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Abstract. We compute the static potential of a quark-antiquark pair in lattice
QCD using a method which is not based on Wilson loops, but where the trial
states are formed by eigenvector components of the covariant lattice Laplace
operator. The computational effort of this method is significantly lower than the
standard Wilson loop calculation, when computing the static potential not only
for on-axis, but also for many off-axis quark-antiquark separations, i.e., when
a fine spatial resolution is required, e.g., for string breaking calculations. We
further improve the signal by using multiple eigenvector pairs, weighted with
Gaussian profile functions of the eigenvalues, providing a basis for a generalized
eigenvalue problem (GEVP), as it was recently introduced to improve distilla-
tion in meson spectroscopy. We show results from the new method for the static
potential with dynamical fermions and demonstrate its efficiency compared to
traditional Wilson loop calculations.

1 Introduction

The potential of a static quark-antiquark pair V0(r) has always played an important role in
non-perturbative lattice calculations [1–8]. It can be measured via Wilson loops and estab-
lished an understanding of confinement and its interplay with asymptotic freedom, a central
problem of particle physics, via the formation of a flux tube between quark-antiquark static
charges [9–14]. Confinement manifests itself in the linear rise of V0(r) at large r.

We investigate a method for the calculation of the static potential energy based on an idea
first proposed in [15], also suggested in [16, 17] and first investigated in SU(2) [18], where
the spatial Wilson lines Us(~x, ~y, t) = exp(i

∫ ~y
~x Aµdxµ) =

∏
Uµ, a path-ordered product of link

variables from ~x to ~y, in a classical Wilson loop W(R,T ) of size (R = |~y−~x|)×(T = |t1−t0|) are
replaced by eigenvector pairs V(~x, t)V†(~y, t) of the three-dimensional covariant lattice Laplace
operator corresponding to the lowest eigenvalues λ:

W(R,T ) =

〈
Tr[Ut(~x; t0, t1)Us(~x, ~y, t1)U†t (~y; t0, t1)U†s (~x, ~y, t0)]

〉
(1)

→

〈
Tr[Ut(~x; t0, t1)V(~x, t1)V†(~y, t1)U†t (~y; t0, t1)V(~y, t0)V†(~x, t0)]

〉
≡ L(R,T ) .
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where Ut(~x, t0, t1) is the temporal (static) Wilson line at space point ~x from time t0 to t1.
Sandwiched between two eigenvectors at corresponding start- and end-times V(~x, t0) and
V(~x, t1), it gives a static quark line Q(~x, t0, t1) = V(~x, t0)Ut(~x, t0, t1)V(~x, t1) at ~x of time extent
T = |t1 − t0|. Its expectation value 〈Q(~x,T )〉 of course vanishes except for T = 0. When
combined with another static quark line Q̄(~y, t0, t1) at ~y, it gives the above Laplace trial state
L(R,T ) in Eq. (1) for R = |~y − ~x|, depicted in Fig. 1. Indeed, Us(~x, ~y, t) and V(~x, t)V†(~y, t)
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Figure 1. The spatial Wilson lines Us(~x, ~y, t) of the classical Wilson loop W(R,T ) of size (R = |~y− ~x|)×
(T = |t1 − t0|) (left) can be replaced by Laplacian eigenvector pairs V†(~x, t)V(~y, t) (right).

have the same gauge transformation behavior. V(~x, t)V†(~y, t) represents all possible paths
from ~x to ~y on the lattice, hence, we can not only form straight lines (on-axis), but also off-
axis paths very easily, which would correspond to very complicated stair-like constructions
of link variables. In fact, this simple method of measuring of off-axis spatial Wilson lines and
loops is one of the main advantages of this method. Many off-axis separations are required for
a fine resolution of the static potential which is important, e.g., when performing a detailed
investigation of string breaking [19, 20] or when matching the perturbative and the lattice
QCD static potential to determine the scale ΛMS [21–25]. We present an improvement of
Eq. (1) using not only the eigenvector corresponding to the lowest eigenvalue, but a number
Nv of lowest eigenvectors Vi weighted with Gaussian profiles depending on their eigenvalues
λi. A similar method was successfully applied to hadronic correlation functions in [26] where
an optimal smearing profile was introduced in the distillation framework [27], which can be
equivalently expressed as an optimal creation operator for a meson. In the case of the static
potential we get an improvement for the static energies, which reach their plateau values at
earlier temporal distances, to be quantified below.

2 The improved static potential operator

We replace Eq. (1) by writing the classical Wilson loop of size (R = |~x − ~y|) × (T = |t1 − t0|)
using trial states which are formed by eigenvector components of the covariant lattice Laplace
operator as a transfer matrix1 of Nv × Nv eigenvectors Vi and V j in time slices t0 and t1
respectively,

Li j(R,T ) =

〈
Tr[V†i (~x, t0)Ut(~x; t0, t1)V j(~x, t1)V†j (~y, t1)U†t (~y; t0, t1)Vi(~y, t0)]

〉
. (2)

We could either take a double sum (average) over all eigenvector pairs i, j = 1 . . .Nv, which
increases the statistics and the signal of the Wilson loops or we can solve a GEVP for the
Wilson loop basis matrix Wi j, which however is very ill-conditioned. We therefore prune Li j

1We thank Jeff Greensite for a fruitful discussion during this conference, which lead to this slightly different
approach compared to the analysis presented in the original talk.
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using the three most significant singular vectors uk from a singular value decomposition via
L̃kl = u†k,iLi jul, j (Li j = UDV† with U and V being unitary matrices, whose column vectors
uk and vl form an orthonormal basis, and D being diagonal with non-negative real numbers
on the diagonal), which keeps only (a combination) of useful operators and improves the
stability of the GEVP for fixed R/a: L̃(t)vk(t, t0) = ρk(t, t0)L̃(t0)vk(t, t0). From the principal
correlators ρk(t, t0) we get the effective energies/masses. From the vectors vk(t, t0) and uk we
see that the GEVP favors low-lying eigenmodes. On the other hand, an increasing number
Nv of eigenvectors enhances the signal and in particular the overlap with the ground-state in
the effective energies/masses for small distances.
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Figure 2. The static potential (left) and the first four effective energies (right) on ensemble Em1 using
the Laplacian eigenvector approach. The first is computed for all (!) on- and off-axis separations R/a
and Nv = 8, showing a flattening at half the lattice size R/a = 12 (left). The ground state overlap can be
drastically improved by using more eigenvectors, see Table 1, we get earlier plateaus for larger Nv.

In Fig. 2 we show our results for the new observable compared to actual Wilson loop
measurements on a 243 × 48 lattice ensemble at β = 5.3 (a = 0.0658fm) and N f = 2 non-
perturbatively O(a)-improved Wilson quarks with κ = 0.13270, corresponding to half the
charm quark mass. The original Wilson loop was measured on 4646 gauge configurations,
while Li j was measured on every fourth configuration only (1160 measurements). In the
left plot we present the static potential aV0(R) = limT→∞ log[L(R,T )/L(R,T + 1)] for all
on- and off-axis separations R/a from Nv = 8 Laplacian eigenvector pairs compared to on-
axis Wilson loop results. In the measurement of Wilson loops all gauge links are HYP2
smeared [28]. We observe a discrepancy of the two methods only for large R/a. In fact, at
R = 12a (half the lattice size) the force between QQ̄ must vanish due to symmetry, i.e., the
static potential must be flat, in agreement with the new numerical results. This effect however
goes away for increasing Nv and we get the exact same potential as for Wilson loops. The
right plot in Fig. 2 clearly shows that an increasing number Nv of Laplacian eigenvector
pairs improves the ground state overlap of the effective energies/masses for the static quark-
anti-quark system. Already Nv = 8 eigenvector pairs reach the plateau values faster than
the original Wilson loops, while at Nv = 100 the effect seems to saturate, we do not see a
difference between Nv = 100 and Nv = 200. The ground state overlaps can be quantified by
taking the t-average over the mass-plateau region of

L(R, t)
L(R, t0)

cosh
((

T
2 − t0

)
aV0(R)

)
cosh

((
T
2 − t

)
aV0(R)

) , (3)
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using the same t0 = 3 as in the GEVP and corresponding ground state energies aV0(R) from
a cosh-fit, for more details see [26]. These so-called ’fractional overlaps’ are listed in Table 1
and underpin again, that a large number Nv of eigenvector pairs gives better overlaps for small
distances R/a, but with decreasing importance especially for large distances, where already
Nv < 100 shows better overlaps.

R/a Nv = 1 8 64 100 200 Gauss Wloop GEVP

1 0.773(3) 0.945(1) 0.970(1) 0.980(1) 0.982(1) 0.993(1) 0.921(1) 0.983(1)
2 0.747(4) 0.929(2) 0.964(1) 0.988(1) 0.987(1) 0.989(1) 0.891(1) 0.978(1)
3 0.723(4) 0.878(2) 0.984(2) 0.987(2) 0.986(1) 0.988(1) 0.867(1) 0.972(2)
4 0.726(5) 0.874(3) 0.921(2) 0.982(2) 0.984(2) 0.986(2) 0.841(2) 0.965(3)
5 0.637(6) 0.871(4) 0.979(3) 0.983(3) 0.982(3) 0.983(3) 0.813(2) 0.956(5)
6 0.629(6) 0.869(4) 0.978(4) 0.981(4) 0.980(3) 0.981(3) 0.793(3) 0.948(6)
7 0.619(7) 0.869(5) 0.977(4) 0.982(4) 0.979(4) 0.987(4) 0.772(3) 0.934(7)
8 0.598(8) 0.862(6) 0.972(5) 0.971(5) 0.970(4) 0.974(4) 0.745(4) 0.953(8)
9 0.572(8) 0.857(6) 0.960(5) 0.954(5) 0.934(4) 0.963(3) 0.708(4) 0.947(9)

10 0.540(9) 0.840(7) 0.955(5) 0.941(6) 0.931(5) 0.965(1) 0.671(5) 0.94(1)
11 0.426(9) 0.807(7) 0.943(6) 0.934(5) 0.93(1) 0.956(9) 0.649(4) 0.93(1)
12 0.33(7) 0.79(2) 0.94(1) 0.932(9) 0.92(1) 0.95(1) 0.64(2) 0.92(1)

Table 1. Fractional overlaps with the corresponding ground state energies aV0(R) from a cosh fit,
Eq. (3), see also [26]. In general, an increasing number Nv of Laplacian eigenvectors enhances the

overlap up to about Nv ≈ 100 and are already better for Nv = 8 than standard Wilson loops (column 7).
The overlaps for Laplace trial states from a GEVP with Gaussian profiles in the 6th column are better

than Wilson loop results from a GEVP with different spatial HYP smearing levels (column 8).

Therefore, instead of feeding a large ill-conditioned Nv × Nv transfer matrix to the GEVP
we introduce Gaussian profile functions exp(−λ2/2σ2) for each eigenvector with the corre-
sponding eigenvalue λ and different Gaussian widths σ. We define the new GEVP basis
matrix

Lkl(R,T ) =

Nv∑
i, j

Nkl(λi, λ j)Li j(R,T ), Nkl(λi, λ j) = exp(−λ2
i /2σ

2
k) exp(−λ2

j/2σ
2
l ) (4)

by (double-)summing over the Nv eigenvector pairs2, weighted by Gaussian profile functions
with σk,l ∈ [0.05, 0.0894, 0.1289, 0.1683, 0.2078, 0.2472, 0.2867], see Fig. 3 (left). This way
we gain statistics (precision) by the double sum and find an optimal number of ’important’
eigenvectors by solving the GEVP for the Laplacian state basis matrixLkl using combinations
of profiles with different σk,l. Again, we first pruneLkl using the three most significant singu-
lar vectors um via L̃mn = u†m,kLklun,l, which keeps only (a combination) of useful operators and
improves the stability of the GEVP for fixed R/a: L̃(t)vi(t, t0) = ρi(t, t0)L̃(t0)vi(t, t0). From
the principal correlators ρi(t, t0) we get the effective energies/masses. From the singular vec-
tors ui we get the pruned or ’optimal’ profiles

∑
j ui, j exp(−λ2/σ j), depicted in blue, red and

green in Fig. 3 (right) for R/a = 3, together with the ’optimal’ ground state profile, the linear
combination of pruned profiles using the generalized eigenvectors vi,

∑
i, j viui, j exp(−λ2/σ j)

in black. Indeed, the ’optimal’ profiles give us a number Nv ≈ 100 of ’important’ eigenvectors
for R/a = 3, for larger distances this number slightly decreases.

2Actually, the sum over t0 in Eq. (2) should be the outer most in Eq. (4), since the eigenvalues minimally vary
between time-slices, however using the average eigenvalues over all time-slices does not change the final results or
precision.
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Figure 3. The Gaussian profiles (left) pruned by SVD vectors to ’optimal’ profiles (right) for the GEVP.

3 Results & Timing

With the method presented in the previous section, the implementation of [18], see also
Eq. (1), using only the eigenvector corresponding to the lowest eigenvalue, can be signif-
icantly improved by (double-)summing over the lowest Nv eigenvector pairs, weighted by
Gaussian profile functions using their corresponding eigenvalues exp(−λ2/2σ2) and different
Gaussian widths σk/l. Just like for the standard Wilson loop, where we solve a generalized
eigenvalue problem for the correlation matrix of Wilson loops with different spatial smear-
ing levels, we feed Wkl from Eq. (4) (or its pruned version) into a GEVP which gives us the
’optimal’ profiles or most important eigenvector pairs for each R/a. We present the improve-
ment of effective energies using our method in the left plot of Fig. 4, showing the effective
energies/masses using the improved Laplacian eigenvector approach with Gaussian profiles
after solving the GEVP together with smeared Wilson loop results. In fact, the results from
Laplacian modes show higher accuracy than those from Wilson loops, even though measured
only on a fourth of the total statistics, however we increased the averaging by the double-sum
over different eigenvectors.
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Figure 4. The effective energies/masses (left) using the Laplacian eigenvector approach with Gaussian
profiles and Wilson loops with spatial HYP smearing after solving the GEVP, and static potentials Vn

(right) for the ground (n = 0) and first excited (n = 1) states, which we compare with the excited string
state V0 + 2π/aR, the lowest 0++ iso-scalar meson (possible glueball) state V0 + ameff(iso-scalar 0++)
from [26] and two times the static-charm meson mass from [29].
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The right plot of Fig. 4 presents the static potentials Vn for the ground (n = 0) and first
excited (n = 1) states using the Laplacian eigenvector approach with Gaussian profiles after
solving the GEVP. The first excited state (n = 1) is just included to show the potential of
the method, we compare it with the excited string state V0 + 2π/aR, the lowest 0++ iso-scalar
meson (possible glueball) state V0 + ameff(iso-scalar 0++) from [26] and two times the static-
charm meson mass which were also evaluated using the new method in combination with
’charm-perambulators’ also from [26] on the same N f = 2 ensemble.

The computational effort of this new method is even favorable to the standard Wilson loop
calculation, especially for off-axis separations. In fact, for our test ensemble on a 243 × 48
lattice the computation of on-axis Wilson loops using 4 spatial smearing levels (0, 10, 20, 30
HYP steps) [28] is equally expensive as the calculation of 100 Laplacian eigenvectors and
Laplace states with 3 Gaussian profiles including off-axis distances!

4 Conclusions & Outlook

We presented an alternative operator for a static quark-anti-quark pair based on Laplacian
eigenmodes and improved the operator given in [18] using a large number of eigenvectors
weighted with Gaussian profiles. We observe earlier plateaus in the effective masses and a
better signal. The main advantage of this eigenvector approach however is to have an efficient
method to compute the static potential not only for on-axis, but also for many off-axis quark-
antiquark separations. Using the standard gauge link approach for the computation of Wilson
loops, is rather time consuming, since a large number of stair-like gluonic connections has to
be computed (cf. e.g. [19] for a discussion of how to compute such off-axis Wilson loops).
In comparison, computing many off-axis separations of the static potential using Laplacian
eigenvectors requires less computing time, since the eigenvector components of the covariant
lattice Laplace operator have to be computed only once and can then be used for arbitrary
on-axis and off-axis separations without the need to compute stair-like connections.

We want to adapt the method to also measure hybrid static potentials relevant for exotic
mesons, where the gluonic string excitations (gluonic handles in the standard Wilson loop
approach) can be realized by covariant derivatives of the Laplacian eigenvectors in Eq. (1).
Finally, when we combine our static quark line with a perambulator from [26], we can build
a static-light quark meson. The long-term plan is to put together all building blocks for
observation of string breaking in QCD (mixing matrix of static and light quark propagators)
in the framework of distillation [27]. For more details on the derivation of the method and
possible applications please see [29].
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