure 4 displays the time evolution of the L{-norm of coherence
for the electron—proton system in a hydrogen atom, initially prepared in a partially entan-
gled state with « = 71/3. The system evolves under dissipative dynamics governed by the
Lindblad master equation, and the plot shows the effect of different dissipation rates.
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Figure 1. Time evolution of the Li-norm of coherence for the electron—proton system in a hydrogen
atom, initially prepared in a maximally entangled Bell state (x = 77/4), under dissipative dynamics
modeled by the Lindblad master equation. The plot illustrates the coherence decay for dissipation
parameters 7y = 0.1 (solid line), vy = 0.5 (dashed line), and v = 1.0 (dash-dotted line). The behavior of
coherence highlights the detrimental effect of environmental interactions on QC in atomic systems,
emphasizing the challenges of maintaining quantum properties under dissipation.

1.0

0.0H . . . . R
0 2 4 6 8 10

At

Figure 2. Time evolution of von Neumann entropy for the electron—proton state in a hydrogen atom,
initially prepared in a maximally entangled Bell state (x = 77/4), under dissipative dynamics modeled
with the Lindblad master equation. The plot illustrates the entropy increase for varying dissipation
parameters v = 0.1 (solid line), v = 0.5 (dashed line), and o = 1.0 (dash-dotted line). Each curve
shows a rise from an initial zero entropy toward a maximum value. The rate of entropy growth
accelerates with an increasing <, underscoring the role of environmental dissipation in eroding

quantum purity.

The oscillatory pattern, modulated by A, is progressively suppressed by increasing
v, underscoring the detrimental impact of dissipation on quantum resources essential for
applications such as quantum computing. Complementing these observations, Figure 5
depicts the time evolution of von Neumann entropy, an indicator of the system’s quan-
tum purity. Starting from a low initial value for the separable state, the entropy rises
steadily toward a maximum, signaling the system’s progression toward a more mixed state
in the long-time limit, though not reaching the maximally mixed state, I4/4, for which
S(p) = In(4) ~ 1.3863.The rate of this increase is directly tied to -y, with stronger dissipation
hastening the loss of purity. Collectively, Figures 3-5 illustrate how dissipative dynamics
degrade key quantum features, coherence and purity, in hydrogen atoms. Despite the
different initial states—with Figure 2 starting from a maximally entangled Bell state and
Figure 5 from a separable state—the behavior of von Neumann entropy is remarkably simi-
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lar in both cases. This similarity indicates that the entropy’s increase toward its maximum
value, signaling the transition to a fully mixed state, is independent of the initial state of the
system. Such behavior underscores the universal role of dissipation in eroding quantum
purity, regardless of the system’s starting configuration. On the other hand, it is worth
noting that coherence and mixedness are not independent quantities: for a given quantum
state, p, the I; norm of coherence Cj, (p) and the linear mixedness M;(p) = 7% (1 — Tr[p?])
satisfy a tradeoff relation, as discussed in [65,66]. This means that, as the system becomes
more mixed (higher M;), coherence tends to decrease, a behavior that is consistent with our
numerical observations.

1.0F
0.8}
o6}

oS
0.4}

0.2}

0.0L

Figure 3. Time evolution of the Li-norm of coherence for the electron—proton system in a hydrogen
atom, initially prepared in a separable state (x = 0), under dissipative dynamics governed by the
Lindblad master equation. The plot illustrates the coherence dynamics for varying dissipation
parameters v = 0.1 (solid line), v = 0.5 (dashed line), and y = 1.0 (dash-dotted line). Each curve
displays oscillatory behavior driven by the hyperfine coupling constant, A, overlaid on an exponential
decay envelope influenced by .

1.0F
0.8
0.6f

=

O
0.4}

0.2f

0.0L

Figure 4. Time evolution of the Li-norm of coherence for the electron—proton system in a hydrogen
atom, initially in a partially entangled state (x = 71/3), under dissipative dynamics governed by the
Lindblad master equation. The coherence dynamics are shown for dissipation parameters v = 0.1
(solid line), v = 0.5 (dashed line), and o = 1.0 (dash-dotted line). The plot illustrates the coherence
decay for dissipation parameters y = 0.1 (solid red line), v = 0.5 (dashed blue line), and v = 1.0
(dash-dotted black line). The behavior of coherence highlights the detrimental effect of environmental
interactions on QC in atomic systems, emphasizing the challenges of maintaining quantum properties
under dissipation.
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OO i I i A i 1]
0 2 4 6 8 10

At

Figure 5. Time evolution of the von Neumann entropy for the electron—proton state in a hydrogen

atom, initially prepared in a separable state (x = 0), under dissipative dynamics governed by the
Lindblad master equation. The plot illustrates the coherence dynamics for varying dissipation
parameters v = 0.1 (solid line), v = 0.5 (dashed line), and v = 1.0 (dash-dotted line). Each curve
displays oscillatory behavior driven by the hyperfine coupling constant A, overlaid on an exponential
decay envelope influenced by .

4. Conclusions

In this paper, we have investigated the QC and purity in hydrogen atoms under
dissipative dynamics, with a particular focus on the hyperfine structure states arising
from electron—proton spin interactions. By employing the Lindblad master equation, we
modeled the time evolution of the system’s density matrix, accounting for both the unitary
dynamics driven by the hyperfine Hamiltonian and the dissipative effects due to environ-
mental interactions. QC was quantified using the L{-norm and relative entropy measures,
while purity was assessed via von Neumann entropy. We examined two distinct initial
states: a maximally entangled Bell state and a separable state. The results revealed distinct
dynamical behaviors, depending on the initial state. For the Bell states, both coherence and
purity decayed exponentially, with the decay rate directly proportional to the dissipation
parameter 7. This underscored the significant impact of environmental interactions on
quantum superpositions and correlations. In contrast, for certain separable states, coher-
ence exhibited an oscillatory behavior modulated via the hyperfine coupling constant
A, superimposed on exponential decay. This oscillatory pattern was accompanied by a
steady increase in entropy, indicating a gradual loss of quantum purity. Furthermore, we
observed that higher dissipation rates accelerated the loss of coherence and the growth of
von Neumann entropy, highlighting the environment’s critical role in suppressing quantum
superpositions and driving the system toward mixed states. These findings provided
deeper insights into the preservation of coherence and purity in atomic systems, with im-
portant implications for quantum information applications that demand resilience against
environmental noise. These results may offer practical insights for quantum information
protocols, including robust state initialization, strategies for mitigating decoherence, and
exploiting hyperfine interactions for encoding and manipulating qubits.
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Appendix A. Derivation of the Time-Evolved Density Matrix Elements

This appendix derives the analytic solution for the time-evolved density matrix p(t)
of the hydrogen atom’s hyperfine structure, starting from the initial density matrix,

0 0 0 0
(0) = 0 cos? cosasina 0O
PP =10 cosasina  sin?a 0
0 0 0 0
with non-zero elements p»(0) = cos?a, p33(0) = sin®a, px3(0) = cosasina, and

p32(0) = cosasina. The Lindblad master equation yields a set of coupled differential
equations for the density matrix elements,

% = Y(022 + p33 — 2011), (A1)
dg% = —2iA(p23 — p32) + v(p11 + Paa — 2022), (A2)
dg% = 2iA(p23 — p32) + (P11 + paa — 2033), (A3)
% = 7(p2 + p33 — 2044), (Ad)
d‘% = —2iA(p2 — p33 + p23) — 27P23, (A5)

with p35(t) = p35(f) due to the Hermitian property of p(t). Other off-diagonal elements,
such as py4, are found to remain zero under the given dynamics, consistent with the ini-
tial condition p14(0) = 0. To solve these equations, define s(t) = p2a(t) + p33(t). When
Equations (A2) and (A3) are summed, the coherent terms cancel since p3 — p32 = 2iIm(p23),
yielding

B 2y(on +pu—9)

dt '

Since Tr[p(t)] = p11 + p22 + 33 + paa = 1, we have p11 + pa4 = 1 —s. Thus,

ds _ 29(1 —s—s) =2y(1—2s).
dt
Solving with the initial condition s(0) = cos? & + sin? « = 1, we obtain the following:

11,
——— - vt
s(t) 5T

Since p11 +pau =1—5 = %(1 —e 41, and noting the symmetry in Equations (A1) and (A4)
with £11 (0) = P44 (0) =0, we find

(1—e 1),

I

p11(t) = paa(t) =



Entropy 2025, 27, 848 12 of 14

Define d(t) = pxn(t) — pa3(t) and pa3(t) = c(t) = ¢, (t) + ici(t). The system becomes

the following:
% = —2vd — 8Ag;, (A6)
der =2Ac; — 2vcy, (A7)
dt
dC,‘
T —2A(d +c¢;) — 27¢;, (A8)
with initial conditions d(0) = cos? & — sin®« = cos2a, ¢;(0) = cosasina = % sin2a, and

ci(0) = 0. Solving this coupled system analytically, we find that the coherent dynamics
introduce oscillations at frequency 4A, modulated by dissipative decay. The solutions are

p2(t) = % [1 + e 4" £ 2cos(20) cos(4At)e_27t] , (A9)
p33(t) = i [1 + e 41" — 2cos(20) cos(4At)e*2'Yt} , (A10)
p23(t) = %eiht [i cos(2a) sin(4At) 4 sin(2a)]. (A11)

The conjugate ps(f) = p35(t) = 3¢ 27 [—icos(2a) sin(4At) + sin(2a)].
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