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Abstract
Recent efforts in quantum photonics emphasize on-chip generation, manipulation, and detection
of single photons for quantum computing and quantum communication. In quantum photonic
chips, single photons are often generated using parametric down-conversion and quantum dots.
Quantum dots are particularly attractive due to their on-demand generation of high-purity single
photons. Different photonic platforms are used to manipulate the states of the photons.
Nevertheless, no single platform satisfies all the requirements of quantum photonics, as each
platform has its merits and shortcomings. For example, the thin-film silicon nitride (SiN) platform
provides ultra-low loss on the order of 0.1 dBm−1, but is incompatible with dense integration ,
requiring large bending radii. On the other hand, silicon on insulator offers a high refractive index
contrast for dense integration but has a high absorption coefficient at the emission wavelengths
(800–970 nm) of state-of-the-art QDs. Amorphous silicon carbide (a-SiC) has emerged as an
alternative with a high refractive index (higher than SiN), an extended transparency window
compared to Silicon, and a thermo-optic coefficient three times higher than that of SiN, which is
crucial for tuning photonic devices on a chip. With the vision of realizing a quantum photonic
integrated circuit, we explore the hybrid integration of SiN/a-SiC photonic platform with quantum
dots and superconducting nanowire single-photon detectors. We validate our hybrid platform
using a brief literature study, proof-of-principle experiments, and complementary simulations. As
a proof-of-principle, we show a quantum dot embedded in nanowires (for deterministic
micro-transfer and better integration) that emits single photons at 885 nm with a purity of 0.011
and a lifetime of 0.98 ns. Furthermore, we design and simulate an adiabatic coupler between two
photonic platforms, a-SiC and SiN, by aiming to use the benefits of both platforms, i.e. dense
integration and low losses, respectively. Our design couples the light from SiN waveguide to a-SiC
waveguide with 96% efficiency at 885 nm wavelength. Our hybrid platform can be used to
demonstrate on-chip quantum experiments such as Hong–Ou–Mandel, where we can design a
large optical delay line in SiN and an interference circuit in a-SiC.

1. Introduction

In recent years, advancements in quantum technologies have harnessed the unique behavior of light
particles, enhancing sensing, communication, and computing. Quantum sensors deliver unprecedented
precision for measurements [1]. Quantum communication enables unhackable, long-distance data
transmission [2]. Quantum computers promise exponential speedup for complex mathematical problems,
while quantum cryptography ensures unbreakable data security [3]. Linear Optical Quantum Computers
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(LOQC) use photons as quantum bits (qubits) and manipulate them using optical components such as
mirrors, lenses, beam splitters, phase shifters, and detectors [4–7]. Although one can easily tweak discrete
optical elements to fine-tune them for various requirements, such as low loss and high throughput, their
bulky nature makes them impractical in terms of scalability. Therefore, quantum photonic integrated circuits
(QPIC) are essential to meet the growing demand for more sophisticated experiments [8]. Progress is being
made to integrate all passive and active photonic devices, modulators, quantum frequency converters,
high-performance detectors, and light sources on a single photonic platform [9–16]. In addition, many
groups are exploring and characterizing different photonic platforms that satisfy all the requirements for
efficient quantum photonic integrated circuits, i.e. low photonic loss, high integration density, large tuning
range, optical non-linearities, and CMOS compatibility [17–20]. However, thus far, no single material
platform offers all the mentioned requirements. One of the effective ways to address the need for quantum
photonic integrated circuits is hybrid integration that connects various devices composed of different
materials on a single chip at the fabrication level. The main challenges in hybrid integration are compatibility
issues, yield, and efficient coupling between various optical devices fabricated in different layers and
materials. This work proposes a method to combine two promising photonic platforms, i.e. a-SiC and SiN,
and integrate them with III–V sources and superconducting detectors on the same chip. We design and
simulate an adiabatic coupler to couple the light from thin-film SiN to a-SiC with 96% efficiency. This
configuration (i.e. SiC/SiN) offers the advantages of both SiN (low-loss) and a-SiC (dense integration). We
also characterize the InAsP/InP quantum dots embedded in InP nanowires as a single-photon source. We
generate single photons with high purity and short lifetime and, through literature review, illustrate our
vision of their future integration with photonic circuits and single photon detectors.

2. Generation of single-photons

Many quantum photonic protocols demand on-chip single photon generation. In sources based on optical
non-linearities, such as Spontaneous Parametric Down Conversion (SPDC) and Spontaneous Four Wave
Mixing (SFWM), due to the probabilistic nature of the emission, deterministic generation of single photons
is challenging [22, 23]. Moreover, strong pump fields are required to generate correlated photons through
nonlinear effects, which makes the integration of sources and detectors impractical (challenging to
distillate—e.g. filter- single photons in the presence of strong pump fields). On the other hand, quantum
dots offer deterministic single-photon generation with high efficiency and precise and narrow emission
bandwidth [24–31]. Also, QDs integration with photonic circuits has achieved great progress [32–39]. In
recent years, the main challenge with QDs, i.e. photon indistinguishably, has also been addressed [40]. We
investigate the potential of integrating nanowire quantum dots in hybrid photonic circuits. Figure 1(a) shows
an illustrative image of a standing as-grown indium phosphide (InP) nanowire on a InP substrate with a
length of 1.5–3 µm and diameter 250–300 nm. A 3–4 nm section of indium arsenide phosphide (InAsP) is
grown in the nanowire at 200 nm from the base to create the quantum dot [24]. To characterize and select an
emitter with the desired characteristics to transfer to the photonic chips, we place the sample in a Helium flow
cryostat with a base temperature<6 K. Figure 1(b) represents the schematic of our experimental setup. We
locate quantum dots by illuminating the sample surface using a light-emitting diode followed by an objective
lens, and the reflection is collected in a camera (figure 1(b)). Afterward, we obtain the photoluminescence
spectrum by exciting them with a continuous wave laser at a wavelength of 785 nm (non-resonant
excitation). The emitted photons are collected using the same optical path in the reflection geometry. The
excitation wavelength is blocked with a long pass filter (Thorlabs LP850). Figure 1(c) shows the emission
spectrum of a quantum dot measured using a spectrometer (monochromator Acton series SP-2750 from
Princeton Instruments) with 1800 grooves per millimeter grating. We fit this narrowband spectrum with a
Lorentzian function (inset of figure 1(c)) and determine the emission wavelength as 884.8 nm, the emission
linewidth is less than the resolution limit of our spectrometer (spectrometer resolution ~30–45 pm). High
resolution measurements using an etalon on similar nanowire quantum dots indicates linewidths less than
1.1 pm [41]. Single photon purity and indistinguishability are critical for the operation of quantum
technologies, including quantum computing and quantum communication. To determine the single photon
purity of the nanowire quantum dots, we perform a fiber-based Hanbury Brown and Twiss experiment and
calculate the second-order correlation g(2) (figure 1(d)). We detect these single photons using a self-aligned
fiber-coupled superconducting nanowire single-photon detector (SNSPD). The emitted light from the
quantum dots is coupled from the spectrometer to a paddle polarization controller and a polarization
maintaining fiber-coupled beamsplitter (PBC980PM-FC). The polarization going to the SNSPDs is aligned
to the TE mode of the SNSPDs corresponding to the highest system detection efficiency. A time-tagger is
used to determine the time of arrival of the photons in the two detectors and build a correlation histogram.
The measured multiphoton emission probability g(2)(0), calculated by fitting the experimental data (red
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Figure 1. (a) An illustration [21] of a nanowire quantum dot, similar to those used in this study. (b) Schematic of the optical
setup used to characterize quantum dots. The setup allows for both top and side access; in this study only top access was used.
(c) Measured emission spectrum of a quantum dot. The emission wavelength is 884.8 nm. (d) Second-order correlation
measurement (g(2)) showing multiphoton emission probability as low as 0.011. The lifetime of the quantum dots is 0.98 ns.

Figure 2. (a) Scanning electron microscope image of a nanowire quantum dots embedded in silicon nitride (SiN) waveguides.
Reprinted (adapted) with permission from [33]. Copyright (2016) American Chemical Society. (b) Scanning electron microscope
image of a silicon nitride (SiN) waveguide coupled to a superconducting nanowire single-photon detector (SNSPD) on a chip.
Reprinted (adapted) with permission from [44]. Copyright (2019) American Chemical Society.

curve in figure 1(d)), is 0.011. Furthermore, we estimate an emission lifetime of the QDs as 0.98± 0.1 ns
from the fitting curve (red curve in figure 1(d)). Reimer et al [42] (for as-grown nanowire quantum dots)
and Yeung et al [43] (for a nanowire in a PIC) performed Hong–Ou–Mandel (HOM) (two-photon
interference) experiment on similar nanowire quantum dots, and confirmed that the generated photons by
nanowire QDs show a relatively high level of indistinguishably. This property reveals that the nanowire QDs
generate identical photons with precisely the same properties, such as frequency, polarization, and spatial
mode, and hence meet the requirements for the applications requiring photon interference.

Further, these QDs can be transferred on a photonic platform without affecting their emission quality
[33]. Figure 2(a) shows the QDs embedded in the silicon nitride waveguides [33]. The QDs are first
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transferred on a silicon substrate using a nanomanipulator (pick-and-place method). Afterward, a silicon
nitride film is deposited and patterned to define the waveguides. Similarly, the detectors can also be
integrated with the waveguide on a chip. Figure 2(b) shows an SNSPD encapsulated by a silicon nitride
waveguide [44]. Advancements have been achieved in integrating quantum dots (QDs) and SNSPDs on the
same chip to demonstrate basic quantum experiments. Schwartz et al [45]. demonstrated the on-chip
single-photon Hanbury-Brown and Twiss Experiment by integrating the QDs and SNSPDs with a
single-mode GaAs ridge waveguide. Nevertheless, the high waveguide losses of the photonic platform pose a
primary impediment to the evolution of complex quantum photonic integrated circuits.

3. Hybrid integration of a-SiC and SiN

Different materials such as silicon nitride (SiN) [46, 47], silicon (Si) [48–50], lithium niobate (LN) [51–53],
gallium arsenide (GaAs) [54, 55], indium phosphide (InP) [55–57], and silicon carbide (SiC) [15, 16, 58–66]
have been used to demonstrate various on-chip photonic applications including switching, filtering,
splitting, combining, amplification, modulation and many more. However, no single material meets all the
requirements of an efficient and high-throughput photonic integrated circuit [67, 68]. For example, SiN
waveguide deposited by low pressure chemical vapor deposition (LPCVD) with specific design parameters
(thickness 40 nm and width 2 um) provides ultra-low losses of down to 0.1 dBm−1 (figure 3(a)) [32, 69].
This platform can be used for optical delay lines in quantum experiments such as HOM. However, these
ultrathin film SiN waveguides are not scalable for applications that require strong confinement, such as
integration of many modulators, phase shifters, filters, beam splitters, and other circuit components [70] as
the bending losses, prohibits the require dense integration. The minimum bending radius in, for example,
figure 3(a) is 1 mm. We adopt the same waveguide parameters and simulate the bending waveguides using
FDTD simulation to characterize bending losses. The simulation wavelength was 885 nm, i.e. our quantum
dot emission wavelength. Figure 3(b) shows the loss as a function of bending radius. Significant losses can be
observed for bending radii below 400 µm, as the light is no longer confined in the waveguide. To avoid this
problem, we propose hybrid integration of these ultra-low loss thin SiN films with other materials with high
refractive index and
thickness.

Amorphous silicon carbide is a suitable material to be integrated with SiN due to its unique properties,
such as high refractive index and a wide transparency window from the visible to the mid-infrared range.
The refractive index of the a-SiC is higher than that of SiN [19]. In addition, the thermo optic coefficient of
a-SiC is three times higher than SiN [63]. The thermo-optic coefficient is crucial for tuning the on-chip
photonic devices; a high thermo-optic coefficient results in an extensive tuning range and reduces the
thermal crosstalk between devices and quantum dots. The QDs embedded in the SiC waveguide provide
unidirectional coupling efficiency greater than 86% [33].

Furthermore, the high-quality amorphous silicon carbide films can be deposited on wet thermal oxide on
silicon substrate at low temperatures. Our recent work [63] presents a novel technique for low-temperature
deposition of a-SiC thin films using Inductively Coupled Plasma Chemical Vapor Deposition (ICPCVD).
With optimized deposition recipe (Temperature: 150 ◦C, Pressure: 2 mTorr, and ICP Power: 750 W), we
deposit a-SiC films with surface roughness<1 nm and a deposition rate of 36 nmmin−1. Thanks to the
low-temperature deposition (half the temperature than in standard PECVD process), our method is
compatible with standard lift-off techniques, allowing monolithically integrating devices with different
thickness without interfering other photonic components on the same chip. Using this lift-off scheme, we
deposited the a-SiC films (figure 4(a)) and fabricated photonic components (figure 4(b)). In addition, we
measured the optical properties of the a-SiC and SiN (figure 4(c)) using ellipsometry. Further, we show the
fabrication flow to interface a-SiC film with SiN film (figure 4(d)). The fabrication starts from a
stoichiometric SiN substrate where a layer of SiN is deposited by low-pressure chemical vapor deposition
(LPCVD) on a wet oxidized silicon wafer. Electron-beam lithography (EBL) and reactive ion etching (RIE)
are then performed to define the photonic integrated circuits on the SiN layer. A thin layer of ICPCVD silicon
dioxide (SiO2) is put on top as a spacer, preventing any possible damage to the SiN layer in the subsequent
processes. After which, we use low-temperature ICPCVD and standard lift-off processes to deposit the a-SiC
layer and define the devices. Finally, polymethyl methacrylate (PMMA) is coated over the sample as optical
cladding.
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Figure 3. (a) Optical microscope image and schematic of an ultra-low loss waveguide spiral with 1 m length. Reproduced from
[32]. CC BY 4.0. (b) Simulated loss, for similar waveguides as shown in part (a), as a function of bending radius.

Figure 4. (a) Optical image of a-SiC film deposited using lift-off method at a temperature of 150 ◦C. (b) Optical image of a
ring-resonator fabricated on the a-SiC film. (c) Measured optical properties of the SiN and a-SiC films using ellipsometry.
(d) Fabrication flow to interface a-SiC film to SiN film..

4. Design of an adiabatic coupler

Despite the unique properties of SiN and SiC, the real challenge is to efficiently couple the light
interchangeably from one material to another in a hybrid configuration. We take this challenge and design an
adiabatic coupler between the waveguides of these two materials (i.e. SiN and SiC). For efficient coupling
from the SiN waveguide to the SiC waveguide, the effective refractive index and mode profile of both the
waveguides should perfectly match. We calculate the effective refractive index of both waveguides for
fundamental TE mode as a function of waveguide width (figure 5(a)). As one decreases the waveguide
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Figure 5. (a) The effective refractive index of the SiN (solid blue) and SiC (solid brown) waveguides as a function of their width.
(b) Planer and (c) cross-sectional view of the adiabatic coupler. (d) Cross-sectional intensity distribution in SiN waveguide.
Planar intensity distribution in (e) SiN and (f) SiC waveguide. (g) Cross-sectional intensity distribution in SiC waveguide.
(h) Designed structure to achieve low-loss and sharp bends in low-loss SiN platform, using a SiC section.

widths, the effective refractive index of the waveguides decreases, and in both cases (1 um wide, 40 nm thick
SiN waveguide and 100 nm wide, 100 nm thick SiC waveguide), it reaches the same effective refractive index
(1.46) (figure 5(a)). Considering the relation between width and the effective refractive index, we design our
adiabatic coupler by tapering the SiN width from 2 um to 1 um and SiC width from 400 nm to 100 nm
(figure 5(b)). The figure 5(c) shows the cross-section view of our designed coupler. The SiC waveguide is
placed on top of the SiN waveguide with a spacer layer of 20 nm (SiO2) and covered with a thick oxide (SiO2)
layer as cladding (figure 5(c)). We simulate (FDTD) the designed adiabatic coupler by exciting the
fundamental TE mode (figure 5(d)) of the SiN waveguide. Figures 5(e) and (f) show the normalized field
distribution in the SiN waveguide (before the coupling) and in the a-SiC waveguide (after the coupling),
respectively. Our coupler couples most of the light from SiN waveguide to a-SiC waveguide with an efficiency
of 96%. Figure 5(g) shows the output mode profile (cross-section) of the a-SiC waveguide after the coupling.

We use this adiabatic coupler to bend the low-loss SiN waveguide of different radii and calculate the
transmissions (figure 5(h)). The light first travels in the SiN waveguide and couples to the SiC waveguide in
the bending region, and then it is coupled back to the SiN waveguide. This configuration guides the light
with an in-out efficiency of 94% for bending radius 14 µm. The inset of figure 5(h) shows the mode profile
of the SiN waveguide before and after the bending. The designed adiabatic coupler acts like a bridge for
hybrid integration of two promising material platforms of thin-film SiN and a-SiC.

5. Conclusion and discussion

In conclusion, we have characterized InAsP/InP nanowire quantum dots by measuring the photolumines–
cence and second-order correlation in a cryostat. Our quantum dots generate single photons with high
purity of ~1%. We discussed the prospect of integrating our nanowire quantum dots and superconducting
nanowire single photon detectors into photonic platforms. Additionally, we have designed and simulated an
adiabatic coupler for hybrid integration of SiN and a-SiC photonic platforms. The adiabatic coupler couples
light from the SiN waveguide to the a-SiC waveguide with an efficiency of 96% in simulation. As a
proof-of-principle, we have shown that the adiabatic coupler overcomes the bending losses in thin film SiN
waveguide by coupling the light in/out to/from a-SiC waveguide within the bending region. This
configuration uses both the strengths of a high-index and high scalability platform (e.g. SiC) and a low-index
and low loss mediums (e.g. SiN) deposited on the same chip. The full envisioned platform includes QDs,
SNSPds, low loss delay lines (on SiN), and photonic circuits e.g. beamsplitters, phase shifters etc (on SiC) on
the same chip. Integrating all the required elements of quantum photonics on a single chip can open way for
the efficient and scalable implementation of sophisticated quantum experiments.
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